NASA Astrophysics Data System (ADS)
Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio
2014-04-01
6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.
Drag Coefficient Estimation in Orbit Determination
NASA Astrophysics Data System (ADS)
McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis
2011-07-01
Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.
Chiou, C.T.
1985-01-01
Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.
Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E
2013-10-01
The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.
Thermal expansion coefficient determination of polylactic acid using digital image correlation
NASA Astrophysics Data System (ADS)
Botean, Adrian-Ioan
2018-02-01
This paper aims determining the linear thermal expansion coefficient (CTE) of polylactic acid (PLA) using an optical method for measuring deformations called digital image correlation method (DIC). Because PLA is often used in making many pieces with 3D printing technology, it is opportune to know this coefficient to obtain a higher degree of precision in the construction of parts and to monitor deformations when these parts are subjected to a thermal gradient. Are used two PLA discs with 20 and 40% degree of filling. In parallel with this approach was determined the linear thermal expansion coefficient (CTE) for the copper cylinder on the surface of which are placed the two discs of PLA.
NASA Astrophysics Data System (ADS)
Bagri, Prashant; Simpson, Michael F.
2016-12-01
The thermodynamic behavior of lanthanides in molten salt systems is of significant scientific interest for the spent fuel reprocessing of Generation IV reactors. In this study, the apparent standard reduction potential (apparent potential) and activity coefficient of LaCl3 were determined in a molten salt solution of eutectic LiCl-KCl as a function of concentration of LaCl3. The effect of adding up to 1.40 mol % CsCl was also investigated. These properties were determined by measuring the open circuit potential of the La-La(III) redox couple in a high temperature molten salt electrochemical cell. Both the apparent potential and activity coefficient exhibited a strong dependence on concentration. A low concentration (0.69 mol %) of CsCl had no significant effect on the measured properties, while a higher concentration (1.40 mol %) of CsCl caused an increase (become more positive) in the apparent potential and activity coefficient at the higher range of LaCl3 concentrations.
Kim, Kyungmok; Lee, Jaewook
2016-01-01
This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore
1944-01-01
Values of the circulation function have been obtained for dual-rotating propellers. Numerical values are given for four, eight, and twelve-blade dual-rotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determine for single-rotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced.
Yamamoto, Hiroshi; Nakamura, Yudai; Moriguchi, Shigemi; Nakamura, Yuki; Honda, Yuta; Tamura, Ikumi; Hirata, Yoshiko; Hayashi, Akihide; Sekizawa, Jun
2009-02-01
We selected eight pharmaceuticals with relatively high potential ecological risk and high consumption-namely, acetaminophen, atenolol, carbamazepine, ibuprofen, ifenprodil, indomethacin, mefenamic acid, and propranolol-and conducted laboratory experiments to examine the persistence and partitioning of these compounds in the aquatic environment. In the results of batch sunlight photolysis experiments, three out of eight pharmaceuticals-propranolol, indomethacin, and ifenprodil-were relatively easily photodegraded (i.e., half-life<24h), whereas the other five pharmaceuticals were relatively stable against sunlight. The results of batch biodegradation experiments using river water suggested relatively slow biodegradation (i.e., half-life>24h) for all eight pharmaceuticals, but the rate constant was dependent on sampling site and time. Batch sorption experiments were also conducted to determine the sorption coefficients to river sediments and a model soil sample. The determined coefficients (K(d) values) were much higher for three amines (atenolol, ifenprodil, and propranolol) than for neutral compounds or carboxylic acids; the K(d) values of the amines were comparable to those of a four-ring polycyclic aromatic hydrocarbon (PAH) pyrene. The coefficients were also higher for sediment/soil with higher organic content, and the organic carbon-based sorption coefficient (logK(oc)) showed a poor linear correlation with the octanol-water distribution coefficient (logD(ow)) at neutral pH. These results suggest other sorption mechanisms-such as electrochemical affinity, in addition to hydrophobic interaction-play an important role in sorption to sediment/soil at neutral pH.
Nagy, Szilvia; Pipek, János
2015-12-21
In wavelet based electronic structure calculations, introducing a new, finer resolution level is usually an expensive task, this is why often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refined solution scheme that determines the indices, where the refined basis functions are to be included, and later a method for predicting the next, finer resolution coefficients in a very economic way. In the present contribution, we would like to determine whether the method can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.
NASA Technical Reports Server (NTRS)
Zhou, YE; Vahala, George
1993-01-01
The advection of a passive scalar by incompressible turbulence is considered using recursive renormalization group procedures in the differential sub grid shell thickness limit. It is shown explicitly that the higher order nonlinearities induced by the recursive renormalization group procedure preserve Galilean invariance. Differential equations, valid for the entire resolvable wave number k range, are determined for the eddy viscosity and eddy diffusivity coefficients, and it is shown that higher order nonlinearities do not contribute as k goes to 0, but have an essential role as k goes to k(sub c) the cutoff wave number separating the resolvable scales from the sub grid scales. The recursive renormalization transport coefficients and the associated eddy Prandtl number are in good agreement with the k-dependent transport coefficients derived from closure theories and experiments.
Intermittent nocturnal hypoxia and metabolic risk in obese adolescents with obstructive sleep apnea.
Narang, Indra; McCrindle, Brian W; Manlhiot, Cedric; Lu, Zihang; Al-Saleh, Suhail; Birken, Catherine S; Hamilton, Jill
2018-01-22
There is conflicting data regarding the independent associations of obstructive sleep apnea (OSA) with metabolic risk in obese youth. Previous studies have not consistently addressed central adiposity, specifically elevated waist to height ratio (WHtR), which is associated with metabolic risk independent of body mass index. The objective of this study was to determine the independent effects of the obstructive apnea-hypopnea index (OAHI) and associated indices of nocturnal hypoxia on metabolic function in obese youth after adjusting for WHtR. Subjects had standardized anthropometric measurements. Fasting blood included insulin, glucose, glycated hemoglobin, alanine transferase, and aspartate transaminase. Insulin resistance was quantified with the homeostatic model assessment. Overnight polysomnography determined the OAHI and nocturnal oxygenation indices. Of the 75 recruited subjects, 23% were diagnosed with OSA. Adjusting for age, gender, and WHtR in multivariable linear regression models, a higher oxygen desaturation index was associated with a higher fasting insulin (coefficient [standard error] = 48.076 [11.255], p < 0.001), higher glycated hemoglobin (coefficient [standard error] = 0.097 [0.041], p = 0.02), higher insulin resistance (coefficient [standard error] = 1.516 [0.364], p < 0.001), elevated alanine transferase (coefficient [standard error] = 11.631 [2.770], p < 0.001), and aspartate transaminase (coefficient [standard error] = 4.880 [1.444], p = 0.001). However, there were no significant associations between OAHI, glucose metabolism, and liver enzymes. Intermittent nocturnal hypoxia rather than the OAHI was associated with metabolic risk in obese youth after adjusting for WHtR. Measures of abdominal adiposity such as WHtR should be considered in future studies that evaluate the impact of OSA on metabolic health.
Experimental determination of the turbulence in a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Hara, J.; Smith, L. O.; Partus, F. P.
1972-01-01
The intensity of turbulence and the Lagrangian correlation coefficient for a liquid rocket combustion chamber were determined experimentally using the tracer gas diffusion method. The results indicate that the turbulent diffusion process can be adequately modeled by the one-dimensional Taylor theory; however, the numerical values show significant disagreement with previously accepted values. The intensity of turbulence is higher by a factor of about two, while the Lagrangian correlation coefficient which was assumed to be unity in the past is much less than unity.
NASA Astrophysics Data System (ADS)
Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.
2017-10-01
Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.
Sanborn, B.; Song, B.; Nishida, E.
2017-11-02
In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less
Refined BCF-type boundary conditions for mesoscale surface step dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Renjie; Ackerman, David M.; Evans, James W.
Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less
Refined BCF-type boundary conditions for mesoscale surface step dynamics
Zhao, Renjie; Ackerman, David M.; Evans, James W.
2015-06-24
Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
NASA Technical Reports Server (NTRS)
Wu, Xiaoping; Argus, Donald F.; Heflin, Michael B.; Ivins, Erik R.; Webb, Frank H.
2002-01-01
Precise GPS measurements of elastic relative site displacements due to surface mass loading offer important constraints on global surface mass transport. We investigate effects of site distribution and aliasing by higher-degree (n greater than or equal 2) loading terms on inversion of GPS data for n = 1 load coefficients and geocenter motion. Covariance and simulation analyses are conducted to assess the sensitivity of the inversion to aliasing and mismodeling errors and possible uncertainties in the n = 1 load coefficient determination. We found that the use of center-of-figure approximation in the inverse formulation could cause 10- 15% errors in the inverted load coefficients. n = 1 load estimates may be contaminated significantly by unknown higher-degree terms, depending on the load scenario and the GPS site distribution. The uncertainty in n = 1 zonal load estimate is at the level of 80 - 95% for two load scenarios.
Neutral solute transport across osteochondral interface: A finite element approach.
Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A
2016-12-08
Investigation of the solute transfer across articular cartilage and subchondral bone plate could nurture the understanding of the mechanisms of osteoarthritis (OA) progression. In the current study, we approached the transport of neutral solutes in human (slight OA) and equine (healthy) samples using both computed tomography and biphasic-solute finite element modeling. We developed a multi-zone biphasic-solute finite element model (FEM) accounting for the inhomogeneity of articular cartilage (superficial, middle and deep zones) and subchondral bone plate. Fitting the FEM model to the concentration-time curves of the cartilage and the equilibrium concentration of the subchondral plate/calcified cartilage enabled determination of the diffusion coefficients in the superficial, middle and deep zones of cartilage and subchondral plate. We found slightly higher diffusion coefficients for all zones in the human samples as compared to the equine samples. Generally the diffusion coefficient in the superficial zone of human samples was about 3-fold higher than the middle zone, the diffusion coefficient of the middle zone was 1.5-fold higher than that of the deep zone, and the diffusion coefficient of the deep zone was 1.5-fold higher than that of the subchondral plate/calcified cartilage. Those ratios for equine samples were 9, 2 and 1.5, respectively. Regardless of the species considered, there is a gradual decrease of the diffusion coefficient as one approaches the subchondral plate, whereas the rate of decrease is dependent on the type of species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of Permeant Lipophilicity on Permeation Across Human Sclera
Wen, He; Li, S. Kevin
2010-01-01
Purpose The objectives of this study were to determine the effects of permeant lipophilicity on permeant uptake into and transport across human sclera for transscleral delivery. Methods Model permeants with a wide range of lipophilicities were selected and studied with human sclera. Uptake experiments were carried out to measure permeant partitioning into the sclera. Transport experiments were performed in side-by-side diffusion cells, and the permeability coefficients and transport lag times of the permeants across the sclera were evaluated. Results Permeants with higher lipophilicity showed higher partition coefficients to human sclera, and the apparent transport lag time also increased significantly as the permeant lipophilicity increased. No correlation between the permeability coefficients and lipophilicity of the model permeants was observed in this study with human sclera. A hypothesis on the different findings between the present and previous studies was proposed. Conclusions Permeants with higher lipophilicity exhibited stronger binding to human sclera and would therefore lead to larger permeant partitioning to the sclera and longer transport lag time. The steady-state permeability coefficients of the permeants were not significantly affected by permeant lipophilicity. PMID:20734114
[Spectral reflectance characteristics and modeling of typical Takyr Solonetzs water content].
Zhang, Jun-hua; Jia, Ke-li
2015-03-01
Based on the analysis of the spectral reflectance of the typical Takyr Solonetzs soil in Ningxia, the relationship of soil water content and spectral reflectance was determined, and a quantitative model for the prediction of soil water content was constructed. The results showed that soil spectral reflectance decreased with the increasing soil water content when it was below the water holding capacity but increased with the increasing soil water content when it was higher than the water holding capacity. Soil water content presented significantly negative correlation with original reflectance (r), smooth reflectance (R), logarithm of reflectance (IgR), and positive correlation with the reciprocal of R and logarithm of reciprocal [lg (1/R)]. The correlation coefficient of soil water content and R in the whole wavelength was 0.0013, 0.0397 higher than r and lgR, respectively. Average correlation coefficient of soil water content with 1/R and [lg (1/R)] at the wavelength of 950-1000 nm was 0.2350 higher than that of 400-950 nm. The relationships of soil water content with the first derivate differential (R') , the first derivate differential of logarithm (lgR)' and the first derivate differential of logarithm of reciprocal [lg(1/R)]' were unstable. Base on the coefficients of r, lg(1/R), R' and (lgR)', different regression models were established to predict soil water content, and the coefficients of determination were 0.7610, 0.8184, 0.8524 and 0.8255, respectively. The determination coefficient for power function model of R'. reached 0.9447, while the fitting degree between the predicted value based on this model and on-site measured value was 0.8279. The model of R' had the highest fitted accuracy, while that of r had the lowest one. The results could provide a scientific basis for soil water content prediction and field irrigation in the Takyr Solonetzs region.
Towards a bootstrap approach to higher orders of epsilon expansion
NASA Astrophysics Data System (ADS)
Dey, Parijat; Kaviraj, Apratim
2018-02-01
We employ a hybrid approach in determining the anomalous dimension and OPE coefficient of higher spin operators in the Wilson-Fisher theory. First we do a large spin analysis for CFT data where we use results obtained from the usual and the Mellin bootstrap and also from Feynman diagram literature. This gives new predictions at O( ɛ 4) and O( ɛ 5) for anomalous dimensions and OPE coefficients, and also provides a cross-check for the results from Mellin bootstrap. These higher orders get contributions from all higher spin operators in the crossed channel. We also use the bootstrap in Mellin space method for ϕ 3 in d = 6 - ɛ CFT where we calculate general higher spin OPE data. We demonstrate a higher loop order calculation in this approach by summing over contributions from higher spin operators of the crossed channel in the same spirit as before.
Determining Learning Disabilities in Mathematics.
ERIC Educational Resources Information Center
Dunlap, William P.; And Others
1979-01-01
To determine the generalizability of reading expectancy formulas in ascertaining mathematics expectancy levels, correlation coefficients were computed between the scores of 150 Ss (7 to 12 years old) with learning problems on standardized mathematics and reading tests and expectancy scores. Formulas correlated higher with Ss' actual mathematics…
Friction coefficient and effective interference at the implant-bone interface.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2015-09-18
Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optical properties of an anterior lamellar human cornea model based on fibrin-agarose
NASA Astrophysics Data System (ADS)
Ionescu, Ana M.; Cardona, Juan de la Cruz; Ghinea, Razvan; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Pérez, Maria del Mar
2017-08-01
The optical evaluation carried out using the Inverse Adding-Doubling (IAD) method to determine the scattering and the absorption coefficients of the bioengineered human corneal stromas showed that this type of artificial biomaterials shared many similarities with native control cornea after four weeks of development in culture. Their absorption and reduced scattering coefficients values were higher than the ones of the control cornea, but their spectral behaviors of both coefficients were similar. Time of development in culture was an influencing factor on the results.
Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap
NASA Technical Reports Server (NTRS)
Fischel, Jack; Riebe, John M
1944-01-01
An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.
NASA Astrophysics Data System (ADS)
Su, Jing-Jing; Gao, Yi-Tian
2018-03-01
Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, G.A.
1982-01-01
A calculation of nonsinglet longitudinal coefficient function of deep-inelastic scattering through order-g/sup 4/ is presented, using the operator-product expansion and the renormalization group. Both ultraviolet and infrared divergences are regulated with dimensional regularization. The renormalization scheme dependence of the result is discussed along with its phenomenological application in the determination of R = sigma/sub L//sigma/sub T/.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Shu, J. Y.
1981-01-01
A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanaghi, Ali, E-mail: alishanaghi@gmail.com; Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir; Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com
Highlights: ► The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ► Dominant mechanism of growth structure at 490 °C is island-layer type. ► TiC{sub x} nanostructure coating applied at 490 °C, exhibits lowest friction coefficient. ► Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 °C, respectively. ► This higher elastic modulus and higher hardness of nanocoating obtain at 490 °C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperaturesmore » are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 °C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 °C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 °C suitable for wear resistant applications.« less
NASA Astrophysics Data System (ADS)
Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.
2016-04-01
In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.
Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan
2018-01-01
To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of decay coefficients for combustors with acoustic absorbers
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Espander, W. R.; Baer, M. R.
1972-01-01
An analytical technique for the calculation of linear decay coefficients in combustors with acoustic absorbers is presented. Tuned circumferential slot acoustic absorbers were designed for the first three transverse modes of oscillation, and decay coefficients for these absorbers were found as a function of backing distance for seven different chamber configurations. The effectiveness of the absorbers for off-design values of the combustion response and acoustic mode is also investigated. Results indicate that for tuned absorbers the decay coefficient increases approximately as the cube of the backing distance. For most off-design situations the absorber still provides a damping effect. However, if an absorber designed for some higher mode of oscillation is used to damp lower mode oscillations, a driving effect is frequently found.
Self-organization of developing embryo using scale-invariant approach
2011-01-01
Background Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. Methods In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. Results and conclusion The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. PMID:21635789
Self-organization of developing embryo using scale-invariant approach.
Tiraihi, Ali; Tiraihi, Mujtaba; Tiraihi, Taki
2011-06-03
Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos. In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing C. elegans during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method. The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2. © 2011 Tiraihi et al; licensee BioMed Central Ltd.
Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming
2013-10-04
A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)
NASA Technical Reports Server (NTRS)
Kim, Yeong E.; Braswell, W. Danny
1989-01-01
Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.
Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando
2017-02-21
The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.
Coefficients of discharge of fuel-injection nozzles for compression-ignition engines
NASA Technical Reports Server (NTRS)
Gelalles, A G
1932-01-01
This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.
The effect of rare alleles on estimated genomic relationships from whole genome sequence data.
Eynard, Sonia E; Windig, Jack J; Leroy, Grégoire; van Binsbergen, Rianne; Calus, Mario P L
2015-03-12
Relationships between individuals and inbreeding coefficients are commonly used for breeding decisions, but may be affected by the type of data used for their estimation. The proportion of variants with low Minor Allele Frequency (MAF) is larger in whole genome sequence (WGS) data compared to Single Nucleotide Polymorphism (SNP) chips. Therefore, WGS data provide true relationships between individuals and may influence breeding decisions and prioritisation for conservation of genetic diversity in livestock. This study identifies differences between relationships and inbreeding coefficients estimated using pedigree, SNP or WGS data for 118 Holstein bulls from the 1000 Bull genomes project. To determine the impact of rare alleles on the estimates we compared three scenarios of MAF restrictions: variants with a MAF higher than 5%, variants with a MAF higher than 1% and variants with a MAF between 1% and 5%. We observed significant differences between estimated relationships and, although less significantly, inbreeding coefficients from pedigree, SNP or WGS data, and between MAF restriction scenarios. Computed correlations between pedigree and genomic relationships, within groups with similar relationships, ranged from negative to moderate for both estimated relationships and inbreeding coefficients, but were high between estimates from SNP and WGS (0.49 to 0.99). Estimated relationships from genomic information exhibited higher variation than from pedigree. Inbreeding coefficients analysis showed that more complete pedigree records lead to higher correlation between inbreeding coefficients from pedigree and genomic data. Finally, estimates and correlations between additive genetic (A) and genomic (G) relationship matrices were lower, and variances of the relationships were larger when accounting for allele frequencies than without accounting for allele frequencies. Using pedigree data or genomic information, and including or excluding variants with a MAF below 5% showed significant differences in relationship and inbreeding coefficient estimates. Estimated relationships and inbreeding coefficients are the basis for selection decisions. Therefore, it can be expected that using WGS instead of SNP can affect selection decision. Inclusion of rare variants will give access to the variation they carry, which is of interest for conservation of genetic diversity.
Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom
NASA Technical Reports Server (NTRS)
Stallcop, J. R.
1974-01-01
An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.
Adaptive pitch control for variable speed wind turbines
Johnson, Kathryn E [Boulder, CO; Fingersh, Lee Jay [Westminster, CO
2012-05-08
An adaptive method for adjusting blade pitch angle, and controllers implementing such a method, for achieving higher power coefficients. Average power coefficients are determined for first and second periods of operation for the wind turbine. When the average power coefficient for the second time period is larger than for the first, a pitch increment, which may be generated based on the power coefficients, is added (or the sign is retained) to the nominal pitch angle value for the wind turbine. When the average power coefficient for the second time period is less than for the first, the pitch increment is subtracted (or the sign is changed). A control signal is generated based on the adapted pitch angle value and sent to blade pitch actuators that act to change the pitch angle of the wind turbine to the new or modified pitch angle setting, and this process is iteratively performed.
Higher-order clustering in networks
NASA Astrophysics Data System (ADS)
Yin, Hao; Benson, Austin R.; Leskovec, Jure
2018-05-01
A fundamental property of complex networks is the tendency for edges to cluster. The extent of the clustering is typically quantified by the clustering coefficient, which is the probability that a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques beyond triangles are crucial to understanding complex networks, and the clustering behavior with respect to such higher-order network structures is not well understood. Here we introduce higher-order clustering coefficients that measure the closure probability of higher-order network cliques and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-order clustering coefficients are a natural generalization of the traditional clustering coefficient. We derive several properties about higher-order clustering coefficients and analyze them under common random graph models. Finally, we use higher-order clustering coefficients to gain new insights into the structure of real-world networks from several domains.
Paige, Jeremy S.; Bernstein, Gregory S.; Heba, Elhamy; Costa, Eduardo A. C.; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C.; Valasek, Mark A.; Lin, Grace Y.; Han, Aiguo; Erdman, John W.; O’Brien, William D.; Andre, Michael P.; Loomba, Rohit; Sirlin, Claude B.
