NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.
2009-01-01
Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.
Ruiz-del-Árbol, Luis; Serradilla, Regina
2015-01-01
During the course of cirrhosis, there is a progressive deterioration of cardiac function manifested by the disappearance of the hyperdynamic circulation due to a failure in heart function with decreased cardiac output. This is due to a deterioration in inotropic and chronotropic function which takes place in parallel with a diastolic dysfunction and cardiac hypertrophy in the absence of other known cardiac disease. Other findings of this specific cardiomyopathy include impaired contractile responsiveness to stress stimuli and electrophysiological abnormalities with prolonged QT interval. The pathogenic mechanisms of cirrhotic cardiomyopathy include impairment of the b-adrenergic receptor signalling, abnormal cardiomyocyte membrane lipid composition and biophysical properties, ion channel defects and overactivity of humoral cardiodepressant factors. Cirrhotic cardiomyopathy may be difficult to determine due to the lack of a specific diagnosis test. However, an echocardiogram allows the detection of the diastolic dysfunction and the E/e′ ratio may be used in the follow-up progression of the illness. Cirrhotic cardiomyopathy plays an important role in the pathogenesis of the impairment of effective arterial blood volume and correlates with the degree of liver failure. A clinical consequence of cardiac dysfunction is an inadequate cardiac response in the setting of vascular stress that may result in renal hypoperfusion leading to renal failure. The prognosis is difficult to establish but the severity of diastolic dysfunction may be a marker of mortality risk. Treatment is non-specific and liver transplantation may normalize the cardiac function. PMID:26556983
Cardiac structure and function predicts functional decline in the oldest old.
Leibowitz, David; Jacobs, Jeremy M; Lande-Stessman, Irit; Gilon, Dan; Stessman, Jochanan
2018-02-01
Background This study examined the association between cardiac structure and function and the deterioration in activities of daily living (ADLs) in an age-homogenous, community-dwelling population of patients born in 1920-1921 over a five-year follow-up period. Design Longitudinal cohort study. Methods Patients were recruited from the Jerusalem Longitudinal Cohort Study, which has followed an age-homogenous cohort of Jerusalem residents born in 1920-1921. Patients underwent home echocardiography and were followed up for five years. Dependence was defined as needing assistance with one or more basic ADL. Standard echocardiographic assessment of cardiac structure and function, including systolic and diastolic function, was performed. Reassessment of ADLs was performed at the five-year follow-up. Results A total of 459 patients were included in the study. Of these, 362 (79%) showed a deterioration in at least one ADL at follow-up. Patients with functional deterioration had a significantly higher left ventricular mass index and left atrial volume with a lower ejection fraction. There was no significant difference between the diastolic parameters the groups in examined. When the data were examined categorically, a significantly larger percentage of patients with functional decline had an abnormal left ventricular ejection fraction and left ventricular hypertrophy. The association between left ventricular mass index and functional decline remained significant in all multivariate models. Conclusions In this cohort of the oldest old, an elevated left ventricular mass index, higher left atrial volumes and systolic, but not diastolic dysfunction, were predictive of functional disability.
Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise
Naticchioni, Mindi; Karani, Rajiv; Smith, Margaret A.; Onusko, Evan; Robbins, Nathan; Jiang, Min; Radzyukevich, Tatiana; Fulford, Logan; Gao, Xu; Apel, Ryan; Heiny, Judith; Rubinstein, Jack; Koch, Sheryl E.
2015-01-01
The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise. PMID:26356305
Morris, John A; Norris, Patrick R; Ozdas, Asli; Waitman, Lemuel R; Harrell, Frank E; Williams, Anna E; Cao, Hanqing; Jenkins, Judith M
2006-06-01
Measurements of a patient's physiologic reserve (age, injury severity, admission lactic acidosis, transfusion requirements, and coagulopathy) reflect robustness of response to surgical insult. We have previously shown that cardiac uncoupling (reduced heart rate variability, HRV) in the first 24 hours after injury correlates with mortality and autonomic nervous system failure. We hypothesized: Deteriorating physiologic reserve correlates with reduced HRV and cardiac uncoupling. There were 1,425 trauma ICU patients that satisfied the inclusion criteria. Differences in mortality across categorical measurements of the domains of physiologic reserve were assessed using the chi test. The relationship of cardiac uncoupling and physiologic reserve was examined using multivariate logistic regression models for various levels of cardiac uncoupling (>0 through 28% reduced HRV in the first 24 hours). Of these, 797 (55.9%) patients exhibited cardiac uncoupling. Deteriorating measures of physiologic reserve reflected increased risk of death. Measures of acidosis (admission lactate, time to lactate normalization, and lactate deterioration over the first 24 hours), coagulopathy, age, and injury severity contributed significantly to the risk of cardiac uncoupling (area under receiver operator curve, ROC=0.73). The association between deteriorating reserve and cardiac uncoupling increases with the threshold for uncoupling (ROC=0.78). Reduced heart rate variability is a new biomarker reflecting the loss of command and control of the heart (cardiac uncoupling). Risk of cardiac uncoupling increases significantly as a patient's physiologic reserve deteriorates and physiologic exhaustion approaches. Cardiac uncoupling provides a noninvasive, overall measure of a patient's clinical trajectory over the first 24 hours of ICU stay.
Buonincontri, Guido; Wood, Nigel I; Puttick, Simon G; Ward, Alex O; Carpenter, T Adrian; Sawiak, Stephen J; Morton, A Jennifer
2014-01-01
Increasingly, evidence from studies in both animal models and patients suggests that cardiovascular dysfunction is important in HD. Previous studies measuring function of the left ventricle (LV) in the R6/2 model have found a clear cardiac abnormality, albeit with preserved LV systolic function. It was hypothesized that an impairment of RV function might play a role in this condition via mechanisms of ventricular interdependence. To investigate RV function in the R6/2 mouse model of Huntington's disease (HD). Cardiac cine-magnetic resonance imaging (MRI) was used to determine functional parameters in R6/2 mice. In a first experiment, these parameters were derived longitudinally to determine deterioration of cardiac function with disease progression. A second experiment compared the response to a stress test (using dobutamine) of wildtype and early-symptomatic R6/2 mice. There was progressive deterioration of RV systolic function with age in R6/2 mice. Furthermore, beta-adrenergic stimulation with dobutamine revealed RV dysfunction in R6/2 mice before any overt symptoms of the disease were apparent. This work adds to accumulating evidence of cardiovascular dysfunction in R6/2 mice, describing for the first time the involvement of the right ventricle. Cardiovascular dysfunction should be considered, both when treatment strategies are being designed, and when searching for biomarkers for HD.
Volkan-Salanci, Bilge; Aksoy, Hakan; Kiratli, Pınar Özgen; Tülümen, Erol; Güler, Nilüfer; Öksüzoglu, Berna; Tokgözoğlu, Lale; Erbaş, Belkıs; Alikaşifoğlu, Mehmet
2012-10-01
The aim of this prospective clinical study is to evaluate the relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 (CBR3p.V244M) and glutathione S transferase Pi (GSTP1p.I105V) polymorphisms. Seventy patients with normal cardiac function and no history of cardiac disease scheduled to undergo anthracycline chemotherapy were included in the study. The patients' cardiac function was evaluated by gated blood pool scintigraphy and echocardiography before and after chemotherapy, as well as 1 year following therapy. Gene polymorphisms were genotyped in 70 patients using TaqMan probes, validated by DNA sequencing. A deteriorating trend was observed in both systolic and diastolic parameters from GG to AA in CBR3p.V244M polymorphism. Patients with G-allele carriers of GSTP1p.I105V polymorphism were common (60%), with significantly decreased PFR compared to patiens with AA genotype. Variants of CBR3 and GSTP1 enzymes may be associated with changes in short-term functional cardiac parameters.
Miján, Alberto; Martín, Elvira; de Mateo, Beatriz
2006-05-01
Chronic heart failure (CHF), especially affecting the right heart, frequently leads to malnutrition. If the latter is severe and is combined to other factors, it may lead to cardiac cachexia. This one is associated to increased mortality and lower survival of patients suffering from it. The causes of cardiac cachexia are diverse, generally associated to maintenance of a negative energy balance, with increasing evidence of its multifactorial origin. Neurohumoral, inflammatory, immunological, and metabolic factors, among others, are superimposed in the patient with CHF, leading to involvement and deterioration of several organs and systems, since this condition affects both lean (or active cellular) mass and adipose and bone tissue osteoporosis. Among all, the most pronounced deterioration may be seen at skeletal muscle tissue, at both structural and functional levels, the heart not being spared. As for treatment, it should be based on available scientific evidence. Assessment of nutritional status of any patient with CHF is a must, with the requirement of nutritional intervention in case of malnutrition. In this situation, especially if accompanied by cardiac cachexia, it is required to modify energy intake and oral diet quality, and to consider the indication of specific complementary or alternative artificial nutrition. Besides, the causal relationship of the beneficial role of moderate physical exertion is increasing, as well as modulation of metabolic and inflammatory impairments observed in cardiac cachexia with several drugs, leading to a favorable functional and structural response in CHF patients.
Zhou, Jin; Chen, Jun; Sun, Hongyu; Qiu, Xiaozhong; Mou, Yongchao; Liu, Zhiqiang; Zhao, Yuwei; Li, Xia; Han, Yao; Duan, Cuimi; Tang, Rongyu; Wang, Chunlan; Zhong, Wen; Liu, Jie; Luo, Ying; (Mengqiu) Xing, Malcolm; Wang, Changyong
2014-01-01
Recently, carbon nanotubes together with other types of conductive materials have been used to enhance the viability and function of cardiomyocytes in vitro. Here we demonstrated a paradigm to construct ECTs for cardiac repair using conductive nanomaterials. Single walled carbon nanotubes (SWNTs) were incorporated into gelatin hydrogel scaffolds to construct three-dimensional ECTs. We found that SWNTs could provide cellular microenvironment in vitro favorable for cardiac contraction and the expression of electrochemical associated proteins. Upon implantation into the infarct hearts in rats, ECTs structurally integrated with the host myocardium, with different types of cells observed to mutually invade into implants and host tissues. The functional measurements showed that SWNTs were essential to improve the performance of ECTs in inhibiting pathological deterioration of myocardium. This work suggested that conductive nanomaterials hold therapeutic potential in engineering cardiac tissues to repair myocardial infarction. PMID:24429673
Naskar, Shaon; Datta, Kaberi; Mitra, Arkadeep; Pathak, Kanchan; Datta, Ritwik; Bansal, Trisha; Sarkar, Sagartirtha
2014-01-01
A cardiac hypertrophy is defined as an increase in heart mass which may either be beneficial (physiological hypertrophy) or detrimental (pathological hypertrophy). This study was undertaken to establish the role of different protein kinase-C (PKC) isoforms in the regulation of cardiac adaptation during two types of cardiac hypertrophy. Phosphorylation of specific PKC-isoforms and expression of their downstream proteins were studied during physiological and pathological hypertrophy in 24 week male Balb/c mice (Mus musculus) models, by reverse transcriptase-PCR, western blot analysis and M-mode echocardiography for cardiac function analysis. PKC-δ was significantly induced during pathological hypertrophy while PKC-α was exclusively activated during physiological hypertrophy in our study. PKC-δ activation during pathological hypertrophy resulted in cardiomyocyte apoptosis leading to compromised cardiac function and on the other hand, activation of PKC-α during physiological hypertrophy promoted cardiomyocyte growth but down regulated cellular apoptotic load resulting in improved cardiac function. Reversal in PKC-isoform with induced activation of PKC-δ and simultaneous inhibition of phospho-PKC-α resulted in an efficient myocardium to deteriorate considerably resulting in compromised cardiac function during physiological hypertrophy via augmentation of apoptotic and fibrotic load. This is the first report where PKC-α and -δ have been shown to play crucial role in cardiac adaptation during physiological and pathological hypertrophy respectively thereby rendering compromised cardiac function to an otherwise efficient heart by conditional reversal of their activation. PMID:25116170
Kertész, Attila; Bombicz, Mariann; Priksz, Daniel; Balla, Jozsef; Balla, Gyorgy; Gesztelyi, Rudolf; Varga, Balazs; Haines, David D.; Tosaki, Arpad; Juhasz, Bela
2013-01-01
The present study evaluates a hypothesis that diet-related hypercholesterolemia increases oxidative stress-related burden to cardiovascular tissue, resulting in progressively increased mortality, along with deterioration of electrophysiological and enzymatic function in rabbit myocardium. New Zealand white rabbits were divided into four groups, defined as follows: GROUP I, cholesterol-free rabbit chow for 12 weeks; GROUP II, cholesterol-free chow, 40 weeks; GROUP III, chow supplemented with 2% cholesterol, 12 weeks; GROUP IV, chow supplemented with 2% cholesterol, 40 weeks. At the 12 and 40 weeks time points, animals in each of the aforementioned cohorts were subjected to echocardiographic measurements, followed by sacrifice. Significant deterioration in major outcome variables measured in the present study were observed only in animals maintained for 40 weeks on 2% cholesterol-supplemented chow, with much lesser adverse effects noted in animals fed high cholesterol diets for only 12 weeks. It was observed that rabbits receiving high cholesterol diets for 40 weeks exhibited significantly increased mortality, worsened ejection fraction and general deterioration of cardiac functions, along with increased atherosclerotic plaque formation and infarct size. Additionally, myocardium of GROUP IV animals was observed to contain lower levels of heme oxygenase-1 (HO-1) and cytochrome c oxidase III (COX III) protein relative to the controls. PMID:24048247
Aoyagi, Toshinori; Higa, Jason K; Aoyagi, Hiroko; Yorichika, Naaiko; Shimada, Briana K; Matsui, Takashi
2015-06-15
Diet-induced obesity deteriorates the recovery of cardiac function after ischemia-reperfusion (I/R) injury. While mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, the effects of cardiac mTOR in ischemic injury under metabolic syndrome remains undefined. Using cardiac-specific transgenic mice overexpressing mTOR (mTOR-Tg mice), we studied the effect of mTOR on cardiac function in both ex vivo and in vivo models of I/R injury in high-fat diet (HFD)-induced obese mice. mTOR-Tg and wild-type (WT) mice were fed a HFD (60% fat by calories) for 12 wk. Glucose intolerance and insulin resistance induced by the HFD were comparable between WT HFD-fed and mTOR-Tg HFD-fed mice. Functional recovery after I/R in the ex vivo Langendorff perfusion model was significantly lower in HFD-fed mice than normal chow diet-fed mice. mTOR-Tg mice demonstrated better cardiac function recovery and had less of the necrotic markers creatine kinase and lactate dehydrogenase in both feeding conditions. Additionally, mTOR overexpression suppressed expression of proinflammatory cytokines, including IL-6 and TNF-α, in both feeding conditions after I/R injury. In vivo I/R models showed that at 1 wk after I/R, HFD-fed mice exhibited worse cardiac function and larger myocardial scarring along myofibers compared with normal chow diet-fed mice. In both feeding conditions, mTOR overexpression preserved cardiac function and prevented myocardial scarring. These findings suggest that cardiac mTOR overexpression is sufficient to prevent the detrimental effects of diet-induced obesity on the heart after I/R, by reducing cardiac dysfunction and myocardial scarring. Copyright © 2015 the American Physiological Society.
Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice
Belmonte, Stephen L.; Ram, Rashmi; Mickelsen, Deanne M.; Gertler, Frank B.
2013-01-01
Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By “turning off” Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology. PMID:23832697
Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.
Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C
2013-09-15
Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.
Momomura, Shin-Ichi; Seino, Yoshihiko; Kihara, Yasuki; Adachi, Hitoshi; Yasumura, Yoshio; Yokoyama, Hiroyuki; Wada, Hiroshi; Ise, Takayuki; Tanaka, Koichi
2015-01-01
Adaptive servo-ventilation (ASV) therapy is expected to be novel nonpharmacotherapy with hemodynamic effects on patients with chronic heart failure (CHF), but sufficient evidence has not been obtained. A 24-week, open-label, randomized, controlled study was performed to confirm the cardiac function-improving effect of ASV therapy on CHF patients. At 39 institutions, 213 outpatients with CHF, whose left ventricular ejection fraction (LVEF) was <40% and who had mild to severe symptoms [New York Heart Association (NYHA) class: ≥II], were enrolled. After excluding 8 patients, 102 and 103 underwent ASV plus guideline-directed medical therapy (GDMT) [ASV group] and GDMT only [control group], respectively. The primary endpoint was LVEF, and the secondary endpoints were HF deterioration, B-type natriuretic peptide (BNP), and clinical composite response (CCR: NYHA class+HF deterioration). LVEF and BNP improved significantly at completion against the baseline values in the 2 groups. However, no significant difference was found between these groups. HF deterioration tended to be suppressed. The ASV group showed a significant improvement in CCR corroborated by significant improvements in NYHA class and ADL against the control group. Under the present study's conditions, ASV therapy was not superior to GDMT in the cardiac function-improving effect but showed a clinical status-improving effect, thus indicating a given level of clinical benefit.
Scharin Täng, M; Redfors, B; Lindbom, M; Svensson, J; Ramunddal, T; Ohlsson, C; Shao, Y; Omerovic, E
2012-12-01
IGF-1 plays an important role in cardiovascular homeostasis, and plasma levels of IGF-1 correlate inversely with systolic function in heart failure. It is not known to what extent circulating IGF-1 secreted by the liver and local autocrine/paracrine IGF-1 expressed in the myocardium contribute to these beneficial effects on cardiac function and morphology. In the present study, we used a mouse model of liver-specific inducible deletion of the IGF-1 gene (LI-IGF-1 -/- mouse) in an attempt to evaluate the importance of circulating IGF-I on cardiac morphology and function under normal and pathological conditions, with an emphasis on its regulatory role in myocardial phosphocreatine metabolism. Echocardiography was performed in LI-IGF-1 -/- and control mice at rest and during dobutamine stress, both at baseline and post myocardial infarction (MI). High-energy phosphate metabolites were compared between LI-IGF-1 -/- and control mice at 4 weeks post MI. We found that LI-IGF-1 -/- mice had significantly greater left ventricular dimensions at baseline and showed a greater relative increase in cardiac dimensions, as well as deterioration of cardiac function, post MI. Myocardial creatine content was 17.9% lower in LI-IGF-1 -/- mice, whereas there was no detectable difference in high-energy nucleotides. These findings indicate an important role of circulating IGF-1 in preserving cardiac structure and function both in physiological settings and post MI. Copyright © 2012 Elsevier Ltd. All rights reserved.
Single allele Lmbrd1 knockout results in cardiac hypertrophy.
Tseng, Linda Tzu-Ling; Lin, Chieh-Liang; Pan, Kuei-Hsiang; Tzen, Kai-Yuan; Su, Ming-Jai; Tsai, Chia-Ti; Li, Yi-Han; Li, Pai-Chi; Chiang, Fu-Tien; Chang, Shin C; Chang, Ming-Fu
2018-06-01
LMBD1 protein, a type IV-B plasma membrane protein possessing nine putative trans-membrane domains, was previously demonstrated at cellular level to play a critical part in the signaling cascade of insulin receptor through its involvement in regulating clathrin-mediated endocytosis. However, at physiological level, the significance of LMBD1 protein in cardiac development remains unclear. To understand the role of Lmbrd1 gene involved in the cardiac function, heterozygous knockout mice were used as an animal model system. The pathological outcomes were analyzed by micro-positron emission tomography, ECG acquisition, cardiac ultrasound, and immunohistochemistry. By studying the heterozygous knockout of Lmbrd1 (Lmbrd1 +/- ), we discovered that lack of Lmbrd1 not only resulted in the increase of cardiac-glucose uptake, pathological consequences were also observed. Here, we have distinguished that Lmbrd1 +/- is sufficient in causing cardiac diseases through a pathway independent of the recessive vitamin B 12 cblF cobalamin transport defect. Lmbrd1 +/- mice exhibited an increase in myocardial glucose uptake and insulin receptor signaling that is insensitive to the administration of additional insulin. Pathological symptoms such as cardiac hypertrophy, ventricular tissue fibrosis, along with the increase of heart rate and cardiac muscle contractility were observed. As Lmbrd1 +/- mice aged, the decrease in ejection fraction and fraction shortening showed signs of ventricular function deterioration. The results suggested that Lmbrd1 gene not only plays a significant role in mediating the energy homeostasis in cardiac tissue, it may also be a key factor in the regulation of cardiac function in mice. Copyright © 2017. Published by Elsevier B.V.
Seki, Tatsuya; Hattori, Atsuo; Yoshida, Toshihito
2017-08-01
We report a case of hemodynamic deterioration after aortic valve replacement in a patient with mixed systemic amyloidosis. A 77-year-old male with severe aortic valve stenosis and 19 years hemodialysis underwent aortic valve replacement. Postoperatively, the patient died of hemodynamic deterioration. Autopsy findings showed massive, whole-body edema and mixed systemic amyloidosis (dialysis-related and AA amyloidosis). Clinical and autopsy findings implied that hemodynamic deterioration was caused by increased vascular permeability. The amyloid deposit to the vessel causes inflammatory changes and increases vascular permeability. Mixed systemic amyloidosis occurs very rarely and could increases vascular permeability even more than each single type of amyloidosis. Systemic amyloidosis may be a risk factor for hemodynamic deterioration after cardiac surgery. Patients with longtime hemodialysis and a history associated with dialysis-related amyloidosis would have at least single systemic amyloidosis, which should be considered a contraindication to cardiac surgery with cardiopulmonary bypass.
Quality of Life After Cardiac Surgery Based on the Minimal Clinically Important Difference Concept.
Grand, Nathalie; Bouchet, Jean Baptiste; Zufferey, Paul; Beraud, Anne Marie; Awad, Sahar; Sandri, Fabricio; Campisi, Salvator; Fuzellier, Jean François; Molliex, Serge; Vola, Marco; Morel, Jerome
2018-03-23
Health-related quality of life (HRQOL) is an increasingly important issue in assessing the consequences of any surgical or medical intervention. Our study aimed to evaluate change in HRQOL 6 months after elective cardiac surgery and to identify specific predictors of poor HRQOL. In this prospective, single-center study, HRQOL was evaluated before and 6 months after surgery using the SF-36 questionnaire and its two components: the physical component summary (PCS) and the mental component summary (MCS). We distinguished patients with worsening of HRQOL according to the minimal clinically important difference. All consecutive adult patients undergoing cardiac surgery were included. 326 patients completed the preoperative and postoperative SF-36 questionnaires and 24 patients died before completing follow-up questionnaires. Based on the definition used, clinically significant deterioration of HRQOL was observed in 93 patients (26.6%) for PCS and 99 patients (28.2%) for MCS. Renal replacement for acute renal failure and mechanical ventilation for longer than 48 hours were independent risk factors for PCS and MCS worsening or death. Although our study showed overall improvement of QOL after cardiac surgery, over a quarter of the patients manifested deterioration of HRQOL at 6 months post-surgery. The findings from this study should help clinicians to inform patients about their likely postoperative functional status and quality of life. Copyright © 2018. Published by Elsevier Inc.
Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart.
Gómez, Luis A; Monette, Jeffrey S; Chavez, Juan D; Maier, Claudia S; Hagen, Tory M
2009-10-01
Accumulation of mitochondrial electron transport chain (ETC) defects is a recognized hallmark of the age-associated decline in cardiac bioenergetics; however, the molecular events involved are only poorly understood. In the present work, we hypothesized that age-related ETC deterioration stemmed partly from disassociation of large solid-state macromolecular assemblies termed "supercomplexes". Mitochondrial proteins from young and old rat hearts were separated by blue native-PAGE, protein bands analyzed by LC-MALDI-MS/MS, and protein levels quantified by densitometry. Results showed that supercomplexes comprised of various stoichiometries of complexes I, III and IV were observed, and declined significantly (p<0.05, n=4) with age. Supercomplexes displaying the highest molecular masses were the most severely affected. Considering that certain diseases (e.g. Barth Syndrome) display similar supercomplex destabilization as our results for aging, the deterioration in ETC supercomplexes may be an important underlying factor for both impaired mitochondrial function and loss of cardiac bioenergetics with age.
Effect of prolonged space flight on cardiac function and dimensions
NASA Technical Reports Server (NTRS)
Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.
1974-01-01
Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.
Drosophila as a model to study cardiac aging
Nishimura, Mayuko; Ocorr, Karen; Bodmer, Rolf; Cartry, Jérôme
2010-01-01
With age, cardiac performance declines progressively and the risk of heart disease, a primary cause of mortality, rises dramatically. As the elderly population continues to increase, it is critical to gain a better understanding of the genetic influences and modulatory factors that impact cardiac aging. In an attempt to determine the relevance and utility of the Drosophila heart in unraveling the genetic mechanisms underlying cardiac aging, a variety of heart performance assays have recently been developed to quantify Drosophila heart performance that permit the use of the fruit fly to investigate the heart’s decline with age. As for the human heart, Drosophila heart function also deteriorates with age. Notably, with progressive age the incidence of cardiac arrhythmias, myofibrillar disorganization and susceptibility to heart dysfunction and failure all increase significantly. We review here the evidence for an involvement of the insulin-TOR pathway, the KATP channel subunit dSur, the KCNQ potassium channel, as well as Dystrophin and Myosin in fly cardiac aging, and discuss the utility of the Drosophila heart model for cardiac aging studies. PMID:21130861
Iacobaeus, Charlotte; Andolf, Ellika; Thorsell, Malin; Bremme, Katarina; Östlund, Eva; Kahan, Thomas
2018-04-01
To assess cardiac function, myocardial mechanoenergetic efficiency (MEE), and ventricular-arterial coupling (VAC) longitudinally during normal pregnancy, and to study if there was an association between cardiac structure and function, and fetal growth. Cardiac structure and function, MEE, and ventricular-arterial coupling was assessed longitudinally in 52 healthy nulliparous women at 14, 24, and 34 weeks' gestation and 9-month postpartum. Left atrial diameter increased during pregnancy (30.41 ± 3.59 mm in the nonpregnant state and 31.02 ± 3.91, 34.06 ± 3.58, and 33.9 ± 2.97 mm in the first, second, and third trimesters, P < 0.001). Left ventricular mass increased 117.12 ± 45.0 g in the nonpregnant state and 116.5 ± 33.0, 126.9 ± 34.5, 128.4 ± 36 g in the first, second, and third trimesters (P < 0.001). Cardiac output increased from 3.4 ± 1.2 l/min to 4.3 ± 0.7 l/min in the second and third trimesters (P < 0.001). Diastolic function decreased as both E/A and e'/a' decreased during pregnancy (P < 0.05 and P < 0.001, respectively). MEE and VAC were retained during pregnancy. Heart rate was associated with birth weight centile in the first (r = 0.41, P = 0.002) and second (r = 0.46, P = 0.002) trimester. The increase in cardiac output during normal pregnancy is obtained by an increase in heart rate, followed by structural cardiac changes. The impaired systolic function is accomplished by a deteriorated diastolic function. Despite these rapid changes, the myocardium manages to work efficient with a preserved MEE. Cardiac and arterial adaption to pregnancy seems to appear parallel as evidenced by a preserved VAC.
Tolonen, Anna-Maria; Magga, Johanna; Szabó, Zoltán; Viitala, Pirkko; Gao, Erhe; Moilanen, Anne-Mari; Ohukainen, Pauli; Vainio, Laura; Koch, Walter J; Kerkelä, Risto; Ruskoaho, Heikki; Serpi, Raisa
2014-01-01
The members of lethal-7 (Let-7) microRNA (miRNA) family are involved in regulation of cell differentiation and reprogramming of somatic cells into induced pluripotent stem cells. However, their function in the heart is not known. In this study, we examined the effect of inhibiting the function of Let-7c miRNA on the progression of postinfarction left ventricular (LV) remodeling in mice. Myocardial infarction was induced with permanent ligation of left anterior descending coronary artery with a 4-week follow-up period. Let-7c miRNA was inhibited with a specific antagomir administered intravenously. The inhibition of Let-7c miRNA downregulated the levels of mature Let-7c miRNA and its other closely related members of Let-7 family in the heart and resulted in increased expression of pluripotency-associated genes Oct4 and Sox2 in cardiac fibroblasts in vitro and in adult mouse heart in vivo. Importantly, Let-7c inhibitor prevented the deterioration of cardiac function postinfarction, as demonstrated by preserved LV ejection fraction and elevated cardiac output. Improvement in cardiac function by Let-7c inhibitor postinfarction was associated with decreased apoptosis, reduced fibrosis, and reduction in the number of discoidin domain receptor 2–positive fibroblasts, while the number of c-kit+ cardiac stem cells and Ki-67+ proliferating cells remained unaltered. In conclusion, inhibition of Let-7 miRNA may be beneficial for the prevention of postinfarction LV remodeling and progression of heart failure. PMID:25505600
Arterial Ventricular Uncoupling with Age and Disease and Recoupling with Exercise
Chantler, Paul D
2017-01-01
The deterioration in arterial and cardiac function with aging impairs arterial ventricular coupling, an important determinant of cardiovascular performance. However, exercise training improves arterial ventricular coupling especially during exercise during the age and disease process. This review examines the concept of arterial-ventricular coupling, and how age, and disease uncouples but exercise training recouples the heart and arterial system. PMID:28072585
Zlatanovic, Maja; Tadic, Marijana; Celic, Vera; Ivanovic, Branislava; Stevanovic, Ana; Damjanov, Nemanja
2017-01-01
We aimed to determine left ventricular (LV) and right ventricular (RV) structure, function and mechanics, as well as heart rate variability (HRV), and their relationship, in patients with systemic sclerosis (SSc). The study included 41 SSc patients and 30 age-matched healthy volunteers. All the patients underwent clinical examination, serological tests, pulmonary function testing, 24-h Holter monitoring and complete two-dimensional echocardiography including strain analysis. The parameters of LV structure (interventricular septum thickness and LV mass index) and RV structure (RV wall thickness) were significantly higher in SSc patients. LV and RV diastolic function (estimated by mitral and tricuspid E/e' ratio) was significantly impaired in SSc group comparing with the healthy controls. LV and RV longitudinal function was significantly deteriorated in SSc patients. LV circumferential strain was also significantly lower in SSc group, whereas LV radial strain was similar between the observed groups. All parameters of time and frequency domain of HRV were decreased in SSc patients. LV and RV cardiac remodeling parameters, particularly diastolic function and longitudinal strain, were associated with HRV indices without regard to the main demographic or the clinical and echocardiographic characteristics. Rodnan Skin Score was also independently associated with biventricular cardiac remodeling in SSc patients. LV and RV structure, function and mechanics, as well as autonomic nervous function, were significantly impaired in SSc patients. There is the significant association between biventricular cardiac remodeling and autonomic function in these patients, which could be useful for their everyday clinical assessment.
Li, Jiming; Zeng, Jingjing; Wu, Lianpin; Tao, Luyuan; Liao, Zhiyong; Chu, Maoping; Li, Lei
2018-06-22
The tumor suppressor p53 is recognized as the guardian of the genome in cell cycle and cell death. P53 expression increases as cardiac hypertrophy worsens to heart failure, suggesting that p53 may play important role in cardiac remodeling. In the present study, deletion of p53 in the mice heart would ameliorate cardiac hypertrophy induced by pressure overload. The role of p53 on heart was investigated using in vivo models. Cardiac hypertrophy in mice was induced by transverse aortic banding surgery. The extent of cardiac hypertrophy was examined by echocardiography, as well as pathological and molecular analyses of heart tissue. Global knockout of p53 in the mice reduced the hypertrophic response and markedly reduced cardiac apoptosis, and fibrosis. Ejection fraction of heart was also improved in hearts without p53 in response to pressure overload. Protein determination further suggested loss of p53 expression markedly increased Hypoxia-inducible factor 1-alpha (HIF1α) and vascular endothelial growth factor (VEGF) expression. The study indicated p53 deteriorated cardiac functions and cardiac hypertrophy, apoptosis, and fibrosis by partially inhibition of HIF1α and VEGF. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsuo, Tomoaki; Seino, Satoshi; Ohkawara, Kazunori; Tanaka, Kiyoji; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki
In a microgravity environment, the volume load on the left ventricle is reduced and the cardiac function deteriorates.Consequently, maximal oxygen consumption (VO2max) decreases during spaceflight. Reduced cardiac function can lead to serious health problems such as cardiac atrophy, diastolic dysfunction, and orthostatic hypotension. An exercise using a bicycle ergometer during spaceflight may help to increase the volume load on the left ventricle. On the other hand, many astronauts also experience weight loss during spaceflight because energy imbalances can occur. Some researchers indicate that excessive exercise may promote the energy deficit and have a negative impact on long-term spaceflight. Therefore, we have been devising an original bicyle erogometer protocol better suited to astronauts experiencing long-term spaceflight.One of our candidate protocols is the 3 × 3 protocol named J-HIAT, i.e., three times 3-min intervals with a 2-min active recovery period between intervals. In response to our preliminary experiments, we concluded that J-HIAT would be a potential protocol to control the increase of energy consumption and to have a significant impact on VO2max and the cardiac function. To further verify this method, we are working on full-scale experiments. In future, we will show the results of these experiments.
Bai, Yang; Chen, Qiang; Sun, Yun-Peng; Wang, Xuan; Lv, Li; Zhang, Li-Ping; Liu, Jin-Sha; Zhao, Song; Wang, Xiao-Lu
2017-10-01
Doxorubicin (DOX) is an anthracycline antitumor drug. However, its clinical use is limited by dose-dependent cardiotoxicity and even progresses to chronic heart failure (CHF). This study aims to investigate whether the Nrf2 activator, sulforaphane (SFN), can prevent DOX-induced CHF. Male Sprague-Dawley rats which received treatment for 6 weeks were divided into four groups (n=30 per group): control, SFN, DOX and DOX plus SFN group. Results revealed that DOX induced progressive cardiac damage as indicated by increased cardiac injury markers, cardiac inflammation, fibrosis and oxidative stress. SFN significantly prevented DOX-induced progressive cardiac dysfunction between 2-6 weeks and prevented DOX-induced cardiac function deterioration. Furthermore, it significantly decreased ejection fraction and increased the expression of brain natriuretic peptide. SFN also almost completely prevented DOX-induced cardiac oxidative stress, inflammation and fibrosis. SFN upregulated NF-E2-related factor 2 (Nrf2) expression and transcription activity, which was reflected by the increased mRNA expression of Nrf2 and its downstream genes. Furthermore, in cultured H9c2 cardiomyocytes, the protective effect of SFN against DOX-induced fibrotic and inflammatory responses was abolished by Nrf2 silencing. We arrived at the conclusion that DOX-induced CHF can be prevented by SFN through the upregulation of Nrf2 expression and transcriptional function. © 2017 John Wiley & Sons Ltd.
Defining clinical deterioration.
Jones, Daryl; Mitchell, Imogen; Hillman, Ken; Story, David
2013-08-01
To review literature reporting adverse events and physiological instability in order to develop frameworks that describe and define clinical deterioration in hospitalised patients. Literature review of publications from 1960 to August 2012. Conception and refinement of models to describe clinical deterioration based on prevailing themes that developed chronologically in adverse event literature. We propose four frameworks or models that define clinical deterioration and discuss the utility of each. Early attempts used retrospective chart review and focussed on the end result of deterioration (adverse events) and iatrogenesis. Subsequent models were also retrospective, but used discrete complications (e.g. sepsis, cardiac arrest) to define deterioration, had a more clinical focus, and identified the concept of antecedent physiological instability. Current models for defining clinical deterioration are based on the presence of abnormalities in vital signs and other clinical observations and attempt to prospectively assist clinicians in predicting subsequent risk. However, use of deranged vital signs in isolation does not consider important patient-, disease-, or system-related factors that are known to adversely affect the outcome of hospitalised patients. These include pre-morbid function, frailty, extent and severity of co-morbidity, nature of presenting illness, delays in responding to deterioration and institution of treatment, and patient response to therapy. There is a need to develop multiple-variable models for deteriorating ward patients similar to those used in intensive care units. Such models may assist clinician education, prospective and real-time patient risk stratification, and guide quality improvement initiatives that prevent and improve response to clinical deterioration. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
Lee, Ju-Ry; Kim, Eun-Mi; Kim, Sun-Aee; Oh, Eui Geum
2018-04-25
Early warning systems (EWSs) are an integral part of processes that aim to improve the early identification and management of deteriorating patients in general wards. However, the widespread implementation of these systems has not generated robust data regarding nurses' clinical performance and patients' adverse events. This review aimed to determine the ability of EWSs to improve nurses' clinical performance and prevent adverse events among deteriorating ward patients. The PubMed, CINAHL, EMBASE, and Cochrane Library databases were searched for relevant publications (January 1, 1997, to April 12, 2017). In addition, a grey literature search evaluated several guideline Web sites. The main outcome measures were nurses' clinical performance (vital sign monitoring and rapid response team notification) and patients' adverse events (in-hospital mortality, cardiac arrest, and unplanned intensive care unit [ICU] admission). The search identified 888 reports, although only five studies fulfilled the inclusion criteria. The findings of these studies revealed that EWSs implementation had a positive effect on nurses' clinical performance, based on their frequency of documenting vital signs that were related to the patient's clinical deterioration. In addition, postimplementation reductions were identified for cardiac arrest, unplanned ICU admission, and unexpected death. It seems that EWSs can improve nurses' clinical performance and prevent adverse events (e.g., in-hospital mortality, unplanned ICU admission, and cardiac arrest) among deteriorating ward patients. However, additional high-quality evidence is needed to more comprehensively evaluate the effects of EWSs on these outcomes.
Youngson, Megan J; Currey, Judy; Considine, Julie
2017-11-01
To explore the characteristics of and interactions between clinicians, patients and family members during management of the deteriorating adult patient in the emergency department. Previous research into family presence during resuscitation has identified many positive outcomes when families are included. However, over the last three decades the epidemiology of acute clinical deterioration has changed, with a decrease in in-hospital cardiac arrests and an increase in acute clinical deterioration. Despite the decrease in cardiac arrests, research related to family presence continues to focus on care during resuscitation rather than care during acute deterioration. Descriptive exploratory study using nonparticipatory observation. Five clinical deterioration episodes were observed within a 50-bed, urban, Australian emergency department. Field notes were taken using a semistructured tool to allow for thematic analysis. Presence, roles and engagement describe the interactions between clinicians, family members and patients while family are present during a patient's episode of deterioration. Presence was classified as no presence, physical presence and therapeutic presence. Clinicians and family members moved through primary, secondary and tertiary roles during patients' deterioration episode. Engagement was observed to be superficial or deep. There was a complex interplay between presence, roles and engagement with each influencing which form the other could take. Current practices of managing family during episodes of acute deterioration are complex and multifaceted. There is fluid interplay between presence, roles and engagement during a patient's episode of deterioration. This study will contribute to best practice, provide a strong foundation for clinician education and present opportunities for future research. © 2017 John Wiley & Sons Ltd.
Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario).
Vornanen, Matti; Haverinen, Jaakko; Egginton, Stuart
2014-01-15
The upper thermal tolerance and mechanisms of heat-induced cardiac failure in the brown trout (Salmo trutta fario) was examined. The point above which ion channel function and sinoatrial contractility in vitro, and electrocardiogram (ECG) in vivo, started to fail (break point temperature, BPT) was determined by acute temperature increases. In general, electrical excitation of the heart was most sensitive to heat in the intact animal (electrocardiogram, ECG) and least sensitive in isolated cardiac myocytes (ion currents). BPTs of Ca(2+) and K(+) currents of cardiac myocytes were much higher (>28°C) than BPT of in vivo heart rate (23.5 ± 0.6°C) (P<0.05). A striking exception among sarcolemmal ion conductances was the Na(+) current (INa), which was the most heat-sensitive molecular function, with a BPT of 20.9 ± 0.5°C. The low heat tolerance of INa was reflected as a low BPT for the rate of action potential upstroke in vitro (21.7 ± 1.2°C) and the velocity of impulse transmission in vivo (21.9 ± 2.2°C). These findings from different levels of biological organization strongly suggest that heat-dependent deterioration of Na(+) channel function disturbs normal spread of electrical excitation over the heart, leading to progressive variability of cardiac rhythmicity (missed beats, bursts of fast beating), reduction of heart rate and finally cessation of the normal heartbeat. Among the cardiac ion currents INa is 'the weakest link' and possibly a limiting factor for upper thermal tolerance of electrical excitation in the brown trout heart. Heat sensitivity of INa may result from functional requirements for very high flux rates and fast gating kinetics of the Na(+) channels, i.e. a trade-off between high catalytic activity and thermal stability.
Kumarapeli, Asangi R K; Horak, Kathleen; Wang, Xuejun
2010-01-01
Molecular chaperones represent the first line of defense of intracellular protein quality control. As a major constituent of molecular chaperones, heat shock proteins (HSP) are known to confer cardiomyocyte short-term protection against various insults and injuries. Previously, we reported that the small HSP αB-crystallin (CryAB) attenuates cardiac hypertrophic response in mice subjected to 2 weeks of severe pressure overload. However, the long-term role of small HSPs in cardiac hypertrophy and failure has rarely been studied. The present study investigates the cardiac responses to chronic severe pressure overload in CryAB/HSPB2 germ line ablated (KO) and cardiac-specific CryAB overexpressingtransgenic (TG) mice. Pressure overload was induced by transverse aortic constriction in KO, TG, and non-transgenic wild type (NTG) control mice and 10 weeks later molecular, cellular, and whole organ level hypertrophic responses were analyzed. As we previously described, CryAB/HSPB2 KO mice showed abnormal baseline cardiac physiology that worsened into a restrictive cardiomyopathic phenotype with aging. Severe pressure overload in these mice led to rapid deterioration of heart function and development of congestive cardiac failure. Contrary to their short term protective phenotype, CryAB TG mice showed no significant effects on cardiac hypertrophic responses and very modest improvement of hemodynamics during chronic systolic overload. These findings indicate that small HSPs CryAB and/or HSPB2 are essential to maintain cardiac structure and function but overex-pression of CryAB is not sufficient to confer a sustained protection against chronic systolic overload. PMID:20733949
Kumarapeli, Asangi R K; Horak, Kathleen; Wang, Xuejun
2010-07-21
Molecular chaperones represent the first line of defense of intracellular protein quality control. As a major constituent of molecular chaperones, heat shock proteins (HSP) are known to confer cardiomyocyte short-term protection against various insults and injuries. Previously, we reported that the small HSP alphaB-crystallin (CryAB) attenuates cardiac hypertrophic response in mice subjected to 2 weeks of severe pressure overload. However, the long-term role of small HSPs in cardiac hypertrophy and failure has rarely been studied. The present study investigates the cardiac responses to chronic severe pressure overload in CryAB/HSPB2 germ line ablated (KO) and cardiac-specific CryAB overexpressingtransgenic (TG) mice. Pressure overload was induced by transverse aortic constriction in KO, TG, and non-transgenic wild type (NTG) control mice and 10 weeks later molecular, cellular, and whole organ level hypertrophic responses were analyzed. As we previously described, CryAB/HSPB2 KO mice showed abnormal baseline cardiac physiology that worsened into a restrictive cardiomyopathic phenotype with aging. Severe pressure overload in these mice led to rapid deterioration of heart function and development of congestive cardiac failure. Contrary to their short term protective phenotype, CryAB TG mice showed no significant effects on cardiac hypertrophic responses and very modest improvement of hemodynamics during chronic systolic overload. These findings indicate that small HSPs CryAB and/or HSPB2 are essential to maintain cardiac structure and function but overex-pression of CryAB is not sufficient to confer a sustained protection against chronic systolic overload.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Congying; Dong, Ruolan; Chen, Chen
Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejectionmore » fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.« less
Kyrychenko, Sergii; Poláková, Eva; Kang, Chifei; Pocsai, Krisztina; Ullrich, Nina D; Niggli, Ernst; Shirokova, Natalia
2013-03-15
Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
A nursing diagnosis approach to the patient awaiting cardiac transplantation.
Cardin, S; Clark, S
1985-09-01
The most common reason to perform cardiac transplantation is dilated cardiomyopathy. Alterations in cardiac output secondary to decreased contractility and increased preload and afterload will, over time, lead to progressive deterioration of the patient with this type of end-stage cardiac disease. Heart transplantation is now an accepted therapy for these patients. This article focused on the patient in the period awaiting cardiac transplantation. Five pertinent nursing diagnoses were identified and discussed. A case study approach was utilized to highlight patient problems and nursing interventions.
Toivanen, H; Länsimies, E; Jokela, V; Hänninen, O
1993-10-01
The work-related strain of 50 female hospital cleaners and 48 female bank employees was recorded during a period of rationalization in the workplace, and the effect of daily relaxation to help the workers cope was tested. The subjects were arranged into age-matched pairs and randomly allocated into intervention and reference groups. The intervention period lasted six months. The relaxation method was brief and easily introduced as an alternative break in the workplace. Each training session lasted 15 min. A microcomputer-based system was used to record heart rate variability in response to quiet breathing, the Valsalva maneuver, deep breathing, and active orthostatic tests. Cardiac reflexes indicated that occupational strain (especially of a mental nature) caused the functioning of the autonomic nervous system to deteriorate. Regular deep relaxation normalized the function and improved the ability to cope.
Experimental myocardial infarction
Kumar, Raj; Joison, Julio; Gilmour, David P.; Molokhia, Farouk A.; Pegg, C. A. S.; Hood, William B.
1971-01-01
The hemodynamic effects of tachycardia induced by atrial pacing were investigated in left ventricular failure of acute and healing experimental myocardial infarction in 20 intact, conscious dogs. Myocardial infarction was produced by gradual inflation of a balloon cuff device implanted around the left anterior descending coronary artery 10-15 days prior to the study. 1 hr after acute myocardial infarction, atrial pacing at a rate of 180 beats/min decreased left ventricular end-diastolic pressure from 19 to 8 mm Hg and left atrial pressure from 17 to 12 mm Hg, without change in cardiac output. In the healing phase of myocardial infarction 1 wk later, atrial pacing decreased left ventricular end-diastolic pressure from 17 to 9 mm Hg and increased the cardiac output by 37%. This was accompanied by evidence of peripheral vasodilation. In two dogs with healing anterior wall myocardial infarction, left ventricular failure was enhanced by partial occlusion of the circumflex coronary artery. Both the dogs developed pulmonary edema. Pacing improved left ventricular performance and relieved pulmonary edema in both animals. In six animals propranolol was given after acute infarction, and left ventricular function deteriorated further. However the pacing-induced augmentation of cardiac function was unaltered and, hence, is not mediated by sympathetics. The results show that the spontaneous heart rate in left ventricular failure of experimental canine myocardial infarction may be less than optimal and that maximal cardiac function may be achieved at higher heart rates. Images PMID:4395910
Development of the NASA/Baylor VAD
NASA Technical Reports Server (NTRS)
Aber, G. S.; Akkerman, J. W.; Bozeman, R. J., Jr.; Saucler, D. R.; Bacak, J. W.; Svejkovsky, P. A.; Damm, G. A.; Mizuguchi, K.; Noon, G. P.; Nose, Y.
1994-01-01
A cooperative effort between the NASA/Johnson Space Center (JSC) and the Baylor College of Medicine (BCM) has been underway since 1988 to develop a long-term implantable Ventricular Assist Device (VAD). The VAD is intended to boost the cardiac output of patients with deteriorated cardiac function. For many of these patients, the best alternative is heart transplantation. Heart transplantation is a complex and expensive procedure and usually requires a long waiting period for a donor heart. The condition of the patient often deteriorates during this waiting period which complicates the pre and post-operative care. Because of these factors, the need for a long-term implantable VAD for use as a bridge-to-transplant device or as a permanent assist device has become the focus of much research. The need for a VAD has been estimated at 50,000 to 60,000 patients per year in the United States alone. A device which satisfies all the system performance and reliability requirements has yet to be achieved. However, the development of the NASA/Baylor VAD has progressed to a state in which commercial viability can being to be considered. The device is small, simple, efficient and reliable which meets all requirements for a totally implantable VAD.
Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium
NASA Astrophysics Data System (ADS)
Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George
1993-04-01
Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.
Rengo, Giuseppe; Lymperopoulos, Anastasios; Zincarelli, Carmela; Donniacuo, Maria; Soltys, Stephen; Rabinowitz, Joseph E.; Koch, Walter J.
2009-01-01
Background The upregulation of G protein–coupled receptor kinase 2 in failing myocardium appears to contribute to dysfunctional β-adrenergic receptor (βAR) signaling and cardiac function. The peptide βARKct, which can inhibit the activation of G protein–coupled receptor kinase 2 and improve βAR signaling, has been shown in transgenic models and short-term gene transfer experiments to rescue heart failure (HF). This study was designed to evaluate long-term βARKct expression in HF with the use of stable myocardial gene delivery with adeno-associated virus serotype 6 (AAV6). Methods and Results In HF rats, we delivered βARKct or green fluorescent protein as a control via AAV6-mediated direct intramyocardial injection. We also treated groups with concurrent administration of the β-blocker metoprolol. We found robust and long-term transgene expression in the left ventricle at least 12 weeks after delivery. βARKct significantly improved cardiac contractility and reversed left ventricular remodeling, which was accompanied by a normalization of the neurohormonal (catecholamines and aldosterone) status of the chronic HF animals, including normalization of cardiac βAR signaling. Addition of metoprolol neither enhanced nor decreased βARKct-mediated beneficial effects, although metoprolol alone, despite not improving contractility, prevented further deterioration of the left ventricle. Conclusions Long-term cardiac AAV6-βARKct gene therapy in HF results in sustained improvement of global cardiac function and reversal of remodeling at least in part as a result of a normalization of the neurohormonal signaling axis. In addition, βARKct alone improves outcomes more than a β-blocker alone, whereas both treatments are compatible. These findings show that βARKct gene therapy can be of long-term therapeutic value in HF. PMID:19103992
Seemann, Ingar; Gabriels, Karen; Visser, Nils L; Hoving, Saske; te Poele, Johannes A; Pol, Jeffrey F; Gijbels, Marion J; Janssen, Ben J; van Leeuwen, Fijs W; Daemen, Mat J; Heeneman, Sylvia; Stewart, Fiona A
2012-05-01
Radiotherapy of thoracic and chest wall tumors increases the long-term risk of cardiotoxicity, but the underlying mechanisms are unclear. Single doses of 2, 8, or 16 Gy were delivered to the hearts of mice and damage was evaluated at 20, 40, and 60 weeks, relative to age matched controls. Single photon emission computed tomography (SPECT/CT) and ultrasound were used to measure cardiac geometry and function, which was related to histo-morphology and microvascular damage. Gated SPECT/CT and ultrasound demonstrated decreases in end diastolic and systolic volumes, while the ejection fraction was increased at 20 and 40 weeks after 2, 8, and 16 Gy. Cardiac blood volume was decreased at 20 and 60 weeks after irradiation. Histological examination revealed inflammatory changes at 20 and 40 weeks after 8 and 16 Gy. Microvascular density in the left ventricle was decreased at 40 and 60 weeks after 8 and 16 Gy, with functional damage to remaining microvasculature manifest as decreased alkaline phosphatase (2, 8, and 16 Gy), increased von Willebrand Factor and albumin leakage from vessels (8 and 16 Gy), and amyloidosis (16 Gy). 16 Gy lead to sudden death between 30 and 40 weeks in 38% of mice. Irradiation with 2 and 8 Gy induced modest changes in murine cardiac function within 20 weeks but this did not deteriorate further, despite progressive structural and microvascular damage. This indicates that heart function can compensate for significant structural damage, although higher doses, eventually lead to sudden death. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Yeh, Huei-Ming; Lin, Ting-Tse; Yeh, Chih-Fan; Huang, Ho-Shiang; Chang, Sheng-Nan; Lin, Jou-Wei; Tsai, Chia-Ti; Lai, Ling-Ping; Huang, Yi-You
2017-01-01
The pathophysiology of cardio-renal syndrome (CRS) is complex. Hydronephrosis caused by urolithiasis may cause cytokine release and lead to cardiac dysfunction. The aim of this study was to evaluate cardiac function changes observed in patients who received double J placement using feasible biomarkers and echocardiography. This was a prospective, single-center study. Eighty-seven patients who presented with acute unilateral hydronephrosis and received ureteroscope stone manipulation were enrolled. Echocardiography and cytokines were measured on the day of the operation and 24 hours after the procedure. Changes before and after surgery were assessed by the paired t-test and Wilcoxon test. Correlation analyses between echocardiographic diastolic indices and cytokine levels were performed using Pearson’s correlation coefficients. Patients with hydronephrosis showed a higher left atrium volume index (LAVI), decreased E', and increased E/ E' ratio, which indicated diastolic dysfunction. Patients with hydronephrosis also exhibited decreased global strain rates during isovolumetric relaxation (SRIVR) and E/ SRIVR, which confirmed the diastolic dysfunction. Significant reductions in LAVI, increases in SRIVR and decreases in E/ SRIVR were observed after the operation. Biomarkers, such as TGF-β and serum NT-proBNP, were significantly decreased after surgery. In addition, a significant correlation was observed between the post-surgical decrease in TGF-β1 and increase in SRIVR. Unilateral hydronephrosis causes cardiac diastolic dysfunction, and relieving hydronephrosis could improve diastolic function. Improvements in cardiac dysfunction can be evaluated by echocardiography and measuring cytokine levels. The results of this study will inform efforts to improve the early diagnosis of CRS and prevent further deterioration of cardiac function when treating patients with hydronephrosis. PMID:29161313
Yeh, Huei-Ming; Lin, Ting-Tse; Yeh, Chih-Fan; Huang, Ho-Shiang; Chang, Sheng-Nan; Lin, Jou-Wei; Tsai, Chia-Ti; Lai, Ling-Ping; Huang, Yi-You; Chu, Chun-Lin
2017-01-01
The pathophysiology of cardio-renal syndrome (CRS) is complex. Hydronephrosis caused by urolithiasis may cause cytokine release and lead to cardiac dysfunction. The aim of this study was to evaluate cardiac function changes observed in patients who received double J placement using feasible biomarkers and echocardiography. This was a prospective, single-center study. Eighty-seven patients who presented with acute unilateral hydronephrosis and received ureteroscope stone manipulation were enrolled. Echocardiography and cytokines were measured on the day of the operation and 24 hours after the procedure. Changes before and after surgery were assessed by the paired t-test and Wilcoxon test. Correlation analyses between echocardiographic diastolic indices and cytokine levels were performed using Pearson's correlation coefficients. Patients with hydronephrosis showed a higher left atrium volume index (LAVI), decreased E', and increased E/ E' ratio, which indicated diastolic dysfunction. Patients with hydronephrosis also exhibited decreased global strain rates during isovolumetric relaxation (SRIVR) and E/ SRIVR, which confirmed the diastolic dysfunction. Significant reductions in LAVI, increases in SRIVR and decreases in E/ SRIVR were observed after the operation. Biomarkers, such as TGF-β and serum NT-proBNP, were significantly decreased after surgery. In addition, a significant correlation was observed between the post-surgical decrease in TGF-β1 and increase in SRIVR. Unilateral hydronephrosis causes cardiac diastolic dysfunction, and relieving hydronephrosis could improve diastolic function. Improvements in cardiac dysfunction can be evaluated by echocardiography and measuring cytokine levels. The results of this study will inform efforts to improve the early diagnosis of CRS and prevent further deterioration of cardiac function when treating patients with hydronephrosis.
Mebius, Mirthe J; du Marchie Sarvaas, Gideon J; Wolthuis, Diana W; Bartelds, Beatrijs; Kneyber, Martin C J; Bos, Arend F; Kooi, Elisabeth M W
2017-03-16
Some infants with congenital heart disease are at risk of in-hospital cardiac arrest. To better foresee cardiac arrest in infants with congenital heart disease, it might be useful to continuously assess end-organ perfusion. Near-infrared spectroscopy is a non-invasive method to continuously assess multisite regional tissue oxygen saturation. We report on two infants with duct-dependent congenital heart disease who demonstrated a gradual change in cerebral and/or renal tissue oxygen saturation before cardiopulmonary resuscitation was required. In both cases, other clinical parameters such as heart rate, arterial oxygen saturation and blood pressure did not indicate that deterioration was imminent. These two cases demonstrate that near-infrared spectroscopy might contribute to detecting a deteriorating clinical condition and might therefore be helpful in averting cardiopulmonary collapse and need for resuscitation in infants with congenital heart disease.
There is another way: empowering frontline staff caring for acutely unwell adults.
Turkington, Peter; Power, Maxine; Hunt, Carianne; Ward, Christine; Donaldson, Emma; Bellerby, John; Murphy, Peter
2014-02-01
It is estimated that only 17% of patients survive an in-hospital cardiac arrest. Medical evidence indicates that many patients show signs of deterioration during the 24 h period prior to their cardiac arrest. At Salford Royal NHS Foundation Trust (SRFT) 135 patients (outside critical care areas) suffered a cardiac arrest between March 2007 and April 2008. Quality improvement method-The breakthrough series (BTS) collaborative approach, change package-reliable manual vital signs, nurse-led response to the deteriorating patient, code red, structured ward round, ceilings of care, nurse-led do not attempt cardiopulmonary resuscitation (DNA-CPR) protocol and allocated roles. The project was delivered over two phases with a total of 23 wards (12 wards in Phase One and 11 wards in Phase Two). Frontline teams worked to develop changes with the aim of reducing cardiac arrests by 50%. The primary outcome measure was the number of cardiac arrests per 1000 admissions outside of critical care areas. Process and balancing measures were also used to evaluate the impact of the intervention. The results showed a positive relationship between the change package and a reduction of 41% in cardiac arrests outside of critical care areas from the baseline period (April 2007-March 2008) to December 2012. The BTS model has the potential to reduce cardiac arrests without the need for initial large-scale financial investment.
Left atrial phasic function and heart rate variability in asymptomatic diabetic patients.
Tadic, Marijana; Vukomanovic, Vladan; Cuspidi, Cesare; Suzic-Lazic, Jelena; Stanisavljevic, Dejana; Celic, Vera
2017-03-01
We evaluated left atrial (LA) phasic function and heart rate variability (HRV) in asymptomatic diabetic patients, and the relationship between HRV indices and LA phasic function assessed by volumes and speckle tracking imaging. This cross-sectional study included 55 asymptomatic patients with type 2 diabetes and 50 healthy controls without cardiovascular risk factors. All study subjects underwent laboratory analyses, complete two-dimensional echocardiography examination (2DE) and 24-h Holter monitoring. Maximum, minimum LA and pre-A LA volumes and volume indexes are significantly higher in diabetic patients. Total and passive LA emptying fractions (EF), representing the LA reservoir and conduit function, are significantly lower in diabetic subjects. Active LA EF, the parameter of the LA booster pump function, is compensatory increased in diabetic patients. Similar results were obtained by 2DE strain analysis. Cardiac autonomic function, assessed by HRV, is significantly deteriorated in diabetic patients. Time and frequency-domain HRV measures are significantly lower in diabetic subjects than in controls. HbA1c, LV mass index and HRV are associated with total LA EF and longitudinal LA strain independently of age, body mass index and LV diastolic function in the whole study population. LA phasic function and cardiac autonomic nervous system assessed by HRV are impacted by diabetes. HbA1c and HRV are independently associated with LA reservoir function evaluated by volumetric and strain methods in the whole study population. This study emphasizes the importance of determination of LA function and HRV as important markers of preclinical cardiac damage and autonomic function impairment in diabetic patients.
Yamashita, H; Onodera, S; Imamoto, T; Obara, A; Tanazawa, S; Takashio, T; Morimoto, H; Inoue, H
1989-10-01
To clarify the effects of right ventricular (RV) pressure overload on functional and geometrical interference and interdependency between the right and left ventricle, both ventricular internal diameters were measured by the microcrystal technique during lycopodium induced pulmonary embolization in the dog. By repeated embolization, RV systolic pressure was increased progressively until it reached a peak value of about 60-70 mmHg, then it began to fall. At the same time, the hemodynamics deteriorated progressively resulting in death. During the experiment, gradual leftward displacement of the interventricular septum (IVS) without any change in left ventricular (LV) free wall geometry was observed. In pulmonary embolic shock, which showed a fall in LV pressure to about 60 mmHg and cardiac output to about 40% of control, the leftward displacement of IVS became marked, and the cooperative movement of IVS to LV contraction disappeared. The IVS position during acute RV pressure overload was able to account for the transseptal pressure gradient. The importance of IVS position and motion in cardiac function during acute RV pressure overload was stressed. Furthermore, to establish the theoretical treatment in acute cardiopulmonary resuscitation, ligation of the descending aorta (AoL) or norepinephrine ("N") or isoproterenol ("I") administration were examined in a canine pulmonary embolic shock model. AoL or "N" improved the deteriorated hemodynamics with restoration of biventricular geometry. However, "I" did not restore the biventricular geometry despite the transiently improved hemodynamics, and the experimental animals were unable to survive. These results suggest the importance of the maintainance of systemic pressure for the restoration of failed RV function. Further integrated studies are required to understand biventricular interference and interdependency.
Yaksh, Ameeta; Kik, Charles; Knops, Paul; Zwiers, Korinne; van Ettinger, Maarten J B; Manintveld, Olivier C; de Wijs, Marcel C J; van der Kemp, Peter; Bogers, Ad J J C; de Groot, Natasja M S
2016-07-08
Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia.
Impact of High-Intensity-NIV on the heart in stable COPD: a randomised cross-over pilot study.
Duiverman, Marieke Leontine; Maagh, Petra; Magnet, Friederike Sophie; Schmoor, Claudia; Arellano-Maric, Maria Paola; Meissner, Axel; Storre, Jan Hendrik; Wijkstra, Peter Jan; Windisch, Wolfram; Callegari, Jens
2017-05-02
Although high-intensity non-invasive ventilation has been shown to improve outcomes in stable COPD, it may adversely affect cardiac performance. Therefore, the aims of the present pilot study were to compare cardiac and pulmonary effects of 6 weeks of low-intensity non-invasive ventilation and 6 weeks of high-intensity non-invasive ventilation in stable COPD patients. In a randomised crossover pilot feasibility study, the change in cardiac output after 6 weeks of each NIV mode compared to baseline was assessed with echocardiography in 14 severe stable COPD patients. Furthermore, CO during NIV, gas exchange, lung function, and health-related quality of life were investigated. Three patients dropped out: two deteriorated on low-intensity non-invasive ventilation, and one presented with decompensated heart failure while on high-intensity non-invasive ventilation. Eleven patients were included in the analysis. In general, cardiac output and NTproBNP did not change, although individual effects were noticed, depending on the pressures applied and/or the co-existence of heart failure. High-intensity non-invasive ventilation tended to be more effective in improving gas exchange, but both modes improved lung function and the health-related quality of life. Long-term non-invasive ventilation with adequate pressure to improve gas exchange and health-related quality of life did not have an overall adverse effect on cardiac performance. Nevertheless, in patients with pre-existing heart failure, the application of very high inspiratory pressures might reduce cardiac output. The trial was registered in the Deutsches Register Klinischer Studien (DRKS-ID: DRKS00007977 ).
Peppas, Athanasios; Furer, Ariel; Wilson, Jon; Yi, GengHua; Cheng, Yanping; Van Wygerden, Karl; Seguin, Christopher; Shibuya, Masahiko; Kaluza, Grzegorz L; Granada, Juan F
2017-06-20
The Mitra-Spacer (Cardiosolutions, Bridgewater, MA, USA) is designed to treat mitral regurgitation by introducing a dynamic spacer that constantly adapts to the changing haemodynamic conditions during the cardiac cycle. We aimed to evaluate the performance and safety of this device in the chronic ovine model. Eight sheep were enrolled in this study. Through a left thoracotomy, the Mitra-Spacer was inserted via the transapical approach and advanced into the left atrium (LA) under imaging guidance. Device performance and safety were evaluated up to 90 days using fluoroscopy, echocardiography and histopathology. The volume within the balloon spacer shifted during the cardiac cycle in all cases. Seven animals survived up to 90 days for terminal imaging and tissue harvest. Echocardiography showed no change in left ventricle (LV) ejection fraction from baseline to 90 days. There were no observations of changes in LV diastolic function, pulmonary vein inflow, or tricuspid valve function. Histological analysis demonstrated no significant injury to the mitral apparatus. In the healthy ovine model, Mitra-Spacer implantation was feasible and safe. At 90 days, no evidence of structural damage to the mitral apparatus or deterioration of cardiac performance was demonstrated.
Green, Malcolm; Lander, Harvey; Snyder, Ashley; Hudson, Paul; Churpek, Matthew; Edelson, Dana
2018-02-01
Traditionally, paper based observation charts have been used to identify deteriorating patients, with emerging recent electronic medical records allowing electronic algorithms to risk stratify and help direct the response to deterioration. We sought to compare the Between the Flags (BTF) calling criteria to the Modified Early Warning Score (MEWS), National Early Warning Score (NEWS) and electronic Cardiac Arrest Risk Triage (eCART) score. Multicenter retrospective analysis of electronic health record data from all patients admitted to five US hospitals from November 2008-August 2013. Cardiac arrest, ICU transfer or death within 24h of a score RESULTS: Overall accuracy was highest for eCART, with an AUC of 0.801 (95% CI 0.799-0.802), followed by NEWS, MEWS and BTF respectively (0.718 [0.716-0.720]; 0.698 [0.696-0.700]; 0.663 [0.661-0.664]). BTF criteria had a high risk (Red Zone) specificity of 95.0% and a moderate risk (Yellow Zone) specificity of 27.5%, which corresponded to MEWS thresholds of >=4 and >=2, NEWS thresholds of >=5 and >=2, and eCART thresholds of >=12 and >=4, respectively. At those thresholds, eCART caught 22 more adverse events per 10,000 patients than BTF using the moderate risk criteria and 13 more using high risk criteria, while MEWS and NEWS identified the same or fewer. An electronically generated eCART score was more accurate than commonly used paper based observation tools for predicting the composite outcome of in-hospital cardiac arrest, ICU transfer and death within 24h of observation. The outcomes of this analysis lend weight for a move towards an algorithm based electronic risk identification tool for deteriorating patients to ensure earlier detection and prevent adverse events in the hospital. Copyright © 2017 Elsevier B.V. All rights reserved.
Prevention of liver cancer cachexia-induced cardiac wasting and heart failure.
Springer, Jochen; Tschirner, Anika; Haghikia, Arash; von Haehling, Stephan; Lal, Hind; Grzesiak, Aleksandra; Kaschina, Elena; Palus, Sandra; Pötsch, Mareike; von Websky, Karoline; Hocher, Berthold; Latouche, Celine; Jaisser, Frederic; Morawietz, Lars; Coats, Andrew J S; Beadle, John; Argiles, Josep M; Thum, Thomas; Földes, Gabor; Doehner, Wolfram; Hilfiker-Kleiner, Denise; Force, Thomas; Anker, Stefan D
2014-04-01
Symptoms of cancer cachexia (CC) include fatigue, shortness of breath, and impaired exercise capacity, which are also hallmark symptoms of heart failure (HF). Herein, we evaluate the effects of drugs commonly used to treat HF (bisoprolol, imidapril, spironolactone) on development of cardiac wasting, HF, and death in the rat hepatoma CC model (AH-130). Tumour-bearing rats showed a progressive loss of body weight and left-ventricular (LV) mass that was associated with a progressive deterioration in cardiac function. Strikingly, bisoprolol and spironolactone significantly reduced wasting of LV mass, attenuated cardiac dysfunction, and improved survival. In contrast, imidapril had no beneficial effect. Several key anabolic and catabolic pathways were dysregulated in the cachectic hearts and, in addition, we found enhanced fibrosis that was corrected by treatment with spironolactone. Finally, we found cardiac wasting and fibrotic remodelling in patients who died as a result of CC. In living cancer patients, with and without cachexia, serum levels of brain natriuretic peptide and aldosterone were elevated. Systemic effects of tumours lead not only to CC but also to cardiac wasting, associated with LV-dysfunction, fibrotic remodelling, and increased mortality. These adverse effects of the tumour on the heart and on survival can be mitigated by treatment with either the β-blocker bisoprolol or the aldosterone antagonist spironolactone. We suggest that clinical trials employing these agents be considered to attempt to limit this devastating complication of cancer.
Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase
Siddiqi, Sailay; Sussman, Mark A
2014-01-01
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924
Che, Xiajing; Mou, Shan; Zhang, Weiming; Zhang, Minfang; Gu, Leyi; Yan, Yucheng; Ying, Hua; Hu, Chunhua; Qian, Jiaqi; Ni, Zhaohui
2017-04-01
Objective The aim of this study was to investigate the correlation between non-dipper circadian rhythm of blood pressure (BP) and left ventricular hypertrophy (LVH) in patients with chronic kidney disease (CKD). Methods and results All 257 patients with stage 1 to 5 CKD were enrolled in the study and classified into a CKD1-3 group and a CKD4-5 group according to renal function. The parameters and circadian rhythm of BP were measured by a GE Marquette Tonoport V Eng dynamic sphygmomanometer, and cardiac structure was examined by echocardiography. The incidence of abnormal circadian BP rhythm (non-dipper rhythm) was quite high (75.4% in all enrolled patients and 71.3% in the patients with normal BP levels) in CKD patients and increased with the deterioration of renal function. Changes of cardiac structure such as LVH in patients with non-dipper BP were more distinct than in patients with dipper BP. The development of left ventricular mass index (LVMI) correlated positively with the incidence of non-dipper BP rhythm. Multiple regression analysis showed that 24-h systolic BP (β = 0.417, P < 0.01), triglycerides (TG) (β = -0.132, P = 0.007), Hb (β = -0.394, P = 0.016) and gender (β = 0.158, P = 0.039) were independent risk factors of LVMI. Conclusions The incidence of non-dipper circadian rhythm of blood pressure was quite high in CKD patients and increased with the deterioration of renal function. Non-dipper circadian rhythm of BP is closely related with LVMI.