2017-01-01
OBJECTIVE The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). SUBJECTS AND METHODS In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift–based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. RESULTS CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). CONCLUSION Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD. PMID:28267360
Paige, Jeremy S; Bernstein, Gregory S; Heba, Elhamy; Costa, Eduardo A C; Fereirra, Marilia; Wolfson, Tanya; Gamst, Anthony C; Valasek, Mark A; Lin, Grace Y; Han, Aiguo; Erdman, John W; O'Brien, William D; Andre, Michael P; Loomba, Rohit; Sirlin, Claude B
2017-05-01
The purpose of this study is to explore the diagnostic performance of two investigational quantitative ultrasound (QUS) parameters, attenuation coefficient and backscatter coefficient, in comparison with conventional ultrasound (CUS) and MRI-estimated proton density fat fraction (PDFF) for predicting histology-confirmed steatosis grade in adults with nonalcoholic fatty liver disease (NAFLD). In this prospectively designed pilot study, 61 adults with histology-confirmed NAFLD were enrolled from September 2012 to February 2014. Subjects underwent QUS, CUS, and MRI examinations within 100 days of clinical-care liver biopsy. QUS parameters (attenuation coefficient and backscatter coefficient) were estimated using a reference phantom technique by two analysts independently. Three-point ordinal CUS scores intended to predict steatosis grade (1, 2, or 3) were generated independently by two radiologists on the basis of QUS features. PDFF was estimated using an advanced chemical shift-based MRI technique. Using histologic examination as the reference standard, ROC analysis was performed. Optimal attenuation coefficient, backscatter coefficient, and PDFF cutoff thresholds were identified, and the accuracy of attenuation coefficient, backscatter coefficient, PDFF, and CUS to predict steatosis grade was determined. Interobserver agreement for attenuation coefficient, backscatter coefficient, and CUS was analyzed. CUS had 51.7% grading accuracy. The raw and cross-validated steatosis grading accuracies were 61.7% and 55.0%, respectively, for attenuation coefficient, 68.3% and 68.3% for backscatter coefficient, and 76.7% and 71.3% for MRI-estimated PDFF. Interobserver agreements were 53.3% for CUS (κ = 0.61), 90.0% for attenuation coefficient (κ = 0.87), and 71.7% for backscatter coefficient (κ = 0.82) (p < 0.0001 for all). Preliminary observations suggest that QUS parameters may be more accurate and provide higher interobserver agreement than CUS for predicting hepatic steatosis grade in patients with NAFLD.
Kim, Kyungmok
2015-01-01
This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471
A study of the liquid-vapor phase change of mercury based on irreversible thermodynamics.
NASA Technical Reports Server (NTRS)
Adt, R. R., Jr.; Hatsopoulos, G. N.; Bornhorst, W. J.
1972-01-01
The object of this work is to determine the transport coefficients which appear in linear irreversible-thermodynamic rate equations of a phase change. An experiment which involves the steady-state evaporation of mercury was performed to measure the principal transport coefficient appearing in the mass-rate equation and the coupling transport coefficient appearing in both the mass-rate equation and the energy-rate equation. The principal transport coefficient sigma, usually termed the 'condensation' or 'evaporation' coefficient, is found to be approximately 0.9, which is higher than that measured previously in condensation-of-mercury experiments. The experimental value of the coupling coefficient K does not agree with the value predicted from Schrage's kinetic analysis of the phase change. A modified kinetic analysis in which the Onsager reciprocal law and the conservation laws are invoked is presented which removes this discrepancy but which shows that the use of Schrage's equation for predicting mass rates of phase change is a good approximation.
Lakshminarasimman, Narasimman; Quiñones, Oscar; Vanderford, Brett J; Campo-Moreno, Pablo; Dickenson, Eric V; McAvoy, Drew C
2018-05-28
This study determined biotransformation rates (k bio ) and sorption-distribution coefficients (K d ) for a select group of trace organic compounds (TOrCs) in anaerobic, anoxic, and aerobic activated sludge collected from two different biological nutrient removal (BNR) treatment systems located in Nevada (NV) and Ohio (OH) in the United States (US). The NV and OH facilities operated at solids retention times (SRTs) of 8 and 23 days, respectively. Using microwave-assisted extraction, the biotransformation rates of the chosen TOrCs were measured in the total mixed liquor. Sulfamethoxazole, trimethoprim, and atenolol biotransformed in all three redox regimes irrespective of the activated sludge source. The biotransformation of N, N-diethyl-3-methylbenzamide (DEET), triclosan, and benzotriazole was observed in aerobic activated sludge from both treatment plants; however, anoxic biotransformation of these three compounds was seen only in anoxic activated sludge from NV. Carbamazepine was recalcitrant in all three redox regimes and both sources of activated sludge. Atenolol and DEET had greater biotransformation rates in activated sludge with a higher SRT (23 days), while trimethoprim had a higher biotransformation rate in activated sludge with a lower SRT (8 days). The remaining compounds did not show any dependence on SRT. Lyophilized, heat inactivated sludge solids were used to determine the sorption-distribution coefficients. Triclosan was the most sorptive compound followed by carbamazepine, sulfamethoxazole, DEET, and benzotriazole. The sorption-distribution coefficients were similar across redox conditions and sludge sources. The biotransformation rates and sorption-distribution coefficients determined in this study can be used to improve fate prediction of the target TOrCs in BNR treatment systems. Copyright © 2018. Published by Elsevier B.V.
Derivation and application of a class of generalized boundary conditions
NASA Technical Reports Server (NTRS)
Senior, Thomas B. A.; Volakis, John L.
1989-01-01
Boundary conditions involving higher order derivatives are presented for simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to nonplanar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for uniform coating at least a quarter of a wavelength in thickness.
Oliveira, Tássia Boeno de; Azevedo Peixoto, Leonardo de; Teodoro, Paulo Eduardo; Alvarenga, Amauri Alves de; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability.
de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380
NASA Astrophysics Data System (ADS)
Kaur, Rajnish; Kumar, Anil; Osan, Janos; Czyzycki, M.; Karydas, A. G.; Puri, Sanjiv
2017-07-01
The absolute values of the mass attenuation coefficients have been measured at sixty two photon energies across the Li (i=1-3) sub-shell absorption edges of 66Dy covering the region 7.6-14.0 keV in order to investigate the influence of near-edge processes on the attenuation coefficients. The present measured attenuation coefficients are found to be higher by up to 10% than the theoretical values evaluated from the computer code XCOM (Berger et al., 2010) and the self-consistent Dirac-Hartree-Slater (DHS) model based values tabulated by Chantler (1995) over the energy region 7.6-14.0 keV, except at energies in vicinity (few eV) of the Li (i=1-3) sub-shell absorption edge energies where the measured values are significantly higher (up to 37%) than both the sets of theoretical values. Further, the Li (i=1-3) sub-shell photoionization cross sections, (σLiP)exp, deduced from the present measured mass attenuation coefficients are compared with the non-relativistic Hartree-Fock-Slater (HFS) model based values tabulated by Scofield (1973) and those evaluated from the theoretical total photoionization attenuation coefficients tabulated by Chantler (1995). The deduced (σLiP)exp(i=1-3) values are found to be in better agreement with those evaluated from the tabulations given by Chantler (1995) than the values given by Scofield (1973) over the energy region 7.8 - 14.0 keV included in this study. However, at photon energies up to few eV above the Li edges, the deduced (σLiP)exp(i=1-3) values are found to be significantly higher (up to 32%) than both the sets of theoretical values.
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Rolling, slip and traction measurements on low modulus materials
NASA Technical Reports Server (NTRS)
Tevaarwerk, J. L.
1985-01-01
Traction and wear tests were performed on six low modulus materials (LMM). Three different traction tests were performed to determine the suitability of the material for use as traction rollers. These were the rolling, slip and endurance traction tests. For each material the combination LMM on LMM and LMM on steel were evaluated. Rolling traction test were conducted to determine the load - velocity limits, the rolling traction coefficient of the materials and to establish the type of failures that would result when loading beyond the limit. It was found that in general a simple constant rolling traction coefficient was enough to describe the results of all the test. The slip traction tests revealed that the peak traction coefficients were considerably higher than for lubricated traction contacts. The endurance traction tests were performed to establish the durability of the LMM under conditions of prolonged traction. Wear measurements were performed during and after the test. Energetic wear rates were determined from the wear measurements conducted in the endurance traction tests. These values show that the roller wear is not severe when reasonable levels of traction are transmitted.
Cerebrospinal fluid norepinephrine and cognition in subjects across the adult age span
Wang, Lucy Y.; Murphy, Richard R.; Hanscom, Brett; Li, Ge; Millard, Steven P.; Petrie, Eric C.; Galasko, Douglas R.; Sikkema, Carl; Raskind, Murray A.; Wilkinson, Charles W.; Peskind, Elaine R.
2013-01-01
Adequate central nervous system noradrenergic activity enhances cognition, but excessive noradrenergic activity may have adverse effects on cognition. Previous studies have also demonstrated that noradrenergic activity is higher in older than younger adults. We aimed to determine relationships between cerebrospinal fluid (CSF) norepinephrine (NE) concentration and cognitive performance by using data from a CSF bank that includes samples from 258 cognitively normal participants aged 21–100 years. After adjusting for age, gender, education, and ethnicity, higher CSF NE levels (units of 100 pg/mL) are associated with poorer performance on tests of attention, processing speed, and executive function (Trail Making A: regression coefficient 1.5, standard error [SE] 0.77, p = 0.046; Trail Making B: regression coefficient 5.0, SE 2.2, p = 0.024; Stroop Word-Color Interference task: regression coefficient 6.1, SE 2.0, p = 0.003). Findings are consistent with the earlier literature relating excess noradrenergic activity with cognitive impairment. PMID:23639207
Cerebrospinal fluid norepinephrine and cognition in subjects across the adult age span.
Wang, Lucy Y; Murphy, Richard R; Hanscom, Brett; Li, Ge; Millard, Steven P; Petrie, Eric C; Galasko, Douglas R; Sikkema, Carl; Raskind, Murray A; Wilkinson, Charles W; Peskind, Elaine R
2013-10-01
Adequate central nervous system noradrenergic activity enhances cognition, but excessive noradrenergic activity may have adverse effects on cognition. Previous studies have also demonstrated that noradrenergic activity is higher in older than younger adults. We aimed to determine relationships between cerebrospinal fluid (CSF) norepinephrine (NE) concentration and cognitive performance by using data from a CSF bank that includes samples from 258 cognitively normal participants aged 21-100 years. After adjusting for age, gender, education, and ethnicity, higher CSF NE levels (units of 100 pg/mL) are associated with poorer performance on tests of attention, processing speed, and executive function (Trail Making A: regression coefficient 1.5, standard error [SE] 0.77, p = 0.046; Trail Making B: regression coefficient 5.0, SE 2.2, p = 0.024; Stroop Word-Color Interference task: regression coefficient 6.1, SE 2.0, p = 0.003). Findings are consistent with the earlier literature relating excess noradrenergic activity with cognitive impairment. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zanariah, J.; Zaiton, H.; Musli Nizam, Y.; Khairulzan, Y.; Dianah, M.; Nadirah, D.; Hanifi, O. Mohd
2018-03-01
Research has been so far focused extensively on mechanical properties of oil palm shell (OPS) concrete but less on sound properties. Thus, the objective of this study is to investigate whether concrete containing OPS can be applied in the field of road noise barrier. The acoustic properties of the samples were determined by using an impedance tube connected to a sound source. The noise reduction coefficient (NRC) and weighted sound absorption coefficient (αw) which is more commonly use in the road traffic noise barrier field were calculated according to BS EN ISO 11654:1997. Compressive strengths of samples were also determined by using compressive test. The results presented that the compressive strength of the OPS composites decreased as increased in w/c wit minimum of 20.44 N/mm2 at 28 days for w/c = 0.6 but still satisfactory for structural use. The sound absorption coefficient demonstrated that they were decreased as the w/c are higher with typical curve of two peaks at 315Hz and 1000Hz. All samples were then can be classified as class E as 0.5< αw < 0.25 and should be classified as L due to favourable deviation higher than 0.25 for 250 Hz.
Damage coefficients in low resistivity silicon. [solar cells
NASA Technical Reports Server (NTRS)
Srour, J. R.; Othmer, S.; Chiu, K. Y.; Curtis, O. L., Jr.
1975-01-01
Electron and proton damage coefficients are determined for low resistivity silicon based on minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. Irradiations were performed on bulk samples and cells fabricated from four types of boron-doped 0.1 ohm-cm silicon ingots, including the four possible combinations of high and low oxygen content and high and low dislocation density. Measurements were also made on higher resistivity boron-doped bulk samples and solar cells. Major observations and conclusions from the investigation are discussed.
Combined temperature and density series for fluid-phase properties. I. Square-well spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, J. Richard; Schultz, Andrew J.; Kofke, David A.
Cluster integrals are evaluated for the coefficients of the combined temperature- and density-expansion of pressure: Z = 1 + B{sub 2}(β) η + B{sub 3}(β) η{sup 2} + B{sub 4}(β) η{sup 3} + ⋯, where Z is the compressibility factor, η is the packing fraction, and the B{sub i}(β) coefficients are expanded as a power series in reciprocal temperature, β, about β = 0. The methodology is demonstrated for square-well spheres with λ = [1.2-2.0], where λ is the well diameter relative to the hard core. For this model, the B{sub i} coefficients can be expressed in closed form asmore » a function of β, and we develop appropriate expressions for i = 2-6; these expressions facilitate derivation of the coefficients of the β series. Expanding the B{sub i} coefficients in β provides a correspondence between the power series in density (typically called the virial series) and the power series in β (typically called thermodynamic perturbation theory, TPT). The coefficients of the β series result in expressions for the Helmholtz energy that can be compared to recent computations of TPT coefficients to fourth order in β. These comparisons show good agreement at first order in β, suggesting that the virial series converges for this term. Discrepancies for higher-order terms suggest that convergence of the density series depends on the order in β. With selection of an appropriate approximant, the treatment of Helmholtz energy that is second order in β appears to be stable and convergent at least to the critical density, but higher-order coefficients are needed to determine how far this behavior extends into the liquid.« less
Rayaguru, Kalpana; Routray, Winny
2010-12-01
Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).
Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael
2011-03-01
Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.
Puntillo, Kathleen A; Neuhaus, John; Arai, Shoshana; Paul, Steven M; Gropper, Michael A; Cohen, Neal H; Miaskowski, Christine
2012-10-01
Determine levels of agreement among intensive care unit patients and their family members, nurses, and physicians (proxies) regarding patients' symptoms and compare levels of mean intensity (i.e., the magnitude of a symptom sensation) and distress (i.e., the degree of emotionality that a symptom engenders) of symptoms among patients and proxy reporters. Prospective study of proxy reporters of symptoms in seriously ill patients. Two intensive care units in a tertiary medical center in the Western United States. Two hundred and forty-five intensive care unit patients, 243 family members, 103 nurses, and 92 physicians. None. On the basis of the magnitude of intraclass correlation coefficients, where coefficients from .35 to .78 are considered to be appropriately robust, correlation coefficients between patients' and family members' ratings met this criterion (≥.35) for intensity in six of ten symptoms. No intensity ratings between patients and nurses had intraclass correlation coefficients >.32. Three symptoms had intensity correlation coefficients of ≥.36 between patients' and physicians' ratings. Correlation coefficients between patients and family members were >.40 for five symptom-distress ratings. No symptoms had distress correlation coefficients of ≥.28 between patients' and nurses' ratings. Two symptoms had symptom-distress correlation coefficients between patients' and physicians' ratings at >.39. Family members, nurses, and physicians reported higher symptom-intensity scores than patients did for 80%, 60%, and 60% of the symptoms, respectively. Family members, nurses, and physicians reported higher symptom-distress scores than patients did for 90%, 70%, and 80% of the symptoms, respectively. Patient-family intraclass correlation coefficients were sufficiently close for us to consider using family members to help assess intensive care unit patients' symptoms. Relatively low intraclass correlation coefficients between intensive care unit clinicians' and patients' symptom ratings indicate that some proxy raters overestimate whereas others underestimate patients' symptoms. Proxy overestimation of patients' symptom scores warrants further study because this may influence decisions about treating patients' symptoms.
Layer coefficients for NHDOT pavement materials
NASA Astrophysics Data System (ADS)
Janoo, Vincent C.
1994-09-01
In 1992, the New Hampshire Department of Transportation (NHDOT) experimented with the use of reclaimed asphalt concrete as a base course material, identified by NHDOT as reclaimed stabilized base (RSB). The RSB and a control test section were placed on Interstate 93 between exits 18 and 19. The RSB test section was designed to the same structural number (SN) as the control. To evaluate the structural capacity of these test sections, the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted deflection tests using a Dynatest 8000 falling weight deflectometer (FWD). Preliminary analysis of the results by NHDOT personnel showed higher deflection in the reclaimed asphalt concrete test sections. The explanation was that the layer coefficient used for the RSB layer in the design was probably incorrect. A total of 10 test sections constituting the base course materials used by NHDOT were built near Bow, New Hampshire. CRREL evaluated and estimated the layer coefficients of the base course materials. The test program was developed to characterize the material in more than one way. Tests were conducted with the heavy weight deflectometer (HWD), dynamic cone penetrometer (DCP) and the Clegg hammer. In situ California bearing ratio (CBR) tests were also conducted. The deflection from the HWD were used with the WESDEF back calculation program to determine the layer moduli. The moduli were than used with the AASHTO Design Guide to calculate the layer coefficients. The layer coefficients were also determined with the method proposed by Rohde. The CBR values from the Clegg hammer, in situ CBR and DCP tests were also used in the relationships in the HDM model to determine the layer coefficients.
Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.
Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang
2016-08-01
The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Digestive capacities, inbreeding and growth capacities in juvenile Arctic charr Salvelinus alpinus.
Ditlecadet, D; Blier, P U; Le François, N R; Dufresne, F
2009-12-01
Genetic variation in growth performance was estimated in 26 families from two commercial strains of Arctic charr Salvelinus alpinus. Physiological determinants of growth and metabolic capacities were also assessed through enzymatic assays. A relatedness coefficient was attributed to each family using parental genotypes at seven microsatellite loci. After 15 months of growth, faster growing families had significantly lower relatedness coefficients than slower growing families, suggesting their value as indicators of growth potential. Individual fish that exhibited higher trypsin activity also displayed higher growth rate, suggesting that superior protein digestion capacities can be highly advantageous at early stages. Capacities to use amino acids as expressed by glutamate dehydrogenase (GDH) activities were lower in the liver of fast-growing fish (13-20%), whereas white muscle of fast-growing fish showed higher activities than that of slow-growing fish for amino acid metabolism and aerobic capacity [22-32% increase for citrate synthase (CS), aspartate aminotransferase (AAT) and GDH]. The generally higher glycolytic capacities (PK and LDH) in white muscle of fast-growing fish indicated higher burst swimming capacities and hence better access to food.
Bhave, Anupama; Bhargava, Roli; Kumar, Rashmi
2011-03-01
To determine correlation between developmental quotients (DQ) (DASII) and social quotients (SQ) (Malin's Vineland Social Maturity Scale (VSMS)). Malin's VSMS and DASII were done in 135 children aged 6 months to 2 years. SQ and DQ motor and mental were correlated using Pearson's correlation coefficient (r). Mean SQ and DQ and age equivalent scores were compared. Correlation coefficients between SQ and DQ (mental and motor were 0.849 and 0.791, respectively. Social age correlated highly with mental age (r = 0.906). Mean SQ was higher than mean DQa. SQ tends to be higher than DQ and correlates best with DQ mental. © 2010 The Authors. Journal of Paediatrics and Child Health © 2010 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
NASA Astrophysics Data System (ADS)
Schräpler, Rainer; Blum, Jürgen; Seizinger, Alexander; Kley, Wilhelm
2012-10-01
We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s-1 to 0.5 m s-1, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.
Hull, C C; Crofts, N C
1996-03-01
The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P < 0.0001) of mu t (0.562 +/- 0.010 mm-1 and 0.820 +/- 0.008 mm-1, respectively) than Polycon II (mu t = 0.025 +/- 0.005 mm-1). A comparison between Polycon II and the three hydrated soft contact lens materials showed a significant increase (P < 0.02) in the total attenuation coefficients for the 38% and 55% water content materials, and a weakly significant increase for the 70% water content soft lens material (P < 0.1). On the assumption that the absorption coefficients of these four materials are approximately constant, then this change would be due to an increase in the scattering coefficient of the material and could contribute to an increase in intraocular scatter. No significant difference (P > 0.5) was found between any of the hydrated soft contact lens materials tested.
[Research on Resistant Starch Content of Rice Grain Based on NIR Spectroscopy Model].
Luo, Xi; Wu, Fang-xi; Xie, Hong-guang; Zhu, Yong-sheng; Zhang, Jian-fu; Xie, Hua-an
2016-03-01
A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.
Oliveira, D G; Rocha, M M; Damasceno-Silva, K J; Sá, F V; Lima, L R L; Resende, M D V
2017-08-17
The aim of this study was to estimate the genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses and to compare different selection indexes. Eleven cowpea populations were evaluated in a randomized complete block design with four replications. Fourteen traits were evaluated, and the following parameters were estimated: genotypic variation coefficient, genotypic determination coefficient, experimental quality indicator and selection reliability, estimated genotypic values - BLUE, genotypic correlation coefficient among traits, and genotypic gain with simultaneous selection of all traits. The genotypic gain was estimated based on tree selection indexes: classical, multiplicative, and the sum of ranks. The genotypic variation coefficient was higher than the environmental variation coefficient for the number of days to start flowering, plant type, the weight of one hundred grains, grain index, and protein concentration. The majority of the traits presented genotypic determination coefficient from medium to high magnitude. The identification of increases in the production components is associated with decreases in protein concentration, and the increase in precocity leads to decreases in protein concentration and cooking time. The index based on the sum of ranks was the best alternative for simultaneous selection of traits in the cowpea segregating populations resulting from the crosses and backcrosses evaluated, with emphasis on the F 4 BC 12 , F 4 C 21 , and F 4 C 12 populations, which had the highest genotypic gains.
NASA Astrophysics Data System (ADS)
Shaw, Jacob T.; Lidster, Richard T.; Cryer, Danny R.; Ramirez, Noelia; Whiting, Fiona C.; Boustead, Graham A.; Whalley, Lisa K.; Ingham, Trevor; Rickard, Andrew R.; Dunmore, Rachel E.; Heard, Dwayne E.; Lewis, Ally C.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Dillon, Terry J.
2018-03-01
Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10-11 cm3 molecule-1 s-1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K.
A novel pendulum test for measuring roller chain efficiency
NASA Astrophysics Data System (ADS)
Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.
2018-07-01
This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.
NASA Astrophysics Data System (ADS)
Yahaya, NZ; Ramli, MR; Razak, NNANA; Abbas, Z.
2018-04-01
The Finite Element Method, FEM has been successfully used to model a simple rectangular microstrip sensor to determine the moisture content of Hevea rubber latex. The FEM simulation of sensor and samples was implemented by using COMSOL Multiphysics software. The simulation includes the calculation of magnitude and phase of reflection coefficient and was compared to analytical method. The results show a good agreement in finding the magnitude and phase of reflection coefficient when compared with analytical results. Field distributions of both the unloaded sensor as well as the sensor loaded with different percentages of moisture content were visualized using FEM in conjunction with COMSOL software. The higher the amount of moisture content in the sample the more the electric loops were observed.
Absorption Coefficient of a Semiconductor Thin Film from Photoluminescence
NASA Astrophysics Data System (ADS)
Rey, G.; Spindler, C.; Babbe, F.; Rachad, W.; Siebentritt, S.; Nuys, M.; Carius, R.; Li, S.; Platzer-Björkman, C.
2018-06-01
The photoluminescence (PL) of semiconductors can be used to determine their absorption coefficient (α ) using Planck's generalized law. The standard method, suitable only for self-supported thick samples, like wafers, is extended to multilayer thin films by means of the transfer-matrix method to include the effect of the substrate and optional front layers. α values measured on various thin-film solar-cell absorbers by both PL and photothermal deflection spectroscopy (PDS) show good agreement. PL measurements are extremely sensitive to the semiconductor absorption and allow us to advantageously circumvent parasitic absorption from the substrate; thus, α can be accurately determined down to very low values, allowing us to investigate deep band tails with a higher dynamic range than in any other method, including spectrophotometry and PDS.
Dötsch, J; Demirakça, S; Hahn, D; Katz, N; Kühl, P G; Rascher, W
1999-06-01
During nitric oxide inhalation, methemoglobinemia needs to be monitored. We compared six commercially available instruments and one manual method for methemoglobin measurements. In addition, we studied whether and to what degree methylene blue interferes with methemoglobin measurements. In vitro methodologic study. Research laboratory in a university hospital. Five healthy volunteers from whom red blood cells were obtained. Methemoglobinemia was generated in a red blood cell suspension by nitric oxide; methemoglobin was measured with six commercial instruments and one manual photometric method to calculate variation coefficients and to determine the differences between the devices. Methemoglobin was measured with and without the addition of methylene blue with two instruments. Measurements were performed immediately after the addition of methylene blue. All six commercially available instruments had variation coefficients of <0.1 at methemoglobin concentrations of 5%, whereas the manual photometric method did not reach a variation coefficient of <0.1 at 8% of methemoglobin. Apart from two devices that measured slightly but significantly higher methemoglobin levels, all instruments measured similar values of methemoglobin when the same samples were determined simultaneously. Higher concentrations of methylene blue (10, 40, 100 microM) reduced substantially the apparent concentrations of methemoglobin. Interference by methylene blue was most pronounced at low methemoglobin levels. With some limitations, all commercial instruments that were tested performed adequately for the monitoring of methemoglobinemia. Methylene blue interferes with the methemoglobin measurements in a dose-dependent manner.
Mbah, C J
2005-11-01
The aqueous solubility and partition coefficient of valsartan were determined at room temperature. The effect of ethyl alcohol, propylene glycol and pH on its solubility was also investigated. It was found that both solvents increased the solubility of the drug in water. The solubilizing power of ethyl alcohol was found to be higher than that of propylene glycol. Valsartan solubility was also observed to increase at high pH values and its lipophilicity wasdemonstrated by the high positive value of the logarithm of partition coefficient.
Measurement of true ileal phosphorus digestibility in meat and bone meal for broiler chickens.
Mutucumarana, R K; Ravindran, V; Ravindran, G; Cowieson, A J
2015-07-01
An experiment was conducted to estimate true ileal phosphorus (P:) digestibility of 3 meat and bone meal samples (MBM-1, MBM-2: , and MBM-3:) for broiler chickens. Four semipurified diets were formulated from each sample to contain graded concentrations of P. The experiment was conducted as a completely randomized design with 6 replicates (6 birds per replicate) per dietary treatment. A total of 432 Ross 308 broilers were assigned at 21 d of age to the 12 test diets. The apparent ileal digestibility coefficient of P was determined by the indicator method, and the linear regression method was used to determine the true P digestibility coefficient. The apparent ileal digestibility coefficient of P in birds fed diets containing MBM-1 and MBM-2 was unaffected by increasing dietary concentrations of P (P > 0.05). The apparent ileal digestibility coefficient of P in birds fed the MBM-3 diets decreased with increasing P concentrations (linear, P < 0.001; quadratic, P < 0. 01). In birds fed the MBM-1 and MBM-2 diets, ileal endogenous P losses were estimated to be 0.049 and 0.142 g/kg DM intake (DMI:), respectively. In birds fed the MBM-3 diets, endogenous P loss was estimated to be negative (-0.370 g/kg DMI). True ileal P digestibility of MBM-1, MBM-2, and MBM-3 was determined to be 0.693, 0.608, and 0.420, respectively. True ileal P digestibility coefficients determined for MBM-1 and MBM-2 were similar (P < 0.05), but were higher (P < 0.05) than that for MBM-3. Total P and true digestible P contents of MBM-1, MBM-2, and MBM-3 were determined to be 37.5 and 26.0; 60.2 and 36.6; and 59.8 and 25.1 g/kg, respectively, on an as-fed basis. © 2015 Poultry Science Association Inc.
Fluctuation of the Water Environmental Carrying Capacity in a Huge River-Connected Lake
Wang, Hua; Zhou, Yiyi; Tang, Yang; Wu, Mengan; Deng, Yanqing
2015-01-01
A new method, with the non-fully mixed coefficient (NFMC) considered, was put forward to calculate the water environmental carrying capacity (WECC) for huge river-connected lakes, of which the hydrological conditions always vary widely during a year. Poyang Lake, the most typical river-connected lake and the largest freshwater lake in China, was selected as the research area. Based on field investigations and numerical simulation, the monthly pollutant degradation coefficients and non-fully mixed coefficients of different lake regions were determined to explore the WECCs of COD, TN and TP of Poyang Lake in a common water year. It was found that under the hydrological conditions of a common water year the total WECCs of COD, TN and TP in the lake were respectively 181.9 × 104 t, 33.3 × 104 t and 1.86 × 104 t. Due to the varied lake water volume and self-purification ability, an evident temporal fluctuation of WECCs in Poyang Lake was observed. The dry seasons were characterized by a higher NFMCs but lower WECCs owing to the lower water level and degradation ability. Variation coefficients of COD and TN WECC were close to each other, of which the average level was about 58.5%, a little higher than that of TP. PMID:25830284
Use of Navier-Stokes methods for the calculation of high-speed nozzle flow fields
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Yoder, Dennis A.
1994-01-01
Flows through three reference nozzles have been calculated to determine the capabilities and limitations of the widely used Navier-Stokes solver, PARC. The nozzles examined have similar dominant flow characteristics as those considered for supersonic transport programs. Flows from an inverted velocity profile (IVP) nozzle, an under expanded nozzle, and an ejector nozzle were examined. PARC calculations were obtained with its standard algebraic turbulence model, Thomas, and the two-equation turbulence model, Chien k-epsilon. The Thomas model was run with the default coefficient of mixing set at both 0.09 and a larger value of 0.13 to improve the mixing prediction. Calculations using the default value substantially underpredicted the mixing for all three flows. The calculations obtained with the higher mixing coefficient better predicted mixing in the IVP and underexpanded nozzle flows but adversely affected PARC's convergence characteristics for the IVP nozzle case. The ejector nozzle case did not converge with the Thomas model and the higher mixing coefficient. The Chien k-epsilon results were in better agreement with the experimental data overall than were those of the Thomas run with the default mixing coefficient, but the default boundary conditions for k and epsilon underestimated the levels of mixing near the nozzle exits.
Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2017-10-01
The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Adolfsson, J.
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
Acharya, S.; Adamová, D.; Adolfsson, J.; ...
2017-08-04
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Hertel, N. E.
2010-09-27
The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths,more » d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.« less
Wind-tunnel test of an articulated helicopter rotor model with several tip shapes
NASA Technical Reports Server (NTRS)
Berry, J. D.; Mineck, R. E.
1980-01-01
Six interchangeable tip shapes were tested: a square (baseline) tip, an ogee tip, a subwing tip, a swept tip, a winglet tip, and a short ogee tip. In hover at the lower rotational speeds the swept, ogee, and short ogee tips had about the same torque coefficient, and the subwing and winglet tips had a larger torque coefficient than the baseline square tip blades. The ogee and swept tip blades required less torque coefficient at lower rotational speeds and roughly equivalent torque coefficient at higher rotational speeds compared with the baseline square tip blades in forward flight. The short ogee tip required higher torque coefficient at higher lift coefficients than the baseline square tip blade in the forward flight test condition.
Probabilistic analysis of preload in the abutment screw of a dental implant complex.
Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R
2008-09-01
Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment screw at high values of the preload CDF. Lubrication at the threaded surfaces between the abutment screw and implant bore affects the preload developed in the implant complex. For the well-lubricated surfaces, only approximately 50% of implants will have preload values within the generally accepted range. This probability can be improved by applying a higher torque than normally recommended or a more closely controlled torque than typically achieved. It is also suggested that materials with higher elastic moduli be used in the manufacture of the abutment screw to achieve a higher preload.
NASA Astrophysics Data System (ADS)
Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.
2009-11-01
Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15–25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200). PMID:29420569
Tang, Hao; Xu, Liuxiong; Hu, Fuxiang
2018-01-01
Nylon (PA) netting is widely used in purse seines and other fishing gears due to its high strength and good sinking performance. However, hydrodynamic properties of nylon netting of different characteristics are poorly understood. This study investigated hydrodynamic characteristics of nylon netting of different knot types and solidity ratios under different attack angles and flow velocities. It was found that the hydrodynamic coefficient of netting panels was related to Reynolds number, solidity ratio, attack angle, knot type and twine construction. The solidity ratio was found to positively correlate with drag coefficient when the netting was normal to the flow (CD90), but not the case when the netting was parallel to the flow (CD0). For netting panels inclined to the flow, the inclined drag coefficient had a negative relationship with the solidity ratio for attack angles between 0° and 50°, but a positive relationship for attack angles between 50° and 90°. The lift coefficient increased with the attack angle, reaching the culminating point at an attack angle of 50°, before subsequent decline. We found that the drag generated by knot accounted for 15-25% of total drag, and the knotted netting with higher solidity ratio exhibited a greater CD0, but it was not the case for the knotless netting. Compared to knotless polyethylene (PE) netting, the drag coefficients of knotless PA netting were dominant at higher Reynolds number (Re>2200).
2014-01-01
Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463
Wang, Yan-Cang; Yang, Gui-Jun; Zhu, Jin-Shan; Gu, Xiao-He; Xu, Peng; Liao, Qin-Hong
2014-07-01
For improving the estimation accuracy of soil organic matter content of the north fluvo-aquic soil, wavelet transform technology is introduced. The soil samples were collected from Tongzhou district and Shunyi district in Beijing city. And the data source is from soil hyperspectral data obtained under laboratory condition. First, discrete wavelet transform efficiently decomposes hyperspectral into approximate coefficients and detail coefficients. Then, the correlation between approximate coefficients, detail coefficients and organic matter content was analyzed, and the sensitive bands of the organic matter were screened. Finally, models were established to estimate the soil organic content by using the partial least squares regression (PLSR). Results show that the NIR bands made more contributions than the visible band in estimating organic matter content models; the ability of approximate coefficients to estimate organic matter content is better than that of detail coefficients; The estimation precision of the detail coefficients fir soil organic matter content decreases with the spectral resolution being lower; Compared with the commonly used three types of soil spectral reflectance transforms, the wavelet transform can improve the estimation ability of soil spectral fir organic content; The accuracy of the best model established by the approximate coefficients or detail coefficients is higher, and the coefficient of determination (R2) and the root mean square error (RMSE) of the best model for approximate coefficients are 0.722 and 0.221, respectively. The R2 and RMSE of the best model for detail coefficients are 0.670 and 0.255, respectively.
Wind-tunnel test results of airfoil modifications for the EA-6B
NASA Technical Reports Server (NTRS)
Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.
1987-01-01
Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.
Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.
Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N
2017-12-12
London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.
Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies
NASA Astrophysics Data System (ADS)
Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.
2017-03-01
Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.
Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jakomin, L M; Marbán, L; Grondona, S; Glok Galli, M; Martínez, D E
2015-09-01
The prediction about metals behaviour in soil requires knowledge on their solid-liquid partitioning. Usually it is expressed with an empirical distribution coefficient or Kd, which gives the ratio of the metal concentration in the solid phase to that in the solution. Kd values have been determined for Zn, Pb and Cd from samples representing the two most exploited aquifers in Argentina, Pampeano and Puelche, at three different locations in the province of Buenos Aires. The Pampeano aquifer presented higher Kd values than the Puelche aquifer. Comparing Kd values, different relationships could be observed: (a) Pampeano aquifer: Pb > Zn > Cd, and (b) Puelche aquifer: Pb > Cd > Zn. Kd for Cd seems to be linked to cationic exchange capacity, but solid phases precipitation can be more determining for Pb and Zn.
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes
NASA Astrophysics Data System (ADS)
Sadeghi, Gholamreza; Schijven, Jack F.; Behrends, Thilo; Hassanizadeh, S. Majid; van Genuchten, Martinus Th.
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.
NASA Astrophysics Data System (ADS)
Dougherty, Daniel A.
A wind tunnel tat of a tailless aircraft configuration that has been quipped with a belly-flap control surface, was conducted with the goal of improving the trimmed maximum-lift coefficient. Tailless aircraft have aerodynamic and structural efficiencies that are superior to those of a traditionally configured wing/body/tail aircraft. However, tailless aircraft have a low maximum-lift coefficient such that; when sized for equivalent takeoff performance, the tailless aircraft suffers a large reduction in aerodynamic and structural efficiencies. A Belly-Flap control surface used in combination with wing trailing edge flaps was tested in a wind tunnel with the goal of achieving a longitudinally trimmed solution at a higher maximum lift coefficient. It was determined that, though the Belly-Flap increases the trimmed lift of the tailless configuration at low angles of attack, the maximum lift coefficient is slightly reduced in relation to the controls neutral configuration.
GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics
NASA Technical Reports Server (NTRS)
Hague, D.
1978-01-01
Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.
Distance correlation methods for discovering associations in large astrophysical databases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P., E-mail: elizabeth.martinez@itam.mx, E-mail: mrichards@astro.psu.edu, E-mail: richards@stat.psu.edu
2014-01-20
High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension,more » can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.« less
Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane
NASA Technical Reports Server (NTRS)
Silverstein, Abe; Katzoff, S; Hootman, James A
1938-01-01
Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1962-01-01
The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.
Main predictors of periphyton species richness depend on adherence strategy and cell size
Siqueira, Tadeu; Landeiro, Victor Lemes; Rodrigues, Liliana; Bonecker, Claudia Costa; Rodrigues, Luzia Cleide; Santana, Natália Fernanda; Thomaz, Sidinei Magela; Bini, Luis Mauricio
2017-01-01
Periphytic algae are important components of aquatic ecosystems. However, the factors driving periphyton species richness variation remain largely unexplored. Here, we used data from a subtropical floodplain (Upper Paraná River floodplain, Brazil) to quantify the influence of environmental variables (total suspended matter, temperature, conductivity, nutrient concentrations, hydrology, phytoplankton biomass, phytoplankton species richness, aquatic macrophyte species richness and zooplankton density) on overall periphytic algal species richness and on the richness of different algal groups defined by morphological traits (cell size and adherence strategy). We expected that the coefficients of determination of the models estimated for different trait-based groups would be higher than the model coefficient of determination of the entire algal community. We also expected that the relative importance of explanatory variables in predicting species richness would differ among algal groups. The coefficient of determination for the model used to predict overall periphytic algal species richness was higher than the ones obtained for models used to predict the species richness of the different groups. Thus, our first prediction was not supported. Species richness of aquatic macrophytes was the main predictor of periphyton species richness of the entire community and a significant predictor of the species richness of small mobile, large mobile and small-loosely attached algae. Abiotic variables, phytoplankton species richness, chlorophyll-a concentration, and hydrology were also significant predictors, depending on the group. These results suggest that habitat heterogeneity (as proxied by aquatic macrophytes richness) is important for maintaining periphyton species richness in floodplain environments. However, other factors played a role, suggesting that the analysis of species richness of different trait-based groups unveils relationships that were not detectable when the entire community was analysed together. PMID:28742122
Poor permeability and absorption affect the activity of four alkaloids from Coptis.
Cui, Han-Ming; Zhang, Qiu-Yan; Wang, Jia-Long; Chen, Jian-Long; Zhang, Yu-Ling; Tong, Xiao-Lin
2015-11-01
Coptidis rhizoma (Coptis) and its alkaloids exert various pharmacological functions in cells and tissues; however, the oral absorption of these alkaloids requires further elucidation. The present study aimed to examine the mechanism underlying the poor absorption of alkaloids, including berberine (BER), coptisine (COP), palmatine (PAL) and jatrorrhizine (JAT). An ultra‑performance liquid chromatography (UPLC) method was validated for the determination of BER, COP, PAL and JAT in the above experimental medium. In addition, the apparent oil‑water partition coefficient (Po/w); apparent permeability coefficient (Papp), determined using a parallel artificial membrane permeability assay (PAMPA) plate; membrane retention coefficient (R %); and effect of P‑glycoprotein (P‑gp) inhibitor on the Papp of the four alkaloids were investigated. The intestinal absorption rate constant (Ka) and absorption percentage (A %) of the four alkaloids were also determined. The results of the present study demonstrated that the Po/w of the four alkaloids in 0.1 mol·l‑1 HCl medium was significantly higher (P<0.01), compared with those of the alkaloids in phosphate buffer (pH 7.4). The Papp of BER was 1.0‑1.2x10‑6 cm·s‑1, determined using a PAMPA plate, and the Papp of BER, COP, PAL and JAT decreased sequentially. The concentrations of the four alkaloids on the apical‑to‑basolateral (AP‑BL) surface and the basolateral‑to‑apical (BL‑AP) surface increased in a linear manner, with increasing concentrations between 10 and 100 µmol. In addition, the transportation of BER on the BL‑AP surface was significantly faster (P<0.01), compared with that on the AP‑BL surface and, following the addition of verpamil (a P‑gp inhibitor), the Papp (AP‑BL) of the four alkaloids increased, whereas the Papp (BL‑AP) was significantly decreased (P<0.01). The rat intestinal perfusion experiment demonstrated that the four alkaloids were poorly absorbed; however, the Ka of BER was significantly higher, compared with the three other alkaloids. Furthermore, the A % and Ka provided evidence that the absorption of BER was increased in the jejunum, compared with in the ileum. In conclusion, the four alkaloids from Coptis appeared to be poorly absorbed, determined using a shake flask, pre‑coated PAMPA plates, a Caco‑2 cell monolayer model and intestinal perfusion; however, absorption was higher in the jejunum than in the ileum. Among the four alkaloids, the permeability of BER was markedly higher than the others, and P‑gp efflux had a significant effect on the absorption of those alkaloids.
On determination of sign of the piezo-optic coefficients using torsion method.
Vasylkiv, Yurij; Savaryn, Viktoriya; Smaga, Ihor; Skab, Ihor; Vlokh, Rostyslav
2011-06-10
We have shown that a high-accuracy torsion method recently developed by the authors for measuring piezo-optic coefficients allows determining not only the absolute value of the coefficients but also their sign. The techniques and experimental procedures used for determination of the sign are described in detail and proven based on studies of α-BaB2O4 and LiNbO3 crystals. The piezo-optic coefficients are determined for both crystals, and a combination of the corresponding photoelastic coefficients is determined for the case of α-BaB2O4 crystals.
Kinematics and constraints associated with swashplate blade pitch control
NASA Technical Reports Server (NTRS)
Leyland, Jane A.
1993-01-01
An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.
Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi
2012-06-01
The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.
Nuño, N; Groppetti, R; Senin, N
2006-11-01
Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.
Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano
2017-01-01
To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent.
NASA Astrophysics Data System (ADS)
Jakirlić, S.; Hanjalić, K.