Katengua-Thamahane, Emma; Szeiffova Bacova, Barbara; Bernatova, Iveta; Sykora, Matus; Knezl, Vladimir; Van Rooyen, Jacques; Tribulova, Narcis
2017-11-21
The purpose of this study was to investigate the effect of antioxidants rich red palm oil (RPO) supplementation on cardiac oxidative stress known as crucial factor deteriorating heart function in hypertension. 3-month-old, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were fed standard rat chow without or with RPO (0.2 mL/day/5 weeks). General characteristic of rats were registered. Left ventricular tissue (LV) was used to determine expression of superoxide dismutases (SOD1, SOD2) and glutathione peroxidases (Gpx) as well as activity of nitric oxide synthase (NOS). Functional parameters of the heart were examined during basal conditions and at the early-phase of post-ischemic reperfusion using Langendorff-perfused system. RPO intake significantly reduced elevated blood pressure and total NOS activity as well as increased lowered expression of mitochondrial SOD2 in SHR hearts during basal condition. Moreover, RPO supplementation resulted in suppression of elevated heart rate, increase of reduced coronary flow and enhancement of systolic and diastolic heart function at the early-phase of post-ischemic reperfusion. It is concluded that SHR benefit from RPO intake due to decrease of blood pressure, amelioration of oxidative stress and protection of heart function that was deteriorated by post-ischemic reperfusion.
C1QTNF1 attenuates angiotensin II-induced cardiac hypertrophy via activation of the AMPKa pathway.
Wu, Leiming; Gao, Lu; Zhang, Dianhong; Yao, Rui; Huang, Zhen; Du, Binbin; Wang, Zheng; Xiao, Lili; Li, Pengcheng; Li, Yapeng; Liang, Cui; Zhang, Yanzhou
2018-06-01
Complement C1q tumor necrosis factor related proteins (C1QTNFs) have been reported to have diverse biological influence on the cardiovascular system. C1QTNF1 is a member of the CTRP superfamily. C1QTNF1 is expressed in the myocardium; however, its function in myocytes has not yet been investigated. To systematically investigate the roles of C1QTNF1 in angiotensin II (Ang II)-induced cardiac hypertrophy. C1QTNF1 knock-out mice were used with the aim of determining the role of C1QTNF1 in cardiac hypertrophy in the adult heart. Data from experiments showed that C1QTNF1 was up-regulated during cardiac hypertrophic processes, which were triggered by increased reactive oxygen species. C1QTNF1 deficiency accelerated cardiac hypertrophy, fibrosis, inflammation responses, and oxidative stress with deteriorating cardiac dysfunction in the Ang II-induced cardiac hypertrophy mouse model. We identified C1QTNF1 as a negative regulator of cardiomyocyte hypertrophy in Ang II-stimulated neonatal rat cardiomyocytes using the recombinant human globular domain of C1QTNF1 and C1QTNF1 siRNA. Injection of the recombinant human globular domain of C1QTNF1 also suppressed the Ang II-induced cardiac hypertrophic response in vivo. The anti-hypertrophic effects of C1QTNF1 rely on AMPKa activation, which inhibits mTOR P70S6K phosphorylation. An AMPKa inhibitor abrogated the anti-hypertrophic effects of the recombinant human globular domain of C1QTNF1 both in vivo and vitro. Moreover, C1QTNF1-mediated AMPKa activation was triggered by the inhibition of PDE1-4, which subsequently activated the cAMP/PKA/LKB1 pathway. Our results demonstrated that C1QTNF1 improves cardiac function and inhibits cardiac hypertrophy and fibrosis by increasing and activating AMPKa, suggesting that C1QTNF1 could be a therapeutic target for cardiac hypertrophy and heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.
[Non-medical therapy in heart failure: instrumental treatment and cardiac transplantation].
Leprince, Pascal
2010-09-20
Circulatory support devices and cardiac transplantation are closely interlinked and are the treatment of severe heart failure refractory to medical therapy. In acute situation, ECMO allows stabilization of unstable hemodynamic situation related to cardiogenic shock. In patients who require longer term support, the use of continuous flow pumps is associated with better survival and better quality of life. Those pumps can be used either as a bridge to transplantation or as a bridge to recovery but also as destination therapy. Early implantation before occurrence of severe right heart failure allows preferential use of LVAD. Approximately 350 cardiac transplantations are performed every year in France. Indication in based on several criteria appreciating the severity of functional impairment. Contra-indications have to be discussed case by case, and chronologic age should not be a too rigid limit. High urgency list allows transplanting the sickest patients in priority. Conditional half-life in patients surviving the first year post transplantation is 12 years. Mechanical circulatory support and cardiac transplantation should be used as complementary treatment of severe heart failure in order to avoid progressive but sometime irreversible deterioration of patients with chronic heart failure.
Pregnancy after atrial repair for transposition of the great arteries.
Genoni, M; Jenni, R; Hoerstrup, S P; Vogt, P; Turina, M
1999-03-01
To investigate the risk of pregnancy in patients with transposition of the great arteries (TGA) who have undergone atrial repair. Retrospective analysis (1962-94) of 342 TGA patients who underwent atrial repair. Of 231 known late survivors, 48 were women over 18 years old who were interviewed about possible reproductive plans and previous pregnancies. As a control, comparison was made with data of 57 500 women (mean age 26 years) obtained from the Swiss Statistical Bank in Bern. Mean follow up was 13.7 years; 66% remained asymptomatic, 29% had mild to moderate cardiac symptoms, and 5% suffered from severe cardiac symptoms (New York Heart Association grade III-IV). Thirty six of the 48 women wished to bear children and, to date, there have been 10 live births, two spontaneous first trimester abortions, and one induced abortion at 16 weeks. During pregnancy there was one case of cardiac deterioration and two cases of pneumonia. There was no evidence of congenital heart disease in the children. In this relatively small series the completion of pregnancy in women with TGA who had undergone atrial repair and who had normal functional cardiac status was uncomplicated
Mavrogeni, Sophie; Karabela, Georgia; Gialafos, Elias; Stavropoulos, Efthymios; Spiliotis, George; Katsifis, Gikas; Kolovou, Genovefa
2013-10-01
The cardiovascular magnetic resonance (CMR) pattern of Churg-Strauss syndrome (CSS) includes myopericarditis, diffuse subendocardial vasculitis or myocardial infarction with or without cardiac symptoms and is usually associated with lack of antineutrophil cytoplasmic antibodies (ANCA). To correlate the CMR pattern with ANCA in CSS, compare it with healthy controls and systemic lupus erythematosus (SLE) patients and re-evaluate 2 yrs after the first CMR. 28 consecutive CSS, aged 42±7 yrs, were referred for CMR and 2 yrs re-evaluation. The CMR included left ventricular ejection fraction (LVEF), T2-weighted (T2-W), early (EGE) and late gadolinium enhanced (LGE) imaging. Their results were compared with 28 systemic lupus erythematosus (SLE) under remission and 28 controls with normal myocardial perfusion, assessed by scintigraphy. CMR revealed acute cardiac lesions in all ANCA (-) CSS with active disease and acute cardiac symptoms and only in one asymptomatic ANCA (+) CSS, with active disease. Diffuse subendocardial fibrosis (DSF) or past myocarditis was identified in both ANCA(+) and ANCA (-) CSS, but with higher incidence and fibrosis amount in ANCA (-) CSS (p<0.05). In comparison to SLE, both ANCA (+) and ANCA (-) CSS had higher incidence of DSF, lower incidence of myocarditis and no evidence of myocardial infarction, due to coronary artery disease (p<0.05). In 2 yrs CMR follow up, 1/3 of CSS with DSF presented LV function deterioration and one died, although immunosuppressive treatment was given early after CSS diagnosis. Cardiac involvement either as DSF or myocarditis, can be detected in both ANCA (+) and ANCA (-) CSS, although more clinically overt in ANCA (-). DSF carries an ominous prognosis for LV function. CMR, due to its capability to detect disease severity, before cardiac dysfunction takes place, is an excellent tool for CSS risk stratification and treatment individualization.
2013-01-01
There has been a dramatic change in hospital care of cardiac arrest survivors in recent years, including the use of target temperature management (hypothermia). Clinical signs of recovery or deterioration, which previously could be observed, are now concealed by sedation, analgesia, and muscle paralysis. Seizures are common after cardiac arrest, but few centers can offer high-quality electroencephalography (EEG) monitoring around the clock. This is due primarily to its complexity and lack of resources but also to uncertainty regarding the clinical value of monitoring EEG and of treating post-ischemic electrographic seizures. Thanks to technical advances in recent years, EEG monitoring has become more available. Large amounts of EEG data can be linked within a hospital or between neighboring hospitals for expert opinion. Continuous EEG (cEEG) monitoring provides dynamic information and can be used to assess the evolution of EEG patterns and to detect seizures. cEEG can be made more simple by reducing the number of electrodes and by adding trend analysis to the original EEG curves. In our version of simplified cEEG, we combine a reduced montage, displaying two channels of the original EEG, with amplitude-integrated EEG trend curves (aEEG). This is a convenient method to monitor cerebral function in comatose patients after cardiac arrest but has yet to be validated against the gold standard, a multichannel cEEG. We recently proposed a simplified system for interpreting EEG rhythms after cardiac arrest, defining four major EEG patterns. In this topical review, we will discuss cEEG to monitor brain function after cardiac arrest in general and how a simplified cEEG, with a reduced number of electrodes and trend analysis, may facilitate and improve care. PMID:23876221
Stenzig, Justus; Schneeberger, Yvonne; Löser, Alexandra; Peters, Barbara S; Schaefer, Andreas; Zhao, Rong-Rong; Ng, Shi Ling; Höppner, Grit; Geertz, Birgit; Hirt, Marc N; Tan, Wilson; Wong, Eleanor; Reichenspurner, Hermann; Foo, Roger S-Y; Eschenhagen, Thomas
2018-07-01
Heart failure is associated with altered gene expression and DNA methylation. De novo DNA methylation is associated with gene silencing, but its role in cardiac pathology remains incompletely understood. We hypothesized that inhibition of DNA methyltransferases (DNMT) might prevent the deregulation of gene expression and the deterioration of cardiac function under pressure overload (PO). To test this hypothesis, we evaluated a DNMT inhibitor in PO in rats and analysed DNA methylation in cardiomyocytes. Young male Wistar rats were subjected to PO by transverse aortic constriction (TAC) or to sham surgery. Rats from both groups received solvent or 12.5 mg/kg body weight of the non-nucleosidic DNMT inhibitor RG108, initiated on the day of the intervention. After 4 weeks, we analysed cardiac function by MRI, fibrosis with Sirius Red staining, gene expression by RNA sequencing and qPCR, and DNA methylation by reduced representation bisulphite sequencing (RRBS). RG108 attenuated the ~70% increase in heart weight/body weight ratio of TAC over sham to 47% over sham, partially rescued reduced contractility, diminished the fibrotic response and the downregulation of a set of genes including Atp2a2 (SERCA2a) and Adrb1 (beta1-adrenoceptor). RG108 was associated with significantly lower global DNA methylation in cardiomyocytes by ~2%. The differentially methylated pathways were "cardiac hypertrophy", "cell death" and "xenobiotic metabolism signalling". Among these, "cardiac hypertrophy" was associated with significant methylation differences in the group comparison sham vs. TAC, but not significant between sham+RG108 and TAC+RG108 treatment, suggesting that RG108 partially prevented differential methylation. However, when comparing TAC and TAC+RG108, the pathway cardiac hypertrophy was not significantly differentially methylated. DNMT inhibitor treatment is associated with attenuation of cardiac hypertrophy and moderate changes in cardiomyocyte DNA methylation. The potential mechanistic link between these two effects and the role of non-myocytes need further clarification. Copyright © 2018 Elsevier Ltd. All rights reserved.
The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.
Garrity, Deborah M; Childs, Sarah; Fishman, Mark C
2002-10-01
Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.
Tepavčević, S; Milutinović, D V; Macut, D; Stanišić, J; Nikolić, M; Božić-Antić, I; Rodaljević, S; Bjekić-Macut, J; Matić, G; Korićanac, G
2015-05-01
Nitric oxide synthases (NOSs) and Na(+)/K(+)-ATPase are enzymes essential for regular functioning of the heart. Since both enzymes are under insulin and androgen regulation and since insulin action and androgen level were disturbed in polycystic ovary syndrome (PCOS), we hypothesized that cardiac nitric oxide (NO) production and sodium/potassium transport would be deteriorated in PCOS. To test our hypothesis we introduced animal model of PCOS based on dihydrotestosterone (DHT) treatment of female Wistar rats and analyzed protein expression, phosphorylation or subcellular localization of endothelial NOS (eNOS), inducible NOS (iNOS) and alpha subunits of Na(+)/K(+)-ATPase in the heart. Obtained results indicate that DHT treatment significantly decreased cardiac eNOS protein level and activating phosphorylation at serine 1,177, while inhibitory phosphorylation at threonine 495 was increased. In contrast to expression of eNOS, iNOS protein level in the heart of DHT-treated rats was significantly elevated. Furthermore, cardiac protein level of alpha 1 subunit of the ATPase, as well as its plasma membrane content, were decreased in rats with PCOS. In line with this, alpha 2 subunit protein level in fraction of plasma membranes was also significantly below control level. In conclusion, DHT treatment impaired effectiveness of NOSs and Na(+)/K(+)-ATPase in the female rat heart. Regarding the importance of NO production and sodium/potassium transport in the cardiac contraction and blood flow regulation, it implicates strong consequences of PCOS for heart functioning. © Georg Thieme Verlag KG Stuttgart · New York.
Gaskin, Kerry L; Barron, David J; Daniels, Amanda
2016-10-01
Aim The aim of this study was to explore parental preparedness for discharge and their experiences of going home with their infant after the first-stage surgery for a functionally univentricular heart. Technological advances worldwide have improved outcomes for infants with a functionally univentricular heart over the last 3 decades; however, concern remains regarding mortality in the period between the first and second stages of surgery. The implementation of home monitoring programmes for this group of infants has improved this initial inter-stage survival; however, little is known about parents' experiences of going home, their preparedness for discharge, and parents' recognition of deterioration in their fragile infant. This study was conducted in 2011-2013; eight sets of parents were consulted in the research planning stage in September, 2011, and 22 parents with children aged 0-2 years responded to an online survey during November, 2012-March, 2013. Description of categorical data and deductive thematic analysis of the open-ended questions were undertaken. Not all parents were taught signs of deterioration or given written information specific to their baby. The following three themes emerged from the qualitative data: mixed emotions about going home, knowledge and preparedness, and support systems. Parents are not adequately prepared for discharge and are not well equipped to recognise deterioration in their child. There is a role for greater parental education through development of an early warning tool to address the gap in parents' understanding of signs of deterioration, enabling appropriate contact and earlier management by clinicians.
Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress
Koncsos, Gábor; Varga, Zoltán V.; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Schulz, Rainer; Ferdinandy, Péter
2016-01-01
Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4. High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca2+/calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. PMID:27521417
Zhao, Rong-Rong; Ackers-Johnson, Matthew; Stenzig, Justus; Chen, Chen; Ding, Tao; Zhou, Yue; Wang, Peipei; Ng, Shi Ling; Li, Peter Y; Teo, Gavin; Rudd, Pauline M; Fawcett, James W; Foo, Roger S Y
2018-06-05
Heart failure is a leading cause of mortality and morbidity, and the search for novel therapeutic approaches continues. In the monogenic disease mucopolysaccharidosis VI, loss-of-function mutations in arylsulfatase B lead to myocardial accumulation of chondroitin sulfate (CS) glycosaminoglycans, manifesting as myriad cardiac symptoms. Here, we studied changes in myocardial CS in nonmucopolysaccharidosis failing hearts and assessed its generic role in pathological cardiac remodeling. Healthy and diseased human and rat left ventricles were subjected to histological and immunostaining methods to analyze glycosaminoglycan distribution. Glycosaminoglycans were extracted and analyzed for quantitative and compositional changes with Alcian blue assay and liquid chromatography-mass spectrometry. Expression changes in 20 CS-related genes were studied in 3 primary human cardiac cell types and THP-1-derived macrophages under each of 9 in vitro stimulatory conditions. In 2 rat models of pathological remodeling induced by transverse aortic constriction or isoprenaline infusion, recombinant human arylsulfatase B (rhASB), clinically used as enzyme replacement therapy in mucopolysaccharidosis VI, was administered intravenously for 7 or 5 weeks, respectively. Cardiac function, myocardial fibrosis, and inflammation were assessed by echocardiography and histology. CS-interacting molecules were assessed with surface plasmon resonance, and a mechanism of action was verified in vitro. Failing human hearts displayed significant perivascular and interstitial CS accumulation, particularly in regions of intense fibrosis. Relative composition of CS disaccharides remained unchanged. Transforming growth factor-β induced CS upregulation in cardiac fibroblasts. CS accumulation was also observed in both the pressure-overload and the isoprenaline models of pathological remodeling in rats. Early treatment with rhASB in the transverse aortic constriction model and delayed treatment in the isoprenaline model proved rhASB to be effective at preventing cardiac deterioration and augmenting functional recovery. Functional improvement was accompanied by reduced myocardial inflammation and overall fibrosis. Tumor necrosis factor-α was identified as a direct binding partner of CS glycosaminoglycan chains, and rhASB reduced tumor necrosis factor-α-induced inflammatory gene activation in vitro in endothelial cells and macrophages. CS glycosaminoglycans accumulate during cardiac pathological remodeling and mediate myocardial inflammation and fibrosis. rhASB targets CS effectively as a novel therapeutic approach for the treatment of heart failure. © 2018 American Heart Association, Inc.
Parrinello, Gaspare; Paterna, Salvatore; Torres, Daniele; Di Pasquale, Pietro; Mezzero, Manuela; La Rocca, Gabriella; Cardillo, Mauro; Trapanese, Caterina; Caradonna, Mario; Licata, Giuseppe
2009-01-01
Hypertension is a significant cause of chronic renal injury and its effective treatment is capable of reducing the rate of renal failure. beta-Adrenoceptor antagonists (beta-blockers) have been reported to induce a deterioration in renal function, while several data have indicated a renoprotective effect of treatment with the angiotensin II type 1 receptor antagonist losartan. Previous studies of the interaction between the selective beta(1)-blocker bisoprolol and kidney function were performed only for short- and medium-term periods. The aim of this study was to compare the antihypertensive efficacy and renal and cardiac haemodynamic effects of bisoprolol with those of losartan over a 1-year time period in patients with essential hypertension. Seventy-two patients (40 males) with recently diagnosed uncomplicated (European Society of Hypertension [ESH] criteria stage 1-2) hypertension (mean +/- SD age 52 +/- 12 years) were enrolled in the study. After a run-in period of 14 days on placebo, the patients were randomized in a double-blind, prospective study to receive either bisoprolol 5 mg or losartan 50 mg, administered once daily for 1 year. At recruitment and 12 months after treatment, cardiac output and renal haemodynamics and function were evaluated by echocardiography and radionuclide studies, respectively. There were no significant differences in baseline clinical data, including glomerular filtration rate and blood pressure, between the two treatment groups. At 1 year, blood pressure had decreased significantly (p < 0.001) with both treatments, and heart rate was reduced only in the group taking bisoprolol. The long-term effects on renal haemodynamics and cardiac function were similar with both drugs, the only change being a significant reduction in the filtration fraction for each group. These data suggest that both bisoprolol and losartan are effective agents for the treatment of patients with recently diagnosed ESH stage 1-2 hypertension. Over a 1-year period, both agents maintained good renal and cardiac performance and haemodynamics.
Walker, Andrew Mn; Patel, Peysh A; Rajwani, Adil; Groves, David; Denby, Christine; Kearney, Lorraine; Sapsford, Robert J; Witte, Klaus K; Kearney, Mark T; Cubbon, Richard M
2016-09-01
Diabetes mellitus is associated with an increased risk of death and hospitalisation in patients with chronic heart failure. Better understanding of potential underlying mechanisms may aid the development of diabetes mellitus-specific chronic heart failure therapeutic strategies. Prospective observational cohort study of 628 patients with chronic heart failure associated with left ventricular systolic dysfunction receiving contemporary evidence-based therapy. Indices of cardiac structure and function, along with symptoms and biochemical parameters, were compared in patients with and without diabetes mellitus at study recruitment and 1 year later. Patients with diabetes mellitus (24.2%) experienced higher rates of all-cause [hazard ratio, 2.3 (95% confidence interval, 1.8-3.0)] and chronic heart failure-specific mortality and hospitalisation despite comparable pharmacological and device-based therapies. At study recruitment, patients with diabetes mellitus were more symptomatic, required greater diuretic doses and more frequently had radiologic evidence of pulmonary oedema, despite higher left ventricular ejection fraction. They also exhibited echocardiographic evidence of increased left ventricular wall thickness and pulmonary arterial pressure. Diabetes mellitus was associated with reduced indices of heart rate variability and increased heart rate turbulence. During follow-up, patients with diabetes mellitus experienced less beneficial left ventricular remodelling and greater deterioration in renal function. Diabetes mellitus is associated with features of adverse structural and functional cardiac remodelling in patients with chronic heart failure. © The Author(s) 2016.
Salim, Imtiaz; Al Suwaidi, Jassim; Ghadban, Wissam; Alkilani, Hani; Salam, Amar M
2013-04-01
Fasting during the month of Ramadan is a religious obligation that is practiced by millions of people around the world yet there is no clear scientific consensus on its effects on cardiovascular disease. This study was performed to inform physicians as well as patients of evidence based recommendations on this subject. The study was undertaken to assess: (1) any alteration in the incidence of acute cardiac illness during Ramadan fasting; (2) whether fasting during the month of Ramadan alters the clinical status of patients with stable cardiac disease; and (3) the impact of Ramadan fasting on cardiovascular risk factors in normal subjects, in patients with stable cardiac disease, metabolic syndrome, dyslipidemia, type 2 diabetes and systemic hypertension. Systematic review of the literature. A Medline search of the English literature published between January 1980 and September 2012. The incidence of acute cardiac illness during Ramadan fasting was similar to non-fasting days, although the timing of symptom onset may be different, with significant increase in events during the period of 'breaking fast' when compared to non-fasting days. The majority of patients with stable cardiac illness can undergo Ramadan fasting without any clinical deterioration. Body mass index, lipid profile, and blood pressure showed significant improvement in normal healthy subjects, patients with stable cardiac illness, metabolic syndrome, dyslipidemia and hypertension during Ramadan fasting. The lipid profile of diabetic patients deteriorated significantly during Ramadan fasting. Ramadan fasting is not associated with any change in incidence of acute cardiac illness and the majority of cardiac patients can fast without any difficulty. Improvement in lipid profile, especially 30% to 40% increment in high-density lipoprotein, as reported in some studies, appear promising. Diabetic patients should be carefully monitored during Ramadan fasting.
Cardiac adaption during pregnancy in women with congenital heart disease and healthy women.
Kampman, Marlies A M; Valente, Mattia A E; van Melle, Joost P; Balci, Ali; Roos-Hesselink, Jolien W; Mulder, Barbara J M; van Dijk, A P J; Oudijk, M A; Jongbloed, M R M; van Veldhuisen, Dirk J; Pieper, Petronella G
2016-08-15
Pregnancy in women with congenital heart disease (CHD) is associated with deterioration in cardiac function. However, longitudinal data are scarce. This study describes serial changes in cardiac dimensions and function during pregnancy in women with CHD and compares these with healthy pregnant women (controls). Eight tertiary centres prospectively enrolled 125 pregnant women with CHD (pregnancy duration <20 weeks). Controls (N=49) were recruited from low-risk midwife practices. Standardised echocardiography at 20 and 32 weeks gestation and 1 year postpartum was performed. Age and parity were comparable between both groups (p>0.1). Left ventricular ejection fraction (LVEF) <45% was present in 3.2% of women with CHD and 14.4% had tricuspid annular plane systolic excursion (TAPSE) <16 mm. Absolute values of ventricular function parameters and diameters were less favourable in women with CHD. No permanent changes occurred in right and left ventricular function parameters and dimensions in women with CHD. The patterns of change in cardiac function and dimensions were comparable between women with CHD and controls, except for LVEF (p=0.026). In women with right-sided CHD the pattern of TAPSE over time differed from controls (p=0.043) (no decrease in TAPSE postpregnancy in CHD). In women with left-sided CHD left ventricular end-diastolic diameter (LVEDD) tended to increase compared with controls (p=0.045). Absolute levels of ventricular function parameters and diameters differ between CHD and controls, but changes during and after pregnancy are generally comparable. However, different patterns over time seen for TAPSE and LVEDD in women with right-sided and left-sided CHD, respectively, compared with controls indicate the importance of echocardiographic follow-up during pregnancy in women with CHD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Pleger, Sven T.; Shan, Changguang; Ksienzyk, Jan; Bekeredjian, Raffi; Boekstegers, Peter; Hinkel, Rabea; Schinkel, Stefanie; Leuchs, Barbara; Ludwig, Jochen; Qiu, Gang; Weber, Christophe; Kleinschmidt, Jürgen A.; Raake, Philip; Koch, Walter J.; Katus, Hugo A.; Müller, Oliver J.; Most, Patrick
2014-01-01
As a prerequisite to clinical application, we determined the long-term therapeutic effectiveness and safety of adeno-associated viral (AAV) S100A1 gene therapy in a preclinical, large animal model of heart failure. S100A1, a positive inotropic regulator of myocardial contractility, becomes depleted in failing cardiomyocytes in humans and various animal models, and myocardial-targeted S100A1 gene transfer rescues cardiac contractile function by restoring sarcoplasmic reticulum calcium Ca2+ handling in acutely and chronically failing hearts in small animal models. We induced heart failure in domestic pigs by balloon-occlusion of the left circumflex coronary artery, resulting in myocardial infarction. After 2 weeks, when the pigs displayed significant left ventricular contractile dysfunction, we administered through retrograde coronary venous delivery, AAV9-S100A1 to the left ventricular non-infarcted myocardium. AAV9-luciferase and saline treatment served as control. At 14 weeks, both control groups showed significantly decreased myocardial S100A1 protein expression along with progressive deterioration of cardiac performance and left ventricular remodeling. AAV9-S100A1 treatment prevented and reversed this phenotype by restoring cardiac S100A1 protein levels. S100A1 treatment normalized cardiomyocyte Ca2+ cycling, sarcoplasmic reticulum calcium handling and energy homeostasis. Transgene expression was restricted to cardiac tissue and extra-cardiac organ function was uncompromised indicating a favorable safety profile. This translational study shows the pre-clinical feasibility, long-term therapeutic effectiveness and a favorable safety profile of cardiac AAV9-S100A1 gene therapy in a preclinical model of heart failure. Our study presents a strong rational for a clinical trial of S100A1 gene therapy for human heart failure that could potentially complement current strategies to treat end-stage heart failure. PMID:21775667
Prevention of liver cancer cachexia-induced cardiac wasting and heart failure
Springer, Jochen; Tschirner, Anika; Haghikia, Arash; von Haehling, Stephan; Lal, Hind; Grzesiak, Aleksandra; Kaschina, Elena; Palus, Sandra; Pötsch, Mareike; von Websky, Karoline; Hocher, Berthold; Latouche, Celine; Jaisser, Frederic; Morawietz, Lars; Coats, Andrew J.S.; Beadle, John; Argiles, Josep M.; Thum, Thomas; Földes, Gabor; Doehner, Wolfram; Hilfiker-Kleiner, Denise; Force, Thomas; Anker, Stefan D.
2014-01-01
Aims Symptoms of cancer cachexia (CC) include fatigue, shortness of breath, and impaired exercise capacity, which are also hallmark symptoms of heart failure (HF). Herein, we evaluate the effects of drugs commonly used to treat HF (bisoprolol, imidapril, spironolactone) on development of cardiac wasting, HF, and death in the rat hepatoma CC model (AH-130). Methods and results Tumour-bearing rats showed a progressive loss of body weight and left-ventricular (LV) mass that was associated with a progressive deterioration in cardiac function. Strikingly, bisoprolol and spironolactone significantly reduced wasting of LV mass, attenuated cardiac dysfunction, and improved survival. In contrast, imidapril had no beneficial effect. Several key anabolic and catabolic pathways were dysregulated in the cachectic hearts and, in addition, we found enhanced fibrosis that was corrected by treatment with spironolactone. Finally, we found cardiac wasting and fibrotic remodelling in patients who died as a result of CC. In living cancer patients, with and without cachexia, serum levels of brain natriuretic peptide and aldosterone were elevated. Conclusion Systemic effects of tumours lead not only to CC but also to cardiac wasting, associated with LV-dysfunction, fibrotic remodelling, and increased mortality. These adverse effects of the tumour on the heart and on survival can be mitigated by treatment with either the β-blocker bisoprolol or the aldosterone antagonist spironolactone. We suggest that clinical trials employing these agents be considered to attempt to limit this devastating complication of cancer. PMID:23990596
Prognostic impact of intestinal wall thickening in hospitalized patients with heart failure.
Ikeda, Yuki; Ishii, Shunsuke; Fujita, Teppei; Iida, Yuichiro; Kaida, Toyoji; Nabeta, Takeru; Maekawa, Emi; Yanagisawa, Tomoyoshi; Koitabashi, Toshimi; Takeuchi, Ichiro; Inomata, Takayuki; Ako, Junya
2017-03-01
Intestine-cardiovascular relationship has been increasingly recognized as a key factor in patients with heart disease. We aimed to identify the relationships among intestinal wall edema, cardiac function, and adverse clinical events in hospitalized heart failure (HF) patients. Abdominal computed tomographic images of 168 hospitalized HF patients were retrospectively investigated for identification of average colon wall thickness (CWT) from the ascending to sigmoid colon. Relationships between average CWT and echocardiographic parameters, blood sampling data, and primary outcomes including readmission for deteriorated HF and all-cause mortality were evaluated. Among the echocardiographic parameters, lower left ventricular diastolic function was correlated with higher average CWT. In multivariate analysis, higher logarithmic C-reactive protein level, lower estimated glomerular filtration rate, lower peripheral blood lymphocyte count, higher E/E' ratio, and extremely higher/lower defecation frequency were independently correlated with higher average CWT. Multivariate Cox-hazard analysis demonstrated that higher average CWT was independently related to higher incidence of primary outcomes. In hospitalized HF patients, increased CWT was associated with lower cardiac performance, and predicted poorer long-term clinical outcomes. Copyright © 2016. Published by Elsevier B.V.
Souza, Rodrigo W. A.; Piedade, Warlen P.; Soares, Luana C.; Souza, Paula A. T.; Aguiar, Andreo F.; Vechetti-Júnior, Ivan J.; Campos, Dijon H. S.; Fernandes, Ana A. H.; Okoshi, Katashi; Carvalho, Robson F.; Cicogna, Antonio C.; Dal-Pai-Silva, Maeli
2014-01-01
Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state. PMID:25330387
Takatori, Osamu; Usui, Soichiro; Okajima, Masaki; Kaneko, Shuichi; Ootsuji, Hiroshi; Takashima, Shin-Ichiro; Kobayashi, Daisuke; Murai, Hisayoshi; Furusho, Hiroshi; Takamura, Masayuki
2017-05-01
The unfolded protein response (UPR) plays a pivotal role in ischemia-reperfusion (I/R) injury in various organs such as heart, brain, and liver. Sodium 4-phenylbutyrate (PBA) reportedly acts as a chemical chaperone that reduces UPR. In the present study, we evaluated the effect of PBA on reducing the UPR and protecting against myocardial I/R injury in mice. Male C57BL/6 mice were subjected to 30-minute myocardial I/R, and were treated with phosphate-buffered saline (as a vehicle) or PBA. At 4 hours after reperfusion, mice treated with PBA had reduced serum cardiac troponin I levels and numbers of apoptotic cells in left ventricles (LVs) in myocardial I/R. Infarct size had also reduced in mice treated with PBA at 48 hours after reperfusion. At 2 hours after reperfusion, UPR markers, including eukaryotic initiation of the factor 2α-subunit, activating transcription factor-6, inositol-requiring enzyme-1, glucose-regulated protein 78, CCAAT/enhancer-binding protein (C/EBP) homologous protein, and caspase-12, were significantly increased in mice treated with vehicle compared to sham-operated mice. Administration of PBA significantly reduced the I/R-induced increases of these markers. Cardiac function and dimensions were assessed at 21 days after I/R. Sodium 4-phenylbutyrate dedicated to the improvement of cardiac parameters deterioration including LV end-diastolic diameter and LV fractional shortening. Consistently, PBA reduced messenger RNA expression levels of cardiac remodeling markers such as collagen type 1α1, brain natriuretic peptide, and α skeletal muscle actin in LV at 21 days after I/R. Unfolded protein response mediates myocardial I/R injury. Administration of PBA reduces the UPR, apoptosis, infarct size, and preserved cardiac function. Hence, PBA may be a therapeutic option to attenuate myocardial I/R injury in clinical practice.
Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.
2013-01-01
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327
Diastolic dysfunction in prediabetic male rats: Role of mitochondrial oxidative stress.
Koncsos, Gábor; Varga, Zoltán V; Baranyai, Tamás; Boengler, Kerstin; Rohrbach, Susanne; Li, Ling; Schlüter, Klaus-Dieter; Schreckenberg, Rolf; Radovits, Tamás; Oláh, Attila; Mátyás, Csaba; Lux, Árpád; Al-Khrasani, Mahmoud; Komlódi, Tímea; Bukosza, Nóra; Máthé, Domokos; Deres, László; Barteková, Monika; Rajtík, Tomáš; Adameová, Adriana; Szigeti, Krisztián; Hamar, Péter; Helyes, Zsuzsanna; Tretter, László; Pacher, Pál; Merkely, Béla; Giricz, Zoltán; Schulz, Rainer; Ferdinandy, Péter
2016-10-01
Although incidence and prevalence of prediabetes are increasing, little is known about its cardiac effects. Therefore, our aim was to investigate the effect of prediabetes on cardiac function and to characterize parameters and pathways associated with deteriorated cardiac performance. Long-Evans rats were fed with either control or high-fat chow for 21 wk and treated with a single low dose (20 mg/kg) of streptozotocin at week 4 High-fat and streptozotocin treatment induced prediabetes as characterized by slightly elevated fasting blood glucose, impaired glucose and insulin tolerance, increased visceral adipose tissue and plasma leptin levels, as well as sensory neuropathy. In prediabetic animals, a mild diastolic dysfunction was observed, the number of myocardial lipid droplets increased, and left ventricular mass and wall thickness were elevated; however, no molecular sign of fibrosis or cardiac hypertrophy was shown. In prediabetes, production of reactive oxygen species was elevated in subsarcolemmal mitochondria. Expression of mitofusin-2 was increased, while the phosphorylation of phospholamban and expression of Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3, a marker of mitophagy) decreased. However, expression of other markers of cardiac auto- and mitophagy, mitochondrial dynamics, inflammation, heat shock proteins, Ca 2+ /calmodulin-dependent protein kinase II, mammalian target of rapamycin, or apoptotic pathways were unchanged in prediabetes. This is the first comprehensive analysis of cardiac effects of prediabetes indicating that mild diastolic dysfunction and cardiac hypertrophy are multifactorial phenomena that are associated with early changes in mitophagy, cardiac lipid accumulation, and elevated oxidative stress and that prediabetes-induced oxidative stress originates from the subsarcolemmal mitochondria. Copyright © 2016 the American Physiological Society.
Zhai, Mengen; Liu, Zhenhua; Zhang, Bin; Jing, Lin; Li, Buying; Li, Kaifeng; Chen, Xiuju; Zhang, Meng; Yu, Bo; Ren, Kai; Yang, Yang; Yi, Wei; Yang, Jian; Liu, Jincheng; Yi, Dinghua; Liang, Hongliang; Jin, Zhenxiao; Reiter, Russel J; Duan, Weixun; Yu, Shiqiang
2017-10-01
Melatonin, a circadian molecule secreted by the pineal gland, confers a protective role against cardiac hypertrophy induced by hyperthyroidism, chronic hypoxia, and isoproterenol. However, its role against pressure overload-induced cardiac hypertrophy and the underlying mechanisms remains elusive. In this study, we investigated the pharmacological effects of melatonin on pathological cardiac hypertrophy induced by transverse aortic constriction (TAC). Male C57BL/6 mice underwent TAC or sham surgery at day 0 and were then treated with melatonin (20 mg/kg/day, via drinking water) for 4 or 8 weeks. The 8-week survival rate following TAC surgery was significantly increased by melatonin. Melatonin treatment for 8 weeks markedly ameliorated cardiac hypertrophy. Compared with the TAC group, melatonin treatment for both 4 and 8 weeks reduced pulmonary congestion, upregulated the expression level of α-myosin heavy chain, downregulated the expression level of β-myosin heavy chain and atrial natriuretic peptide, and attenuated the degree of cardiac fibrosis. In addition, melatonin treatment slowed the deterioration of cardiac contractile function caused by pressure overload. These effects of melatonin were accompanied by a significant upregulation in the expression of peroxisome proliferator-activated receptor-gamma co-activator-1 beta (PGC-1β) and the inhibition of oxidative stress. In vitro studies showed that melatonin also protects against angiotensin II-induced cardiomyocyte hypertrophy and oxidative stress, which were largely abolished by knocking down the expression of PGC-1β using small interfering RNA. In summary, our results demonstrate that melatonin protects against pathological cardiac hypertrophy induced by pressure overload through activating PGC-1β. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Shirasaka, Tomonori; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Shiozaki, Motoko; Kawaguchi, Naomasa; Matsuura, Nariaki; Nakatani, Satoshi; Sakai, Yoshiki; Daimon, Takashi; Okita, Yutaka; Sawa, Yoshiki
2013-08-01
Cardiac functional deterioration in dilated cardiomyopathy (DCM) is known to be reversed by intramyocardial up-regulation of multiple cardioprotective factors, whereas a prostacyclin analog, ONO1301, has been shown to paracrinally activate interstitial cells to release a variety of protective factors. We here hypothesized that intramyocardial delivery of a slow-releasing form of ONO1301 (ONO1301SR) might activate regional myocardium to up-regulate cardiotherapeutic factors, leading to regional and global functional recovery in DCM. ONO1301 elevated messenger RNA and protein level of hepatocyte growth factor, vascular endothelial growth factor, and stromal-derived factor-1 of normal human dermal fibroblasts in a dose-dependent manner in vitro. Intramyocardial delivery of ONO1301SR, which is ONO1301 mixed with polylactic and glycolic acid polymer (PLGA), but not that of PLGA only, yielded significant global functional recovery in a canine rapid pacing-induced DCM model, assessed by echocardiography and cardiac catheterization (n = 5 each). Importantly, speckle-tracking echocardiography unveiled significant regional functional recovery in the ONO1301-delivered territory, consistent to significantly increased vascular density, reduced interstitial collagen accumulation, attenuated myocyte hypertrophy, and reversed mitochondrial structure in the corresponding area. Intramyocardial delivery of ONO1301SR, which is a PLGA-coated slow-releasing form of ONO1301, up-regulated multiple cardiotherapeutic factors in the injected territory, leading to region-specific reverse left ventricular remodeling and consequently a global functional recovery in a rapid-pacing-induced canine DCM model, warranting a further preclinical study to optimize this novel drug-delivery system to treat DCM. Copyright © 2013 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Kowalówka, Adam R; Onyszczuk, Magdalena; Wańha, Wojciech; Deja, Marek A
2016-11-01
A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was 'Do we have to operate on moderate functional mitral regurgitation (FMR) during aortic valve replacement (AVR) for aortic stenosis (AS)?' Altogether 325 papers were found using the reported search, of which 9 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. The current evidence obtained from these papers revealed that the significant predictors of improvement outcome include lower preoperative mitral regurgitation and lower preoperative left ventricle fractional area change. We also know that persistent atrial fibrillation, enlarged left atrium, increased indexed left ventricular mass, pulmonary hypertension and preoperative peak aortic valve gradient <60 mmHg are predictors of deterioration. Generally, we observed a trend towards improvement or non-progression of FMR following AVR for AS. In the six papers that suggest conservative treatment of FMR, the degree of mitral regurgitation (MR) improved in 45-95%, remained unchanged in 19-38% and deteriorated in 1-14%. In the three papers favoring surgical treatment of MR, the degree of MR improved in 46-69%, stay unchanged in 34-53% and deteriorated in 10%. The current evidence suggests that moderate or less grade of FMR without predictors of deterioration should be treated conservatively and moderate-severe and severe FMR warrants additional surgical procedure. A clearly randomized study, especially in patients with moderate and moderate-severe FMR for AS, seems appropriate to further elucidate surgical strategy. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Zankov, Dimitar P.; Shimizu, Akio; Tanaka-Okamoto, Miki; Miyoshi, Jun; Ogita, Hisakazu
2017-01-01
Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin. PMID:28045017
Rodríguez Sánchez de la Blanca, Ana; Sánchez Luna, M; González Pacheco, N; Arriaga Redondo, M; Navarro Patiño, N
2018-02-01
Closure of a patent ductus arteriosus (PDA) in preterm infants modifies cardiac output and induces adaptive changes in the hemodynamic situation. The present study aims to analyze those changes, through a non-invasive cardiac output monitor based on blood electrical velocimetry, in preterm babies. A prospective observational study of preterm infants with a gestational age of less than 28 weeks, and a hemodynamic significant PDA, requires intravenous ibuprofen or surgical closure. All patients were monitored with electrical velocimetry before treatment and through the following 72 h. Two groups were defined, ibuprofen and surgical closure. Variations of cardiac output were analyzed from the basal situation and at 1, 8, 24, 48, and 72 h on each group. During a 12-month period, 18 patients were studied. The median gestational age in the ibuprofen group (12/18) was 26 +5 weeks (25 +5 -27 +3 ) with a median birth weight of 875 (670-1010) g. The cardiac output index (CI) value was 0.29 l/kg/min (0.24-0.34). Among the patients with confirmed ductus closure (50%), a significant CI decrease was shown (0.24 vs 0.29 l/kg/min; P 0.03) after 72 h (three ibuprofen doses). A statistically significant decrease in systolic volume (SVI) was found: 1.62 vs 1.88 ml/kg, P 0.03 with a decrease in contractility (ICON), 85 vs 140, P 0.02. The gestational age in the surgical group (6/18) was 25 +2 weeks (24-26 +3 ) with a median weight of 745 (660-820) g. All patients in this group showed a decrease in the immediate postoperative CI (1 h after surgery) 0.24 vs 0.30 l/kg/min, P 0.05, and a significant decrease in contractility (ICON 77 vs 147, P 0.03). In addition, a no statistically significant decrease in SVI (1.54 vs 1.83 ml/kg, P 0.06), as well as an increase in systemic vascular resistance (10,615 vs 8797 dyn/cm 2 , P 0.08), were detected. This deterioration was transient without significant differences in the remaining periods of time evaluated. The surgical closure of the PDA in preterm infants causes a transient deterioration of cardiac function linked to a documented decrease in the left ventricular output. The hemodynamic changes detected after pharmacological PDA closure are similar but those patients present a better clinical tolerance to changes in the cardiac output. What is Known: • Surgical ductus closure generates acute hemodynamic changes in cardiac output and left ventricular function. What is New: • The hemodynamic changes detected after pharmacological ductus closure are similar to those found in the surgical closure. Electrical velocimetry can detect those changes.
Effects of coordination and manipulation therapy for patients with Parkinson disease.
Zhao, Mingming; Hu, Caiyou; Wu, Zhixin; Chen, Yu; Li, Zhengming; Zhang, Mingsheng
2017-09-01
To determine the effects of a new exercise training regimen, i.e. coordination and manipulation therapy (CMT), on motor, balance, and cardiac functions in patients with Parkinson disease (PD). We divided 36 PD patients into the CMT (n = 22) and control (n = 14) groups. The patients in the CMT group performed dry-land swimming (imitation of the breaststroke) and paraspinal muscle stretching for 30 min/workday for 1 year. The control subjects did not exercise regularly. The same medication regimen was maintained in both groups during the study. Clinical characteristics, Unified Parkinson's Disease Rating Scale (UPDRS) scores, Berg balance scale (BBS) scores, mechanical balance measurements, timed up and go (TUG) test, and left ventricular ejection fraction (LVEF) were compared at 0 (baseline), 6, and 12 months. Biochemical test results were compared at 0 and 12 months. The primary outcome was motor ability. The secondary outcome was cardiac function. In the CMT group, UPDRS scores significantly improved, TUG test time and step number significantly decreased, BBS scores significantly increased, and most mechanical balance measurements significantly improved after 1 year of regular exercise therapy (all p < 0.05). In the control group, UPDRS scores significantly deteriorated, TUG test time and step number significantly increased, BBS scores significantly decreased, and most mechanical balance measurements significantly worsened after 1 year (all P < 0.05). LVEF improved in the CMT group only (P = 0.01). This preliminary study suggests that CMT effectively improved mobility disorder, balance, and cardiac function in PD patients over a 1-year period.
Frantz, Stefan; Klaiber, Michael; Baba, Hideo A.; Oberwinkler, Heike; Völker, Katharina; Gaβner, Birgit; Bayer, Barbara; Abeβer, Marco; Schuh, Kai; Feil, Robert; Hofmann, Franz; Kuhn, Michaela
2013-01-01
Aims Cardiac hypertrophy is a common and often lethal complication of arterial hypertension. Elevation of myocyte cyclic GMP levels by local actions of endogenous atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) or by pharmacological inhibition of phosphodiesterase-5 was shown to counter-regulate pathological hypertrophy. It was suggested that cGMP-dependent protein kinase I (cGKI) mediates this protective effect, although the role in vivo is under debate. Here, we investigated whether cGKI modulates myocyte growth and/or function in the intact organism. Methods and results To circumvent the systemic phenotype associated with germline ablation of cGKI, we inactivated the murine cGKI gene selectively in cardiomyocytes by Cre/loxP-mediated recombination. Mice with cardiomyocyte-restricted cGKI deletion exhibited unaltered cardiac morphology and function under resting conditions. Also, cardiac hypertrophic and contractile responses to β-adrenoreceptor stimulation by isoprenaline (at 40 mg/kg/day during 1 week) were unaltered. However, angiotensin II (Ang II, at 1000 ng/kg/min for 2 weeks) or transverse aortic constriction (for 3 weeks) provoked dilated cardiomyopathy with marked deterioration of cardiac function. This was accompanied by diminished expression of the [Ca2+]i-regulating proteins SERCA2a and phospholamban (PLB) and a reduction in PLB phosphorylation at Ser16, the specific target site for cGKI, resulting in altered myocyte Ca2+i homeostasis. In isolated adult myocytes, CNP, but not ANP, stimulated PLB phosphorylation, Ca2+i-handling, and contractility via cGKI. Conclusion These results indicate that the loss of cGKI in cardiac myocytes compromises the hypertrophic program to pathological stimulation, rendering the heart more susceptible to dysfunction. In particular, cGKI mediates stimulatory effects of CNP on myocyte Ca2+i handling and contractility. PMID:22199120
Zhou, Ning; Ye, Yong; Wang, Xingxu; Ma, Ben; Wu, Jian; Li, Lei; Wang, Lin; Wang, Dao Wen; Zou, Yunzeng
2017-04-01
Fibrotic cardiac muscle exhibits high stiffness and low compliance which are major risk factors of heart failure. Although heat shock transcription factor 1 (HSF1) was identified as an intrinsic cardioprotective factor, the role that HSF1 plays in cardiac fibrosis remains unclear. Our study aims to investigate the role of HSF1 in pressure overload-induced cardiac fibrosis and the underlying mechanism. HSF1 phosphorylation was significantly downregulated in transverse aortic constriction (TAC)-treated mouse hearts and mechanically stretched cardiac fibroblasts (cFBs). HSF1 transgenic (TG) mice, HSF1 deficient heterozygote (KO) mice, and their wild-type littermates were subjected to sham or TAC surgery for 4 weeks. HSF1 overexpression significantly attenuated pressure overload-induced cardiac fibrosis and dysfunction. Conversely, HSF1 KO mice showed deteriorated fibrotic response and cardiac dysfunction upon TAC. Moreover, we uncovered that overexpression of HSF1 protected against fibrotic response of cFBs to pressure overload. Mechanistically, we observed that the phosphorylation and the nuclear distribution of the Smad family member 3 (Smad3) were significantly decreased in HSF1-overexpressing mouse hearts, while being greatly increased in HSF1 KO mouse hearts upon TAC, compared to the control hearts, respectively. Similar alteration of Smad3 phosphorylation and nuclear distribution were found in isolated mouse cardiac fibroblasts and mechanically stretched cFBs. Constitutively active Smad3 blocked the anti-fibrotic effect of HSF1 in cFBs. Furthermore, we found a direct binding of phosphorylated HSF1 and Smad3, which can be suppressed by mechanical stress. In conclusion, the present study demonstrated for the first time that HSF1 acts as a novel negative regulator of cardiac fibrosis by blocking Smad3 activation. HSF1 activity is decreased in fibrotic hearts. HSF1 overexpression attenuates pressure overload-induced cardiac fibrosis and dysfunction. Deficiency of HSF1 deteriorates fibrotic response and cardiac dysfunction upon TAC. HSF1 inhibits phosphorylation and nuclear distribution of Smad3 via direct binding to Smad3. Active Smad3 blocks the anti-fibrotic effect of HSF1.
Cicekcioglu, Ferit; Ozen, Anil; Tuluce, Hicran; Tutun, Ufuk; Parlar, Ali Ihsan; Kervan, Umit; Karakas, Sirel; Katircioglu, Salih Fehmi
2008-01-01
Although neurologic outcome after cardiac surgery is well-established, neurocognitive functions after beating heart mitral valve replacement still needs to be elucidated. The aim of this study was to compare preoperative and postoperative neurocognitive functions in patients who underwent beating heart mitral valve replacement on cardiopulmonary bypass without cross-clamping the aorta. The prospective study included 25 consecutive patients who underwent mitral valve replacement. The operations were carried out on a beating heart method using normothermic cardiopulmonary bypass without cross-clamping the aorta. All patients were evaluated preoperatively (E1) and postoperatively (at sixth day [E2] and second month [E3]) for neurocognitive functions. Neurologic deficit was not observed in the postoperative period. Comparison of the neurocognitive test results, between the preoperative and postoperative assessment for both hemispheric cognitive functions, demonstrated that no deterioration occurred. In the three subsets of left hemispheric cognitive function test evaluation, total verbal learning, delayed recall, and recognition, significant improvements were detected at the postoperative second month (E3) compared to the preoperative results (p = 0.005, 0.01, and 0.047, respectively). Immediate recall and retention were significantly improved within the first postoperative week (E2) when compared to the preoperative results (p = 0.05 and 0.05, respectively). The technique of mitral valve replacement with normothermic cardiopulmonary bypass without cross-clamping of the aorta may be safely used for majority of patients requiring mitral valve replacement without causing deterioration in neurocognitive functions.
Sleep Duration and Quality as Related to Left Ventricular Structure and Function.
Lee, Jae-Hon; Park, Sung Keun; Ryoo, Jae-Hong; Oh, Chang-Mo; Kang, Jeong Gyu; Mansur, Rodrigo B; Alfonsi, Jeffrey E; Lee, Yena; Shin, Sun-Han; McIntyre, Roger S; Jung, Ju Young
2018-01-01
Inadequate sleep is associated with increased risk of cardiovascular events; however, the associations between sleep duration or quality and cardiac function or structure are not well understood. This cross-sectional study was conducted to investigate to what extent sleep duration and quality are associated with left ventricular (LV) diastolic dysfunction or structural deterioration. A total of 31,598 healthy Korean adults who received echocardiography and completed the Pittsburg Sleep Quality Index were enrolled in this study. Participants were stratified into three groups by self-reported sleep duration (i.e., <7, 7-9, >9 hours) and into two groups by subjective sleep quality. Sleep duration was also assessed as a continuous variable. The odds ratios for impaired LV diastolic function, increased relative wall thickness, and LV hypertrophy (LVH) were compared between groups using multivariable logistic regression analyses. After adjustment for confounding variables (e.g., age, smoking, body mass index), there was a statistically significant association between short sleep duration (<7 hours) and greater LVH (fully adjusted odds ratio = 1.32 [95% confidence interval {CI} = 1.02-1.73]). Short sleep duration was also significantly associated with greater LVH (0.87 per hour [95% CI = 0.78-0.98]) and increased relative wall thickness (0.92 [95% CI = 0.86-0.99]), but there was no significant association between sleep and LV diastolic function. Among individuals with normal sleep duration, poor quality of sleep was not associated with adverse cardiac measures. These results indicate that short sleep duration (<7 hours) is associated with unfavorable LV structural characteristics. The association of insufficient sleep with adverse cardiovascular health outcomes may be mediated in part by adverse changes in cardiac structure and function.
Concise Review: Challenges in Regenerating the Diabetic Heart: A Comprehensive Review.
Satthenapalli, Venkata R; Lamberts, Regis R; Katare, Rajesh G
2017-09-01
Stem cell therapy is one of the promising regenerative strategies developed to improve cardiac function in patients with ischemic heart diseases (IHD). However, this approach is limited in IHD patients with diabetes due to a progressive decline in the regenerative capacity of stem cells. This decline is mainly attributed to the metabolic memory incurred by diabetes on stem cell niche and their systemic cues. Understanding the molecular pathways involved in the diabetes-induced deterioration of stem cell function will be critical for developing new cardiac regeneration therapies. In this review, we first discuss the most common molecular alterations occurring in the diabetic stem cells/progenitor cells. Next, we highlight the key signaling pathways that can be dysregulated in a diabetic environment and impair the mobilization of stem/progenitor cells, which is essential for the transplanted/endogenous stem cells to reach the site of injury. We further discuss the possible methods of preconditioning the diabetic cardiac progenitor cell (CPC) with an aim to enrich the availability of efficient stem cells to regenerate the diseased diabetic heart. Finally, we propose new modalities for enriching the diabetic CPC through genetic or tissue engineering that would aid in developing autologous therapeutic strategies, improving the proliferative, angiogenic, and cardiogenic properties of diabetic stem/progenitor cells. Stem Cells 2017;35:2009-2026. © 2017 AlphaMed Press.
Aortic root dynamics and surgery: from craft to science.
Cheng, Allen; Dagum, Paul; Miller, D Craig
2007-08-29
Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.
Isometric exercise: cardiovascular responses in normal and cardiac populations.
Hanson, P; Nagle, F
1987-05-01
Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training regimens currently utilized by international class and professional athletes should stimulate longitudinal studies of physiologic and pathophysiologic outcomes of intense isometric exercise training programs.
Tepavčević, Snežana; Vojnović Milutinović, Danijela; Macut, Djuro; Žakula, Zorica; Nikolić, Marina; Božić-Antić, Ivana; Romić, Snježana; Bjekić-Macut, Jelica; Matić, Gordana; Korićanac, Goran
2014-05-01
It is supposed that women with polycystic ovary syndrome (PCOS) are prone to develop cardiovascular disease as a consequence of multiple risk factors that are mostly related to the state of insulin resistance and consequent hyperinsulinemia. In the present study, we evaluated insulin signaling and glucose transporters (GLUT) in cardiac cells of dihydrotestosterone (DHT) treated female rats as an animal model of PCOS. Expression of proteins involved in cardiac insulin signaling pathways and glucose transporters, as well as their phosphorylation or intracellular localization were studied by Western blot analysis in DHT-treated and control rats. Treatment with DHT resulted in increased body mass, absolute mass of the heart, elevated plasma insulin concentration, dyslipidemia and insulin resistance. At the molecular level, DHT treatment did not change protein expression of cardiac insulin receptor and insulin receptor substrate 1, while phosphorylation of the substrate at serine 307 was increased. Unexpectedly, although expression of downstream Akt kinase and its phosphorylation at threonine 308 were not altered, phosphorylation of Akt at serine 473 was increased in the heart of DHT-treated rats. In contrast, expression and phosphorylation of extracellular signal regulated kinases 1/2 were decreased. Plasma membrane contents of GLUT1 and GLUT4 were decreased, as well as the expression of GLUT4 in cardiac cells at the end of androgen treatment. The obtained results provide evidence for alterations in expression and especially in functional characteristics of insulin signaling molecules and glucose transporters in the heart of DHT-treated rats with PCOS, indicating impaired cardiac insulin action. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gambardella, Ivancarmine; Gaudino, Mario; Ronco, Claudio; Lau, Christopher; Ivascu, Natalia; Girardi, Leonard N
2016-11-01
Acute kidney injury (AKI) in cardiac surgery has traditionally been linked to reduced arterial perfusion. There is ongoing evidence that central venous pressure (CVP) has a pivotal role in precipitating acute renal dysfunction in cardiac medical and surgical settings. We can regard this AKI driven by systemic venous hypertension as 'kidney congestive failure'. In the cardiac surgery population as a whole, when the CVP value reaches the threshold of 14 mmHg in postoperative period, the risk of AKI increases 2-fold with an odds ratio (OR) of 1.99, 95% confidence interval (95% CI) of 1.16-3.40. In cardiac surgery subsets where venous hypertension is a hallmark feature, the incidence of AKI is higher (tricuspid disease 30%, carcinoid valve disease 22%). Even in the non-chronically congested coronary artery bypass population, CVP measured 6 h postoperatively showed significant association to renal failure: risk-adjusted OR for AKI was 5.5 (95% CI 1.93-15.5; P = 0.001) with every 5 mmHg rise in CVP for patients with CVP <9 mmHg; for CVP increments of 5 mmHg above the threshold of 9 mmHg, the risk-adjusted OR for AKI was 1.3 (95% CI 1.01-1.65; P = 0.045). This and other clinical evidence are discussed along with the underlying pathophysiological mechanisms, involving the supremacy of volume receptors in regulating the autonomic output in hypervolaemia, and the regional effect of venous congestion on the nephron. The effect of CVP on renal function was found to be modulated by ventricular function class, aetiology and acuity of venous congestion. Evidence suggests that acute increases of CVP should be actively treated to avoid a deterioration of the renal function, particularly in patients with poor ventricular fraction. Besides, the practice of treating right heart failure with fluid loading should be avoided in favour of other ways to optimize haemodynamics in this setting, because of the detrimental effects on the kidney function. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Effect of a 2-tier rapid response system on patient outcome and staff satisfaction.
Aitken, Leanne M; Chaboyer, Wendy; Vaux, Amanda; Crouch, Shannon; Burmeister, Elizabeth; Daly, Michael; Joyce, Chris
2015-08-01
Rapid response systems (RRS) have been recommended as a strategy to prevent and treat deterioration in acute care patients. Questions regarding the most effective characteristics of RRS and strategies for implementing these systems remain. The aims of this study were to (i) describe the structures and processes used to implement a 2-tier RRS, (ii) determine the comparative prevalence of deteriorating patients and incidence of unplanned intensive care unit (ICU) admission and cardiac arrest prior to and after implementation of the RRS, and (iii) determine clinician satisfaction with the RRS. A quasi-experimental pre-test, post-test design was used to assess patient related outcomes and clinician satisfaction prior to and after implementation of a 2-tier RRS in a tertiary metropolitan hospital. Primary components of the RRS included an ICU Outreach Nurse and a Rapid Response Team. Prevalence of deteriorating patients was assessed through a point prevalence assessment and chart audit. Incidence of unplanned admission to ICU and cardiac arrests were accessed from routine hospital databases. Clinician satisfaction was measured through surveys. Prevalence of patients who met medical emergency call criteria without current treatment reduced from 3% prior to RRS implementation to 1% after implementation; a similar reduction from 9% to 3% was identified on chart review. The number of unplanned admissions to ICU increased slightly from 17.4/month prior to RRS implementation to 18.1/month after implementation (p=0.45) while cardiac arrests reduced slightly from 7.5/month to 5.6/month (p=0.22) but neither of these changes were statistically significant. Staff satisfaction with the RRS was generally high. The 2-tier RRS was accessed by staff to assist with care of deteriorating patients in a large, tertiary hospital. High levels of satisfaction have been reported by clinical staff. Copyright © 2014 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.
Echocardiography and cardiac resynchronisation therapy, friends or foes?
van Everdingen, W M; Schipper, J C; van 't Sant, J; Ramdat Misier, K; Meine, M; Cramer, M J
2016-01-01
Echocardiography is used in cardiac resynchronisation therapy (CRT) to assess cardiac function, and in particular left ventricular (LV) volumetric status, and prediction of response. Despite its widespread applicability, LV volumes determined by echocardiography have inherent measurement errors, interobserver and intraobserver variability, and discrepancies with the gold standard magnetic resonance imaging. Echocardiographic predictors of CRT response are based on mechanical dyssynchrony. However, parameters are mainly tested in single-centre studies or lack feasibility. Speckle tracking echocardiography can guide LV lead placement, improving volumetric response and clinical outcome by guiding lead positioning towards the latest contracting segment. Results on optimisation of CRT device settings using echocardiographic indices have so far been rather disappointing, as results suffer from noise. Defining response by echocardiography seems valid, although re-assessment after 6 months is advisable, as patients can show both continuous improvement as well as deterioration after the initial response. Three-dimensional echocardiography is interesting for future implications, as it can determine volume, dyssynchrony and viability in a single recording, although image quality needs to be adequate. Deformation patterns from the septum and the derived parameters are promising, although validation in a multicentre trial is required. We conclude that echocardiography has a pivotal role in CRT, although clinicians should know its shortcomings.
Comparison of quality of life among cardiac, hepatic, cancer, and dermatological patients.
Dogar, Imtiaz Ahmad; Haider, Nighat; Ahmad, Maqsood; Naseem, Shazia; Bajwa, Asma
2012-03-01
To assess the level of quality of life (QOL) in patients suffering from various cardiac, cancer, hepatic, and dermatological diseases. A total of 339 patients of cardiac, cancer, hepatic, and dermatological diseases from DHQ/Allied hospitals of Faisalabad participated in this study through purposive convenient sampling technique. Quality of life was measured by WHO QOL-BREF (Validated Urdu Version) while demographic variables were recorded on a demographic sheet. The results were obtained by using analysis of variance (ANOVA) on SPSS 13. Out of 339, 156 (46%) patients were males while 183 (54%) patients were females. Of the total, 99 (29.2%) belonged to the lower socio economic status, 113 (33.3%) belonged to the lower middle, 62 (18.3%) belonged to the middle, and 65 (19.2%) belonged to the upper middle socio economic status. In terms of education, 49 (14.5%) were illiterate, 110 (32.3%) had primary level education, 118 (34.8%) had middle level education, 21 (6.2%) had done matriculation, 17 (5%) had intermediate, 14 (4.1%) were graduates, 8 (2.4%) had done masters. Of the whole lot, only 2 (0.6%) patients were professionals. Results showed that the quality of life was most deteriorated in the domain of physical health; while psychological health was the second most deteriorated domain. Social relationship was the least affected domain, while environment was the second least affected area. Quality of life of hepatic patients was significantly lower than dermatological patients with respect to physical health and environment, lower than cancer patients in relation to psychological health, and lower than cardiac patients in the social relationship domain. The quality of life of cardiac patients was noted to be significantly higher than the other three categories in the domains of psychological health and environment. In the face of the evidence of high deterioration in the quality of life of the patients in terms of physical and psychological health, medical units should be better equipped with facilities to enhance a sense of betterment in patients. The treating doctors should be better trained to give due consideration to this important aspect of management. Moreover, the role of liaison psychiatry should also be incorporated.
Toledo, Camilo; Andrade, David C.; Lucero, Claudia; Arce‐Alvarez, Alexis; Díaz, Hugo S.; Aliaga, Valentín; Schultz, Harold D.; Marcus, Noah J.; Manríquez, Mónica; Faúndez, Marcelo
2017-01-01
Key points Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho‐vagal imbalance.Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood.We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre‐sympathetic regions of the brainstem.Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho‐vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. Abstract Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho‐vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague‐Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho‐vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h−1), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV)] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h−1). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV, normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h−1) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg μl−1). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF. PMID:28181258
Renal angioplasty and stenting: is it still indicated after ASTRAL and STAR studies?
Henry, M; Benjelloun, A; Henry, I; Polydorou, A; Hugel, M
2010-10-01
A renal artery stenosis (RAS) is common among patients with atherosclerosis, up to a third of patients undergoing cardiac catheterization. Fibromuscular dysplasia is the next cause of RAS, commonly found in young women. Atherosclerosis RAS generally progresses overtime and is often associated with loss of renal mass and worsening renal function (RF). Percutaneous renal artery stent placement is the preferred method of revascularization for hemodynamically significant RAS according to ACC and AHA guidelines. Several randomized trials have shown the superiority of endovascular procedures to medical therapy alone. However, two studies ASTRAL and STAR studies were recently published and did not find any difference between renal stenting and medical therapy. But these studies have a lot of limitations and flaws as we will discuss (poor indications, poor results, numerous complications, failures, poor technique, inexperienced operators, ecc.). Despite these questionable studies, renal stenting keeps indications in patients with: uncontrolled hypertension; ischemic nephropathy; cardiac disturbance syndrome (e.g. "flash" pulmonary edema, uncontrolled heart failure or uncontrolled angina pectoris); solitary kidney. To improve the clinical response rates, a better selection of the patients and lesions is mandatory with: good non-invasive or invasive imaging; physiologic lesion assessment using transluminal pressure gradients; measurements of biomarkers (e.g., BNP); fractional flow reserve study. A problem remains after renal angioplasty stenting, the deterioration of the RF in 20-30% of the patients. Atheroembolism seems to play an important role and is probably the main cause of this R.F deterioration. The use of protection devices alone or in combination with IIb IIa inhibitors has been proposed and seems promising as shown in different recent reports. Renal angioplasty and stenting is still indicated but we need: a better patient and lesion selection; improvements in techniques and maybe the use of protection devices to reduce the risk of RF deterioration after renal stenting.
Systems Biology and Biomechanical Model of Heart Failure
Louridas, George E; Lourida, Katerina G
2012-01-01
Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies. PMID:22935019
Shinoda, Yasuharu; Tagashira, Hideaki; Bhuiyan, Md Shenuarin; Hasegawa, Hideyuki; Kanai, Hiroshi; Fukunaga, Kohji
2016-07-01
Haloperidol is an antipsychotic drug that inhibits the dopamine D2 receptor among others. Haloperidol also binds the sigma-1 receptor (σ1R) and inhibits it irreversibly. A serious outcome of haloperidol treatment of schizophrenia patients is death due to sudden cardiac failure. Although the cause remains unclear, we hypothesized that these effects were mediated by chronic haloperidol inhibition of cardiac σ1R. To test this, we treated neonatal rat cardiomyocytes with haloperidol, exposed them to angiotensin II and assessed hypertrophy, σ1R expression, mitochondrial Ca(2+) transport and ATP levels. In this context, haloperidol treatment altered mitochondrial Ca(2+) transport resulting in decreased ATP content by inactivating cardiac σ1R and/or reducing its expression. We also performed transverse aortic constriction (TAC) and then treated mice with haloperidol. After two weeks, haloperidol-treated mice showed enhanced heart failure marked by deteriorated cardiac function, reduced ATP production and increasing mortality relative to TAC only mice. ATP supplementation via sodium pyruvate rescued phenotypes seen in haloperidol-treated TAC mice. We conclude that σ1R inactivation or downregulation in response to haloperidol treatment impairs mitochondrial Ca(2+) mobilization, depleting ATP depletion from cardiomyocytes. These findings suggest a novel approach to mitigate haloperidol-related adverse effects in schizophrenia patients by ATP supplementation. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Meloni, Marco; Descamps, Betty; Caporali, Andrea; Zentilin, Lorena; Floris, Ilaria; Giacca, Mauro; Emanueli, Costanza
2012-01-01
Diabetes is a cause of cardiac dysfunction, reduced myocardial perfusion, and ultimately heart failure. Nerve growth factor (NGF) exerts protective effects on the cardiovascular system. This study investigated whether NGF gene transfer can prevent diabetic cardiomyopathy in mice. We worked with mice with streptozotocin-induced type 1 diabetes and with nondiabetic control mice. After having established that diabetes reduces cardiac NGF mRNA expression, we tested NGF gene therapies with adeno-associated viral vectors (AAVs) for the capacity to protect the diabetic mouse heart. To this aim, after 2 weeks of diabetes, cardiac expression of human NGF or β-Gal (control) genes was induced by either intramyocardial injection of AAV serotype 2 (AAV2) or systemic delivery of AAV serotype 9 (AAV9). Nondiabetic mice were given AAV2–β-Gal or AAV9–β-Gal. We found that the diabetic mice receiving NGF gene transfer via either AAV2 or AAV9 were spared the progressive deterioration of cardiac function and left ventricular chamber dilatation observed in β-Gal–injected diabetic mice. Moreover, they were additionally protected from myocardial microvascular rarefaction, hypoperfusion, increased deposition of interstitial fibrosis, and increased apoptosis of endothelial cells and cardiomyocytes, which afflicted the β-Gal–injected diabetic control mice. Our data suggest therapeutic potential of NGF for the prevention of cardiomyopathy in diabetic subjects. PMID:22187379
Bornaun, Helen; Dedeoglu, Reyhan; Oztarhan, Kazim; Dedeoglu, Savas; Erfidan, Erkan; Gundogdu, Muge; Aydogan, Gonul; Cengiz, Dicle
2016-01-01
Background Myocardial iron overload is the most common cause of mortality in patients with thalassemia major (TM), also known as beta-thalassemia. T2* cardiovascular magnetic resonance imaging (MRI) is the best way of monitoring cardiac iron, and new echocardiographic techniques can be used to assess cardiac function. Objectives The aim of this study was to assess the systolic and diastolic right ventricular (RV) function of patients with TM using tissue Doppler imaging (TDI) and to determine whether this echocardiographic technique is an adequate diagnostic tool for the screening and detection of subclinical cardiac dysfunction. Patients and Methods Eighty-four patients with TM were evaluated by conventional echocardiography and pulse-wave TDI. The data of the TM group (Group 1) were compared with that of 85 age- and sex-matched healthy controls (Group 2). Cardiovascular T2* MRI examinations were performed in 49 of the 85 patients. Results The patients with TM had significantly lower values for weight, height, body mass index, systolic arterial pressure, deceleration time, E’/A’, and ejection time (ET) than the controls. Group 1 also had significantly higher values for peak early diastolic velocity (E) over peak late diastolic velocity (A), peak early diastolic velocity of TDI (E’), peak late diastolic velocity of TDI (A’), E/E’, isovolumetric relaxation time, isovolumetric contraction time, and RV magnetic perfusion imaging (MPI) than Group 2. Conclusions RV diastolic dysfunction occurs before systolic deterioration in patients with TM and cannot be screened with conventional echocardiographic techniques. In routine practice, TDI measurements, MPI (for global function) and the E/E’ parameter (for diastolic function) can be used to screen and detect early RV dysfunction. PMID:27617076
Feng, Qiaoli; Lu, Chengzhi; Wang, Li; Song, Lijun; Li, Chao; Uppada, Ravi Chandra
2017-02-17
This study sought to evaluate the therapeutic effects of renal denervation (RDN) on acute myocardial infarction (MI) in canines and explore its possible mechanisms of action. Eighteen healthy mongrel dogs were randomly assigned to either the control group, the MI group or the MI + RDN group. To assess cardiac function, left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD) and fraction shortening (FS) were recorded. Additionally, haemodynamic parameters such as left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP) and heart rate (HR) were measured. Cardiac oxidative stress levels were evaluated based on the expression of p47 phox mRNA, malondialdehyde (MDA), anti-superoxide anion free radical (ASAFR) and activity of superoxide dismutase (SOD). To measure the local activity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS), the levels of tyrosine hydroxylase (TH), angiotensin II (AngII), angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7) [Ang(1-7)] and Mas receptor (MasR) in myocardial tissues were recorded. The expression of TH in renal tissue and serum creatinine were used to assess the effectiveness of the RDN procedure and renal function, respectively. We found that MI deteriorated heart function and activated cardiac oxidative stress and the local neurohumoral system, while RDN partially reversed these changes. Compared with the control group, parameters including LVEDD, LVESD, LVEDP and the levels of ASAFR, MDA, p47 phox ,ACE2, Ang(1-7), MasR, AngII and TH-positive nerves were increased (all P < 0.05) in myocardial infracted dogs; meanwhile, LVEF, FS, LVSP and SOD expression were decreased (all P < 0.05). However, after RDN therapy, these changes were significantly improved (P < 0.05), except that there were no significant differences observed in FS or LVSP between the two groups (P = 0.092 and 0.931, respectively). Importantly, the expression of TH, AngII and Ang(1-7) was positively correlated with MDA and negatively correlated with SOD. Between-group comparisons demonstrated no differences in serum creatinine (P = 0.706). RDN attenuated cardiac remodelling and improved heart function by decreasing the level of cardiac oxidative stress and the local activity of the SNS and RAS in cardiac tissues. Additionally, the safety of the RDN procedure was established, as no significant decrease in LVSP or rise in serum creatinine was observed in our study.