2013-10-01
The most challenging task in closing the Reynolds-averaged Navier-Stokes equations at the second-moment closure (SMC) level is to model the pressure-rate-of-strain correlation in the transport equation for the Reynolds-stress tensor. The accurate modelling of this term, commonly denoted as Φij, is the key prerequisite for the correct capturing of the stress anisotropy, which potentially gives SMCs a decisive advantage over the ‘anisotropy-blind’ eddy-viscosity models. A variety of models for Φij proposed in the literature can all be expressed as a function of the stress-anisotropy-, rate-of-strain- and rate-of-rotation second-rank tensors, so that the modelling task is reduced to determining the model coefficients. It is, thus, the coefficients, associated with various terms in the expression, which differ from one model to another. The model coefficients have been traditionally determined with reference to the available data for sets of generic flows while being forced to satisfying the known values at flow boundaries. We evaluated the coefficients up to the second-order terms (in stress-anisotropy aij) directly from the DNS database for Φij and the turbulence variables involved in its modelling. The variations of the coefficients across the flow in a plane channel over a range of Reynolds numbers are compared with several popular models. The analysis provided a reasonable support for the common tensor-expansion representation of both the slow and rapid terms. Apart from the near-wall region and the channel centre, most coefficients for higher Re numbers showed themselves to be reasonably uniform, with the values closest to those proposed by Sarkar et al (1991 J. Fluid Mech. 227 245-72). An illustration of the coefficient variation for the ‘quasi-linear’ model is also presented for flow over a backward-facing step.
Gas-film coefficients for the volatilization of ethylene dibromide from water
Rathbun, R.E.; Tal, D.Y.
1986-01-01
Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.
Duarte, Cristina Maria Rabelais; Marcelino, Miguel Abud; Boccolini, Cristiano Siqueira; Boccolini, Patrícia de Moraes Mello
2017-11-01
This paper describes the historical development and profile of Continuous Cash Benefit (BPC) applicants, intended for poor elderly and people with disabilities, which, since 2009, uses eligibility criteria based on the International Classification of Functioning, Disability and Health (ICF) of the WHO and is aligned with the UN Convention on the Rights of Persons with Disabilities. The behavior of benefits was determined from the analysis the coefficients of the general and non-judicial grants between 1998 and 2014. The profile was established for the years 2010 and 2014 according to situation of acceptance, age, gender and ICF components. The average annual growth of the coefficient was higher from 2000 to 2010, prior to the adoption of the biopsychosocial eligibility model, and the coefficient of non-judicial grants increased until 2010, falling thereafter. The deferrals acceptance /rejections ratio was higher among children and among those facing severe or total environmental barriers, limitations, constraints and bodily changes. The implementation of the biopsychosocial evaluation model did not cause an increased rate of grants and results evidence the need for flexibility in the eligibility criteria.
Nutritional value of winter foods for whooping cranes
Nelson, J.T.; Slack, R.D.; Gee, G.F.
1996-01-01
We measured metabolizable energy and digestibility of Whooping Crane (Grus americana) winter foods (blue crab [Callinectes sapidus]), common Rangia clam (Rangia cuneata), wolfberry fruit (Lycium carolinianurn [wolfberry]), and live oak acorn (Ouercus virginiana [acorn])] with feeding trials to captive-reared Whooping Cranes. Apparent metabolizable energy coefficients (expressed as %) were for crab (34.1), Rangia clam (75.0), wolfberry (44.8), and acorn (43.2). Digestion coefficients for protein were lower for plant foods (48.9 and 53.4) than for animal foods (69.4 and 75.2). Digestion coefficients for total lipid differed among foods: highest and lowest lipid digestibility was for acorn (87.2) and wolfberry (60.0), respectively. We also determined total energy and percent protein and lipid of the four foods and stout razor clam (Tagelus plebeius); gross energy was 2-5x higher for acorn and wolfberry on a dry-weight basis than for blue crab and stout razor clam. Crude protein was 2-3x higher for blue crab than for wolfberry and stout razor clam. Wolfberry ranked the highest of five foods for metabolic energy and total lipid nutrient availability per kg of food ingested, and blue crab ranked highest for crude protein availability.
High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
Huang, Chih-Chung
2010-10-07
There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r(2)) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm(-1) at 30 MHz to 0.47 Nepers mm(-1) at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a hematocrit of 20% at the same rotation speed, and shifted to a hematocrit of 10% at a higher speed. The backscattering properties of rat RBCs in plasma are similar to those of RBCs in saline at a higher rotation speed. The differences in attenuation and backscattering between rat and porcine blood may be attributed to RBCs' being smaller and the RBC aggregation level being lower for rat blood than for porcine blood.
Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W
2017-01-01
Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a predicted extinction coefficient for determining the protein concentration of therapeutic proteins starting from early development through the lifecycle of the product. LAY ABSTRACT: Knowing the concentration of a protein in a pharmaceutical solution is important to the drug's development and posology. There are many ways to determine the concentration, but the easiest one to use in a testing lab employs absorption spectroscopy. Absorbance of ultraviolet light by a protein solution is proportional to its concentration and path length; the proportionality constant is the extinction coefficient. The extinction coefficient of a protein therapeutic is usually determined experimentally during early product development and has some inherent method variability. In this study, extinction coefficients of several proteins were calculated based on the measured absorbance of model compounds. These calculated values for an unfolded protein were then compared with experimental concentration determinations based on enzymatic digestion of the proteins. The experimentally determined extinction coefficient for the native protein was 1.05 times the calculated value for the unfolded protein with good accuracy and precision under controlled experimental conditions, so the value of 1.05 times the calculated coefficient was called the predicted extinction coefficient. Comparison of predicted and measured extinction coefficients indicated that the predicted value was very close to the experimentally determined values for the proteins. The predicted extinction coefficient was accurate and removed the variability inherent in experimental methods. © PDA, Inc. 2017.
Off-nadir antenna bias correction using Amazon rain sigma(0) data
NASA Technical Reports Server (NTRS)
Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.
1982-01-01
The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.
Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient
NASA Astrophysics Data System (ADS)
Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.
2018-04-01
The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
NASA Astrophysics Data System (ADS)
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S.; Nie, Zhaojun; Hayward, Joseph E.; Farrell, Thomas J.; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Du Le, Vinh Nguyen; Provias, John; Murty, Naresh; Patterson, Michael S; Nie, Zhaojun; Hayward, Joseph E; Farrell, Thomas J; McMillan, William; Zhang, Wenbin; Fang, Qiyin
2017-02-01
Glioma itself accounts for 80% of all malignant primary brain tumors, and glioblastoma multiforme (GBM) accounts for 55% of such tumors. Diffuse reflectance and fluorescence spectroscopy have the potential to discriminate healthy tissues from abnormal tissues and therefore are promising noninvasive methods for improving the accuracy of brain tissue resection. Optical properties were retrieved using an experimentally evaluated inverse solution. On average, the scattering coefficient is 2.4 times higher in GBM than in low grade glioma (LGG), and the absorption coefficient is 48% higher. In addition, the ratio of fluorescence to diffuse reflectance at the emission peak of 460 nm is 2.6 times higher for LGG while reflectance at 650 nm is 2.7 times higher for GBM. The results reported also show that the combination of diffuse reflectance and fluorescence spectroscopy could achieve sensitivity of 100% and specificity of 90% in discriminating GBM from LGG during ex vivo measurements of 22 sites from seven glioma specimens. Therefore, the current technique might be a promising tool for aiding neurosurgeons in determining the extent of surgical resection of glioma and, thus, improving intraoperative tumor identification for guiding surgical intervention.
Seo, Nieun; Chung, Yong Eun; Park, Yung Nyun; Kim, Eunju; Hwang, Jinwoo; Kim, Myeong-Jin
2018-07-01
To compare the ability of diffusion-weighted imaging (DWI) parameters acquired from three different models for the diagnosis of hepatic fibrosis (HF). Ninety-five patients underwent DWI using nine b values at 3 T magnetic resonance. The hepatic apparent diffusion coefficient (ADC) from a mono-exponential model, the true diffusion coefficient (D t ), pseudo-diffusion coefficient (D p ) and perfusion fraction (f) from a biexponential model, and the distributed diffusion coefficient (DDC) and intravoxel heterogeneity index (α) from a stretched exponential model were compared with the pathological HF stage. For the stretched exponential model, parameters were also obtained using a dataset of six b values (DDC # , α # ). The diagnostic performances of the parameters for HF staging were evaluated with Obuchowski measures and receiver operating characteristics (ROC) analysis. The measurement variability of DWI parameters was evaluated using the coefficient of variation (CoV). Diagnostic accuracy for HF staging was highest for DDC # (Obuchowski measures, 0.770 ± 0.03), and it was significantly higher than that of ADC (0.597 ± 0.05, p < 0.001), D t (0.575 ± 0.05, p < 0.001) and f (0.669 ± 0.04, p = 0.035). The parameters from stretched exponential DWI and D p showed higher areas under the ROC curve (AUCs) for determining significant fibrosis (≥F2) and cirrhosis (F = 4) than other parameters. However, D p showed significantly higher measurement variability (CoV, 74.6%) than DDC # (16.1%, p < 0.001) and α # (15.1%, p < 0.001). Stretched exponential DWI is a promising method for HF staging with good diagnostic performance and fewer b-value acquisitions, allowing shorter acquisition time. • Stretched exponential DWI provides a precise and accurate model for HF staging. • Stretched exponential DWI parameters are more reliable than D p from bi-exponential DWI model • Acquisition of six b values is sufficient to obtain accurate DDC and α.
Highlights of laser-tissue interaction mechanism
NASA Astrophysics Data System (ADS)
Gabay, Shimon
2001-10-01
The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.
Derivation and application of a class of generalized impedance boundary conditions, part 2
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Senior, T. B. A.; Jin, J.-M.
1989-01-01
Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings.
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Astrophysics Data System (ADS)
Korotey, E. V.; Sinyavskii, N. Ya.
2007-07-01
A new method for determination of rheological parameters of liquid crystals with zero anisotropy of diamagnetic susceptibility is proposed, which is based on the measurement of the quadrupole splitting line of the NMR 2H spectrum. The method provides higher information content of the experiments, with the shear flow discarded from consideration, compared to that obtained by the classical Leslie-Ericksen theory. A comparison with the experiment is performed, the coefficients of anisotropic viscosity of lecithin/D2O/cyclohexane are determined, and a conclusion is drawn as concerns the domain shapes.
Chan, Moon Fai
2015-03-01
This study aimed to examine the impact of health care resources, socioeconomic status, and demographic changes on life expectancy in Indonesia, Philippines, and Vietnam. This was a cross-country study to collect annual data (1980-2008) from each target country. Life expectancy was the dependent variable and health care resources, socioeconomic status, and demographics were the 3 main determinants. Structural equation modeling was employed, and the results indicate that the availability of more health care resources (Indonesia: coefficient = .47, P = .008; Philippines: coefficient = .48, P = .017; Vietnam: coefficient = .48, P = .004) and higher levels of socioeconomic advantages (Indonesia: coefficient = .41, P = .014; Vietnam: coefficient = .34, P = .026) are more likely to increase life expectancy. In contrast, demographic changes are more likely to increase life expectancy because of the wide range of health care resources. These findings suggest that more effort, particularly during economic downturns, should be put into removing the barriers that impede access to health care services and increasing preventive care for the population that currently has less access to health care in communities where there is a shortage of medical resources. © 2013 APJPH.
Normal and Tangential Momentum Accommodation for Earth Satellite Conditions
NASA Technical Reports Server (NTRS)
Knechtel, Earl D.; Pitts, William C.
1973-01-01
Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.
NASA Astrophysics Data System (ADS)
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.
2016-08-01
Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.
Cho, Kyung Hwa; Lee, Seungwon; Ham, Young Sik; Hwang, Jin Hwan; Cha, Sung Min; Park, Yongeun; Kim, Joon Ha
2009-01-01
The present study proposes a methodology for determining the effective dispersion coefficient based on the field measurements performed in Gwangju (GJ) Creek in South Korea which is environmentally degraded by the artificial interferences such as weirs and culverts. Many previous works determining the dispersion coefficient were limited in application due to the complexity and artificial interferences in natural stream. Therefore, the sequential combination of N-Tank-In-Series (NTIS) model and Advection-Dispersion-Reaction (ADR) model was proposed for evaluating dispersion process in complex stream channel in this study. The series of water quality data were intensively monitored in the field to determine the effective dispersion coefficient of E. coli in rainy day. As a result, the suggested methodology reasonably estimates the dispersion coefficient for GJ Creek with 1.25 m(2)/s. Also, the sequential combined method provided Number of tank-Velocity-Dispersion coefficient (NVD) curves for convenient evaluation of dispersion coefficient of other rivers or streams. Comparing the previous studies, the present methodology is quite general and simple for determining the effective dispersion coefficients which are applicable for other rivers and streams.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
NASA Astrophysics Data System (ADS)
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
Optimization of the acoustic absorption coefficients of certain functional absorbents
NASA Technical Reports Server (NTRS)
Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.
1974-01-01
The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lal, Shankar, E-mail: shankar@rrcat.gov.in; Pant, K. K.
2016-08-15
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday’s law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled withmore » β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.« less
State Variation in Medicaid Reimbursements for Orthopaedic Surgery.
Lalezari, Ramin M; Pozen, Alexis; Dy, Christopher J
2018-02-07
Medicaid reimbursements are determined by each state and are subject to variability. We sought to quantify this variation for commonly performed inpatient orthopaedic procedures. The 10 most commonly performed inpatient orthopaedic procedures, as ranked by the Healthcare Cost and Utilization Project (HCUP) National Inpatient Sample, were identified for study. Medicaid reimbursement amounts for those procedures were benchmarked to state Medicare reimbursement amounts in 3 ways: (1) ratio, (2) dollar difference, and (3) dollar difference divided by the relative value unit (RVU) amount. Variability was quantified by determining the range and coefficient of variation for those reimbursement amounts. The range of variability of Medicaid reimbursements among states exceeded $1,500 for all 10 procedures. The coefficients of variation ranged from 0.32 (hip hemiarthroplasty) to 0.57 (posterior or posterolateral lumbar interbody arthrodesis) (a higher coefficient indicates greater variability), compared with 0.07 for Medicare reimbursements for all 10 procedures. Adjusted as a dollar difference between Medicaid and Medicare per RVU, the median values ranged from -$8/RVU (total knee arthroplasty) to -$17/RVU (open reduction and internal fixation of the femur). Variability of Medicaid reimbursement for inpatient orthopaedic procedures among states is substantial. This variation becomes especially remarkable given recent policy shifts toward focusing reimbursements on value.
Laboratory actinide partitioning - Whitlockite/liquid and influence of actinide concentration levels
NASA Technical Reports Server (NTRS)
Benjamin, T. M.; Jones, J. H.; Heuser, W. R.; Burnett, D. S.
1983-01-01
The partition coefficients between synthetic whitlockite (beta Ca-phosphate) and coexisting silicate melts are determined for the actinide elements Th, U and Pu. Experiments were performed at 1 bar pressure and 1250 C at oxygen fugacities from 10 to the -8.5 to 10 to the -0.7 bars, and partitioning was determined from trace element radiography combined with conventional electron microprobe analysis. Results show Pu to be more readily incorporated into crystalline phases than U or Th under reducing conditions, which is attributed to the observation that Pu exists primarily in the trivalent state, while U and Th are tetravalent. Corrected partition coefficients for whitlockite of 3.6, less than or equal to 0.6, 1.2, 0.5 and less than or equal to 0.002 are estimated for Pu(+3), Pu(+4), Th(+4), U(+4) and U(+6), respectively. Experiments performed at trace levels and percent levels of UO2 indicate that Si is involved in U substitution in whitlockite, and show a reduced partition coefficient at higher concentrations of U that can be explained by effects on melt structure or the fraction of tetravalent U.
Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2016-08-01
Coupling of RF power is an important aspect in the design and development of RF accelerating structures. RF power coupling employing coupler loops has the advantage of tunability of β, the transmission line to cavity coupling coefficient. Analytical expressions available in literature for determination of size of the coupler loop using Faraday's law of induction show reasonably good agreement with experimentally measured values of β below critical coupling (β ≤ 1) but show large deviation with experimentally measured values and predictions by simulations for higher values of β. In actual accelerator application, many RF cavities need to be over-coupled with β > 1 for reasons of beam loading compensation, reduction of cavity filling time, etc. This paper discusses a modified analytical formulation by including the effect of loop inductance in the determination of loop size for any desired coupling coefficient. The analytical formulation shows good agreement with 3D simulations and with experimentally measured values. It has been successfully qualified by the design and development of power coupler loops for two 476 MHz pre-buncher RF cavities, which have successfully been conditioned at rated power levels using these coupler loops.
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Sun, Xudong; Solanki, Sami K.; Davila, Joseph M.
2018-06-01
Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot (∼10 MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the harmonic waves and the Fourier decomposition analysis show that the scaling law between damping time (τ) and wave period (P) follows τ ∝ P 2 in Model 2, while τ ∝ P in Model 1. This indicates that the largely enhanced viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are important in understanding both the wave excitation and damping mechanisms.
Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases
ERIC Educational Resources Information Center
Parkinson, William A.
2009-01-01
Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…
Senior, Lisa A.; Gyves, Matthew C.
2010-01-01
Time-of-travel, dispersion characteristics, and oxygen reaeration coefficients were determined by use of dye and gas tracing for a 2-mile reach of Tacony/Frankford Creek in Philadelphia, southeastern Pennsylvania. The reach frequently has concentrations of dissolved oxygen (DO) below the water-quality standard of 4 milligrams per liter during warm months. Several large combined sewer overflows (CSOs), including one of the largest in Philadelphia (former Wingohocking Creek), discharge to the study reach in this urbanized watershed, affecting water quality and the timing and magnitude of storm peaks. In addition, a dam that commonly results in backwater conditions and reduced natural reaeration is present a few hundred feet from the end of the study reach. Time-of-travel and reaeration data were collected under base-flow conditions in August and September 2009 for three sub-reaches from Roosevelt Boulevard (U.S. Route 1) to Castor Avenue. Determination of traveltimes to the centroid of the dye cloud were needed for calculation of the reaeration coefficients. Results of the dye study in Tacony/Frankford Creek indicate that traveltimes were affected by the presence of man-made structures, such as the large scour hole and pool developed at the outfall of the T14 CSO and the dam, both of which reduce stream velocities. Mean stream velocities during the dye-tracer tests ranged from a maximum of 0.44 to 0.04 foot per second through a large pool. The dispersion efficiency of the stream was determined from relations between normalized unit concentrations to time to peak for use in water-quality modeling. Oxygen reaeration coefficients determined by a constant rate-injection method using propane as the tracer gas were as low as 0.04 unit per hour in a long pool affected by backwater conditions behind a dam. The highest reaeration coefficient was 2.29 units per hour for a steep-gradient reach with multiple winding channels through gravel deposits, just downstream of a large scour pool developed at the outlet of the T14 CSO. Reaeration coefficients determined from the field tracer-gas method were compared to values calculated by two other methods, one that is based on theoretical equations using physical properties of the stream as variables and the other that is based on equations using the timing of measured daily maximum DO concentrations in the stream. Reaeration coefficients from the two alternate methods were most similar to values determined from the field tracer-gas method for the upstream portion of the study reach, characterized by free-flowing riffle and pools. Values of reaeration coefficients determined by the tracer-gas method were 2 to 10 times higher than values determined by 2 alternate methods for most subreaches hydraulically affected by man-made structures. In addition to the tracer gas, propane, the gas analysis also included methane, ethane, and ethene, of which only methane was measured in concentrations above a few micrograms per liter. Methane, thought to occur naturally or because of ongoing processes in the stream, was measured in concentrations ranging from 6.6 to 78 micrograms per liter; the concentrations were greatest in sub-reaches dominated by pools.
Comparison of the Radiative Two-Flux and Diffusion Approximations
NASA Technical Reports Server (NTRS)
Spuckler, Charles M.
2006-01-01
Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.
Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette
Huang, Wenzhu; Zhang, Wentao; Li, Fang
2013-01-01
This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266
Barra, Filipe Ramos; de Souza, Fernanda Freire; Camelo, Rosimara Eva Ferreira Almeida; Ribeiro, Andrea Campos de Oliveira; Farage, Luciano
2017-01-01
Objective To assess the feasibility of contrast-enhanced spectral mammography (CESM) of the breast for assessing the size of residual tumors after neoadjuvant chemotherapy (NAC). Materials and methods In breast cancer patients who underwent NAC between 2011 and 2013, we evaluated residual tumor measurements obtained with CESM and full-field digital mammography (FFDM). We determined the concordance between the methods, as well as their level of agreement with the pathology. Three radiologists analyzed eight CESM and FFDM measurements separately, considering the size of the residual tumor at its largest diameter and correlating it with that determined in the pathological analysis. Interobserver agreement was also evaluated. Results The sensitivity, specificity, positive predictive value, and negative predictive value were higher for CESM than for FFDM (83.33%, 100%, 100%, and 66% vs. 50%, 50%, 50%, and 25%, respectively). The CESM measurements showed a strong, consistent correlation with the pathological findings (correlation coefficient = 0.76-0.92; intraclass correlation coefficient = 0.692-0.886). The correlation between the FFDM measurements and the pathological findings was not statistically significant, with questionable consistency (intraclass correlation coefficient = 0.488-0.598). Agreement with the pathological findings was narrower for CESM measurements than for FFDM measurements. Interobserver agreement was higher for CESM than for FFDM (0.94 vs. 0.88). Conclusion CESM is a feasible means of evaluating residual tumor size after NAC, showing a good correlation and good agreement with pathological findings. For CESM measurements, the interobserver agreement was excellent. PMID:28894329
Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk.
Muhammad, Faqir; Awais, Mian Muhammad; Akhtar, Masood; Anwar, Muhammad Irfan
2013-01-04
The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality.