Power, Alyssa; Poonja, Sabrina; Disler, Dal; Myers, Kimberley; Patton, David J; Mah, Jean K; Fine, Nowell M; Greenway, Steven C
2017-01-01
Advances in medical care for patients with Duchenne muscular dystrophy (DMD) have resulted in improved survival and an increased prevalence of cardiomyopathy. Serial echocardiographic surveillance is recommended to detect early cardiac dysfunction and initiate medical therapy. Clinical anecdote suggests that echocardiographic quality diminishes over time, impeding accurate assessment of left ventricular systolic function. Furthermore, evidence-based guidelines for the use of cardiac imaging in DMD, including cardiac magnetic resonance imaging (CMR), are limited. The objective of our single-center, retrospective study was to quantify the deterioration in echocardiographic image quality with increasing patient age and identify an age at which CMR should be considered. We retrospectively reviewed and graded the image quality of serial echocardiograms obtained in young patients with DMD. The quality of 16 left ventricular segments in two echocardiographic views was visually graded using a binary scoring system. An endocardial border delineation percentage (EBDP) score was calculated by dividing the number of segments with adequate endocardial delineation in each imaging window by the total number of segments present in that window and multiplying by 100. Linear regression analysis was performed to model the relationship between the EBDP scores and patient age. Fifty-five echocardiograms from 13 patients (mean age 11.6 years, range 3.6-19.9) were systematically reviewed. By 13 years of age, 50% of the echocardiograms were classified as suboptimal with ≥30% of segments inadequately visualized, and by 15 years of age, 78% of studies were suboptimal. Linear regression analysis revealed a negative correlation between patient age and EBDP score ( r = -2.49, 95% confidence intervals -4.73, -0.25; p = 0.032), with the score decreasing by 2.5% for each 1 year increase in age. Echocardiographic image quality declines with increasing age in DMD. Alternate imaging modalities may play a role in cases of poor echocardiographic image quality.
Pharmacological management of chronic heart failure in adults: a review of the literature.
Auty, Richard
2004-03-01
Heart failure is a common, life threatening condition encountered in patients of all ages and in all clinical settings. It may be due to any of a wide variety of causes - in Malawi, cardiomyopathies, hypertension and rheumatic heart disease are probably the commonest causes of heart failure. In more affluent societies, ischaemic heart disease is an important factor. Chronic heart failure (CHF) causes significant morbidity: it reduces exercise capacity, interferes with sleep and produces unsightly and uncomfortable oedema. The syndrome also carries substantial mortatity, worse than that of many malignant tumours: 20 -30% of patients with mild or moderately severe heart failure will die every year if left untreated. The life expectancy of a patient with untreated severe heart failure is only about 6 months. Table 1 explains the symptomatic classification of the severity of heart failure. Objective measurements of cardiac function, such as Left Ventricular Ejection Fraction (LYEF) or chamber filling pressures, correlate poorly with symptoms and New York Heart Association (NYHA) classification. Many of the problems experienced by a patient with heart failure are due to a 'vicious circle' of events in which pathophysiological responses to the falling cardiac output cause further deterioration in cardiac function over time. These responses include ventricular remodeling, neurohumoural activation (increased sympathetic activity; increased atrial natriuretic peptide; increased angiotensin II), increased activity of the renin-angiotensin-aldosterone system (RAAS) causing fluid retention, vasoconstriction and sodium retention. [Table: see text].
Wu, Bing; Yu, Lu; Wang, Yishi; Wang, Hongtao; Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng
2016-01-19
Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/-) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging.
Case report: fatal poisoning with Colchicum autumnale.
Brvar, Miran; Ploj, Tom; Kozelj, Gordana; Mozina, Martin; Noc, Marko; Bunc, Matjaz
2004-02-01
Colchicum autumnale, commonly known as the autumn crocus, contains alkaloid colchicine with antimitotic properties. A 76-year-old man with a history of alcoholic liver disease and renal insufficiency, who mistakenly ingested Colchicum autumnale instead of wild garlic (Aliium ursinum), presented with nausea, vomiting and diarrhea 12 hours after ingestion. On admission the patient had laboratory signs of dehydration. On the second day the patient became somnolent and developed respiratory insufficiency. The echocardiogram showed heart dilatation with diffuse hypokinesia with positive troponin I. The respiratory insufficiency was further deteriorated by pneumonia, confirmed by chest X-ray and later on by autopsy. Laboratory tests also revealed rhabdomyolysis, coagulopathy and deterioration of renal function and hepatic function. The toxicological analysis disclosed colchicine in the patient's urine (6 microgram/l) and serum (9 microgram/l) on the second day. Therapy was supportive with hydration, vasopressors, mechanical ventilation and antibiotics. On the third day the patient died due to asystolic cardiac arrest. Colchicine poisoning should be considered in patients with gastroenterocolitis after a meal of wild plants. Management includes only intensive support therapy. A more severe clinical presentation should be expected in patients with pre-existing liver and renal diseases. The main reasons for death are cardiovascular collapse, respiratory failure and leukopenia with infection.
Youngson, Megan J; Currey, Judy; Considine, Julie
2016-08-01
The nature of acute clinical deterioration has changed over the last three decades with a decrease in in-hospital cardiac arrests and an increase in acute clinical deterioration. Despite this change, research related to family presence continues to focus on care during resuscitation rather than during acute deterioration. To explore healthcare clinician attitudes, beliefs and perceptions of current practices surrounding family presence during episodes of acute deterioration in adult Emergency Department patients. Clinicians (n=156) from a single study site in Melbourne, Australia completed a 17-item survey. Participants disagreed that family members would interrupt (59.0%) or interfere (61.5%) with patient care if present during episodes of patient deterioration. Most (77.6%) participants stated that they included family during episodes of patient deterioration. Females, nurses and Australians/New Zealanders had a more positive attitude towards including family during episodes of patient deterioration when compared to males, doctors and clinicians of other ethnicities. Nurses with post-graduate qualifications and those with more years of experience had a more positive attitude towards including family during episodes of patient deterioration than nurses without post-graduation qualification and with less years of experience. Clinicians had predominantly positive attitudes towards including family during episodes of patient deterioration and perceived it to be a common day-to-day practice. Gender, profession, country of birth, education level and years of experience all impacted on clinician attitudes, beliefs and perceptions of family presence during acute deterioration. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.
Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M
2009-02-01
Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.
Li, Xiao-hong; Zhao, Ying; Dong, Jianzeng; He, Yihua; Liu, Wenxu; Han, Jiancheng
2015-10-01
A 76-year-old man under stable hemodynamic condition was admitted to our hospital for delayed percutaneous coronary intervention following a diagnosis of acute inferior myocardial infarction. Bedside echocardiography revealed ventricular septal rupture at the basal posteroinferior wall with a large left-to-right shunt. Right ventricular free-wall intramyocardial dissection and tricuspid chordae rupture were noted. Coronary angiography demonstrated occlusion of the proximal right coronary artery, which was treated by balloon angioplasty and stenting. While preparing for surgical repair, the patient's overall cardiac and renal function deteriorated and surgery was contraindicated. The patient died 16 days after discharge. © 2014 Wiley Periodicals, Inc.
Wang, Chih-Hsien; Chang, Ru-Wen; Ko, Ya-Hui; Tsai, Pi-Ru; Wang, Shoei-Shen; Chen, Yih-Sharng; Ko, Wen-Je; Chang, Chun-Yi; Young, Tai-Horng; Chang, Kuo-Chu
2014-01-01
Introduction Without affecting the lipid profile, a low-dose treatment with atorvastatin contributes to the reduction of oxidative stress, inflammation, and adverse cardiovascular events in diabetes. In this study, we investigated whether low-dose atorvastatin exerts any beneficial effect on vascular dynamics in streptozotocin (STZ)-induced diabetes in male Wistar rats. Methods Diabetes was induced using a single tail-vein injection of STZ at 55 mg kg−1. The diabetic rats were treated daily with atorvastatin (10 mg kg−1 by oral gavage) for 6 weeks. They were also compared with untreated age-matched diabetic controls. Arterial wave reflection was derived using the impulse response function of the filtered aortic input impedance spectra. A thiobarbituric acid reactive substances measurement was used to estimate the malondialdehyde content. Results The high plasma level of total cholesterol in the diabetic rats did not change in response to this low-dose treatment with atorvastatin. Atorvastatin resulted in a significant increase of 15.4% in wave transit time and a decrease of 33.5% in wave reflection factor, suggesting that atorvastatin may attenuate the diabetes-induced deterioration in systolic loads imposed on the heart. This was in parallel with its lowering of malondialdehyde content in plasma and aortic walls in diabetes. Atorvastatin therapy also prevented the diabetes-related cardiac hypertrophy, as evidenced by the diminished ratio of left ventricular weight to body weight. Conclusion These findings indicate that low-dose atorvastatin might protect diabetic vasculature against diabetes-associated deterioration in aorta stiffness and cardiac hypertrophy, possibly through its decrease of lipid oxidation-derived malondialdehyde. PMID:24595201
Causes of cine image quality deterioration in cardiac catheterization laboratories.
Levin, D C; Dunham, L R; Stueve, R
1983-10-01
Deterioration of cineangiographic image quality can result from malfunctions or technical errors at a number of points along the cine imaging chain: generator and automatic brightness control, x-ray tube, x-ray beam geometry, image intensifier, optics, cine camera, cine film, film processing, and cine projector. Such malfunctions or errors can result in loss of image contrast, loss of spatial resolution, improper control of film optical density (brightness), or some combination thereof. While the electronic and photographic technology involved is complex, physicians who perform cardiac catheterization should be conversant with the problems and what can be done to solve them. Catheterization laboratory personnel have control over a number of factors that directly affect image quality, including radiation dose rate per cine frame, kilovoltage or pulse width (depending on type of automatic brightness control), cine run time, selection of small or large focal spot, proper object-intensifier distance and beam collimation, aperture of the cine camera lens, selection of cine film, processing temperature, processing immersion time, and selection of developer.
Stevenson, Jean E; Israelsson, Johan; Nilsson, Gunilla C; Petersson, Göran I; Bath, Peter A
2016-03-01
Vital sign documentation is crucial to detecting patient deterioration. Little is known about the documentation of vital signs in electronic health records. This study aimed to examine documentation of vital signs in electronic health records. We examined the vital signs documented in the electronic health records of patients who had suffered an in-hospital cardiac arrest and on whom cardiopulmonary resuscitation was attempted between 2007 and 2011 (n = 228), in a 372-bed district general hospital. We assessed the completeness of vital sign data compared to VitalPAC™ Early Warning Score and the location of vital signs within the electronic health records. There was a noticeable lack of completeness of vital signs. Vital signs were fragmented through various sections of the electronic health records. The study identified serious shortfalls in the representation of vital signs in the electronic health records, with consequential threats to patient safety. © The Author(s) 2014.
Shanmugam, Gobinath; Narasimhan, Madhusudhanan; Conley, Robbie L.; Sairam, Thiagarajan; Kumar, Ashutosh; Mason, Ronald P.; Sankaran, Ramalingam; Hoidal, John R.; Rajasekaran, Namakkal S.
2017-01-01
Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/−) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction. PMID:28515695
Wu, Yao; Si, Feifei; Ji, Xiaojuan; Jiang, Kunfeng; Song, Sijie; Yi, Qijian
2017-01-01
Background . This study was undertaken to determine relative contributions of phosphorylation and oxidation to the increased activity of calcium/calmodulin-stimulated protein kinase II (CaMKII) in juveniles with cardiac myocyte dysfunction due to increased pressure overload. Methods . Juvenile rats underwent abdominal aortic constriction to induce heart failure. Four weeks after surgery, rats were then randomly divided into two groups: one group given valsartan (HF + Val) and the other group given placebo (HF + PBO). Simultaneously, the sham-operated rats were randomly given valsartan (Sham + Val) or placebo (Sham + PBO). After 4 weeks of treatment, Western blot analysis was employed to quantify CaMKII and relative calcium handling proteins (RyR2 and PLN) in all groups. Results . The deteriorated cardiac function was reversed by valsartan treatment. In ventricular muscle cells of group HF + PBO, Thr287 phosphorylation of CaMKII and S2808 phosphorylation of RyR2 and PLN were increased and S16 phosphorylation of PLN was decreased compared to the other groups, while Met281 oxidation was not significantly elevated. In addition, these changes in the expression of calcium handling proteins were ameliorated by valsartan administration. Conclusions . The phosphorylation of Thr286 is associated with the early activation of CaMKII rather than the oxidation of Met281.
Pisani, A; Spinelli, L; Visciano, B; Capuano, I; Sabbatini, M; Riccio, E; Messalli, G; Imbriaco, M
2013-01-01
Anderson-Fabry disease (AFD) is a multiorgan X-linked lysosomal storage disease that particularly affects the heart, kidneys, and cerebrovascular system. Current treatment is enzyme replacement therapy (ERT) with agalsidase beta (Fabrazyme(®), Genzyme Corporation, Cambridge, MA, USA) or agalsidase alfa (Replagal(®), Shire Human Genetic Therapies AB, Lund, Sweden). It was recommended that patients switch to agalsidase alfa due to a manufacturing shortage of agalsidase beta beginning in June 2009. This study assessed the effect of switching to agalsidase alfa on clinical outcomes in patients with AFD previously treated with agalsidase beta. Ten patients (seven male, three female) with genetically confirmed AFD and at least 48 months' continuous data collected during treatment with agalsidase beta 1 mg/kg every other week were switched to agalsidase alfa 0.2 mg/kg every other week for at least 20 months, with prospective clinical evaluations every 6 months. Pre-switch data was collected retrospectively from patient charts. Cardiac functional parameters were assessed using magnetic resonance imaging. Results showed that renal function was normal (estimated glomerular filtration rate ≥90 mL/min/1.73 m(2)) in 8 of 10 patients prior to agalsidase alfa and generally remained stable after the switch. Cardiac mass decreased significantly (p < 0.05 vs pre-ERT) after agalsidase beta and remained unchanged after switching to agalsidase alfa. Symptoms of pain and health status scores did not deteriorate during agalsidase alfa therapy. Adverse events were mostly mild and infusion related. In conclusion, switching to agalsidase alfa was relatively well tolerated and associated with stable clinical status and preserved renal and cardiac function.
NASA Astrophysics Data System (ADS)
Teo, S.-K.; Wong, S. T.; Tan, M. L.; Su, Y.; Zhong, L.; Tan, Ru-San
2015-03-01
After surgical repair for Tetralogy of Fallot (TOF), most patients experience long-term complications as the right ventricle (RV) undergoes progressive remodeling that eventually affect heart functions. Thus, post-repair surgery is required to prevent further deterioration of RV functions that may result in malignant ventricular arrhythmias and mortality. The timing of such post-repair surgery therefore depends crucially on the quantitative assessment of the RV functions. Current clinical indices for such functional assessment measure global properties such as RV volumes and ejection fraction. However, these indices are less than ideal as regional variations and anomalies are obscured. Therefore, we sought to (i) develop a quantitative method to assess RV regional function using regional ejection fraction (REF) based on a 13-segment model, and (ii) evaluate the effectiveness of REF in discriminating 6 repaired TOF patients and 6 normal control based on cardiac magnetic resonance (CMR) imaging. We observed that the REF for the individual segments in the patient group is significantly lower compared to the control group (P < 0.05 using a 2-tail student t-test). In addition, we also observed that the aggregated REF at the basal, mid-cavity and apical regions for the patient group is significantly lower compared to the control group (P < 0.001 using a 2-tail student t-test). The results suggest that REF could potentially be used as a quantitative index for assessing RV regional functions. The computational time per data set is approximately 60 seconds, which demonstrates our method's clinical potential as a real-time cardiac assessment tool.
Plaschke, Konstanze; Do, Thuc Quyen Monica; Uhle, Florian; Brenner, Thorsten; Weigand, Markus A; Kopitz, Jürgen
2018-02-01
Acetylcholine is the main transmitter of the parasympathetic vagus nerve. According to the cholinergic anti-inflammatory pathway (CAP) concept, acetylcholine has been shown to be important for signal transmission within the immune system and also for a variety of other functions throughout the organism. The spleen is thought to play an important role in regulating the CAP. In contrast, the existence of a "non-neuronal cardiac cholinergic system" that influences cardiac innervation during inflammation has been hypothesized, with recent publications introducing the heart instead of the spleen as a possible interface between the immune and nervous systems. To prove this hypothesis, we investigated whether selectively disrupting vagal stimulation of the right ventricle plays an important role in rat CAP regulation during endotoxemia. We performed a selective resection of the right cardiac branch of the Nervus vagus (VGX) with a corresponding sham resection in vehicle-injected and endotoxemic rats. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg body weight, intravenously) and observed for 4 h. Intraoperative blood gas analysis was performed, and hemodynamic parameters were assessed using a left ventricular pressure-volume catheter. Rat hearts and blood were collected, and the expression and concentration of proinflammatory cytokines using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were measured, respectively. Four hours after injection, LPS induced a marked deterioration in rat blood gas parameters such as pH value, potassium, base excess, glucose, and lactate. The mean arterial blood pressure and the end-diastolic volume had decreased significantly. Further, significant increases in blood cholinesterases and in proinflammatory (IL-1β, IL-6, TNF-α) cytokine concentration and gene expression were obtained. Right cardiac vagus nerve resection (VGX) led to a marked decrease in heart acetylcholine concentration and an increase in cardiac acetylcholinesterase activity. Without LPS, VGX changed rat hemodynamic parameters, including heart frequency, cardiac output, and end-diastolic volume. In contrast, VGX during endotoxemia did not significantly change the concentration and expression of proinflammatory cytokines in the heart. In conclusion we demonstrate that right cardiac vagal innervation regulates cardiac acetylcholine content but neither improves nor worsens systemic inflammation.
Plaschke, Konstanze; Do, Thuc Quyen Monica; Brenner, Thorsten; Weigand, Markus A.; Kopitz, Jürgen
2018-01-01
Acetylcholine is the main transmitter of the parasympathetic vagus nerve. According to the cholinergic anti-inflammatory pathway (CAP) concept, acetylcholine has been shown to be important for signal transmission within the immune system and also for a variety of other functions throughout the organism. The spleen is thought to play an important role in regulating the CAP. In contrast, the existence of a “non-neuronal cardiac cholinergic system” that influences cardiac innervation during inflammation has been hypothesized, with recent publications introducing the heart instead of the spleen as a possible interface between the immune and nervous systems. To prove this hypothesis, we investigated whether selectively disrupting vagal stimulation of the right ventricle plays an important role in rat CAP regulation during endotoxemia. We performed a selective resection of the right cardiac branch of the Nervus vagus (VGX) with a corresponding sham resection in vehicle-injected and endotoxemic rats. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg body weight, intravenously) and observed for 4 h. Intraoperative blood gas analysis was performed, and hemodynamic parameters were assessed using a left ventricular pressure-volume catheter. Rat hearts and blood were collected, and the expression and concentration of proinflammatory cytokines using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were measured, respectively. Four hours after injection, LPS induced a marked deterioration in rat blood gas parameters such as pH value, potassium, base excess, glucose, and lactate. The mean arterial blood pressure and the end-diastolic volume had decreased significantly. Further, significant increases in blood cholinesterases and in proinflammatory (IL-1β, IL-6, TNF-α) cytokine concentration and gene expression were obtained. Right cardiac vagus nerve resection (VGX) led to a marked decrease in heart acetylcholine concentration and an increase in cardiac acetylcholinesterase activity. Without LPS, VGX changed rat hemodynamic parameters, including heart frequency, cardiac output, and end-diastolic volume. In contrast, VGX during endotoxemia did not significantly change the concentration and expression of proinflammatory cytokines in the heart. In conclusion we demonstrate that right cardiac vagal innervation regulates cardiac acetylcholine content but neither improves nor worsens systemic inflammation. PMID:29389905
Duvnjak, L; Tomić, M; Blaslov, K; Vučković Rebrina, S
2016-06-01
To determine whether cardiac autonomic dysfunction represents a risk factor for diabetic retinopathy (DR) development and progression in persons with type 1 diabetes mellitus (T1DM). The study comprised 154 normoalbuminuric persons with T1DM divided into two groups according to the DR presence: with and without DR. Cardiovascular autonomic functioning was measured at baseline using conventional and spectral analysis. Participants were re-examined for the DR presence 18months after. The group with DR had longer disease duration compared to the group without DR (20 vrs 11.5years, p<0.001), heart rate coefficient of variation (HRV-CV) at rest and during deep breathing were lower in participants with DR (p=0.001 and 0.004), as well did spectral indices of HRV: low frequency (LF) band, high frequency (HF) band (p=0.003 and 0.022) while LF/HF ratio indicating sympathovagal balance was higher (p=0.037). No difference in glycaemic control or blood pressure value were observed. Twenty-one (13.36%) participants developed non proliferative DR or progressed to proliferative DR. Cox proportional regression showed that the 18months risk from retinal deterioration was reduced by 33.4% by each increase in the HRV-CV of 1%, 12.7% for the same HRV-CV increase during deep breathing while LF band of 1ms(2) results in 8.6% risk reduction. This study provides evidence that DR should not be considered merely a metabolic control manifestation and that HRV-CV as well as spectral indices of HRV might serve as a practical tool to identify a subgroup of T1DM patients with higher risk of retinal deterioration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yoda, Kazushige; Umeda, Tokuo; Hasegawa, Tomoyuki
2003-11-01
Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.
Simplified pulse reactor for real-time long-term in vitro testing of biological heart valves.
Schleicher, Martina; Sammler, Günther; Schmauder, Michael; Fritze, Olaf; Huber, Agnes J; Schenke-Layland, Katja; Ditze, Günter; Stock, Ulrich A
2010-05-01
Long-term function of biological heart valve prostheses (BHV) is limited by structural deterioration leading to failure with associated arterial hypertension. The objective of this work was development of an easy to handle real-time pulse reactor for evaluation of biological and tissue engineered heart valves under different pressures and long-term conditions. The pulse reactor was made of medical grade materials for placement in a 37 degrees C incubator. Heart valves were mounted in a housing disc moving horizontally in culture medium within a cylindrical culture reservoir. The microprocessor-controlled system was driven by pressure resulting in a cardiac-like cycle enabling competent opening and closing of the leaflets with adjustable pulse rates and pressures between 0.25 to 2 Hz and up to 180/80 mmHg, respectively. A custom-made imaging system with an integrated high-speed camera and image processing software allow calculation of effective orifice areas during cardiac cycle. This simple pulse reactor design allows reproducible generation of patient-like pressure conditions and data collection during long-term experiments.
Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E.
2015-01-01
Background Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Methods Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Results Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Conclusions Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. PMID:25888676
Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E
2016-01-01
Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. © 2015 American Society for Parenteral and Enteral Nutrition.
miRNAs as therapeutic targets in ischemic heart disease.
Frost, Robert J A; van Rooij, Eva
2010-06-01
Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.
Cardiorespiratory coupling in health and disease.
Garcia, Alfredo J; Koschnitzky, Jenna E; Dashevskiy, Tatiana; Ramirez, Jan-Marino
2013-04-01
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Cardiorespiratory Coupling in Health and Disease
Garcia, Alfredo J.; Koschnitzky, Jenna E.; Dashevskiy, Tatiana; Ramirez, Jan-Marino
2013-01-01
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA. PMID:23497744
Acute functional deterioration in a child with cerebral palsy
Smyth, Elizabeth; Kaliaperumal, Chandrasekaran; Leonard, Jane; Caird, John
2012-01-01
We describe a case of acute functional deterioration in a 13-year-old girl with severe spastic diplegia (GMFCS III) and a new diagnosis of diffuse intrinsic pontine glioma (DIPG). She presented with acute deterioration in mobility and motor function over 1 month, which was associated with dysarthria, dysphagia and behavioural change. Her mother had noticed subtle functional deterioration over the 2 months prior to this. Her physiotherapist who was concerned about her acute functional deterioration referred her for emergency review. Neurological imaging revealed a diffuse pontine lesion consistent with DIPG. She was subsequently referred to oncology. She deteriorated further, clinically, over the next few days and following discussion with the team; her family opted for palliative treatment, given the poor prognosis associated with DIPG. PMID:23257647
Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C
2014-01-01
Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patients pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (SBM), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or QCP) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patients physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patients condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.
2011-01-01
Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.
Liakopoulos, Oliver J; Ho, Jonathan K; Yezbick, Aaron B; Sanchez, Elizabeth; Singh, Vivek; Mahajan, Aman
2010-11-01
Augmentation of coronary perfusion may improve right ventricular (RV) failure following acute increases of RV afterload. We investigated whether intra-aortic balloon counterpulsation (IABP) can improve cardiac function by enhancing myocardial perfusion and reversing compromised biventricular interactions using a model of acute pressure overload. In 10 anesthetized pigs, RV failure was induced by pulmonary artery constriction and systemic hypertension strategies with IABP, phenylephrine (PE), or the combination of both were tested. Systemic and ventricular hemodynamics [cardiac index(CI), ventricular pressures, coronary driving pressures (CDP)] were measured and echocardiography was used to assess tricuspid valve regurgitation, septal positioning (eccentricity index (ECI)), and changes in ventricular and septal dimensions and function [myocardial performance index (MPI), peak longitudinal strain]. Pulmonary artery constriction resulted in doubling of RV systolic pressure (54 ± 4mm Hg), RV distension, severe TR (4+) with decreased RV function (strain: -33%; MPI: +56%), septal flattening (Wt%: -35%) and leftward septal shift (ECI:1.36), resulting in global hemodynamic deterioration (CI: -51%; SvO(2): -26%), and impaired CDP (-30%; P<0.05). IABP support alone failed to improve RV function despite higher CDP (+33%; P<0.05). Systemic hypertension by PE improved CDP (+70%), RV function (strain: +22%; MPI: -21%), septal positioning (ECI:1.12) and minimized TR, but LV dysfunction (strain: -25%; MPI: +31%) occurred after LV afterloading (P<0.05). With IABP, less PE (-41%) was needed to maintain hypertension and CDP was further augmented (+25%). IABP resulted in LV unloading and restored LV function, and increased CI (+46%) and SvO(2) (+29%; P<0.05). IABP with minimal vasopressors augments myocardial perfusion pressure and optimizes RV function after pressure-induced failure. Copyright © 2010 Elsevier Inc. All rights reserved.
Chuang, Min-Kai; Chang, Chin-Hao; Chan, Chih-Yang
2016-01-01
Little is known about whether the arteriovenous type haemodialysis access affects cardiac function and whether it is still advantageous to the uremic patient with symptomatic heart disease. We conducted a retrospective comparative study. Patients with heart disease and end-stage renal disease that had a new chronic access created between January 2007 and December 2008 and met the inclusion criteria were assessed. The endpoint was major adverse event (MAE)-free survivals of arteriovenous access (AVA) and tunneled cuffed double-lumen central venous catheter (CVC) groups. Whether accesses worsened heart failure was also evaluated. There were 43 CVC patients and 60 AVA patients. The median follow-up time from access creation was 27.6 months (IQR 34.7, 10.9~45.6). Although CVC patients were older than AVA patients (median age 78.0, IQR 14.0 vs. 67.5, IQR 16.0, respectively, p = .009), they manifested non-inferior MAE-free survival (mean 17.1, 95% CI 10.3~24.0 vs. 12.9, 95% CI 8.5~17.4 months in CVC and AVA patients, respectively, p = .290). During follow-up, more patients in the AVA group than in the CVC group deteriorated in heart failure status (35 of 57 vs. 10 of 42, respectively, odds ratio 5.1, p < .001). Preoperative-postoperative pairwise comparison of echocardiographic scans revealed an increased number of abnormal findings in the AVA group (Z = 3.91, p < .001), but not in the CVC group. In patients with both symptomatic heart disease and end stage renal disease (ESRD), CVC patients showed non-inferior MAE-free survival in comparison to those in the AVA group. AV type access could deteriorate heart failure. Accordingly, uremic patients with symptomatic heart disease are not ideal candidates for AV type access creation.
[Current status of noninvasive hemodynamics in hypertension].
Waisman, G
Hypertension is a haemodynamic disorder resulting from a persistent mismatch between cardiac output and peripheral resistance. Hypertension undergoes haemodynamic progression during its natural history. Impedance cardiography is a method of evaluating the cardiovascular system that obtains haemodynamic information from beat to beat through the analysis of variations in the impedance of the thorax on the passage of an electric current. Impedance cardiography unmasks the haemodynamic deterioration underlying the increase in blood pressure as age and systolic blood pressure increases. This method may help to improve blood pressure control through individualized treatment with reduction of peripheral resistance, maintenance of cardiac output or its increase, improvement of arterial compliance and preservation of organ-tissue perfusion. It is useful in the management of patients with resistant hypertension, since a greater percentage of patients controlled with changes in the treatment in relation to the haemodynamic measurements are obtained. Impedance cardiography is important and has prognostic utility in relation to a haemodynamic deterioration pattern and increased cardiovascular events. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.
Wu, Yao; Si, Feifei; Ji, Xiaojuan; Jiang, Kunfeng; Song, Sijie
2017-01-01
Background. This study was undertaken to determine relative contributions of phosphorylation and oxidation to the increased activity of calcium/calmodulin-stimulated protein kinase II (CaMKII) in juveniles with cardiac myocyte dysfunction due to increased pressure overload. Methods. Juvenile rats underwent abdominal aortic constriction to induce heart failure. Four weeks after surgery, rats were then randomly divided into two groups: one group given valsartan (HF + Val) and the other group given placebo (HF + PBO). Simultaneously, the sham-operated rats were randomly given valsartan (Sham + Val) or placebo (Sham + PBO). After 4 weeks of treatment, Western blot analysis was employed to quantify CaMKII and relative calcium handling proteins (RyR2 and PLN) in all groups. Results. The deteriorated cardiac function was reversed by valsartan treatment. In ventricular muscle cells of group HF + PBO, Thr287 phosphorylation of CaMKII and S2808 phosphorylation of RyR2 and PLN were increased and S16 phosphorylation of PLN was decreased compared to the other groups, while Met281 oxidation was not significantly elevated. In addition, these changes in the expression of calcium handling proteins were ameliorated by valsartan administration. Conclusions. The phosphorylation of Thr286 is associated with the early activation of CaMKII rather than the oxidation of Met281. PMID:28536695
Preoperative Low Serum Bicarbonate Levels Predict Acute Kidney Injury After Cardiac Surgery.
Jung, Su-Young; Park, Jung Tak; Kwon, Young Eun; Kim, Hyung Woo; Ryu, Geun Woo; Lee, Sul A; Park, Seohyun; Jhee, Jong Hyun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook
2016-03-01
Acute kidney injury (AKI) after cardiac surgery is a common and serious complication. Although lower than normal serum bicarbonate levels are known to be associated with consecutive renal function deterioration in patients with chronic kidney injury, it is not well-known whether preoperative low serum bicarbonate levels are associated with the development of AKI in patients who undergo cardiac surgery. Therefore, the clinical implication of preoperative serum bicarbonate levels on AKI occurrence after cardiac surgery was investigated. Patients who underwent coronary artery bypass or valve surgery at Yonsei University Health System from January 2013 to December 2014 were enrolled. The patients were divided into 3 groups based on preoperative serum bicarbonate levels, which represented group 1 (below normal levels) <23 mEq/L; group 2 (normal levels) 23 to 24 mEq/L; and group 3 (elevated levels) >24 mEq/L. The primary outcome was the predicated incidence of AKI 48 hours after cardiac surgery. AKI was defined according to Acute Kidney Injury Network criteria. Among 875 patients, 228 (26.1%) developed AKI within 48 hours after cardiac surgery. The incidence of AKI was higher in group 1 (40.9%) than in group 2 (26.5%) and group 3 (19.5%) (P < 0.001). In addition, the duration of postoperative stay in a hospital intensive care unit (ICU) was longer for AKI patients and for those in the low-preoperative-serum-bicarbonate-level groups. A multivariate logistic regression analysis showed that low preoperative serum bicarbonate levels were significantly associated with AKI even after adjustment for age, sex, hypertension, diabetes mellitus, operation type, preoperative hemoglobin, and estimated glomerular filtration rate. In conclusion, low serum bicarbonate levels were associated with higher incidence of AKI and prolonged ICU stay. Further studies are needed to clarify whether strict correction of bicarbonate levels close to normal limits may have a protective role in preventing further AKI development.
Sanz-Ruiz, Ricardo; Casado Plasencia, Ana; Borlado, Luis R; Fernández-Santos, María Eugenia; Al-Daccak, Reem; Claus, Piet; Palacios, Itziar; Sádaba, Rafael; Charron, Dominique; Bogaert, Jan; Mulet, Miguel; Yotti, Raquel; Gilaberte, Immaculada; Bernad, Antonio; Bermejo, Javier; Janssens, Stefan; Fernández-Avilés, Franciso
2017-06-23
Stem cell therapy has increased the therapeutic armamentarium in the fight against ischemic heart disease and heart failure. The administration of exogenous stem cells has been investigated in patients suffering an acute myocardial infarction, with the final aim of salvaging jeopardized myocardium and preventing left ventricular adverse remodeling and functional deterioration. However, phase I and II clinical trials with autologous and first-generation stem cells have yielded inconsistent benefits and mixed results. In the search for new and more efficient cellular regenerative products, interesting cardioprotective, immunoregulatory, and cardioregenerative properties have been demonstrated for human cardiac stem cells. On the other hand, allogeneic cells show several advantages over autologous sources: they can be produced in large quantities, easily administered off-the-shelf early after an acute myocardial infarction, comply with stringent criteria for product homogeneity, potency, and quality control, and may exhibit a distinctive immunologic behavior. With a promising preclinical background, CAREMI (Cardiac Stem Cells in Patients With Acute Myocardial Infarction) has been designed as a double-blind, 2:1 randomized, controlled, and multicenter clinical trial that will evaluate the safety, feasibility, and efficacy of intracoronary delivery of allogeneic human cardiac stem cell in 55 patients with large acute myocardial infarction, left ventricular dysfunction, and at high risk of developing heart failure. This phase I/II clinical trial represents a novel experience in humans with allogeneic cardiac stem cell in a rigorously imaging-based selected group of acute myocardial infarction patients, with detailed safety immunologic assessments and magnetic resonance imaging-based efficacy end points. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02439398. © 2017 American Heart Association, Inc.
Toczek, Marta; Zielonka, Daniel; Zukowska, Paulina; Marcinkowski, Jerzy T; Slominska, Ewa; Isalan, Mark; Smolenski, Ryszard T; Mielcarek, Michal
2016-11-01
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings. Copyright © 2016 Elsevier B.V. All rights reserved.
García-González, P; Fabregat-Andrés, Ó; Cozar-Santiago, P; Sánchez-Jurado, R; Estornell-Erill, J; Valle-Muñoz, A; Quesada-Dorador, A; Payá-Serrano, R; Ferrer-Rebolleda, J; Ridocci-Soriano, F
2016-01-01
Scintigraphy with iodine-123-metaiodobenzylguanidine ((123)I-MIBG) is a non-invasive tool for the assessment of cardiac sympathetic innervation (CSI) that has proven to be an independent predictor of survival. Recent studies have shown that diabetic patients with heart failure (HF) have a higher deterioration in CSI. It is unknown if (123)I-MIBG has the same predictive value for diabetic and non-diabetic patients with advanced HF. An analysis is performed to determine whether CSI with (123)I-MIBG retains prognostic utility in diabetic patients with HF, evaluated for a primary prevention implantable cardioverter-defibrillator (ICD). Seventy-eight consecutive HF patients (48 diabetic) evaluated for primary prevention ICD implantation were prospectively enrolled and underwent (123)I-MIBG to assess CSI (heart-to-mediastinum ratio - HMR). A Cox proportional hazards multivariate analysis was used to determine the influence of (123)I-MIBG images for prediction of cardiac events in both diabetic and non-diabetic patients. The primary end-point was a composite of arrhythmic event, cardiac death, or admission due to HF. During a mean follow-up of 19.5 [9.3-29.3] months, the primary end-point occurred in 24 (31%) patients. Late HMR was significantly lower in diabetic patients (1.30 vs. 1.41, p=0.014). Late HMR≤1.30 was an independent predictor of cardiac events in diabetic (hazard ratio 4.53; p=0.012) and non-diabetic patients (hazard ratio 12.31; p=0.023). Diabetic patients with HF evaluated for primary prevention ICD show a higher deterioration in CSI than non-diabetics; nevertheless (123)I-MIBG imaging retained prognostic utility for both diabetic and non-diabetic patients. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
Ruppert, Mihály; Korkmaz-Icöz, Sevil; Loganathan, Sivakkanan; Jiang, Weipeng; Lehmann, Lorenz H; Oláh, Attila; Sayour, Alex Ali; Barta, Bálint András; Merkely, Béla; Karck, Matthias; Radovits, Tamás; Szabó, Gábor
2018-05-25
Sex differences in pressure overload (PO)-induced left ventricular (LV) myocardial hypertrophy (LVH) have been intensely investigated. Nevertheless, sex-related disparities of LV hemodynamics in LVH were not examined in detail. Therefore, we aimed to provide a detailed characterization of distinct aspects of LV function in male and female rats during different stages of LVH. Banding of the abdominal aorta (AB) was performed to induce PO for 6 or 12 weeks in male and female rats. Control animals underwent sham operation. The development of LVH was followed by serial echocardiography. Cardiac function was assessed by pressure-volume analysis. Cardiomyocyte hypertrophy and fibrosis were evaluated by histology. At week 6, increased LV mass index, heart weight-to-tibial length, cardiomyocyte diameter, concentric LV geometry and moderate interstitial fibrosis were detected in both male and female AB rats, indicating the development of an early stage of LVH. Functionally, at this time point, impaired active relaxation, increased contractility and preserved ventricular-arterial coupling were observed in the AB groups in both genders. In contrast, at week 12, progressive deterioration of LVH-associated structural and functional alterations occurred in male but not in female animals with sustained PO. Accordingly, at this later stage, LVH was associated with eccentric remodeling, exacerbated fibrosis and increased chamber stiffness in male AB rats. Furthermore, augmented contractility declined in male and not in female AB animals, resulting in contractility-afterload mismatch. Maintained contractility augmentation, preserved ventricular-arterial coupling and better myocardial compliance in female rats contribute to sex differences in LV function during the progression of PO-induced LVH.
Hagen, M D; Eckman, M H; Pauker, S G
1989-01-01
A previous decision analysis examined a patient with severe CAD, diminished ventricular function, and an abdominal aortic aneurysm and also concluded that CABG followed by aneurysm repair was optimal. This patient, who had well-preserved cardiac function but severely compromised pulmonary status, stood to gain less from CABG than would a patient with more severe coronary disease, thus accounting for the "close-call" between the CABG-AAA and AAA only strategies. Nevertheless, the analysis did emphasize the benefit of aneurysm repair, whether done alone or after CABG. The analysis also highlighted the significant risk of aneurysm rupture the patient is exposed to while recovering from CABG surgery. The operative mortality risks of the two procedures are similar; thus, the patient's total operative risk is approximately doubled if he undergoes both procedures rather than aneurysm repair alone. The key question raised by the analysis is whether this double jeopardy is more than compensated by the degree to which prior CABG reduces both short-term cardiac risk at subsequent aneurysm repair and long-term cardiac mortality. For this patient, who had good cardiac function, the gains appeared sufficient to offset the interval risk of aneurysm rupture and the additional risk associated with a surgical procedures. THE REAL WORLD The patient indeed underwent and tolerated CABG, although he had a stormy prolonged postoperative course due to pulmonary failure. After discharge from the hospital, he declined readmission for repair of the aneurysm. We did not model that possibility, clearly an inadequacy in our tree. Some six months later, the patient was still alive and was, reluctantly, readmitted for aneurysmorrhaphy. At that time, however, his pulmonary function had deteriorated and both the anesthesiologist and the pulmonary consultant stated unequivocally that further surgery was now impossible. In retrospect, the expected utility of CABG without aneurysm repair (thus providing only a decrease in the long-term mortality risk from his CAD) would have been 1.95 (DEALE) or 2.06 (Markov) years. Sensitivity analysis revealed that, even if long-term cardiac risk were completely eliminated by CABG, immediate aneurysm repair would have been a better approach had the patient's physicians known he would be likely to refuse or not be a candidate for the second operation. In summary, although the patient's comorbidities did indeed place him at significant operative risk for either aneurysmorrhaphy alone or two sequential procedures, the benefits to be gained were shown to far outweigh the risks when compared with expectant observation.(ABSTRACT TRUNCATED AT 400 WORDS)
Prediabetes and Cardiovascular Parameters in Obese Children and Adolescents
Eklioğlu, Beray Selver; Atabek, Mehmet Emre; Akyürek, Nesibe; Alp, Hayrullah
2016-01-01
Objective: In this study, our aim was to determine cardiovascular risk and cardiac function in prediabetic obese children and adolescents. Methods: The study was conducted on 198 obese children and adolescents 6-18 years of age. Anthropometric measurements, blood pressure measurements, oral glucose tolerance test, lipid profile, and HbA1c levels of patients were assessed. Prediabetes was defined according to American Diabetes Association criteria. Left ventricular mass index (LVMi), carotid intima-media thickness (c-IMT), and tissue Doppler measurements records were used. Results: LVMi was found to be significantly higher in the prediabetes group (p=0.03). There were no statistically significant differences in right ventricular tissue Doppler measurements between the prediabetic and non-prediabetic groups. Left ventricular tissue Doppler measurements were significantly higher in the prediabetes group: LVEEM (left ventricular E/e ratio) (p=0.04); LVEM (left ventricular myocardial velocity cm/s) (p=0.035). LVMi was found to positively correlate with triglyceride level, diastolic blood pressure, waist circumference, body weight standard deviation score and to negatively correlate with high-density lipoprotein cholesterol (p=0.043, r=0.15; p=0.039, r=0.15; p=0.025, r=0.17; p=0.009, r=0.19; p=0.038, r=-0.15, respectively). LVEM was correlated with glucose (p=0.046, r=0.15) and LVEEM was correlated with systolic blood pressure (p=0.035, r=0.15). In linear regression analysis for clinical cardiovascular risk factors, fasting glucose level was the best predictor of LVEM. Conclusion: In this study, deterioration of cardiac function in prediabetic obese children and adolescents was shown. We recommend determining cardiovascular risk and cardiac dysfunction at early stages in prediabetic obese children and adolescents. PMID:26759114
Prediabetes and Cardiovascular Parameters in Obese Children and Adolescents.
Eklioğlu, Beray Selver; Atabek, Mehmet Emre; Akyürek, Nesibe; Alp, Hayrullah
2016-03-05
In this study, our aim was to determine cardiovascular risk and cardiac function in prediabetic obese children and adolescents. The study was conducted on 198 obese children and adolescents 6-18 years of age. Anthropometric measurements, blood pressure measurements, oral glucose tolerance test, lipid profile, and HbA1c levels of patients were assessed. Prediabetes was defined according to American Diabetes Association criteria. Left ventricular mass index (LVMi), carotid intima-media thickness (c-IMT), and tissue Doppler measurements records were used. LVMi was found to be significantly higher in the prediabetes group (p=0.03). There were no statistically significant differences in right ventricular tissue Doppler measurements between the prediabetic and non-prediabetic groups. Left ventricular tissue Doppler measurements were significantly higher in the prediabetes group: LVEEM (left ventricular E/e ratio) (p=0.04); LVEM (left ventricular myocardial velocity cm/s) (p=0.035). LVMi was found to positively correlate with triglyceride level, diastolic blood pressure, waist circumference, body weight standard deviation score and to negatively correlate with high-density lipoprotein cholesterol (p=0.043, r=0.15; p=0.039, r=0.15; p=0.025, r=0.17; p=0.009, r=0.19; p=0.038, r=-0.15, respectively). LVEM was correlated with glucose (p=0.046, r=0.15) and LVEEM was correlated with systolic blood pressure (p=0.035, r=0.15). In linear regression analysis for clinical cardiovascular risk factors, fasting glucose level was the best predictor of LVEM. In this study, deterioration of cardiac function in prediabetic obese children and adolescents was shown. We recommend determining cardiovascular risk and cardiac dysfunction at early stages in prediabetic obese children and adolescents.
Zhang, Changyi; Zhou, Guichi; Chen, Yezeng; Liu, Sizheng; Chen, Fen; Xie, Lichun; Wang, Wei; Zhang, Yonggang; Wang, Tianyou; Lai, Xiulan; Ma, Lian
2018-01-01
Dilated cardiomyopathy (DCM) is a disease of the heart characterized by pathological remodeling, including patchy interstitial fibrosis and degeneration of cardiomyocytes. In the present study, the beneficial role of human umbilical cord-derived mesenchymal stem cells (HuMSCs) derived from Wharton's jelly was evaluated in the myosin-induced rat model of DCM. Male Lewis rats (aged 8-weeks) were injected with porcine myosin to induce DCM. Cultured HuMSCs (1×106 cells/rat) were intravenously injected 28 days after myosin injection and the effects on myocardial fibrosis and the underlying signaling pathways were investigated and compared with vehicle-injected and negative control rats. Myosin injections in rats (vehicle group and experimental group) for 28 days led to severe fibrosis and significant deterioration of cardiac function indicative of DCM. HuMSC treatment reduced fibrosis as determined by Masson's staining of collagen deposits, as well as quantification of molecular markers of myocardial fibrosis such as collagen I/III, profibrotic factors transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and connective tissue growth factor (CTGF). HuMSC treatment restored cardiac function as observed using echocardiography. In addition, western blot analysis indicated that HuMSC injections in DCM rats inhibited the expression of TNF-α, extracellular-signal regulated kinase 1/2 (ERK1/2) and TGF-β1, which is a master switch for inducing myocardial fibrosis. These findings suggested that HuMSC injections attenuated myocardial fibrosis and dysfunction in a rat model of DCM, likely by inhibiting TNF-α and the TGF-β1/ERK1/2 fibrosis pathways. Therefore, HuMSC treatment may represent a potential therapeutic method for treatment of DCM. PMID:29115435
Chin, Jung Yeon; Yi, Jeong Eun; Youn, Ho-Joong
2013-10-01
Cardiac involvement in Churg-Strauss syndrome (CSS) is a major cause of mortality. Here we report a case of a 75-year-old woman with eosinophilic endomyocarditis due to CSS. An electrocardiogram showed intraventricular conduction delay, and echocardiography showed an impaired relaxation pattern and biventricular apical thickening. Magnetic resonance imaging revealed subendocardial delayed enhancement with biventricular apical thrombi. Endomyocardial biopsy showed perivascular eosinophilic infiltration. Despite resolution of the hypereosinophilia after steroid therapy, her left ventricular (LV) diastolic function worsened into a restrictive pattern and she died with a ventricular escape rhythm on her 14th day in the hospital. This case is unusual in that there was rapid progression of the LV diastolic dysfunction and conduction disturbance due to CSS. © 2013, Wiley Periodicals, Inc.
Unusual course of infective endocarditis: acute renal failure progressing to chronic renal failure.
Sevinc, Alper; Davutoglu, Vedat; Barutcu, Irfan; Kocoglu, M Esra
2006-04-01
Infective endocarditis is an infection of the endocardium that usually involves the valves and adjacent structures. The classical fever of unknown origin presentation represents a minority of infective endocarditis. The presented case was a 21-yearold young lady presenting with acute renal failure and fever to the emergency room. Cardiac auscultation revealed a soft S1 and 4/6 apical holosystolic murmur extended to axilla. Echocardiography showed mobile fresh vegetation under the mitral posterior leaflet. She was diagnosed as having infective endocarditis. Hemodialysis was started with antimicrobial therapy. However, because of the presence of severe mitral regurgitation with left ventricle dilatation and large mobile vegetation, mitral prosthetic mechanical valve replacement was performed. Although treated with antibiotics combined with surgery, renal functions were deteriorated and progressed to chronic renal failure.
Respiratory exacerbation in a young adult with cystic fibrosis and tricuspid atresia.
Wood, Jamie; Sawyer, Abbey; Mulrennan, Siobhain; Bullock, Andrew
2018-07-01
Tricuspid atresia (TAt) is a complex congenital heart defect (CHD) characterized by the absence of the tricuspid valve and right ventricular hypoplasia requiring surgery in childhood, the Fontan procedure. We present a case of a 21-year-old male with TAt and cystic fibrosis (CF), who underwent a Fontan procedure in childhood, presenting to an adult CF clinic with severe deterioration in his respiratory status and multi-organ dysfunction associated with CF. This report describes problems associated with the management of a CF respiratory exacerbation and extrapulmonary manifestations of CF in the unique situation of a Fontan circulation, a circulation with absence of a subpulmonary ventricle and pulsatile pulmonary arterial blood flow where maintenance of systemic cardiac output is totally dependent on good respiratory function and low pulmonary artery pressures.
Influence of pregnancy on cardiac function and hemodynamics in women with Ebstein's anomaly.
Kanoh, Miki; Inai, Kei; Shinohara, Tokuko; Shimada, Eriko; Shimizu, Mikiko; Tomimatsu, Hirofumi; Ogawa, Masaki; Nakanishi, Toshio
2018-05-16
We examined the perinatal outcomes and right ventricular function before pregnancy, during pregnancy, and after delivery in women with Ebstein's anomaly. We retrospectively investigated the clinical course and mode of delivery and monitored hemodynamic parameters throughout pregnancy in 17 women with Ebstein's anomaly, who delivered at our institution during the period of 1995-2015. Eight women, including nine pregnancies, underwent elective cesarean section, and nine women, including 14 pregnancies, underwent vaginal delivery. Elective cesarean section was performed in cases with significant heart failure or arrhythmias and in the presence of more than 2 of the following: cardiothoracic ratio ≥60%, moderate or severe tricuspid valve regurgitation, or tricuspid valve regurgitation pressure gradient ≥35 mmHg during pregnancy. The cardiothoracic ratio and tricuspid valve regurgitation pressure gradient significantly increased during pregnancy compared to pre-pregnancy values. New York Heart Association classification deteriorated from class I to class II or III in five cases during pregnancy. Although pregnancy was relatively safe among women with Ebstein's anomaly, some women developed cyanosis, arrhythmia, and heart failure, leading to elective cesarean section. Monitoring clinical and hemodynamic changes throughout pregnancy is advised in order to minimize maternal cardiac risk and select the appropriate mode of delivery. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
[Hyperthyroidism in the elderly: aspecific signs may cause a delay in diagnosis].
Rozendaal, F P
2005-05-01
The clinical manifestations of thyroid diseases in the elderly are often atypical and can easily be attributed to other medical conditions or 'normal aging'. Two nursing home patients with hyperthyroidism are described. Due to the atypical presentation of the thyroid disease their complaints were attributed to other conditions. In both patients there was a significant delay in diagnosis and treatment of hyperthyroidism. In elder patients signs and symptoms of thyreotoxicosis are frequently related to cardiovascular, gastrointestinal and neuropsychiatric disorders. Most often occur atrial fibrillation, worsening of cardiac failure and angina pectoris, weight loss, anorexia, constipation, cognitive impairment and delirium. Delay of diagnosis and treatment of hyperthyroidism may be potentially harmful to the patient. Untreated thyreotoxicosis may lead to serious cardiovasculair complications (particularly cardiac failure and cerebrovascular accidents), mental deterioration and osteoporosis. In elder people with unexplained and vague signs and symptoms thyroid function should always be checked. The TSH assay is a very accurate diagnostic test for screening thyroid function. A normal TSH indicates euthyroidism with an accuracy of almost 100%. The medical treatment for hyperthyreoidism in the elderly are antithyroid drugs. When an euthyroid state is rendered, suppletion with L-thyroxine may be nessecary. Radioactive iodine treatment is preferred in some cases though there may be practical difficulties with the application of this treatment in nursing home patients because temporary isolation is necessary.
Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina
2010-06-21
The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.
Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina
2010-01-01
Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity. PMID:20574530
Tissot, Cecile; Buchholz, Holger; Mitchell, Max B; da Cruz, Eduardo; Miyamoto, Shelley D; Pietra, Bill A; Charpentier, Arnaud; Ghez, Olivier
2010-03-01
Mechanical circulatory devices are indicated in patients with refractory cardiac failure as a bridge to recovery or to transplantation. Whenever required, transportation while on mechanical support is a challenge and still limited by technical restrictions or distance. We report the first pediatric case of transatlantic air transportation on a Berlin Heart EXCOR ventricular assist device (Berlin Heart, Berlin, Germany) of a 13-yr-old American female who presented in cardiogenic shock with severe systolic dysfunction while vacationing in France. Rapid hemodynamic deterioration occurred despite maximal medical treatment, and she was supported initially with extracorporeal membrane oxygenation converted to a Berlin Heart EXCOR left ventricular assist device. Long-distance air transportation of the patient was accomplished 3 wks after implantation from Marseille, France, to Denver, Colorado. No adverse hemodynamic effects were encountered during the 13.5-hr flight (8770 km). The patient did not recover sufficient cardiac function and underwent successful orthotopic heart transplantation 3 months after the initial event. Our experience suggests that long-distance air transportation of pediatric patients using the Berlin Heart EXCOR mobile unit as a bridge to recovery or transplantation is feasible and appears safe.
Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure
Rothermel, Beverly A.; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A.
2014-01-01
Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease. PMID:16033866
Rothermel, Beverly A; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A
2005-09-21
Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.
Matyas, Csaba; Varga, Zoltan V.; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T.; Nan, Mintong; Hasko, Gyorgy; Gao, Bin
2016-01-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. PMID:27106042
Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal
2016-06-01
Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative/nitrative stress, impaired mitochondrial function and biogenesis, and enhanced cardiac steatosis. Copyright © 2016 the American Physiological Society.
Lim, Joanna C E-S; Cauldwell, Matthew; Patel, Roshni R; Uebing, Anselm; Curry, Ruth A; Johnson, Mark R; Gatzoulis, Michael A; Swan, Lorna
2017-09-15
Pregnancy in Marfan Syndrome (MFS) is associated with increased maternal risk of cardiovascular events. Given the maternal and genetic risks, pre-conception counselling is essential to facilitate informed choices. Multidisciplinary antenatal care with regular imaging is mandatory and best delivered through a Joint Cardiac Obstetric Service (JCOS). The aim of this study was to compare the care delivered in a JCOS against recognised international standards (European Society of Cardiology (ESC)). Pregnancies in women with MFS from 2005 to 2015 were identified from our institutional database. Patient records were reviewed and practice assessed against pre-determined standards based on ESC guidelines. There were 23 pregnancies in 15 women with MFS. 13/23 (57%) occurred in women with aortic dilatation at baseline. There were 3 important maternal cardiac events (type A dissection; deterioration in left ventricular function; significant left ventricular and progressive aortic dilatation). Four women did not have access to expert pre-conception counselling. These women were all referred to the JCOS late in established pregnancy. Imaging was often delayed and only 7/23 cases (30%) met the standard for minimum frequency of echocardiographic surveillance. Only 12/23 (52%) had pre-conception imaging of the whole aorta with CT/MRI. Distal aortic dilatation was identified in 7/23 cases but none of these underwent further MRI evaluation during pregnancy. Despite having a dedicated JCOS, our data show that facilitating complete obstetric and cardiac care for this group remains challenging. Education of local care providers and timely referral for expert pre-conception counselling in a JCOS are key. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.
Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok
2016-01-01
Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.
Huang, Feifei; Chen, Jie; Liu, Xun; Han, Feng; Cai, Qingqing; Peng, Guicheng; Zhang, Kun; Chen, Weiqing; Wang, Jingfeng; Huang, Hui
2016-12-27
Elevated homocysteine (HCY) and smoking are both important risk factors for hypertensive patients. However, whether they have crossing effect on renal function deterioration of hypertensive patients and what is the underlying mechanism are unclear. In the present study, 3033 participants diagnosed as essential hypertension with estimated glomerular filtration rate (eGFR)> 30 ml/min/1.73 m2 from southern China were enrolled in this cross-sectional study. We collected the demographic and clinical data. In addition, the mediation effects were analyzed. The results showed that, comparing with non-smokers, smokers had significant higher levels of HCY (13.10 (11.20-16.87) vs. 11.00 (8.90-13.40) umol/L, P < 0.001) and lower eGFR (79.71 (66.83-91.05) vs. 82.89 (69.80-95.85) ml/min/1.73m2, P < 0.001). HCY levels and smoking were independently associated with decreased eGFR. Meanwhile, eGFR levels were significantly negatively correlated with HCY (P < 0.001), and this correlation might be stronger in current smokers. Current smoker consuming over 20 cigarettes per day would accelerate early renal function deterioration (OR = 1.859, P = 0.019). The mediation effects analysis further showed that the association between smoking and renal function deterioration was mediated by HCY. And elevated HCY was accounted for 56.94% of the estimated causal effect of smoking on renal function deterioration in hypertensive patients. Our findings indicated that cigarette smoking was associated with renal function deterioration in hypertensive patients, and the association between cigarette smoking and renal function deterioration was probably mediated by elevated HCY. Therefore, HCY-lowering therapy may be beneficial for renal function deterioration in hypertensive smoking patients.
Early Cardiac Arrest in Patients Hospitalized With Pneumonia
Yuen, Trevor C.; McConville, John F.; Kress, John P.; VandenHoek, Terry L.; Hall, Jesse B.; Edelson, Dana P.
2012-01-01
Background: Pneumonia is the leading infectious cause of death. Early deterioration and death commonly result from progressive sepsis, shock, respiratory failure, and cardiac complications. Recent data suggest that cardiac arrest may also be common, yet few previous studies have addressed this. Accordingly, we sought to characterize early cardiac arrest in patients who are hospitalized with coexisting pneumonia. Methods: We performed a retrospective analysis of a multicenter cardiac arrest database, with data from > 500 North American hospitals. We included in-hospital cardiac arrest events that occurred in community-dwelling adults with pneumonia within the first 72 h after hospital admission. We compared patient and event characteristics for patients with and without pneumonia. For patients with pneumonia, we also compared events according to event location. Results: We identified 4,453 episodes of early cardiac arrest in patients who were hospitalized with pneumonia. Among patients with preexisting pneumonia, only 36.5% were receiving mechanical ventilation and only 33.3% were receiving infusions of vasoactive drugs prior to cardiac arrest. Only 52.3% of patients on the ward were receiving ECG monitoring prior to cardiac arrest. Shockable rhythms were uncommon in all patients with pneumonia (ventricular tachycardia or fibrillation, 14.8%). Patients on the ward were significantly older than patients in the ICU. Conclusions: In patients with preexisting pneumonia, cardiac arrest may occur in the absence of preceding shock or respiratory failure. Physicians should be alert to the possibility of abrupt cardiopulmonary collapse, and future studies should address this possibility. The mechanism may involve myocardial ischemia, a maladaptive response to hypoxia, sepsis-related cardiomyopathy, or other phenomena. PMID:22194592
Gopal, Deepa M; Sam, Flora
2013-08-01
Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance, impaired contraction and dilation of the left ventricle (or both ventricles). Blood markers--known as "biomarkers"--allow insight into underlying pathophysiologic mechanisms and biologic pathways while predicting outcomes and guiding heart failure management and/or therapies. In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment, integrating these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones, and (h) renal biomarkers. Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure.
Gopal, Deepa M.; Sam, Flora
2013-01-01
Background Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance and impaired contraction and dilation of the left (or both) ventricles. Blood markers – known as “biomarkers” allow insight into underlying pathophysiologic mechanisms and biologic pathways, while predicting outcomes and guiding heart failure management and/or therapies. Content In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment with clear interaction between these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones and (h) renal biomarkers. Summary Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure. PMID:23609585
Dystrophic heart failure blocked by membrane sealant poloxamer
NASA Astrophysics Data System (ADS)
Yasuda, Soichiro; Townsend, Dewayne; Michele, Daniel E.; Favre, Elizabeth G.; Day, Sharlene M.; Metzger, Joseph M.
2005-08-01
Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.
Heller, Axel R; Mees, Sören T; Lauterwald, Benjamin; Reeps, Christian; Koch, Thea; Weitz, Jürgen
2018-05-16
The establishment of early warning systems in hospitals was strongly recommended in recent guidelines to detect deteriorating patients early and direct them to adequate care. Upon reaching predefined trigger criteria, Medical Emergency Teams (MET) should be notified and directed to these patients. The present study analyses the effect of introducing an automated multiparameter early warning score (MEWS)-based early warning system with paging functionality on 2 wards hosting patients recovering from highly complex surgical interventions. The deployment of the system was accompanied by retrospective data acquisition during 12 months (intervention) using 4 routine databases: Hospital patient data management, anesthesia database, local data of the German Resuscitation Registry, and measurement logs of the deployed system (intervention period only). A retrospective 12-month data review using the same aforementioned databases before the deployment of the system served as control. Control and intervention phases were separated by a 6-month washout period for the installation of the system and for training. Data from 3827 patients could be acquired from 2 surgical wards during the two 12-month periods, 1896 patients in the control and 1931 in the intervention cohorts. Patient characteristics differed between the 2 observation phases. American Society of Anesthesiologists risk classification and duration of surgery as well as German DRG case-weight were significantly higher in the intervention period. However, the rate of cardiac arrests significantly dropped from 5.3 to 2.1 per 1000 admissions in the intervention period (P < 0.001). This observation was paralleled by a reduction of unplanned ICU admissions from 3.6% to 3.0% (P < 0.001), and an increase of notifications of critical conditions to the ward surgeon. The primary triggers for MET activation were abnormal ECG alerts, specifically asystole (n = 5), and pulseless electric activity (n = 8). In concert with a well-trained and organized MET, the early deterioration detection of patients on surgical wards outside the ICU may be improved by introducing an automated MEWS-based early warning system with paging functionality.
Heart failure: when form fails to follow function.
Katz, Arnold M; Rolett, Ellis L
2016-02-01
Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Reddy, Yogesh N V; Obokata, Masaru; Dean, Patrick G; Melenovsky, Vojtech; Nath, Karl A; Borlaug, Barry A
2017-06-21
Short-term studies have reported left ventricular (LV) dilatation following surgical creation of arteriovenous fistulas (AVF) or arteriovenous grafts (AVGs), but chronic cardiac structural and functional changes have not been examined or related to clinical outcomes following AVF/AVG. We sought to characterize the long-term changes in cardiac structure and function in patients undergoing shunt creation for haemodialysis. A retrospective analysis was performed of patients undergoing echocardiography before and after surgical AVF/AVG creation for the initiation of haemodialysis. 137 patients underwent echocardiographic examinations prior to AVF and 2.6 years (median) after AVF creation. Following AVF and dialysis initiation, there were reductions in blood pressure, body weight and estimated plasma volume coupled with modest reverse LV remodelling. In contrast, AVF/AVG creation was associated with significant right ventricular (RV) dilatation and deterioration in RV function. Incident heart failure (HF) developed in 43% of patients in tandem with greater RV remodeling. The development of RV dilation following surgical AVF/AVG was independently associated with increased risk of death [HR 3.9, 95% CI (1.7-9.2), P = 0.001]. In long-term follow-up, RV remodelling and dysfunction develop following AVF/AVG creation and dialysis initiation, despite improved control of LV pressure load through dialysis. Deleterious effects on right heart structure and function are coupled with development of incident HF and increased risk of death. Further study is required to identify patients at greatest risk for detrimental AVF/AVG changes who may benefit from alternate forms of dialysis or potentially ligation of existing AVF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Penetrating cardiac injury by wire thrown from a lawn mower.
Rubio, P A; Reul, G J
1979-01-01
The first successful surgically treated case of penetrating heart injury, specifically the right ventricle, caused by a fragment of coat hanger wire thrown by a lawn mower, is reported. Though traumatic heart injuries are rare, this case represents accurate surgical management and judgment, especially in the preoperative phase which resulted in early operating and excellent postoperative results. It is our feeling that if the patient can be transferred safely to the operating room the mortality rate is considerably lowered; however, emergency room thoracotomy, which will undoubtedly result in a greater survival rate from these spectacular injuries, should be performed in the emergency center if cardiac activity ceases or the patient's condition deteriorates considerably.
Mahaney, Kelly B; Todd, Michael M; Bayman, Emine O; Torner, James C
2012-06-01
Subarachnoid hemorrhage (SAH) results in significant morbidity and mortality, even among patients who reach medical attention in good neurological condition. Many patients have neurological decline in the perioperative period, which contributes to long-term outcomes. The focus of this study is to characterize the incidence of, characteristics predictive of, and outcomes associated with acute postoperative neurological deterioration in patients undergoing surgery for ruptured intracranial aneurysm. The Intraoperative Hypothermia for Aneurysm Surgery Trial (IHAST) was a multicenter randomized clinical trial that enrolled 1001 patients and assesssed the efficacy of hypothermia as neuroprotection during surgery to secure a ruptured intracranial aneurysm. All patients had a radiographically confirmed SAH, were classified as World Federation of Neurosurgical Societies (WFNS) Grade I-III immediately prior to surgery, and underwent surgery to secure the ruptured aneurysm within 14 days of SAH. Neurological assessment with the National Institutes of Health Stroke Scale (NIHSS) was performed preoperatively, at 24 and 72 hours postoperatively, and at time of discharge. The primary outcome variable was a dichotomized scoring based on an IHAST version of the Glasgow Outcome Scale (GOS) in which a score of 1 represents a good outcome and a score > 1 a poor outcome, as assessed at 90-days' follow-up. Data from IHAST were analyzed for occurrence of a postoperative neurological deterioration. Preoperative and intraoperative variables were assessed for associations with occurrence of postoperative neurological deterioration. Differences in baseline, intraoperative, and postoperative variables and in outcomes between patients with and without postoperative neurological deterioration were compared with Fisher exact tests. The Wilcoxon rank-sum test was used to compare variables reported as means. Multiple logistic regression was used to adjust for covariates associated with occurrence of postoperative deficit. Acute postoperative neurological deterioration was observed in 42.6% of the patients. New focal motor deficit accounted for 65% of postoperative neurological deterioration, while 60% was accounted for using the NIHSS total score change and 51% by Glasgow Coma Scale score change. Factors significantly associated with occurrence of postoperative neurological deterioration included: age, Fisher grade on admission, occurrence of a procedure prior to aneurysm surgery (ventriculostomy), timing of surgery, systolic blood pressure during surgery, ST segment depression during surgery, history of abnormality in cardiac valve function, use of intentional hypotension during surgery, duration of anterior cerebral artery occlusion, intraoperative blood loss, and difficulty of aneurysm exposure. Of the 426 patients with postoperative neurological deterioration at 24 hours after surgery, only 46.2% had a good outcome (GOS score of 1) at 3 months, while 77.7% of those without postoperative neurological deterioration at 24 hours had a good outcome (p < 0.05). Neurological injury incurred perioperatively or in the acute postoperative period accounts for a large percentage of poor outcomes in patients with good admission WFNS grades undergoing surgery for aneurysmal SAH. Avoiding surgical factors associated with postoperative neurological deterioration and directing investigative efforts at developing improved neuroprotection for use in aneurysm surgery may significantly improve long-term neurological outcomes in patients with SAH.
Xu, Liang; Chen, Yanchun; Ji, Yanni; Yang, Song
2018-06-01
Factors influencing N-terminal pro-brain natriuretic peptide (NT-proBNP) level in heart failure patients with different cardiac functions were identified to explore the correlations with prognosis. Eighty heart failure patients with different cardiac functions treated in Yixing People's Hospital from January 2016 to June 2017 were selected, and divided into two groups (group with cardiac function in class II and below and group with cardiac function in class III and above), according to the cardiac function classification established by New York Heart Association (NYHA). Blood biochemical test and outcome analysis were conducted to measure serum NT-proBNP and matrix metalloproteinase-9 (MMP-9) levels in patients with different cardiac functions, and correlations between levels of NT-proBNP and MMP-9 and left ventricular ejection fraction (LVEF) level were analyzed in patients with different cardiac functions at the same time. In addition, risk factors for heart failure in patients with different cardiac functions were analyzed. Compared with the group with cardiac function in class III and above, the group with cardiac function in class II and below had significantly lower serum NT-proBNP and MMP-9 levels (p<0.05). For echocardiogram indexes, left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) in the group with cardiac function in class II and below were obviously lower than those in the group with cardiac function in class III and above (p<0.05), while LVEF was higher in group with cardiac function in class II and below than that in group with cardiac function in class III and above (p<0.05). NT-proBNP and MMP-9 levels were negatively correlated with LVEF level [r=-0.8517 and -0.8517, respectively, p<0.001 (<0.05)]. Cardiac function in class III and above, increased NT-proBNP, increased MMP-9 and decreased LVEF were relevant risk factors and independent risk factors for heart failure in patients with different cardiac functions. NT-proBNP and MMP-9 levels are negatively correlated with LVEF in patients regardless of the cardiac function class. Therefore, attention should be paid to patients who have cardiac function in class III and above, increased NT-proBNP and MMP-9 levels and decreased LVEF in clinical practices, so as to actively prevent and treat heart failure.
Critical care clinician perceptions of factors leading to Medical Emergency Team review.
Currey, Judy; Allen, Josh; Jones, Daryl
2018-03-01
The introduction of rapid response systems has reduced the incidence of in-hospital cardiac arrest; however, many instances of clinical deterioration are unrecognised. Afferent limb failure is common and may be associated with unplanned intensive care admissions, heightened mortality and prolonged length of stay. Patients reviewed by a Medical Emergency Team are inherently vulnerable with a high in-hospital mortality. To explore perceptions of intensive care unit (ICU) staff who attend deteriorating acute care ward patients regarding current problems, barriers and potential solutions to recognising and responding to clinical deterioration that culminates in a Medical Emergency Team review. A descriptive exploratory design was used. Registered intensive care nurses and medical staff (N=207) were recruited during a professional conference using purposive sampling for experience in attending deteriorating patients. Written response surveys were used to address the study aim. Data were analysed using content analysis. Four major themes were identified: Governance, Teamwork, Clinical Care Delivery and End of Life Care. Participants perceived there was a lack of sufficient and senior staff with the required theoretical knowledge; and inadequate assessment and critical thinking skills for anticipating, recognising and responding to clinical deterioration. Senior doctors were perceived to inappropriately manage End of Life Care issues and displayed Teamwork behaviours rendering ward clinicians feeling fearful and intimidated. A lack of System and Clinical Governance hindered identification of clinical deterioration. To improve patient safety related to recognising and responding to clinical deterioration, suboptimal care due to professionals' knowledge, skills and behaviours need addressing, along with End of Life Care and Governance. Copyright © 2017 Australian College of Critical Care Nurses Ltd. All rights reserved.
Air transport of patients with pneumothorax: is tube thoracostomy required before flight?
Braude, Darren; Tutera, Dominic; Tawil, Issac; Pirkl, Gregory
2014-01-01
It is conventionally thought that patients with pneumothorax (PTX) require tube thoracostomy (TT) before air medical transport (AMT), especially in unpressurized rotor-wing (RW) aircraft, to prevent deterioration from expansion of the PTX or development of tension PTX. We hypothesize that patients with PTX transported without TT tolerate RW AMT without serious deterioration, as defined by hypotension, hypoxemia, respiratory distress, intubation, bag valve mask ventilation, needle thoracostomy (NT), or cardiac arrest during transport. We conducted a retrospective review of a case-series of trauma patients transported to a single Level 1 trauma center via RW with confirmed PTX and no TT. Using standardized abstraction forms, we reviewed charts for signs of deterioration. Those patients identified as having clinical deterioration were independently reviewed for the likelihood that the clinical deterioration was a direct consequence of PTX. During the study period, 66 patients with confirmed PTX underwent RW AMT with an average altitude gain of 1890 feet, an average barometric pressure 586-600 mmHg, and average flight duration of 28 minutes. All patients received oxygen therapy; 14/66 patients (21%) were supported with positive pressure ventilation. Eleven of 66 patients (17%) had NT placed before flight and 4/66 (6%) had NT placed during flight. Four of 66 patients (6% CI0.3-11.7) may have deteriorated during AMT as a result of PTX; all were successfully managed with NT. In this series, 6% of patients with PTX deteriorated as result of AMT without TT, yet all patients were managed successfully with NT. Routine placement of TT in patients with PTX before RW AMT may not be necessary. Further prospective evaluation is warranted. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Levosimendan Prevents Pressure-Overload-induced Right Ventricular Failure.
Hillgaard, Thomas Krarup; Andersen, Asger; Andersen, Stine; Vildbrad, Mads D; Ringgaard, Steffen; Nielsen, Jan M; Nielsen-Kudsk, Jens E
2016-04-01
We investigated if chronic levosimendan treatment can prevent and revert pressure-overload-induced right ventricular hypertrophy and failure in rats. Right ventricular hypertrophy and failure was induced in Wistar rats by pulmonary trunk banding (PTB). The PTB rats were treated with levosimendan (3 mg·kg·d) 3 days before surgery [n = 10, prevention (PREV)], 3 weeks after surgery [n = 10, reversal (REV)] or vehicle (n = 10, VEH). Sham-operated rats received vehicle (n = 16, SHAM). Right ventricular function was evaluated 7 weeks after surgery by echocardiography, magnetic resonance imaging, pressure-volume relations, gross anatomy, and histology. PTB induced right ventricular hypertrophy and compensated heart failure evident by reduced cardiac index (CI) without extra cardiac signs of heart failure. Levosimendan treatment prevented deterioration of right ventricular function measured by CI and right ventricular ejection fraction (RVEF) (CI: VEH vs. PREV 281 ± 17 vs. 362 ± 34 mL·min·kg, P ≤ 0.05, RVEF: VEH vs. PREV 57 ± 2% vs. 68 ± 3%, P ≤ 0.01) to values similar to SHAM (CI: 345 ± 21 mL·min·kg, RVEF: 71 ± 2%). RV contractility was improved in the REV group measured by preload recruitable stroke work (VEH vs. REV 39 ± 3 vs. 66 ± 10 mmHg P ≤ 0.05). Chronic treatment with levosimendan prevents the development of right ventricular failure and improves contractility in established pressure-overload-induced right ventricular failure.
Consensus Statement of Standards for Interventional Cardiovascular Nursing Practice.
White, Kevin; Macfarlane, Heather; Hoffmann, Bernadette; Sirvas-Brown, Helene; Hines, Kathryn; Rolley, John Xavier; Graham, Sandi
2018-05-01
Interventional cardiovascular nursing is a critical care nursing specialty providing complex nursing interventions to patients prone to clinical deterioration, through the combined risks of the pathophysiology of their illness and undergoing technically complex interventional cardiovascular procedures. No guidelines were identified worldwide to assist health care providers and educational institutions in workforce development and education guidelines to minimise patients' risk of adverse events. The Interventional Nurses Council (INC) developed a definition and scope of practice for interventional cardiac nursing (ICN's) in 2013. The INC executive committee established a working party of seven representatives from Australia and New Zealand. Selection was based on expertise in interventional cardiovascular nursing and experience providing education and mentoring in the clinical and postgraduate environment. A literature search of the electronic databases Science Direct, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline and Health Source was performed, using the search terms: clinical deterioration, ST elevation myocardial infarction, vital signs, primary percutaneous coronary intervention, PCI, AMI, STEMI, acute coronary syndrome, peri-procedural care, unstable angina, PCI complications, structural heart disease, TAVI, TAVR, cardiac rhythm management, pacing, electrophysiology studies, vascular access, procedural sedation. Articles were limited to the cardiac catheterisation laboratory and relevance to nursing based outcomes. Reference lists were examined to identify relevant articles missed in the initial search. The literature was compared with national competency standards, quality and safety documents and the INC definition and scope of practice. Consensus of common themes, a taxonomy of education and seven competency domains were achieved via frequent teleconferences and two face-to-face meetings. The working party finalised the standards on 14 July 2017, following endorsement from the CSANZ, INC, Heart Rhythm Council, CSANZ Quality Standards Committee and the Australian College of Critical Care Nurses (ACCCN). The resulting document provides clinical practice and education standards for interventional cardiac nursing practice. Copyright © 2017. Published by Elsevier B.V.
Lenz, K; Gegenhuber, A; Firlinger, F; Lohr, G; Piringer, P
2014-05-01
In a pilot study, 9 patients (39-48 years) with acute decompensated heart failure and a cardiac index (CI) of 1.9 ± 0.3 l/min/m(2) were included after exclusion of an underlying hepatic disease. The effect of levosimendan on liver blood flow and liver function was measured with the LiMON(®) system using the indocyane green plasma disappearance rate (ICG PDR). Levosimendan (Simdax(®)) infusion resulted in a significant increase of the CI, thus, achieving normal ranges of 2.9 ± 0.9 l/min/m(2) after 4 h and 3.3 ± 1 l/min/m(2) (p = 0.003) after 24 h. ICG PDR increased from 8.2 ± 0.8 % to 10.2 + 1.8 % after 4 h and to 11.9 ± 2.9 % after 24 h (p = 0.04). The reason for the early increase in systemic blood flow with no concomitant change in ICG PDR is not clear. A primary increase in liver blood flow with sustained low liver function might be one explanation; a low flow-mediated increased release of cytokines from liver cells with consequent deterioration of liver function is another possible explanation.
van Meurs, Matijs; Renes, Maurits H; Ligtenberg, Jack J M; ter Maaten, Jan C
2017-01-01
Introduction One in five patients with sepsis deteriorates within 48 hours after hospital admission. Regrettably, a clear tool for the early detection of deterioration is still lacking. The SepsiVit study aims to determine whether continuous heart rate variability (HRV) measurement can provide an early warning for deterioration in patients presenting with suspected infection or sepsis to the emergency department (ED). Methods and analysis The protocol of a prospective observational study in the ED. We will include 171 adult medical patients presenting with suspected infection or sepsis and at least two systemic inflammatory response syndrome criteria. Patients with known pregnancy, cardiac transplantation or not admitted to our hospital are excluded. High sample frequency ECG signals (500 Hz), respiratory rate, blood pressure and peripheral oxygen saturation will be recorded continuously during the first 48 hours of hospitalisation using a bedside patient monitor (Philips IntelliVue MP70). Primary endpoint is patient deterioration, defined as the development of organ dysfunction, unplanned intensive care unit admission or in-hospital mortality. The ECG data will be used for offline HRV analysis. We will compare the HRV between two groups (deterioration/no deterioration) and analyse whether HRV provides an early warning for deterioration. Furthermore, we will create a multivariate predictive model for deterioration based on heart rate, respiratory rate and HRV. As planned secondary analyses, we (1) perform a subgroup analysis for patients with pneumosepsis and urosepsis and (2) determine whether HRV using lower sample frequencies (1 Hz or less) suffices to predict deterioration. Ethics and dissemination The Institutional Review Board of the University Medical Center Groningen granted a waiver for the study (METc 2015/164). Results will be disseminated through international peer-reviewed publications and conference presentations. A lay summary of the results will be provided to the study participants. Trial registration number NTR6168; Pre-results. PMID:29151053
Aortic calcification burden predicts deterioration of renal function after radical nephrectomy.
Fukushi, Ken; Hatakeyama, Shingo; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Soma, Osamu; Matsumoto, Teppei; Hamano, Itsuto; Narita, Takuma; Imai, Atsushi; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Terayama, Yuriko; Funyu, Tomihisa; Ohyama, Chikara
2017-02-06
Radical nephrectomy for renal cell carcinoma (RCC) is a risk factor for the development of chronic kidney disease (CKD), and the possibility of postoperative deterioration of renal function must be considered before surgery. We investigated the contribution of the aortic calcification index (ACI) to the prediction of deterioration of renal function in patients undergoing radical nephrectomy. Between January 1995 and December 2012, we performed 511 consecutive radical nephrectomies for patients with RCC. We retrospectively studied data from 109 patients who had regular postoperative follow-up of renal function for at least five years. The patients were divided into non-CKD and pre-CKD based on a preoperative estimated glomerular filtration rate (eGFR) of ≥60 mL/min/1.73 m 2 or <60 mL/min/1.73 m 2 , respectively. The ACI was quantitatively measured by abdominal computed tomography before surgery. The patients in each group were stratified between low and high ACIs. Variables such as age, sex, comorbidities, and pre- and postoperative renal function were compared between patients with a low or high ACI in each group. Renal function deterioration-free interval rates were evaluated by Kaplan-Meier analysis. Factors independently associated with deterioration of renal function were determined using multivariate analysis. The median age, preoperative eGFR, and ACI in this cohort were 65 years, 68 mL/min/1.73 m 2 , and 8.3%, respectively. Higher ACI (≥8.3%) was significantly associated with eGFR decline in both non-CKD and pre-CKD groups. Renal function deterioration-free interval rates were significantly lower in the ACI-high than ACI-low strata in both of the non-CKD and pre-CKD groups. Multivariate analysis showed that higher ACI was an independent risk factor for deterioration of renal function at 5 years after radical nephrectomy. Aortic calcification burden is a potential predictor of deterioration of renal function after radical nephrectomy. This study was registered as a clinical trial: UMIN000023577.
Cardiac function and cognition in older community-dwelling cardiac patients.
Eggermont, Laura H P; Aly, Mohamed F A; Vuijk, Pieter J; de Boer, Karin; Kamp, Otto; van Rossum, Albert C; Scherder, Erik J A
2017-11-01
Cognitive deficits have been reported in older cardiac patients. An underlying mechanism for these findings may be reduced cardiac function. The relationship between cardiac function as represented by different echocardiographic measures and different cognitive function domains in older cardiac patients remains unknown. An older (≥70 years) heterogeneous group of 117 community-dwelling cardiac patients under medical supervision by a cardiologist underwent thorough echocardiographic assessment including left ventricular ejection fraction, cardiac index, left atrial volume index, left ventricular mass index, left ventricular diastolic function, and valvular calcification. During a home visit, a neuropsychological assessment was performed within 7.1 ± 3.8 months after echocardiographic assessment; the neuropsychological assessment included three subtests of a word-learning test (encoding, recall, recognition) to examine one memory function domain and three executive function tests, including digit span backwards, Trail Making Test B minus A, and the Stroop colour-word test. Regression analyses showed no significant linear or quadratic associations between any of the echocardiographic functions and the cognitive function measures. None of the echocardiographic measures as representative of cardiac function was correlated with memory or executive function in this group of community-dwelling older cardiac patients. These findings contrast with those of previous studies. © 2017 Japanese Psychogeriatric Society.
How Hippo Signaling Pathway Modulates Cardiovascular Development and Diseases.
Zhou, Wenyi; Zhao, Mingyi
2018-01-01
Cardiovascular disease remains the leading cause of death around the globe. Cardiac deterioration is associated with irreversible cardiomyocyte loss. Understanding how the cardiovascular system develops and the pathological processes of cardiac disease will contribute to finding novel and preventive therapeutic methods. The canonical Hippo tumor suppressor pathway in mammalian cells is primarily composed of the MST1/2-SAV1-LATS1/2-MOB1-YAP/TAZ cascade. Continuing research on this pathway has identified other factors like RASSF1A, Nf2, MAP4Ks, and NDR1/2, further enriching our knowledge of the Hippo-YAP pathway. YAP, the core effecter of the Hippo pathway, may accumulate in the nucleus and initiate transcriptional activity if the pathway is inhibited. The role of Hippo signaling has been widely investigated in organ development and cancers. A heart of normal size and function which is critical for survival could not be generated without the proper regulation of the Hippo tumor suppressor pathway. Recent research has demonstrated a novel role of Hippo signaling in cardiovascular disease in the context of development, hypertrophy, angiogenesis, regeneration, apoptosis, and autophagy. In this review, we summarize the current knowledge of how Hippo signaling modulates pathological processes in cardiovascular disease and discuss potential molecular therapeutic targets.
Kiss, Krisztina; Fekete, Veronika; Pálóczi, János; Sárközy, Márta; Murlasits, Zsolt; Pipis, Judit; Kheyfets, Irina A; Dugina, Julia L; Sergeeva, Svetlana A; Epstein, Oleg I; Csonka, Csaba; Csont, Tamás; Ferdinandy, Péter; Bencsik, Péter
2016-01-01
The activation of the renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathophysiology of congestive heart failure, which is the reason that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin 2 receptor blockers (ARBs) have become established therapies for heart failure. However, it is still not known whether preventive treatment with losartan or enalapril can reduce symptoms of infarction-induced heart failure. Ultra-low dose (ULD) drug therapy is thought to exert specific activity, with a lower chance of side effects. OBJECTIVES • The research team had hypothesized that preventive treatment with inhibitors of RAAS signaling-losartan, enalapril, and a preparation of a ULD antibody (ie, cardosten), which target the angiotensin type 1 (AT1) receptor-might alleviate pathological hypertrophy and/or functional decline in infarction-induced heart failure. The research team treated male Wistar rats orally for 30 d with 20 mg/kg of losartan, 10 mg/kg enalapril, 5 or 7.5 mL/kg of cardosten, or a control solution, started 1 d prior to permanent coronary occlusion. A sham-operated group functioned as a second control group. The study was conducted at the Department of Biochemistry of the Faculty of Medicine at the University of Szeged in Szeged, Hungary, in cooperation with the Pharmahungary Group, also in Szeged, Hungary, and with OOO "NPF" Materia Medica Holding Ltd in Moscow, Russia. To determine cardiac functional parameters in vivo, the research team inserted a catheter into the left ventricle of the rats and measured the parameters of ventricular pressure, and cardiac output was determined by thermodilution. Morphological parameters were measured after heart isolation in transverse sections by a digital caliper. A total of 30 d after permanent coronary ligation, both losartan and enalapril, significantly decreased mean arterial blood pressure (MABP), attenuated the development of the left-ventricular anterior-wall and septum hypertrophy, and reduced scar thickness compared with the vehicle control group. The deterioration of cardiac output and the increase in total peripheral resistance (TPR) due to coronary ligation were significantly inhibited by both losartan and enalapril. The effects of cardosten were comparable with those of losartan and enalapril on cardiac morphology, left ventricular function, and TPR; however, it did not influence MABP. Moreover, in contrast to losartan and enalapril, cardosten did not decrease the rate of survival. The study was the first to have demonstrated that preventive treatment with losartan, enalapril, or cardosten can attenuate pathological hypertrophy in infarction-induced heart failure in rats.
The nursing perspective on monitoring hemodynamics and oxygen transport.
Tucker, Dawn; Hazinski, Mary Fran
2011-07-01
Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.
Lung lavage with oxygenated perfluorochemical liquid in acute lung injury.
Richman, P S; Wolfson, M R; Shaffer, T H
1993-05-01
To investigate the effects of lung lavage with oxygenated liquid perfluorochemical on gas exchange, lung mechanics, and cardiac function in animals with acute lung injury. Prospective, randomized, controlled trial. Animal laboratory. Eight adult cats (2 to 4 kg, random sex). Two insults were combined to cause lung injury: oleic acid infusion and saline whole-lung wash. Animals were assigned to either the control or treatment group which consisted of a perfluorochemical liquid (Rimar 101) lavage. Perfluorochemical liquid lavage was performed three times at hourly intervals after lung injury. Three other cats with identical injury but no perfluorochemical liquid lavage served as control animals. All cats were ventilated with an FIO2 of 0.95 and positive end-expiratory pressure of 2 cm H2O continuously. Arterial blood gas tensions and pH, dynamic pulmonary compliance were measured at 15-min intervals. Cardiac index was assessed hourly, and lung fluid was collected after each of the three perfluorochemical liquid lavages. Arterial oxygen tension and pulmonary compliance deteriorated abruptly after lung injury in all cats, and improved significantly (p < .001, two-way analysis of variance) 15 mins after perfluorochemical liquid lavage. These parameters gradually returned to their baseline over 60 mins. Arterial blood pressure and cardiac index decreased after injury in all cats, and were not significantly changed after perfluorochemical liquid lavage. Hemorrhagic fluid was recovered from distal airways by perfluorochemical liquid lavage, despite prior suctioning of the airway. Perfluorochemical liquid lavage removes pulmonary edema fluid and improves gas exchange and the mechanical properties of the lung, after acute severe lung injury.
[Experimental therapy of cardiac remodeling with quercetin-containing drugs].
Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A
2013-01-01
It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.
Real-Time Risk Prediction on the Wards: A Feasibility Study.
Kang, Michael A; Churpek, Matthew M; Zadravecz, Frank J; Adhikari, Richa; Twu, Nicole M; Edelson, Dana P
2016-08-01
Failure to detect clinical deterioration in the hospital is common and associated with poor patient outcomes and increased healthcare costs. Our objective was to evaluate the feasibility and accuracy of real-time risk stratification using the electronic Cardiac Arrest Risk Triage score, an electronic health record-based early warning score. We conducted a prospective black-box validation study. Data were transmitted via HL7 feed in real time to an integration engine and database server wherein the scores were calculated and stored without visualization for clinical providers. The high-risk threshold was set a priori. Timing and sensitivity of electronic Cardiac Arrest Risk Triage score activation were compared with standard-of-care Rapid Response Team activation for patients who experienced a ward cardiac arrest or ICU transfer. Three general care wards at an academic medical center. A total of 3,889 adult inpatients. The system generated 5,925 segments during 5,751 admissions. The area under the receiver operating characteristic curve for electronic Cardiac Arrest Risk Triage score was 0.88 for cardiac arrest and 0.80 for ICU transfer, consistent with previously published derivation results. During the study period, eight of 10 patients with a cardiac arrest had high-risk electronic Cardiac Arrest Risk Triage scores, whereas the Rapid Response Team was activated on two of these patients (p < 0.05). Furthermore, electronic Cardiac Arrest Risk Triage score identified 52% (n = 201) of the ICU transfers compared with 34% (n = 129) by the current system (p < 0.001). Patients met the high-risk electronic Cardiac Arrest Risk Triage score threshold a median of 30 hours prior to cardiac arrest or ICU transfer versus 1.7 hours for standard Rapid Response Team activation. Electronic Cardiac Arrest Risk Triage score identified significantly more cardiac arrests and ICU transfers than standard Rapid Response Team activation and did so many hours in advance.
Cacciapaglia, Fabio; Salvatorelli, Emanuela; Minotti, Giorgio; Afeltra, Antonella; Menna, Pierantonio
2014-12-01
Whether tumor necrosis factor-alpha (TNFα) caused beneficial or detrimental cardiovascular effects remains poorly defined. Anti-TNFα agents improved cardiac end points in chronic rheumatic diseases characterized by progressive deterioration of cardiac function. In contrast, anti-TNFα agents did not always improve but actually worsened cardiac function in non-rheumatic patients with heart failure (HF), in spite of that HF usually accompanies with high circulating levels of TNFα. To shed light on these mixed findings, we characterized the effects of TNFα in H9c2 cardiomyocytes. Cells were incubated for 24 h with increasing concentrations of TNFα, hydrogen peroxide, aminotriazole, or etoposide. Posttreatment cell viability was assessed by antimycin A-inhibitable reduction of 3-(4,dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and the IC50 value of each test compound was defined. H9c2 cells were also preconditioned with a low non-toxic concentration of TNFα and then re-challenged with increasing concentrations of TNFα and other stressor agents. In re-challenge experiments, all of the IC50 values increased significantly, with the IC50 value of TNFα increasing approximately 16-fold. TNFα preconditioning increased cardiomyocytes shedding of the external portion of transmembrane type 1 and type 2 TNFα receptors [(soluble TNFα receptors (sTNFR)]. Levels of survival-oriented soluble TNFR2 (sTNFR2) always exceeded those of death-oriented sTNFR1. When exposed to TNFα at its IC50 value, preconditioned cardiomyocytes showed an increased release of sTNFR2 but not sTNFR1. These results denoted that preconditioning by "low TNFα" helped cardiomyocyte to withstand toxicity from "high TNFα" or other agents. These results also suggested that beneficial or detrimental effects of anti-TNFα agents might well depend on whether these agents spared or intercepted discrete amounts of TNFα that preconditioned cardiomyocytes and made them more resistant to high concentrations of TNFα.
Malfatto, Gabriella; Della Rosa, Francesco; Villani, Alessandra; Rella, Valeria; Branzi, Giovanna; Facchini, Mario; Parati, Gianfranco
2012-11-01
The role of repeated infusions of Levosimendan (LEVO) in patients with chronic advanced heart failure is still unclear. Thirty-three patients with chronic heart failure presenting clinical deterioration were randomized 2:1 to receive monthly infusions of LEVO (n = 22) or Furosemide (Controls, n = 11). At the first drug's administration, noninvasive hemodynamic evaluation was performed; before and after each infusion, we assessed NYHA class, systolic and diastolic function, functional mitral regurgitation, and brain natriuretic peptide (BNP) levels. Noninvasive hemodynamic in the LEVO group showed vasodilation and decrease in thoracic conductance (index of pulmonary congestion), whereas in Controls, only a reduced thoracic conductance was observed. In the LEVO group, systolic and diastolic function, ventricular volumes, severity of mitral regurgitation, and BNP levels improved over time from baseline and persisted 4 weeks after the last infusion (P < 0.01). In Controls, no change developed over time in cardiac function and BNP levels. In LEVO-treated patients, 1-year mortality tended to be lower than in those treated with Furosemide. In conclusion, serial LEVO infusions in advanced heart failure improved ventricular performance and favorably modulated neurohormonal activation. Multicenter randomized studies are warranted to test the effect of LEVO on long-term outcome.
Spagnolli, Walter; Rigoni, Marta; Torri, Emanuele; Cozzio, Susanna; Vettorato, Elisa; Nollo, Giandomenico
2017-03-01
We aimed to assess the performance of the National Early Warning Score (NEWS) as tool for patient risk stratification at admission in an acute Internal Medicine ward and to ensure patient placement in ward areas with the required and most appropriate intensity of care. As secondary objective, we considered NEWS performance in two subgroups of patients: sudden cardiac events (acute coronary syndromes and arrhythmic events), and chronic respiratory insufficiency. We conducted a perspective cohort single centre study on 2,677 unselected patients consecutively admitted from July 2013 to March 2015 in the Internal Medicine ward of the hospital of Trento, Italy. The NEWS was mandatory collected on ward admission. We defined three risk categories for clinical deterioration: low score (NEWS 0-4), medium score (NEWS 5-6), and high score (NEWS≥7). Following adverse outcomes were considered: total and early (<72 hours) in-hospital mortality, urgent transfers to a higher intensity of care. A logistic regression model quantified the association between outcomes and NEWS. For patients with NEWS >4 vs patients with NEWS <4, the risk of early death increased from 12 to 36 times, total mortality from 3.5 to 9, and urgent transfers from 3.5 to 7. In patients with sudden cardiac events, lower scores were significantly associated with higher risk of transfer to a higher intensity of care. In patients affected by chronic hypoxaemia, adverse outcomes occurred less in medium and high score categories of NEWS. National Early Warning Score assessed on ward admission may enable risk stratification of clinical deterioration and can be a good predictor of in-hospital serious adverse outcomes, although sudden cardiac events and chronic hypoxaemia could constitute some limits. © 2017 John Wiley & Sons Ltd.
Redetzke, Rebecca A.; Gerdes, A. Martin
2012-01-01
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390
Pericardium closure after heart operations: a safety option?
Dantas, Carlos Eduardo Pereira; Sá, Mauro Paes Leme de; Bastos, Eduardo Sergio; Magnanini, Monica M F
2010-01-01
Primary pericardium closure may reduce the risk of cardiac injury during chest re opening, especially the right ventricle, aorta and coronary bypass grafts. Nevertheless, concern about adverse hemodynamic effects prevents most heart surgeons of closuring the pericardium. We evaluated 48 patients undergoing open heart surgery consecutively which the pericardium was closed in 30 patients (group A) and 18 patients, as a control group (group B) in which the pericardium was left open. All patients underwent posteroanterior and lateral chest roentgenograms before surgery and one week postoperatively. Postoperative evaluation also included echocardiograms, ECG and postoperative enzyme analysis. There were no deaths or any complications in both groups (acute myocardial infarction, stroke, bleeding or cardiac tamponate). It was observed statistically differences between both groups especially in echocardiogram parameters and cardiothoracic ratio without clinical impact. Pericardium closure is a simple method to facilitate resternotomy during subsequent re operative procedures. However, cardiac surgeons should be aware of the transient deterioration in hemodynamics associated with it, even thought there was no clinical significance in this study.
NASA Astrophysics Data System (ADS)
Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.
2017-02-01
Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7 ± 1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n = 9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p = 0.066), total liver blood flow (TLBF) (p = 0.101), hepatic arterial (HA) fraction (p = 0.895), mean transit time (MTT) (p = 0.646), distribution volume (DV) (p = 0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% limits-of-agreement (BA95%LoA) ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min-1/100 g, BA95%LoA ±506.1 ml min-1/100 g, CoV 64.1% versus 0.9 ml min-1/100 g, ±562.8 ml min-1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min-1/100 g, BA95%LoA ±586.7 ml min-1/ 100 g, CoV 58.3% versus 13.3 ml min-1/100 g, ±661.5 ml min-1/100 g, 60.9% respectively with correction). Reproducibility of uncorrected MTT was similar (uncorrected mean difference 2.4 s, BA95%LoA ±26.7 s, CoV 60.8% uncorrected versus 3.7 s, ±27.8 s, 62.0% respectively with correction), as was and DV (uncorrected mean difference 14.1%, BA95%LoA ±48.2%, CoV 24.7% versus 10.3%, ±46.0%, 23.9% respectively with correction). Cardiac output AIF correction does not significantly affect the estimation of hepatic perfusion parameters but demonstrates improvements in normal volunteer 7 d HA fraction reproducibility, but deterioration in PV perfusion and TLBF reproducibility. Improved HA fraction reproducibility maybe important as arterialisation of liver perfusion is increased in chronic liver disease and within malignant liver lesions.
Cardiac transplantation: candidate identification, evaluation, and management.
McCalmont, Vicki; Ohler, Linda
2008-01-01
For more than 40 years, cardiac transplantation has been a treatment option for patients with severe heart failure in whom optimal medical management is no longer effective. Critical care nurses are integrally involved in the care of patients with severe heart failure who may benefit from cardiac transplantation and are in a special position to recognize potential candidates for transplantation. Understanding patient selection criteria, the evaluation process, and how patients are managed while awaiting transplantation is key to the knowledge and skills required. It is also important to understand the allocation of donor hearts as part of this process. The waiting period for a suitable donor heart can be long and a patient's condition may deteriorate, requiring an increase in pharmacologic bridges with intravenous inotropic agents or mechanical bridges with circulatory assist devices. Critical care nurses become important as a personal bridge to transplantation through their education of patients and families and helping them cope with their fears during the waiting period. Critical care nurses who possess knowledge of patient selection and organ allocation processes along with the skills of caring for this complex patient population can contribute to better outcomes for patients with heart failure who may be candidates for cardiac transplantation.
Heart repair by reprogramming non-myocytes with cardiac transcription factors
Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.
2012-01-01
The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here we show that four transcription factors, GATA4, Hand2, MEF2C and Tbx5 can cooperatively reprogram adult mouse tail-tip and cardiac fibroblasts into beating cardiac-like myocytes in vitro. Forced expression of these factors in dividing non-cardiomyocytes in mice reprograms these cells into functional cardiac-like myocytes, improves cardiac function and reduces adverse ventricular remodeling following myocardial infarction. Our results suggest a strategy for cardiac repair through reprogramming fibroblasts resident in the heart with cardiogenic transcription factors or other molecules. PMID:22660318
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A method for accommodating engine deterioration via a scheduled Linear Parameter Varying Quadratic Lyapunov Function (LPVQLF)-Based controller is presented. The LPVQLF design methodology provides a means for developing unconditionally stable, robust control of Linear Parameter Varying (LPV) systems. The controller is scheduled on the Engine Deterioration Index, a function of estimated parameters that relate to engine health, and is computed using a multilayer feedforward neural network. Acceptable thrust response and tight control of exhaust gas temperature (EGT) is accomplished by adjusting the performance weights on these parameters for different levels of engine degradation. Nonlinear simulations demonstrate that the controller achieves specified performance objectives while being robust to engine deterioration as well as engine-to-engine variations.
Shinoura, Nobusada; Midorikawa, Akira; Yamada, Ryoji; Hiromitsu, Kentaro; Itoi, Chihiro; Saito, Shoko; Yagi, Kazuo
2017-07-01
Introduction We analyzed factors associated with worsened paresis at 1-month follow-up in patients with brain tumors located in the primary motor area (M1) to establish protocols for safe awake craniotomy for M1 lesions. Methods Patients with M1 brain tumors who underwent awake surgery in our hospital ( n = 61) were evaluated before, during, and immediately and 1 month after surgery for severity of paresis, tumor location, extent of resection, complications, preoperative motor strength, histology, and operative strategies (surgery stopped or continued after deterioration of motor function). Results Worsened paresis at 1-month follow-up was significantly associated with worsened paresis immediately after surgery and also with operative strategy. Specifically, when motor function deteriorated during awake surgery and did not recover within 5 to 10 minutes, no deterioration was observed at 1-month follow-up in cases where we stopped surgery, whereas 6 of 13 cases showed deteriorated motor function at 1-month follow-up in cases where we continued surgery. Conclusion Stopping tumor resection on deterioration of motor function during awake surgery may help prevent worsened paresis at 1-month follow-up. Georg Thieme Verlag KG Stuttgart · New York.
Borg Sapiano, Alexis; Sammut, Roberta; Trapani, Josef
2018-03-01
Preparing nursing students to perform competently in complex emergency situations, such as during rapid patient deterioration, is challenging. Students' active engagement in such scenarios cannot be ensured, due to the unexpected nature of such infrequent events. Many students may consequently not experience and integrate the management of patient deterioration into their knowledge and practical competency by the end of their studies, making them unprepared to manage such situations as practicing nurses. This study investigated the effectiveness of virtual simulation in improving performance during rapid patient deterioration. To investigate the effectiveness of virtual simulation in improving student nurses' knowledge and performance during rapid patient deterioration. A pre- and post-test design was used. Nursing students at a university in Malta were invited to participate in a virtual simulation program named FIRST 2 ACTWeb™, using their own computer devices. A total of 166 (response rate=50%) second and third year diploma and degree nursing students participated in the study. The simulation included three scenarios (Cardiac-Shock-Respiratory) portraying deteriorating patients. Performance feedback was provided at the end of each scenario. Students completed pre- and post-scenario knowledge tests and performance during each scenario was recorded automatically on a database. Findings showed a significant improvement in the students' post-scenario knowledge (z=-6.506, p<0.001). Highest mean performance scores were obtained in the last scenario (M=19.7, median: 20.0, s.d. 3.41) indicating a learning effect. Knowledge was not a predictor of students' performance in the scenarios. This study supports virtual simulation as an effective learning tool for pre-registration nursing students in different programs. Simulation improves both knowledge about and performance during patient deterioration. Virtual simulation of rare events should be a key component of undergraduate nurse education, to prepare students to manage complex situations as practicing nurses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Girardot, Fabrice; Péricard, Louise; Demeneix, Barbara A.; Coen, Laurent; Chai, Norin
2017-01-01
Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy. PMID:28278282
Relationship between cardiac autonomic function and cognitive function in Alzheimer's disease.
Nonogaki, Zen; Umegaki, Hiroyuki; Makino, Taeko; Suzuki, Yusuke; Kuzuya, Masafumi
2017-01-01
Alzheimer's disease (AD) affects many central nervous structures and neurotransmitter systems. These changes affect not only cognitive function, but also cardiac autonomic function. However, the functional relationship between cardiac autonomic function and cognition in AD has not yet been investigated. The objective of the present study was to evaluate the association between cardiac autonomic function measured by heart rate variability and cognitive function in AD. A total of 78 AD patients were recruited for this study. Cardiac autonomic function was evaluated using heart rate variability analysis. Multiple linear regression analysis was used to model the association between heart rate variability and cognitive function (global cognitive function, memory, executive function and processing speed), after adjustment for covariates. Global cognitive function was negatively associated with sympathetic modulation (low-to-high frequency power ratio). Memory performance was positively associated with parasympathetic modulation (high frequency power) and negatively associated with sympathetic modulation (low-to-high frequency power ratio). These associations were independent of age, sex, educational years, diabetes, hypertension and cholinesterase inhibitor use. Cognitive function, especially in the areas of memory, is associated with cardiac autonomic function in AD. Specifically, lower cognitive performance was found to be associated with significantly higher cardiac sympathetic and lower parasympathetic function in AD. Geriatr Gerontol Int 2017; 17: 92-98. © 2015 Japan Geriatrics Society.
Nunes, Maria Carmo P; Badano, Luigi Paolo; Marin-Neto, J Antonio; Edvardsen, Thor; Fernández-Golfín, Covadonga; Bucciarelli-Ducci, Chiara; Popescu, Bogdan A; Underwood, Richard; Habib, Gilbert; Zamorano, Jose Luis; Saraiva, Roberto Magalhães; Sabino, Ester Cerdeira; Botoni, Fernando A; Barbosa, Márcia Melo; Barros, Marcio Vinicius L; Falqueto, Eduardo; Simões, Marcus Vinicius; Schmidt, André; Rochitte, Carlos Eduardo; Rocha, Manoel Otávio Costa; Ribeiro, Antonio Luiz Pinho; Lancellotti, Patrizio
2018-04-01
To develop a document by Brazilian Cardiovascular Imaging Department (DIC) and the European Association of Cardiovascular Imaging (EACVI) to review and summarize the most recent evidences about the non-invasive assessment of patients with Chagas disease, with the intent to set up a framework for standardized cardiovascular imaging to assess cardiovascular morphologic and functional disturbances, as well as to guide the subsequent process of clinical decision-making. Chagas disease remains one of the most prevalent infectious diseases in Latin America, and has become a health problem in non-endemic countries. Dilated cardiomyopathy is the most severe manifestation of Chagas disease, which causes substantial disability and early mortality in the socially most productive population leading to a significant economical burden. Prompt and correct diagnosis of Chagas disease requires specialized clinical expertise to recognize the unique features of this disease. The appropriate and efficient use of cardiac imaging is pivotal for diagnosing the cardiac involvement in Chagas disease, to stage the disease, assess patients' prognosis and address management. Echocardiography is the most common imaging modality used to assess, and follow-up patients with Chagas disease. The presence of echocardiographic abnormalities is of utmost importance, since it allows to stage patients according to disease progression. In early stages of cardiac involvement, echocardiography may demonstrate segmental left ventricuar wall motion abnormalities, mainly in the basal segments of inferior, inferolateral walls, and the apex, which cannot be attributed to obstructive coronary artery arteries. The prevalence of segmental wall motion abnormalities varies according to the stage of the disease, reaching about 50% in patients with left ventricular dilatation and dysfunction. Speckle tracking echocardiography allows a more precise and quantitative measurement of the regional myocardial function. Since segmental wall motion abnormalities are frequent in Chagas disease, speckle tracking echocardiography may have an important clinical application in these patients, particularly in the indeterminate forms when abnormalities are more subtle. Speckle tracking echocardiography can also quantify the heterogeneity of systolic contraction, which is associated with the risk of arrhythmic events. Three-dimensional (3D) echocardiography is superior to conventional two-dimensional (2D) echocardiography for assessing more accurately the left ventricular apex and thus to detect apical aneurysms and thrombus in patients in whom ventricular foreshortening is suspected by 2D echocardiography. In addition, 3D echocardiography is more accurate than 2D Simpson s biplane rule for assessing left ventricular volumes and function in patients with significant wall motion abnormalities, including aneurysms with distorted ventricular geometry. Contrast echocardiography has the advantage to enhancement of left ventricular endocardial border, allowing for more accurate detection of ventricular aneurysms and thrombus in Chagas disease. Diastolic dysfunction is an important hallmark of Chagas disease even in its early phases. In general, left ventricular diastolic and systolic dysfunction coexist and isolated diastolic dysfunction is uncommon but may be present in patients with the indeterminate form. Right ventricular dysfunction may be detected early in the disease course, but in general, the clinical manifestations occur late at advanced stages of Chagas cardiomyopathy. Several echocardiographic parameters have been used to assess right ventricular function in Chagas disease, including qualitative evaluation, myocardial performance index, tissue Doppler imaging, tricuspid annular plane systolic excursion, and speckle tracking strain. Cardiac magnetic resonance (CMR) is useful to assess global and regional left ventricular function in patients with Chagas diseases. Myocardial fibrosis is a striking feature of Chagas cardiomyopathy and late gadolinium enhancement (LGE) is used to detect and quantify the extension of myocardial fibrosis. Myocardial fibrosis might have a role in risk stratification of patients with Chagas disease. Limited data are available regarding right ventricular function assessed by CMR in Chagas disease. Radionuclide ventriculography is used for global biventricular function assessment in patients with suspected or definite cardiac involvement in Chagas disease with suboptimal acoustic window and contraindication to CMR. Myocardial perfusion scintigraphy may improve risk stratification to define cardiac involvement in Chagas disease, especially in the patients with devices who cannot be submitted to CMR and in the clinical setting of Chagas patients whose main complaint is atypical chest pain. Detection of reversible ischemic defects predicts further deterioration of left ventricular systolic function and helps to avoid unnecessary cardiac catheterization and coronary angiography. Cardiac imaging is crucial to detect the cardiac involvement in patients with Chagas disease, stage the disease and stratify patient risk and address management. Unfortunately, most patients live in regions with limited access to imaging methods and point-of-care, simplified protocols, could improve the access of these remote populations to important information that could impact in the clinical management of the disease. Therefore, there are many fields for further research in cardiac imaging in Chagas disease. How to better provide an earlier diagnosis of cardiac involvement and improve patients risk stratification remains to be addressed using different images modalities.
O'Keeffe, S T; Lye, M; Donnellan, C; Carmichael, D N
1998-10-01
To examine the reproducibility and responsiveness to change of a six minute walk test and a quality of life measure in elderly patients with heart failure. Longitudinal within patient study. 60 patients with heart failure (mean age 82 years) attending a geriatric outpatient clinic, 45 of whom underwent a repeat assessment three to eight weeks later. Subjects underwent a standardised six minute walk test and completed the chronic heart failure questionnaire (CHQ), a heart failure specific quality of life questionnaire. Intraclass correlation coefficients (ICC) were calculated using a random effects one way analysis of variance as a measure of reproducibility. Guyatt's responsiveness coefficient and effect sizes were calculated as measures of responsiveness to change. 24 patients reported no major change in cardiac status, while seven had deteriorated and 14 had improved between the two clinic visits. Reproducibility was satisfactory (ICC > 0.75) for the six minute walk test, for the total CHQ score, and for the dyspnoea, fatigue, and emotion domains of the CHQ. Effect sizes for all measures were large (> 0.8), and responsiveness coefficients were very satisfactory (> 0.7). Effect sizes for detecting deterioration were greater than those for detecting improvement. Quality of life assessment and a six minute walk test are reproducible and responsive measures of cardiac status in frail, very elderly patients with heart failure.
Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili
2017-08-01
Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Roeyen, Geert; Jansen, Miet; Hartman, Vera; Chapelle, Thiery; Bracke, Bart; Ysebaert, Dirk; De Block, Christophe
Studies reporting on function after pancreatic surgery are frequently based on diabetes history, fasting glycemia or random glycemia. The aim of this study was to investigate prospectively the evolution of pancreatic function in patients undergoing pancreaticoduodenectomy based on proper pre- and postoperative function tests. It was hypothesised that pancreatic function deteriorates after pancreaticoduodenectomy. Between 2013 and 2016, 78 patients undergoing pancreaticoduodenectomy for oncologic indications had a prospective evaluation of their endocrine and exocrine pancreatic function. Endocrine function was evaluated with the 75 g oral glucose tolerance test (OGTT) and the 1 mg intravenous glucagon test. Exocrine function was evaluated with a 13C-labelled mixed-triglyceride breath test. Tests were performed pre- and postoperatively. In 90.5% (19/21) of patients with preoperatively known diabetes, no change in endocrine function was observed. In contrast, endocrine function improved in 68.1% (15/22) of patients with newly diagnosed diabetes. 40% (14/35) of patients with a preoperative normal OGTT or prediabetes experienced deterioration in function. In multivariate analysis, improvement of newly diagnosed diabetes was correlated with preoperative bilirubin levels (p = 0.045), while progression towards diabetes was correlated with preoperative C-peptidogenic index T 30 (p = 0.037). A total of 20.5% (16/78) of patients had pancreatic exocrine insufficiency preoperatively. Another 51.3% (40/78) of patients deteriorated on exocrine level. In total, 64.1% (50/78) of patients required pancreatic enzyme-replacement therapy postoperatively. Although deterioration of endocrine function was expected after pancreatic resection, improvement is frequently observed in patients with newly diagnosed diabetes. Exocrine function deteriorates after pancreaticoduodenectomy. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Pregnancy outcomes in patients with Alport syndrome.
Yefet, Enav; Tovbin, David; Nachum, Zohar
2016-04-01
To analyze the maternal and obstetric outcomes of patients with Alport syndrome. We describe the pregnancy course of 8 pregnancies of three family members with the autosomal dominant (the rarest) form of Alport syndrome. We also analyzed 10 previously reported pregnancies with other Alport mutations in order to explore risk factors for unfavorable obstetric outcomes and maternal renal deterioration. In 13 pregnancies (72 %), renal function did not deteriorate permanently. All of these women had pre-pregnancy mild chronic kidney disease (CKD stage G1). In all of them, only a transient increase in proteinuria was recorded and in one case there was a transient decrease in the estimated glomerular filtration rate. In four other pregnancies (22 %), renal function deteriorated following pregnancy. All of them were complicated with pre-eclampsia. One woman had pre-pregnancy CKD-G2A3 and chronic hypertension. Two women had CKD-G1A3 of whom one had pre-pregnancy proteinuria near the nephrotic range. In the fourth case, renal function deterioration was reported without information on the exact pre-pregnancy renal function. In the last case, CKD-G2 was reported after pregnancy without information on CKD stage prior to pregnancy. Severe proteinuria did not imply a permanent renal function deterioration if it developed during pregnancy. Ten pregnancies ended with preterm birth (56 %). Two stillbirths were reported (11 %); however, only one was attributed to maternal health deterioration. Data regarding pregnancy outcomes in Alport syndrome is limited. The outcome seems favorable when pre-pregnancy kidney function is normal or near normal and when chronic hypertension/pre-eclampsia is absent.
Preserved, deteriorated, and premorbidly impaired patterns of intellectual ability in schizophrenia.
Ammari, Narmeen; Heinrichs, R Walter; Pinnock, Farena; Miles, Ashley A; Muharib, Eva; McDermid Vaz, Stephanie
2014-05-01
The main purpose of this investigation was to identify patterns of intellectual performance in schizophrenia patients suggesting preserved, deteriorated, and premorbidly impaired ability, and to determine clinical, cognitive, and functional correlates of these patterns. We assessed 101 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric control participants. The "preserved" performance pattern was defined by average-range estimated premorbid and current IQ with no evidence of decline (premorbid-current IQ difference <10 points). The "deteriorated" pattern was defined by a difference between estimated premorbid and current IQ estimates of 10 points or more. The premorbidly "impaired" pattern was defined by below average estimated premorbid and current IQ and no evidence of decline greater than 10 points. Preserved and deteriorated patterns in healthy controls were also identified and studied in comparison to patient findings. The groups were compared on demographic, neurocognitive, clinical and functionality variables. Patients with the preserved pattern outperformed those meeting criteria for deteriorated and compromised intellectual ability on a composite measure of neurocognitive ability as well as in terms of functional competence. Patients demonstrating the deteriorated and compromised patterns were equivalent across all measures. However, "preserved" patients failed to show any advantage in terms of community functioning and demonstrated cognitive impairments relative to control participants. Our results suggest that proposed patterns of intellectual decline and stability exist in both the schizophrenia and general populations, but may not hold true across other cognitive abilities and do not translate into differential functional outcome.
Yang, Chengzhi; Yang, Hui; Wu, Jimin; Meng, Zenghui; Xing, Rui; Tian, Aiju; Tian, Xin; Guo, Lijun; Zhang, Youyi; Nie, Guangjun; Li, Zijian
2013-10-24
In this study, we investigated the cardiac biodistribution of polyethylene glycol (PEG)-coated AuNPs and their effects on cardiac function, structure and inflammation in both normal and cardiac remodeling mice. The model of cardiac remodeling was induced by subcutaneously injection of isoproterenol (ISO), a non-selective beta-adrenergic agonist, for 7 days. After AuNPs were injected intravenously in mice for 7 consecutive days, Au content in different organs was determined quantitatively by inductively coupled plasma mass spectrometry (ICP-MS), cardiac function and structure were measured by echocardiography, cardiac fibrosis was examined with picrosirius red staining, the morphology of cardiomyocytes was observed with hematoxylin and eosin (H & E) staining. The accumulation of AuNPs in hearts did not affect cardiac function or induce cardiac hypertrophy, cardiac fibrosis and cardiac inflammation under normal physiological condition. Cardiac AuNPs content was 6-fold higher in the cardiac remodeling mouse than normal mice. However, the increased accumulation of AuNPs in the heart did not aggravate ISO-induced cardiac hypertrophy, cardiac fibrosis or cardiac inflammation. These observations suggest that PEG-coated AuNPs possess excellent biocompatibility under both physiological and pathological conditions. Thus, AuNPs may be safe for cardiac patients and hold great promise for further development for various biomedical applications. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rajati, Fatemeh; Feizi, Awat; Tavakol, Kamran; Mostafavi, Firoozeh; Sadeghi, Masoumeh; Sharifirad, Gholamreza
2016-11-01
To compare the psychometric properties of 2 heart failure (HF)-specific quality of life questionnaires and the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) in patients with HF. A methodological study based on 3-month follow-up data for evaluating psychometric properties of health-related quality of life (HRQOL) questionnaires. Cardiac rehabilitation center at a cardiovascular research institute. Eligible patients with HF (N=60). Exercise training in cardiac rehabilitation. The SF-36, the MacNew Heart Disease questionnaire, and the Minnesota Living With Heart Failure Questionnaire (MLHFQ) and New York Heart Association functional classification. Items from the MLHFQ and the MacNew questionnaire had acceptable correlations (r>.30, P<.05). Internal consistency and test-retest reliability were adequate at ≥0.7 for the MLHFQ subscales. Correlations for the MLHFQ and the MacNew with SF-36 similar items ranged from .28 to .50 and from .26 to .60, respectively. Similar scales from the MacNew and MLHFQ showed strong correlations at baseline and follow-up, supporting the convergent validity. Improvement in HRQOL was significant for all MLHFQ subscales (P<.001) and the MacNew emotional (P<.05) and social (P<.001) subscales. The MLHFQ demonstrated the most responsiveness to changes and discriminated disease severity the best. The follow-up scores for all MLHFQ and 2 MacNew subscales were significantly greater in patients who improved compared with those who showed no change or deteriorated. The MLHFQ was more responsive to changes of HRQOL than the MacNew questionnaire over time in patients with HF. The MacNew questionnaire was more responsive to changes than the SF-36. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Shantsila, Eduard; Shantsila, Alena; Gill, Paramjit S; Lip, Gregory Y H
2016-11-10
People of South Asian (SAs) and African Caribbean (AC) origin have increased cardiovascular morbidity, but underlying mechanisms are poorly understood. Aging is the key predictor of deterioration in diastolic function, which can be assessed by echocardiography using E/e' ratio as a surrogate of left ventricular (LV) filling pressure. The study aimed to assess a possibility of premature cardiac aging in SA and AC subjects. We studied 4540 subjects: 2880 SA and 1660 AC subjects. All participants underwent detailed echocardiography, including LV ejection fraction, average septal-lateral E/e', and LV mass index (LVMI). When compared to ACs, SAs were younger, with lower mean LVMI, systolic blood pressure (BP), diastolic BP, and body mass index (BMI), as well as a lower prevalence of hypertension and smoking (P≤0.001 for all). In a multivariate linear regression model including age, sex, ethnicity, BP, heart rate, BMI, waist circumference, LVMI, history of smoking, hypertension, coronary artery disease, diabetes mellitus, medications, SA origin was independently associated with higher E/e' (regression coefficient±standard error, -0.66±0.10; P<0.001, adjusted R 2 for the model 0.21; P<0.001). Furthermore, SAs had significantly accelerated age-dependent increase in E/e' compared to ACs. On multivariable Cox regression analysis without adjustment for E/e', SA ethnicity was independently predictive of mortality (P=0.04). After additional adjustment for E/e', the ethnicity lost its significance value, whereas E/e' was independently predictive of higher risk of death (P=0.008). Premature cardiac aging is evident in SAs and may contribute to high cardiovascular morbidity in this ethnic group, compared to ACs. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Villa-Hincapie, Carlos A; Carreno-Jaimes, Marisol; Obando-Lopez, Carlos E; Camacho-Mackenzie, Jaime; Umaña-Mallarino, Juan P; Sandoval-Reyes, Nestor F
2017-07-01
The survival of patients with congenital heart disease has increased in the recent years, because of enhanced diagnostic capabilities, better surgical techniques, and improved perioperative care. Many patients will require reoperation as part of staged procedures or to treat grafts deterioration and residual or recurrent lesions. Reoperations favor the formation of cardiac adhesions and consequently increase surgery time; however, the impact on morbidity and operative mortality is certain. The objective of the study was to describe the risk factors for mortality in pediatric patients undergoing a reoperation for congenital heart disease. Historic cohort of patients who underwent reoperation after pediatric cardiac surgery from January 2009 to December 2015. Operations with previous surgical approach different to sternotomy were excluded from the analysis. In seven years, 3,086 surgeries were performed, 481 were reoperations, and 238 patients fulfilled the inclusion criteria. Mean number of prior surgeries was 1.4 ± 0.6. Median age at the time of reoperation was 6.4 years. The most common surgical procedures were staged palliation for functionally univentricular heart (17.6%). Median cross-clamp time was 66 minutes. Younger age at the moment of resternotomy, longer cross-clamp time, and Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery Congenital Heart Surgery (STAT) Mortality Categories risk category greater than three were risk factors for mortality. The number of resternotomies was not associated with mortality. Mortality prior to hospital discharge was 4.6%, and mortality after discharge but prior to 30 days after surgery was 0.54%. Operative mortality was 5.1%. Resternotomy in pediatric cardiac surgery is a safe procedure in our center.
Piao, Songzhe; Park, Juhyun; Son, Hwancheol; Jeong, Hyeon; Cho, Sung Yong
2016-05-01
To compare the perioperative relative renal function and determine predictors of deterioration and recovery of separate renal function in patients with renal stones >10 mm and who underwent mini-percutaneous nephrolithotomy or retrograde intra-renal surgery. A main stone >10 mm or stones growing, high-risk stone formers and extracorporeal shock-wave lithotripsy-resistant stones were prospectively included in 148 patients. Patients with bilateral renal stones and anatomical deformities were excluded. Renal function was evaluated by estimated glomerular filtration rate, 99m-technetium dimercaptosuccinic acid and 99m-technetium diethylenetriamine pentaacetate prior to intervention and at postoperative 3 months. Logistic regression analyses were performed to find predictors of functional deterioration and recovery. The overall stone-free rate was 85.1 %. A third of patients (53/148, 35.8 %) with renal stones >10 mm showed deterioration of separate renal function. Mean renal function of operative sites showed 58.2 % (36.8 %/63.2 %) of that of contralateral sites in these patients. Abnormal separate renal function showed postoperative recovery in 31 patients (58.5 %). Three cases (5.7 %) showed deterioration of separate renal function despite no presence of remnant stones. Improvement rates of the abnormal separate renal function did not differ according to the type of surgery. The presence of hydronephrosis and three or more stones were significant predictors for renal function deterioration. Female gender and three or more stones were significantly correlated with postoperative recovery. Mini-percutaneous nephrolithotomy or retrograde intra-renal surgery was effective and safe for renal function preservation. Patients with multiple large stones should be considered for candidates of active surgical removal.
Atrial and ventricular function after cardioversion of atrial fibrillation.
Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.
1995-01-01
OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P < 0.01) with time. There was a similar time course for the amplitude of annulus atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the left. Integration of information from transvalvar inflow curves, annulus motion, and venous filling patterns gives additional insight into cardiac function. PMID:7547019
Challenges in Cardiac Tissue Engineering
Tandon, Nina; Godier, Amandine; Maidhof, Robert; Marsano, Anna; Martens, Timothy P.; Radisic, Milica
2010-01-01
Cardiac tissue engineering aims to create functional tissue constructs that can reestablish the structure and function of injured myocardium. Engineered constructs can also serve as high-fidelity models for studies of cardiac development and disease. In a general case, the biological potential of the cell—the actual “tissue engineer”—is mobilized by providing highly controllable three-dimensional environments that can mediate cell differentiation and functional assembly. For cardiac regeneration, some of the key requirements that need to be met are the selection of a human cell source, establishment of cardiac tissue matrix, electromechanical cell coupling, robust and stable contractile function, and functional vascularization. We review here the potential and challenges of cardiac tissue engineering for developing therapies that could prevent or reverse heart failure. PMID:19698068
Monte, Ralph C; Goulding, Sandra M; Compton, Michael T
2008-09-01
Motivated by a previous study among male veterans [Allen, D.N., Frantom, L.V., Strauss, G.P., van Kammen, D.P., 2005. Differential patterns of premorbid academic and social deterioration in patients with schizophrenia. Schizophr. Res. 75, 389-397], the present analysis examined: (1) patterns of premorbid academic and social functioning during childhood, early adolescence, and late adolescence, and (2) associations between these premorbid functioning dimensions and a number of clinical variables. Data on premorbid functioning were collected using the Premorbid Adjustment Scale (PAS) in 95 hospitalized first-episode patients. Analyses were similar to those conducted by Allen and colleagues (2005). Deterioration was evident in both academic and social functioning from childhood to early adolescence, along with a pronounced/accelerated deterioration in academic functioning from early adolescence to late adolescence, occurring in both male and female patients. Age at onset of prodromal symptoms was predicted by childhood/early adolescent/late adolescent academic functioning scores, and age at onset of psychotic symptoms was significantly associated only with childhood academic functioning. Severity of negative symptoms was predicted by childhood and late adolescent social functioning scores, and severity of general psychopathology symptoms was predicted by late adolescent academic functioning, as well as childhood and late adolescent social functioning scores. Consistent with prior findings, deterioration in premorbid functioning appears to be more pronounced in the academic than social dimension of the PAS. Some PAS scores are predictive of ages at onset of prodrome/psychosis and severity of psychotic symptoms. Ongoing research on premorbid adjustment in schizophrenia may have implications for future prevention goals.
Miyamoto, Koji; Aiba, Takeshi; Arihiro, Shoji; Watanabe, Makoto; Kokubo, Yoshihiro; Ishibashi, Kohei; Hirose, Sayako; Wada, Mitsuru; Nakajima, Ikutaro; Okamura, Hideo; Noda, Takashi; Nagatsuka, Kazuyuki; Noguchi, Teruo; Anzai, Toshihisa; Yasuda, Satoshi; Ogawa, Hisao; Kamakura, Shiro; Shimizu, Wataru; Miyamoto, Yoshihiro; Toyoda, Kazunori; Kusano, Kengo
2016-08-01
Renal function is crucial for patients with non-valvular atrial fibrillation (NVAF) using non-vitamin K antagonist oral anticoagulants (NOAC). The incidence of renal function deterioration during anticoagulation therapy and its impact of adverse events are unknown. In 807 consecutive NVAF patients treated with NOAC and with estimated creatinine clearance (eCCr) ≥ 50 ml/min (mean age 68 ± 11 years, mean CHADS2 score = 1.8 ± 1.4, CHA2DS2-VASc score = 2.8 ± 1.8, HAS-BLED score = 1.7 ± 1.1), we analyzed the time course of renal function and clinical outcomes, and compared these with the data of general Japanese inhabitants from the Suita Study (n = 2140). Of the 807 patients, 751 (93 %) maintained eCCr ≥ 50 ml/min (group A) whereas the remaining 56 (7 %) fell into the eCCr < 50 ml/min (group B) during the 382 ± 288 days of follow-up. Multivariate logistic regression analysis revealed that advanced age, lower body weight, and congestive heart failure were independent predictors for renal function deterioration in patients with eCCr ≥ 50 ml/min at baseline. Major and/or minor bleedings were more commonly observed in group B than in group A (21 vs. 8 %; P = 0.0004). The CHADS2, CHA2DS2-VASc, and HAS-BLED scores were also significant predictors of renal function deterioration (P < 0.0001). The incidences of renal function deterioration were 1.4, 3.4, 10.5 and 11.7 % in patients with CHADS2 score of 0, 1, 2 and ≥3, respectively. As to CHA2DS2-VASc score, renal function deterioration occurred in 0, 1.7, 9.8 and 15.0 % with a score of 0, 1-2, 3-4 and ≥5, respectively. In the Suita Study of the general population, on the other hand, 122 of 2140 participants with eCCr ≥ 50 ml/min at baseline (5.7 %) fell into the eCCr < 50 ml/min during about 2 years. The incidence of renal function deterioration increased with the CHADS2 score in the general population as well as in our patients. Renal function deterioration was not uncommon and was associated with more frequent adverse events including major bleeding in NVAF patients with anticoagulation therapy. CHADS2, CHA2DS2-VASc, and HAS-BLED scores may be useful as an index of predicting renal function deterioration.
Mesenchymal-endothelial-transition contributes to cardiac neovascularization
Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun
2014-01-01
Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562
Atiq, Mehnaz; Ikram, Anum; Hussain, Batool M; Saleem, Bakhtawar
2017-06-01
Fetuses of diabetic mothers may have structural or functional cardiac abnormalities which increase morbidity and mortality. Isolated functional abnormalities have been identified in the third trimester. The aim of the present study was to assess fetal cardiac function (systolic, diastolic, and global myocardial performance) in the second trimester in mothers with gestational diabetes, and also to relate cardiac function with glycemic control. Mothers with gestational diabetes mellitus referred for fetal cardiac evaluation in the second trimester (between 19 and 24 weeks) from March 2015 to February 2016 were enrolled as case subjects in this study. Non-diabetic mothers who had a fetal echocardiogram done between 19 and 24 weeks for other indications were enrolled as controls. Functional cardiac variables showed a statistically significant difference in isovolumetric relaxation and contraction times and the myocardial performance index and mitral E/A ratios in the gestational diabetic group (p = 0.003). Mitral annular plane systolic excursion was significantly less in the diabetic group (p = 0.01). The only functional cardiac variable found abnormal in mothers with poor glycemic control was the prolonged isovolumetric relaxation time. Functional cardiac abnormalities can be detected in the second trimester in fetuses of gestational diabetic mothers and timely intervention can improve postnatal outcomes.
The cardiac patient during Ramadan and Hajj.
Chamsi-Pasha, Hassan; Ahmed, Waqar H; Al-Shaibi, Khaled F
2014-10-01
The holy month of Ramadan is one of the five pillars of Islam. During this month, fasting Muslims refrain from eating, drinking, smoking, and sex from dawn until sunset. Although the Quran exempts sick people from the duty of fasting, it is not uncommon for many heart disease patients to fast during Ramadan. Despite the fact that more than a billion Muslims worldwide fast during Ramadan, there is no clear consensus on its effects on cardiac disease. Some studies have shown that the effects of fasting on stable patients with cardiac disease are minimal and the majority of patients with stable cardiac illness can endure Ramadan fasting with no clinical deterioration. Fasting during Ramadan does not seem to increase hospitalizations for congestive heart failure. However, patients with decompensated heart failure or those requiring large doses of diuretics are strongly advised not to fast, particularly when Ramadan falls in summer. Patients with controlled hypertension can safely fast. However, patients with resistant hypertension should be advised not to fast until their blood pressure is reasonably controlled. Patients with recent myocardial infarction, unstable angina, recent cardiac intervention or cardiac surgery should avoid fasting. Physician advice should be individualized and patients are encouraged to seek medical advice before fasting in order to adjust their medications, if required. The performance of the Hajj pilgrimage is another pillar of Islam and is obligatory once in the lifetime for all adult Muslims who are in good health and can afford to undertake the journey. Hajj is a physically, mentally, emotionally, and spiritually demanding experience. Medical checkups one or two months before leaving for Hajj is warranted, especially for those with chronic illnesses such as cardiovascular disease. Patients with heart failure, uncontrolled hypertension, serious arrhythmias, unstable angina, recent myocardial infarction, or cardiac surgery should be considered unfit for undertaking the Hajj pilgrimage.
de Rooij, Mariëtte; van der Leeden, Marike; Heymans, Martijn W; Holla, Jasmijn F M; Häkkinen, Arja; Lems, Willem F; Roorda, Leo D; Veenhof, Cindy; Sanchez-Ramirez, Diana C; de Vet, Henrica C W; Dekker, Joost
2016-04-01
To systematically summarize the literature on the course of pain in patients with knee osteoarthritis (OA), prognostic factors that predict deterioration of pain, the course of physical functioning, and prognostic factors that predict deterioration of physical functioning in persons with knee OA. A search was conducted in PubMed, CINAHL, Embase, Psych-INFO, and SPORTDiscus up to January 2014. A meta-analysis and a qualitative data synthesis were performed. Of the 58 studies included, 39 were of high quality. High heterogeneity across studies (I(2) >90%) and within study populations (reflected by large SDs of change scores) was found. Therefore, the course of pain and physical functioning was interpreted to be indistinct. We found strong evidence for a number of prognostic factors predicting deterioration in pain (e.g., higher knee pain at baseline, bilateral knee symptoms, and depressive symptoms). We also found strong evidence for a number of prognostic factors predicting deterioration in physical functioning (e.g., worsening in radiographic OA, worsening of knee pain, lower knee extension muscle strength, lower walking speed, and higher comorbidity count). Because of high heterogeneity across studies and within study populations, no conclusions can be drawn with regard to the course of pain and physical functioning. These findings support current research efforts to define subgroups or phenotypes within knee OA populations. Strong evidence was found for knee characteristics, clinical factors, and psychosocial factors as prognostics of deterioration of pain and physical functioning. © 2016, American College of Rheumatology.
The heart and potassium: a banana republic.
Khan, Ehsan; Spiers, Christine; Khan, Maria
2013-03-01
The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.
Wattmo, Carina; Wallin, Åsa K
2017-01-01
Whether age at onset influences functional deterioration in Alzheimer disease (AD) is unclear. We, therefore, investigated risk factors for progression in activities of daily living (ADL) and nursing home placement (NHP) in cholinesterase inhibitor (ChEI)-treated patients with early-onset AD (EOAD) versus late-onset AD (LOAD). This 3-year, prospective, observational, multicenter study included 1,017 participants with mild-to-moderate AD; 143 had EOAD (onset <65 years) and 874 LOAD (onset ≥65 years). Possible sociodemographic and clinical factors that could affect functional outcome and NHP were analyzed using mixed-effects models and logistic regression, respectively. Younger individuals exhibited longer illness duration before AD diagnosis, whereas 6-month functional response to ChEI therapy, 3-year changes in ADL capacities, time from diagnosis to NHP, and survival time in nursing homes were similar between the groups. In LOAD, a higher ChEI dose, no antidepressant use, and lower education level were protective factors for slower instrumental ADL (IADL) decline. In EOAD, antihypertensives/cardiac therapy implied faster IADL progression but lower risk of NHP. This study highlights the clinical importance of an earlier diagnosis and treatment initiation and the need for functional evaluations in EOAD. Despite the age differences between EOAD and LOAD, a similar need for nursing homes was observed.
Churpek, Matthew M; Yuen, Trevor C; Winslow, Christopher; Meltzer, David O; Kattan, Michael W; Edelson, Dana P
2016-02-01
Machine learning methods are flexible prediction algorithms that may be more accurate than conventional regression. We compared the accuracy of different techniques for detecting clinical deterioration on the wards in a large, multicenter database. Observational cohort study. Five hospitals, from November 2008 until January 2013. Hospitalized ward patients None Demographic variables, laboratory values, and vital signs were utilized in a discrete-time survival analysis framework to predict the combined outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models (one using linear predictor terms and a second utilizing restricted cubic splines) were compared to several different machine learning methods. The models were derived in the first 60% of the data by date and then validated in the next 40%. For model derivation, each event time window was matched to a non-event window. All models were compared to each other and to the Modified Early Warning score, a commonly cited early warning score, using the area under the receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the validation dataset, the random forest model was the most accurate model (AUC, 0.80 [95% CI, 0.80-0.80]). The logistic regression model with spline predictors was more accurate than the model utilizing linear predictors (AUC, 0.77 vs 0.74; p < 0.01), and all models were more accurate than the MEWS (AUC, 0.70 [95% CI, 0.70-0.70]). In this multicenter study, we found that several machine learning methods more accurately predicted clinical deterioration than logistic regression. Use of detection algorithms derived from these techniques may result in improved identification of critically ill patients on the wards.
Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress
Liu, Li; Goldberg, Ira J.