Quantitative structure activity relationship and risk analysis of some pesticides in the goat milk
2013-01-01
The detection and quantification of different pesticides in the goat milk samples collected from different localities of Faisalabad, Pakistan was performed by HPLC using solid phase microextraction. The analysis showed that about 50% milk samples were contaminated with pesticides. The mean±SEM levels (ppm) of cyhalothrin, endosulfan, chlorpyrifos and cypermethrin were 0.34±0.007, 0.063±0.002, 0.034±0.002 and 0.092±0.002, respectively; whereas, methyl parathion was not detected in any of the analyzed samples. Quantitative structure activity relationship (QSAR) models were suggested to predict the residues of unknown pesticides in the goat milk using their known physicochemical characteristics including molecular weight (MW), melting point (MP), and log octanol to water partition coefficient (Ko/w) in relation to the characteristics such as pH, % fat, specific gravity and refractive index of goat milk. The analysis revealed good correlation coefficient (R2 = 0.985) for goat QSAR model. The coefficients for Ko/w and refractive index for the studied pesticides were higher in goat milk. This suggests that these are better determinants for pesticide residue prediction in the milk of these animals. Based upon the determined pesticide residues and their provisional tolerable daily intakes, risk analysis was also conducted which showed that daily intake levels of pesticide residues including cyhalothrin, chlorpyrifos and cypermethrin in present study are 2.68, 5.19 and 2.71 times higher, respectively in the goat milk. This intake of pesticide contaminated milk might pose health hazards to humans in this locality. PMID:23369514
Bacteriophage PRD1 batch experiments to study attachment, detachment and inactivation processes.
Sadeghi, Gholamreza; Schijven, Jack F; Behrends, Thilo; Hassanizadeh, S Majid; van Genuchten, Martinus Th
2013-09-01
Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments. Copyright © 2013 Elsevier B.V. All rights reserved.
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
Molecular dynamics simulations of dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, L.A.; Kress, J.D.; Kwon, I.
1993-12-31
We have performed quantum molecular dynamics simulations of hot, dense plasmas of hydrogen over a range of temperatures(0.1-5eV) and densities(0.0625-5g/cc). We determine the forces quantum mechanically from density functional, extended Huckel, and tight binding techniques and move the nuclei according to the classical equations of motion. We determine pair-correlation functions, diffusion coefficients, and electrical conductivities. We find that many-body effects predominate in this regime. We begin to obtain agreement with the OCP and Thomas-Fermi models only at the higher temperatures and densities.
Method of producing microporous joints in metal bodies
Danko, Joseph C.
1982-01-01
Tungsten is placed in contact with either molybdenum, tantalum, niobium, vanadium, rhenium, or other metal of atoms having a different diffusion coefficient than tungsten. The metals are heated so that the atoms having the higher diffusion coefficient migrate to the metal having the lower diffusion rate, leaving voids in the higher diffusion coefficient metal. Heating is continued until the voids are interconnected.
Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs.
Hohaus, Thorsten; Gensch, Iulia; Kimmel, Joel; Worsnop, Douglas R; Kiendler-Scharr, Astrid
2015-06-14
The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) μg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) μg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) μg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) μg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.
Park, Su San; Lee, Ju Yul; Cho, Sung-Il
2007-07-01
We investigated the validity of the dipstick method (Mossman Associates Inc. USA) and the expired CO method to distinguish between smokers and nonsmokers. We also elucidated the related factors of the two methods. This study included 244 smokers and 50 ex-smokers, recruited from smoking cessation clinics at 4 local public health centers, who had quit for over 4 weeks. We calculated the sensitivity, specificity and Kappa coefficient of each method for validity. We obtained ROC curve, predictive value and agreement to determine the cutoff of expired air CO method. Finally, we elucidated the related factors and compared their effect powers using the standardized regression coefficient. The dipstick method showed a sensitivity of 92.6%, specificity of 96.0% and Kappa coefficient of 0.79. The best cutoff value to distinguish smokers was 5-6 ppm. At 5 ppm, the expired CO method showed a sensitivity of 94.3%, specificity of 82.0% and Kappa coefficient of 0.73. And at 6 ppm, sensitivity, specificity and Kappa coefficient were 88.5%, 86.0% and 0.64, respectively. Therefore, the dipstick method had higher sensitivity and specificity than the expired CO method. The dipstick and expired CO methods were significantly increased with increasing smoking amount. With longer time since the last smoking, expired CO showed a rapid decrease after 4 hours, whereas the dipstick method showed relatively stable levels for more than 4 hours. The dipstick and expired CO methods were both good indicators for assessing smoking status. However, the former showed higher sensitivity and specificity and stable levels over longer hours after smoking, compared to the expired CO method.
Investigating bias in squared regression structure coefficients
Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce
2015-01-01
The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273
NASA Astrophysics Data System (ADS)
Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie
2018-05-01
A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C
2014-07-24
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.
2014-06-25
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less
Sun, Xiao-gang; Tang, Hong; Dai, Jing-min
2008-12-01
The problem of determining the particle size range in the visible-infrared region was studied using the independent model algorithm in the total scattering technique. By the analysis and comparison of the accuracy of the inversion results for different R-R distributions, the measurement range of particle size was determined. Meanwhile, the corrected extinction coefficient was used instead of the original extinction coefficient, which could determine the measurement range of particle size with higher accuracy. Simulation experiments illustrate that the particle size distribution can be retrieved very well in the range from 0. 05 to 18 microm at relative refractive index m=1.235 in the visible-infrared spectral region, and the measurement range of particle size will vary with the varied wavelength range and relative refractive index. It is feasible to use the constrained least squares inversion method in the independent model to overcome the influence of the measurement error, and the inverse results are all still satisfactory when 1% stochastic noise is added to the value of the light extinction.
NASA Astrophysics Data System (ADS)
Pfrang, Christian; Baeza Romero, Maria T.; Cabanas, Beatriz; Canosa-Mas, Carlos E.; Villanueva, Florentina; Wayne, Richard P.
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), ( Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO 3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO 3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO 3. The rate coefficients were determined to be (1.53±0.23)×10 -13 and (1.39±0.19)×10 -14 cm 3 molecule -1 s -1 for reactions of NO 3 with ( Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N 2O 5 as source of NO 3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO 2 allowed us to determine the rate coefficients for the N 2O 5 reactions to be (5.0±2.8)×10 -19 cm 3 molecule -1 s -1 for ( Z)-pent-2-en-1-ol, and (9.1±5.8)×10 -19 cm 3 molecule -1 s -1 for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.
Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J
2016-03-01
Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.
2017-12-01
Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.
NASA Astrophysics Data System (ADS)
Sun, Zhizhong; Niu, Xiaoping; Hu, Henry
In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.
Initial eccentricity fluctuations and their relation to higher-order flow harmonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, R.; Wei,R.; Jia,J.
2011-06-01
Monte Carlo simulations are used to compute the centrality dependence of the participant eccentricities ({var_epsilon}{sub n}) in Au+Au collisions for the two primary models currently employed for eccentricity estimates - the Glauber and the factorized Kharzeev-Levin-Nardi (fKLN) models. They suggest specific testable predictions for the magnitude and centrality dependence of the flow coefficients v{sub n}, respectively measured relative to the event planes {Psi}{sub n}. They also indicate that the ratios of several of these coefficients may provide an additional constraint for distinguishing between the models. Such a constraint could be important for a more precise determination of the specific viscositymore » of the matter produced in heavy ion collisions.« less
Formation of model polar stratospheric cloud films
NASA Technical Reports Server (NTRS)
Middlebrook, Ann M.; Koehler, Birgit G.; Mcneill, Laurie S.; Tolbert, Margaret A.
1992-01-01
Fourier transform infrared spectroscopy was used to examine the competitive growth of films representative of polar stratospheric clouds. These experiments show that either crystalline nitric acid trihydrate (beta-NAT) or amorphous films with H2O:HNO3 ratios close to 3:1 formed at temperatures 3-7 K warmer than the ice frost point under stratospheric pressure conditions. In addition, with higher HNO3 pressure, we observed nitric acid dihydrate (NAD) formation at temperatures warmer than ice formation. However, our experiments also show that NAD surfaces converted to beta-NAT upon exposure to stratospheric water pressures. Finally, we determined that the net uptake coefficient for HNO3 on beta-NAT is close to unity, whereas the net uptake coefficient for H2O is much less.
Experimental investigation of turbulent flow in smooth and longitudinal grooved tubes
NASA Technical Reports Server (NTRS)
Nitschke, P.
1984-01-01
Turbulent flow in tubes with and without longitudinal grooves is examined. The discovery of fine grooves forming a sort of streamline pattern on the body of sharks led to the expectation that the grooves on a surface reduce the momentum change, and thus the drag. To test this thesis, drag law, velocity profile and the profile of the velocity fluctuation were determined. Results show that for moderate Reynolds numbers the drag coefficient for grooved tubes is about 3 percent smaller than that of the smooth tubes. At higher Reynolds numbers, however, the drag coefficient for grooved tubes becomes larger than that for smooth tubes. No significant differences in the velocity profiles between grooved tubes and smooth tubes are found.
Bloemen, Manon A T; de Groot, Janke F; Backx, Frank J G; Westerveld, Rosalyne A; Takken, Tim
2015-05-01
To determine the best test performance and feasibility using a Graded Arm Cranking Test vs a Graded Wheelchair Propulsion Test in young people with spina bifida who use a wheelchair, and to determine the reliability of the best test. Validity and reliability study. Young people with spina bifida who use a wheelchair. Physiological responses were measured during a Graded Arm Cranking Test and a Graded Wheelchair Propulsion Test using a heart rate monitor and calibrated mobile gas analysis system (Cortex Metamax). For validity, peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) were compared using paired t-tests. For reliability, the intra-class correlation coefficients, standard error of measurement, and standard detectable change were calculated. VO2peak and HRpeak were higher during wheelchair propulsion compared with arm cranking (23.1 vs 19.5 ml/kg/min, p = 0.11; 165 vs 150 beats/min, p < 0.05). Reliability of wheelchair propulsion showed high intra-class correlation coefficients (ICCs) for both VO2peak (ICC = 0.93) and HRpeak (ICC = 0.90). This pilot study shows higher HRpeak and a tendency to higher VO2peak in young people with spina bifida who are using a wheelchair when tested during wheelchair propulsion compared with arm cranking. Wheelchair propulsion showed good reliability. We recommend performing a wheelchair propulsion test for aerobic fitness testing in this population.
Near millimeter wave characterization of dual mode materials
NASA Astrophysics Data System (ADS)
Stead, Michael; Simonis, George
1989-05-01
Nine materials which have application to both the millimeter and IR wavelength regions have been analyzed, and their indices of refraction and absorption coefficients have been determined in the 4-18/cm range. The lowest loss materials are found to be ALON and sapphire, and the highest loss samples to be ZnS and ZnSe. The mm-wave indices are all shown to be higher than their corresponding IR indices.
NASA Astrophysics Data System (ADS)
Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert
2016-08-01
Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.
Kempton, Thomas; Sullivan, Courtney; Bilsborough, Johann C; Cordy, Justin; Coutts, Aaron J
2015-01-01
To determine the match-to-match variability in physical activity and technical performance measures in Australian Football, and examine the influence of playing position, time of season, and different seasons on these measures of variability. Longitudinal observational study. Global positioning system, accelerometer and technical performance measures (total kicks, handballs, possessions and Champion Data rank) were collected from 33 players competing in the Australian Football League over 31 matches during 2011-2012 (N=511 observations). The global positioning system data were categorised into total distance, mean speed (mmin(-1)), high-speed running (>14.4 kmh(-1)), very high-speed running (>19.9 kmh(-1)), and sprint (>23.0 kmh(-1)) distance while player load was collected from the accelerometer. The data were log transformed to provide coefficient of variation and the between subject standard deviation (expressed as percentages). Match-to-match variability was increased for higher speed activities (high-speed running, very high-speed running, sprint distance, coefficient of variation %: 13.3-28.6%) compared to global measures (speed, total distance, player load, coefficient of variation %: 5.3-9.2%). The between-match variability was relativity stable for all measures between and within AFL seasons, with only few differences between positions. Higher speed activities (high-speed running, very high-speed running, sprint distance), but excluding mean speed, total distance and player load, were all higher in the final third phase of the season compared to the start of the season. While global measures of physical performance are relatively stable, higher-speed activities and technical measures exhibit a large degree of between-match variability in Australian Football. However, these measures remain relatively stable between positions, and within and between Australian Football League seasons. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Shih, I-Lun; Yen, Ruoh-Fang; Chen, Chi-An; Chen, Bang-Bin; Wei, Shwu-Yuan; Chang, Wen-Chun; Sheu, Bor-Ching; Cheng, Wen-Fang; Tseng, Yao-Hui; Chen, Xin-Jia; Chen, Chi-Hau; Wei, Lin-Hung; Chiang, Ying-Cheng; Torng, Pao-Ling; Yen, Men-Luh; Shih, Tiffany Ting-Fang
2015-12-01
To evaluate the correlation between maximum standardized uptake value (SUVmax ) and minimum apparent diffusion coefficient (ADCmin ) of endometrial cancer derived from an integrated positron emission tomography / magnetic resonance (PET/MR) system and to determine their correlation with pathological prognostic factors. This prospective study was approved by the Institutional Review Board of the hospital, and informed consent was obtained. Between April and December 2014, 47 consecutive patients with endometrial cancer were enrolled and underwent simultaneous PET/MR examinations before surgery. Thirty-six patients with measurable tumors on PET/MR were included for image analysis. Pearson's correlation coefficient was used to evaluate the correlation between SUVmax and ADCmin of the tumors. The Mann-Whitney U-test was utilized to evaluate relationships between these two imaging biomarkers and pathological prognostic factors. The mean SUVmax and ADCmin were 14.7 ± 7.1 and 0.48 ± 0.13 × 10(-3) mm(2) /s, respectively. A significant inverse correlation was found between SUVmax and ADCmin (r = -0.53; P = 0.001). SUVmax was significantly higher in tumors with advanced stage, deep myometrial invasion, cervical invasion, lymphovascular space involvement, and lymph node metastasis (P < 0.05). ADCmin was lower in tumors with higher grade, advanced stage, and cervical invasion (P < 0.05). The ratio of SUVmax to ADCmin was higher in tumors with higher grade, advanced stage, deep myometrial invasion, cervical invasion, lymphovascular space involvement, and lymph node metastasis (P < 0.05). SUVmax and ADCmin of endometrial cancer derived from integrated PET/MR are inversely correlated and are associated with pathological prognostic factors. © 2015 Wiley Periodicals, Inc.
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less
Eganhouse, Robert P.
2016-01-01
Polymer-water partition coefficients (Kpw) of ten DDT-related compounds were determined in pure water at 25 °C using commercial polydimethylsiloxane-coated optical fiber. Analyte concentrations were measured by thermal desorption-gas chromatography/full scan mass spectrometry (TD–GC/MSFS; fibers) and liquid injection-gas chromatography/selected ion monitoring mass spectrometry (LI–GC/MSSIM; water). Equilibrium was approached from two directions (fiber uptake and depletion) as a means of assessing data concordance. Measured compound-specific log Kpw values ranged from 4.8 to 6.1 with an average difference in log Kpw between the two approaches of 0.05 log units (∼12% of Kpw). Comparison of the experimentally-determined log Kpw values with previously published data confirmed the consistency of the results and the reliability of the method. A second experiment was conducted with the same ten DDT-related compounds and twelve selected PCB (polychlorinated biphenyl) congeners under conditions characteristic of a coastal marine field site (viz., seawater, 11 °C) that is currently under investigation for DDT and PCB contamination. Equilibration at lower temperature and higher ionic strength resulted in an increase in log Kpw for the DDT-related compounds of 0.28–0.49 log units (61–101% of Kpw), depending on the analyte. The increase in Kpw would have the effect of reducing by approximately half the calculated freely dissolved pore-water concentrations (Cfree). This demonstrates the importance of determining partition coefficients under conditions as they exist in the field.
Influence of food, aquatic humus, and alkalinity on methylmercury uptake by Daphnia magna
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monson, B.A.; Brezonik, P.L.
Six-day-old Daphnia magna were exposed to low concentrations of methylmercury (MeHg) in synthetic freshwater and synthetic food. Uptake kinetics were determined in 24- to 72-h experiments, measuring both the loss of Hg from water and accumulation in D. magna. Dose-uptake response was linear for MeHg concentrations up to 4.0 ng/L; an initial concentration of 2.0 ng/L was used when other factors were varied. Concentrations of total Hg and MeHg in water and D. magna were measured in treatments with varied hardness and alkalinity, aquatic humus (AH), and food spiked with MeHg versus water spiked with MeHg. Uptake rate coefficients weremore » derived from two versions of a first-order, two-compartment model. The first version assumed constant MeHg concentration; the second accounted for changing MeHg concentration in water over time. Both models accounted for a nonzero starting concentration of MeHg in plankton. Fitted rate coefficients were higher for the second model than the first: the uptake coefficient (k{sub u}) was nine times higher; the depuration coefficient (k{sub d}) was twice as high. Assuming a constant MeHg concentration for a one-time spike thus underestimated the rate coefficient. The source of MeHg was compared by exposing D. magna for 48 h to MeHg at 2 ng/L in food or water. Daphnia magna accumulated significantly more inorganic Hg (i.e., Hg{sup 2+}) from spiked food than from spiked water, but accumulation of MeHg was the same from both sources. A similar response was found when D. magna were exposed to a lake water extraction of AH at concentrations of C at 3 and 10 mg/L. At the higher AH concentration, total Hg in daphnids was higher, but MeHg was lower, suggesting that AH was a source of inorganic Hg but reduced the bioavailability of MeHg. Exposure of D. magna to MeHg at 2 ng/L in hard or soft water adjusted to pH 6.7 showed no significant difference in MeHg uptake, supporting an argument that hardness and alkalinity per se do not affect MeHg uptake by daphnids.« less
Synthesis/literature review for determining structural layer coefficients (SLC) of bases.
DOT National Transportation Integrated Search
2014-12-01
FDOTs current method of determining a base material structural layer coefficient (SLC) is detailed in the : Materials Manual, Chapter 2.1, Structural Layer Coefficients for Flexible Pavement Base Materials. : Currently, any new base material not a...
Dietary patterns and socioeconomic position.
Mullie, P; Clarys, P; Hulens, M; Vansant, G
2010-03-01
To test a socioeconomic hypothesis on three dietary patterns and to describe the relation between three commonly used methods to determine dietary patterns, namely Healthy Eating Index, Mediterranean Diet Score and principal component analysis. Cross-sectional design in 1852 military men. Using mailed questionnaires, the food consumption frequency was recorded. The correlation coefficients between the three dietary patterns varied between 0.43 and 0.62. The highest correlation was found between Healthy Eating Index and Healthy Dietary Pattern (principal components analysis). Cohen's kappa coefficient of agreement varied between 0.10 and 0.20. After age-adjustment, education and income remained associated with the most healthy dietary pattern. Even when both socioeconomic indicators were used together in one model, higher income and education were associated with higher scores for Healthy Eating Index, Mediterranean Diet Score and Healthy Dietary Pattern. The least healthy quintiles of dietary pattern as measured by the three methods were associated with a clustering of unhealthy behaviors, that is, smoking, low physical activity, highest intake of total fat and saturated fatty acids, and low intakes of fruits and vegetables. The three dietary patterns used indicated that the most healthy patterns were associated with a higher socioeconomic position, while lower patterns were associated with several unhealthy behaviors.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Experimental Measurements and Comparison of Cable Performance for Mine Hunting Applications
NASA Astrophysics Data System (ADS)
Mangum, Katherine
2005-11-01
The Naval Surface Warfare Center (NSWCCD) conducted testing of multiple faired synthetic cables in the High Speed Basin in April, 2005. The objective of the test was to determine the hydrodynamic characteristics of bare cables, ribbon faired cables, and cables with extruded plastic ``strakes.'' Faired cables are used to gain on-station time and improve performance of the MH-60 Helicopter when towing mine hunting vehicles. Drag and strum were compared for all cases. Strum was quantified by computing standard deviations of lateral cable acceleration amplitudes. Drag coefficients were calculated using cable tension and angle readings. While the straked cables strummed less than the bare synthetic cable, they did not reduce strum levels as well as ribbon fairing at steep cable angles for speeds of 10, 15, 20 and 25 knots. The drag coefficient of the straked cables was calculated to be higher than that of a bare cable, although further testing is needed to determine an exact number.
An improved model for the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.
1989-01-01
An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.
Interrater reliability of videotaped observational gait-analysis assessments.
Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L
1991-06-01
The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.
Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A
2015-03-28
Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.
Hung, Daniel Y; Chang, Ping; Cheung, Kee; McWhinney, Brett; Masci, Paul P; Weiss, Michael; Roberts, Michael S
2002-06-01
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl(4))-induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)-acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P(app)) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl(4)-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P(app) or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.
NASA Astrophysics Data System (ADS)
Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran
2017-11-01
The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.
The role of crystallographic texture in achieving low friction zinc oxide nanolaminate films
NASA Astrophysics Data System (ADS)
Mojekwu, Nneoma
Metal oxide nanolaminate films are potential high temperature solid lubricants due to their ability to exhibit significant plasticity when grain size is reduced to the nanometer scale, and defective growth structure is achieved by condensation of oxygen vacancies to form intrinsic stacking faults. This is in contrast to conventional microcrystalline and single crystal oxides that exhibit brittle fracture during loading in a sliding contact. This study emphasizes the additional effect of growth orientation, in particular crystallographic texture, on determining the sliding friction behavior in nanocolumnar grain zinc oxide films grown by atomic layer deposition. It was determined that zinc oxide low (0002) versus higher (101¯3) surface energy crystallographic planes influenced the sliding friction coefficient. Texturing of the (0002) grains resulted in a decreased adhesive component of friction thereby lowering the sliding friction coefficient to ˜0.25, while the friction coefficient doubled to ˜0.5 with increasing contribution of surface (101¯3) grains. In addition, the variation of the x-ray grazing incident angle from 0.5° to 5° was studied to better understand the surface grain orientation as a function of ZnO layer thickness in one versus four bilayer nanolaminates where the under layer (seed layer) was load-bearing Zn(Ti,Zr)O3.