2015-01-01
Elevated cardiac triacylglycerol (TAG) content is traditionally equated with cardiolipotoxicity and suggested to be a culprit in cardiac dysfunction. However, previous work demonstrated that myosin heavy-chain–mediated cardiac-specific overexpression of diacylglycerol transferase 1 (MHC-DGAT1), the primary enzyme for TAG synthesis, preserved cardiac function in two lipotoxic mouse models despite maintaining high TAG content. Therefore, we examined whether increased cardiomyocyte TAG levels due to DGAT1 overexpression led to changes in cardiac TAG turnover rates under normoxia and ischemia-reperfusion conditions. MHC-DGAT1 mice had elevated TAG content and synthesis rates, which did not alter cardiac function, substrate oxidation, or myocardial energetics. MHC-DGAT1 hearts had ischemia-induced lipolysis; however, when a physiologic mixture of long-chain fatty acids was provided, enhanced TAG turnover rates were associated with improved functional recovery from low-flow ischemia. Conversely, exogenous supply of palmitate during reperfusion suppressed elevated TAG turnover rates and impaired recovery from ischemia in MHC-DGAT1 hearts. Collectively, this study shows that elevated TAG content, accompanied by enhanced turnover, does not adversely affect cardiac function and, in fact, provides cardioprotection from ischemic stress. In addition, the results highlight the importance of exogenous supply of fatty acids when assessing cardiac lipid metabolism and its relationship with cardiac function. PMID:25858561
Myocardin-related transcription factors are required for cardiac development and function
Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda
2016-01-01
Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-01-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408
Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal
2016-06-01
In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.
Slottosch, Ingo; Liakopoulos, Oliver; Kuhn, Elmar; Deppe, Antje; Lopez-Pastorini, Alberto; Schwarz, David; Neef, Klaus; Choi, Yeong-Hoon; Sterner-Kock, Anja; Jung, Kristina; Mühlfeld, Christian; Wahlers, Thorsten
2014-12-01
Ischaemia/reperfusion (I/R) injury of the lungs contributes to pulmonary dysfunction after cardiac surgery with cardiopulmonary bypass (CPB), leading to increased morbidity and mortality of patients. This study investigated the value of controlled lung reperfusion strategies on lung ischaemia-reperfusion injury in a porcine CPB model. Pigs were subjected to routine CPB for 120 min with 60 min of blood cardioplegic cardiac arrest (CCA). Following CCA, the uncontrolled reperfusion (UR, n = 6) group was conventionally weaned from CPB. Two groups underwent controlled lung reperfusion strategies (CR group: controlled reperfusion conditions, n = 6; MR group: controlled reperfusion conditions and modified reperfusate, n = 6) via the pulmonary artery before CPB weaning. Sham-operated pigs (n = 7) served as controls. Animals were followed up until 4 h after CPB. Pulmonary function, haemodynamics, markers of inflammation, endothelial injury and oxidative stress as well as morphological lung alterations were analysed. CPB (UR group) induced deterioration of pulmonary function (lung mechanics, oxygenation index and lung oedema). Also, controlled lung reperfusion groups (CR and MR) presented with pulmonary dysfunction after CPB. However, compared with UR, controlled lung reperfusion strategies (CR and MR) improved lung mechanics and reduced markers of oxidative stress, but without alteration of haemodynamics, oxygenation, inflammation, endothelial injury and lung morphology. Both controlled reperfusion groups were similar without relevant differences. Controlled lung reperfusion strategies attenuated a decrease in lung mechanics and an increase in oxidative stress, indicating an influence on CPB-related pulmonary injury. However, they failed to avoid completely CPB-related lung injury, implying the need for additional strategies given the multifactorial pathophysiology of postoperative pulmonary dysfunction. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Management of unstable arrhythmias in cardiogenic shock.
Saidi, Abdulfattah; Akoum, Nazem; Bader, Feras
2011-08-01
Atrial and ventricular arrhythmias commonly arise in the setting of cardiogenic shock and often result in hemodynamic deterioration. Causative factors include myocardial ischemia, volume overload, and metabolic disturbances. Correcting these factors plays an important role in managing arrhythmias in this setting. Ventricular arrhythmias are more ominous compared to atrial arrhythmias but both require prompt intervention with electrical shock and anti-arrhythmic drug suppression. Coronary reperfusion is key to improving survival, including reducing the risk of sudden cardiac arrest, in acute myocardial infarction. Case series have also demonstrated the value of intra-aortic balloon pump counter-pulsation in suppressing ventricular arrhythmias in cardiogenic shock. The mechanism of arrhythmia suppression may be due to improved coronary perfusion and afterload reduction. Percutaneous ventricular assist device placement may be effective in this setting; however, data addressing this specific endpoint are lacking. Anti-arrhythmic drug options for ventricular and atrial arrhythmia suppression, in the setting of cardiogenic shock, are relatively limited. Common class I agents are excluded due to the inherent abnormal cardiac structure and function in the setting of cardiogenic shock. Class III drug options include dofetilide and amiodarone. The other Class III agents, sotalol and dronedarone, are excluded due to associated mortality observed in the SWORD and ANDROMEDA trials, respectively. Dofetilide is renally excreted and causes QT interval prolongation. Care should be taken to avoid excessive drug accumulation due to poor kidney perfusion and function. Dofetilide is approved for use for atrial arrhythmias and has not been studied for ventricular arrhythmia suppression. The DIAMOND-CHF trial established its safety in the setting of heart failure. Amiodarone is very effective in suppressing both atrial and ventricular arrhythmias. It is often the drug of choice in heart failure. Its off-label use for atrial arrhythmias is very common. Care should be taken with intravenous amiodarone to avoid hypotension.
[Impact of thymic function in age-related immune deterioration].
Ferrando-Martínez, Sara; de la Fuente, Mónica; Guerrero, Juan Miguel; Leal, Manuel; Muñoz-Fernández, M Ángeles
2013-01-01
Age-related biological deterioration also includes immune system deterioration and, in consequence, a rise in the incidence and prevalence of infections and cancers, as well as low responses to vaccination strategies. Out of all immune cell subsets, T-lymphocytes seem to be involved in most of the age-related defects. Since T-lymphocytes mature during their passage through the thymus, and the thymus shows an age-related process of atrophy, thymic regression has been proposed as the triggering event of this immune deterioration in elderly people. Historically, it has been accepted that the young thymus sets the T-lymphocyte repertoire during the childhood, whereupon atrophy begins until the elderly thymus is a non-functional evolutionary trace. However, a rising body of knowledge points toward the thymus functioning during adulthood. In the elderly, higher thymic function is associated with a younger immune system, while thymic function failure is associated with all-cause mortality. Therefore, any new strategy focused on the improvement of the elderly quality of life, especially those trying to influence the immune system, should take into account, together with peripheral homeostasis, thymus function as a key element in slowing down age-related decline. Copyright © 2012 SEGG. Published by Elsevier Espana. All rights reserved.
Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.
Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K
2018-01-01
Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.
Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa
2015-02-09
False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.
Psychotic experiences and social functioning: a longitudinal study.
Sullivan, Sarah; Lewis, Glyn; Wiles, Nicola; Thompson, Andrew; Evans, Jonathan
2013-07-01
Both adolescent psychotic experiences and poor social functioning precede psychotic disorder; however, whether poor social functioning is also a risk factor for rather than a consequence of adolescent psychotic experiences is not clear. We investigate this question as well as whether deterioration in social functioning confers the strongest risk of psychotic experiences and whether theory of mind ability mediates any association, in a large community sample. Measures of social functioning (peer problems and prosocial behaviour) at ages 7 and 11 and theory of mind ability and psychotic experiences at age 12 were collected in a large community sample (n = 3,592). The association between social functioning and psychotic experiences was examined using logistic regression models at each age and any additional impact of deterioration in social functioning between ages 7 and 11. The potential role of theory of mind as a mediator was also investigated. Peer problems at both ages were independently associated with psychotic experiences at age 12 (7 years OR 1.11 95 % CI 1.03, 1.20), (11 years OR 1.13 95 % CI 1.05, 1.22). Theory of mind ability did not mediate this association. The association was not restricted to those with deteriorating social functioning (interaction term; p = 0.49). Poor childhood social functioning precedes adolescent psychotic experiences. There was no evidence that those with deteriorating social functioning were at greatest risk.
IT Infrastructure Projects: A Framework for Analysis. ECAR Research Bulletin
ERIC Educational Resources Information Center
Grochow, Jerrold M.
2014-01-01
Just as maintaining a healthy infrastructure of water delivery and roads is essential to the functioning of cities and towns, maintaining a healthy infrastructure of information technology is essential to the functioning of universities. Deterioration in IT infrastructure can lead to deterioration in research, teaching, and administration. Given…
Lu, Yi; Zhao, Ming; Liu, Jin-Jun; He, Xi; Yu, Xiao-Jiang; Liu, Long-Zhu; Sun, Lei; Chen, Li-Na; Zang, Wei-Jin
2017-09-01
Cardiac hypertrophy is associated with autonomic imbalance, characterized by enhanced sympathetic activity and withdrawal of parasympathetic control. Increased parasympathetic function improves ventricular performance. However, whether pyridostigmine, a reversible acetylcholinesterase inhibitor, can offset cardiac hypertrophy induced by pressure overload remains unclear. Hence, this study aimed to determine whether pyridostigmine can ameliorate pressure overload-induced cardiac hypertrophy and identify the underlying mechanisms. Rats were subjected to either sham or constriction of abdominal aorta surgery and treated with or without pyridostigmine for 8 weeks. Vagal activity and cardiac function were determined using PowerLab. Cardiac hypertrophy was evaluated using various histological stains. Protein markers for cardiac hypertrophy were quantitated by Western blot and immunoprecipitation. Pressure overload resulted in a marked reduction in vagal discharge and a profound increase in cardiac hypertrophy index and cardiac dysfunction. Pyridostigmine increased the acetylcholine levels by inhibiting acetylcholinesterase in rats with pressure overload. Pyridostigmine significantly attenuated cardiac hypertrophy based on reduction in left ventricular weight/body weight, suppression of the levels of atrial natriuretic peptide, brain natriuretic peptide and β-myosin heavy chain, and a reduction in cardiac fibrosis. These effects were accompanied by marked improvement of cardiac function. Additionally, pyridostigmine inhibited the CaN/NFAT3/GATA4 pathway and suppressed Orai1/STIM1 complex formation. In conclusion, pressure overload resulted in cardiac hypertrophy, cardiac dysfunction and a significant reduction in vagal discharge. Pyridostigmine attenuated cardiac hypertrophy and improved cardiac function, which was related to improved cholinergic transmission efficiency (decreased acetylcholinesterase and increased acetylcholine), inhibition of the CaN/NFAT3/GATA4 pathway and suppression of the interaction of Orai1/STIM1. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Kuppens, R J; Mahabier, E F; Bakker, N E; Siemensma, E P C; Donze, S H; Hokken-Koelega, A C S
2016-11-16
Patients with Prader-Willi syndrome (PWS) have a cognitive impairment. Growth hormone (GH) treatment during childhood improves cognitive functioning, while cognition deteriorates in GH-untreated children with PWS. Cessation of GH treatment at attainment of adult height (AH) might deteriorate their GH-induced improved cognition, while continuation might benefit them. We, therefore, investigated the effects of placebo versus GH administration on cognition in young adults with PWS who were GH-treated for many years during childhood and had attained AH. Two-year, randomized, double-blind, placebo-controlled cross-over study in 25 young adults with PWS. Cross-over intervention with placebo and GH (0.67 mg/m 2 /day), both during 1 year. Total (TIQ), verbal (VIQ) and performance IQ (PIQ) did not deteriorate during 1 year of placebo, compared to GH treatment (p > 0.322). Young adults with a lower TIQ had significantly more loss of TIQ points during placebo versus GH, in particular VIQ decreased more in those with a lower VIQ. The effect of placebo versus GH on TIQ, VIQ and PIQ was not different for gender or genotype. Compared to GH treatment, 1 year of placebo did not deteriorate cognitive functioning of GH-treated young adults with PWS who have attained AH. However, patients with a lower cognitive functioning had more loss in IQ points during placebo versus GH treatment. The reassuring finding that 1 year of placebo does not deteriorate cognitive functioning does, however, not exclude a gradual deterioration of cognitive functioning on the long term. ISRCTN24648386 , NTR1038 , Dutch Trial Register, www.trialregister.nl . Registered 16 August 2007.
Wu, Jia-Rong; Lennie, Terry A; Frazier, Susan K; Moser, Debra K
2016-01-01
Health-related quality of life (HRQOL), functional status, and cardiac event-free survival are outcomes used to assess the effectiveness of interventions in patients with heart failure (HF). However, the nature of the relationships among HRQOL, functional status, and cardiac event-free survival remains unclear. The purpose of this study is to examine the nature of the relationships among HRQOL, functional status, and cardiac event-free survival in patients with HF. This was a prospective, observational study of 313 patients with HF that was a secondary analysis from a registry. At baseline, patient demographic and clinical data were collected. Health-related quality of life was assessed using the Minnesota Living With Heart Failure Questionnaire and functional status was measured using the Duke Activity Status Index. Cardiac event-free survival data were obtained by patient interview, hospital database, and death certificate review. Multiple linear and Cox regressions were used to explore the relationships among HRQOL, functional status, and cardiac event-free survival while adjusting for demographic and clinical factors. Participants (n = 313) were men (69%), white (79%), and aged 62 ± 11 years. Mean left ventricular ejection fraction was 35% ± 14%. The mean HRQOL score of 32.3 ± 20.6 indicated poor HRQOL. The mean Duke Activity Status Index score of 16.2 ± 12.9 indicated poor functional status. Cardiac event-free survival was significantly worse in patients who had worse HRQOL or poorer functional status. Patients who had better functional status had better HRQOL (P < .001). Health-related quality of life was not a significant predictor of cardiac event-free survival after entering functional status in the model (P = .54), demonstrating that it was a mediator of the relationship between HRQOL and outcome. Functional status was a mediator between HRQOL and cardiac event-free survival. These data suggest that intervention studies to improve functional status are needed.
Enzyme replacement therapy for Fabry disease: some answers but more questions.
Alfadhel, Majid; Sirrs, Sandra
2011-01-01
Fabry disease (FD) is a multisystem, X-linked disorder of glycosphingolipid metabolism caused by enzyme deficiency of α-galactosidase A. Affected patients have symptoms including acroparesthesias, angiokeratomas, and hypohidrosis. More serious manifestations include debilitating pain and gastrointestinal symptoms, proteinuria and gradual deterioration of renal function leading to end-stage renal disease, hypertrophic cardiomyopathy, and stroke. Heterozygous females may have symptoms as severe as males with the classic phenotype. Before 2001, treatment of patients with FD was supportive. The successful development of enzyme replacement therapy (ERT) has been a great advancement in the treatment of patients with FD and can stabilize renal function and cardiac size, as well as improve pain and quality of life of patients with FD. In this review, we have provided a critical appraisal of the literature on the effects of ERT for FD. This analysis shows that data available on the treatment of FD are often derived from studies which are not controlled, rely on surrogate markers, and are of insufficient power to detect differences on hard clinical endpoints. Further studies of higher quality are needed to answer the questions that remain concerning the efficacy of ERT for FD.
Wang, Fang; Travins, Jeremy; Lin, Zhizhong; Si, Yaguang; Chen, Yue; Powe, Josh; Murray, Stuart; Zhu, Dongwei; Artin, Erin; Gross, Stefan; Santiago, Stephanie; Steadman, Mya; Kernytsky, Andrew; Straley, Kimberly; Lu, Chenming; Pop, Ana; Struys, Eduard A; Jansen, Erwin E W; Salomons, Gajja S; David, Muriel D; Quivoron, Cyril; Penard-Lacronique, Virginie; Regan, Karen S; Liu, Wei; Dang, Lenny; Yang, Hua; Silverman, Lee; Agresta, Samuel; Dorsch, Marion; Biller, Scott; Yen, Katharine; Cang, Yong; Su, Shin-San Michael; Jin, Shengfang
2016-11-01
D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.
Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease.
Höllmer, M; Willesen, J L; Tolver, A; Koch, J
2017-02-01
Myxomatous mitral valve disease (MMVD) induces progressive left atrial (LA) enlargement. The LA modulates left ventricular filling and performance through its reservoir, conduit, and contractile function. Assessment of LA size and function may provide valuable information on the level of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD. This prospective study included 205 client-owned dogs of different breeds, 114 healthy dogs, and 91 dogs with MMVD of different disease severities. Using two-dimensional echocardiography, the biplane area-length method was applied to assess LA volume and calculate volumetric indices of LA reservoir, conduit, and contractile function. Left atrial volume and LA stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume <2.25mL/kg was the optimal cut off identified for excluding congestive heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100%. An active LA emptying fraction <24% and/or a LA expansion index <126% were suggestive of congestive heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively. Dogs with MMVD appear to have larger LA volumes with poorer LA function. Deteriorating LA function, characterized by a decreasing reservoir and active contractile function, was evident in dogs with MMVD with increasing disease severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Guiducci, Letizia; Burchielli, Silvia; Chubuchny, Vlad; Sicari, Rosa; Liistro, Tiziana; Corciu, Anca I; Pardini, Silvia; Di Cecco, Pietro; Manfredi, Samantha; Bucci, Marco; Salvadori, Piero A; Andreassi, Maria Grazia; Iozzo, Patricia
2011-12-01
Cardiovascular and metabolic vulnerability have an early developmental origin. We evaluated the potential influence of innate life factors, including the metabolism of the mother and the sex of the offspring, on cardiometabolic risk, including organ-specific insulin resistance, subclinical cardiac dysfunction, and DNA oxidative damage throughout the lifespan. Two female minipigs were studied during late pregnancy, and their offspring were restudied at the ages of 1 mo (n = 11), 6 mo (n = 9), and 9 mo (n = 10, 6 offspring and 4 age-matched animals). We measured insulin-mediated glucose disposal in skeletal muscle, adipose tissue, liver, and myocardium using (18)F-FDG PET; cardiac function using 2-dimensional strain echocardiography; and DNA damage using the comet assay. Glucose metabolism showed the 2 sows to have differences similar to those in their respective 1-mo-old offspring. Over time, compared with female animals, male animals developed myocardial insulin resistance (male animals vs. female animals: 34 ± 5 vs. 58 ± 8 μmol/min/kg at 6 mo, P = 0.03; 29 ± 8 vs. 60 ± 7 μmol/min/kg at 9 mo, P = 0.02). Cardiac function progressively deteriorated in male animals from 1 mo (radial strain, -60% ± 7%; strain rate, -5.4 ± 0.9 s(-1)) to 6 mo (radial strain, -41% ± 5%; strain rate, -2.5 ± 0.2 s(-1), P < 0.05 vs. 1 mo) and 9 mo (radial strain, -32% ± 5%; strain rate, -1.6 ± 0.2 s(-1), P < 0.01 vs. 1 mo) and was significantly different from that in female animals (radial strain, -48% ± 4%; strain rate, -3.1 ± 0.2 s(-1), P < 0.05 and P < 0.01, respectively). Oxidative damage was reduced in female animals and increased in male animals across age categories (P < 0.05). The metabolism of minipig offspring is influenced by maternal insulin sensitivity during early life stages. Sex-related effects prevail thereafter in healthy minipigs, documenting a precocious onset of cardiometabolic vulnerability in male offspring.
Rørtveit, Sverre; Meland, Eivind
2010-05-04
Training of lay first responder personnel situated closer to the potential victims than medical professionals is a strategy potentially capable of shortening the interval between collapse and start of cardiopulmonary resuscitation (CPR) in cases of out-of-hospital cardiac arrest. In this study we trained lay first responders personnel in basic life support (BLS) and defibrillation for cases of cardiac arrest and suspected acute myocardial infarction (AMI). Forty-two lay first responders living in remote areas or working in industries in the island community of Austevoll, Western Norway, were trained in CPR and defibrillation. We placed particular emphasis on the first responders being able to defibrillate a primary ventricular fibrillation (PVF) in patients with AMI. The trainees were organised in four teams to attend victims of AMI and cardiac arrest while awaiting the arrival of the community emergency medical services. The purpose of the study was to find out whether the teams were able to function during the five-year study project, and to examine whether lives could be saved. The first responders completed questionnaires each year on their experiences of participation. Data on the medical actions of the teams were also collected. By the end of the project all groups were functioning. The questionnaires evidenced a reasonable degree of motivation and self-evaluated competence in both types of group organisation, but in spite of this attrition effects in the first responders were considerable. The first responders were called out on 24 occasions, for a total of 17 patients. During the study period no case of PVF occurred after the arrival of the first responders, and the number of AMIs was very low, strongly deviating from what was anticipated. No lives were saved by the project. The teams were sustained for almost five years without any significant deterioration of self-reported stress or mastering, but still showed attrition effects. Evaluated as a medical project the intervention was not successful, but the small scale prevents us from drawing firm conclusions on this aspect.
2010-01-01
Background Training of lay first responder personnel situated closer to the potential victims than medical professionals is a strategy potentially capable of shortening the interval between collapse and start of cardiopulmonary resuscitation (CPR) in cases of out-of-hospital cardiac arrest. In this study we trained lay first responders personnel in basic life support (BLS) and defibrillation for cases of cardiac arrest and suspected acute myocardial infarction (AMI). Methods Forty-two lay first responders living in remote areas or working in industries in the island community of Austevoll, Western Norway, were trained in CPR and defibrillation. We placed particular emphasis on the first responders being able to defibrillate a primary ventricular fibrillation (PVF) in patients with AMI. The trainees were organised in four teams to attend victims of AMI and cardiac arrest while awaiting the arrival of the community emergency medical services. The purpose of the study was to find out whether the teams were able to function during the five-year study project, and to examine whether lives could be saved. The first responders completed questionnaires each year on their experiences of participation. Data on the medical actions of the teams were also collected. Results By the end of the project all groups were functioning. The questionnaires evidenced a reasonable degree of motivation and self-evaluated competence in both types of group organisation, but in spite of this attrition effects in the first responders were considerable. The first responders were called out on 24 occasions, for a total of 17 patients. During the study period no case of PVF occurred after the arrival of the first responders, and the number of AMIs was very low, strongly deviating from what was anticipated. No lives were saved by the project. Conclusions The teams were sustained for almost five years without any significant deterioration of self-reported stress or mastering, but still showed attrition effects. Evaluated as a medical project the intervention was not successful, but the small scale prevents us from drawing firm conclusions on this aspect. PMID:20441592
Cardiac troponin T and fast skeletal muscle denervation in ageing
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo
2017-01-01
Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Conclusions Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast‐twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age‐related decline in muscle function. PMID:28419739
The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.
Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W
2016-01-01
Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.
NASA Astrophysics Data System (ADS)
Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel
2015-03-01
The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.
Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha
2018-05-09
Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.
Subramanian, Stalin R; Akram, Rakhshanda; Velayati, Arash; Chadow, Hal
2013-01-01
A 40-year-old man with a medical history of hypertension was admitted for weight loss, generalised weakness, joint pains and mottling of fingertips. The initial laboratory data revealed microangiopathic haemolytic anaemia, thrombocytopenia and acute renal failure. Intravenous steroids were started for possible diagnosis of systemic lupus erythematosus based on admission assessment. Intravenous immunoglobulin and plasmapharesis were subsequently added to the treatment plan to cover thrombotic thrombocytopenic purpura while his autoimmune panel was pending. The echocardiogram study on day 2 revealed cardiac tamponade for which he underwent pericardiocentesis and right heart catheterisation. The atrial waveforms postpericardiocentesis demonstrated effusive–constrictive pericarditis. His clinical condition kept on deteriorating with reaccumulation of pericardial effusion and further complicated by hemoperitoneum and colonic obstruction. He had cardiorespiratory arrest on his fourth admission day and was not revived. Anti-Scl-70 antibody came back positive. Autopsy findings confirmed the presence of fibrinous pericarditis and hemoperitoneum. PMID:23853085
Serpi, Raisa; Tolonen, Anna‐Maria; Tenhunen, Olli; Pieviläinen, Oskari; Kubin, Anna‐Maria; Vaskivuo, Tommi; Soini, Ylermi; Kerkelä, Risto; Leskinen, Hanna; Ruskoaho, Heikki
2009-01-01
Abstract There is strong evidence for the use of angiotensin converting enzyme inhibitors and beta‐blockers to reduce morbidity and mortality in patients with myocardial infarction (MI), whereas the effect of angiotensin receptor blockers is less clear. We evaluated the effects of an angiotensin receptor blocker losartan and a beta‐blocker metoprolol on left ventricular (LV) remodeling, c‐kit+ cells, proliferation, fibrosis, apoptosis, and angiogenesis using a model of coronary ligation in rats. Metoprolol treatment for 2 weeks improved LV systolic function. In contrast, losartan triggered deleterious structural remodeling and functional deterioration of LV systolic function, ejection fraction being 41% and fractional shortening 47% lower in losartan group than in controls 2 weeks after MI. The number of c‐kit+ cells as well as expression of Ki‐67 was increased by metoprolol. Losartan‐induced thinning of the anterior wall and ventricular dilation were associated with increased apoptosis and fibrosis, while losartan had no effect on the expression of c‐kit or Ki‐67. Metoprolol or losartan had no effect on microvessel density. These results demonstrate that beta‐blocker treatment attenuated adverse remodeling via c‐kit+ cells and proliferation, whereas angiotensin receptor blocker‐induced worsening of LV systolic function was associated with increased apoptosis and fibrosis in the peri‐infarct region. PMID:20443934
Weltman, Nathan Y.; Ojamaa, Kaie; Savinova, Olga V.; Chen, Yue-Feng; Schlenker, Evelyn H.; Zucchi, Riccardo; Saba, Alessandro; Colligiani, Daria; Pol, Christine J.
2013-01-01
Thyroid hormones (THs) play a pivotal role in regulating cardiovascular homeostasis. To provide a better understanding of the coordinated processes that govern cardiac TH bioavailability, this study investigated the influence of serum and cardiac TH status on the expression of TH transporters and cytosolic binding proteins in the myocardium. In addition, we sought to determine whether the administration of T3 (instead of T4) improves the relationship between THs in serum and cardiac tissue and cardiac function over a short-term treatment period. Adult female Sprague Dawley rats were made hypothyroid by 7 weeks treatment with the antithyroid drug 6-n-propyl-2-thiouracil (PTU). After establishing hypothyroidism, rats were assigned to 1 of 5 graded T3 dosages plus PTU for a 2-week dose-response experiment. Untreated, age-matched rats served as euthyroid controls. PTU was associated with depressed serum and cardiac tissue T3 and T4 levels, arteriolar atrophy, altered TH transporter and cytosolic TH binding protein expression, fetal gene reexpression, and cardiac dysfunction. Short-term administration of T3 led to a mismatch between serum and cardiac tissue TH levels. Normalization of serum T3 levels was not associated with restoration of cardiac tissue T3 levels or cardiac function. In fact, a 3-fold higher T3 dosage was necessary to normalize cardiac tissue T3 levels and cardiac function. Importantly, this study provides the first comprehensive data on the relationship between altered TH status (serum and cardiac tissue), cardiac function, and the coordinated in vivo changes in cardiac TH membrane transporters and cytosolic TH binding proteins in altered TH states. PMID:23594789
Piccinino, Cristina; Giubertoni, Ailia; Zanaboni, Jacopo; Gravellone, Miriam; Sola, Daniele; Rosso, Roberta; Ferrarotti, Lorena; Marino, Paolo Nicola
2017-11-01
Increased right atrial size is related to adverse prognosis in pulmonary hypertension. The potential incremental value of right atrial function assessment is still unclear. We tested the relationship between right atrial two-dimensional speckle-tracking echocardiography impairment and hemodynamic, functional and clinical deterioration in patients with pulmonary hypertension. We prospectively evaluated 36 patients (27 female, 9 male; mean age 68 ± 13 years) with suspected pulmonary hypertension undergoing right heart catheterization and 16 matched controls. All patients underwent baseline evaluation by New York Heart Association functional class, 6-min walking test, brain natriuretic peptide (BNP), and standard two-dimensional echocardiography in less than 48 h of right heart catheterization. Right atrial two-dimensional speckle-tracking echocardiography was assessed by averaging all segments in standard four-chamber apical view. Right atrial global integral strain was significantly lower in patients compared with controls (11.40 ± 5.22% vs. 25.72 ± 5.95 P < 0.001). Moreover, right atrial global strain, but not right atrial area or volume, was correlated with invasively measured cardiac index (CI) (r = 0.72; P < 0.0001) and pulmonary vascular resistances in all patients, even though stronger in subjects with precapillary pulmonary hypertension (r = -0.42, P = 0.018; r = -0.54, P = 0.007 respectively; P = 0.007). It was also correlated with New York Heart Association (P = 0.027), BNP (P = 0.002), and 6-min walking test (P = 0.006). After multivariate analysis including right atrial volume, tricuspid annular plane systolic excursion, left atrial strain, and BNP, right atrial global strain showed the strongest correlation with CI. Area under the curve optimal cutoff for predicting CI at least 2.4 l/min/m was 17% (area under the curve: 0.83, sensitivity: 90%, specificity: 54%). Right atrial global strain can identify right atrial functional impairment before structural changes and may be implemented in a comprehensive, noninvasive right heart assessment for diagnosis and follow-up of pulmonary hypertension patients.
Functional effects of losartan in hypertrophic cardiomyopathy-a randomised clinical trial.
Axelsson, Anna; Iversen, Kasper; Vejlstrup, Niels; Ho, Carolyn Y; Havndrup, Ole; Kofoed, Klaus F; Norsk, Jakob; Jensen, Morten; Bundgaard, Henning
2016-02-15
There is a lack of disease-modifying treatments in hypertrophic cardiomyopathy (HCM). The aim of this randomised, placebo-controlled study was to assess if losartan could improve or ameliorate deterioration of cardiac function and exercise capacity. Echocardiography, exercise test and MRI or CT were performed at baseline and after 12 months in 133 patients (52±13 years, 35% female) randomly allocated to losartan (100 mg/day) or placebo. Losartan had no effect on systolic function compared with placebo (mean difference for left ventricular ejection fraction (LVEF) 0% (95% CI -3% to 4%), p=0.84 or global longitudinal strain 0.7% (95% CI -0.2% to 1.6%), p=0.13). Neither Doppler measures of diastolic function, left atrial volume (mean difference 2 mL/m(2) (95% CI -4 to 8 mL/m(2)) p=0.53) nor exercise capacity (mean difference -0.3 metabolic equivalents (METS) (95% CI -1.0 to 0.3 METS), p=0.28) differed between the treatment groups. At follow-up, there was further progression of disease, with the most prominent impairment being an increase in left atrial volume of 6 mL/m(2) (95% CI 3 to 9 mL/m(2), p<0.0001) in both groups combined. LVEF decreased (mean change -2%, (95% CI -3% to -1%), p=0.037) and 4% of patients had end-stage HCM with a LVEF of less than 50% at the end of the study. Treatment with losartan had no effect on cardiac function or exercise capacity compared with placebo. Losartan fail to improve myocardial performance and failed to alter the progression of the disease. These findings do not support the use of angiotensin II receptor blockers as disease modifiers in adult patients with overt HCM. NCT01447654-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Alter, P; Rupp, H; Rominger, M B; Klose, K J; Maisch, B
2008-01-01
In experimental animals, cardiac work is derived from pressure-volume area and analyzed further using stress-length relations. Lack of methods for determining accurately myocardial mass has until now prevented the use of stress-length relations in patients. We hypothesized, therefore, that not only pressure-volume loops but also stress-length diagrams can be derived from cardiac volume and cardiac mass as assessed by cardiac magnetic resonance imaging (CMR) and invasively measured pressure. Left ventricular (LV) volume and myocardial mass were assessed in seven patients with aortic valve stenosis (AS), eight with dilated cardiomyopathy (DCM), and eight controls using electrocardiogram (ECG)-gated CMR. LV pressure was measured invasively. Pressure-volume curves were calculated based on ECG triggering. Stroke work was assessed as area within the pressure-volume loop. LV wall stress was calculated using a thick-wall sphere model. Similarly, stress-length loops were calculated to quantify stress-length-based work. Taking the LV geometry into account, the normalization with regard to ventricular circumference resulted in "myocardial work." Patients with AS (valve area 0.73+/-0.18 cm(2)) exhibited an increased LV myocardial mass when compared with controls (P<0.05). LV wall stress was increased in DCM but not in AS. Stroke work of AS was unchanged when compared with controls (0.539+/-0.272 vs 0.621+/-0.138 Nm, not significant), whereas DCM exhibited a significant depression (0.367+/-0.157 Nm, P<0.05). Myocardial work was significantly reduced in both AS and DCM when compared with controls (129.8+/-69.6, 200.6+/-80.1, 332.2+/-89.6 Nm/m(2), P<0.05), also after normalization (7.40+/-5.07, 6.27+/-3.20, 14.6+/-4.07 Nm/m(2), P<0.001). It is feasible to obtain LV pressure-volume and stress-length diagrams in patients based on the present novel methodological approach of using CMR and invasive pressure measurement. Myocardial work was reduced in patients with DCM and noteworthy also in AS, while stroke work was reduced in DCM only. Most likely, deterioration of myocardial work is crucial for the prognosis. It is suggested to include these basic physiological procedures in the clinical assessment of the pump function of the heart.
Byrne, Molly; Murphy, Patrick; D'Eath, Maureen; Doherty, Sally; Jaarsma, Tiny
2017-05-01
Relationship satisfaction is generally positively correlated with sexual satisfaction, but this relation has been poorly examined in people with cardiovascular disease who are at increased risk of sexual problems compared with the general population. To document reported changes to sex after a diagnosis of cardiac disease and determine whether there is an association between sexual function and relationship satisfaction. Semistructured telephone interviews focused on relationship satisfaction and sexual problems were conducted with 201 people with cardiovascular disease who were currently in a sexual relationship with one main partner and were recruited from six hospital cardiac rehabilitation centers in Ireland. Comparisons between groups were conducted using t-tests and multivariate analysis of variance for continuous variables and χ 2 tests for categorical variables. Predictors of relationship satisfaction were assessed using multiple linear regression analysis. Data were gathered on demographic and clinical variables, sexual problems, and relationship satisfaction, including satisfaction with the physical, emotional, affection, and communication aspects of relationships. Just less than one third of participants (n = 61, 30.3%) reported that sex had changed for the worse since their cardiac event or diagnosis, with approximately half of these stating that this was a serious problem for them. Satisfaction with relationships was high among patients surveyed; more than 70% of the sample reported being very or extremely satisfied with the physical and emotional aspects and showing affection during sex. Satisfaction with communication about sex was lower, with only 58% reporting being very or extremely satisfied. We did not find significant associations between reporting of sexual problems or deterioration of sex as a result of disease and relationship satisfaction. Cardiac rehabilitation programs should address these sexual problems, potentially by enhancing communication within couples about sex. The strength is that data are presented on the sexual experiences and relationship satisfaction of a relatively large sample of people diagnosed with cardiac disease, a relatively underexplored research area. Limitations include the possibility of selection bias of study participants and bias associated with self-report measurement. Sexual problems were significant in this population but were not related to relationship satisfaction in this cross-sectional survey. Byrne M, Murphy P, D'Eath M, et al. Association Between Sexual Problems and Relationship Satisfaction Among People With Cardiovascular Disease. J Sex Med 2017;14:666-674. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Optical metabolic imaging of irradiated rat heart exposed to ischemia-reperfusion injury
NASA Astrophysics Data System (ADS)
la Cour, Mette Funding; Mehrvar, Shima; Heisner, James S.; Motlagh, Mohammad Masoudi; Medhora, Meetha; Ranji, Mahsa; Camara, Amadou K. S.
2018-01-01
Whole thoracic irradiation (WTI) is known to cause deterioration in cardiac function. Whether irradiation predisposes the heart to further ischemia and reperfusion (IR) injury is not well known. The aim of this study is to examine the susceptibility of rat hearts to IR injury following a single fraction of 15 Gy WTI and to investigate the role of mitochondrial metabolism in the differential susceptibility to IR injury. After day 35 of irradiation, ex vivo hearts from irradiated and nonirradiated rats (controls) were exposed to 25-min global ischemia followed by 60-min IR, or hearts were perfused without IR for the same protocol duration [time controls (TC)]. Online fluorometry of metabolic indices [redox state: reduced nicotinamide adenine dinucleotide (NADH), oxidized flavin adenine dinucleotide (FAD), and NADH/FAD redox ratio] and functional variables [systolic left ventricular pressure (LVP), diastolic LVP (diaLVP), coronary flow (CF), and heart rate were recorded in the beating heart; developed LVP (dLVP) and rate pressure product (RPP)] were derived. At the end of each experimental protocol, hearts were immediately snap frozen in liquid N2 for later three-dimensional imaging of the mitochondrial redox state using optical cryoimaging. Irradiation caused a delay in recovery of dLVP and RPP after IR when compared to nonirradiated hearts but recovered to the same level at the end of reperfusion. CF in the irradiated hearts recovered better than the control hearts after IR injury. Both fluorometry and 3-D cryoimaging showed that in WTI and control hearts, the redox ratio increased during ischemia (reduced) and decreased on reperfusion (oxidized) when compared to their respective TCs; however, there was no significant difference in the redox state between WTI and controls. In conclusion, our results show that although irradiation of rat hearts compromised baseline cardiovascular function, it did not alter cardiac mitochondrial redox state and induce greater susceptibility of these hearts to IR injury.
Rolf, Andreas; Assmus, Birgit; Schächinger, Volker; Rixe, Johannes; Möllmann, Susanne; Möllmann, Helge; Dimmeler, Stefanie; Zeiher, Andreas M; Hamm, Christian W; Dill, Thorsten
2011-11-01
In the aftermath of myocardial infarction, increased loading conditions will trigger hypertrophy of viable myocardium. This in turn causes deterioration of regional contractility. Cardiac magnetic resonance imaging (cMRI) allows the exact differentiation of viable and infarcted myocardium and therefore the measurement of regional wall thickness and function. Bone marrow-derived stem cell (BMC) transfer has been shown to improve global function and remodeling. The present study examines the effect of BMC transfer on regional remodeling and function after myocardial infarction by cMRI. Fifty-four patients of the MR substudy of the REPAIR-AMI trial have been studied at baseline and 12-month follow-up. Enddiastolic wall thickness (EDWT) and wall thickening (WT%) have been measured on SSFP cine sequences. Enddiastolic wall thickness decreased in both placebo and BMC groups in viable as well as infarcted segments. The effect was largest in the pre-specified subgroup of patients below the median EF of 48.9% (infarcted segments -1.14 mm Placebo vs. -1.91 mm BMC, p for interaction 0.01, remote segments -0.19 mm Placebo vs. -0.94 mm BMC, p for interaction 0.00001). Corrected for baseline values BMC therapy yielded smaller EDWT at 12 months in infarcted and remote segments (infarcted 7.58 mm Placebo vs. 6.13 mm BMC p = 0.0001, remote 8.76 mm Placebo vs. 7.32 mm BMC, p = 0.0001). This was associated with better contractility within the infarcted segments among BMC patients (WT% 24.17% Placebo vs. 49.31% BMC, p = 0.0001). The WT% was inversely correlated with EDWT (r = -0.37, p = 0.0001). Bone marrow-derived stem cell therapy yields smaller EDWT when compared with placebo patients suggesting a positive effect on maladaptive hypertrophy of viable myocardium. This notion is supported by the enhanced regional contractility within the BMC group which is inversely correlated with EDWT.
3D bioprinted functional and contractile cardiac tissue constructs
Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J.; Atala, Anthony
2018-01-01
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-μm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. PMID:29452273
Drennan, Ian R; Lin, Steve; Thorpe, Kevin E; Morrison, Laurie J
2014-11-01
Cardiac arrest physiology has been proposed to occur in three distinct phases: electrical, circulatory and metabolic. There is limited research evaluating the relationship of the 3-phase model of cardiac arrest to functional survival at hospital discharge. Furthermore, the effect of post-cardiac arrest targeted temperature management (TTM) on functional survival during each phase is unknown. To determine the effect of TTM on the relationship between the time of initial defibrillation during each phase of cardiac arrest and functional survival at hospital discharge. This was a retrospective observational study of consecutive adult (≥18 years) out-of-hospital cardiac arrest (OHCA) patients with initial shockable rhythms. Included patients obtained a return of spontaneous circulation (ROSC) and were eligible for TTM. Multivariable logistic regression was used to determine predictors of functional survival at hospital discharge. There were 20,165 OHCA treated by EMS and 871 patients were eligible for TTM. Of these patients, 622 (71.4%) survived to hospital discharge and 487 (55.9%) had good functional survival. Good functional survival was associated with younger age (OR 0.94; 95% CI 0.93-0.95), shorter times from collapse to initial defibrillation (OR 0.73; 95% CI 0.65-0.82), and use of post-cardiac arrest TTM (OR 1.49; 95% CI 1.07-2.30). Functional survival decreased during each phase of the model (65.3% vs. 61.7% vs. 50.2%, P<0.001). Functional survival at hospital discharge was associated with shorter times to initial defibrillation and was decreased during each successive phase of the 3-phase model. Post-cardiac arrest TTM was associated with improved functional survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cigarette smoking causes epigenetic changes associated with cardiorenal fibrosis
Haller, Steven T.; Fan, Xiaoming; Xie, Jeffrey X.; Kennedy, David J.; Liu, Jiang; Yan, Yanling; Hernandez, Dawn-Alita; Mathew, Denzil P.; Cooper, Christopher J.; Shapiro, Joseph I.; Tian, Jiang
2016-01-01
Clinical studies indicate that smoking combustible cigarettes promotes progression of renal and cardiac injury, leading to functional decline in the setting of chronic kidney disease (CKD). However, basic studies using in vivo small animal models that mimic clinical pathology of CKD are lacking. To address this issue, we evaluated renal and cardiac injury progression and functional changes induced by 4 wk of daily combustible cigarette smoke exposure in the 5/6th partial nephrectomy (PNx) CKD model. Molecular evaluations revealed that cigarette smoke significantly (P < 0.05) decreased renal and cardiac expression of the antifibrotic microRNA miR-29b-3 and increased expression of molecular fibrosis markers. In terms of cardiac and renal organ structure and function, exposure to cigarette smoke led to significantly increased systolic blood pressure, cardiac hypertrophy, cardiac and renal fibrosis, and decreased renal function. These data indicate that decreased expression of miR-29b-3p is a novel mechanism wherein cigarette smoke promotes accelerated cardiac and renal tissue injury in CKD. (155 words) PMID:27789733
Graiani, Gallia; Rossi, Stefano; Agnetti, Aldo; Stillitano, Francesca; Lagrasta, Costanza; Baruffi, Silvana; Berni, Roberta; Frati, Caterina; Vassalle, Mario; Squarcia, Umberto; Cerbai, Elisabetta; Macchi, Emilio; Stilli, Donatella; Quaini, Federico; Musso, Ezio
2011-01-01
Heart repair by stem cell treatment may involve life-threatening arrhythmias. Cardiac progenitor cells (CPCs) appear best suited for reconstituting lost myocardium without posing arrhythmic risks, being commissioned towards cardiac phenotype. In this study we tested the hypothesis that mobilization of CPCs through locally delivered Hepatocyte Growth Factor and Insulin-Like Growth Factor-1 to heal chronic myocardial infarction (MI), lowers the proneness to arrhythmias. We used 133 adult male Wistar rats either with one-month old MI and treated with growth factors (GFs, n = 60) or vehicle (V, n = 55), or sham operated (n = 18). In selected groups of animals, prior to and two weeks after GF/V delivery, we evaluated stress-induced ventricular arrhythmias by telemetry-ECG, cardiac mechanics by echocardiography, and ventricular excitability, conduction velocity and refractoriness by epicardial multiple-lead recording. Invasive hemodynamic measurements were performed before sacrifice and eventually the hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. When compared with untreated MI, GFs decreased stress-induced arrhythmias and concurrently prolonged the effective refractory period (ERP) without affecting neither the duration of ventricular repolarization, as suggested by measurements of QTc interval and mRNA levels for K-channel α-subunits Kv4.2 and Kv4.3, nor the dispersion of refractoriness. Further, markers of cardiomyocyte reactive hypertrophy, including mRNA levels for K-channel α-subunit Kv1.4 and β-subunit KChIP2, interstitial fibrosis and negative structural remodeling were significantly reduced in peri-infarcted/remote ventricular myocardium. Finally, analyses of BrdU incorporation and distribution of connexin43 and N-cadherin indicated that cytokines generated new vessels and electromechanically-connected myocytes and abolished the correlation of infarct size with deterioration of mechanical function. In conclusion, local injection of GFs ameliorates electromechanical competence in chronic MI. Reduced arrhythmogenesis is attributable to prolongation of ERP resulting from improved intercellular coupling via increased expression of connexin43, and attenuation of unfavorable remodeling. PMID:21445273
Luciani, G B; Santini, F; Auriemma, S; Barozzi, L; Bertolini, P; Mazzucco, A
2001-05-01
This study seeks to define the long-term results after Biocor PSB stentless aortic valve replacement (AVR) in elderly patients, including the effects of No-React treatment. We reviewed the outcomes of 106 consecutive patients, aged 70+/-6 years, having Biocor PSB (93 standard, 13 No-React) AVR between October 1992 and October 1996. There were three early deaths (3%) and 15 late deaths (15%), during a mean follow-up of 5.8+/-1.6 years. At 8 years, survival was 82%+/-4% and freedom from cardiac death was 94%+/-3%. Freedom from valve failure was 92%+/-4% at 8 years (No-React: 92%+/-8% at 4 years). Replacement of the xenograft was required in 5 patients. Freedom from reoperation was 91%+/-4% at 8 years (No-React: 92%+/-8% at 4 years). Four bleeding and two embolic events were recorded: overall valve-related event-free survival was 81%+/-7% at 8 years (No-React: 76%+/-12% at 4 years). Age of long-term survivors averaged 77+/-5 years and their New York Heart Association status was 1.3+/-0.6 (versus 2.9+/-0.6 preoperatively, p = 0.01). Satisfactory freedom from cardiac events and from valve deterioration added to uniform improvement in functional status despite advanced age and high prevalence of comorbid conditions make AVR with the Biocor PSB xenograft a valid long-term therapy for the elderly. No-React treatment does not influence xenograft durability.
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Bertero, Edoardo; Maack, Christoph
2018-05-11
In heart failure, alterations of Na + and Ca 2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca 2+ During physiological variations of workload, mitochondrial Ca 2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca 2+ via the mitochondrial Ca 2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca 2+ and Na + handling hampers mitochondrial Ca 2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure. © 2018 American Heart Association, Inc.
Takeo, S; Nasa, Y; Tanonaka, K; Yabe, K; Nojiri, M; Hayashi, M; Sasaki, H; Ida, K; Yanai, K
1998-11-01
The effects of eicosapentaenoic acid (EPA) and long-term treatment with EPA-ethylester (EPA-E) were examined in perfused rat hearts subjected to ischemia/reperfusion and adult rat cardiomyocytes subjected to hypoxia/reoxygenation. EPA (0.1 microM) improved postischemic contractile dysfunction of the ischemic/reperfused heart. EPA (10 microM) attenuated hypoxia/reoxygenation-induced morphological deterioration of cardiomyocytes. The results suggest the presence of direct cardioprotective effects of EPA. Rats were orally treated for 4 weeks with 1 g/kg/day of EPA-E to elucidate ex vivo effects of EPA, and the fatty acid composition of cardiac phospholipids was determined. The percent ratio of EPA in total fatty acids of cardiac phospholipids increased whereas that of arachidonic acid decreased. The percent ratio of n-3/n-6 fatty acid did not increase. Treatment with EPA-E did not improve the post-ischemic contractile function, but attenuated the ischemia/reperfusion-induced release of prostaglandins during reperfusion. Treatment with EPA-E preserved a better morphological appearance of the cardiomyocytes subjected to hypoxia/reoxygenation. The results suggest that the mechanisms responsible for cytoprotective effects of hypoxic/reoxygenated cardiomyocytes or inhibition of metabolic alterations of the ischemic/reperfused heart by long-term EPA-E treatment did not contribute substantially to recovery of post-ischemic contractile dysfunction. The direct in vitro effects of EPA may play a role in the protection of the heart from ischemia/reperfusion or hypoxia/reoxygenation injury.
Simultaneous determination of dynamic cardiac metabolism and function using PET/MRI.
Barton, Gregory P; Vildberg, Lauren; Goss, Kara; Aggarwal, Niti; Eldridge, Marlowe; McMillan, Alan B
2018-05-01
Cardiac metabolic changes in heart disease precede overt contractile dysfunction. However, metabolism and function are not typically assessed together in clinical practice. The purpose of this study was to develop a cardiac positron emission tomography/magnetic resonance (PET/MR) stress test to assess the dynamic relationship between contractile function and metabolism in a preclinical model. Following an overnight fast, healthy pigs (45-50 kg) were anesthetized and mechanically ventilated. 18 F-fluorodeoxyglucose ( 18 F-FDG) solution was administered intravenously at a constant rate of 0.01 mL/s for 60 minutes. A cardiac PET/MR stress test was performed using normoxic gas (F I O 2 = .209) and hypoxic gas (F I O 2 = .12). Simultaneous cardiac imaging was performed on an integrated 3T PET/MR scanner. Hypoxic stress induced a significant increase in heart rate, cardiac output, left ventricular (LV) ejection fraction (EF), and peak torsion. There was a significant decline in arterial SpO 2 , LV end-diastolic and end-systolic volumes in hypoxia. Increased LV systolic function was coupled with an increase in myocardial FDG uptake (Ki) during hypoxic stress. PET/MR with continuous FDG infusion captures dynamic changes in both cardiac metabolism and contractile function. This technique warrants evaluation in human cardiac disease for assessment of subtle functional and metabolic abnormalities.
A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.
Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano
2015-11-01
Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.
Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta
2017-08-01
Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.
Evaluation of cardiac function in active and hibernating grizzly bears.
Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F
2003-10-15
To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.
[Orthostatic hypotension in the elderly].
Ferrer-Gila, Teresa; Rízea, Cristian
2013-03-16
Orthostatic hypotension (OH) is defined as a decrease in systolic blood pressure of 20 mmHg, or a decrease in diastolic blood pressure of 10 mmHg within three minutes of standing. It results from an inadequate response to postural changes in blood pressure. Common symptoms include dizziness, light-headedness, blurred vision, weakness, fatigue, nausea, palpitations, sweating, head and neck ache, slow cognitive performance and transient loss of conscientiousness. OH is a common problem among elderly patients and its aetiology is diverse, including autonomic nervous system dysfunction, cardiac problems, medication side effects, ageing changes or transitory deregulation of blood volume. The instrumental diagnosis can be easily accomplished by the tilt-table test, with continuous monitoring of blood pressure and cardiac parameters. It is a non-invasive technique and needs minimal collaboration from the patient. In our experience, when reviewing 327 patients, aged over 40 years and examined because of clinical suspicion of OH, the prevalence thereof was 51% whereas if focused in subjects older than 70, OH was proven in 90% of the cases. The older the patients, the more frequently they presented general deterioration, neurological or cardiac problems as well as pharmacological side effects. Ruling out neurological or cardiac malfunction can drastically improve the prognosis with possible reversibility of symptoms. Some nonpharmacological and pharmacological approaches to improve management of OH and life quality are described for guidance.
Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function.
Alpert, Martin A; Omran, Jad; Bostick, Brian P
2016-12-01
Obesity produces a variety of hemodynamic alterations that may cause changes in cardiac morphology which predispose to left and right ventricular dysfunction. Various neurohormonal and metabolic alterations commonly associated with obesity may contribute to these abnormalities of cardiac structure and function. These changes in cardiovascular hemodynamics, cardiac morphology, and ventricular function may, in severely obese patients, predispose to heart failure, even in the absence of other forms of heart disease (obesity cardiomyopathy). In normotensive obese patients, cardiac involvement is commonly characterized by elevated cardiac output, low peripheral vascular resistance, and increased left ventricular (LV) end-diastolic pressure. Sleep-disordered breathing may lead to pulmonary arterial hypertension and, in association with left heart failure, may contribute to elevation of right heart pressures. These alterations, in association with various neurohormonal and metabolic abnormalities, may produce LV hypertrophy; impaired LV diastolic function; and less commonly, LV systolic dysfunction. Many of these alterations are reversible with substantial voluntary weight loss.
Sarkar, Urmimala; Ali, Sadia; Whooley, Mary A.
2009-01-01
Objective The authors sought to evaluate the association of self-efficacy with objective measures of cardiac function, subsequent hospitalization for heart failure (HF), and all-cause mortality. Design Observational cohort of ambulatory patients with stable CHD. The authors measured self-efficacy using a published, validated, 5-item summative scale, the Sullivan Self-Efficacy to Maintain Function Scale. The authors also performed a cardiac assessment, including an exercise treadmill test with stress echocardiography. Main Outcome Measures Hospitalizations for HF, as determined by blinded review of medical records, and all-cause mortality, with adjustment for demographics, medical history, medication use, depressive symptoms, and social support. Results Of the 1,024 predominately male, older CHD patients, 1013 (99%) were available for follow-up, 124 (12%) were hospitalized for HF, and 235 (23%) died during 4.3 years of follow-up. Mean cardiac self-efficacy score was 9.7 (SD 4.5, range 0–20), corresponding to responses between “not at all confident” and “somewhat confident” for ability to maintain function. Lower self-efficacy predicted subsequent HF hospitalization (OR per SD decrease = 1.4, p = 0006), and all-cause mortality (OR per SD decrease = 1.4, p < .0001). After adjustment, the association of cardiac self-efficacy with both HF hospitalization and mortality was explained by worse baseline cardiac function. Conclusion Among patients with CHD, self-efficacy was a reasonable proxy for predicting HF hospitalizations. The increased risk of HF associated with lower baseline self-efficacy was explained by worse cardiac function. These findings indicate that measuring cardiac self-efficacy provides a rapid and potentially useful assessment of cardiac function among outpatients with CHD. PMID:19290708
Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja; Larsson, Henrik B W; Rostrup, Egill
2014-11-01
Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed a gender-related inverse association of increased low-to-high-frequency power ratio with CBF and fractional brain flow. The findings do not support a direct effect of cardiac function on CBF, but demonstrates gender-related differences in cardiac output distribution. We propose fractional brain flow as a novel index that may be a useful marker of adequate brain perfusion in the context of ageing as well as cardiovascular disease. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Deterioration of muscle function in the human esophagus with age.
Gregersen, Hans; Pedersen, Jan; Drewes, Asbjørn Mohr
2008-12-01
Most studies on the effect of aging on esophageal motor function have shown that peristaltic function deteriorates with age. Esophageal motor function is traditionally studied by means of manometry and radiography. Distension of the esophagus with evaluation of active and passive mechanical parameters have become available during recent years. In this study, we did a manometric swallow analysis and used the distension method to study esophageal properties and function during aging. An impedance planimetric probe with a bag for distension was placed in the distal esophagus of 25 healthy volunteers with a median age of 35 (range 23-86) years. Distensions were done at an infusion rate of 25 ml min(-1) with and without relaxation of neuromuscular activity with butylscopolamine. The infusion was reversed when moderate pain was experienced by the subjects. Swallow-induced contraction amplitudes decreased as function of age for persons older than 40 years (P < 0.05). The total and passive tension showed an exponential increase as function of the change in radius, whereas the active tension increased until it reached a local maximum point. The maximum active tension deteriorated as a function of age after the age of 40 years (P < 0.05). Furthermore, esophagus became stiffer with age. In conclusion, age-related changes of increased stiffness and reduced primary and secondary peristalsis were found in the human esophagus with a deterioration of esophageal function after the age of 40 years. Such changes may contribute to the high prevalence of reflux disease in elderly.
[Cardiac failure in endocrine diseases].
Hashizume, K
1993-05-01
Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.
Cardiac Fibroblast: The Renaissance Cell
Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.
2012-01-01
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782
Cerebroprotective effect of piracetam in patients undergoing coronary bypass burgery.
Holinski, Sebastian; Claus, Benjamin; Alaaraj, Nour; Dohmen, Pascal Maria; Kirilova, Kremena; Neumann, Konrad; Uebelhack, Ralf; Konertz, Wolfgang
2008-11-01
Reduction of cognitive function is a possible side effect after cardiac surgery using cardiopulmonary bypass. We investigated the cerebroprotective effect of piracetam on cognitive performance in patients undergoing coronary artery bypass surgery under cardiopulmonary bypass. Patients scheduled for elective, primary and isolated coronary bypass surgery were randomised either to piracetam or placebo group. The study was performed in a double blind fashion. Patients received either 12 g piracetam or placebo at the beginning of the operation. Six neuropsychological subtests from the Syndrom Kurz Test and the Alzheimer's Disease Assessment Scale were performed preoperatively and on the third postoperative day. To assess the overall cognitive function and the degree of cognitive decline across all tests after surgery we combined the six test-scores by principal component analysis. A total number of 120 patients were enrolled into the study. Preoperative overall cognitive function were not significantly different between the groups. The postoperative combined score of the neuropsychological tests showed a deterioration of cognitive function in both groups (placebo-pre: -0.06+/-0.99 vs placebo-post: -1.38+/-1.11; p<0.0005 and piracetam-pre: 0.06+/-1.02 vs piracetam-post: -0.65+/-0.93; p<0.0005). However, the piracetam patients performed significantly better compared to the placebo patients after the operation and had a less decline of overall cognitive function (p<0.0005). Piracetam has a cerebroprotective effect in patients undergoing coronary artery bypass surgery with the use of cardiopulmonary bypass. It reduces an early postoperative substantial decline of neuropsychological abilities.
Herbert, Beate M.; Muth, Eric R.; Pollatos, Olga; Herbert, Cornelia
2012-01-01
The individual sensitivity for ones internal bodily signals (“interoceptive awareness”) has been shown to be of relevance for a broad range of cognitive and affective functions. Interoceptive awareness has been primarily assessed via measuring the sensitivity for ones cardiac signals (“cardiac awareness”) which can be non-invasively measured by heartbeat perception tasks. It is an open question whether cardiac awareness is related to the sensitivity for other bodily, visceral functions. This study investigated the relationship between cardiac awareness and the sensitivity for gastric functions in healthy female persons by using non-invasive methods. Heartbeat perception as a measure for cardiac awareness was assessed by a heartbeat tracking task and gastric sensitivity was assessed by a water load test. Gastric myoelectrical activity was measured by electrogastrography (EGG) and subjective feelings of fullness, valence, arousal and nausea were assessed. The results show that cardiac awareness was inversely correlated with ingested water volume and with normogastric activity after water load. However, persons with good and poor cardiac awareness did not differ in their subjective ratings of fullness, nausea and affective feelings after drinking. This suggests that good heartbeat perceivers ingested less water because they subjectively felt more intense signals of fullness during this lower amount of water intake compared to poor heartbeat perceivers who ingested more water until feeling the same signs of fullness. These findings demonstrate that cardiac awareness is related to greater sensitivity for gastric functions, suggesting that there is a general sensitivity for interoceptive processes across the gastric and cardiac modality. PMID:22606278
Ferratini, Maurizio; Marianeschi, Stefano; Vitali, Ettore; Iorio, Fiore; Moraschi, Andrea; Pezzano, Antonio; Mauri, Luigi; Lorini, Saverio; Rambaldi, Roberto; Tersalvi, Carlo Alberto; Pesaresi, Marilena; Pllumi, Arketa; Santoro, Francesco
2007-08-01
In 2001 the Cardiac Rehabilitation Unit IRCCS S. Maria Nascente Center and the International Area of Don Carlo Gnocchi Foundation, in collaboration with the Cardiac Surgery Department "De Gasperis" of Niguarda Ca' Granda Hospital in Milan, planned a project to treat children from impoverished countries. The "Fondo Sanitario Regionale" of the Lombard Region cosponsored the program. From October 2001 to November 2006, 32 patients (25 from Zimbabwe and 7 from Albania) were selected and submitted to cardiac surgery: 22 patients were affected by acquired valvular heart disease in NYHA class III-IV, 10 by congenital heart disease. After surgery the patients admitted to our rehabilitation unit underwent a period of comprehensive cardiac rehabilitation. Afterwards, the patients were in the care of selected Italian families for about 3 months. In both populations the problems faced in the selection, management and surgical approach are discussed. At 21 months the survival of the whole study population was 93 % (2 valvular patients died during the follow-up); 2 patients who initially underwent mitral valve repair were submitted to valve replacement for late appearance of severe regurgitation. In 3 patients with mitral valve bioprosthesis a significant structural valve deterioration occurred in the follow-up and 2 of them underwent valve replacement. The advantage of the excellent performance in durability of mechanical prosthetic valves (with respect to the limited durability of porcine bioprostheses), the problems with long-term anticoagulation have to be taken into consideration in the management of patients coming from socio-economically deprived areas.
Kanaan, Georges N; Ichim, Bianca; Gharibeh, Lara; Maharsy, Wael; Patten, David A; Xuan, Jian Ying; Reunov, Arkadiy; Marshall, Philip; Veinot, John; Menzies, Keir; Nemer, Mona; Harper, Mary-Ellen
2018-04-01
Glutaredoxin 2 (GRX2), a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC) to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Preoperative botulinum toxin test injections before muscle lengthening in cerebral palsy.
Rutz, Erich; Hofmann, Eva; Brunner, Reinald
2010-09-01
Muscle weakening is a well-known side effect of muscle-tendon lengthening. Botulinum toxin A (BTX-A) weakens the muscle temporarily by blocking the neuromuscular junction. Hence application of the drug is a logical step to test whether weakness deteriorates function prior to an operation. In the present study, BTX-A application is used to test preoperatively whether the gait pattern depends on the strength of the tested muscle. Since 1999, instrumented gait analysis, including kinematic, kinetic, and dynamic electromyographic data, is routinely used to define the individual surgical program. In our series of 110 consecutive patients with cerebral palsy (CP) considered for surgical muscle lengthening from 1999 to 2008, BTX-A was applied to identify patients at risk for functional deterioration. Gait analysis was repeated 6 weeks (maximum effect of BTX-A) and 12 weeks (follow-up) after the test injection to check for loss of joint control (excessive ankle dorsiflexion, knee flexion, increased anterior pelvic tilt). In all, 20.9% (n = 23) showed deterioration in gait after preoperative BTX-A test injections (n = 112, two patients had two test trials) in all muscles considered for lengthening. As a consequence, their lengthening surgery was canceled. A total of 68 patients underwent surgery as planned, and in none of them did gait function deteriorate. These clinical data were compared to those of a historical group (n = 105) before this test, where 18% showed functional deterioration after surgery. The similar percentage of patients filtered out by the test suggests that there could be a context to the number of poor results in the historical group. We conclude that preoperative BTX-A test injection is a reliable tool for filtering out patients with risk of deterioration after muscle lengthening surgery in patients with CP and can be helpful to avoid poor outcomes.
Roohi, Fereydoon; Gropen, Toby; Kula, Roger W.
2014-01-01
Background: Chiari malformation type 1 (CM1) is a common congenital anomaly of the craniocervical junction. CM1 is reported to run a usually benign course and patients typically experience no symptoms or chronic, slowly progressive symptoms. However, recent reports indicate that a subset of patients with CM1 may present with acute deterioration and sudden unexpected death (SUD). We report a case of SUD during sleep in a young man with CM1, which we believe was related to the administration of common and therapeutic doses of narcotic analgesics for the management of pain. We will clarify the pathophysiology of acute deterioration and SUD in CM1 and the possibility that the adverse effects of opiate analgesics likely were the leading cause of death in our patient. Case Description: In this review, we present a 29-year-old male with worsening headache secondary to previously diagnosed CM1. The patient died suddenly and unexpectedly after administration of common and therapeutic doses of narcotic analgesics for the management of pain. Conclusion: The mechanism(s) of acute neurological deterioration and sudden death in patients with CM1 remains poorly understood. We believe the rapid fatal deterioration in our patient following administration of opioids suggests that this category of medication may cause sudden unexpected “neurogenic” cardiac death in CM1 patients by inducing sleep-related breathing difficulties and associated hypercapnia. Hypercapnia by further increasing intracranial pressure can result in a sudden pressure-induced decompensation of the cardiopulmonary control centers in the brain stem and cause instantaneous cardiorespiratory arrest. PMID:24778905
Gao, Ling; Cao, Jia-Tian; Liang, Yan; Zhao, Yi-Chao; Lin, Xian-Hua; Li, Xiao-Cui; Tan, Ya-Jing; Li, Jing-Yi; Zhou, Cheng-Liang; Xu, Hai-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-05-01
Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.
Del Castillo, Jimena; López-Herce, Jesús; Matamoros, Martha; Cañadas, Sonia; Rodríguez-Calvo, Ana; Cecchetti, Corrado; Rodriguez-Núñez, Antonio; Álvarez, Angel Carrillo
2015-11-01
The main objective was to study survival and neurologic evolution of children who suffered in-hospital pediatric cardiac arrest (CA). The secondary objective was to analyze the influence of risk factors on the long term outcome after CA. prospective, international, observational, multicentric study in 48 hospitals of 12 countries. CA in children between 1 month and 18 years were analyzed using the Utstein template. Survival and neurological state measured by Pediatric Cerebral Performance Category (PCPC) scale one year after hospital discharge was evaluated. 502 patients with in-hospital CA were evaluated. 197 of them (39.2%) survived to hospital discharge. PCPC at hospital discharge was available in 156 of survivors (79.2%). 76.9% had good neurologic state (PCPC 1-2) and 23.1% poor PCPC values (3-6). One year after cardiac arrest we could obtain data from 144 patients (28.6%). PCPC was available in 116 patients. 88 (75.9%) had a good neurologic evaluation and 28 (24.1%) a poor one. A neurological deterioration evaluated by PCPC scale was observed in 40 patients (7.9%). One year after cardiac arrest PCPC scores compared to hospital discharge had worsen in 7 patients (6%), remained constant in 103 patients (88.8%) and had improved in 6 patients (5.2%). Survival one year after cardiac arrest in children after in-hospital cardiac arrest is high. Neurologic outcome of these children a year after cardiac arrest is mostly the same as after hospital discharge. The factors associated with a worst long-term neurological outcome are the etiology of arrest being a traumatic or neurologic illness, and the persistency of higher lactic acid values 24h after ROSC. A standardised basic protocol even practicable for lower developed countries would be a first step for the new multicenter studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Shah, A S; Khoury, P R; Dolan, L M; Ippisch, H M; Urbina, E M; Daniels, S R; Kimball, T R
2011-04-01
We sought to evaluate the effects of obesity and obesity-related type 2 diabetes mellitus on cardiac geometry (remodelling) and systolic and diastolic function in adolescents and young adults. Cardiac structure and function were compared by echocardiography in participants who were lean, obese or obese with type 2 diabetes (obese diabetic), in a cross sectional study. Group differences were assessed using ANOVA. Independent determinants of cardiac outcome measures were evaluated with general linear models. Adolescents with obesity and obesity-related type 2 diabetes were found to have abnormal cardiac geometry compared with lean controls (16% and 20% vs <1%, p < 0.05). These two groups also had increased systolic function. Diastolic function decreased from the lean to obese to obese diabetic groups with the lowest diastolic function observed in the obese diabetic group (p < 0.05). Regression analysis showed that group, BMI z score (BMIz), group × BMIz interaction and systolic BP z score (BPz) were significant determinants of cardiac structure, while group, BMIz, systolic BPz, age and fasting glucose were significant determinants of the diastolic function (all p < 0.05). Adolescents with obesity and obesity-related type 2 diabetes demonstrate changes in cardiac geometry consistent with cardiac remodelling. These two groups also demonstrate decreased diastolic function compared with lean controls, with the greatest decrease observed in those with type 2 diabetes. Adults with diastolic dysfunction are known to be at increased risk of progressing to heart failure. Therefore, our findings suggest that adolescents with obesity-related type 2 diabetes may be at increased risk of progressing to early heart failure compared with their obese and lean counterparts.
Transgenic Analysis of the Role of FKBP12.6 in Cardiac Function and Intracellular Calcium Release
Liu, Ying; Chen, Hanying; Ji, Guangju; Li, Baiyan; Mohler, Peter J.; Zhu, Zhiming; Yong, Weidong; Chen, Zhuang; Xu, Xuehong
2011-01-01
Abstract FK506 binding protein12.6 (FKBP12.6) binds to the Ca2+ release channel ryanodine receptor (RyR2) in cardiomyocytes and stabilizes RyR2 to prevent premature sarcoplasmic reticulum Ca2+ release. Previously, two different mouse strains deficient in FKBP12.6 were reported to have different abnormal cardiac phenotypes. The first mutant strain displayed sex-dependent cardiac hypertrophy, while the second displayed exercise-induced cardiac arrhythmia and sudden death. In this study, we tested whether FKBP12.6-deficient mice that display hypertrophic hearts can develop exercise-induced cardiac sudden death and whether the hypertrophic heart is a direct consequence of abnormal calcium handling in mutant cardiomyocytes. Our data show that FKBP12.6-deficient mice with cardiac hypertrophy do not display exercise-induced arrhythmia and/or sudden cardiac death. To investigate the role of FKBP12.6 overexpression for cardiac function and cardiomyocyte calcium release, we generated a transgenic mouse line with cardiac specific overexpression of FKBP12.6 using α-myosin heavy chain (αMHC) promoter. MHC-FKBP12.6 mice displayed normal cardiac development and function. We demonstrated that MHC-FKBP12.6 mice are able to rescue abnormal cardiac hypertrophy and abnormal calcium release in FKBP12.6-deficient mice. PMID:22087651
Effects of testosterone and nandrolone on cardiac function: a randomized, placebo-controlled study.