NASA Technical Reports Server (NTRS)
Driver, Cornelius
1956-01-01
Tests have been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.41, 1.61, and 2.01 to determine the static longitudinal stability and control characteristics of various arrangements of the Grumman F11F-1 airplane. Tests were made of the complete model and various combinations of its component parts and, in addition, the effects of various body modifications, a revised vertical tail, and wing fences on the longitudinal characteristics were determined. The results indicate that for a horizontal-tail incidence of -10 deg the trim lift coefficient varied from 0.29 at a Mach number of 1.61 to 0.23 at a Mach number of 2.01 with a corresponding decrease in lift-drag trim from 3.72 to 3.15. Stick-position instability was indicated in the low-supersonic-speed range. A photographic-type nose modification resulted in slightly higher values of minimum drag coefficient but did not significantly affect the static stability or lift-curve slope. The minimum drag coefficient for the complete model with the production nose remained essentially constant at 0.047 throughout the Mach number range investigated.
Belles, Angel; Alary, Claire; Mamindy-Pajany, Yannick; Abriak, Nor-Edine
2016-12-01
The sorption of PAH on 12 different sediments was investigated and was correlated to their corresponding organic matter (OM) content and quality. For this purpose, the OM was precisely characterized using thermal analysis consisting in the successive combustion and quantification of the increasingly thermostable fractions of the OM. Simultaneously, the water-exchangeable fraction of the sorbed PAH defined as the amount of PAH freely exchanged between the water and the sediment (by opposition to the PAH harshly sorbed to the sediments particles) was determined using a passive sampler methodology recently developed. The water concentrations, when the sediment-water system is equilibrated, were also assessed which allows the determination of the sediment-water distribution coefficients without artifacts introduced by the non water-exchangeable fraction of PAH. Hence, the present study provides the distribution coefficients of PAH between the water and 4 different OM fractions combusted at a specific temperature range. The calculated distribution coefficients demonstrate that the sedimentary OM combusted at the intermediate temperature range (between 300 °C and 450 °C) drives the reversible sorption of PAH while the inferred sorption to the OM combusted at a lower and higher temperature range does not dominate the partitioning process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Bao-Lei; Cui, Bo-Hao; Zhang, Shu-Min; Wu, Quan-Yuan; Yao, Lei
2018-05-03
Nitrogen (N) and phosphorus (P) from non-point source (NPS) pollution in Nansi Lake Basin greatly influenced the water quality of Nansi Lake, which is the determinant factor for the success of East Route of South-North Water Transfer Project in China. This research improved Johnes export coefficient model (ECM) by developing a method to determine the export coefficients of different land use types based on the hydrological and water quality data. Taking NPS total nitrogen (TN) and total phosphorus (TP) as the study objects, this study estimated the contributions of different pollution sources and analyzed their spatial distributions based on the improved ECM. The results underlined that the method for obtaining output coefficients of land use types using hydrology and water quality data is feasible and accurate, and is suitable for the study of NPS pollution at large-scale basins. The average output structure of NPS TN from land use, rural breeding and rural life is 33.6, 25.9, and 40.5%, and the NPS TP is 31.6, 43.7, and 24.7%, respectively. Especially, dry land was the main land use source for both NPS TN and TP pollution, with the contributed proportions of 81.3 and 81.8% respectively. The counties of Zaozhuang, Tengzhou, Caoxian, Yuncheng, and Shanxian had higher contribution rates and the counties of Dingtao, Juancheng, and Caoxian had the higher load intensities for both NPS TN and TP pollution. The results of this study allowed for an improvement in the understanding of the pollution source contribution and enabled researchers and planners to focus on the most important sources and regions of NPS pollution.
Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades
Lee, J.K.; Roig, L.C.; Jenter, H.L.; Visser, H.M.
2004-01-01
Hydraulic data collected in a flume fitted with pans of sawgrass were analyzed to determine the vertically averaged drag coefficient as a function of vegetation characteristics. The drag coefficient is required for modeling flow through emergent vegetation at low Reynolds numbers in the Florida Everglades. Parameters of the vegetation, such as the stem population per unit bed area and the average stem/leaf width, were measured for five fixed vegetation layers. The vertically averaged vegetation parameters for each experiment were then computed by weighted average over the submerged portion of the vegetation. Only laminar flow through emergent vegetation was considered, because this is the dominant flow regime of the inland Everglades. A functional form for the vegetation drag coefficient was determined by linear regression of the logarithmic transforms of measured resistance force and Reynolds number. The coefficients of the drag coefficient function were then determined for the Everglades, using extensive flow and vegetation measurements taken in the field. The Everglades data show that the stem spacing and the Reynolds number are important parameters for the determination of vegetation drag coefficient. ?? 2004 Elsevier B.V. All rights reserved.
Bilinauskaite, Milda; Mantha, Vishveshwar Rajendra; Rouboa, Abel Ilah; Ziliukas, Pranas; Silva, Antonio Jose
2013-01-01
The aim of this paper is to determine the hydrodynamic characteristics of swimmer's scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases. PMID:23691493
Fully automated, deep learning segmentation of oxygen-induced retinopathy images
Xiao, Sa; Bucher, Felicitas; Wu, Yue; Rokem, Ariel; Lee, Cecilia S.; Marra, Kyle V.; Fallon, Regis; Diaz-Aguilar, Sophia; Aguilar, Edith; Friedlander, Martin; Lee, Aaron Y.
2017-01-01
Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks. PMID:29263301
Validity of a portable glucose, total cholesterol, and triglycerides multi-analyzer in adults.
Coqueiro, Raildo da Silva; Santos, Mateus Carmo; Neto, João de Souza Leal; Queiroz, Bruno Morbeck de; Brügger, Nelson Augusto Jardim; Barbosa, Aline Rodrigues
2014-07-01
This study investigated the accuracy and precision of the Accutrend Plus system to determine blood glucose, total cholesterol, and plasma triglycerides in adults and evaluated its efficiency in measuring these blood variables. The sample consisted of 53 subjects (≥ 18 years). For blood variable laboratory determination, venous blood samples were collected and processed in a Labmax 240 analyzer. To measure blood variables with the Accutrend Plus system, samples of capillary blood were collected. In the analysis, the following tests were included: Wilcoxon and Student's t-tests for paired samples, Lin's concordance coefficient, Bland-Altman method, receiver operating characteristic curve, McNemar test, and k statistics. The results show that the Accutrend Plus system provided significantly higher values (p ≤ .05) of glucose and triglycerides but not of total cholesterol (p > .05) as compared to the values determined in the laboratory. However, the system showed good reproducibility (Lin's coefficient: glucose = .958, triglycerides = .992, total cholesterol = .940) and high concordance with the laboratory method (Lin's coefficient: glucose = .952, triglycerides = .990, total cholesterol = .944) and high sensitivity (glucose = 80.0%, triglycerides = 90.5%, total cholesterol = 84.4%) and specificity (glucose = 100.0%, triglycerides = 96.9%, total cholesterol = 95.2%) in the discrimination of high values of the three blood variables analyzed. It could be concluded that despite the tendency to overestimate glucose and triglyceride levels, a portable multi-analyzer is a valid alternative for the monitoring of metabolic disorders and cardiovascular risk factors. © The Author(s) 2013.
Hong, K; Muntner, P; Kronish, I; Shilane, D; Chang, T I
2016-01-01
Lower adherence to antihypertensive medications may increase visit-to-visit variability of blood pressure (VVV of BP), a risk factor for cardiovascular events and death. We used data from the African American Study of Kidney Disease and Hypertension (AASK) trial to examine whether lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive chronic kidney disease (CKD). Determinants of VVV of BP were also explored. AASK participants (n=988) were categorized by self-report or pill count as having perfect (100%), moderately high (75-99%), moderately low (50-74%) or low (<50%) proportion of study visits with high medication adherence over a 1-year follow-up period. We used multinomial logistic regression to examine determinants of medication adherence, and multivariable-adjusted linear regression to examine the association between medication adherence and systolic VVV of BP, defined as the coefficient of variation or the average real variability (ARV). Participants with lower self-reported adherence were generally younger and had a higher prevalence of comorbid conditions. Compared with perfect adherence, moderately high, moderately low and low adherence was associated with 0.65% (±0.31%), 0.99% (±0.31%) and 1.29% (±0.32%) higher systolic VVV of BP (defined as the coefficient of variation) in fully adjusted models. Results were qualitatively similar when using ARV or when using pill counts as the measure of adherence. Lower medication adherence is associated with higher systolic VVV of BP in African Americans with hypertensive CKD; efforts to improve medication adherence in this population may reduce systolic VVV of BP.
Soyiri, Ireneous N; Reidpath, Daniel D
2013-01-01
Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal/temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept.
Soyiri, Ireneous N.; Reidpath, Daniel D.
2013-01-01
Forecasting higher than expected numbers of health events provides potentially valuable insights in its own right, and may contribute to health services management and syndromic surveillance. This study investigates the use of quantile regression to predict higher than expected respiratory deaths. Data taken from 70,830 deaths occurring in New York were used. Temporal, weather and air quality measures were fitted using quantile regression at the 90th-percentile with half the data (in-sample). Four QR models were fitted: an unconditional model predicting the 90th-percentile of deaths (Model 1), a seasonal / temporal (Model 2), a seasonal, temporal plus lags of weather and air quality (Model 3), and a seasonal, temporal model with 7-day moving averages of weather and air quality. Models were cross-validated with the out of sample data. Performance was measured as proportionate reduction in weighted sum of absolute deviations by a conditional, over unconditional models; i.e., the coefficient of determination (R1). The coefficient of determination showed an improvement over the unconditional model between 0.16 and 0.19. The greatest improvement in predictive and forecasting accuracy of daily mortality was associated with the inclusion of seasonal and temporal predictors (Model 2). No gains were made in the predictive models with the addition of weather and air quality predictors (Models 3 and 4). However, forecasting models that included weather and air quality predictors performed slightly better than the seasonal and temporal model alone (i.e., Model 3 > Model 4 > Model 2) This study provided a new approach to predict higher than expected numbers of respiratory related-deaths. The approach, while promising, has limitations and should be treated at this stage as a proof of concept. PMID:24147122
Measuring dynamic oil film coefficients of sliding bearing
NASA Technical Reports Server (NTRS)
Feng, G.; Tang, X.
1985-01-01
A method is presented for determining the dynamic coefficients of bearing oil film. By varying the support stiffness and damping, eight dynamic coefficients of the bearing were determined. Simple and easy to apply, the method can be used in solving practical machine problems.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
NASA Astrophysics Data System (ADS)
Wang, Zhaoyong; Hu, Xing; Yao, Ning
2015-03-01
At the optimized deposition parameters, Cu film was deposited by the direct current magnetron sputtering (DMS) technique and the energy filtrating magnetron sputtering (EFMS) technique. The nano-structure was charactered by x-ray diffraction. The surface morphology of the film was observed by atomic force microscopy. The optical properties of the film were measured by spectroscopic ellipsometry. The refractive index, extinction coefficient and the thickness of the film were obtained by the fitted spectroscopic ellipsometry data using the Drude-Lorentz oscillator optical model. Results suggested that a Cu film with different properties was fabricated by the EFMS technique. The film containing smaller particles is denser and the surface is smoother. The average transmission coefficient, the refractive index and the extinction coefficients are higher than those of the Cu film deposited by the DMS technique. The average transmission coefficient (400-800 nm) is more than three times higher. The refractive index and extinction coefficient (at 550 nm) are more than 36% and 14% higher, respectively.
The development of form two mathematics i-Think module (Mi-T2)
NASA Astrophysics Data System (ADS)
Yao, Foo Jing; Abdullah, Mohd Faizal Nizam Lee; Tien, Lee Tien
2017-05-01
This study aims to develop a training module i-THINK Mathematics Form Two (Mi-T2) to increase the higher-order thinking skills of students. The Mi-T2 training module was built based on the Sidek Module Development Model (2001). Constructivist learning theory, cognitive learning theory, i-THINK map and higher order thinking skills were the building blocks of the module development. In this study, researcher determined the validity and reliability of Mi-T2 module. The design being used in this study was descriptive study. To determine the needs of Mi-T2 module, questionnaires and literature review were used to collect data. When the need of the module was determined, the module was built and a pilot study was conducted to test the reliability of the Mi-T2 module. The pilot study was conducted at a secondary school in North Kinta, Perak. A Form Two class was selected to be the sample study through clustered random sampling. The pilot study was conducted for two months and one topic had been studied. The Mi-T2 module was evaluated by five expert panels to determine the content validity of the module. The instruments being used in the study were questionnaires about the necessity of the Mi-T2 module for guidance, questionnaires about the validity of the module and questionnaires concerning the reliability of the module. Statistical analysis was conducted to determine the validity and reliability coefficients of the Mi-T2 module. The content validity of Mi-T2 module was determined by Cohen's Kappa's (1968) agreement coefficient and the reliability of Mi-T2 module was determined by Cronbach Alpha's value scale. The content validity of Mi-T2 module was 0.89 and the Cronbach Alpha's value of Mi-T2 module was 0.911.
Method and apparatus for determining peak temperature along an optical fiber
Fox, R.J.
1982-07-29
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Method and apparatus for determining peak temperature along an optical fiber
Fox, Richard J.
1985-01-01
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Lu, Yan; Li, Mingzhong
2016-01-01
The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Solubilities of noble gases in magnetite - Implications for planetary gases in meteorites.
NASA Technical Reports Server (NTRS)
Lancet, M. S.; Anders, E.
1973-01-01
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700 K. Henry's law is obeyed at pressures up to .01 atm for He, Ne, Ar and up to .00001 atm for Kr, Xe, with the following distribution coefficients at 500 K: He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 100 to 100,000 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution are in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.
Lifshitz transition and thermoelectric properties of bilayer graphene
NASA Astrophysics Data System (ADS)
Suszalski, Dominik; Rut, Grzegorz; Rycerz, Adam
2018-03-01
This is a numerical study of thermoelectric properties of ballistic bilayer graphene in the presence of a trigonal warping term in the effective Hamiltonian. We find, in the mesoscopic samples of the length L >10 μ m at sub-Kelvin temperatures, that both the Seebeck coefficient and the Lorentz number show anomalies (the additional maximum and minimum, respectively) when the electrochemical potential is close to the Lifshitz energy, which can be attributed to the presence of the van Hove singularity in a bulk density of states. At higher temperatures the anomalies vanish, but measurable quantities characterizing the remaining maximum of the Seebeck coefficient still unveil the presence of massless Dirac fermions and make it possible to determine the trigonal warping strength. Behavior of the thermoelectric figure of merit (Z T ) is also discussed.
Characterization of the interfacial heat transfer coefficient for hot stamping processes
NASA Astrophysics Data System (ADS)
Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang
2016-08-01
In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui
2017-09-01
Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.
Lipophilicity, antifungal and antioxidant properties of persilben.
Smolarz, Helena D; Kosikowska, Urszula; Baraniak, Barbara; Malm, Anna; Persona, Andrzej
2005-01-01
The lipophilicity of persilben, an important parameter influencing the penetration of the compound through biological membranes, was determined experimentally by dynamic method and was theoretically calculated according to the fragmentation methods introduced by Crippen, Broto and Viswanadhan. The higher value of partition coefficient (log P = 3.89) obtained for persilben than that for resveratrol points to potentially higher ease of penetration of persilben into cells of living organism. Antimicrobial and antioxidant activities of persilben were tested. The obtained data suggest that this compound possesses some antioxidant activity. Persilben appears to have also some inhibitory effect against some species of dermatophytes from Tnichophyton genus but only at high concentrations.
NASA Technical Reports Server (NTRS)
Goodman, Alex; Fisher, Lewis R.
1949-01-01
A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.
NASA Astrophysics Data System (ADS)
Fu, Qiang; Xiong, Yucheng; Zhang, Wenhua; Xu, Dongyan
2017-09-01
This paper presents a setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. The sample holder was designed to have a compact structure and can be directly mounted in a standard cryostat system for temperature-dependent measurements. For the Seebeck coefficient measurement, a thin bar-shaped sample is mounted bridging two copper bases; and two ceramic heaters are used to generate a temperature gradient along the sample. Two type T thermocouples are used to determine both temperature and voltage differences between two widely separated points on the sample. The thermocouple junction is flattened into a disk and pressed onto the sample surface by using a spring load. The flexible fixation method we adopted not only simplifies the sample mounting process but also prevents thermal contact deterioration due to the mismatch of thermal expansion coefficients between the sample and other parts. With certain modifications, the sample holder can also be used for four-probe electrical resistivity measurements. High temperature measurements are essential for thermoelectric power generation. The experimental system we developed is capable of measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials in a wide temperature range from 80 to 500 K, which can be further extended to even higher temperatures. Measurements on two standard materials, constantan and nickel, confirmed the accuracy and the reliability of the system.
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
NASA Astrophysics Data System (ADS)
Hasanov, Alemdar; Erdem, Arzu
2008-08-01
The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.
Raman bandshape analysis of the symmetric bending vibration in liquid chloroform
NASA Astrophysics Data System (ADS)
Yuan, P.; Schwartz, M.
In order to determine whether accurate rotational diffusion coefficients in liquids may be determined from the bandshapes of isotopically broadened vibrational peaks, we have investigated the isotropic and anisotropic Raman spectra of the ν 3( A1), CCl 3 symmetric bending, vibration in CHCl 3 as a function of temperature in the liquid phase. The spectral lineshapes were fitted by a model containing four Lorentzian/Gaussian summation bands with relative peak intensities equal to the relative abundances of the four isotopic combinations and frequency displacements constrained to values measured in the matrix infrared spectrum. The calculated room temperature perpendicular diffusion coefficient, D⊥ (25°C) = 8.310 10 s -1, was within the range of values reported from Raman measurements on the ν 1, symmetric carbon-hydrogen stretching, vibration, but was somewhat lower than published results from NMR relaxation time measurements, T1( 2D), on CDCl 3, and from dielectric relaxation. The activation energy, Ea( D⊥), determined from the ν 3 bandshape measurements was 30% higher than the average value from the NMR and dielectric studies. The deviation is believed to result from the sensitivity of this quantity to the fractional Lorentzian character of the fitting functions.
Chromatographic determination of the diffusion coefficients of light hydrocarbons in polymers
NASA Astrophysics Data System (ADS)
Yakubenko, E. E.; Korolev, A. A.; Chapala, P. P.; Bermeshev, M. V.; Kanat'eva, A. Yu.; Kurganov, A. A.
2017-01-01
Gas-chromatographic determination of the diffusion coefficients that allows for the compressibility of the mobile phase has been suggested. The diffusion coefficients were determined for light hydrocarbons C1-C4 in four polymers with a high free volume, which are candidates for use as gas-separating membranes. The diffusion coefficients calculated from chromatographic data were shown to be one or two orders of magnitude smaller than the values obtained by the membrane method. This may be due to the presence of an additional flow through the membrane caused by the pressure gradient across the membrane in membrane methods.
Determination of rolling resistance coefficient based on normal tyre stiffness
NASA Astrophysics Data System (ADS)
Rykov, S. P.; Tarasuyk, V. N.; Koval, V. S.; Ovchinnikova, N. I.; Fedotov, A. I.; Fedotov, K. V.
2018-03-01
The purpose of the article is to develop analytical dependence of wheel rolling resistance coefficient based on the mathematical description of normal tyre stiffness. The article uses the methods of non-holonomic mechanics and plane section methods. The article shows that the abscissa of gravity center of tyre stiffness expansion by the length of the contact area is the shift of normal road response. It can be used for determining rolling resistance coefficient. When determining rolling resistance coefficient using ellipsis and power function equations, one can reduce labor costs for testing and increase assessment accuracy.
Stability analysis of an F/A-18 E/F cable mount m odel
NASA Technical Reports Server (NTRS)
Thompson, Nancy; Farmer, Moses
1994-01-01
A full-span F/A-18 E/F cable mounted wind tunnel model is part of a flutter clearance program at the NASA Langley Transonic Dynamics Tunnel. Parametric analysis of this model using GRUMCBL software was conducted to assess stability for wind tunnel tests. Two configurations of the F/A-18 E/F were examined. The parameters examined were pulley-cable friction, mach number, dynamic pressure, cable geometry, center of gravity location, cable tension, snubbing the model, drag, and test medium. For the nominal cable geometry (Cable Geometry 1), Configuration One was unstable for cases with higher pulley-cable friction coefficients. A new cable geometry (Cable Geometry 3) was determined in which Configuration One was stable for all cases evaluated. Configuration Two with the nominal center of gravity position was found to be unstable for cases with higher pulley-cable friction coefficients; however, the model was stable when the center of gravity moved forward 1/2. The model was tested using the cable mount system during the initial wind tunnel entry and was stable as predicted.
Onel, L; Blitz, M A; Seakins, P W
2012-04-05
Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.
Multidisciplinary Biomarkers of Early Mammary Carcinogenesis
2011-04-01
cDNA prepared. Quantitative real-time PCR (qRT-PCR) was then performed on the cDNA. All qRT-PCR reactions were performed in triplicate. ESR1 ...in Figure 4, all ER(+) cells express ESR1 at high levels (at least 4 fold higher than ER(-) cell lines). A Pearson correlation coefficient was...calculated to determine the linear relationship between the optical redox ratio and ESR1 expression levels and found to be significant (p = 0.0024, r
Computation of airfoil buffet boundaries
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.; Bailey, H. E.
1981-01-01
The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
Computer Code for the Determination of Ejection Seat/Man Aerodynamic Parameters.
1980-08-28
ARMS, and LES (computer code -- .,. ,... ,, ..,.., .: . .. ... ,-." . ;.’ -- I- ta names) and Seat consisted of 4 panels SEAT, BACK, PADD , and SIDE. An... general application of Eq. (I) is for blunt bodies at hypersonic speed, because accuracy of this equation becomes better at higher Mach number. Therefore...pressure coefficient is set equal to zero on those portions of the body that are invisible to a distant observer who views the body from the direction
A new method for gravity field recovery based on frequency analysis of spherical harmonics
NASA Astrophysics Data System (ADS)
Cai, Lin; Zhou, Zebing
2017-04-01
All existing methods for gravity field recovery are mostly based on the space-wise and time-wise approach, whose core processes are constructing the observation equations and solving them by the least square method. It's should be pointed that the least square method means the approximation. On the other hand, we can directly and precisely obtain the coefficients of harmonics by computing the Fast Fourier Transform (FFT) when we do 1-D data (time series) analysis. So the question whether we directly and precisely obtain the coefficients of spherical harmonic by computing 2-D FFT of measurements of satellite gravity mission is of great significance, since this may guide us to a new understanding of the signal components of gravity field and make us determine it quickly by taking advantage of FFT. Like the 1-D data analysis, the 2-D FFT of measurements of satellite can be computed rapidly. If we can determine the relationship between spherical harmonics and 2-D Fourier frequencies and the transfer function from measurements to spherical coefficients, the question mentioned above can be solved. So the objective of this research project is to establish a new method based on frequency analysis of spherical harmonic, which directly compute the confidents of spherical harmonic of gravity field, which is differ from recovery by least squares. There is a one to one correspondence between frequency spectrum and the time series in 1-D FFT. The 2-D FFT has a similar relationship to 1-D FFT. Owing to the fact that any degree or order (higher than one) of spherical function has multi frequencies and these frequencies may be aliased. Fortunately, the elements and ratio of these frequencies of spherical function can be determined, and we can compute the coefficients of spherical function from 2-D FFT. This relationship can be written as equations and equivalent to a matrix, which is solid and can be derived in advance. Until now the relationship has be determined. Some preliminary results, which only compute lower degree spherical harmonics, indicates that the difference between the input (EGM2008) and output (coefficients from recovery) is smaller than 5E-17, while the minimal precision of computer software (Matlab) is 2.2204E-16.
Simultaneous all-optical determination of molecular concentration and extinction coefficient.
Cho, Byungmoon; Tiwari, Vivek; Jonas, David M
2013-06-04
Absolute molecular number concentration and extinction coefficient are simultaneously determined from linear and nonlinear spectroscopic measurements. This method is based on measurements of absolute femtosecond pump-probe signals. Accounting for pulse propagation, we present a closed form expression for molecular number concentration in terms of absorbance, fluorescence, absolute pump-probe signal, and laser pulse parameters (pulse energy, spectrum, and spatial intensity profile); all quantities are measured optically. As in gravimetric and coulometric determinations of concentration, no standard samples are needed for calibration. The extinction coefficient can then be determined from the absorbance spectrum and the concentration. For fluorescein in basic methanol, the optically determined molar concentrations and extinction coefficients match gravimetric determinations to within 10% for concentrations from 0.032 to 0.540 mM, corresponding to absorbance from 0.06 to 1. In principle, this photonumeric method is extensible to transient chemical species for which other methods are not available.
Temperature dependence of single-crystal elastic constants of flux-grown alpha-GaPO(4).
Armand, P; Beaurain, M; Rufflé, B; Menaert, B; Papet, P
2009-06-01
The lattice parameter change with respect to temperature (T) has been measured using high-temperature powder X-ray diffraction techniques for high-temperature flux-grown GaPO(4) single crystals with the alpha-quartz structure. The lattice and the volume linear thermal expansion coefficients in the temperature range 303-1173 K were computed from the X-ray data. The percentage linear thermal expansions along the a and c axes at 1173 K are 1.5 and 0.51, respectively. The temperature dependence of the mass density rho of flux-grown GaPO(4) single crystals was evaluated using the volume thermal expansion coefficient alpha(V)(T) = 3.291 x 10(-5) - 2.786 x 10(-8) [T] + 4.598 x 10(-11)[T](2). Single-crystal high-resolution Brillouin spectroscopy measurements have been carried out at ambient pressure from 303 to 1123 K to determine the elastic constants C(IJ) of high-temperature flux-grown GaPO(4) material. The single-crystal elastic moduli were calculated using the sound velocities via the measured Brillouin frequency shifts Deltanu(B). These are, to our knowledge, the highest temperatures at which single-crystal elastic constants of alpha-GaPO(4) have been measured. Most of the room-temperature elastic constant values measured on flux-grown GaPO(4) material are higher than the ones found for hydrothermally grown GaPO(4) single crystals. The fourth-order temperature coefficients of both the Brillouin frequency shifts T(nuB)((n)) and the single-crystal elastic moduli T(C(IJ))((n)) were obtained. The first-order temperature coefficients of the C(IJ) are in excellent agreement with previous reports on low-temperature hydrothermally grown alpha-GaPO(4) single crystals, while small discrepancies in the higher-order temperature coefficients are observed. This is explained in terms of the OH content in the GaPO(4) network, which is an important parameter in the crystal thermal behavior.
NASA Technical Reports Server (NTRS)
Noonan, K. W.
1981-01-01
An investigation was conducted in the Langley 6- by 28-Inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics of a 10-percent-thick helicopter rotor airfoil at Mach numbers from 0.33 to 0.87 and respective Reynolds numbers from 4.9 x 10 to the 6th to 9.8 x 10 to the 6th. This airfoil, designated the RC-10(N)-1, was also investigated at Reynolds numbers from 3.0 x 10 to the 6th to 7.3 x 10 to the 6th at respective Mach numbers of 0.33 to 0.83 for comparison wit the SC 1095 (with tab) airfoil. The RC-10(N)-1 airfoil was designed by the use of a viscous transonic analysis code. The results of the investigation indicate that the RC-10(N)-1 airfoil met all the design goals. At a Reynolds number of about 9.4 x 10 to the 6th the drag divergence Mach number at zero normal-force coefficient was 0.815 with a corresponding pitching-moment coefficient of zero. The drag divergence Mach number at a normal-force coefficient of 0.9 and a Reynolds number of about 8.0 x 10 to the 6th was 0.61. The drag divergence Mach number of this new airfoil was higher than that of the SC 1095 airfoil at normal-force coefficients above 0.3. Measurements in the same wind tunnel at comparable Reynolds numbers indicated that the maximum normal-force coefficient of the RC-10(N)-1 airfoil was higher than that of the NACA 0012 airfoil for Mach numbers above about 0.35 and was about the same as that of the SC 1095 airfoil for Mach numbers up to 0.5.
Experimental determination of group flux control coefficients in metabolic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, T.W.; Shimizu, Hiroshi; Stephanopoulos, G.
1998-04-20
Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, the authors demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmentalmore » perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway.« less
A Reliable, Feasible Method to Observe Neighborhoods at High Spatial Resolution
Kepper, Maura M.; Sothern, Melinda S.; Theall, Katherine P.; Griffiths, Lauren A.; Scribner, Richard; Tseng, Tung-Sung; Schaettle, Paul; Cwik, Jessica M.; Felker-Kantor, Erica; Broyles, Stephanie T.
2016-01-01
Introduction Systematic social observation (SSO) methods traditionally measure neighborhoods at street level and have been performed reliably using virtual applications to increase feasibility. Research indicates that collection at even higher spatial resolution may better elucidate the health impact of neighborhood factors, but whether virtual applications can reliably capture social determinants of health at the smallest geographic resolution (parcel level) remains uncertain. This paper presents a novel, parcel-level SSO methodology and assesses whether this new method can be collected reliably using Google Street View and is feasible. Methods Multiple raters (N=5) observed 42 neighborhoods. In 2016, inter-rater reliability (observed agreement and kappa coefficient) was compared for four SSO methods: (1) street-level in person; (2) street-level virtual; (3) parcel-level in person; and (4) parcel-level virtual. Intra-rater reliability (observed agreement and kappa coefficient) was calculated to determine whether parcel-level methods produce results comparable to traditional street-level observation. Results Substantial levels of inter-rater agreement were documented across all four methods; all methods had >70% of items with at least substantial agreement. Only physical decay showed higher levels of agreement (83% of items with >75% agreement) for direct versus virtual rating source. Intra-rater agreement comparing street- versus parcel-level methods resulted in observed agreement >75% for all but one item (90%). Conclusions Results support the use of Google Street View as a reliable, feasible tool for performing SSO at the smallest geographic resolution. Validation of a new parcel-level method collected virtually may improve the assessment of social determinants contributing to disparities in health behaviors and outcomes. PMID:27989289
Marikkar, Jalaldeen Mohammed Nazrim; Rana, Sohel
2014-01-01
A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
NASA Astrophysics Data System (ADS)
Vallet, A.; Bertrand, C.; Fabbri, O.; Mudry, J.
2015-01-01
Pore water pressure build-up by recharge of underground hydrosystems is one of the main triggering factors of deep-seated landslides. In most deep-seated landslides, pore water pressure data are not available since piezometers, if any, have a very short lifespan because of slope movements. As a consequence, indirect parameters, such as the calculated recharge, are the only data which enable understanding landslide hydrodynamic behaviour. However, in landslide studies, methods and recharge-area parameters used to determine the groundwater recharge are rarely detailed. In this study, the groundwater recharge is estimated with a soil-water balance based on characterisation of evapotranspiration and parameters characterising the recharge area (soil available water capacity, runoff and vegetation coefficient). A workflow to compute daily groundwater recharge is developed. This workflow requires the records of precipitation, air temperature, relative humidity, solar radiation and wind speed within or close to the landslide area. The determination of the parameters of the recharge area is based on a spatial analysis requiring field observations and spatial data sets (digital elevation models, aerial photographs and geological maps). This study demonstrates that the performance of the correlation with landslide displacement velocity data is significantly improved using the recharge estimated with the proposed workflow. The coefficient of determination obtained with the recharge estimated with the proposed workflow is 78% higher on average than that obtained with precipitation, and is 38% higher on average than that obtained with recharge computed with a commonly used simplification in landslide studies (recharge = precipitation minus non-calibrated evapotranspiration method).
Srirangsan, Paveena; Hamada-Sato, Naoko; Kawai, Kiyoshi; Watanabe, Manabu; Suzuki, Toru
2010-12-08
Alkaline phosphatase (ALP), nucleoside phosphorylase (NP), and xanthine oxidase (XOD) were used in a colorimetric method for evaluation of fish freshness based on the Ki value. Two enzyme mixtures, NP-XOD and ALP-NP-XOD, were prepared with a color developing agent, and stabilities of the enzymes were improved by freeze-drying with glass-forming additives, i.e., sucrose and sucrose-gelatin. As a result, a linear relationship was obtained between the Ki values determined by the developed colorimetric method and a conventional high-performance liquid chromatography with a high correlation coefficient of 0.997. All enzyme samples containing the additive(s) were amorphous, and higher enzymes activities were maintained compared to those freeze-dried without an additive. Sucrose-gelatin/enzyme mixtures showed higher glass transition temperature; consequently, the enzymes were better stabilized than the sucrose/enzyme formulations. Using the sucrose-gelatin/enzyme mixture, Ki values of fish meat could be accurately determined even after 6-month storage of the dried enzymes at 40 °C.
Enhancement of thermoelectric performance with pressure in Ce0.8Fe3CoSb12.1
NASA Astrophysics Data System (ADS)
Jacobsen, M. K.; Liu, W.; Li, B.
2014-09-01
Transport properties (resistivity, thermal conductivity, and Seebeck coefficient) and sound velocities have been determined for the skutterudite Ce0.8Fe3CoSb12.1 with pressure up to 14 GPa. From these measurements, high pressure anomalous features were found in all transport properties. By correlating these with results from previous x-ray work, it has been determined that there is likely an electronic topological transition in this material induced by pressure. This is possibly due to the known pressure variation of valence in the void-filling Ce atom and has been found to induce an improved figure of merit at higher pressures, which shows a nearly two-fold increase with applied pressure. At higher pressures, it was determined that this anomalous behavior is suppressed and is possibly induced by insertion of Sb from the cage into the remaining central voids of the structure, similar to that seen in the CoSb3 parent compound.
Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Tryggestad, Erik J; Gunter, Jeffrey L; McGee, Kiaran P; Litwiller, Daniel V; Hwang, Ken-Pin; Bernstein, Matt A
2017-05-01
Spatial position accuracy in magnetic resonance imaging (MRI) is an important concern for a variety of applications, including radiation therapy planning, surgical planning, and longitudinal studies of morphologic changes to study neurodegenerative diseases. Spatial accuracy is strongly influenced by gradient linearity. This work presents a method for characterizing the gradient non-linearity fields on a per-system basis, and using this information to provide improved and higher-order (9th vs. 5th) spherical harmonic coefficients for better spatial accuracy in MRI. A large fiducial phantom containing 5229 water-filled spheres in a grid pattern is scanned with the MR system, and the positions all the fiducials are measured and compared to the corresponding ground truth fiducial positions as reported from a computed tomography (CT) scan of the object. Systematic errors from off-resonance (i.e., B0) effects are minimized with the use of increased receiver bandwidth (±125kHz) and two acquisitions with reversed readout gradient polarity. The spherical harmonic coefficients are estimated using an iterative process, and can be subsequently used to correct for gradient non-linearity. Test-retest stability was assessed with five repeated measurements on a single scanner, and cross-scanner variation on four different, identically-configured 3T wide-bore systems. A decrease in the root-mean-square error (RMSE) over a 50cm diameter spherical volume from 1.80mm to 0.77mm is reported here in the case of replacing the vendor's standard 5th order spherical harmonic coefficients with custom fitted 9th order coefficients, and from 1.5mm to 1mm by extending custom fitted 5th order correction to the 9th order. Minimum RMSE varied between scanners, but was stable with repeated measurements in the same scanner. The results suggest that the proposed methods may be used on a per-system basis to more accurately calibrate MR gradient non-linearity coefficients when compared to vendor standard corrections. Copyright © 2016 Elsevier Inc. All rights reserved.
Meng, Qi; Kang, Jian
2013-01-01
A large-scale subjective survey was conducted in six shopping malls in Harbin City, China, to determine the influence of social and behavioural characteristics of users on their evaluation of subjective loudness and acoustic comfort. The analysis of social characteristics shows that evaluation of subjective loudness is influenced by income and occupation, with correlation coefficients or contingency coefficients of 0.10 to 0.40 (p<0.05 or p<0.01). Meanwhile, evaluation of acoustic comfort evaluation is influenced by income, education level, and occupation, with correlation coefficients or contingency coefficients of 0.10 to 0.60 (p<0.05 or p<0.01). The effect of gender and age on evaluation of subjective loudness and acoustic comfort is statistically insignificant. The effects of occupation are mainly caused by the differences in income and education level, in which the effects of income are greater than that of education level. In terms of behavioural characteristics, evaluation of subjective loudness is influenced by the reason for visit, frequency of visit, and length of stay, with correlation coefficients or contingency coefficients of 0.10 to 0.40 (p<0.05 or p<0.01). Evaluation of acoustic comfort is influenced by the reason for visit to the site, the frequency of visit, length of stay, and also season of visit, with correlation coefficients of 0.10 to 0.30 (p<0.05 or p<0.01). In particular, users who are waiting for someone show lower evaluation of acoustic comfort, whereas users who go to shopping malls more than once a month show higher evaluation of acoustic comfort. On the contrary, the influence of the period of visit and the accompanying persons are found insignificant. PMID:23336003
NASA Technical Reports Server (NTRS)
Han, J. C.; Chandra, P. R.
1987-01-01
The heat transfer characteristics of turbulent air flow in a multipass channel were studied via the naphthalene sublimation technique. The naphthalene-coated test section, consisting of two straight, square channels joined by a 180 deg turn, resembled the internal cooling passages of gas turbine airfoils. The top and bottom surfaces of the test channel were roughened by rib turbulators. The rib height-to-hydraulic diameter ratio (e/D) were 0.063 and 0.094, and the rib pitch-to-height ratio (P/e) were 10 and 20. The local heat/mass transfer coefficients on the roughened top wall and on the smooth divider and side walls of the test channel were determined for three Reynolds numbers of 15, 30, and 60, thousand, and for three angles of attack (alpha) of 90, 60, and 45 deg. Results showed that the local Sherwood numbers on the ribbed walls were 1.5 to 6.5 times those for a fully developed flow in a smooth square duct. The average ribbed-wall Sherwood numbers were 2.5 to 3.5 times higher than the fully developed values, depending on the rib angle of attack and the Reynolds number. The results also indicated that, before the turn, the heat/mass transfer coefficients in the cases of alpha = 60 and 45 deg were higher than those in the case of alpha=90 deg. However, after the turn, the heat/mass transfer coefficients in the oblique-rib cases were lower than those in the transverse rib case. Correlations for the average Sherwood number ratios for individual channel surfaces and for the overall Sherwood number ratios are reported. Correlations for the fully developed friction factors and for the loss coefficients are also provided.
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.
ERIC Educational Resources Information Center
Algina, James; Olejnik, Stephen
2000-01-01
Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
NASA Astrophysics Data System (ADS)
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at
Near integrability of kink lattice with higher order interactions
NASA Astrophysics Data System (ADS)
Jiang, Yun-Guo; Liu, Jia-Zhen; He, Song
2017-11-01
We make use of Manton’s analytical method to investigate the force between kinks and anti-kinks at large distances in 1+1 dimensional field theory. The related potential has infinite order corrections of exponential pattern, and the coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuations around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but is a near integrable system. We make use of Flaschka’s variables to study the Lax pair of the kink lattice. These Flaschka’s variables have interesting algebraic relations and non-integrability can be manifested. We also discuss the higher Hamiltonians for the deformed open Toda lattice, which has a similar result to the ordinary deformed Toda. Supported by Shandong Provincial Natural Science Foundation (ZR2014AQ007), National Natural Science Foundation of China (11403015, U1531105), S. He is supported by Max-Planck fellowship in Germany and National Natural Science Foundation of China (11305235)
Computer-aided interpretation approach for optical tomographic images
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.
2010-11-01
A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.
Experimental determination of damping of plate vibrations in a viscous fluid
NASA Astrophysics Data System (ADS)
Egorov, A. G.; Kamalutdinov, A. M.; Nuriev, A. N.; Paimushin, V. N.
2017-05-01
A method of determining the aerodynamic-drag coefficient of flat vibrating plates from the vibrogram of free damping vibrations of cantilever-fixed duralumin samples has been developed. From the results of our experiments, simple approximating formulas determining the decrement of damping vibrations and the aerodynamic-drag coefficient through the dimensionless vibration amplitude and the Stokes parameter are proposed. The approach developed in this study for determining the aerodynamic-drag coefficient of a vibrating plate can be a useful alternative to purely hydrodynamic methods of finding the drag of vibrating solids.
Ferre-Aracil, J; Valcárcel, Y; Negreira, N; de Alda, M López; Barceló, D; Cardona, S C; Navarro-Laboulais, J
2016-06-15
The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256mgO3L(-1) and the kinetic rate coefficient with the dissolved organic matter as 8.4M(-1)s(-1). The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7M(-1)s(-1) and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3€/m(3) under given circumstances. Copyright © 2016 Elsevier B.V. All rights reserved.
Evidence of tampering in watermark identification
NASA Astrophysics Data System (ADS)
McLauchlan, Lifford; Mehrübeoglu, Mehrübe
2009-08-01
In this work, watermarks are embedded in digital images in the discrete wavelet transform (DWT) domain. Principal component analysis (PCA) is performed on the DWT coefficients. Next higher order statistics based on the principal components and the eigenvalues are determined for different sets of images. Feature sets are analyzed for different types of attacks in m dimensional space. The results demonstrate the separability of the features for the tampered digital copies. Different feature sets are studied to determine more effective tamper evident feature sets. The digital forensics, the probable manipulation(s) or modification(s) performed on the digital information can be identified using the described technique.
Micro- and macroscale coefficients of friction of cementitious materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang, Kejin
2013-12-15
Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses onmore » bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.« less
Tao, Jianmin; Rappe, Andrew M.
2016-01-20
Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory (DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient C 6 alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate C 8 and C 10 between small molecules. We findmore » that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for C 8 and 7% for C 10. As a result, inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.« less
A multivariable model for predicting the frictional behaviour and hydration of the human skin.
Veijgen, N K; van der Heide, E; Masen, M A
2013-08-01
The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These two coefficients of friction show a strong correlation. Consequently the two multivariable models resemble, with the static coefficient of friction being on average 18% lower than the dynamic coefficient of friction. The multivariable models in this study can be used to describe the data set that was the basis for this study. Care should be taken when generalising these results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fehrenbacher, J. S.; Russell, A. D.; Davis, C. V.; Spero, H. J.; Chu, E.
2015-12-01
The Ba/Ca ratio in several spinose planktic foraminifer species varies as a function of the Ba/Ca concentration of seawater and is not affected by other parameters such as the seawater salinity, temperature and pH (Honisch et al., 2011). Since seawater Ba concentration is linearly related to Ba in nearshore environments, Ba/Ca ratios in spinose species shows promise as an indicator of past changes in monsoon strength and river runoff (e. g. Weldeab et al. 2007). In contrast, the non-spinose foraminifers often have intrashell variability in Ba/Ca, with Ba/Ca ratios much higher than expected for the range of Ba concentrations observed in the ocean. Furthermore, the Ba/Ca ratio can vary by over a factor of 10 within a single specimen. This suggests either 1) the partition coefficient for Ba in non-spinose species differs from that determined for spinose species, or 2) non-spinose species calcify in a micro-environment that is enriched in Ba. We conducted experiments on live specimens to determine the partition coefficient for Ba in the non-spinose foraminifer N. dutertrei. Specimens were collected via plankton net from the Southern California Bight and cultured at the Wrigley Marine Science Center, Santa Catalina Island during the summer of 2013-2015. We use isotopically labeled seawater (87Sr) to identify discrete portions of calcite that grew in culture. We use laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for trace element analyses and to identify ocean grown vs. culture grown calcite. We show that the partition coefficient is similar to the spinose species: N. dutertrei incorporates Ba as a function of seawater chemistry. We conclude from these observations that N. dutertrei forms its calcite from fluids enriched in Ba, and hypothesize that this process occurs via attachment to organic-rich particles such as marine snow.