Chung, T; Kelleher, S; Liu, P Y; Conway, A J; Kritharides, L; Handelsman, D J
2007-02-01
Androgens have striking effects on skeletal muscle, but the effects on human cardiac muscle function are not well defined, neither has the role of metabolic activation (aromatization, 5alpha reduction) of testosterone on cardiac muscle been directly studied. To assess the effects of testosterone and nandrolone, a non-amplifiable and non-aromatizable pure androgen, on cardiac muscle function in healthy young men. Double-blind, randomized, placebo-controlled, three-arm parallel group clinical trial. Ambulatory care research centre. Healthy young men randomized into three groups of 10 men. Weekly intramuscular injections of testosterone (200 mg mixed esters), nandrolone (200 mg nandrolone decanoate) or matching (2 ml arachis oil vehicle) placebo for 4 weeks. Comprehensive measures of cardiac muscle function involving transthoracic cardiac echocardiography measuring myocardial tissue velocity, peak systolic strain and strain rates, and bioimpedance measurement of cardiac output and systematic vascular resistance. Left ventricular (LV) function (LV ejection fraction, LV modified TEI index), right ventricular (RV) function (ejection area, tricuspid annular systolic planar motion, RV modified TEI index) as well as cardiac afterload (mean arterial pressure, systemic vascular resistance) and overall cardiac contractility (stroke volume, cardiac output) were within age- and gender-specific reference ranges and were not significantly (P < 0.05) altered by either androgen or placebo over 4 weeks of treatment. Minor changes remaining within normal range were observed solely within the testosterone group for: increased LV end-systolic diameter (30 +/- 7 vs. 33 +/- 5 mm, P = 0.04) and RV end-systolic area (12.8 +/- 1.3 vs. 14.6 +/- 3.3 cm(2), P = 0.04), reduced LV diastolic septal velocity (Em, 9.5 +/- 2.6 vs. 8.7 +/- 2.0 cm/s, P = 0.006), increased LV filling pressure (E/Em ratio, 7.1 +/- 1.6 vs. 8.3 +/- 1.8, P = 0.02) and shortened PR interval on the electrocardiogram (167 +/- 13 vs. 154 +/- 12, P = 0.03). Four weeks of treatment with testosterone or nandrolone had no beneficial or adverse effects compared with placebo on cardiac function in healthy young men.
Li, Lei; Lin, Cheng-Ren; Ren, Jian-Xun; Miao, Lan; Yao, Ming-Jiang; Li, Dan; Shi, Yue; Ma, Yan-Lei; Fu, Jian-Hua; Liu, Jian-Xun
2014-02-01
To evaluate that the effect of formula of removing both phlegm and blood stasis in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. Totally 36 Chinese mini-swine were randomly divided to six groups: the normal control group, the model group, the Danlou tablet group, and Tanyu Tonzhi Fang(TYTZ) groups with doses of 2. 0, 1. 0 and 0. 5 g kg-1, with six in each group. Except for the normal control group, all of other groups were fed with high-fat diet for 2 weeks. Interventional balloons are adopted to injure their left anterior descending artery endothelium. After the operation, they were fed with high-fat diet for 8 weeks to prepare the coronary heart disease model of phlegm-stasis cementation syndrome. After the operation, they were administered with drugs for 8 weeks. The changes in the myocardial ischemia were observed. The changes in the cardiac function and structure were detected by cardiac ultrasound and noninvasive hemodynamic method. Compared with the normal control group, the model group showed significant increase in myocardial ischemia and SVR and obvious decrease in CO, SV and LCW in noninvasive hemodynamic parameters (P <0.05 or P <0.01). The ultrasonic cardiogram indicated notable decrease in IVSd, LVPWs, EF and FS, and remarkable increase in LVIDs (P<0. 05 orP<0.01). Compared with the model group, TYTZ could reduce the myocardial ischemia, strengthen cardiac function, and improve the abnormal cardiac structure and function induced by ischemia (P <0. 05 or P <0. 01). TYTZ shows a significant effect in improving cardiac function of Chinese mini-swine with coronary heart disease of phlegm-stasis cementation syndrome. The clinical cardiac function detection method could be adopted to correctly evaluate the changes in the post-myocardial ischemia cardiac function, and narrow the gap between clinical application and basic experimental studies.
Wakisaka, Yoshinobu; Matsuo, Ryu; Hata, Jun; Kuroda, Junya; Kitazono, Takanari; Kamouchi, Masahiro; Ago, Tetsuro
2017-01-01
Dementia and stroke are major causes of disability in the elderly. However, the association between pre-stroke dementia and functional outcome after stoke remains unresolved. We aimed to determine this association in patients with acute ischemic stroke. Among patients registered in the Fukuoka Stroke Registry from June 2007 to May 2015, 4,237 patients with ischemic stroke within 24 h of onset, who were functionally independent before the onset, were enrolled in this study. Pre-stroke dementia was defined as any type of dementia that was present prior to the index stroke. Primary and secondary study outcomes were poor functional outcome (modified Rankin Scale 3-6) at 3 months after the stroke onset and neurological deterioration (≥2-point increases on the National Institutes of Health Stroke Scale score during hospitalization), respectively. For propensity score (PS)-matched cohort study to control confounding variables for pre-stroke dementia, 318 pairs of patients with and without pre-stroke dementia were also selected on the basis of 1:1 matching. Multivariable logistic regression models and conditional logistic regression analysis were used to quantify associations between pre-stroke dementia and study outcomes. Of all 4,237 participants, 347 (8.2%) had pre-stroke dementia. The frequencies of neurological deterioration and poor functional outcome were significantly higher in patients with pre-stroke dementia than in those without pre-stroke dementia (neurological deterioration, 16.1 vs. 7.1%, p < 0.01; poor functional outcome, 63.7 vs. 27.1%, p < 0.01). Multivariable analysis showed that pre-stroke dementia was significantly associated with neurological deterioration (OR 1.67; 95% CI 1.14-2.41; p < 0.01) and poor functional outcome (OR 2.91; 95% CI 2.17-3.91; p < 0.01). In the PS-matched cohort study, the same trends were observed between the pre-stroke dementia and neurological deterioration (OR 2.60; 95% CI 1.17-5.78; p < 0.01) and between the dementia and poor functional outcome (OR 3.62; 95% CI 1.89-6.95; p < 0.01). Pre-stroke dementia was significantly associated with higher risks for poor functional outcome at 3 months after stroke onset as well as for neurological deterioration during hospitalization in patients with acute ischemic stroke. © 2016 S. Karger AG, Basel.
Bartels, Emil D.; Nielsen, Jan M.; Hellgren, Lars I.; Ploug, Thorkil; Nielsen, Lars B.
2009-01-01
Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and β-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease. PMID:19390571
Progressive deterioration of beta-cell function in obese youth with type 2 diabetes
USDA-ARS?s Scientific Manuscript database
In adults, type 2 diabetes (T2DM) is characterized with progressive deterioration in insulin secretion. Data are scanty in youth. We investigated prospectively the change in ß-cell function and in insulin sensitivity in youth with T2DM. Six adolescents with T2DM [hemoglobin A1c (HbA1c) 6.6 +/- 1.0%]...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, Kimberly R., E-mail: kimberly.doherty@quintiles.com; Talbert, Dominique R.; Trusk, Patricia B.
Safety pharmacology studies that evaluate new drug entities for potential cardiac liability remain a critical component of drug development. Current studies have shown that in vitro tests utilizing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) may be beneficial for preclinical risk evaluation. We recently demonstrated that an in vitro multi-parameter test panel assessing overall cardiac health and function could accurately reflect the associated clinical cardiotoxicity of 4 FDA-approved targeted oncology agents using hiPS-CM. The present studies expand upon this initial observation to assess whether this in vitro screen could detect cardiotoxicity across multiple drug classes with known clinical cardiac risks.more » Thus, 24 drugs were examined for their effect on both structural (viability, reactive oxygen species generation, lipid formation, troponin secretion) and functional (beating activity) endpoints in hiPS-CM. Using this screen, the cardiac-safe drugs showed no effects on any of the tests in our panel. However, 16 of 18 compounds with known clinical cardiac risk showed drug-induced changes in hiPS-CM by at least one method. Moreover, when taking into account the Cmax values, these 16 compounds could be further classified depending on whether the effects were structural, functional, or both. Overall, the most sensitive test assessed cardiac beating using the xCELLigence platform (88.9%) while the structural endpoints provided additional insight into the mechanism of cardiotoxicity for several drugs. These studies show that a multi-parameter approach examining both cardiac cell health and function in hiPS-CM provides a comprehensive and robust assessment that can aid in the determination of potential cardiac liability. - Highlights: • 24 drugs were tested for cardiac liability using an in vitro multi-parameter screen. • Changes in beating activity were the most sensitive in predicting cardiac risk. • Structural effects add in-depth insight towards mechanism of cardiac toxicity. • Testing functional and structural endpoints enhances early cardiac risk assessment.« less
Horiguchi, Minako; Kokubu, Keiko; Mori, Toru
2017-01-01
Objectives To elucidate the changes in cognitive function in elderly individuals as observed in the results of a long-term care certification survey.Methods The data were obtained from the long-term care insurance of 121 subjects who applied for benefit renewal between 2010 and 2011, in a city in Japan. The subjects were grouped into one of three groups (improved, maintained, or worsened) according to the change in status of overall cognitive function. Analyses were completed with this grouping as the main dependent variable and with sex, age, degree of independence at the initial insurance application in 2006, and levels of seven categories of cognitive function as independent variables.Results There was a statistically significant association between age and deterioration of various cognitive functions. Sex had no significant effect on the rate of deterioration. The initial degree of independence was positively associated with the cognitive function change. Multivariate analysis (logistic regression analysis) incorporating age, sex, and initial degree of dependence as independent variables revealed that sex does not significantly influence the prognosis of cognitive function. Changes in the score of each of the seven cognitive functions were analyzed with ANOVA, with categories of functions and individuals as sources of variance. Both function category and individuals were significantly associated with deterioration. Among the seven categories of functions, "understanding daily activities" had the greatest deterioration, while "calling him/herself by his/her own name" had the least.Conclusion Cognitive function, as observed in the long-term care certification survey, is more likely to deteriorate in elderly individuals and in those who were at higher levels of dependency index at the time of initial certification, and this effect is observed equally in men and women. Our results suggest that, in providing long-term care for elderly people, it may be useful to call the clients by their names and ask them to name themselves, as well as to try to improve their understanding regarding the daily activities by articulating the components of each activity.
Xu, Jia-Rui; Zhuang, Ya-Min; Liu, Lan; Shen, Bo; Wang, Yi-Mei; Luo, Zhe; Teng, Jie; Wang, Chun-Sheng; Ding, Xiao-Qiang
2017-01-01
Objective To evaluate the impact of the renal dysfunction (RD) type and change of postoperative cardiac function on the risk of developing acute kidney injury (AKI) in patients who underwent cardiac valve surgery. Method Reversible renal dysfunction (RRD) was defined as preoperative RD in patients who had not been initially diagnosed with chronic kidney disease (CKD). Cardiac function improvement (CFI) was defined as postoperative left ventricular ejection function – preoperative left ventricular ejection function (ΔEF) >0%, and cardiac function not improved (CFNI) as ΔEF ≤0%. Results Of the 4,805 (94%) cardiac valve surgery patients, 301 (6%) were RD cases. The AKI incidence in the RRD group (n=252) was significantly lower than in the CKD group (n=49) (36.5% vs 63.3%, P=0.018). The AKI and renal replacement therapy incidences in the CFI group (n=174) were significantly lower than in the CFNI group (n=127) (33.9% vs 50.4%, P=0.004; 6.3% vs 13.4%, P=0.037). After adjustment for age, gender, and other confounding factors, CKD and CKD + CFNI were identified as independent risk factors for AKI in all patients after cardiac valve surgery. Multivariate logistic regression analysis showed that the risk factors for postoperative AKI in preoperative RD patients were age, gender (male), hypertension, diabetes, chronic heart failure, cardiopulmonary bypass time (every 1 min added), and intraoperative hypotension, while CFI after surgery could reduce the risk. Conclusion For cardiac valve surgery patients, preoperative CKD was an independent risk factor for postoperative AKI, but RRD did not add to the risk. Improved postoperative cardiac function can significantly reduce the risk of postoperative AKI. PMID:29184415
Hypothyroidism and its rapid correction alter cardiac remodeling.
Hajje, Georges; Saliba, Youakim; Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim
2014-01-01
The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease.
Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling
Itani, Tarek; Moubarak, Majed; Aftimos, Georges; Farès, Nassim
2014-01-01
The cardiovascular effects of mild and overt thyroid disease include a vast array of pathological changes. As well, thyroid replacement therapy has been suggested for preserving cardiac function. However, the influence of thyroid hormones on cardiac remodeling has not been thoroughly investigated at the molecular and cellular levels. The purpose of this paper is to study the effect of hypothyroidism and thyroid replacement therapy on cardiac alterations. Thirty Wistar rats were divided into 2 groups: a control (n = 10) group and a group treated with 6-propyl-2-thiouracil (PTU) (n = 20) to induce hypothyroidism. Ten of the 20 rats in the PTU group were then treated with L-thyroxine to quickly re-establish euthyroidism. The serum levels of inflammatory markers, such as C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6) and pro-fibrotic transforming growth factor beta 1 (TGF-β1), were significantly increased in hypothyroid rats; elevations in cardiac stress markers, brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) were also noted. The expressions of cardiac remodeling genes were induced in hypothyroid rats in parallel with the development of fibrosis, and a decline in cardiac function with chamber dilation was measured by echocardiography. Rapidly reversing the hypothyroidism and restoring the euthyroid state improved cardiac function with a decrease in the levels of cardiac remodeling markers. However, this change further increased the levels of inflammatory and fibrotic markers in the plasma and heart and led to myocardial cellular infiltration. In conclusion, we showed that hypothyroidism is related to cardiac function decline, fibrosis and inflammation; most importantly, the rapid correction of hypothyroidism led to cardiac injuries. Our results might offer new insights for the management of hypothyroidism-induced heart disease. PMID:25333636
Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.
2015-01-01
Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346
Small interfering RNA targeting focal adhesion kinase prevents cardiac dysfunction in endotoxemia.
Guido, Maria C; Clemente, Carolina F; Moretti, Ana I; Barbeiro, Hermes V; Debbas, Victor; Caldini, Elia G; Franchini, Kleber G; Soriano, Francisco G
2012-01-01
Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.
O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.
2014-01-01
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739
Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J
2017-08-01
Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.
Mátyás, Csaba; Kovács, Attila; Németh, Balázs Tamás; Oláh, Attila; Braun, Szilveszter; Tokodi, Márton; Barta, Bálint András; Benke, Kálmán; Ruppert, Mihály; Lakatos, Bálint Károly; Merkely, Béla; Radovits, Tamás
2018-01-16
Measurement of systolic and diastolic function in animal models is challenging by conventional non-invasive methods. Therefore, we aimed at comparing speckle-tracking echocardiography (STE)-derived parameters to the indices of left ventricular (LV) pressure-volume (PV) analysis to detect cardiac dysfunction in rat models of type-1 (T1DM) and type-2 (T2DM) diabetes mellitus. Rat models of T1DM (induced by 60 mg/kg streptozotocin, n = 8) and T2DM (32-week-old Zucker Diabetic Fatty rats, n = 7) and corresponding control animals (n = 5 and n = 8, respectively) were compared. Echocardiography and LV PV analysis were performed. LV short-axis recordings were used for STE analysis. Global circumferential strain, peak strain rate values in systole (SrS), isovolumic relaxation (SrIVR) and early diastole (SrE) were measured. LV contractility, active relaxation and stiffness were measured by PV analysis. In T1DM, contractility and active relaxation were deteriorated to a greater extent compared to T2DM. In contrast, diastolic stiffness was impaired in T2DM. Correspondingly, STE described more severe systolic dysfunction in T1DM. Among diastolic STE parameters, SrIVR was more decreased in T1DM, however, SrE was more reduced in T2DM. In T1DM, SrS correlated with contractility, SrIVR with active relaxation, while in T2DM SrE was related to cardiac stiffness, cardiomyocyte diameter and fibrosis. Strain and strain rate parameters can be valuable and feasible measures to describe the dynamic changes in contractility, active relaxation and LV stiffness in animal models of T1DM and T2DM. STE corresponds to PV analysis and also correlates with markers of histological myocardial remodeling.
Aghajani, Marjan; Faghihi, Mahdieh; Imani, Alireza; Vaez Mahdavi, Mohammad Reza; Shakoori, Abbas; Rastegar, Tayebeh; Parsa, Hoda; Mehrabi, Saman; Moradi, Fatemeh; Kazemi Moghaddam, Ehsan
2017-01-01
Sleep disruption after myocardial infarction (MI) by affecting ubiquitin-proteasome system (UPS) is thought to contribute to myocardial remodeling and progressive worsening of cardiac function. The aim of current study was to test the hypothesis about the increased risk of developing heart failure due to experience of sleep restriction (SR) after MI. Male Wistar rats (n = 40) were randomly assigned to four experimental groups: (1) Sham, (2) MI, (3) MI and SR (MI + SR) (4) Sham and SR (Sham + SR). MI was induced by permanent ligation of left anterior descending coronary artery. Twenty-four hours after surgery, animals were subjected to chronic SR paradigm. Blood sampling was performed at days 1, 8 and 21 after MI for determination of serum levels of creatine kinase-MB (CK-MB), corticosterone, malondialdehyde (MDA) and nitric oxide (NO). Finally, at 21 days after MI, echocardiographic parameters and expression of MuRF1, MaFBx, A20, eNOS, iNOS and NF-kB in the heart were evaluated. We used H&E staining to detect myocardial hypertrophy. We found out that post infarct SR increased corticosterone levels. Our results highlighted deteriorating effects of post-MI SR on NO production, oxidative stress, and echocardiographic indexes (p < 0.05). Moreover, its detrimental effects on myocardial damage were confirmed by overexpression of MuRF1, MaFBx, iNOS and NF-kB (p < 0.001) in left ventricle and downregulation of A20 and eNOS (p < 0.05). Furthermore, histological examination revealed that experience of SR after MI increased myocardial diameter as compared to Sham subjects (p < 0.05). Our data suggest that SR after MI leads to an enlargement of the heart within 21 days, marked by an increase in oxidative stress and NO production as well as an imbalance in UPS that ultimately results in cardiac dysfunction and heart failure.
Xie, Wenping; Zhang, Wenpeng; Ren, Juan; Li, Wentao; Zhou, Lili; Cui, Yuan; Chen, Huiming; Yu, Wenlian; Zhuang, Xiaomei; Zhang, Zhenqing; Shen, Guolin; Li, Haishan
2018-02-14
Triclocarban (TCC) has been identified as a new environmental pollutant that is potentially hazardous to human health; however, the effects of short-term TCC exposure on cardiac function are not known. The aim of this study was to use metabonomics and molecular biology techniques to systematically elucidate the molecular mechanisms of TCC-induced effects on cardiac function in mice. Our results show that TCC inhibited the uptake, synthesis, and oxidation of fatty acids, suppressed the tricarboxylic acid (TCA) cycle, and increased aerobic glycolysis levels in heart tissue after short-term TCC exposure. TCC also inhibited the nuclear peroxisome proliferator-activated receptor α (PPARα), confirming its inhibitory effects on fatty acid uptake and oxidation. Histopathology and other analyses further confirm that TCC altered mouse cardiac physiology and pathology, ultimately affecting normal cardiac metabolic function. We elucidate the molecular mechanisms of TCC-induced harmful effects on mouse cardiac metabolism and function from a new perspective, using metabonomics and bioinformatics analysis data.
Fu, Qin; Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan; Xiang, Yang K
2017-03-15
Patients with diabetes show a blunted cardiac inotropic response to β-adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β-adrenergically induced contractile function in isolated cardiomyocytes and Langendorff-perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high-fat diet (HFD) feeding on the cardiac β 2 -adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β-adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β 2 -adrenergic receptor phosphorylation at protein kinase A and G-protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high-fat diet (HFD) on the insulin-adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD-fed mice displayed a significant elevation of phosphorylation of the β 2 -adrenergic receptor (β 2 AR) at both the protein kinase A site serine 261/262 and the G-protein-coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD-fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β 2 AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD-fed mice. Together, these data indicate that HFD promotes phosphorylation of the β 2 AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin-adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Hu, Yuting; Wang, Qingtong; Liu, Yongming; Li, Ning; Xu, Bing; Kim, Sungjin; Chiamvimonvat, Nipavan
2017-01-01
Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve.Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts.In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function.We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium.The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications. Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. PMID:27983752
Aortic valve replacement with the Biocor PSB stentless xenograft.
Bertolini, P; Luciani, G B; Vecchi, B; Pugliese, P; Mazzucco, A
1998-08-01
The midterm clinical results after aortic valve replacement with the Biocor PSB stentless xenograft on all patients operated between October 1992 and October 1996 were reviewed. One hundred six patients, aged 70+/-6 years, had aortic valve replacement for aortic stenosis (67%), regurgitation (11%), or both (22%). Associated procedures were done in 49 patients (46%), including coronary artery bypass in 30 patients, mitral valve repair/replacement in 16, and ascending aorta replacement in 5 patients. Aortic cross-clamp and cardiopulmonary bypass times were 96+/-24 and 129+/-31 minutes, respectively. There were 3 (3%) early deaths due to low output (2 patients) and cerebrovascular accident (1 patient). Follow-up of survivors ranged from 6 to 66 months (mean, 39+/-14 months). Survival was 94%+/-2% and 90%+/-3% at 1 and 5 years. There were 5 late deaths due to cardiac cause (2), cancer (2), and pulmonary embolism (1 patient). No patient had structural valve deterioration, whereas 100% and 95%+/-3% were free from valve-related events at 1 and 5 years. There were two reoperations due to narrowing of the left coronary ostium and endocarditis, with an actuarial freedom from reoperation of 99%+/-1% and 98+/-1% at 1 and 5 years, respectively. Functional results demonstrated a mean peak transprosthetic gradient of 16+/-12 mm Hg, with only 1 patient (1%) with a 55 mm Hg gradient. No cases of valve regurgitation greater than mild were recorded at follow-up. Assessment of New York Heart Association functional class demonstrated a significant improvement (2.9+/-0.6 versus 1.4+/-0.7; p=0.01). All patients were free from anticoagulation. Aortic valve replacement using the Biocor PSB stentless xenograft offers excellent midterm survival, negligible valve deterioration, and a very low rate of valve-related events, which are comparable to estimates reported with other models of stentless xenografts and currently available stented xenografts. Hemodynamic performance is favorable and quality of life satisfactory.
Kagiyama, Shuntaro; Koga, Tokushi; Kaseda, Shigeru; Ishihara, Shiro; Kawazoe, Nobuyuki; Sadoshima, Seizo; Matsumura, Kiyoshi; Takata, Yutaka; Tsuchihashi, Takuya; Iida, Mitsuo
2009-10-01
Increased salt intake may induce hypertension, lead to cardiac hypertrophy, and exacerbate heart failure. When elderly patients develop heart failure, diastolic dysfunction is often observed, although the ejection fraction has decreased. Diabetes mellitus (DM) is an established risk factor for heart failure. However, little is known about the relationship between cardiac function and urinary sodium excretion (U-Na) in patients with DM. We measured 24-hour U-Na; cardiac function was evaluated directly during coronary catheterization in type 2 DM (n = 46) or non-DM (n = 55) patients with preserved cardiac systolic function (ejection fraction > or = 60%). Cardiac diastolic and systolic function was evaluated as - dp/dt and + dp/dt, respectively. The average of U-Na was 166.6 +/- 61.2 mEq/24 hour (mean +/- SD). In all patients, stepwise multivariate regression analysis revealed that - dp/dt had a negative correlation with serum B-type natriuretic peptide (BNP; beta = - 0.23, P = .021) and U-Na (beta = - 0.24, P = .013). On the other hand, + dp/dt negatively correlated with BNP (beta = - 0.30, P < .001), but did not relate to U-Na. In the DM-patients, stepwise multivariate regression analysis showed that - dp/dt still had a negative correlation with U-Na (beta = - 0.33, P = .025). The results indicated that increased urinary sodium excretion is associated with an impairment of cardiac diastolic function, especially in patients with DM, suggesting that a reduction of salt intake may improve cardiac diastolic function.
Zhang, Jun; Li, Xiaohai; Mueller, Michael; Wang, Yueju; Zong, Chenggong; Deng, Ning; Vondriska, Thomas M.; Liem, David A.; Yang, Jeong-In; Korge, Paavo; Honda, Henry; Weiss, James N.; Apweiler, Rolf; Ping, Peipei
2009-01-01
Mitochondria play essential roles in cardiac pathophysiology and the murine model has been extensively used to investigate cardiovascular diseases. In the present study, we characterized murine cardiac mitochondria using an LC/MS/MS approach. We extracted and purified cardiac mitochondria; validated their functionality to ensure the final preparation contains necessary components to sustain their normal function; and subjected these validated organelles to LC/MS/MS-based protein identification. A total of 940 distinct proteins were identified from murine cardiac mitochondria, among which, 480 proteins were not previously identified by major proteomic profiling studies. The 940 proteins consist of functional clusters known to support oxidative phosphorylation, metabolism and biogenesis. In addition, there are several other clusters--including proteolysis, protein folding, and reduction/oxidation signaling-which ostensibly represent previously under-appreciated tasks of cardiac mitochondria. Moreover, many identified proteins were found to occupy other subcellular locations, including cytoplasm, ER, and golgi, in addition to their presence in the mitochondria. These results provide a comprehensive picture of the murine cardiac mitochondrial proteome and underscore tissue- and species-specification. Moreover, the use of functionally intact mitochondria insures that the proteomic observations in this organelle are relevant to its normal biology and facilitates decoding the interplay between mitochondria and other organelles. PMID:18348319
Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2012-09-01
Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.
Myocyte repolarization modulates myocardial function in aging dogs
Sorrentino, Andrea; Signore, Sergio; Borghetti, Giulia; Meo, Marianna; Cannata, Antonio; Zhou, Yu; Wybieralska, Ewa; Luciani, Marco; Kannappan, Ramaswamy; Zhang, Eric; Matsuda, Alex; Webster, Andrew; Cimini, Maria; Kertowidjojo, Elizabeth; D'Alessandro, David A.; Wunimenghe, Oriyanhan; Michler, Robert E.; Royer, Christopher; Goichberg, Polina; Leri, Annarosa; Barrett, Edward G.; Anversa, Piero; Hintze, Thomas H.
2016-01-01
Studies of myocardial aging are complex and the mechanisms involved in the deterioration of ventricular performance and decreased functional reserve of the old heart remain to be properly defined. We have studied a colony of beagle dogs from 3 to 14 yr of age kept under a highly regulated environment to define the effects of aging on the myocardium. Ventricular, myocardial, and myocyte function, together with anatomical and structural properties of the organ and cardiomyocytes, were evaluated. Ventricular hypertrophy was not observed with aging and the structural composition of the myocardium was modestly affected. Alterations in the myocyte compartment were identified in aged dogs, and these factors negatively interfere with the contractile reserve typical of the young heart. The duration of the action potential is prolonged in old cardiomyocytes contributing to the slower electrical recovery of the myocardium. Also, the remodeled repolarization of cardiomyocytes with aging provides inotropic support to the senescent muscle but compromises its contractile reserve, rendering the old heart ineffective under conditions of high hemodynamic demand. The defects in the electrical and mechanical properties of cardiomyocytes with aging suggest that this cell population is an important determinant of the cardiac senescent phenotype. Collectively, the delayed electrical repolarization of aging cardiomyocytes may be viewed as a critical variable of the aging myopathy and its propensity to evolve into ventricular decompensation under stressful conditions. PMID:26801307
Byrne, Nikole J; Levasseur, Jody; Sung, Miranda M; Masson, Grant; Boisvenue, Jamie; Young, Martin E; Dyck, Jason R B
2016-05-15
Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Convertino, Victor A; Cooke, William H
2005-09-01
Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.
Abnormal cardiac autonomic regulation in mice lacking ASIC3.
Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng
2014-01-01
Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.
Mathematical Models of Cardiac Pacemaking Function
NASA Astrophysics Data System (ADS)
Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak
2013-10-01
Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.
Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering
NASA Astrophysics Data System (ADS)
Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.
2016-12-01
There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.
Lin, Shenglan; Wang, Yana; Zhang, Xiaojin; Kong, Qiuyue; Li, Chuanfu; Li, Yuehua; Ding, Zhengnian; Liu, Li
2016-01-01
Aging-induced cardiac dysfunction is a prominent feature of cardiac aging. Heat shock protein 27 (HSP27) protects cardiac function against ischemia or chemical challenge. We hypothesized that HSP27 attenuates cardiac aging. Transgenic (Tg) mice with cardiac-specific expression of the HSP27 gene and wild-type (WT) littermates were employed in the experiments. Echocardiography revealed a significant decline in the cardiac function of old WT mice compared with young WT mice. In striking contrast, the aging-induced impairment of cardiac function was attenuated in old Tg mice compared with old WT mice. Levels of cardiac aging markers were lower in old Tg mouse hearts than in old WT mouse hearts. Less interstitial fibrosis and lower contents of reactive oxygen species and ubiquitin-conjugated proteins were detected in old Tg hearts than in old WT hearts. Furthermore, old Tg hearts demonstrated lower accumulation of LC3-II and p62 than old WT hearts. Levels of Atg13, Vps34, and Rab7 were also higher in old Tg hearts than in old WT hearts. Additionally, old Tg hearts had higher levels of PINK1 and Parkin than old WT hearts, suggesting that mitophagy was activated in old Tg hearts. Taken together, HSP27 alleviated cardiac aging and this action involved antioxidation and mitophagy activation.
Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong
2015-08-01
Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Cardiac and renal function in a large cohort of amateur marathon runners.
Hewing, Bernd; Schattke, Sebastian; Spethmann, Sebastian; Sanad, Wasiem; Schroeckh, Sabrina; Schimke, Ingolf; Halleck, Fabian; Peters, Harm; Brechtel, Lars; Lock, Jürgen; Baumann, Gert; Dreger, Henryk; Borges, Adrian C; Knebel, Fabian
2015-03-21
Participation of amateur runners in endurance races continues to increase. Previous studies of marathon runners have raised concerns about exercise-induced myocardial and renal dysfunction and damage. In our pooled analysis, we aimed to characterize changes of cardiac and renal function after marathon running in a large cohort of mostly elderly amateur marathon runners. A total of 167 participants of the Berlin-Marathon (female n = 89, male n = 78; age = 50.3 ± 11.4 years) were included and cardiac and renal function was analyzed prior to, immediately after and 2 weeks following the race by echocardiography and blood tests (including cardiac troponin T, NT-proBNP and cystatin C). Among the runners, 58% exhibited a significant increase in cardiac biomarkers after completion of the marathon. Overall, the changes in echocardiographic parameters for systolic or diastolic left and right ventricular function did not indicate relevant myocardial dysfunction. Notably, 30% of all participants showed >25% decrease in cystatin C-estimated glomerular filtration rate (GFR) from baseline directly after the marathon; in 8%, we observed a decline of more than 50%. All cardiac and renal parameters returned to baseline ranges within 2 weeks after the marathon. The increase in cardiac biomarkers after completing a marathon was not accompanied by relevant cardiac dysfunction as assessed by echocardiography. After the race, a high proportion of runners experienced a decrease in cystatin C-estimated GFR, which is suggestive of transient, exercise-related alteration of renal function. However, we did not observe persistent detrimental effects on renal function.
Dance as Prevention of Late Life Functional Decline Among Nursing Home Residents.
Machacova, Katerina; Vankova, Hana; Volicer, Ladislav; Veleta, Petr; Holmerova, Iva
2017-12-01
Late life deterioration of functional status is associated with adverse health outcomes and increased cost of care. This trial was conducted to determine whether dance-based intervention could reverse functional decline among nursing home (NH) residents. A total of 189 residents of seven NHs in the Czech Republic were randomly assigned to intervention and control groups. More detailed data were collected in a subsample of 52 participants. Intervention consisted of 3-month dance-based exercise. Functional status was assessed by the get-up-and-go test, basic activities of daily living (ADL), instrumental activities of daily living (IADL), and senior fitness tests (SFTs). Participants in the control group experienced a significant decline in get-up-and-go test, IADL, and in four of the six SFTs. The intervention proved to be effective in preventing this deterioration and improved chair stand test and chair sit-and-reach test. The findings indicate that a relatively simple dance-based exercise can slow down deterioration of functional status in NH residents.
Cardiac mechanics: Physiological, clinical, and mathematical considerations
NASA Technical Reports Server (NTRS)
Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.
1974-01-01
Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.
PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction
Knight, Walter E.; Chen, Si; Zhang, Yishuai; Oikawa, Masayoshi; Wu, Meiping; Zhou, Qian; Miller, Clint L.; Cai, Yujun; Mickelsen, Deanne M.; Moravec, Christine; Small, Eric M.; Abe, Junichi; Yan, Chen
2016-01-01
Cyclic nucleotide phosphodiesterase 1C (PDE1C) represents a major phosphodiesterase activity in human myocardium, but its function in the heart remains unknown. Using genetic and pharmacological approaches, we studied the expression, regulation, function, and underlying mechanisms of PDE1C in the pathogenesis of cardiac remodeling and dysfunction. PDE1C expression is up-regulated in mouse and human failing hearts and is highly expressed in cardiac myocytes but not in fibroblasts. In adult mouse cardiac myocytes, PDE1C deficiency or inhibition attenuated myocyte death and apoptosis, which was largely dependent on cyclic AMP/PKA and PI3K/AKT signaling. PDE1C deficiency also attenuated cardiac myocyte hypertrophy in a PKA-dependent manner. Conditioned medium taken from PDE1C-deficient cardiac myocytes attenuated TGF-β–stimulated cardiac fibroblast activation through a mechanism involving the crosstalk between cardiac myocytes and fibroblasts. In vivo, cardiac remodeling and dysfunction induced by transverse aortic constriction, including myocardial hypertrophy, apoptosis, cardiac fibrosis, and loss of contractile function, were significantly attenuated in PDE1C-knockout mice relative to wild-type mice. These results indicate that PDE1C activation plays a causative role in pathological cardiac remodeling and dysfunction. Given the continued development of highly specific PDE1 inhibitors and the high expression level of PDE1C in the human heart, our findings could have considerable therapeutic significance. PMID:27791092
Mavinkurve-Groothuis, Annelies M C; Marcus, Karen A; Pourier, Milanthy; Loonen, Jacqueline; Feuth, Ton; Hoogerbrugge, Peter M; de Korte, Chris L; Kapusta, Livia
2013-06-01
The aim of this study was to investigate myocardial 2D strain echocardiography and cardiac biomarkers in the assessment of cardiac function in children with acute lymphoblastic leukaemia (ALL) during and shortly after treatment with anthracyclines. Cardiac function of 60 children with ALL was prospectively studied with measurements of cardiac troponin T (cTnT) and N-terminal-pro-brain natriuretic peptide (NT-pro-BNP) and conventional and myocardial 2D strain echocardiography before start (T = 0), after 3 months (T = 1), and after 1 year (T = 2), and were compared with 60 healthy age-matched controls. None of the patients showed clinical signs of cardiac failure or abnormal fractional shortening. Cardiac function decreased significantly during treatment and was significantly decreased compared with normal controls. Cardiac troponin T levels were abnormal in 11% of the patients at T = 1 and were significantly related to increased time to global peak systolic longitudinal strain at T = 2 (P = 0.003). N-terminal-pro-brain natriuretic peptide levels were abnormal in 13% of patients at T = 1 and in 20% at T = 2, absolute values increased throughout treatment in 59%. Predictors for abnormal NT-pro-BNP at T = 2 were abnormal NT-pro-BNP at T = 0 and T = 1, for abnormal myocardial 2D strain parameters at T = 2 cumulative anthracycline dose and z-score of the diastolic left ventricular internal diameter at baseline. Children with newly diagnosed ALL showed decline of systolic and diastolic function during treatment with anthracyclines using cardiac biomarkers and myocardial 2D strain echocardiography. N-terminal-pro-brain natriuretic peptide levels were not related to echocardiographic strain parameters and cTnT was not a predictor for abnormal strain at T = 2.Therefore, the combination of cardiac biomarkers and myocardial 2D strain echocardiography is important in the assessment of cardiac function of children with ALL treated with anthracyclines.
McCrink, Katie A; Maning, Jennifer; Vu, Angela; Jafferjee, Malika; Marrero, Christine; Brill, Ava; Bathgate-Siryk, Ashley; Dabul, Samalia; Koch, Walter J; Lymperopoulos, Anastasios
2017-11-01
Heart failure is the leading cause of death in the Western world, and new and innovative treatments are needed. The GPCR (G protein-coupled receptor) adapter proteins βarr (β-arrestin)-1 and βarr-2 are functionally distinct in the heart. βarr1 is cardiotoxic, decreasing contractility by opposing β 1 AR (adrenergic receptor) signaling and promoting apoptosis/inflammation post-myocardial infarction (MI). Conversely, βarr2 inhibits apoptosis/inflammation post-MI but its effects on cardiac function are not well understood. Herein, we sought to investigate whether βarr2 actually increases cardiac contractility. Via proteomic investigations in transgenic mouse hearts and in H9c2 rat cardiomyocytes, we have uncovered that βarr2 directly interacts with SERCA2a (sarco[endo]plasmic reticulum Ca 2+ -ATPase) in vivo and in vitro in a β 1 AR-dependent manner. This interaction causes acute SERCA2a SUMO (small ubiquitin-like modifier)-ylation, increasing SERCA2a activity and thus, cardiac contractility. βarr1 lacks this effect. Moreover, βarr2 does not desensitize β 1 AR cAMP-dependent procontractile signaling in cardiomyocytes, again contrary to βarr1. In vivo, post-MI heart failure mice overexpressing cardiac βarr2 have markedly improved cardiac function, apoptosis, inflammation, and adverse remodeling markers, as well as increased SERCA2a SUMOylation, levels, and activity, compared with control animals. Notably, βarr2 is capable of ameliorating cardiac function and remodeling post-MI despite not increasing cardiac βAR number or cAMP levels in vivo. In conclusion, enhancement of cardiac βarr2 levels/signaling via cardiac-specific gene transfer augments cardiac function safely, that is, while attenuating post-MI remodeling. Thus, cardiac βarr2 gene transfer might be a novel, safe positive inotropic therapy for both acute and chronic post-MI heart failure. © 2017 American Heart Association, Inc.
MitoQ administration prevents endotoxin-induced cardiac dysfunction
Murphy, M. P.; Callahan, L. A.
2009-01-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6′-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg·kg−1·day−1), saline + MitoQ (500 μM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction. PMID:19657095
MitoQ administration prevents endotoxin-induced cardiac dysfunction.
Supinski, G S; Murphy, M P; Callahan, L A
2009-10-01
Sepsis elicits severe alterations in cardiac function, impairing cardiac mitochondrial and pressure-generating capacity. Currently, there are no therapies to prevent sepsis-induced cardiac dysfunction. We tested the hypothesis that administration of a mitochondrially targeted antioxidant, 10-(6'-ubiquinonyl)-decyltriphenylphosphonium (MitoQ), would prevent endotoxin-induced reductions in cardiac mitochondrial and contractile function. Studies were performed on adult rodents (n = 52) given either saline, endotoxin (8 mg x kg(-1) x day(-1)), saline + MitoQ (500 microM), or both endotoxin and MitoQ. At 48 h animals were killed and hearts were removed for determination of either cardiac mitochondrial function (using polarography) or cardiac pressure generation (using the Langendorf technique). We found that endotoxin induced reductions in mitochondrial state 3 respiration rates, the respiratory control ratio, and ATP generation. Moreover, MitoQ administration prevented each of these endotoxin-induced abnormalities, P < 0.001. We also found that endotoxin produced reductions in cardiac pressure-generating capacity, reducing the systolic pressure-diastolic relationship. MitoQ also prevented endotoxin-induced reductions in cardiac pressure generation, P < 0.01. One potential link between mitochondrial and contractile dysfunction is caspase activation; we found that endotoxin increased cardiac levels of active caspases 9 and 3 (P < 0.001), while MitoQ prevented this increase (P < 0.01). These data demonstrate that MitoQ is a potent inhibitor of endotoxin-induced mitochondrial and cardiac abnormalities. We speculate that this agent may prove a novel therapy for sepsis-induced cardiac dysfunction.
Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon
2013-01-01
Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656
Functional role of AMP-activated protein kinase in the heart during exercise.
Musi, Nicolas; Hirshman, Michael F; Arad, Michael; Xing, Yanqiu; Fujii, Nobuharu; Pomerleau, Jason; Ahmad, Ferhaan; Berul, Charles I; Seidman, Jon G; Tian, Rong; Goodyear, Laurie J
2005-04-11
AMP-activated protein kinase (AMPK) plays a critical role in maintaining energy homeostasis and cardiac function during ischemia in the heart. However, the functional role of AMPK in the heart during exercise is unknown. We examined whether acute exercise increases AMPK activity in mouse hearts and determined the significance of these increases by studying transgenic (TG) mice expressing a cardiac-specific dominant-negative (inactivating) AMPKalpha2 subunit. Exercise increased cardiac AMPKalpha2 activity in the wild type mice but not in TG. We found that inactivation of AMPK did not result in abnormal ATP and glycogen consumption during exercise, cardiac function assessed by heart rhythm telemetry and stress echocardiography, or in maximal exercise capacity.
Nakane, Takahiko; Nakamae, Hirohisa; Muro, Takashi; Yamagishi, Hiroyuki; Kobayashi, Yoshiki; Aimoto, Mizuki; Sakamoto, Erina; Terada, Yoshiki; Nakamae, Mika; Koh, Ki-Ryang; Yamane, Takahisa; Yoshiyama, Minoru; Hino, Masayuki
2009-09-01
Recent reports have shown that cardiomyopathy caused by hemochromatosis in severe aplastic anemia is reversible after reduced-intensity allogeneic stem-cell transplantation (RIST). We comprehensively evaluated cardiac and autonomic nerve function to determine whether cardiac dysfunction due to causes other than hemochromatosis is attenuated after RIST. In five patients with cardiac dysfunction before transplant, we analyzed the changes in cardiac and autonomic nerve function after transplant, using electrocardiography (ECG), echocardiography, radionuclide angiography (RNA), serum markers, and heart rate variability (HRV), before and up to 100 days after transplant. There was no significant improvement in cardiac function in any patient and no significant alteration in ECG, echocardiogram, RNA, or serum markers. However, on time-domain analysis of HRV, the SD of normal-to-normal RR intervals (SDNN) and the coefficient of variation of the RR interval (CVRR) decreased significantly 30 and 60 days after transplant (P = 0.04 and 0.01, respectively). Similarly, on frequency-domain analysis of HRV, low and high frequency power (LF and HF) significantly and temporarily decreased (P = 0.003 and 0.03, respectively). Notably, in one patient who had acute heart failure after transplantation, the values of SDNN, CVRR, r-MSSD, LF, and HF at 30 and 60 days after transplantation were the lowest of all the patients. In conclusion, this study suggests that (a) RIST is well-tolerated in patients with cardiac dysfunction, but we cannot expect improvement in cardiac dysfunction due to causes other than hemochromatosis; and (b) monitoring HRV may be useful in predicting cardiac events after RIST.
Heart transplantation for adults with congenital heart disease: current status and future prospects.
Matsuda, Hikaru; Ichikawa, Hajime; Ueno, Takayoshi; Sawa, Yoshiki
2017-06-01
Increased survival rates after corrective or palliative surgery for complex congenital heart disease (CHD) in infancy and childhood are now being coupled with increased numbers of patients who survive to adulthood with various residual lesions or sequelae. These patients are likely to deteriorate in cardiac function or end-organ function, eventually requiring lifesaving treatment including heart transplantation. Although early and late outcomes of heart transplantation have been improving for adult survivors of CHD, outcomes and pretransplant management could still be improved. Survivors of Fontan procedures are a vulnerable cohort, particularly when single ventricle physiology fails, mostly with protein-losing enteropathy and hepatic dysfunction. Therefore, we reviewed single-institution and larger database analyses of adults who underwent heart transplantation for CHD, to enable risk stratification by identifying the indications and outcomes. As the results, despite relatively high early mortality, long-term results were encouraging after heart transplantation. However, further investigations are needed to improve the indication criteria for complex CHD, especially for failed Fontan. In addition, the current system of status criteria and donor heart allocation system in heart transplantation should be arranged as suitable for adults with complex CHD. Furthermore, there is a strong need to develop ventricular assist devices as a bridge to transplantation or destination therapy, especially where right-sided circulatory support is needed.
A Short History of Cardiac Inspection: A Quest "To See with a Better Eye".
Evans, William N
2015-08-01
Cardiac examination has evolved over centuries. The goal of cardiac evaluation, regardless the era, is to "see" inside the heart to diagnose congenital and acquired intra-cardiac structural and functional abnormalities. This article briefly reviews the history of cardiac examination and discusses contemporary best, evidence-based methods of cardiac inspection.
Shettigar, Vikram; Zhang, Bo; Little, Sean C; Salhi, Hussam E; Hansen, Brian J; Li, Ning; Zhang, Jianchao; Roof, Steve R; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K; Weisleder, Noah; Fedorov, Vadim V; Accornero, Federica; Rafael-Fortney, Jill A; Gyorke, Sandor; Janssen, Paul M L; Biesiadecki, Brandon J; Ziolo, Mark T; Davis, Jonathan P
2016-02-24
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca(2+) signal. Promisingly, our smartly formulated Ca(2+)-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease.
Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.
2016-01-01
Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229
Thapa, Dharendra; Shepherd, Danielle L.
2014-01-01
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166
Guo, Yongzheng; Wang, Zhen; Qin, Xinghua; Xu, Jie; Hou, Zuoxu; Yang, Hongyan; Mao, Xuechao; Xing, Wenjuan; Li, Xiaoliang; Zhang, Xing; Gao, Feng
2018-06-01
Heart failure (HF) is characterized by reduced fatty acid (FA) utilization associated with mitochondrial dysfunction. Recent evidence has shown that enhancing FA utilization may provide cardioprotection against HF. Our aim was to investigate the effects and the underlying mechanisms of cardiac FA utilization on cardiac function in response to pressure overload. Transverse aortic constriction (TAC) was used in C57 mice to establish pressure overload-induced HF. TAC mice fed on a high fat diet (HFD) exhibited increased cardiac FA utilization and improved cardiac function and survival compared with those on control diet. Such cardioprotection could also be provided by cardiac-specific overexpression of CD36. Notably, both HFD and CD36 overexpression attenuated mitochondrial fragmentation and improved mitochondrial function in the failing heart. Pressure overload decreased ATP-dependent metalloprotease (YME1L) expression and induced the proteolytic cleavage of the dynamin-like guanosine triphosphatase OPA1 as a result of suppressed FA utilization. Enhancing FA utilization upregulated YME1L expression and subsequently rebalanced OPA1 processing, resulting in restoration of mitochondrial morphology in the failing heart. In addition, cardiac-specific overexpression of YME1L exerted similar cardioprotective effects against HF to those provided by HFD or CD36 overexpression. These findings demonstrate that enhancing FA utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing OPA1 processing in pressure overload-induced HF, suggesting a unique metabolic intervention approach to improving cardiac functions in HF.
Design and formulation of functional pluripotent stem cell-derived cardiac microtissues
Thavandiran, Nimalan; Dubois, Nicole; Mikryukov, Alexander; Massé, Stéphane; Beca, Bogdan; Simmons, Craig A.; Deshpande, Vikram S.; McGarry, J. Patrick; Chen, Christopher S.; Nanthakumar, Kumaraswamy; Keller, Gordon M.; Radisic, Milica; Zandstra, Peter W.
2013-01-01
Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function. PMID:24255110
Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis
Maya, Lisandro; Villarreal, Francisco J.
2009-01-01
In diabetes mellitus, alterations in cardiac structure/function in the absence of ischemic heart disease, hypertension or other cardiac pathologies is termed diabetic cardiomyopathy. In the United States, the prevalence of diabetes mellitus continues to rise and the disease currently affects about 8% of the general population. Hence, it is imperative the use of appropriate diagnostic strategies for diabetic cardiomyopathy, which may help correctly identify the disease at early stages and implement suitable corrective therapies. Currently, there is no single diagnostic method for the identification of diabetic cardiomyopathy. Diabetic cardiomyopathy is known to induce changes in cardiac structure such as, myocardial hypertrophy, fibrosis and fat droplet deposition. Early changes in cardiac function are typically manifested as abnormal diastolic function that with time leads to loss of contractile function. Echocardiography based methods currently stands as the preferred diagnostic approach for diabetic cardiomyopathy, due to its wide availability and economical use. In addition to conventional techniques, magnetic resonance imaging and spectroscopy along with contrast agents are now leading new approaches in the diagnosis of myocardial fibrosis, and cardiac and hepatic metabolic changes. These strategies can be complemented with serum biomarkers so they can offer a clear picture as to diabetes-induced changes in cardiac structure/function even at very early stages of the disease. This review article intends to provide a summary of experimental and routine tools currently available to diagnose diabetic cardiomyopathy induced changes in cardiac structure/function. These tools can be reliably used in either experimental models of diabetes or for clinical applications. PMID:19595694
Cardiac fluid dynamics meets deformation imaging.
Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni
2018-02-20
Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.
Papousek, Ilona; Weiss, Elisabeth M; Schulter, Günter; Fink, Andreas; Reiser, Eva M; Lackner, Helmut K
2014-12-01
Changes of EEG alpha asymmetry in terms of increased right versus left sided activity in prefrontal cortex are considered to index activation of the withdrawal/avoidance motivational system. The present study aimed to add evidence of the validity of individual differences in the EEG alpha asymmetry response and their relevance regarding the impact of emotional events. The magnitude of the EEG alpha asymmetry response while watching a film consisting of scenes of real injury and death correlated with components of transient cardiac responses to sudden horrifying events happening to persons in the film which index withdrawal/avoidance motivation and heightened attention and perceptual intake. Additionally, it predicted greater mood deterioration following the film and film-related intrusive memories and avoidance over the following week. The study provides further evidence for prefrontal EEG alpha asymmetry changes in response to relevant stimuli reflecting an individual's sensitivity to negative social-emotional cues encountered in everyday life. Copyright © 2014 Elsevier B.V. All rights reserved.
Bouhour, Françoise; Bost, Muriel; Vial, Christophe
2007-06-01
Steinert disease, also known as myotonic dystrophy type 1, is a muscle disease characterized by myotonia and by multiorgan damage that combines various degrees of muscle weakness, arrhythmia and/or cardiac conduction disorders, cataract, endocrine damage, sleep disorders and baldness. It is the most frequent of the adult-onset muscular dystrophies; its prevalence is estimated at 1/20,000 inhabitants. Diagnosis is confirmed by the demonstration of an abnormality at the 19q13-2 locus, with the use of molecular genetic techniques. Its transmission is autosomal dominant, and anticipation may occur, that is, disease may be more severe and occur earlier in offspring. Genetic counseling is often delicate for this condition because of the great variability of clinical expression, both within and between families. Prenatal diagnosis is proposed especially for maternal transmission because of the severity of the possible neonatal forms. Management ideally includes multidisciplinary annual follow-up. Disease course is usually slowly progressive but rapid deterioration may sometimes be observed. Life expectancy is reduced by the increased mortality associated with the pulmonary and cardiac complications.
Nollo, Giandomenico; Ferrari, Paolo; Graffigna, Angelo C
2011-01-01
The effect on acid-base balance efficacy of intermittent warm and cold blood cardioplegia (IWBC, ICBC) was assessed in 44 patients who underwent cardiac surgery with prolonged aortic cross clamping. With this purpose a customized multi sensor probe was inserted in the coronary sinus, and pH, PO(2), PCO(2) and temperature were continuously measured at 1 Hz sampling rate. The mean cross-clamping time was of 76 ± 26 min on 19 IWBC cases and of 80 ± 24 min on 14 ICBC cases. With IWBC perfusion, at the end of every ischemic period, the lowest pH and PO(2) progressively decreased and the maximal PCO(2) increased. During ICBC the minimum of pH and PO(2) and maximum of PCO2 at the end of different ischemic period during time were constant, also during long cross-clamping time. With IWBC, myocardial ischemia seemed not completely reversed by standardized reperfusions, as reflected by steady deterioration of PCO(2) and pH after each reperfusion.
Xenograft transplantation in congenital cardiac surgery at Baskent University: midterm results.
Ozkan, S; Akay, T H; Gultekin, B; Sezgin, A; Tokel, K; Aslamaci, S
2007-05-01
Xenograft valved conduits have been used in several cardiac pathologies. In this study we have presented our midterm results of pediatric patients pathologies who were operated with xenograft conduits. Between January 1999 and January 2005, 134 patients underwent open heart surgery with xenograft conduits. The conduits were used to establish the continuity of the right ventricle to the pulmonary artery or aorta, the left ventricle to the pulmonary artery, or aorta due to various types of complex cardiac anomalies. Patients were evaluated by transthoracic echocardiography (ECHO) at 6-month follow-ups. Cardiac catheterization was performed when ECHO demonstrated significant conduit failure. Hospital mortality was observed in 28 patients (20.1%), and 13 patients died upon follow-up (9.7%). Mean follow-up was 24.6 +/- 4 months (range, 13 to 85 months). Among 93 survivors 20 patients (21.5%) were reoperated due to conduit failure. The main reasons for conduit failure were stenosis (n=13), valvular regurgitation (n=2), or both conditions in 5 cases. Mean pulmonary gradient before conduit re-replacement was 47.7 +/- 30.1 mmHg. The 1-, 3-, and 6-year actuarial survival rates were 95 +/- 2%, 91 +/- 3%, and 86 +/- 5%. The 1-, 3-, and 6-year actuarial freedom rates from reoperation were 95 +/- 1%, 90 +/- 3%, and 86 +/- 4%. An increased gradient between the pulmonary artery and the right ventricle and prolonged cardiopulmonary bypass times were observed to be significant risk factors for reoperation. There was no mortality among reoperated patients. Xenograft conduits should be closely followed for calcification and stenosis. Conduit stenosis is the major risk factor for reoperation. In these patients, reoperation for conduit replacement can be performed safely before deterioration of cardiac performance.
NASA Astrophysics Data System (ADS)
Sauppe, Sebastian; Hahn, Andreas; Brehm, Marcus; Paysan, Pascal; Seghers, Dieter; Kachelrieß, Marc
2016-03-01
We propose an adapted method of our previously published five-dimensional (5D) motion compensation (MoCo) algorithm1, developed for micro-CT imaging of small animals, to provide for the first time motion artifact-free 5D cone-beam CT (CBCT) images from a conventional flat detector-based CBCT scan of clinical patients. Image quality of retrospectively respiratory- and cardiac-gated volumes from flat detector CBCT scans is deteriorated by severe sparse projection artifacts. These artifacts further complicate motion estimation, as it is required for MoCo image reconstruction. For high quality 5D CBCT images at the same x-ray dose and the same number of projections as todays 3D CBCT we developed a double MoCo approach based on motion vector fields (MVFs) for respiratory and cardiac motion. In a first step our already published four-dimensional (4D) artifact-specific cyclic motion-compensation (acMoCo) approach is applied to compensate for the respiratory patient motion. With this information a cyclic phase-gated deformable heart registration algorithm is applied to the respiratory motion-compensated 4D CBCT data, thus resulting in cardiac MVFs. We apply these MVFs on double-gated images and thereby respiratory and cardiac motion-compensated 5D CBCT images are obtained. Our 5D MoCo approach processing patient data acquired with the TrueBeam 4D CBCT system (Varian Medical Systems). Our double MoCo approach turned out to be very efficient and removed nearly all streak artifacts due to making use of 100% of the projection data for each reconstructed frame. The 5D MoCo patient data show fine details and no motion blurring, even in regions close to the heart where motion is fastest.
Bioengineering Human Myocardium on Native Extracellular Matrix
Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.
2015-01-01
Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable the bioengineering of functional human myocardial-like tissue of multiple complexities. PMID:26503464
Beckman, Sarah A; Sekiya, Naosumi; Chen, William C W; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny
2014-01-01
Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC's higher antioxidant levels. To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs.
Beckman, Sarah A.; Sekiya, Naosumi; Chen, William C.W.; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny
2017-01-01
Introduction Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. Background We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC’s higher antioxidant levels. Aim To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Materials and Methods Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. Results At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. Discussion While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Conclusion Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs. PMID:28989945
The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function.
Roe, Nathan D; Handzlik, Michal K; Li, Tao; Tian, Rong
2018-03-21
It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.
Hiemstra, Jessica A.; Gutiérrez‐Aguilar, Manuel; Marshall, Kurt D.; McCommis, Kyle S.; Zgoda, Pamela J.; Cruz‐Rivera, Noelany; Jenkins, Nathan T.; Krenz, Maike; Domeier, Timothy L.; Baines, Christopher P.; Emter, Craig A.
2014-01-01
Abstract We recently developed a clinically relevant mini‐swine model of heart failure with preserved ejection fraction (HFpEF), in which diastolic dysfunction was associated with increased mitochondrial permeability transition (MPT). Early diastolic function is ATP and Ca2+‐dependent, thus, we hypothesized chronic low doses of cyclosporine (CsA) would preserve mitochondrial function via inhibition of MPT and subsequently maintain normal cardiomyocyte Ca2+ handling and contractile characteristics. Left ventricular cardiomyocytes were isolated from aortic‐banded Yucatan mini‐swine divided into three groups; control nonbanded (CON), HFpEF nontreated (HF), and HFpEF treated with CsA (HF‐CsA). CsA mitigated the deterioration of mitochondrial function observed in HF animals, including functional uncoupling of Complex I‐dependent mitochondrial respiration and increased susceptibility to MPT. Attenuation of mitochondrial dysfunction in the HF‐CsA group was not associated with commensurate improvement in cardiomyocyte Ca2+ handling or contractility. Ca2+ transient amplitude was reduced and transient time to peak and recovery (tau) prolonged in HF and HF‐CsA groups compared to CON. Alterations in Ca2+ transient parameters observed in the HF and HF‐CsA groups were associated with decreased cardiomyocyte shortening and shortening rate. Cellular function was consistent with impaired in vivo systolic and diastolic whole heart function. A significant systemic hypertensive response to CsA was observed in HF‐CsA animals, and may have played a role in the accelerated the development of heart failure at both the whole heart and cellular levels. Given the significant detriment to cardiac function observed in response to CsA, our findings suggest chronic CsA treatment is not a viable therapeutic option for HFpEF. PMID:24963034
Cardiac Electrophysiology: Normal and Ischemic Ionic Currents and the ECG
ERIC Educational Resources Information Center
Klabunde, Richard E.
2017-01-01
Basic cardiac electrophysiology is foundational to understanding normal cardiac function in terms of rate and rhythm and initiation of cardiac muscle contraction. The primary clinical tool for assessing cardiac electrical events is the electrocardiogram (ECG), which provides global and regional information on rate, rhythm, and electrical…
Ho, Jasperine Ka Yee; Lee, Quinnie; Lam, Jaden Chun Ho; Tang, Kam Shing
2017-06-01
Timely detection and management of acutely deteriorating patients can save lives. Tuen Mun Hospital (TMH), a 1800-bed acute tertiary hospital serving more than 1.06 million populations in Hong Kong, is exploring to quantitatively monitor serious clinical deterioration (SCD) and uses it to guide patient care improvement initiatives. Literature review on definition and measurement of SCD was conducted. Monthly SCD rates of TMH were first calculated according to the published methodology and benchmarked against those of international centres. A refined composite clinical indicator good for local use was compiled. In the second phase, p-control charts of SCD have been plotted based on cumulative data. TMH's performance was comparable with that of international centres. SCD on p-control charts has been plotting since January 2013. There were peaks in all 4 SCD rates during the winter surge period in 2013-2014. In the third phase, multiple measures have been taking to reduce the SCD rates including targeting the 3 main factors of winter surge situation. We are delighted to observe that the pattern did not repeat in the rate of cardiac arrest without do not attempt cardiopulmonary resuscitation (DNACPR) and rate of death without DNACPR in the same period in 2014-2015. SCD becomes a clinical governance tool to monitor the performance of clinical teams in treating acutely deteriorating patients in TMH. Any abnormal patterns or indications of special cause variations in the control charts would alert leaders to look for root causes of special cause variations and manage accordingly. We hope that this project will extend to corporate level and become a sustainable clinical indicator to guide audits, quality improvement initiatives and strategic planning. © 2016 John Wiley & Sons, Ltd.
Avidan, Michael S; FCASA; Searleman, Adam C; Storandt, Martha; Barnett, Kara; Vannucci, Andrea; Saager, Leif; Xiong, Chengjie; Grant, Elizabeth A; Kaiser, Dagmar; Morris, John C; Evers, Alex S
2009-01-01
Background Persistent postoperative cognitive decline is thought to be a public health problem, but its severity may have been overestimated because of limitations in statistical methodology. This study assessed whether long-term cognitive decline occurred after surgery or illness by using an innovative approach and including participants with early Alzheimer's disease to overcome some limitations. Methods In this retrospective cohort study, three groups were identified from participants tested annually at Washington University's Alzheimer Disease Research Center in St. Louis: those with non-cardiac surgery, illness, or neither. This enabled long-term tracking of cognitive function before and after surgery and illness. The effect of surgery and illness on longitudinal cognitive course was analyzed using a general linear mixed effects model. For participants without initial dementia, time to dementia onset was analyzed using sequential Cox proportional hazards regression. Results Of the 575 participants, 214 were nondemented and 361 had very mild or mild dementia at enrollment. Cognitive trajectories did not differ among the three groups (surgery, illness, control), although demented participants declined more markedly than nondemented. Of the initially nondemented participants, 23% progressed to a clinical dementia rating greater than zero, but this was not more common following surgery or illness. Conclusions The study did not detect long-term cognitive decline independently attributable to surgery or illness nor were these events associated with accelerated progression to dementia. The decision to proceed with surgery in elderly people, including those with early Alzheimer's disease, may presently be made without factoring in the specter of persistent cognitive deterioration. PMID:19786858
Plank, Gernot; Leon, L Joshua; Kimber, Shane; Vigmond, Edward J
2005-02-01
Defibrillation depends on conductivity and disorganization. Cardiac fibrillation is the deterioration of the heart's normally well-organized activity into one or more meandering spiral waves, which subsequently break up into many meandering wave fronts. Delivery of an electric shock (defibrillation) is the only effective way of restoring the normal rhythm. This study focuses on examining whether higher degrees of disorganization requires higher shock strengths to defibrillate and whether microscopic conductivity fluctuations favor shock success. We developed a three-dimensional computer bidomain model of a block of cardiac tissue with straight fibers immersed in a conductive bath. The membrane behavior was described by the Courtemanche human atrial action potential model incorporating electroporation and an acetylcholine- (ACh) dependent potassium current. Intracellular conductivities were varied stochastically around nominal values with variations of up to 50%. A single rotor reentry was initiated and, by adjusting the spatial ACh variation, the level of organization could be controlled. The single rotor could be stabilized or spiral wave breakup could be provoked leading to fibrillatory-like activity. For each level of organization, multiple shock timings and strengths were applied to compute the probability of shock success as a function of shock strength. Our results suggest that the level of the small-scale conductivity fluctuations is a very important factor in defibrillation. A higher variation significantly lowers the required shock strength. Further, we demonstrated that success also heavily depends on the level of organization of the fibrillatory episode. In general, higher levels of disorganization require higher shock strengths to defibrillate.
te Riet, Luuk; van den Heuvel, Mieke; Peutz-Kootstra, Carine J; van Esch, Joep H M; van Veghel, Richard; Garrelds, Ingrid M; Musterd-Bhaggoe, Usha; Bouhuizen, Angelique M; Leijten, Frank P J; Danser, A H Jan; Batenburg, Wendy W
2014-05-15
Dual renin-angiotensin system (RAS) blockade in diabetic nephropathy is no longer feasible because of the profit/side effect imbalance. (Pro)renin receptor [(P)RR] blockade with handle region peptide (HRP) has been reported to exert beneficial effects in various diabetic models in a RAS-independent manner. To what degree (P)RR blockade adds benefits on top of RAS blockade is still unknown. In the present study, we treated diabetic TGR(mREN2)27 rats, a well-established nephropathy model with high prorenin levels [allowing continuous (P)RR stimulation in vivo], with HRP on top of renin inhibition with aliskiren. Aliskiren alone lowered blood pressure and exerted renoprotective effects, as evidenced by reduced glomerulosclerosis, diuresis, proteinuria, albuminuria, and urinary aldosterone levels as well as diminished renal (P)RR and ANG II type 1 receptor expression. It also suppressed plasma and tissue RAS activity and suppressed cardiac atrial natriuretic peptide and brain natriuretic peptide expression. HRP, when given on top of aliskiren, did not alter the effects of renin inhibition on blood pressure, RAS activity, or aldosterone. However, it counteracted the beneficial effects of aliskiren in the kidney, induced hyperkalemia, and increased plasma plasminogen activator-inhibitor 1, renal cyclooxygenase-2, and cardiac collagen content. All these effects have been linked to (P)RR stimulation, suggesting that HRP might, in fact, act as a partial agonist. Therefore, the use of HRP on top of RAS blockade in diabetic nephropathy is not advisable. Copyright © 2014 the American Physiological Society.
Urgent splenectomy in the course of prosthetic valve endocarditis.
Marcinkiewicz, Anna; Ostrowski, Stanisław; Pawłowski, Witold; Palczak, Artur; Adamek-Kośmider, Anna; Jaszewski, Ryszard
2014-06-01
We present a case of a 51-year-old male patient hospitalized due to acute coronary syndrome requiring stent implantation to the left main stem. Double antiplatelet therapy was commenced. After 2-3 days, the patient presented with high fever, dyspnea on exertion, pain in the chest, myalgia, and general weakness. Transthoracic (TTE) and transesophageal (TEE) echocardiography revealed abnormal, turbulent flow across the aortic prosthesis, which was probably caused by the presence of a pathological smooth and mobile structure (10 × 9 × 5 mm) in front of the aortic annulus. Blood cultures were positive and staphylococcal prosthetic valve endocarditis (PVE) was diagnosed. Despite antibiotic treatment, the patient's condition deteriorated, and he was referred for prosthesis reimplantation. After being transferred to the Cardiac Surgery Clinic, he presented with nausea, vomiting, and abdominal pain. The results of imaging examinations suggested spleen hematoma. The patient underwent an urgent splenectomy. Histopathological examination revealed a spleen infarction consequent to an embolic event and subscapular hematoma. On the 10(th) day after the laparotomy, cardiac surgery was performed. No large vegetations were found on the aortic prosthesis. The mechanical valve, implanted 20 years earlier, was functioning properly; it was intact and well healed. Several fragments of a thrombus and fibrous tissue, resembling a pannus and covered with minor calcifications, were removed from the ventricular surface of the discs. A decision was reached to leave the aortic prosthesis in situ. The valvular material culture revealed the presence of Streptococcus anginosus, and the antibiotic scheme was modified. The postoperative period was uneventful.
Fatal acute pulmonary injury associated with everolimus.
Depuydt, Pieter; Nollet, Joke; Benoit, Dominique; Praet, Marleen; Caes, Frank
2012-03-01
To report a case of fatal alveolar hemorrhage associated with the use of everolimus in a patient who underwent a solid organ transplant. In a 71-year-old cardiac transplant patient, cyclosporine was replaced with everolimus because of worsening renal function. Over the following weeks, the patient developed nonproductive cough and increasing dyspnea. His condition deteriorated to acute respiratory failure with hemoptysis, requiring hospital admission. Bilateral patchy alveolar infiltrates were apparent on chest X-ray and computed tomography. Cardiac failure was ruled out and empiric antimicrobial therapy was initiated. Additional extensive workup could not document opportunistic infection. Everolimus was discontinued and high-dose corticosteroid therapy was initiated. Despite this, the patient required invasive mechanical ventilation and died because of refractory massive hemoptysis. Autopsy revealed diffuse alveolar hemorrhage. Everolimus is a mammalian target of rapamycin inhibitor approved for use as an immunosuppressant and antineoplastic agent. Its main advantage over calcineurin inhibitors (tacrolimus and cyclosporine) is a distinct safety profile. Although it has become clear that everolimus induces pulmonary toxicity more frequently than initially thought, most published cases thus far represented mild and reversible disease, and none was fatal. Here, we report a case of pulmonary toxicity developing over weeks following the introduction of everolimus, in which a fatal outcome could not be prevented by drug withdrawal and corticosteroid treatment. The association of everolimus and this syndrome was probable according to the Naranjo probability scale. This case indicates that with the increasing use of everolimus, clinicians should be aware of the rare, but life-threatening manifestation of pulmonary toxicity.
Sabino, João Paulo J; da Silva, Carlos Alberto Aguiar; de Melo, Rubens Fernando; Fazan, Rubens; Salgado, Helio C
2013-01-01
Sympathetic hyperactivity and its outcome in heart failure have been thoroughly investigated to determine the focus of pharmacologic approaches targeting the sympathetic nervous system in the treatment of this pathophysiological condition. On the other hand, therapeutic approaches aiming to protect the reduced cardiac parasympathetic function have not received much attention. The present study evaluated rats with chronic heart failure (six to seven weeks after coronary artery ligation) and the effects of an increased parasympathetic function by pyridostigmine (an acetylcholinesterase inhibitor) on the following aspects: arterial pressure (AP), heart rate (HR), baroreceptor and Bezold-Jarisch reflex, pulse interval (PI) and AP variability, cardiac sympathetic and parasympathetic tonus, intrinsic heart rate (i-HR) and cardiac function. Conscious rats with heart failure exhibited no change in HR, Bezold-Jarisch reflex, PI variability and cardiac sympathetic tonus. On the other hand, these animals presented hypotension and reduced baroreflex sensitivity, power in the low frequency (LF) band of the systolic AP spectrum, cardiac parasympathetic tonus and i-HR, while anesthetized rats exhibited reduced cardiac performance. Pyridostigmine prevented the attenuation of all the parameters examined, except basal AP and cardiac performance. In conclusion, the blockade of acetylcholinesterase with pyridostigmine was revealed to be an important pharmacological approach, which could be used to increase parasympathetic function and to improve a number of cardiocirculatory parameters in rats with heart failure. Copyright © 2012 Elsevier B.V. All rights reserved.
Clinical review: Positive end-expiratory pressure and cardiac output
Luecke, Thomas; Pelosi, Paolo
2005-01-01
In patients with acute lung injury, high levels of positive end-expiratory pressure (PEEP) may be necessary to maintain or restore oxygenation, despite the fact that 'aggressive' mechanical ventilation can markedly affect cardiac function in a complex and often unpredictable fashion. As heart rate usually does not change with PEEP, the entire fall in cardiac output is a consequence of a reduction in left ventricular stroke volume (SV). PEEP-induced changes in cardiac output are analyzed, therefore, in terms of changes in SV and its determinants (preload, afterload, contractility and ventricular compliance). Mechanical ventilation with PEEP, like any other active or passive ventilatory maneuver, primarily affects cardiac function by changing lung volume and intrathoracic pressure. In order to describe the direct cardiocirculatory consequences of respiratory failure necessitating mechanical ventilation and PEEP, this review will focus on the effects of changes in lung volume, factors controlling venous return, the diastolic interactions between the ventricles and the effects of intrathoracic pressure on cardiac function, specifically left ventricular function. Finally, the hemodynamic consequences of PEEP in patients with heart failure, chronic obstructive pulmonary disease and acute respiratory distress syndrome are discussed. PMID:16356246
Inspiration from heart development: Biomimetic development of functional human cardiac organoids.
Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying
2017-10-01
Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biophysical stimulation for in vitro engineering of functional cardiac tissues.
Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica
2017-07-01
Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Neves, Claodete Hasselstrom; Tibana, Ramires Alsamir; Prestes, Jonato; Voltarelli, Fabricio Azevedo; Aguiar, Andreo Fernando; Ferreira Mota, Gustavo Augusto; de Sousa, Sergio Luiz Borges; Leopoldo, Andre Soares; Leopoldo, Ana Paula Lima; Mueller, Andre; Aguiar, Danilo Henrique; Navalta, James Wilfred; Sugizaki, Mario Mateus
2017-04-01
Cardiotonic drugs and exercise training promote cardiac inotropic effects, which may affect training-induced cardiac adaptations. This study investigated the effects of long-term administration of digoxin on heart structure and function, and physical performance of rats submitted to high-intensity interval training (HIIT). Male Wistar rats, 60 days old, were divided into control (C), digoxin (DIGO), trained (T), and trained with digoxin (TDIGO). Digoxin was administered by gavage (30 µg/kg/day) for 75 days. The HIIT program consisted of treadmill running 60 min/day (8 min at 80% of the maximum speed (MS) and 2 min at 20% of the MS), 5 days per week during 60 days. The main cardiac parameters were evaluated by echocardiograph and cardiomyocyte area was determined by histology. There were no group x time effects of digoxin, HIIT or interactions (digoxin and HIIT) on functional echocardiographic parameters (heart rate; ejection fraction) or in the maximum exercise test. There was a group x time interaction, as evidenced by observed cardiac hypertrophy in the TDIGO group evaluated by ratio of left ventricle weight to body weight (p<0.002) and cardiomyocyte area (p<0.000002). Long-term administration of digoxin promoted cardiac hypertrophy without affecting cardiac function and physical performance in rats submitted to HIIT. © Georg Thieme Verlag KG Stuttgart · New York.
Miyata, Makiko; Yoshihisa, Akiomi; Suzuki, Satoshi; Yamada, Shinya; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika
2012-09-01
Cheyne-Stokes respiration (CSR-CSA) is often observed in patients with chronic heart failure (CHF). Although cardiac resynchronization therapy (CRT) is effective for CHF patients with left ventricular dyssynchrony, it is still unclear whether adaptive servo ventilation (ASV) improves cardiac function and prognosis of CHF patients with CSR-CSA after CRT. Twenty two patients with CHF and CSR-CSA after CRT defibrillator (CRTD) implantation were enrolled in the present study and randomly assigned into two groups: 11 patients treated with ASV (ASV group) and 11 patients treated without ASV (non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels (before 3, and 6 months later) and echocardiography (before and 6 months) were performed in each group. Patients were followed up to register cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, indices for apnea-hypopnea, central apnea, and oxyhemoglobin saturation were improved on ASV. BNP levels, cardiac systolic and diastolic function were improved with ASV treatment for 6 months. Importantly, the event-free rate was significantly higher in the ASV group than in the non-ASV group. ASV improves CSR-CSA, cardiac function, and prognosis in CHF patients with CRTD. Patients with CSR-CSA and post CRTD implantation would get benefits by treatment with ASV. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong
2012-01-01
Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517
Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A
2018-05-11
Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.
Cardiac troponin T and fast skeletal muscle denervation in ageing.
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan
2017-10-01
Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Hirooka, K; Yasumura, Y; Ishida, Y; Komamura, K; Hanatani, A; Nakatani, S; Yamagishi, M; Miyatake, K
2000-09-01
A 27-year-old man diagnosed as having dilated cardiomyopathy (DCM) without myocardial accumulation of 123I-beta-methyl-iodophenylpentadecanoic acid, and he was found to have type I CD36 deficiency. This abnormality of cardiac free fatty acid metabolism was also confirmed by other methods: 18F-fluoro-2-deoxyglucose positron emission tomography, measurements of myocardial respiratory quotient and cardiac fatty acid uptake. Although the type I CD36 deficiency was reconfirmed after 3 months, the abnormal free fatty acid metabolism improved after carvedilol therapy and was accompanied by improved cardiac function. Apart from a cause-and-effect relationship, carvedilol can improve cardiac function and increase free fatty acid metabolism in patients with both DCM and CD36 deficiency.
Computational approaches to understand cardiac electrophysiology and arrhythmias
Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.
2012-01-01
Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409
Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing
2014-01-01
Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124
Ebrahimi, Behnam
2017-07-01
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Yu Tina; Du, Jianfeng; Chen, Youfang; Tang, Yaoliang; Qin, Gangjian; Lv, Guorong; Zhuang, Shougang; Zhao, Ting C
2015-12-24
Recent evidence has demonstrated that cardiac progenitor cells play an essential role in the induction of angiomyogenesis in infarcted myocardium. We and others have shown that engraftment of c-kit(+) cardiac stem cells (CSCs) into infarcted hearts led to myocardium regeneration and neovascularization, which was associated with an improvement of ventricular function. The purpose of this study is aimed at investigating the functional role of transcription factor (TF) Oct3/4 in facilitating CSCs to promote myocardium regeneration and preserve cardiac performance in the post-MI heart. c-kit(+) CSCs were isolated from adult hearts and re-introduced into the infarcted myocardium in which the mouse MI model was created by permanent ligation of the left anterior descending artery (LAD). The Oct3/4 of CSCs was inhibited by transfection of Oct3/4 siRNA, and transfection of CSCs with control siRNA serves as control groups. Myocardial functions were evaluated by echocardiographic measurement. Histological analysis was employed to assess newly formed cardiogenesis, neovascularization, and cell proliferations. Terminal deoxynucleotidyltransferase (TdT) nick-end labeling (TUNEL) was carried out to assess apoptotic cardiomyocytes. Real time polymerase chain reaction and Western blot were carried out to evaluate the level of Oct 3/4 in CSCs. Two weeks after engraftment, CSCs increased ventricular functional recovery as shown by a serial echocardiographic measurement, which is concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Suppression of Oct 3/4 of CSCs abrogated functional improvements and mitigated the hypertrophic response and cardiac remodeling. Transplantation of c-kit(+) CSCs into MI hearts promoted cardiac regeneration and neovascularization, which were abolished with the knockdown of Oct3/4. Additionally, suppression of Oct3/4 abrogated myocyte proliferation in the CSC-engrafted myocardium. Our results indicate that CSCs-derived cardiac regeneration improves the restoration of cardiac function and is mediated through Oct 3/4.
Exploring time series retrieved from cardiac implantable devices for optimizing patient follow-up
Guéguin, Marie; Roux, Emmanuel; Hernández, Alfredo I; Porée, Fabienne; Mabo, Philippe; Graindorge, Laurence; Carrault, Guy
2008-01-01
Current cardiac implantable devices (ID) are equipped with a set of sensors that can provide useful information to improve patient follow-up and to prevent health deterioration in the postoperative period. In this paper, data obtained from an ID with two such sensors (a transthoracic impedance sensor and an accelerometer) are analyzed in order to evaluate their potential application for the follow-up of patients treated with a cardiac resynchronization therapy (CRT). A methodology combining spatio-temporal fuzzy coding and multiple correspondence analysis (MCA) is applied in order to: i) reduce the dimensionality of the data and provide new synthetic indices based on the “factorial axes” obtained from MCA, ii) interpret these factorial axes in physiological terms and iii) analyze the evolution of the patient’s status by projecting the acquired data into the plane formed by the first two factorial axes named “factorial plane”. In order to classify the different evolution patterns, a new similarity measure is proposed and validated on simulated datasets, and then used to cluster observed data from 41 CRT patients. The obtained clusters are compared with the annotations on each patient’s medical record. Two areas on the factorial plane are identified, one being correlated with a health degradation of patients and the other with a stable clinical state. PMID:18838359
Kochhar, Puneet K; Zutshi, V; Shamsunder, S; Batra, S; Ghosh, P
2011-01-01
Congenital bicuspid aortic valve with severe aortic stenosis (AS) is a rare condition (3-6% of patients with congenital heart disease). Pregnancy in these patients carries a high risk of maternal and fetal mortality. With advancing gestational age, these women may develop cardiac failure due to increased cardiorespiratory requirements. When medical therapy proves insufficient, cardiac surgery becomes mandatory to save the patient's life. Balloon valvuloplasty is only palliative treatment, the duration of benefit being only 6 months. Valve replacement is thus recommended. Cardiopulmonary bypass (CPB) surgery with valve replacement has been reported to carry a lower risk of maternal mortality (1.5-13%) but a very high fetal risk (16-40%). This paper reports the case of a 30-year-old primigravida with severe AS with bicuspid aortic valve and pulmonary congestion clinically uncontrolled, in whom CPB surgery and aortic valve replacement was performed as an emergency procedure, along with a lower segment Caesarian section. The outcome of unrelieved severe symptomatic AS in pregnancy is poor. Multidisciplinary management is important to avoid deterioration in cardiac performance in parturients with severe AS. CPB during pregnancy carries a high risk to the fetus. Therefore, open heart surgery during pregnancy should be advised only in extreme emergencies (ie, heart failure refractory to conventional therapy).
Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.
2014-01-01
Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267
3D bioprinted functional and contractile cardiac tissue constructs.
Wang, Zhan; Lee, Sang Jin; Cheng, Heng-Jie; Yoo, James J; Atala, Anthony
2018-04-01
Bioengineering of a functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. However, its applications remain limited because the cardiac tissue is a highly organized structure with unique physiologic, biomechanical, and electrical properties. In this study, we undertook a proof-of-concept study to develop a contractile cardiac tissue with cellular organization, uniformity, and scalability by using three-dimensional (3D) bioprinting strategy. Primary cardiomyocytes were isolated from infant rat hearts and suspended in a fibrin-based bioink to determine the priting capability for cardiac tissue engineering. This cell-laden hydrogel was sequentially printed with a sacrificial hydrogel and a supporting polymeric frame through a 300-µm nozzle by pressured air. Bioprinted cardiac tissue constructs had a spontaneous synchronous contraction in culture, implying in vitro cardiac tissue development and maturation. Progressive cardiac tissue development was confirmed by immunostaining for α-actinin and connexin 43, indicating that cardiac tissues were formed with uniformly aligned, dense, and electromechanically coupled cardiac cells. These constructs exhibited physiologic responses to known cardiac drugs regarding beating frequency and contraction forces. In addition, Notch signaling blockade significantly accelerated development and maturation of bioprinted cardiac tissues. Our results demonstrated the feasibility of bioprinting functional cardiac tissues that could be used for tissue engineering applications and pharmaceutical purposes. Cardiovascular disease remains a leading cause of death in the United States and a major health-care burden. Myocardial infarction (MI) is a main cause of death in cardiovascular diseases. MI occurs as a consequence of sudden blocking of blood vessels supplying the heart. When occlusions in the coronary arteries occur, an immediate decrease in nutrient and oxygen supply to the cardiac muscle, resulting in permanent cardiac cell death. Eventually, scar tissue formed in the damaged cardiac muscle that cannot conduct electrical or mechanical stimuli thus leading to a reduction in the pumping efficiency of the heart. The therapeutic options available for end-stage heart failure is to undergo heart transplantation or the use of mechanical ventricular assist devices (VADs). However, many patients die while being on a waiting list, due to the organ shortage and limitation of VADs, such as surgical complications, infection, thrombogenesis, and failure of the electrical motor and hemolysis. Ultimately, 3D bioprinting strategy aims to create clinically applicable tissue constructs that can be immediately implanted in the body. To date, the focus on replicating complex and heterogeneous tissue constructs continues to increase as 3D bioprinting technologies advance. In this study, we demonstrated the feasibility of 3D bioprinting strategy to bioengineer the functional cardiac tissue that possesses a highly organized structure with unique physiological and biomechanical properties similar to native cardiac tissue. This bioprinting strategy has great potential to precisely generate functional cardiac tissues for use in pharmaceutical and regenerative medicine applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lu, Yi; Wu, Qing; Liu, Long-Zhu; Yu, Xiao-Jiang; Liu, Jin-Jun; Li, Man-Xiang; Zang, Wei-Jin
2018-04-01
Obesity, a major contributor to the development of cardiovascular diseases, is associated with an autonomic imbalance characterized by sympathetic hyperactivity and diminished vagal activity. Vagal activation plays important roles in weight loss and improvement of cardiac function. Pyridostigmine is a reversible acetylcholinesterase inhibitor, but whether it ameliorates cardiac lipid accumulation and cardiac remodeling in rats fed a high-fat diet has not been determined. This study investigated the effects of pyridostigmine on high-fat diet-induced cardiac dysfunction and explored the potential mechanisms. Rats were fed a normal or high-fat diet and treated with pyridostigmine. Vagal discharge was evaluated using the BL-420S system, and cardiac function by echocardiograms. Lipid deposition and cardiac remodeling were determined histologically. Lipid utility was assessed by qPCR. A high-fat diet led to a significant reduction in vagal discharge and lipid utility and a marked increase in lipid accumulation, cardiac remodeling, and cardiac dysfunction. Pyridostigmine improved vagal activity and lipid metabolism disorder and cardiac remodeling, accompanied by an improvement of cardiac function in high-fat diet-fed rats. An increase in the browning of white adipose tissue in pyridostigmine-treated rats was also observed and linked to the expression of UCP-1 and CIDEA. Additionally, pyridostigmine facilitated activation of brown adipose tissue via activation of the SIRT-1/AMPK/PGC-1α pathway. In conclusion, a high-fat diet resulted in cardiac lipid accumulation, cardiac remodeling, and a significant decrease in vagal discharge. Pyridostigmine ameliorated cardiomyopathy, an effect related to reduced cardiac lipid accumulation, and facilitated the browning of white adipose tissue while activating brown adipose tissue. Copyright © 2018 Elsevier B.V. All rights reserved.
Bahl, Susan; Roses, Robert; Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Weinstein, Susan; Nisenbaum, Harvey; Fox, Kevin; Pasha, Theresa; Zhang, Paul; Araujo, Louis; Carver, Joseph; Czerniecki, Brian J
2009-01-01
Background Targeting HER-2/neu with Trastuzumab has been associated with development of cardiac toxicity. Methods Twenty-seven patients with ductal carcinoma in situ (DCIS) of the breast completed an IRB approved clinical trial of a HER-2/neu targeted dendritic cell based vaccine. Four weekly vaccinations were administered prior to surgical resection. All subjects underwent pre- and post-vaccine cardiac monitoring by MUGA/ECHO scanning allowing for a comparison of cardiac function. Results In 3 of 27 vaccinated patients (11%) transient asymptomatic decrements in ejection fraction of greater than 15% were noted after vaccination. Notably, evidence of circulating anti-HER-2/neu antibody was found prior to vaccination in all three patients, but cardiac toxicity was not noted until induction of cellular mediated immune responses. Conclusions This is the first description of HER-2/neu targeted vaccination associated with an incidence of cardiac changes, and the induction of cellular immune responses combined with antibody may contribute to changes in cardiac function. PMID:19800453
Nakamura, Takashi; Fujita, Takayuki; Kishimura, Megumi; Suita, Kenji; Hidaka, Yuko; Cai, Wenqian; Umemura, Masanari; Yokoyama, Utako; Uechi, Masami; Ishikawa, Yoshihiro
2016-11-25
In heart failure patients, chronic hyperactivation of sympathetic signaling is known to exacerbate cardiac dysfunction. In this study, the cardioprotective effect of vidarabine, an anti-herpes virus agent, which we identified as a cardiac adenylyl cyclase inhibitor, in dogs with pacing-induced dilated cardiomyopathy (DCM) was evaluated. In addition, the adverse effects of vidarabine on basal cardiac function was compared to those of the β-blocker, carvedilol.Methods and Results:Vidarabine and carvedilol attenuated the development of pacing-induced systolic dysfunction significantly and with equal effectiveness. Both agents also inhibited the development of cardiac apoptosis and fibrosis and reduced the Na + -Ca 2+ exchanger-1 protein level in the heart. Importantly, carvedilol significantly enlarged the left ventricle and atrium; vidarabine, in contrast, did not. Vidarabine-treated dogs maintained cardiac response to β-AR stimulation better than carvedilol-treated dogs did. Vidarabine may protect against pacing-induced DCM with less suppression of basal cardiac function than carvedilol in a dog model. (Circ J 2016; 80: 2496-2505).
Body-mass dependence of age-related deterioration in human muscular function.
Meltzer, D E
1996-04-01
Maximal anaerobic power of human muscles declines with increasing chronological age and is correlated with body mass. This study investigated whether the rate of deterioration in human muscular function among trained weight lifters is also correlated with body mass. Cross-sectional analysis of performance data of over 1,100 Masters competitors in Olympic-style weight lifting was carried out; eight body-weight classes and six age groups were represented. Two-lift total data (sum of snatch and clean and jerk lifts) were analyzed. Mean deterioration rates in the performance of athletes of widely diverse body masses were compared over the following age ranges: 42-57, 42-62, and 42-67 yr. No statistically significant correlation (P < 0.05) was found between rate of performance decline and body mass. The relationship between body mass and the magnitude of age-related variation of deterioration rate was also studied; no significant correlation was found. Previous studies have demonstrated that performance in Olympic-style weight lifting is correlated with maximal anaerobic muscular power. This leads us to suggest that the age-related deterioration rate of anaerobic power in trained subjects may not be correlated with the body mass of the individual.
Galindo, Cristi L; Soslow, Jonathan H; Brinkmeyer-Langford, Candice L; Gupte, Manisha; Smith, Holly M; Sengsayadeth, Seng; Sawyer, Douglas B; Benson, D Woodrow; Kornegay, Joe N; Markham, Larry W
2016-04-01
In Duchenne muscular dystrophy (DMD), abnormal cardiac function is typically preceded by a decade of skeletal muscle disease. Molecular reasons for differences in onset and progression of these muscle groups are unknown. Human biomarkers are lacking. We analyzed cardiac and skeletal muscle microarrays from normal and golden retriever muscular dystrophy (GRMD) dogs (ages 6, 12, or 47+ mo) to gain insight into muscle dysfunction and to identify putative DMD biomarkers. These biomarkers were then measured using human DMD blood samples. We identified GRMD candidate genes that might contribute to the disparity between cardiac and skeletal muscle disease, focusing on brain-derived neurotropic factor (BDNF) and osteopontin (OPN/SPP1, hereafter indicated as SPP1). BDNF was elevated in cardiac muscle of younger GRMD but was unaltered in skeletal muscle, while SPP1 was increased only in GRMD skeletal muscle. In human DMD, circulating levels of BDNF were inversely correlated with ventricular function and fibrosis, while SPP1 levels correlated with skeletal muscle function. These results highlight gene expression patterns that could account for differences in cardiac and skeletal disease in GRMD. Most notably, animal model-derived data were translated to DMD and support use of BDNF and SPP1 as biomarkers for cardiac and skeletal muscle involvement, respectively.
Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S
2015-09-01
Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P < 0.0001) at concentrations that only moderately impaired function of control hearts. To our knowledge, this is the first report describing the acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function
NASA Technical Reports Server (NTRS)
Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.
2014-01-01
Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet.
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer; Rocic, Petra
2017-04-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. Copyright © 2017 the American Physiological Society.
Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet
Hunter, Ian; Soler, Amanda; Joseph, Gregory; Hutcheson, Brenda; Bradford, Chastity; Zhang, Frank Fan; Potter, Barry; Proctor, Spencer
2017-01-01
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease. NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet. PMID:28087518
Albumin fiber scaffolds for engineering functional cardiac tissues.
Fleischer, Sharon; Shapira, Assaf; Regev, Omri; Nseir, Nora; Zussman, Eyal; Dvir, Tal
2014-06-01
In recent years attempts to engineer contracting cardiac patches were focused on recapitulation of the myocardium extracellular microenvironment. We report here on our work, where for the first time, a three-dimensional cardiac patch was fabricated from albumin fibers. We hypothesized that since albumin fibers' mechanical properties resemble those of cardiac tissue extracellular matrix (ECM) and their biochemical character enables their use as protein carriers, they can support the assembly of cardiac tissues capable of generating strong contraction forces. Here, we have fabricated aligned and randomly oriented electrospun albumin fibers and investigated their structure, mechanical properties, and chemical nature. Our measurements showed that the scaffolds have improved elasticity as compared to synthetic electrospun PCL fibers, and that they are capable of adsorbing serum proteins, such as laminin leading to strong cell-matrix interactions. Moreover, due to the functional groups on their backbone, the fibers can be chemically modified with essential biomolecules. When seeded with rat neonatal cardiac cells the engineered scaffolds induced the assembly of aligned cardiac tissues with high aspect ratio cardiomyocytes and massive actinin striation. Compared to synthetic fibrous scaffolds, cardiac cells cultured within aligned or randomly oriented scaffolds formed functional tissues, exhibiting significantly improved function already on Day 3, including higher beating rate (P = 0.0002 and P < 0.0001, respectively), and higher contraction amplitude (P = 0.009 and P = 0.003, respectively). Collectively, our results suggest that albumin electrospun scaffolds can play a key role in contributing to the ex vivo formation of a contracting cardiac muscle tissue. © 2014 Wiley Periodicals, Inc.
Blood Pressure-Attained Analysis of ATACH 2 Trial.
Qureshi, Adnan I; Palesch, Yuko Y; Foster, Lydia D; Barsan, William G; Goldstein, Joshua N; Hanley, Daniel F; Hsu, Chung Y; Moy, Claudia S; Qureshi, Mushtaq H; Silbergleit, Robert; Suarez, Jose I; Toyoda, Kazunori; Yamamoto, Haruko
2018-06-01
We compared the rates of death or disability, defined by modified Rankin Scale score of 4 to 6, at 3 months in patients with intracerebral hemorrhage according to post-treatment systolic blood pressure (SBP)-attained status. We divided 1000 subjects with SBP ≥180 mm Hg who were randomized within 4.5 hours of symptom onset as follows: SBP <140 mm Hg achieved or not achieved within 2 hours; subjects in whom SBP <140 mm Hg was achieved within 2 hours were further divided: SBP <140 mm Hg for 21 to 22 hours (reduced and maintained) or SBP was ≥140 mm Hg for at least 2 hours during the period between 2 and 24 hours (reduced but not maintained). Compared with subjects without reduction of SBP <140 mm Hg within 2 hours, subjects with reduction and maintenance of SBP <140 mm Hg within 2 hours had a similar rate of death or disability (relative risk of 0.98; 95% confidence interval, 0.74-1.29). The rates of neurological deterioration within 24 hours were significantly higher in reduced and maintained group (10.4%; relative risk, 1.98; 95% confidence interval, 1.08-3.62) and in reduced but not maintained group (11.5%; relative risk, 2.08; 95% confidence interval, 1.15-3.75) compared with reference group. The rates of cardiac-related adverse events within 7 days were higher among subjects with reduction and maintenance of SBP <140 mmHg compared to subjects without reduction (11.2% versus 6.4%). No decline in death or disability but higher rates of neurological deterioration and cardiac-related adverse events were observed among intracerebral hemorrhage subjects with reduction with and without maintenance of intensive SBP goals. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01176565. © 2018 American Heart Association, Inc.
Lyra-Leite, Davi M; Andres, Allen M; Petersen, Andrew P; Ariyasinghe, Nethika R; Cho, Nathan; Lee, Jezell A; Gottlieb, Roberta A; McCain, Megan L
2017-10-01
Mitochondria in cardiac myocytes are critical for generating ATP to meet the high metabolic demands associated with sarcomere shortening. Distinct remodeling of mitochondrial structure and function occur in cardiac myocytes in both developmental and pathological settings. However, the factors that underlie these changes are poorly understood. Because remodeling of tissue architecture and extracellular matrix (ECM) elasticity are also hallmarks of ventricular development and disease, we hypothesize that these environmental factors regulate mitochondrial function in cardiac myocytes. To test this, we developed a new procedure to transfer tunable polydimethylsiloxane disks microcontact-printed with fibronectin into cell culture microplates. We cultured Sprague-Dawley neonatal rat ventricular myocytes within the wells, which consistently formed tissues following the printed fibronectin, and measured oxygen consumption rate using a Seahorse extracellular flux analyzer. Our data indicate that parameters associated with baseline metabolism are predominantly regulated by ECM elasticity, whereas the ability of tissues to adapt to metabolic stress is regulated by both ECM elasticity and tissue alignment. Furthermore, bioenergetic health index, which reflects both the positive and negative aspects of oxygen consumption, was highest in aligned tissues on the most rigid substrate, suggesting that overall mitochondrial function is regulated by both ECM elasticity and tissue alignment. Our results demonstrate that mitochondrial function is regulated by both ECM elasticity and myofibril architecture in cardiac myocytes. This provides novel insight into how extracellular cues impact mitochondrial function in the context of cardiac development and disease. NEW & NOTEWORTHY A new methodology has been developed to measure O 2 consumption rates in engineered cardiac tissues with independent control over tissue alignment and matrix elasticity. This led to the findings that matrix elasticity regulates basal mitochondrial function, whereas both matrix elasticity and tissue alignment regulate mitochondrial stress responses. Copyright © 2017 the American Physiological Society.
Tazi, Abdellatif; de Margerie, Constance; Naccache, Jean Marc; Fry, Stéphanie; Dominique, Stéphane; Jouneau, Stéphane; Lorillon, Gwenaël; Bugnet, Emmanuelle; Chiron, Raphael; Wallaert, Benoit; Valeyre, Dominique; Chevret, Sylvie
2015-03-14
The natural history of pulmonary Langerhans cell histiocytosis (PLCH) has been unclear due to the absence of prospective studies. The rate of patients who experience an early progression of their disease is unknown. Additionally, conflicting effects of smoking cessation on the outcome of PLCH have been reported. In this prospective, multicentre study, 58 consecutive patients with newly diagnosed PLCH were comprehensively evaluated over a two-year period. Our objectives were to estimate the incidence of early progression of the disease and to evaluate the impact of smoking status on lung function outcomes. Lung function deterioration was defined as a decrease of at least 15% in FEV1 and/or FVC and/or DLCO, compared with baseline values. At each visit, smoking status was recorded based on the patients' self-reports and urinary cotinine measurements that were blinded for the patients. The cumulative incidence of lung function outcomes over time was estimated using the non-parametric Kaplan-Meier method. Multivariate Cox models with time-dependent covariates were used to calculate the hazards ratios of the lung function deterioration associated with smoking status with adjustment for potential confounders. The cumulative incidence of lung function deterioration at 24 months was 38% (22% for FEV1 and DLCO, and 9% for FVC). In the multivariate analysis, smoking status and PaO2 at inclusion were the only factors associated with the risk of lung function deterioration. The patients' smoking statuses markedly changed over time. Only 20% of the patients quit using tobacco for the entire study period. Nevertheless, being a non-smoker was associated with a decreased risk of subsequent lung function deterioration, even after adjustment for baseline predictive factors. By serial lung computed tomography, the extent of cystic lesions increased in only 11% of patients. Serial lung function evaluation on a three- to six-month basis is essential for the follow-up of patients with recently diagnosed PLCH to identify those who experience an early progression of their disease. These patients are highly addicted to tobacco, and robust efforts should be undertaken to include them in smoking cessation programs. ClinicalTrials.gov: No: NCT01225601 .
Sreenivas, B Sudha; Sunitha, M S; Nataraj, S M; Dhar, Murali
2012-01-01
Smoking has deleterious effects on Pulmonary Function Test (PFT) parameters; however, evidences about recovery in ex-smokers are ambiguous. Therefore present study was conducted to quantify relative deterioration of PFT parameters and to assess reversibility of the same. A cross-sectional study was conducted on 84 bus-depot workers consisting of equal number of smokers, ex-smokers and non-smokers. PFT observations were obtained using Medspiror following standard methods and precautions. Comparisons among three groups were performed employing one-way ANOVA and post-hoc tests. There were substantial effects of smoking on PFT parameters (deterioration was up-to half). Partial recovery was found in all the parameters of ex-smokers. Frequency and duration of smoking were negatively correlated with some of the parameters. In conclusion, present study has demonstrated considerable deterioration of PFT parameters in smokers and indications of recovery in ex-smokers. Further detailed study with larger sample size and stricter definition of ex-smokers is recommended.
Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina
2014-01-01
Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057
Rationale and Design of the Echocardiographic Study of Hispanics/Latinos (ECHO-SOL).
Rodriguez, Carlos J; Dharod, Ajay; Allison, Matthew A; Shah, Sanjiv J; Hurwitz, Barry; Bangdiwala, Shrikant I; Gonzalez, Franklyn; Kitzman, Dalane; Gillam, Linda; Spevack, Daniel; Dadhania, Rupal; Langdon, Sarah; Kaplan, Robert
2015-01-01
Information regarding the prevalence and determinants of cardiac structure and function (systolic and diastolic) among the various Hispanic background groups in the United States is limited. The Echocardiographic Study of Latinos (ECHO-SOL) ancillary study recruited 1,824 participants through a stratified-sampling process representative of the population-based Hispanic Communities Health Study - Study of Latinos (HCHS-SOL) across four sites (Bronx, NY; Chicago, Ill; San Diego, Calif; Miami, Fla). The HCHS-SOL baseline cohort did not include an echo exam. ECHO-SOL added the echocardiographic assessment of cardiac structure and function to an array of existing HCHS-SOL baseline clinical, psychosocial, and socioeconomic data and provides sufficient statistical power for comparisons among the Hispanic subgroups. Standard two-dimensional (2D) echocardiography protocol, including M-mode, spectral, color and tissue Doppler study was performed. The main objectives were to: 1) characterize cardiac structure and function and its determinants among Hispanics and Hispanic subgroups; and 2) determine the contributions of specific psychosocial factors (acculturation and familismo) to cardiac structure and function among Hispanics. We describe the design, methods and rationale of currently the largest and most comprehensive study of cardiac structure and function exclusively among US Hispanics. ECHO-SOL aims to enhance our understanding of Hispanic cardiovascular health as well as help untangle the relative importance of Hispanic subgroup heterogeneity and sociocultural factors on cardiac structure and function.
Rahman, Zia Ur; Sethi, Pooja; Murtaza, Ghulam; Virk, Hafeez Ul Hassan; Rai, Aitzaz; Mahmod, Masliza; Schoondyke, Jeffrey; Albalbissi, Kais
2017-01-01
Cardiovascular disease is a leading cause of morbidity and mortality globally. Early diagnostic markers are gaining popularity for better patient care disease outcomes. There is an increasing interest in noninvasive cardiac imaging biomarkers to diagnose subclinical cardiac disease. Feature tracking cardiac magnetic resonance imaging is a novel post-processing technique that is increasingly being employed to assess global and regional myocardial function. This technique has numerous applications in structural and functional diagnostics. It has been validated in multiple studies, although there is still a long way to go for it to become routine standard of care. PMID:28515849
In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
Weber, Michael; Huisken, Jan
2015-01-01
Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.
Cardiac Function in Young and Old Little Mice
Reddy, Anilkumar K.; Amador-Noguez, Daniel; Darlington, Gretchen J.; Scholz, Beth A.; Michael, Lloyd H.; Hartley, Craig J.; Entman, Mark L.; Taffet, George E.
2009-01-01
We studied cardiac function in young and old, wild-type (WT), and longer-living Little mice using cardiac flow velocities, echocardiographic measurements, and left ventricular (LV) pressure (P) to determine if enhanced reserves were in part responsible for longevity in these mice. Resting/baseline cardiac function, as measured by velocities, LV dimensions, +dP/dtmax, and −dP/dtmax, was significantly lower in young Little mice versus young WT mice. Fractional shortening (FS) increased significantly, and neither +dP/dtmax nor −dP/dtmax declined with age in Little mice. In contrast, old WT mice had no change in FS but had significantly lower +dP/dtmax and −dP/dtmax versus young WT mice. Significant decreases were observed in the velocity indices of old Little mice versus old WT mice, but other parameters were unchanged. The magnitude of dobutamine stress response remained unchanged with age in Little mice, while that in WT mice decreased. These data suggest that while resting cardiac function in Little mice versus WT mice is lower at young age, it is relatively unaltered with aging. Additionally, cardiac function in response to stress was maintained with age in Little mice but not in their WT counterparts. Thus, some mouse models of increased longevity may not be associated with enhanced reserves. PMID:18166681
Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.
Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li
2014-01-01
Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.
Cardiac size of high-volume resistance trained female athletes: shaping the body but not the heart.
Venckunas, T; Simonavicius, J; Marcinkeviciene, J E
2016-03-01
Introduction Exercise training, besides many health benefits, may result in cardiac remodelling which is dependent on the type and amount of exercise performed. It is not clear, however, whether significant adaptation in cardiac structure is possible in females undergoing resistance type of exercise training. Rigorous high volume training of most muscle groups emphasising resistance exercises are being undertaken by athletes of some aesthetic sports such as female fitness (light bodybuilding). The impact of this type of training on cardiac adaptation has not been investigated until now. The aim of the current study was to disclose the effect of high volume resistance training on cardiac structure and function. Methods 11 top-level female fitness athletes and 20 sedentary age-matched controls were recruited to undergo two-dimensional echocardiography. Results Cardiac structure did not differ between elite female fitness athletes and controls (p > 0.05), and fitness athletes had a tendency for a smaller (p = 0.07) left ventricular (LV) mass indexed to lean body mass. Doppler diastolic function index (E/A ratio) and LV ejection fraction were similar between the groups (p > 0.05). Conclusions Elite female fitness athletes have normal cardiac size and function that do not differ from matched sedentary controls. Consequently, as high volume resistance training has no easily observable effect on adaptation of cardiac structure, when cardiac hypertrophy is present in young resistance-trained lean female, other reasons such as inherited cardiac disease are to be considered carefully.
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Richards, Dylan J; Tan, Yu; Coyle, Robert; Li, Yang; Xu, Ruoyu; Yeung, Nelson; Parker, Arran; Menick, Donald R; Tian, Bozhi; Mei, Ying
2016-07-13
The advancement of human induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology has shown promising potential to provide a patient-specific, regenerative cell therapy strategy to treat cardiovascular disease. Despite the progress, the unspecific, underdeveloped phenotype of hiPSC-CMs has shown arrhythmogenic risk and limited functional improvements after transplantation. To address this, tissue engineering strategies have utilized both exogenous and endogenous stimuli to accelerate the development of hiPSC-CMs. Exogenous electrical stimulation provides a biomimetic pacemaker-like stimuli that has been shown to advance the electrical properties of tissue engineered cardiac constructs. Recently, we demonstrated that the incorporation of electrically conductive silicon nanowires to hiPSC cardiac spheroids led to advanced structural and functional development of hiPSC-CMs by improving the endogenous electrical microenvironment. Here, we reasoned that the enhanced endogenous electrical microenvironment of nanowired hiPSC cardiac spheroids would synergize with exogenous electrical stimulation to further advance the functional development of nanowired hiPSC cardiac spheroids. For the first time, we report that the combination of nanowires and electrical stimulation enhanced cell-cell junction formation, improved development of contractile machinery, and led to a significant decrease in the spontaneous beat rate of hiPSC cardiac spheroids. The advancements made here address critical challenges for the use of hiPSC-CMs in cardiac developmental and translational research and provide an advanced cell delivery vehicle for the next generation of cardiac repair.
Cardiac telomere length in heart development, function, and disease.
Booth, S A; Charchar, F J
2017-07-01
Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury. Copyright © 2017 the American Physiological Society.
The day/night proteome in the murine heart.
Podobed, Peter; Pyle, W Glen; Ackloo, Suzanne; Alibhai, Faisal J; Tsimakouridze, Elena V; Ratcliffe, William F; Mackay, Allison; Simpson, Jeremy; Wright, David C; Kirby, Gordon M; Young, Martin E; Martino, Tami A
2014-07-15
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
The effects of malnutrition on cardiac function in African children.
Silverman, Jonathan A; Chimalizeni, Yamikani; Hawes, Stephen E; Wolf, Elizabeth R; Batra, Maneesh; Khofi, Harriet; Molyneux, Elizabeth M
2016-02-01
Cardiac dysfunction may contribute to high mortality in severely malnourished children. Our objective was to assess the effect of malnutrition on cardiac function in hospitalised African children. Prospective cross-sectional study. Public referral hospital in Blantyre, Malawi. We enrolled 272 stable, hospitalised children ages 6-59 months, with and without WHO-defined severe acute malnutrition. Cardiac index, heart rate, mean arterial pressure, stroke volume index and systemic vascular resistance index were measured by the ultrasound cardiac output monitor (USCOM, New South Wales, Australia). We used linear regression with generalised estimating equations controlling for age, sex and anaemia. Our primary outcome, cardiac index, was similar between those with and without severe malnutrition: difference=0.22 L/min/m(2) (95% CI -0.08 to 0.51). No difference was found in heart rate or stroke volume index. However, mean arterial pressure and systemic vascular resistance index were lower in children with severe malnutrition: difference=-8.6 mm Hg (95% CI -12.7 to -4.6) and difference=-200 dyne s/cm(5)/m(2) (95% CI -320 to -80), respectively. In this largest study to date, we found no significant difference in cardiac function between hospitalised children with and without severe acute malnutrition. Further study is needed to determine if cardiac function is diminished in unstable malnourished children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The day/night proteome in the murine heart
Podobed, Peter; Pyle, W. Glen; Ackloo, Suzanne; Alibhai, Faisal J.; Tsimakouridze, Elena V.; Ratcliffe, William F.; Mackay, Allison; Simpson, Jeremy; Wright, David C.; Kirby, Gordon M.; Young, Martin E.
2014-01-01
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function. PMID:24789993
Steensberg, Alvilda T; Eriksen, Mette M; Andersen, Lars B; Hendriksen, Ole M; Larsen, Heinrich D; Laier, Gunnar H; Thougaard, Thomas
2017-06-01
The European Resuscitation Council Guidelines 2015 recommend bystanders to activate their mobile phone speaker function, if possible, in case of suspected cardiac arrest. This is to facilitate continuous dialogue with the dispatcher including (if required) cardiopulmonary resuscitation instructions. The aim of this study was to measure the bystander capability to activate speaker function in case of suspected cardiac arrest. In 87days, a systematic prospective registration of bystander capability to activate the speaker function, when cardiac arrest was suspected, was performed. For those asked, "can you activate your mobile phone's speaker function", audio recordings were examined and categorized into groups according to the bystanders capability to activate speaker function on their own initiative, without instructions, or with instructions from the emergency medical dispatcher. Time delay was measured, in seconds, for the bystanders without pre-activated speaker function. 42.0% (58) was able to activate the speaker function without instructions, 2.9% (4) with instructions, 18.1% (25) on own initiative and 37.0% (51) were unable to activate the speaker function. The median time to activate speaker function was 19s and 8s, with and without instructions, respectively. Dispatcher assisted cardiopulmonary resuscitation with activated speaker function, in cases of suspected cardiac arrest, allows for continuous dialogue between the emergency medical dispatcher and the bystander. In this study, we found a 63.0% success rate of activating the speaker function in such situations. Copyright © 2017 Elsevier B.V. All rights reserved.
Fathala, Ahmed; Abouzied, Mohei; AlSugair, Abdul-Aziz
2017-07-26
Cardiac and pericardial masses may be neoplastic, benign and malignant, non-neoplastic such as thrombus or simple pericardial cysts, or normal variants cardiac structure can also be a diagnostic challenge. Currently, there are several imaging modalities for diagnosis of cardiac masses; each technique has its inherent advantages and disadvantages. Echocardiography, is typically the initial test utilizes in such cases, Echocardiography is considered the test of choice for evaluation and detection of cardiac mass, it is widely available, portable, with no ionizing radiation and provides comprehensive evaluation of cardiac function and valves, however, echocardiography is not very helpful in many cases such as evaluation of extracardiac extension of mass, poor tissue characterization, and it is non diagnostic in some cases. Cross sectional imaging with cardiac computed tomography provides a three dimensional data set with excellent spatial resolution but utilizes ionizing radiation, intravenous iodinated contrast and relatively limited functional evaluation of the heart. Cardiac magnetic resonance imaging (CMR) has excellent contrast resolution that allows superior soft tissue characterization. CMR offers comprehensive evaluation of morphology, function, tissue characterization. The great benefits of CMR make CMR a highly useful tool in the assessment of cardiac masses. (Fluorine 18) fluorodeoxygluocse (FDG) positron emission tomography (PET) has become a corner stone in several oncological application such as tumor staging, restaging, treatment efficiency, FDG is a very useful imaging modality in evaluation of cardiac masses. A recent advance in the imaging technology has been the development of integrated PET-MRI system that utilizes the advantages of PET and MRI in a single examination. FDG PET-MRI provides complementary information on evaluation of cardiac masses. The purpose of this review is to provide several clinical scenarios on the incremental value of PET and MRI in the evaluation of cardiac masses.
40 CFR 86.1806-01 - On-board diagnostics.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-board diagnostic system during the certification process, that functions properly on low-sulfur gasoline... equipped. (1) A catalyst is replaced with a deteriorated or defective catalyst, or an electronic simulation... oxygen sensor is replaced with a deteriorated or defective oxygen sensor, or an electronic simulation of...
Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy.
Ross, J
1985-04-01
In the management of patients with valvular heart disease, an understanding of the effects of altered loading conditions on the left ventricle is important in reaching a proper decision concerning the timing of corrective operation. In acquired valvular aortic stenosis, concentric hypertrophy generally maintains left ventricular chamber size and ejection fraction within normal limits, but in late stage disease function can deteriorate as preload reserve is lost and aortic stenosis progresses. In this setting, even when the ejection fraction is markedly reduced (less than 25%), it can improve to normal after aortic valve replacement, suggesting that afterload mismatch rather than irreversibly depressed myocardial contractility was responsible for left ventricular failure. Therefore, patients with severe aortic stenosis and symptoms should not be denied operation because of impaired cardiac function. In chronic severe aortic and mitral regurgitation, operation is generally recommended when symptoms are present, but whether to recommend operation to prevent irreversible myocardial damage in patients with few or no symptoms has remained controversial. In aortic regurgitation, left ventricular function generally improves postoperatively, even if it is moderately impaired preoperatively, indicating correction of afterload mismatch. Most such patients can be carefully followed by echocardiography. However, in some patients, severe left ventricular dysfunction fails to improve postoperatively. Therefore, when echocardiographic studies in the patient with severe aortic regurgitation show an ejection fraction of less than 40% (fractional shortening less than 25%) plus enlarging left ventricular end-diastolic diameter (approaching 38 mm/m2 body surface area) and end-systolic diameter (approaching 50 mm or 26 mm/m2), confirmation of these findings by cardiac catheterization and consideration of operation are advisable even in patients with minimal symptoms. In chronic mitral regurgitation, maintenance of a normal ejection fraction can mask depressed myocardial contractility. Pre- and postoperative studies in such patients have shown a poor clinical result after mitral valve replacement, associated with a sharp decrease in the ejection fraction after operation. This response appears to reflect unmasking of decreased myocardial contractility by mitral valve replacement, with ejection of the total stroke volume into the high impedance of the aorta (afterload mismatch produced by operation).(ABSTRACT TRUNCATED AT 400 WORDS)
Fabregat-Andrés, Oscar; García-González, Pilar; Valle-Muñoz, Alfonso; Estornell-Erill, Jordi; Pérez-Boscá, Leandro; Palanca-Gil, Victor; Payá-Serrano, Rafael; Quesada-Dorador, Aurelio; Morell, Salvador; Ridocci-Soriano, Francisco
2014-02-01
Cardiac resynchronization therapy with a defibrillator prolongs survival and improves quality of life in advanced heart failure. Traditionally, patients with ejection fraction > 35 estimated by echocardiography have been excluded. We assessed the prognostic impact of this therapy in a group of patients with severely depressed systolic function as assessed by echocardiography but with an ejection fraction > 35% as assessed by cardiac magnetic resonance. We analyzed consecutive patients admitted for decompensated heart failure between 2004 and 2011. The patients were in functional class II-IV, with a QRS ≥ to 120 ms, ejection fraction ≤ 35% estimated by echocardiography, and a cardiac magnetic resonance study. We included all patients (n=103) who underwent device implantation for primary prevention. Ventricular arrhythmia, all-cause mortality and readmission for heart failure were considered major cardiac events. The patients were divided into 2 groups according to systolic function assessed by magnetic resonance. The 2 groups showed similar improvements in functional class and ejection fraction at 6 months. We found a nonsignificant trend toward a higher risk of all-cause mortality in patients with systolic function ≤ 35% at long-term follow-up. The presence of a pattern of necrosis identified patients with a worse prognosis for ventricular arrhythmias and mortality in both groups. We conclude that cardiac resynchronization therapy with a defibrillator leads to a similar clinical benefit in patients with an ejection fraction ≤ 35% or > 35% estimated by cardiac magnetic resonance. Analysis of the pattern of late gadolinium enhancement provides additional information on arrhythmic risk and long-term prognosis. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Clancey, Noel; Burton, Shelley; Horney, Barbara; Mackenzie, Allan; Nicastro, Andrea; Côté, Etienne
2009-09-01
Cardiac disease has the potential to alter platelet function in dogs. Evaluation of platelet function using the PFA-100 analyzer in dogs of multiple breeds and with a broad range of cardiac conditions would help clarify the effect of cardiac disease on platelets. The objective of this study was to assess differences in closure time (CT) in dogs with cardiac disease associated with murmurs, when compared with that of healthy dogs. Thirty-nine dogs with cardiac murmurs and turbulent blood flow as determined echocardiographically were included in the study. The dogs represented 23 different breeds. Dogs with murmurs were further divided into those with atrioventricular valvular insufficiency (n=23) and subaortic stenosis (n=9). Fifty-eight clinically healthy dogs were used as controls. CTs were determined in duplicate on a PFA-100 analyzer using collagen/ADP cartridges. Compared with CTs in the control group (mean+/-SD, 57.6+/-5.9 seconds; median, 56.5 seconds; reference interval, 48.0-77.0 seconds), dogs with valvular insufficiency (mean+/-SD, 81.9+/-26.3 seconds; median, 78.0 seconds; range, 52.5-187 seconds), subaortic stenosis (71.4+/-16.5 seconds; median, 66.0 seconds; range, 51.5-95.0 seconds), and all dogs with murmurs combined (79.6+/-24.1 seconds; median, 74.0 seconds; range, 48.0-187 seconds) had significantly prolonged CTs (P<.01). The PFA-100 analyzer is useful in detecting platelet function defects in dogs with cardiac murmurs, most notably those caused by mitral and/or tricuspid valvular insufficiency or subaortic stenosis. The form of turbulent blood flow does not appear to be an important factor in platelet hypofunction in these forms of cardiac disease.
A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct
Valarmathi, Mani T.; Fuseler, John W.; Davis, Jeffrey M.; Price, Robert L.
2017-01-01
Organ tissue engineering, including cardiovascular tissues, has been an area of intense investigation. The major challenge to these approaches has been the inability to vascularize and perfuse the in vitro engineered tissue constructs. Attempts to provide oxygen and nutrients to the cells contained in the biomaterial constructs have had varying degrees of success. The aim of this current study is to develop a three-dimensional (3-D) model of vascularized cardiac tissue to examine the concurrent temporal and spatial regulation of cardiomyogenesis in the context of postnatal de novo vasculogenesis during stem cell cardiac regeneration. In order to achieve the above aim, we have developed an in vitro 3-D functional vascularized cardiac muscle construct using human induced pluripotent stem cell-derived embryonic cardiac myocytes (hiPSC-ECMs) and human mesenchymal stem cells (hMSCs). First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were co-cultured onto a 3-D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions. In this milieu, hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed extensive plexuses of vascular networks. Next, the hiPSC-ECMs and hMSCs were co-cultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were analyzed at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated cells revealed neo-angiogenesis and neo-cardiomyogenesis. Thus, our unique 3-D co-culture system provided us the apt in vitro functional vascularized 3-D cardiac patch that can be utilized for cellular cardiomyoplasty. PMID:28194397
George, Katie L; Quatrara, Beth
The current state of health care encompasses highly acute, complex patients, managed with ever-changing technology. The ability to function proficiently in critical care relies on knowledge, technical skills, and interprofessional teamwork. Integration of these factors can improve patient outcomes. Simulation provides "hands-on" practice and allows for the integration of teamwork into knowledge/skill training. However, simulation can require a significant investment of time, effort, and financial resources. The Institute of Medicine recommendations from 2015 include "strengthening the evidence base for interprofessional education (IPE)" and "linking IPE with changes in collaborative behavior." In one surgical-trauma-burn intensive care unit (STBICU), no IPE existed. The highly acute and diverse nature of the patients served by the unit highlights the importance of appropriate training. This is heightened during critical event situations where patients deteriorate rapidly and the team intervenes swiftly. The aims of this study were to (1) evaluate knowledge retention and analyze changes in perceptions of teamwork among nurses and resident physicians in a STBICU setting after completion of an interprofessional critical event simulation and (2) provide insight for future interprofessional simulations (IPSs), including the ideal frequency of such training, associated cost, and potential effect on nursing turnover. A comparison-cohort pilot study was developed to evaluate knowledge retention and analyze changes in perceptions of teamwork. A 1-hour critical event IPS was held for nurses and resident physicians in a STBICU setting. A traumatic brain injury patient with elevated intracranial pressure, rapid deterioration, and cardiac arrest was utilized for the simulation scenario. The simulation required the team to use interventions to reduce elevated intracranial pressure and then perform cardiac resuscitation according to Advanced Cardiac Life Support guidelines. A semistructured debriefing guided by the TENTS tool highlighted important aspects of teamwork. Participants took knowledge and Teamwork Skills Scale (TSS) pretests, posttests, and 1-month posttests. Mean scores were calculated for each time point (pre, post, and 1-month post), and paired t tests were used to evaluate changes. Mean knowledge test and TSS scores both significantly increased after the simulation and remained significantly elevated at 1-month follow-up. Participants recommended retraining intervals of 3 to 6 months. Cost of each simulation was estimated to be $324.44. Analysis of nursing turnover rates did not demonstrate a statistically significant reduction in turnover; however, confounding factors were not controlled for. Significant improvements on both knowledge test and TSS scores demonstrate the effectiveness of the intervention, and retention of the information gained and teamwork skills learned. Participants valued the intervention and recommended to increase the frequency of training. Future studies should develop a framework for "best practice" IPS, analyze the relationship with nursing turnover, and ultimately seek correlations between IPS and improved patient outcomes.
Spitler, Kathryn M.; Ponce, Jessica M.; Oudit, Gavin Y.; Hall, Duane D.
2017-01-01
The mediator complex, a multisubunit nuclear complex, plays an integral role in regulating gene expression by acting as a bridge between transcription factors and RNA polymerase II. Genetic deletion of mediator subunit 1 (Med1) results in embryonic lethality, due in large part to impaired cardiac development. We first established that Med1 is dynamically expressed in cardiac development and disease, with marked upregulation of Med1 in both human and murine failing hearts. To determine if Med1 deficiency protects against cardiac stress, we generated two cardiac-specific Med1 knockout mouse models in which Med1 is conditionally deleted (Med1cKO mice) or inducibly deleted in adult mice (Med1cKO-MCM mice). In both models, cardiac deletion of Med1 resulted in early lethality accompanied by pronounced changes in cardiac function, including left ventricular dilation, decreased ejection fraction, and pathological structural remodeling. We next defined how Med1 deficiency alters the cardiac transcriptional profile using RNA-sequencing analysis. Med1cKO mice demonstrated significant dysregulation of genes related to cardiac metabolism, in particular genes that are coordinated by the transcription factors Pgc1α, Pparα, and Errα. Consistent with the roles of these transcription factors in regulation of mitochondrial genes, we observed significant alterations in mitochondrial size, mitochondrial gene expression, complex activity, and electron transport chain expression under Med1 deficiency. Taken together, these data identify Med1 as an important regulator of vital cardiac gene expression and maintenance of normal heart function. NEW & NOTEWORTHY Disruption of transcriptional gene expression is a hallmark of dilated cardiomyopathy; however, its etiology is not well understood. Cardiac-specific deletion of the transcriptional coactivator mediator subunit 1 (Med1) results in dilated cardiomyopathy, decreased cardiac function, and lethality. Med1 deletion disrupted cardiac mitochondrial and metabolic gene expression patterns. PMID:28159809
Translational neurocardiology: preclinical models and cardioneural integrative aspects
Andresen, M. C.; Armour, J. A.; Billman, G. E.; Chen, P.‐S.; Foreman, R. D.; Herring, N.; O'Leary, D. S.; Sabbah, H. N.; Schultz, H. D.; Sunagawa, K.; Zucker, I. H.
2016-01-01
Abstract Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various ‘levels’ become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. PMID:27098459
Cardiac index is associated with brain aging: the Framingham Heart Study.
Jefferson, Angela L; Himali, Jayandra J; Beiser, Alexa S; Au, Rhoda; Massaro, Joseph M; Seshadri, Sudha; Gona, Philimon; Salton, Carol J; DeCarli, Charles; O'Donnell, Christopher J; Benjamin, Emelia J; Wolf, Philip A; Manning, Warren J
2010-08-17
Cardiac dysfunction is associated with neuroanatomic and neuropsychological changes in aging adults with prevalent cardiovascular disease, theoretically because systemic hypoperfusion disrupts cerebral perfusion, contributing to subclinical brain injury. We hypothesized that cardiac function, as measured by cardiac index, would be associated with preclinical brain magnetic resonance imaging (MRI) and neuropsychological markers of ischemia and Alzheimer disease in the community. Brain MRI, cardiac MRI, neuropsychological, and laboratory data were collected on 1504 Framingham Offspring Cohort participants free of clinical stroke, transient ischemic attack, or dementia (age, 61+/-9 years; 54% women). Neuropsychological and brain MRI variables were related to cardiac MRI-assessed cardiac index (cardiac output/body surface area). In multivariable-adjusted models, cardiac index was positively related to total brain volume (P=0.03) and information processing speed (P=0.02) and inversely related to lateral ventricular volume (P=0.048). When participants with clinically prevalent cardiovascular disease were excluded, the relation between cardiac index and total brain volume remained (P=0.02). Post hoc comparisons revealed that participants in the bottom cardiac index tertile (values <2.54) and middle cardiac index tertile (values between 2.54 and 2.92) had significantly lower brain volumes (P=0.04) than participants in the top cardiac index tertile (values >2.92). Although observational data cannot establish causality, our findings are consistent with the hypothesis that decreasing cardiac function, even at normal cardiac index levels, is associated with accelerated brain aging.
Cardiac index is associated with brain aging: The Framingham Heart Study
Jefferson, Angela L.; Himali, Jayandra J.; Beiser, Alexa S.; Au, Rhoda; Massaro, Joseph M.; Seshadri, Sudha; Gona, Philimon; Salton, Carol J.; DeCarli, Charles; O’Donnell, Christopher J.; Benjamin, Emelia J.; Wolf, Philip A.; Manning, Warren J.
2010-01-01
Background Cardiac dysfunction is associated with neuroanatomic and neuropsychological changes in aging adults with prevalent cardiovascular disease (CVD), theoretically because systemic hypoperfusion disrupts cerebral perfusion, contributing to subclinical brain injury. We hypothesized that cardiac function, as measured by cardiac index, would be associated with pre-clinical brain magnetic resonance imaging (MRI) and neuropsychological markers of ischemia and Alzheimer’s disease in the community. Methods and Results Brain MRI, cardiac MRI, neuropsychological, and laboratory data were collected on 1504 Framingham Offspring Cohort participants free from clinical stroke, transient ischemic attack, or dementia (61±9 years; 54% women). Neuropsychological and brain MRI variables were related to cardiac MRI-assessed cardiac index (cardiac output/body surface area). In multivariable-adjusted models, cardiac index was positively related to total brain volume (P=0.03) and information processing speed (P=0.02) and inversely related to lateral ventricular volume (P=0.048). When participants with clinically prevalent CVD were excluded, the relation between cardiac index and total brain volume remained (P=0.02). Post-hoc comparisons revealed that participants in the bottom cardiac index tertile (values<2.54) and middle cardiac index tertile (values between 2.54 and 2.92) had significantly lower brain volumes (P=0.04) than participants in the top cardiac index tertile (values>2.92). Conclusions Although observational data cannot establish causality, our findings are consistent with the hypothesis that decreasing cardiac function, even at normal cardiac index levels, is associated with accelerated brain aging. PMID:20679552
Cardiogenic Genes Expressed in Cardiac Fibroblasts Contribute to Heart Development and Repair
Furtado, Milena B.; Costa, Mauro W.; Pranoto, Edward Adi; Salimova, Ekaterina; Pinto, Alex; Lam, Nicholas T.; Park, Anthony; Snider, Paige; Chandran, Anjana; Harvey, Richard P.; Boyd, Richard; Conway, Simon J.; Pearson, James; Kaye, David M.; Rosenthal, Nadia A.
2014-01-01
Rationale Cardiac fibroblasts are critical to proper heart function through multiple interactions with the myocardial compartment but appreciation of their contribution has suffered from incomplete characterization and lack of cell-specific markers. Objective To generate an unbiased comparative gene expression profile of the cardiac fibroblast pool, identify and characterize the role of key genes in cardiac fibroblast function, and determine their contribution to myocardial development and regeneration. Methods and Results High-throughput cell surface and intracellular profiling of cardiac and tail fibroblasts identified canonical MSC and a surprising number of cardiogenic genes, some expressed at higher levels than in whole heart. Whilst genetically marked fibroblasts contributed heterogeneously to interstitial but not cardiomyocyte compartments in infarcted hearts, fibroblast-restricted depletion of one highly expressed cardiogenic marker, Tbx20, caused marked myocardial dysmorphology and perturbations in scar formation upon myocardial infarction. Conclusions The surprising transcriptional identity of cardiac fibroblasts, the adoption of cardiogenic gene programs and direct contribution to cardiac development and repair provokes alternative interpretations for studies on more specialized cardiac progenitors, offering a novel perspective for reinterpreting cardiac regenerative therapies. PMID:24650916
Busk, Troels M; Bendtsen, Flemming; Poulsen, Jørgen H; Clemmesen, Jens O; Larsen, Fin S; Goetze, Jens P; Iversen, Jens S; Jensen, Magnus T; Møgelvang, Rasmus; Pedersen, Erling B; Bech, Jesper N; Møller, Søren
2018-02-01
Transjugular intrahepatic portosystemic shunt (TIPS) alleviates portal hypertension and possibly increases central blood volume (CBV). Moreover, renal function often improves; however, its effects on cardiac function are unclear. The aims of our study were to examine the effects of TIPS on hemodynamics and renal and cardiac function in patients with cirrhosis. In 25 cirrhotic patients, we analyzed systemic, cardiac, and splanchnic hemodynamics by catheterization of the liver veins and right heart chambers before and 1 wk after TIPS. Additionally, we measured renal and cardiac markers and performed advanced echocardiography before, 1 wk after, and 4 mo after TIPS. CBV increased significantly after TIPS (+4.6%, P < 0.05). Cardiac output (CO) increased (+15.3%, P < 0.005) due to an increase in stroke volume (SV) (+11.1%, P < 0.005), whereas heart rate (HR) was initially unchanged. Cardiopulmonary pressures increased after TIPS, whereas copeptin, a marker of vasopressin, decreased (-18%, P < 0.005) and proatrial natriuretic peptide increased (+52%, P < 0.0005) 1 wk after TIPS and returned to baseline 4 mo after TIPS. Plasma neutrophil gelatinase-associated lipocalin, renin, aldosterone, and serum creatinine decreased after TIPS (-36%, P < 0.005; -65%, P < 0.05; -90%, P < 0.005; and -13%, P < 0.005, respectively). Echocardiography revealed subtle changes in cardiac function after TIPS, although these were within the normal range. TIPS increases CBV by increasing CO and SV, whereas HR is initially unaltered. These results indicate an inability to increase the heart rate in response to a hemodynamic challenge that only partially increases CBV after TIPS. These changes, however, are sufficient for improving renal function. NEW & NOTEWORTHY For the first time, we have combined advanced techniques to study the integrated effects of transjugular intrahepatic portosystemic shunt (TIPS) in cirrhosis. We showed that TIPS increases central blood volume (CBV) through improved cardiac inotropy. Advanced echocardiography demonstrated that myocardial function was unaffected by the dramatic increase in preload after TIPS. Finally, renal function improved due to the increase in CBV. Recognition of these physiological changes significantly contributes to our clinical understanding of TIPS.
Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex
Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.
2013-01-01
The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754
Biphasic decline in renal function after radical cystectomy with urinary diversion.
Makino, Katsuhiro; Nakagawa, Tohru; Kanatani, Atsushi; Kawai, Taketo; Taguchi, Satoru; Otsuka, Masafumi; Matsumoto, Akihiko; Miyazaki, Hideyo; Fujimura, Tetsuya; Fukuhara, Hiroshi; Kume, Haruki; Homma, Yukio
2017-04-01
We evaluated short- and long-term renal function in patients after radical cystectomy with urinary diversion and identified risk factors for the deterioration of renal function. This retrospective study comprised 91 patients who underwent radical cystectomy and urinary diversion for bladder cancer and survived ≥3 years after surgery. The estimated glomerular filtration rate (eGFR) was calculated, and longitudinal changes of eGFR were assessed. Deterioration in renal function in early and late postoperative years was defined as a ≥25 % decrease in the eGFR from preoperative to postoperative year one, and a reduction in the eGFR of >1 mL/min/1.73 m 2 annually in subsequent years, respectively. Univariate and multivariate logistic regression analyses were used to evaluate its association with clinicopathologic features. The median follow-up period after surgery was 7 years (range 3-26). The mean eGFR decreased from preoperative 65.1 to 58.9 mL/min/1.73 m 2 1 year after the surgery, followed by a continuous decline of ~1.0 mL/min/1.73 m 2 per year thereafter. Multivariate analyses identified ureteroenteric stricture as the sole risk factor associated with early renal function deterioration [odds ratio (OR) 4.22, p = 0.037]. Diabetes mellitus (OR 8.24, p = 0.015) and episodes of pyelonephritis (OR 4.89, p = 0.038) were independently associated with the gradual decline in the late postoperative period. In cystectomy patients with urinary diversion, the rapid deterioration of renal function observed during the first year after surgery and the gradual but continuous decline in function thereafter were found to be associated with different risk factors.
Testai, Lara; Barrese, Vincenzo; Soldovieri, Maria Virginia; Ambrosino, Paolo; Martelli, Alma; Vinciguerra, Iolanda; Miceli, Francesco; Greenwood, Iain Andrew; Curtis, Michael John; Breschi, Maria Cristina; Sisalli, Maria Josè; Scorziello, Antonella; Canduela, Miren Josune; Grandes, Pedro; Calderone, Vincenzo; Taglialatela, Maurizio
2016-05-01
Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated. Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts. Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Vaillant, Fanny; Lauzier, Benjamin; Ruiz, Matthieu; Shi, Yanfen; Lachance, Dominic; Rivard, Marie-Eve; Bolduc, Virginie; Thorin, Eric; Tardif, Jean-Claude; Des Rosiers, Christine
2016-10-01
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker I f current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB +/+ ;LDLR -/- ). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13 C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression. Copyright © 2016 the American Physiological Society.
Guerrero-Orriach, José Luis; Ariza-Villanueva, Daniel; Florez-Vela, Ana; Garrido-Sánchez, Lourdes; Moreno-Cortés, María Isabel; Galán-Ortega, Manuel; Ramírez-Fernández, Alicia; Alcaide Torres, Juan; Fernandez, Concepción Santiago; Navarro Arce, Isabel; Melero-Tejedor, José María; Rubio-Navarro, Manuel; Cruz-Mañas, José
2016-01-01
To evaluate if the preoperative administration of levosimendan in patients with right ventricular (RV) dysfunction, pulmonary hypertension, and high perioperative risk would improve cardiac function and would also have a protective effect on renal and neurological functions, assessed using two biomarkers neutrophil gelatinase-associated lipocalin (N-GAL) and neuronal enolase. This is an observational study. Twenty-seven high-risk cardiac patients with RV dysfunction and pulmonary hypertension, scheduled for cardiac valve surgery, were prospectively followed after preoperative administration of levosimendan. Levosimendan was administered preoperatively on the day before surgery. All patients were considered high risk of cardiac and perioperative renal complications. Cardiac function was assessed by echocardiography, renal function by urinary N-GAL levels, and the acute kidney injury scale. Neuronal damage was assessed by neuron-specific enolase levels. After surgery, no significant variations were found in mean and SE levels of N-GAL (14.31 [28.34] ng/mL vs 13.41 [38.24] ng/mL), neuron-specific enolase (5.40 [0.41] ng/mL vs 4.32 [0.61] ng/mL), or mean ± SD creatinine (1.06±0.24 mg/dL vs 1.25±0.37 mg/dL at 48 hours). RV dilatation decreased from 4.23±0.7 mm to 3.45±0.6 mm and pulmonary artery pressure from 58±18 mmHg to 42±19 mmHg at 48 hours. Preoperative administration of levosimendan has shown a protective role against cardiac, renal, and neurological damage in patients with a high risk of multiple organ dysfunctions undergoing cardiac surgery.
Reversal of subcellular remodelling by losartan in heart failure due to myocardial infarction
Babick, Andrea; Chapman, Donald; Zieroth, Shelley; Elimban, Vijayan; Dhalla, Naranjan S
2012-01-01
This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI-induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+-pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+-stimulated ATPase activity and α-myosin heavy chain mRNA levels were depressed, whereas β-myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+-release activity and mRNA levels for SR Ca2+-pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+-release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions. PMID:22947202
Interaction between cardiac myosin-binding protein C and formin Fhod3.
Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu
2018-05-08
Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.
Bone marrow support of the heart in pressure overload is lost with aging.
Sopko, Nikolai A; Turturice, Benjamin A; Becker, Mitchell E; Brown, Chase R; Dong, Feng; Popović, Zoran B; Penn, Marc S
2010-12-21
Exogenous stem cell delivery is under investigation to prevent and treat cardiac dysfunction. It is less studied as to the extent endogenous bone marrow derived stem cells contribute to cardiac homeostais in response to stress and the affects of aging on this stress response. To determine the role of bone marrow (BM) derived stem cells on cardiac homeostasis in response to pressure overload (PO) and how this response is altered by aging. Young (8 weeks) and old (>40 weeks) C57/b6 mice underwent homo- and heterochronic BM transplantation prior to transverse aortic constriction (TAC). We found that older BM is associated with decreased cardiac function following TAC. This decreased function is associated with decrease in BM cell engraftment, increased myocyte apoptosis, decreased myocyte hypertrophy, increased myocardial fibrosis and decreased cardiac function. Additionally, there is a decrease in activation of resident cells within the heart in response to PO in old mice. Interestingly, these effects are not due to alterations in vascular density or inflammation in response to PO or differences in ex vivo stem cell migration between young and old mice. BM derived stem cells are activated in response to cardiac PO, and the recruitment of BM derived cells are involved in cardiac myocyte hypertrophy and maintenance of function in response to PO which is lost with aging.
Cordes, Dietmar; Nandy, Rajesh R.; Schafer, Scott; Wager, Tor D.
2014-01-01
It has recently been shown that both high-frequency and low-frequency cardiac and respiratory noise sources exist throughout the entire brain and can cause significant signal changes in fMRI data. It is also known that the brainstem, basal forebrain and spinal cord area are problematic for fMRI because of the magnitude of cardiac-induced pulsations at these locations. In this study, the physiological noise contributions in the lower brain areas (covering the brainstem and adjacent regions) are investigated and a novel method is presented for computing both low-frequency and high-frequency physiological regressors accurately for each subject. In particular, using a novel optimization algorithm that penalizes curvature (i.e. the second derivative) of the physiological hemodynamic response functions, the cardiac -and respiratory-related response functions are computed. The physiological noise variance is determined for each voxel and the frequency-aliasing property of the high-frequency cardiac waveform as a function of the repetition time (TR) is investigated. It is shown that for the brainstem and other brain areas associated with large pulsations of the cardiac rate, the temporal SNR associated with the low-frequency range of the BOLD response has maxima at subject-specific TRs. At these values, the high-frequency aliased cardiac rate can be eliminated by digital filtering without affecting the BOLD-related signal. PMID:24355483
Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues.
McCain, Megan L; Agarwal, Ashutosh; Nesmith, Haley W; Nesmith, Alexander P; Parker, Kevin Kit
2014-07-01
Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita
2015-05-01
The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.
Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues
McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit
2014-01-01
Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714
Schreckenberg, Rolf; Bencsik, Péter; Weber, Martin; Abdallah, Yaser; Csonka, Csaba; Gömöri, Kamilla; Kiss, Krisztina; Pálóczi, János; Pipis, Judit; Sárközy, Márta; Ferdinandy, Péter; Schulz, Rainer; Schlüter, Klaus-Dieter
2017-12-22
Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The current article examines the effect of IPC or IPoC on the regulation and coupling of β-adrenergic receptors and their effects on postischemic left ventricular function. The β-adrenergic signal transduction was analyzed in 3-month-old Wistar rats for each of the intervention strategies (Sham, ischemia/reperfusion, IPC, IPoC) immediately and 7 days after myocardial infarction. Directly after the infarction a cardioprotective potential was demonstrated for both IPC and IPoC: the infarct size was reduced, apoptosis and production of reactive oxygen species were lowered, and the myocardial tissue was preserved. Seven days after myocardial ischemia, only IPC hearts showed significant functional improvement. Along with a deterioration in fractional shortening, IPoC hearts no longer responded adequately to β-adrenergic stimulation. The stabilization of β-adrenergic receptor kinase-2 via increased phosphorylation of Mdm2 (an E3-ubiquitin ligase) was responsible for desensitization of β-adrenergic receptors and identified as a characteristic specific to IPoC hearts. Immediately after myocardial infarction, rapid and transient activation of β-adrenergic receptor kinase-2 may be an appropriate means to protect the injured heart from excessive stress. In the long term, however, induction and stabilization of β-adrenergic receptor kinase-2, with the resultant loss of positive inotropic function, leads to the functional picture of heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and run-off control systems; (2) The presence of leakage in and proper functioning of leakage detection system. (3) Deterioration or cracking of the drip pad surface. Note: See § 265.443(m) for remedial action required if deterioration or leakage is -detected. [55 FR 50486, Dec. 6, 1990, as amended at 71 FR...
Guarracino, F; Baldassarri, R; Priebe, H J
2015-02-01
Each year, an increasing number of elderly patients with cardiovascular disease undergoing non-cardiac surgery require careful perioperative management to minimize the perioperative risk. Perioperative cardiovascular complications are the strongest predictors of morbidity and mortality after major non-cardiac surgery. A Joint Task Force of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA) has recently published revised Guidelines on the perioperative cardiovascular management of patients scheduled to undergo non-cardiac surgery, which represent the official position of the ESC and ESA on various aspects of perioperative cardiac care. According to the Guidelines effective perioperative cardiac management includes preoperative risk stratification based on preoperative assessment of functional capacity, type of surgery, cardiac risk factors, and cardiovascular function. The ESC/ESA Guidelines discourage indiscriminate routine preoperative cardiac testing, because it is time- and cost-consuming, resource-limiting, and does not improve perioperative outcome. They rather emphasize the importance of individualized preoperative cardiac evaluation and the cooperation between anesthesiologists and cardiologists. We summarize the relevant changes of the 2014 Guidelines as compared to the previous ones, with particular emphasis on preoperative cardiac testing.
Therapeutic trial of granulocyte-colony stimulating factor for dilated cardiomyopathy in three dogs.
Park, Chul; Yoo, Jong-Hyun; Jeon, Hyo-Won; Kang, Byeong-Teck; Kim, Jung-Hyun; Jung, Dong-In; Lim, Chae-Young; Lee, Hye-Jung; Hahm, Dae-Hyun; Woo, Eung-Je; Park, Hee-Myung
2007-09-01
Three dogs were presented to us for evaluation of cardiac problems. Electrocardiographic recordings revealed severe tachyarrhythmia and atrial fibrillation with ventricular tachycardia in 2 of the 3 dogs. The echocardiographic findings of the 3 dogs revealed markedly decreased fractional shortening and a marked increase in E-point septal separation. Based on the results of electrocardiographic and echocardiographic evaluation, the 3 dogs were diagnosed as dilated cardiomyopathy (DCM). The dogs were treated with conventional cardiac medication, but cardiac function did not improve and the clinical signs remained. We subsequently attempted treatment with granulocyte-colony stimulating factor (G-CSF; 10 microg/kg, subcutaneously). The specific purpose of G-CSF therapy for DCM was to improve cardiac function and a significant improvement in cardiac function was confirmed. The three dogs had no treatment side effects. This case report suggests that G-CSF might have therapeutic effects for medically refractory DCM in dogs.
Beer, Meinrad; Weidemann, Frank; Breunig, Frank; Knoll, Anita; Koeppe, Sabrina; Machann, Wolfram; Hahn, Dietbert; Wanner, Christoph; Strotmann, Jörg; Sandstede, Jörn
2006-05-15
The present study evaluated the evolution of cardiac morphology, function, and late enhancement as a noninvasive marker of myocardial fibrosis, and their inter-relation during enzyme replacement therapy in patients with Fabry's disease using magnetic resonance imaging and color Doppler myocardial imaging. Late enhancement, which was present in up to 50% of patients, was associated with increased left ventricular mass, the failure of a significant regression of hypertrophy during enzyme replacement therapy, and worse segmental myocardial function. Late enhancement may predict the effect of enzyme replacement therapy on left ventricular mass and cardiac function.
Biomechanics of Cardiac Function
Voorhees, Andrew P.; Han, Hai-Chao
2015-01-01
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462
Non-invasive imaging of global and regional cardiac function in pulmonary hypertension
Crowe, Tim; Jayasekera, Geeshath
2017-01-01
Pulmonary hypertension (PH) is a progressive illness characterized by elevated pulmonary artery pressure; however, the main cause of mortality in PH patients is right ventricular (RV) failure. Historically, improving the hemodynamics of pulmonary circulation was the focus of treatment; however, it is now evident that cardiac response to a given level of pulmonary hemodynamic overload is variable but plays an important role in the subsequent prognosis. Non-invasive tests of RV function to determine prognosis and response to treatment in patients with PH is essential. Although the right ventricle is the focus of attention, it is clear that cardiac interaction can cause left ventricular dysfunction, thus biventricular assessment is paramount. There is also focus on the atrial chambers in their contribution to cardiac function in PH. Furthermore, there is evidence of regional dysfunction of the two ventricles in PH, so it would be useful to understand both global and regional components of dysfunction. In order to understand global and regional cardiac function in PH, the most obvious non-invasive imaging techniques are echocardiography and cardiac magnetic resonance imaging (CMRI). Both techniques have their advantages and disadvantages. Echocardiography is widely available, relatively inexpensive, provides information regarding RV function, and can be used to estimate RV pressures. CMRI, although expensive and less accessible, is the gold standard of biventricular functional measurements. The advent of 3D echocardiography and techniques including strain analysis and stress echocardiography have improved the usefulness of echocardiography while new CMRI technology allows the measurement of strain and measuring cardiac function during stress including exercise. In this review, we have analyzed the advantages and disadvantages of the two techniques and discuss pre-existing and novel forms of analysis where echocardiography and CMRI can be used to examine atrial, ventricular, and interventricular function in patients with PH at rest and under stress. PMID:29064323
Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity.
Shuvy, Mony; Shifman, Oshrat E Tayer; Nusair, Samir; Pappo, Orit; Lotan, Chaim
2009-01-01
Hypothyroid state may induce cardiac muscle impairment such as diastolic dysfunction and abnormal relaxation time. Advanced heart failure in hypothyroid patients has been described only in severe symptomatic cases, mostly during myxedematous coma. We describe an unusual case of asymptomatic patient with hypothyroidism who presented with severely reduced cardiac function with elevated cardiac enzymes reflecting significant myocardial injury. Comprehensive evaluation for heart failure was suggestive only for long-standing untreated hypothyroidism. Endomyocadial biopsy demonstrated unique histological findings of mucopolysaccharide accumulation attributed to hypothyroid state. Asymptomatic hypothyroidism may cause severe reduction in cardiac function accompanied with elevated cardiac enzymes. To our knowledge, this is the first description of human myocardial biopsy revealing mucopolysaccharide accumulation attributed to hypothyroid state.
AKAP-scaffolding proteins and regulation of cardiac physiology
Mauban, JRH; O'Donnell, M; Warrier, S; Manni, S; Bond, M
2009-01-01
A kinase anchoring proteins (AKAPs) compose a growing list of diverse but functionally related proteins defined by their ability to bind to the regulatory subunit of protein kinase A. AKAPs perform an integral role in the spatiotemporal modulation of a multitude of cellular signaling pathways. This review highlights the extensive role of AKAPs in cardiac excitation/contraction coupling and cardiac physiology. The literature shows that particular AKAPs are involved in cardiac Ca2+ influx, release, re-uptake, and myocyte repolarization. Studies have also suggested roles for AKAPs in cardiac remodeling. Transgenic studies show functional effects of AKAPs, not only in the cardiovascular system, but in other organ systems as well. PMID:19364910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han
2010-07-02
Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acidsmore » (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.« less
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Fuseler, John W.; Potts, Jay D.; Davis, Jeffrey M.; Price, Robert L.
2018-01-01
The influence of somatic stem cells in the stimulation of mammalian cardiac muscle regeneration is still in its early stages, and so far, it has been difficult to determine the efficacy of the procedures that have been employed. The outstanding question remains whether stem cells derived from the bone marrow or some other location within or outside of the heart can populate a region of myocardial damage and transform into tissue-specific differentiated progenies, and also exhibit functional synchronization. Consequently, this necessitates the development of an appropriate in vitro three-dimensional (3D) model of cardiomyogenesis and prompts the development of a 3D cardiac muscle construct for tissue engineering purposes, especially using the somatic stem cell, human mesenchymal stem cells (hMSCs). To this end, we have created an in vitro 3D functional prevascularized cardiac muscle construct using embryonic cardiac myocytes (eCMs) and hMSCs. First, to generate the prevascularized scaffold, human cardiac microvascular endothelial cells (hCMVECs) and hMSCs were cocultured onto a 3D collagen cell carrier (CCC) for 7 days under vasculogenic culture conditions; hCMVECs/hMSCs underwent maturation, differentiation, and morphogenesis characteristic of microvessels, and formed dense vascular networks. Next, the eCMs and hMSCs were cocultured onto this generated prevascularized CCCs for further 7 or 14 days in myogenic culture conditions. Finally, the vascular and cardiac phenotypic inductions were characterized at the morphological, immunological, biochemical, molecular, and functional levels. Expression and functional analyses of the differentiated progenies revealed neo-cardiomyogenesis and neo-vasculogenesis. In this milieu, for instance, not only were hMSCs able to couple electromechanically with developing eCMs but were also able to contribute to the developing vasculature as mural cells, respectively. Hence, our unique 3D coculture system provides us a reproducible and quintessential in vitro 3D model of cardiomyogenesis and a functioning prevascularized 3D cardiac graft that can be utilized for personalized medicine. PMID:28457188
Chamber Specific Gene Expression Landscape of the Zebrafish Heart
Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar
2016-01-01
The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6 tissue types of zebrafish. We hypothesize that clustering the differentially expressed genes with both known and unknown functions will deliver detailed insights on fundamental gene networks that are important for the development and specification of the cardiac chambers. It is also postulated that this transcriptome atlas will help utilize zebrafish in a better way as a model for studying cardiac development and to explore functional role of gene networks in cardiac disease pathogenesis. PMID:26815362
Safety of capsule endoscopy using human body communication in patients with cardiac devices.
Chung, Joo Won; Hwang, Hye Jin; Chung, Moon Jae; Park, Jeong Youp; Pak, Hui-Nam; Song, Si Young
2012-06-01
The MiroCam (IntroMedic, Ltd., Seoul, Korea) is a small-bowel capsule endoscope that uses human body communication to transmit data. The potential interactions between cardiac devices and the capsule endoscope are causes for concern, but no data are available for this matter. This clinical study was designed to evaluate the potential influence of the MiroCam capsules on cardiac devices. Patients with cardiac pacemakers or implantable cardiac defibrillators referred for evaluation of small bowel disease were prospectively enrolled in this study. Before capsule endoscopy, a cardiologist checked baseline electrocardiograms and functions of the cardiac devices. Cardiac rhythms were continuously monitored by 24-h telemetry during capsule endoscopy in the hospital. After completion of procedures, functions of the cardiac devices were checked again for interference. Images from the capsule endoscopy were reviewed and analyzed for technical problems. Six patients, three with pacemakers and three with implantable cardiac defibrillators, were included in the study. We identified no disturbances in the cardiac devices and no arrhythmias detected on telemetry monitoring during capsule endoscopy. No significant changes in the programmed parameters of the cardiac devices were noted after capsule endoscopy. There were no imaging disturbances from the cardiac devices on capsule endoscopy. Capsule endoscopy using human body communication to transmit data was safely performed in patients with cardiac pacemakers or implantable cardiac defibrillators. Images from the capsule endoscopy were not affected by cardiac devices. A further large-scale study is required to confirm the safety of capsule endoscopy with various types of cardiac devices.
GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.
Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena
2016-01-15
Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Thyroid Echography-induced Thyroid Storm and Exacerbation of Acute Heart Failure.
Nakabayashi, Keisuke; Nakazawa, Naomi; Suzuki, Toshiaki; Asano, Ryotaro; Saito, Hideki; Nomura, Hidekimi; Isomura, Daichi; Okada, Hisayuki; Sugiura, Ryo; Oka, Toshiaki
2016-01-01
Hyperthyroidism and thyroid storm affect cardiac circulation in some conditions. Several factors including trauma can induce thyroid storms. We herein describe the case of a 57-year-old woman who experienced a thyroid storm and exacerbation of acute heart failure on thyroid echography. She initially demonstrated a good clinical course after medical rate control for atrial fibrillation; however, thyroid echography for evaluating hyperthyroidism led to a thyroid storm and she collapsed. A multidisciplinary approach stabilized her thyroid hormone levels and hemodynamics. Thus, the medical staff should be prepared for a deterioration in the patient's condition during thyroid echography in heart failure patients with hyperthyroidism.
Autonomic Cardiovascular Control and Executive Function in Chronic Hypotension.
Duschek, Stefan; Hoffmann, Alexandra; Reyes Del Paso, Gustavo A; Ettinger, Ulrich
2017-06-01
Chronic low blood pressure (hypotension) is characterized by complaints such as fatigue, reduced drive, dizziness, and cold limbs. Additionally, deficits in attention and memory have been observed. Autonomic dysregulation is considered to be involved in the origin of this condition. The study explored autonomic cardiovascular control in the context of higher cognitive processing (executive function) in hypotension. Hemodynamic recordings were performed in 40 hypotensive and 40 normotensive participants during execution of four classical executive function tasks (number-letter task, n-back task, continuous performance test, and flanker task). Parameters of cardiac sympathetic control, i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance, and parasympathetic control, i.e., respiratory sinus arrhythmia and baroreflex sensitivity, were obtained. The hypotensive group exhibited lower stroke volume and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity during task execution. Increased error rates in hypotensive individuals were observed in the n-back and flanker tasks. In the total sample, there were positive correlations of error rates with pre-ejection period, baroreflex sensitivity and respiratory sinus arrhythmia, and negative correlations with cardiac output. Group differences in stroke volume, cardiac output, and pre-ejection period suggest diminished beta-adrenergic myocardial drive during executive function processing in hypotension, in addition to increased baroreflex function. Although further research is warranted to quantify the extent of executive function impairment in hypotension, the results from correlation analysis add evidence to the notion that higher sympathetic inotropic influences and reduced parasympathetic cardiac influences are accompanied by better cognitive performance.
Cardiac neuronal hierarchy in health and disease.
Armour, J Andrew
2004-08-01
The cardiac neuronal hierarchy can be represented as a redundant control system made up of spatially distributed cell stations comprising afferent, efferent, and interconnecting neurons. Its peripheral and central neurons are in constant communication with one another such that, for the most part, it behaves as a stochastic control system. Neurons distributed throughout this hierarchy interconnect via specific linkages such that each neuronal cell station is involved in temporally dependent cardio-cardiac reflexes that control overlapping, spatially organized cardiac regions. Its function depends primarily, but not exclusively, on inputs arising from afferent neurons transducing the cardiovascular milieu to directly or indirectly (via interconnecting neurons) modify cardiac motor neurons coordinating regional cardiac behavior. As the function of the whole is greater than that of its individual parts, stable cardiac control occurs most of the time in the absence of direct cause and effect. During altered cardiac status, its redundancy normally represents a stabilizing feature. However, in the presence of regional myocardial ischemia, components within the intrinsic cardiac nervous system undergo pathological change. That, along with any consequent remodeling of the cardiac neuronal hierarchy, alters its spatially and temporally organized reflexes such that populations of neurons, acting in isolation, may destabilize efferent neuronal control of regional cardiac electrical and/or mechanical events.
The long noncoding RNA Wisper controls cardiac fibrosis and remodeling
Micheletti, Rudi; Plaisance, Isabelle; Abraham, Brian J.; Sarre, Alexandre; Ting, Ching-Chia; Alexanian, Michael; Maric, Daniel; Maison, Damien; Nemir, Mohamed; Young, Richard A.; Schroen, Blanche; González, Arantxa; Ounzain, Samir; Pedrazzini, Thierry
2017-01-01
Long noncoding RNAs (lncRNAs) are emerging as powerful regulators of cardiac development and disease. However, our understanding of the importance of these molecules in cardiac fibrosis is limited. Using an integrated genomic screen, we identified Wisper (Wisp2 super-enhancer–associated RNA) as a cardiac fibroblast–enriched lncRNA that regulates cardiac fibrosis after injury. Wisper expression was correlated with cardiac fibrosis both in a murine model of myocardial infarction (MI) and in heart tissue from human patients suffering from aortic stenosis. Loss-of-function approaches in vitro using modified antisense oligonucleotides (ASOs) demonstrated that Wisper is a specific regulator of cardiac fibroblast proliferation, migration, and survival. Accordingly, ASO-mediated silencing of Wisper in vivo attenuated MI-induced fibrosis and cardiac dysfunction. Functionally, Wisper regulates cardiac fibroblast gene expression programs critical for cell identity, extracellular matrix deposition, proliferation, and survival. In addition, its association with TIA1-related protein allows it to control the expression of a profibrotic form of lysyl hydroxylase 2, implicated in collagen cross-linking and stabilization of the matrix. Together, our findings identify Wisper as a cardiac fibroblast–enriched super-enhancer–associated lncRNA that represents an attractive therapeutic target to reduce the pathological development of cardiac fibrosis in response to MI and prevent adverse remodeling in the damaged heart. PMID:28637928
Liang, Zhongshu; Leo, Sunnar; Wen, Helin; Ouyang, Mao; Jiang, Weihong; Yang, Kan
2015-05-13
Triptolide treatment leads to an improvement in Diabetic Cardiomyopathy (DCM) in streptozotocin-induced diabetic rat model. DCM is characterized by abnormal cardiac energy metabolism. We hypothesized that triptolide ameliorated cardiac metabolic abnormalities in DCM. We proposed (31)P nuclear magnetic resonance ((31)P NMR) spectrometry method for assessing cardiac energy metabolism in vivo and evaluating the effect of triptolide treatment in DCM rats. Six weeks triptolide treatment was conducted on streptozotocin-induced diabetic rats with dose of 100, 200 or 400 μg/kg/day respectively. Sex- and age-matched non-diabetic rats were used as control group. Cardiac chamber dimension and function were determined with echocardiography. Whole heart preparations were perfused with Krebs-Henseleit buffer and (31)P NMR spectroscopy was performed. Cardiac p38 Mitogen Activating Protein Kinase (MAPK) was measured using real time PCR and western blot analysis. In diabetic rats, cardiac mass index was significantly higher, where as cardiac EF was lower than control group. (31)P NMR spectroscopy showed that ATP and pCr concentrations in diabetic groups were also remarkably lower than control group. Compared to non-treated diabetic rats, triptolide-treated diabetic groups showed remarkable lower cardiac mass index and higher EF, ATP, pCr concentrations, and P38 MAPK expressions. Best improvement was seen in group treated with Triptolide with dose 200 μg/kg/day. (31)P NMR spectroscopy enables assessment of cardiac energy metabolism in whole heart preparations. It detects energy metabolic abnormalities in DCM hearts. Triptolide therapy improves cardiac function and increases cardiac energy metabolism at least partly through upregulation of MAPK signaling transduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca; Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2; Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca
2013-01-01
Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentarymore » or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES increased DNMT3a expression and increased CpG DNA methylation. ► DES impacts fetal heart reducing cardiac reserve on challenge in adulthood. ► Fetal heart can be re-programmed by a non-steroidal estrogen.« less
Acute care teaching in the undergraduate nursing curriculum.
McGaughey, Jennifer
2009-01-01
To incorporate basic aspects of acute care into the undergraduate nursing programme by providing an opportunity for the development of knowledge and skills in the early recognition and assessment of deteriorating patients on general hospital wards. Acute care initiatives implemented in the hospital setting to improve the identification and management of 'at risk' patients have focused on the provision of education for trained or qualified staff. However, to ensure student nurses are 'fit to practice' at the point of registration, it has been recommended that acute care theory and skills are incorporated into the undergraduate nursing curriculum. PRACTICE DEVELOPMENT INITIATIVE: An 'Integrated Nursing Care' module was incorporated into year 3 of the undergraduate nursing programme to introduce students to acute care theory and practice. Module content focuses on the early detection and management of acute deterioration in patients with respiratory, cardiac, neurological or renal insufficiencies. We used a competency-based framework to ensure the application of theory to practice through the use of group seminars. High-fidelity patient-simulated clinical scenarios were a key feature. The United Kingdom Resuscitation Council Intermediate Life Support course is also an important component of the module. Incorporating the Integrated Nursing Care module into the undergraduate nursing curriculum provides pre-registration students the opportunity to develop their knowledge and skills in acute care. The provision of undergraduate education in care of the acutely ill patient in hospital is essential to improve nurses' competence and confidence in assessing and managing deteriorating patients in general wards at the point of registration.
Murine fetal echocardiography.
Kim, Gene H
2013-02-15
Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.
Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee
2011-01-01
Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.
Bartos, Jason A.; Matsuura, Timothy R.; Sarraf, Mohammad; Youngquist, Scott T.; McKnite, Scott H.; Rees, Jennifer N.; Sloper, Daniel T.; Bates, Frank S.; Segal, Nicolas; Debaty, Guillaume; Lurie, Keith G.; Neumar, Robert W.; Metzger, Joseph M.; Riess, Matthias L.; Yannopoulos, Demetris
2014-01-01
Objective Ischemic postconditioning (stutter CPR) and sevoflurane have been shown to mitigate the effects of reperfusion injury in cardiac tissue after 15 minutes of ventricular fibrillation (VF) cardiac arrest. Poloxamer 188 (P188) has also proven beneficial to neuronal and cardiac tissue during reperfusion injury in human and animal models. We hypothesized that the use of stutter CPR, sevoflurane, and P188 combined with standard advanced life support would improve post-resuscitation cardiac and neurologic function after prolonged VF arrest. Methods Following 17 minutes of untreated VF, 20 pigs were randomized to Control treatment with active compression/decompression (ACD) CPR and impedance threshold device (ITD) (n=8) or Bundle therapy with stutter ACD CPR + ITD + sevoflurane + P188 (n=12). Epinephrine and post-resuscitation hypothermia were given in both groups per standard protocol. Animals that achieved return of spontaneous circulation (ROSC) were evaluated with echocardiography, biomarkers, and a blinded neurologic assessment with a cerebral performance category score. Results Bundle therapy improved hemodynamics during resuscitation, reduced need for epinephrine and repeated defibrillation, reduced biomarkers of cardiac injury and end-organ dysfunction, and increased left ventricular ejection fraction compared to Controls. Bundle therapy also improved rates of ROSC (100% vs. 50%), freedom from major adverse events (50% vs. 0% at 48 hours), and neurologic function (42% with mild or no neurologic deficit and 17% achieving normal function at 48 hours). Conclusions Bundle therapy with a combination of stutter ACD CPR, ITD, sevoflurane, and P188 improved cardiac and neurologic function after 17 minutes of untreated cardiac arrest in pigs. PMID:25447036
... Options for Heart Failure Living With HF and Advanced HF High Blood Pressure ... Updated:Mar 10,2017 What is cardiac arrest? Cardiac arrest is the abrupt loss of heart function in a person who may or may not ...
Translational neurocardiology: preclinical models and cardioneural integrative aspects.
Ardell, J L; Andresen, M C; Armour, J A; Billman, G E; Chen, P-S; Foreman, R D; Herring, N; O'Leary, D S; Sabbah, H N; Schultz, H D; Sunagawa, K; Zucker, I H
2016-07-15
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
PEG-coated gold nanoparticles attenuate β-adrenergic receptor-mediated cardiac hypertrophy.
Qiao, Yuhui; Zhu, Baoling; Tian, Aiju; Li, Zijian
2017-01-01
Gold nanoparticles (AuNPs) are widely used as a drug delivery vehicle, which can accumulate in the heart through blood circulation. Therefore, it is very important to understand the effect of AuNPs on the heart, especially under pathological conditions. In this study, we found that PEG-coated AuNPs attenuate β-adrenergic receptor (β-AR)-mediated acute cardiac hypertrophy and inflammation. However, both isoproterenol, a non-selective β-AR agonist, and AuNPs did not induce cardiac function change or cardiac fibrosis. AuNPs exerted an anti-cardiac hypertrophy effect by decreasing β 1 -AR expression and its downstream ERK1/2 hypertrophic pathway. Our results indicated that AuNPs might be safe and have the potential to be used as multi-functional materials (drug carrier systems and anti-cardiac hypertrophy agents).
Kossack, Mandy; Juergensen, Lonny; Fuchs, Dieter; Katus, Hugo A.; Hassel, David
2015-01-01
Translucent zebrafish larvae represent an established model to analyze genetics of cardiac development and human cardiac disease. More recently adult zebrafish are utilized to evaluate mechanisms of cardiac regeneration and by benefiting from recent genome editing technologies, including TALEN and CRISPR, adult zebrafish are emerging as a valuable in vivo model to evaluate novel disease genes and specifically validate disease causing mutations and their underlying pathomechanisms. However, methods to sensitively and non-invasively assess cardiac morphology and performance in adult zebrafish are still limited. We here present a standardized examination protocol to broadly assess cardiac performance in adult zebrafish by advancing conventional echocardiography with modern speckle-tracking analyses. This allows accurate detection of changes in cardiac performance and further enables highly sensitive assessment of regional myocardial motion and deformation in high spatio-temporal resolution. Combining conventional echocardiography measurements with radial and longitudinal velocity, displacement, strain, strain rate and myocardial wall delay rates after myocardial cryoinjury permitted to non-invasively determine injury dimensions and to longitudinally follow functional recovery during cardiac regeneration. We show that functional recovery of cryoinjured hearts occurs in three distinct phases. Importantly, the regeneration process after cryoinjury extends far beyond the proposed 45 days described for ventricular resection with reconstitution of myocardial performance up to 180 days post-injury (dpi). The imaging modalities evaluated here allow sensitive cardiac phenotyping and contribute to further establish adult zebrafish as valuable cardiac disease model beyond the larval developmental stage. PMID:25853735
Backs, Johannes; Backs, Thea; Neef, Stefan; Kreusser, Michael M.; Lehmann, Lorenz H.; Patrick, David M.; Grueter, Chad E.; Qi, Xiaoxia; Richardson, James A.; Hill, Joseph A.; Katus, Hugo A.; Bassel-Duby, Rhonda; Maier, Lars S.; Olson, Eric N.
2009-01-01
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological cardiac signaling have not been fully defined. To investigate the potential involvement in heart disease of CaMKIIδ, the major CaMKII isoform expressed in the heart, we generated CaMKIIδ-null mice. These mice are viable and display no overt abnormalities in cardiac structure or function in the absence of stress. However, pathological cardiac hypertrophy and remodeling are attenuated in response to pressure overload in these animals. Cardiac extracts from CaMKIIδ-null mice showed diminished kinase activity toward histone deacetylase 4 (HDAC4), a substrate of stress-responsive protein kinases and suppressor of stress-dependent cardiac remodeling. In contrast, phosphorylation of the closely related HDAC5 was unaffected in hearts of CaMKIIδ-null mice, underscoring the specificity of the CaMKIIδ signaling pathway for HDAC4 phosphorylation. We conclude that CaMKIIδ functions as an important transducer of stress stimuli involved in pathological cardiac remodeling in vivo, which is mediated, at least in part, by the phosphorylation of HDAC4. These findings point to CaMKIIδ as a potential therapeutic target for the maintenance of cardiac function in the setting of pressure overload. PMID:19179290
Hargens, Trent A; Aron, Adrian; Newsome, Laura J; Austin, Joseph L; Shafer, Brooke M
2015-01-01
Obstructive sleep apnea (OSA) is a prevalent form of sleep-disordered breathing. Evidence suggests that OSA may lead to cardiac remodeling, although the literature is equivocal. Previous literature suggests a high percentage of individuals entering a cardiac rehabilitation (CR) program also have OSA. The objective of this study was to determine whether resting hemodynamic variables were altered in OSA subjects entering CR compared with those without OSA, as determined by impedance cardiography. Subjects entering an early outpatient CR program were screened for OSA using an at-home screening device and verified by a sleep physician. Subjects were divided into an OSA group (n = 48) or a control group (n = 25) on the basis of the screening results. Hemodynamic variables were measured during supine rest using impedance cardiography. A 6-minute walk test was performed to assess functional capacity. The proportion of cardiac diagnoses was similar between groups. Overall, 66% of the subjects were positive for OSA. Subject groups did not differ by age, body mass index, heart rate, diastolic blood pressure, or functional capacity. Cardiac output, cardiac index, stroke volume, contractility index, and left cardiac work index were all significantly decreased in the OSA group compared with the control group (P < .05). Findings suggest that OSA results in decreased cardiac function in patients entering CR, likely because of pressure and volume changes associated with apneic events. This may place those individuals at a disadvantage in recovering from their cardiac event, and place them at increased risk for secondary complications.
Four and a half LIM domain protein signaling and cardiomyopathy.
Liang, Yan; Bradford, William H; Zhang, Jing; Sheikh, Farah
2018-06-20
Four and a half LIM domain (FHL) protein family members, FHL1 and FHL2, are multifunctional proteins that are enriched in cardiac muscle. Although they both localize within the cardiomyocyte sarcomere (titin N2B), they have been shown to have important yet unique functions within the context of cardiac hypertrophy and disease. Studies in FHL1-deficient mice have primarily uncovered mitogen-activated protein kinase (MAPK) scaffolding functions for FHL1 as part of a novel biomechanical stretch sensor within the cardiomyocyte sarcomere, which acts as a positive regulator of pressure overload-mediated cardiac hypertrophy. New data have highlighted a novel role for the serine/threonine protein phosphatase (PP5) as a deactivator of the FHL1-based biomechanical stretch sensor, which has implications in not only cardiac hypertrophy but also heart failure. In contrast, studies in FHL2-deficient mice have primarily uncovered an opposing role for FHL2 as a negative regulator of adrenergic-mediated signaling and cardiac hypertrophy, further suggesting unique functions targeted by FHL proteins in the "stressed" cardiomyocyte. In this review, we provide current knowledge of the role of FHL1 and FHL2 in cardiac muscle as it relates to their actions in cardiac hypertrophy and cardiomyopathy. A specific focus will be to dissect the pathways and protein-protein interactions that underlie FHLs' signaling role in cardiac hypertrophy as well as provide a comprehensive list of FHL mutations linked to cardiac disease, using evidence gained from genetic mouse models and human genetic studies.
Li, Wei; Tang, Renqiao; Ouyang, Shengrong; Ma, Feifei; Liu, Zhuo; Wu, Jianxin
2017-01-01
Folic acid (FA) is an antioxidant that can reduce reactive oxygen species generation and can blunt cardiac dysfunction during ischemia. We hypothesized that FA supplementation prevents cardiac fibrosis and cardiac dysfunction induced by obesity. Six-week-old C57BL6/J mice were fed a high-fat diet (HFD), normal diet (ND), or an HFD supplemented with folic acid (FAD) for 14 weeks. Cardiac function was measured using a transthoracic echocardiographic exam. Phenotypic analysis included measurements of body and heart weight, blood glucose and tissue homocysteine (Hcy) content, and heart oxidative stress status. HFD consumption elevated fasting blood glucose levels and caused obesity and heart enlargement. FA supplementation in HFD-fed mice resulted in reduced fasting blood glucose, heart weight, and heart tissue Hcy content. We also observed a significant cardiac systolic dysfunction when mice were subjected to HFD feeding as indicated by a reduction in the left ventricular ejection fraction and fractional shortening. However, FAD treatment improved cardiac function. FA supplementation protected against cardiac fibrosis induced by HFD. In addition, HFD increased malondialdehyde concentration of the heart tissue and reduced the levels of antioxidant enzyme, glutathione, and catalase. HFD consumption induced myocardial oxidant stress with amelioration by FA treatment. FA supplementation significantly lowers blood glucose levels and heart tissue Hcy content and reverses cardiac dysfunction induced by HFD in mice. These functional improvements of the heart may be mediated by the alleviation of oxidative stress and myocardial fibrosis.
Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli
2016-09-01
The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.
Du, Qing; Salem, Yasser; Liu, Hao Howe; Zhou, Xuan; Chen, Sun; Chen, Nan; Yang, Xiaoyan; Liang, Juping; Sun, Kun
2017-01-23
Cardiac catheterization has opened an innovative treatment field for cardiac disease; this treatment is becoming the most popular approach for pediatric congenital heart disease (CHD) and has led to a significant growth in the number of children with cardiac catheterization. Unfortunately, based on evidence, it has been demonstrated that the majority of children with CHD are at an increased risk of "non-cardiac" problems. Effective exercise therapy could improve their functional status significantly. As studies identifying the efficacy of exercise therapy are rare in this field, the aims of this study are to (1) identify the efficacy of a home-based exercise program to improve the motor function of children with CHD with cardiac catheterization, (2) reduce parental anxiety and parenting burden, and (3) improve the quality of life for parents whose children are diagnosed with CHD with cardiac catheterization through the program. A total of 300 children who will perform a cardiac catheterization will be randomly assigned to two groups: a home-based intervention group and a control group. The home-based intervention group will carry out a home-based exercise program, and the control group will receive only home-based exercise education. Assessments will be undertaken before catheterization and at 1, 3, and 6 months after catheterization. Motor ability quotients will be assessed as the primary outcomes. The modified Ross score, cardiac function, speed of sound at the tibia, functional independence of the children, anxiety, quality of life, and caregiver burden of their parents or the main caregivers will be the secondary outcome measurements. The proposed prospective randomized controlled trial will evaluate the efficiency of a home-based exercise program for children with CHD with cardiac catheterization. We anticipate that the home-based exercise program may represent a valuable and efficient intervention for children with CHD and their families. http://www.chictr.org.cn/ on: ChiCTR-IOR-16007762 . Registered on 13 January 2016.
Bertens, Anne Suzanne; Sabayan, Behnam; de Craen, Anton J M; Van der Mast, Roos C; Gussekloo, Jacobijn
2017-01-01
Impaired cardiac function has been related to accelerated cognitive decline in late-life. To investigate whether higher levels of high sensitivity cardiac troponin T (hs-cTnT), a sensitive marker for myocardial injury, are associated with worse cognitive function in the oldest old. In 455 participants of the population-based Leiden 85-plus Study, hs-cTnT was measured at 86 years. Cognitive function was measured annually during four years with the Mini-Mental State Examination (MMSE). Participants in the highest gender-specific tertile of hs-cTnT had a 2.0-point lower baseline MMSE score than participants in the lowest tertile (95% confidence interval (CI) (95% CI 0.73-3.3), and had a 0.58-point steeper annual decline in MMSE during follow-up (95% CI 0.06-1.1). The associations remained after adjusting for sociodemographic and cardiovascular risk factors excluding those without a history of overt cardiac disease. In a population-based sample of the oldest old, higher levels of hs-cTnT were associated with worse cognitive function and faster cognitive decline, independently from cardiovascular risk factors and a history of overt cardiac disease.
TRPV2 is critical for the maintenance of cardiac structure and function in mice
Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji
2014-01-01
The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca2+ handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca2+-dependent intracellular Ca2+ increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function. PMID:24874017
TRPV2 is critical for the maintenance of cardiac structure and function in mice.
Katanosaka, Yuki; Iwasaki, Keiichiro; Ujihara, Yoshihiro; Takatsu, Satomi; Nishitsuji, Koki; Kanagawa, Motoi; Sudo, Atsushi; Toda, Tatsushi; Katanosaka, Kimiaki; Mohri, Satoshi; Naruse, Keiji
2014-05-29
The heart has a dynamic compensatory mechanism for haemodynamic stress. However, the molecular details of how mechanical forces are transduced in the heart are unclear. Here we show that the transient receptor potential, vanilloid family type 2 (TRPV2) cation channel is critical for the maintenance of cardiac structure and function. Within 4 days of eliminating TRPV2 from hearts of the adult mice, cardiac function declines severely, with disorganization of the intercalated discs that support mechanical coupling with neighbouring myocytes and myocardial conduction defects. After 9 days, cell shortening and Ca(2+) handling by single myocytes are impaired in TRPV2-deficient hearts. TRPV2-deficient neonatal cardiomyocytes form no intercalated discs and show no extracellular Ca(2+)-dependent intracellular Ca(2+) increase and insulin-like growth factor (IGF-1) secretion in response to stretch stimulation. We further demonstrate that IGF-1 receptor/PI3K/Akt pathway signalling is significantly downregulated in TRPV2-deficient hearts, and that IGF-1 administration partially prevents chamber dilation and impairment in cardiac pump function in these hearts. Our results improve our understanding of the molecular processes underlying the maintenance of cardiac structure and function.
Reduced cardiac vagal activity in obese children and adolescents.
Dangardt, Frida; Volkmann, Reinhard; Chen, Yun; Osika, Walter; Mårild, Staffan; Friberg, Peter
2011-03-01
Obese children present with various cardiovascular risk factors affecting their future health. In adults, cardiac autonomic function is a major risk factor, predicting cardiovascular morbidity and mortality. We hypothesized that obese children and adolescents had a lower cardiac vagal activity than lean subjects. We measured cardiac spontaneous baroreflex sensitivity (BRS), reflecting the dynamic regulation of cardiac vagal function, in large groups of obese and lean young individuals. Cardiac BRS, using the sequence approach, was assessed in 120 obese (59 girls), 43 overweight (23 girls) and 148 lean subjects (78 girls). Obese subjects showed a decreased BRS compared to both overweight and lean subjects [16±7 versus 21±9 (P<0·01) and 22±10 ms per mmHg (P<0·0001), respectively]. The differences remained after correcting for age, gender and pubertal status. Children with obesity had low vagal activity at rest, and there was no gender difference. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.
Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf
2017-05-23
The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Lysine Ubiquitination and Acetylation of Human Cardiac 20S Proteasomes
Lau, Edward; Choi, Howard JH; Ng, Dominic CM; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie PY
2016-01-01
Purpose Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets poly-ubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Experimental design Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. Results We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. Conclusion and clinical relevance This is the most comprehensive characterization of cardiac proteasome ubiquitination to-date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. PMID:24957502
Lysine ubiquitination and acetylation of human cardiac 20S proteasomes.
Zong, Nobel; Ping, Peipei; Lau, Edward; Choi, Howard Jh; Ng, Dominic Cm; Meyer, David; Fang, Caiyun; Li, Haomin; Wang, Ding; Zelaya, Ivette M; Yates, John R; Lam, Maggie Py
2014-08-01
Altered proteasome functions are associated with multiple cardiomyopathies. While the proteasome targets polyubiquitinated proteins for destruction, it itself is modifiable by ubiquitination. We aim to identify the exact ubiquitination sites on cardiac proteasomes and examine whether they are also subject to acetylations. Assembled cardiac 20S proteasome complexes were purified from five human hearts with ischemic cardiomyopathy, then analyzed by high-resolution MS to identify ubiquitination and acetylation sites. We developed a library search strategy that may be used to complement database search in identifying PTM in different samples. We identified 63 ubiquitinated lysines from intact human cardiac 20S proteasomes. In parallel, 65 acetylated residues were also discovered, 39 of which shared with ubiquitination sites. This is the most comprehensive characterization of cardiac proteasome ubiquitination to date. There are significant overlaps between the discovered ubiquitination and acetylation sites, permitting potential crosstalk in regulating proteasome functions. The information presented here will aid future therapeutic strategies aimed at regulating the functions of cardiac proteasomes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Image-Based Predictive Modeling of Heart Mechanics.
Wang, V Y; Nielsen, P M F; Nash, M P
2015-01-01
Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development
Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; ...
2017-05-23
The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less
HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie
The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost frommore » Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development.« less
Rapid clinical deterioration in an individual with Down syndrome.
Jacobs, Julia; Schwartz, Alison; McDougle, Christopher J; Skotko, Brian G
2016-07-01
A small percentage of adolescents and young adults with Down syndrome experience a rapid and unexplained deterioration in cognitive, adaptive, and behavioral functioning. Currently, there is no standardized work-up available to evaluate these patients or treat them. Their decline typically involves intellectual deterioration, a loss of skills of daily living, and prominent behavioral changes. Certain cases follow significant life events such as completion of secondary school with friends who proceed on to college or employment beyond the individual with DS. Others develop this condition seemingly unprovoked. Increased attention in the medical community to clinical deterioration in adolescents and young adults with Down syndrome could provide a framework for improved diagnosis, evaluation, and treatment. This report presents a young adult male with Down syndrome who experienced severe and unexplained clinical deterioration, highlighting specific challenges in the systematic evaluation and treatment of these patients. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Modular assembly of thick multifunctional cardiac patches
Fleischer, Sharon; Shapira, Assaf; Feiner, Ron; Dvir, Tal
2017-01-01
In cardiac tissue engineering cells are seeded within porous biomaterial scaffolds to create functional cardiac patches. Here, we report on a bottom-up approach to assemble a modular tissue consisting of multiple layers with distinct structures and functions. Albumin electrospun fiber scaffolds were laser-patterned to create microgrooves for engineering aligned cardiac tissues exhibiting anisotropic electrical signal propagation. Microchannels were patterned within the scaffolds and seeded with endothelial cells to form closed lumens. Moreover, cage-like structures were patterned within the scaffolds and accommodated poly(lactic-co-glycolic acid) (PLGA) microparticulate systems that controlled the release of VEGF, which promotes vascularization, or dexamethasone, an anti-inflammatory agent. The structure, morphology, and function of each layer were characterized, and the tissue layers were grown separately in their optimal conditions. Before transplantation the tissue and microparticulate layers were integrated by an ECM-based biological glue to form thick 3D cardiac patches. Finally, the patches were transplanted in rats, and their vascularization was assessed. Because of the simple modularity of this approach, we believe that it could be used in the future to assemble other multicellular, thick, 3D, functional tissues. PMID:28167795
Xu, Xihui; Pang, Jiaojiao; Chen, Yuguo; Bucala, Richard; Zhang, Yingmei; Ren, Jun
2016-03-04
Aging leads to unfavorable geometric and functional sequelae in the heart. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) plays a role in the maintenance of cardiac homeostasis under stress conditions although its impact in cardiac aging remains elusive. This study was designed to evaluate the role of MIF in aging-induced cardiac anomalies and the underlying mechanism involved. Cardiac geometry, contractile and intracellular Ca(2+) properties were examined in young (3-4 mo) or old (24 mo) wild type and MIF knockout (MIF(-/-)) mice. Our data revealed that MIF knockout exacerbated aging-induced unfavorable structural and functional changes in the heart. The detrimental effect of MIF knockout was associated with accentuated loss in cardiac autophagy with aging. Aging promoted cardiac inflammation, the effect was attenuated by MIF knockout. Intriguingly, aging-induced unfavorable responses were reversed by treatment with the autophagy inducer rapamycin, with improved myocardial ATP availability in aged WT and MIF(-/-) mice. Using an in vitro model of senescence, MIF knockdown exacerbated doxorubicin-induced premature senescence in H9C2 myoblasts, the effect was ablated by MIF replenishment. Our data indicated that MIF knockout exacerbates aging-induced cardiac remodeling and functional anomalies despite improved inflammation, probably through attenuating loss of autophagy and ATP availability in the heart.
In vivo cardiac role of migfilin during experimental pressure overload.
Haubner, Bernhard Johannes; Moik, Daniel; Schuetz, Thomas; Reiner, Martin F; Voelkl, Jakob G; Streil, Katrin; Bader, Kerstin; Zhao, Lei; Scheu, Claudia; Mair, Johannes; Pachinger, Otmar; Metzler, Bernhard
2015-06-01
Increased myocardial wall strain triggers the cardiac hypertrophic response by increasing cardiomyocyte size, reprogramming gene expression, and enhancing contractile protein synthesis. The LIM protein, migfilin, is a cytoskeleton-associated protein that was found to translocate in vitro into the nucleus in a Ca(2+)-dependent manner, where it co-activates the pivotal cardiac transcription factor Csx/Nkx2.5. However, the in vivo role of migfilin in cardiac function and stress response is unclear. To define the role of migfilin in cardiac hypertrophy, we induced hypertension by transverse aortic constriction (TAC) and compared cardiac morphology and function of migfilin knockout (KO) with wild-type (WT) hearts. Heart size and myocardial contractility were comparable in untreated migfilin KO and WT hearts, but migfilin-null hearts presented a reduced extent of hypertrophic remodelling in response to chronic hypertensile stress. Migfilin KO mice maintained their cardiac function for a longer time period compared with WT mice, which presented extensive fibrosis and death due to heart failure. Migfilin translocated into the nucleus of TAC-treated cardiomyocytes, and migfilin KO hearts showed reduced Akt activation during the early response to pressure overload. Our findings indicate an important role of migfilin in the regulation of cardiac hypertrophy upon experimental TAC. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Connell, Clifford J; Endacott, Ruth; Jackman, Jennifer A; Kiprillis, Noelleen R; Sparkes, Louise M; Cooper, Simon J
2016-09-01
Survival from in-hospital cardiac arrest is poor. Clinical features, including abnormal vital signs, often indicate patient deterioration prior to severe adverse events. Early warning systems and rapid response teams are commonly used to assist the health profession in the identification and management of the deteriorating patient. Education programs are widely used in the implementation of these systems. The effectiveness of the education is unknown. The aims of this study were to identify: (i) the evidence supporting educational effectiveness in the recognition and management of the deteriorating patient and (ii) outcome measures used to evaluate educational effectiveness. A mixed methods systematic review of the literature was conducted using studies published between 2002 and 2014. Included studies were assessed for quality and data were synthesized thematically, while original data are presented in tabular form. Twenty-three studies were included in the review. Most educational programs were found to be effective reporting significant positive impacts upon learners, patient outcomes and organisational systems. Outcome measures related to: i learners, for example knowledge and performance, ii systems, including activation and responses of rapid response teams, and iii patients, including patient length of stay and adverse events. All but one of the programs used blended teaching with >87% including medium to high fidelity simulation. In situ simulation was employed in two of the interventions. The median program time was eight hours. The longest program lasted 44h however one of the most educationally effective programs was based upon a 40min simulation program. Educational interventions designed to improve the recognition and management of patient deterioration can improve learner outcomes when they incorporate medium to high-fidelity simulation. High-fidelity simulation has demonstrated effectiveness when delivered in brief sessions lasting only forty minutes. In situ simulation has demonstrated sustained positive impact upon the real world implementation of rapid response systems. Outcome measures should include knowledge and skill developments but there are important benefits in understanding patient outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slutsky, R.; Ashburn, W.L.
1982-01-01
The relationship between nuclear medicine and cardiology has continued to produce a surfeit of interesting, illuminating, and important reports involving the analysis of cardiac function, perfusion, and metabolism. To simplify the presentation, this review is broken down into three major subheadings: analysis of myocardial perfusion; imaging of the recent myocardial infarction; and the evaluation of myocardial function. There appears to be an increasingly important relationship between cardiology, particularly cardiac physiology, and nuclear imaging techniques. (KRM)
Yoshihisa, Akiomi; Shimizu, Takeshi; Owada, Takashi; Nakamura, Yuichi; Iwaya, Shoji; Yamauchi, Hiroyuki; Miyata, Makiko; Hoshino, Yasuto; Sato, Takamasa; Suzuki, Satoshi; Sugimoto, Koichi; Yamaki, Takayoshi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika
2011-01-01
Cheyne-Stokes respiration (CSR) is often observed in patients with chronic heart failure (CHF). Although adaptive servo ventilation (ASV) is effective for CSR, it remains unclear whether ASV improves the cardiac function and prognosis of patients with CHF and CSR.Sixty patients with CHF and CSR (mean left ventricular ejection fraction 38.7%, mean apnea hypopnea index 36.8 times/hour, mean central apnea index 19.1 times/hour) were enrolled in this study. Patients were divided into two groups: 23 patients treated with ASV (ASV group) and 37 patients treated without ASV (Non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels and echocardiography were performed before, 3 and 6 months after treatments in each group. Patients were followed-up for cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, NYHA functional class, BNP levels, cardiac systolic and diastolic function were significantly improved with ASV treatment for 6 months. In contrast, none of these parameters changed in the Non-ASV group. Importantly, Kaplan-Meier analysis clearly demonstrated that the event-free rate was significantly higher in the ASV group than in the Non-ASV group.Adaptive servo ventilation improves cardiac function and prognosis in patients with chronic heart failure and Cheyne-Stokes respiration.
Cox, Georgina K; Crossley, Dane A; Stieglitz, John D; Heuer, Rachael M; Benetti, Daniel D; Grosell, Martin
2017-12-19
Aqueous crude oil spills expose fish to varying concentrations of dissolved polycyclic aromatic hydrocarbons (PAHs), which can have lethal and sublethal effects. The heart is particularly vulnerable in early life stages, as PAH toxicity causes developmental cardiac abnormalities and impaired cardiovascular function. However, cardiac responses of juvenile and adult fish to acute oil exposure remain poorly understood. We sought to assess cardiac function in a pelagic fish species, the cobia (Rachycentron canadum), following acute (24 h) exposure to two ecologically relevant levels of dissolved PAHs. Cardiac power output (CPO) was used to quantify cardiovascular performance using an in situ heart preparation. Cardiovascular performance was varied using multiple concentrations of the β-adrenoceptor agonist isoproterenol (ISO) and by varying afterload pressures. Oil exposure adversely affected CPO with control fish achieving maximum CPO's (4 mW g -1 Mv) greater than that of oil-exposed fish (1 mW g -1 Mv) at ISO concentrations of 1 × 10 -6 M. However, the highest concentration of ISO (1 × 10 -5 M) rescued cardiac function. This indicates an interactive effect between oil-exposure and β-adrenergic stimulation and suggests if animals achieve very large increases in β-adrenergic stimulation it could play a compensatory role that may mitigate some adverse effects of oil-exposure in vivo.
Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction
Richart, Adèle; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Guerin, Coralie; Gautier, Gregory; Blank, Ulrich; Heymes, Christophe; Luche, Elodie; Cousin, Béatrice; Rodewald, Hans-Reimer
2016-01-01
Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. PMID:27353089
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
Evolution of Cognitive Function After Transcatheter Aortic Valve Implantation.
Schoenenberger, Andreas W; Zuber, Chantal; Moser, André; Zwahlen, Marcel; Wenaweser, Peter; Windecker, Stephan; Carrel, Thierry; Stuck, Andreas E; Stortecky, Stefan
2016-10-01
This study aimed to assess the evolution of cognitive function after transcatheter aortic valve implantation (TAVI). Previous smaller studies reported conflicting results on the evolution of cognitive function after TAVI. In this prospective cohort, cognitive function was measured in 229 patients ≥70 years using the Mini Mental State Examination before and 6 months after TAVI. Cognitive deterioration or improvement was defined as change of ≥3 points decrease or increase in the Mini Mental State Examination score between baseline and follow-up. Cognitive deterioration was found in 29 patients (12.7%). Predictive analysis using logistic regression did not identify any statistically significant predictor of cognitive deterioration. A review of individual medical records in 8 patients with a major Mini Mental State Examination score decrease of ≥5 points revealed specific causes in 6 cases (postinterventional delirium in 2; postinterventional stroke, progressive renal failure, progressive heart failure, or combination of preexisting cerebrovascular disease and mild cognitive impairment in 1 each). Among 48 patients with impaired baseline cognition (Mini Mental State Examination score <26 points), 18 patients (37.5%) cognitively improved. The preinterventional aortic valve area was lower in patients who cognitively improved (median aortic valve area 0.60 cm 2 ) as compared with patients who did not improve (median aortic valve area 0.70 cm 2 ; P=0.01). This is the first study providing evidence that TAVI results in cognitive improvement among patients who had impaired preprocedural cognitive function, possibly related to hemodynamic improvement in patients with severe aortic stenosis. Our results confirm that some patients experience cognitive deterioration after TAVI. © 2016 American Heart Association, Inc.
Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc
2017-07-01
If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Bridging the gap: Hybrid cardiac echo in the critically ill.
Glaser, Jacob J; Cardarelli, Cassandra; Galvagno, Samuel; Scalea, Thomas M; Murthi, Sarah B
2016-11-01
Point-of-care ultrasound often includes cardiac ultrasound. It is commonly used to evaluate cardiac function in critically ill patients but lacks the specific quantitative anatomic assessment afforded by standard transthoracic echocardiography (TTE). We developed the Focused Rapid Echocardiographic Examination (FREE), a hybrid between a cardiac ultrasound and TTE that places an emphasis on cardiac function rather than anatomy. We hypothesized that data obtained from FREE correlate well with TTE while providing actionable information for clinical decision making. FREE examinations evaluating cardiac function (left ventricular ejection fraction), diastolic dysfunction (including early mitral Doppler flow [E] and early mitral tissue Doppler [E']), right ventricular function, cardiac output, preload (left ventricular internal dimension end diastole), stroke volume, stroke volume variation, inferior vena cava diameter, and inferior vena cava collapse were performed. Patients who underwent both a TTE and FREE on the same day were identified as the cohort, and quantitative measurements were compared. Correlation analyses were performed to assess levels of agreement. A total of 462 FREE examinations were performed, in which 69 patients had both a FREE and TTE. FREE ejection fraction was strongly correlated with TTE (r = 0.89, 95% confidence interval). Left ventricular outflow tract, left ventricular internal dimension end diastole, E, and lateral E' derived from FREE were also strongly correlated with TTE measurements (r = 0.83, r = 0.94, r = 0.77, and r = 0.88, respectively). In 82% of the patients, right ventricular function for FREE was the same as that reported for TTE; pericardial effusion was detected on both examinations in 94% of the cases. No significant valvular anatomy was missed with the FREE examination. Functionally rather than anatomically based hybrid ultrasound examinations, like the FREE, facilitate decision making for critically ill patients. The FREE's functional assessment correlates well with TTE measurements and may be of significant clinical value in critically ill patients, especially when used in remote operating environments where resources are limited. Diagnostic test, level III.
Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin
2017-05-01
To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-01-01
Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177
NASA Astrophysics Data System (ADS)
Singh, Trailokyanath; Mishra, Pandit Jagatananda; Pattanayak, Hadibandhu
2017-12-01
In this paper, an economic order quantity (EOQ) inventory model for a deteriorating item is developed with the following characteristics: (i) The demand rate is deterministic and two-staged, i.e., it is constant in first part of the cycle and linear function of time in the second part. (ii) Deterioration rate is time-proportional. (iii) Shortages are not allowed to occur. The optimal cycle time and the optimal order quantity have been derived by minimizing the total average cost. A simple solution procedure is provided to illustrate the proposed model. The article concludes with a numerical example and sensitivity analysis of various parameters as illustrations of the theoretical results.
[Routine hormonal therapy in the heart transplant donor].
Zetina-Tun, Hugo; Lezama-Urtecho, Carlos; Careaga-Reyna, Guillermo
2016-01-01
Successful heart transplantation depends largely on donor heart function. During brain death many hormonal changes occur. These events lead to the deterioration of the donor hearts. The 2002 Crystal Consensus advises the use of a triple hormonal scheme to rescue marginal cardiac organs. A prospective, longitudinal study was conducted on potential donor hearts during the period 1 July 2011 to 31 May 2013. All donor hearts received a dual hormonal rescue scheme, with methylprednisolone 15mg/kg IV and 200mcg levothyroxine by the enteral route. There was at least a 4 hour wait prior to the harvesting. The preload and afterload was optimised. The variables measured were: left ventricular ejection fraction cardiac graft recipient; immediate and delayed mortality. A total of 30 orthotopic heart transplants were performed, 11 female and 19 male patients, with age range between 19 and 63 years-old (Mean: 44.3, SD 12.92 years). The donor hearts were 7 female and 23 male, with age range between 15 and 45 years-old (mean 22.5, SD 7.3 years). Immediate mortality was 3.3%, 3.3% intermediate, and delayed 3.3%, with total 30 day-mortality of 10%. Month survival was 90%. The immediate graft left ventricular ejection fraction was 45%, 60% intermediate, and 68% delayed. The causes of death were: 1 primary graft dysfunction, one massive pulmonary embolism, and one due to nosocomial pneumonia. It was concluded that the use of double rescue scheme hormonal therapy is useful for the recovery and preservation of the donor hearts. This scheme improves survival within the first 30 days after transplantation. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Material properties of CorCap passive cardiac support device.
Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E
2013-01-01
Myocardial function deteriorates during ventricular remodeling in patients with congestive heart failure (HF). Ventricular restraint therapy using a cardiac support device (CSD) is designed to reduce the amount of stress inside the dilated ventricles, which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Composite specimens of CorCap (Acorn Cardiovascular, Inc, St. Paul, MN) CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect the parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Silicone specimens exerted a linear behavior, with stiffness of 2.57 MPa. For the composites with 1 fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39 MPa versus 5.66 MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55 MPa versus 9.70 MPa). The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of the CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Vecchio, Nicolás; Belardi, Diego; Benzadón, Mariano; Seoane, Leonardo; Daquarti, Gustavo; Scazzuso, Fernando
2018-06-01
Despite the well-documented benefit of implantable cardioverter defibrillator (ICD) in patients with severe left ventricular dysfunction, there is a large number of patients who had not been offered this therapy. The aim of this study is to evaluate the utility of a hybrid decision support system (hCDSS) to improve the adherence to indicate ICD therapy in our institution. We conducted a retrospective, observational and single-center study. An hCDSS focused on patients with severe deterioration of the left ventricular function was implemented, creating a mandatory field containing the value of left ejection fraction and three options to choose: >35%, ≤ 35% or unknown. When the option ≤ 35% is checked, an email is automatically sent to the electrophysiology section where the staff can contact the treating physician to discuss the indication of ICD therapy. We measured the number of ICDs implanted before the alert (month 1-21), immediate post and late post alert (month 22-27 and 28-48 months respectively) RESULTS: The rate of ICD implantation increased from 1.76% per month in the pre-intervention period to 4.48% after the intervention (p < 0.001). This increase in the rate of ICD implantation remained stable between the immediate and late post-intervention period (4.6 vs. 4.4; p = .8) CONCLUSION: The implementation of a hybrid decision support system was associated with improved adherence to clinical guidelines for prevention of sudden cardiac death, as evidenced by a rapid and sustained increase in the number of ICD implants in patients with severe left ventricular dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.
Natural history of very severe aortic stenosis.
Rosenhek, Raphael; Zilberszac, Robert; Schemper, Michael; Czerny, Martin; Mundigler, Gerald; Graf, Senta; Bergler-Klein, Jutta; Grimm, Michael; Gabriel, Harald; Maurer, Gerald
2010-01-05
We sought to assess the outcome of asymptomatic patients with very severe aortic stenosis. We prospectively followed 116 consecutive asymptomatic patients (57 women; age, 67 + or - 16 years) with very severe isolated aortic stenosis defined by a peak aortic jet velocity (AV-Vel) > or = 5.0 m/s (average AV-Vel, 5.37 + or - 0.35 m/s; valve area, 0.63 + or - 0.12 cm(2)). During a median follow-up of 41 months (interquartile range, 26 to 63 months), 96 events occurred (indication for aortic valve replacement, 90; cardiac deaths, 6). Event-free survival was 64%, 36%, 25%, 12%, and 3% at 1, 2, 3, 4, and 6 years, respectively. AV-Vel but not aortic valve area was shown to independently affect event-free survival. Patients with an AV-Vel > or = 5.5 m/s had an event-free survival of 44%, 25%, 11%, and 4% at 1, 2, 3, and 4 years, respectively, compared with 76%, 43%, 33%, and 17% for patients with an AV-Vel between 5.0 and 5.5 m/s (P<0.0001). Six cardiac deaths occurred in previously asymptomatic patients (sudden death, 1; congestive heart failure, 4; myocardial infarction, 1). Patients with an initial AV-Vel > or = 5.5 m/s had a higher likelihood (52%) of severe symptom onset (New York Heart Association or Canadian Cardiovascular Society class >II) than those with an AV-Vel between 5.0 and 5.5 m/s (27%; P=0.03). Despite being asymptomatic, patients with very severe aortic stenosis have a poor prognosis with a high event rate and a risk of rapid functional deterioration. Early elective valve replacement surgery should therefore be considered in these patients.
Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy.
Hinze, Florian; Dieterich, Christoph; Radke, Michael H; Granzier, Henk; Gotthardt, Michael
2016-12-01
Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction.
Imaging of Myocardial Fatty Acid Oxidation
Mather, Kieren J; DeGrado, Tim
2016-01-01
Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide noninvasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. PMID:26923433
Phase dependencies of the human baroreceptor reflex
NASA Technical Reports Server (NTRS)
Seidel, H.; Herzel, H.; Eckberg, D. L.
1997-01-01
We studied the influence of respiratory and cardiac phase on responses of the cardiac pacemaker to brief (0.35-s) increases of carotid baroreceptor afferent traffic provoked by neck suction in seven healthy young adult subjects. Cardiac responses to neck suction were measured indirectly from electrocardiographic changes of heart period. Our results show that it is possible to separate the influences of respiratory and cardiac phases at the onset of a neck suction impulse by a product of two factors: one depending only on the respiratory phase and one depending only on the cardiac phase. This result is consistent with the hypothesis that efferent vagal activity is a function of afferent baroreceptor activity, whereas respiratory neurons modulate that medullary throughput independent of the cardiac phase. Furthermore, we have shown that stimulus broadening and stimulus cropping influence the outcome of neck suction experiments in a way that makes it virtually impossible to obtain information on the phase dependency of the cardiac pacemaker's sensitivity to vagal stimulation without accurate knowledge of the functional shape of stimulus broadening.
Cardiac damage in athlete's heart: When the "supernormal" heart fails!
Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele
2017-06-26
Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.
Cardiac damage in athlete’s heart: When the “supernormal” heart fails!
Carbone, Andreina; D’Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele
2017-01-01
Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete’s blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete’s heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded. PMID:28706583
The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms
Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony
2015-01-01
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314
The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.
Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony
2016-01-22
Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.
Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart.
Ott, Harald C; Matthiesen, Thomas S; Goh, Saik-Kia; Black, Lauren D; Kren, Stefan M; Netoff, Theoden I; Taylor, Doris A
2008-02-01
About 3,000 individuals in the United States are awaiting a donor heart; worldwide, 22 million individuals are living with heart failure. A bioartificial heart is a theoretical alternative to transplantation or mechanical left ventricular support. Generating a bioartificial heart requires engineering of cardiac architecture, appropriate cellular constituents and pump function. We decellularized hearts by coronary perfusion with detergents, preserved the underlying extracellular matrix, and produced an acellular, perfusable vascular architecture, competent acellular valves and intact chamber geometry. To mimic cardiac cell composition, we reseeded these constructs with cardiac or endothelial cells. To establish function, we maintained eight constructs for up to 28 d by coronary perfusion in a bioreactor that simulated cardiac physiology. By day 4, we observed macroscopic contractions. By day 8, under physiological load and electrical stimulation, constructs could generate pump function (equivalent to about 2% of adult or 25% of 16-week fetal heart function) in a modified working heart preparation.
Reduced size liver transplantation from a donor supported by a Berlin Heart.
Misra, M V; Smithers, C J; Krawczuk, L E; Jenkins, R L; Linden, B C; Weldon, C B; Kim, H B
2009-11-01
Patients on cardiac assist devices are often considered to be high-risk solid organ donors. We report the first case of a reduced size liver transplant performed using the left lateral segment of a pediatric donor whose cardiac function was supported by a Berlin Heart. The recipient was a 22-day-old boy with neonatal hemochromatosis who developed fulminant liver failure shortly after birth. The transplant was complicated by mild delayed graft function, which required delayed biliary reconstruction and abdominal wall closure, as well as a bile leak. However, the graft function improved quickly over the first week and the patient was discharged home with normal liver function 8 weeks after transplant. The presence of a cardiac assist device should not be considered an absolute contraindication for abdominal organ donation. Normal organ procurement procedures may require alteration due to the unusual technical obstacles that are encountered when the donor has a cardiac assist device.
Ekström, W; Al-Ani, A N; Sääf, M; Cederholm, T; Ponzer, S; Hedström, M
2013-06-01
Diabetes mellitus confers an increased risk of hip fractures. There is a limited knowledge of how the outcome after a hip fracture in patients with diabetes affect Health Related Quality of Life (HRQoL). The primary aim of this study was to evaluate HRQoL. Secondary aims were reoperation rate, complications and functions in patients with diabetes followed for 2 years after a hip fracture. Out of 2133 patients diabetes was present in 234 patients (11%). Main outcome measurements were HRQoL evaluated with EuroQoL 5-Dindex score, reoperation rate, surgical and medical complications, function as walking ability, daily activities, living condition and pain. Preoperatively, patients with diabetes mellitus had more pain (p=0.044), co-morbidities, reduced health status (p=0.001) and more often used a walking frame (p=0.014) than patients without diabetes, whereas Katz ADL index, cognition and body mass index did not differ. There was no difference in fracture type, surgical method or reoperation between the two groups or between patients with insulin treated or oral treated diabetes. The EQ-5Dindex score decreased from 0.64 at admission to 0.45 at 4 months, 0.49 at 12 months and 0.51 at 24 months with similar results for patients with and without diabetes. During the first postoperative year there was not more medical complications among patients with diabetes, however cardiac (p=0.023) and renal failure (p=0.032) were more frequent in patients with diabetes at 24 months. Patients with diabetes more often had severe hip pain at 4 months (p=0.031). At 12 months more diabetic patients were living independently (p=0.034). There was no difference in walking ability, ADL and living condition between the groups at 24 months. The findings of this study indicate that patients with diabetes mellitus had more pain, co-morbidities, reduced health status preoperatively than patients without diabetes. Hip fracture patients with diabetes mellitus have more hip pain at 4 months. Cardiac and renal failure was more frequent in patients with diabetes at 24 months but otherwise we found a comparable re-operation rate, function and deterioration of Health Related Quality of Life as patients without diabetes within 2 years after a hip fracture. Copyright © 2012 Elsevier Ltd. All rights reserved.
Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.
Guo, Cathy A; Guo, Shaodong
2017-06-01
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.
Ishikawa, Kiyotake; Fish, Kenneth M; Tilemann, Lisa; Rapti, Kleopatra; Aguero, Jaume; Santos-Gallego, Carlos G; Lee, Ahyoung; Karakikes, Ioannis; Xie, Chaoqin; Akar, Fadi G; Shimada, Yuichi J; Gwathmey, Judith K; Asokan, Aravind; McPhee, Scott; Samulski, Jade; Samulski, Richard Jude; Sigg, Daniel C; Weber, Thomas; Kranias, Evangelia G; Hajjar, Roger J
2014-12-01
Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.
Ishikawa, Kiyotake; Fish, Kenneth M; Tilemann, Lisa; Rapti, Kleopatra; Aguero, Jaume; Santos-Gallego, Carlos G; Lee, Ahyoung; Karakikes, Ioannis; Xie, Chaoqin; Akar, Fadi G; Shimada, Yuichi J; Gwathmey, Judith K; Asokan, Aravind; McPhee, Scott; Samulski, Jade; Samulski, Richard Jude; Sigg, Daniel C; Weber, Thomas; Kranias, Evangelia G; Hajjar, Roger J
2014-01-01
Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 1013 vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 1012 vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure–volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF. PMID:25023328
An automatic method to calculate heart rate from zebrafish larval cardiac videos.
Kang, Chia-Pin; Tu, Hung-Chi; Fu, Tzu-Fun; Wu, Jhe-Ming; Chu, Po-Hsun; Chang, Darby Tien-Hao
2018-05-09
Zebrafish is a widely used model organism for studying heart development and cardiac-related pathogenesis. With the ability of surviving without a functional circulation at larval stages, strong genetic similarity between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening. However, an economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There have been several image analysis methods to assess cardiac functions in zebrafish embryos/larvae, but they are still improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to calculate heart rate, an important parameter to analyze cardiac function, from videos. It contains several filters to identify the heart region, to reduce video noise and to calculate heart rates. The proposed method was evaluated with 32 zebrafish larval cardiac videos that were recording at three-day post-fertilization. The heart rate measured by the proposed method was comparable to that determined by manual counting. The experimental results show that the proposed method does not lose accuracy while largely reducing the labor cost and uncertainty of manual counting. With the proposed method, researchers do not have to manually select a region of interest before analyzing videos. Moreover, filters designed to reduce video noise can alleviate background fluctuations during the video recording stage (e.g. shifting), which makes recorders generate usable videos easily and therefore reduce manual efforts while recording.
Superagonistic CD28 antibody induces donor-specific tolerance in rat renal allografts.
Azuma, H; Isaka, Y; Li, X; Hünig, T; Sakamoto, T; Nohmi, H; Takabatake, Y; Mizui, M; Kitazawa, Y; Ichimaru, N; Ibuki, N; Ubai, T; Inamoto, T; Katsuoka, Y; Takahara, S
2008-10-01
The ultimate goal of organ transplantation is to establish graft tolerance where CD4+CD25+FOXP3+ regulatory T (Treg) cells play an important role. We examined whether a superagonistic monoclonal antibody specific for CD28 (CD28 SA), which expands Treg cells in vivo, would prevent acute rejection and induce tolerance using our established rat acute renal allograft model (Wistar to Lewis). In the untreated or mouse IgG-treated recipients, graft function significantly deteriorated with marked destruction of renal tissue, and all rats died by 13 days with severe azotemia. In contrast, 90% of recipients treated with CD28 SA survived over 100 days, and 70% survived with well-preserved graft function until graft recovery at 180 days. Analysis by flow cytometry and immunohistochemistry demonstrated that CD28 SA induced marked infiltration of FOXP3+ Treg cells into the allografts. Furthermore, these long-surviving recipients showed donor-specific tolerance, accepting secondary (donor-matched) Wistar cardiac allografts, but acutely rejecting third-party BN allografts. We further demonstrated that adoptive transfer of CD4+CD25+ Treg cells, purified from CD28 SA-treated Lewis rats, significantly prolonged allograft survival and succeeded in inducing donor-specific tolerance. In conclusion, CD28 SA treatment successfully induces donor-specific tolerance with the involvement of Treg cells, and thus the therapeutic value of this approach warrants further investigation and preclinical studies.