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
Exact quantum scattering calculation of transport properties for free radicals: OH(X2Π)-helium.
Dagdigian, Paul J; Alexander, Millard H
2012-09-07
Transport properties for OH-He are computed through quantum scattering calculations using the ab initio potential energy surfaces determined by Lee et al. [J. Chem. Phys. 113, 5736 (2000)]. To gauge the importance of the open-shell character of OH and the anisotropy of the potential on the transport properties, including the collision integrals Ω((1,1)) and Ω((2,2)), as well as the diffusion coefficient, calculations were performed with the full potential, with the difference potential V(dif) set to zero, and with only the spherical average of the potential. Slight differences (3%-5%) in the computed diffusion coefficient were found between the values obtained using the full potential and the truncated potentials. The computed diffusion coefficients were compared to recent experimental measurements and those computed with a Lennard-Jones (LJ) 12-6 potential. The values obtained with the full potential were slightly higher than the experimental values. The LJ 12-6 potential was found to underestimate the variation in temperature as compared to that obtained using the full OH-He ab initio potential.
Evaluation of diclofenac prodrugs for enhancing transdermal delivery.
Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang
2014-03-01
Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.
Simulations of High Speed Fragment Trajectories
NASA Astrophysics Data System (ADS)
Yeh, Peter; Attaway, Stephen; Arunajatesan, Srinivasan; Fisher, Travis
2017-11-01
Flying shrapnel from an explosion are capable of traveling at supersonic speeds and distances much farther than expected due to aerodynamic interactions. Predicting the trajectories and stable tumbling modes of arbitrary shaped fragments is a fundamental problem applicable to range safety calculations, damage assessment, and military technology. Traditional approaches rely on characterizing fragment flight using a single drag coefficient, which may be inaccurate for fragments with large aspect ratios. In our work we develop a procedure to simulate trajectories of arbitrary shaped fragments with higher fidelity using high performance computing. We employ a two-step approach in which the force and moment coefficients are first computed as a function of orientation using compressible computational fluid dynamics. The force and moment data are then input into a six-degree-of-freedom rigid body dynamics solver to integrate trajectories in time. Results of these high fidelity simulations allow us to further understand the flight dynamics and tumbling modes of a single fragment. Furthermore, we use these results to determine the validity and uncertainty of inexpensive methods such as the single drag coefficient model.
Pool boiling of ethanol and FC-72 on open microchannel surfaces
NASA Astrophysics Data System (ADS)
Kaniowski, Robert; Pastuszko, Robert
2018-06-01
The paper presents experimental investigations into pool boiling heat transfer for open microchannel surfaces. Parallel microchannels fabricated by machining were about 0.3 mm wide, and 0.2 to 0.5 mm deep and spaced every 0.1 mm. The experiments were carried out for ethanol, and FC-72 at atmospheric pressure. The image acquisition speed was 493 fps (at resolution 400 × 300 pixels with Photonfocus PHOT MV-D1024-160-CL camera). Visualization investigations aimed to identify nucleation sites and flow patterns and to determine the bubble departure diameter and frequency at various superheats. The primary factor in the increase of heat transfer coefficient at increasing heat flux was a growing number of active pores and increased departure frequency. Heat transfer coefficients obtained in this study were noticeably higher than those from a smooth surface.
Dynamic analysis of a magnetic bearing system with flux control
NASA Technical Reports Server (NTRS)
Knight, Josiah; Walsh, Thomas; Virgin, Lawrence
1994-01-01
Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.
Liu, Jun; Yin, Da-Chuan; Guo, Yun-Zhu; Wang, Xi-Kai; Xie, Si-Xiao; Lu, Qin-Qin; Liu, Yong-Ming
2011-01-01
Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B 22) and the solubility of protein, we measured the temperature dependence of B 22 to predict the temperature dependence of the solubility. Using information about solubility versus temperature, a preferred crystallization temperature can be proposed. If B 22 is a positive function of the temperature, a lower crystallization temperature is recommended; if B 22 shows opposite behavior with respect to the temperature, a higher crystallization temperature is preferred. Otherwise, any temperature in the tested range can be used. PMID:21479212
Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube
NASA Technical Reports Server (NTRS)
Bernardo, Everett; Eian, Carroll S
1945-01-01
As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.
ERIC Educational Resources Information Center
Barnette, J. Jackson
2005-01-01
An Excel program developed to assist researchers in the determination and presentation of confidence intervals around commonly used score reliability coefficients is described. The software includes programs to determine confidence intervals for Cronbachs alpha, Pearson r-based coefficients such as those used in test-retest and alternate forms…
Heat transfer and pressure drop of condensation of hydrocarbons in tubes
NASA Astrophysics Data System (ADS)
Fries, Simon; Skusa, Severin; Luke, Andrea
2018-03-01
The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
Pulmonary vascular function and exercise capacity in black sub-Saharan Africans.
Simaga, Bamodi; Vicenzi, Marco; Faoro, Vitalie; Caravita, Sergio; Di Marco, Giovanni; Forton, Kevin; Deboeck, Gael; Lalande, Sophie; Naeije, Robert
2015-09-01
Sex and age affect the pulmonary circulation. Whether there may be racial differences in pulmonary vascular function is unknown. Thirty white European Caucasian subjects (15 women) and age and body-size matched 30 black sub-Saharan African subjects (15 women) underwent a cardiopulmonary exercise test and exercise stress echocardiography with measurements of pulmonary artery pressure (PAP) and cardiac output (CO). A pulmonary vascular distensibility coefficient α was mathematically determined from the natural curvilinearity of multipoint mean PAP (mPAP)-CO plots. Maximum oxygen uptake (V̇o2max) and workload were higher in the whites, while maximum respiratory exchange ratio and ventilatory equivalents for CO2 were the same. Pulmonary hemodynamics were not different at rest. Exercise was associated with a higher maximum total pulmonary vascular resistance, steeper mPAP-CO relationships, and lower α-coefficients in the blacks. These differences were entirely driven by higher slopes of mPAP-CO relationships (2.5 ± 0.7 vs. 1.4 ± 0.7 mmHg·l(-1)·min; P < 0.001) and lower α-coefficients (0.85 ± 0.33 vs. 1.35 ± 0.51%/mmHg; P < 0.01) in black men compared with white men. There were no differences in any of the hemodynamic variables between black and white women. In men only, the slopes of mPAP-CO relationships were inversely correlated to V̇o2max (P < 0.01). Thus the pulmonary circulation is intrinsically less distensible in black sub-Saharan African men compared with white Caucasian Europeans men, and this is associated with a lower exercise capacity. This study did not identify racial differences in pulmonary vascular function in women. Copyright © 2015 the American Physiological Society.
Asymptotic coefficients for one-interacting-level Voigt profiles
NASA Astrophysics Data System (ADS)
Cope, D.; Lovett, R. J.
1988-02-01
The asymptotic behavior of general Voigt profiles with general width and shift functions has been determined by Cope and Lovett (1987). The resulting asymptotic coefficients are functions of the perturber/radiator mass ratio; also, the coefficients for the one-interacting-level (OIL) profiles proposed by Ward et al. (1974) were studied. In this paper, the behavior of the OIL asymptotic coefficients for large mass ratio values is determined, thereby providing a complete picture of OIL asymptotics for all mass ratios.
Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city.
Barbieri, Flavia L; Gardon, Jacques; Ruiz-Castell, María; Paco V, Pamela; Muckelbauer, Rebecca; Casiot, Corinne; Freydier, Rémi; Duprey, Jean-Louis; Chen, Chih-Mei; Müller-Nordhorn, Jacqueline; Keil, Thomas
2016-01-01
This study assessed lead, arsenic, and antimony in maternal and cord blood, and associations between maternal concentrations and social determinants in the Bolivian mining city of Oruro using the baseline assessment of the ToxBol/Mine-Niño birth cohort. We recruited 467 pregnant women, collecting venous blood and sociodemographic information as well as placental cord blood at birth. Metallic/semimetallic trace elements were measured using inductively coupled plasma mass spectrometry. Lead medians in maternal and cord blood were significantly correlated (Spearman coefficient = 0.59; p < 0.001; 19.35 and 13.50 μg/L, respectively). Arsenic concentrations were above detection limit (3.30 μg/L) in 17.9% of maternal and 34.6% of cord blood samples. They were not associated (Fischer's p = 0.72). Antimony medians in maternal and cord blood were weakly correlated (Spearman coefficient = 0.15; p < 0.03; 9.00 and 8.62 μg/L, respectively). Higher concentrations of toxic elements in maternal blood were associated with maternal smoking, low educational level, and partner involved in mining.
Income inequality, alcohol use, and alcohol-related problems.
Karriker-Jaffe, Katherine J; Roberts, Sarah C M; Bond, Jason
2013-04-01
We examined the relationship between state-level income inequality and alcohol outcomes and sought to determine whether associations of inequality with alcohol consumption and problems would be more evident with between-race inequality measures than with the Gini coefficient. We also sought to determine whether inequality would be most detrimental for disadvantaged individuals. Data from 2 nationally representative samples of adults (n = 13,997) from the 2000 and 2005 National Alcohol Surveys were merged with state-level inequality and neighborhood disadvantage indicators from the 2000 US Census. We measured income inequality using the Gini coefficient and between-race poverty ratios (Black-White and Hispanic-White). Multilevel models accounted for clustering of respondents within states. Inequality measured by poverty ratios was positively associated with light and heavy drinking. Associations between poverty ratios and alcohol problems were strongest for Blacks and Hispanics compared with Whites. Household poverty did not moderate associations with income inequality. Poverty ratios were associated with alcohol use and problems, whereas overall income inequality was not. Higher levels of alcohol problems in high-inequality states may be partly due to social context.
Income Inequality, Alcohol Use, and Alcohol-Related Problems
C. M. Roberts, Sarah; Bond, Jason
2013-01-01
Objectives. We examined the relationship between state-level income inequality and alcohol outcomes and sought to determine whether associations of inequality with alcohol consumption and problems would be more evident with between-race inequality measures than with the Gini coefficient. We also sought to determine whether inequality would be most detrimental for disadvantaged individuals. Methods. Data from 2 nationally representative samples of adults (n = 13 997) from the 2000 and 2005 National Alcohol Surveys were merged with state-level inequality and neighborhood disadvantage indicators from the 2000 US Census. We measured income inequality using the Gini coefficient and between-race poverty ratios (Black–White and Hispanic–White). Multilevel models accounted for clustering of respondents within states. Results. Inequality measured by poverty ratios was positively associated with light and heavy drinking. Associations between poverty ratios and alcohol problems were strongest for Blacks and Hispanics compared with Whites. Household poverty did not moderate associations with income inequality. Conclusions. Poverty ratios were associated with alcohol use and problems, whereas overall income inequality was not. Higher levels of alcohol problems in high-inequality states may be partly due to social context. PMID:23237183
Karlsson, David; Zacchi, Guido; Axelsson, Anders
2002-01-01
The aim of this study was to demonstrate electronic speckle pattern interferometry (ESPI) as a powerful tool in determining diffusion coefficients and partition coefficients for proteins in gels. ESPI employs a CCD camera instead of a holographic plate as in conventional holographic interferometry. This gives the advantage of being able to choose the reference state freely. If a hologram at the reference state is taken and compared to a hologram during the diffusion process, an interferometric picture can be generated that describes the refraction index gradients and thus the concentration gradients in the gel as well as in the liquid. MATLAB is then used to fit Fick's law to the experimental data to obtain the diffusion coefficients in gel and liquid. The partition coefficient is obtained from the same experiment from the flux condition at the interface between gel and liquid. This makes the comparison between the different diffusants more reliable than when the measurements are performed in separate experiments. The diffusion and partitioning coefficients of lysozyme, BSA, and IgG in 4% agarose gel at pH 5.6 and in 0.1 M NaCl have been determined. In the gel the diffusion coefficients were 11.2 +/- 1.6, 4.8 +/- 0.6, and 3.0 +/- 0.3 m(2)/s for lysozyme, BSA, and IgG, respectively. The partition coefficients were determined to be 0.65 +/- 0.04, 0.44 +/- 0.06, and 0.51 +/- 0.04 for lysozyme, BSA, and IgG, respectively. The current study shows that ESPI is easy to use and gives diffusion coefficients and partition coefficients for proteins with sufficient accuracy from the same experiment.
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade
NASA Technical Reports Server (NTRS)
Azad, Gm S.; Han, Je-Chin; Boyle, Robert J.
2000-01-01
Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.
Temperature dependent lattice constant of InSb above room temperature
NASA Astrophysics Data System (ADS)
Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove
2013-10-01
Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).
A Comparison of Theory and Experiment for High-speed Free-molecule Flow
NASA Technical Reports Server (NTRS)
Stalder, Jackson R; Goodwin, Glen; Creager, Marcus O
1951-01-01
A comparison is made of free-molecule-flow theory with the results of wind-tunnel tests performed to determine the drag and temperature-rise characteristics of a transverse circular cylinder. The measured values of the cylinder center-point temperature confirmed the salient point of the heat-transfer analysis which was the prediction that an insulated cylinder would attain a temperature higher than the stagnation temperature of the stream. Good agreement was obtained between the theoretical and the experimental values for the drag coefficient.
1998-10-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
NASA Astrophysics Data System (ADS)
Baumard, Théo; De Almeida, Olivier; Menary, Gary; Le Maoult, Yannick; Schmidt, Fabrice; Bikard, Jérôme
2016-10-01
The infrared heating of a vacuum-bagged, thermoplastic prepreg stack of glass/PA66 was studied to investigate the influence of vacuum level on thermal contact resistance between plies. A higher vacuum level was shown experimentally to decrease the transverse heat transfer efficiency, indicating that considering only the effect of heat conduction at the plies interfaces is not sufficient to predict the temperature distribution. An inverse analysis was used to retrieve the contact resistance coefficients as a function of vacuum pressure.
Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2012-08-01
We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.
NASA Astrophysics Data System (ADS)
Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.
2018-03-01
In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.
Delgado, J; Liao, J C
1992-01-01
The methodology previously developed for determining the Flux Control Coefficients [Delgado & Liao (1992) Biochem. J. 282, 919-927] is extended to the calculation of metabolite Concentration Control Coefficients. It is shown that the transient metabolite concentrations are related by a few algebraic equations, attributed to mass balance, stoichiometric constraints, quasi-equilibrium or quasi-steady states, and kinetic regulations. The coefficients in these relations can be estimated using linear regression, and can be used to calculate the Control Coefficients. The theoretical basis and two examples are discussed. Although the methodology is derived based on the linear approximation of enzyme kinetics, it yields reasonably good estimates of the Control Coefficients for systems with non-linear kinetics. PMID:1497632
Styszko, Katarzyna; Kupiec, Krzysztof
2016-10-01
In this study the diffusion coefficients of isoproturon, diuron and cybutryn in acrylate and silicone resin-based renders were determined. The diffusion coefficients were determined using measuring concentrations of biocides in the liquid phase after being in contact with renders for specific time intervals. The mathematical solution of the transient diffusion equation for an infinite plate contacted on one side with a limited volume of water was used to calculate the diffusion coefficient. The diffusion coefficients through the acrylate render were 8.10·10(-9) m(2) s(-1) for isoproturon, 1.96·10(-9) m(2) s(-1) for diuron and 1.53·10(-9) m(2) s(-1) for cybutryn. The results for the silicone render were lower by one order of magnitude. The compounds with a high diffusion coefficient for one polymer had likewise high values for the other polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Jiao; Acharyya, Kinsuk; Emtiaz, S. M.; Vidali, Gianfranco
2016-06-01
Sticking and adsorption of molecules on dust grains are two important processes in gas-grain interactions. We accurately measured both the sticking coefficient and the binding energy of several key molecules on the surface of amorphous solid water as a function of coverage.A time-resolved scattering technique was used to measure sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on non-porous amorphous solid water (np-ASW) in the low coverage limit over a wide range of surface temperatures. We found that the time-resolved scattering technique is advantageous over the conventional King-Wells method that underestimates the sticking coefficient. Based on the measured values we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy.We measured the binding energy of N2, CO, O2, CH4, and CO2 on np-ASW, and of N2 and CO on porous amorphous solid water (p-ASW). We were able to measure binding energies down to a fraction of 1% of a layer, thus making these measurements more appropriate for astrochemistry than the existing values. We found that CO2 forms clusters on np-ASW surface even at very low coverage; this may help in explaining the segregation of CO2 in ices. The binding energies of N2, CO, O2, and CH4 on np-ASW decrease with coverage in the submonolayer regime. Their values in the low coverage limit are much higher than what is commonly used in gas-grain models. An empirical formula was used to describe the coverage dependence of the binding energies. We used the newly determined binding energy distributions in a simulation of gas-grain chemistry for cold dense clouds and hot core models. We found that owing to the higher value of desorption energy in the sub-monlayer regime a fraction of all these ices stays much longer and to higher temperature on the grain surface compared to the case using single value energies as currently done in astrochemical models.This work was supported in part by a grant to GV from NSF --- Astronomy & Astrophysics Division (#1311958)
Okamoto, Nozomi; Hisashige, Akinori; Tanaka, Yuu; Kurumatani, Norio
2013-01-01
The 15D is a self-administered questionnaire for assessment of health-related quality of life, which contains 15 questions with 5 response options each. This study was conducted to evaluate the reliability and validity of the Japanese 15D. The subjects were 430 community-dwelling elderly people. Each item of the 15D was scored on a 5-point Likert scale, with level 1 being the best, score 1. Reliability was assessed by determination of the internal consistency and test-retest reliability. Criterion-based validity was assessed using the Japanese version of the Nottingham Health Profile (NHP) and Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG index). Acceptability was assessed by inquiring about the time required to complete the questionnaire and the burden felt in responding to it. The answers of 423 individuals who responded to all items were analyzed. The median time required to complete the questionnaire was 5.0 minutes, and the proportion of subjects who indicated that the questionnaire was easy to complete was 98.3%. The Cronbach's alpha coefficients for all 15 items in the 2 surveys were 0.793 and 0.792, respectively. The intraclass correlation coefficients for the 15 items ranged from 0.44 to 0.72. In the relationship between the 15D and the NHP, the correlation coefficients between the corresponding domains were higher than those between non-corresponding domains. The prevalence of disability in higher-level functional capacity was higher in the "level 2 to 5" group than in the "level 1" group. The Japanese version of the 15D showed sufficient internal consistency and moderate repeatability. Because of the short time required to complete the Japanese 15D and the significant relationships between the scores on the 15D and the NHP, and between the 15D and higher-level functional capacity, the acceptability and validity of the Japanese 15D were considered to be sufficient.
Yang, Fan; Qian, Dongfu; Liu, Xueyi
2017-06-13
The socioeconomically disadvantaged populations are more likely to suffer from hypertension, and few have effectively treated and controlled their hypertension. Research on socioeconomic disparities in prevalence, awareness, treatment, and control of hypertension is warranted to inform the development of new strategies for reducing such health inequities. The China Health and Nutrition Survey (CHNS) followed up 20,174 individuals over a 20-year period. We added seven key socioeconomic indicators with age and age-squared into the mixed-effects models to explicitly assess the effect of socioeconomic determinants on hypertension throughout the adult life course. Prevalence of hypertension was at a higher level in the younger birth cohorts than that in the older generations. Age-related increases in prevalence, awareness, treatment, and control of hypertension were observed over the adult life course. Males, insured and ethnic Han were more likely to suffer from hypertension than their counterparts [coefficient (95% confidence intervals): 0.07(0.04, 0.09), 0.02(0.01, 0.03) and 0.05(0.03, 0.07), respectively]. Hypertension was more prevalent among individuals with higher income who lived in urbanized communities, and less among those with higher education attainment [coefficient (95% confidence intervals): -0.07(-0.12, -0.016)] across adulthood. High-level urbanization and education increased the probabilities of awareness, treatment, and control of hypertension, while household income decreased them [coefficient (95% confidence intervals): 0.28(0.17, 0.39), 0.27(0.17, 0.37) and 0.14(0.08, 0.21), respectively] over the adult life course. Community urbanicity brought the raise in awareness, treatment, and control of hypertension, but also led to an increase in prevalence of hypertension. People with fewer educational years or higher income may be the disadvantaged population of hypertension over the adult life course in China.
Köhler, A; King, R; Bahls, M; Groß, S; Steveling, A; Gärtner, S; Schipf, S; Gläser, S; Völzke, H; Felix, S B; Markus, M R P; Dörr, M
2018-01-18
Peak oxygen uptake (VO2peak) is commonly indexed by total body weight (TBW) to determine cardiopulmonary fitness (CPF). This approach may lead to misinterpretation, particularly in obese subjects. We investigated the normalization of VO2peak by different body composition markers. We analyzed combined data of 3848 subjects (1914 women; 49.7%), aged 20-90, from two independent cohorts of the population-based Study of Health in Pomerania (SHIP-2 and SHIP-TREND). VO2peak was assessed by cardiopulmonary exercise testing. Body cell mass (BCM), fat-free mass (FFM), and fat mass (FM) were determined by bioelectrical impedance analysis. The suitability of the different markers as a normalization variable was evaluated by taking into account correlation coefficients (r) and intercept (α-coefficient) values from linear regression models. A combination of high r and low α values was considered as preferable for normalization purposes. BCM was the best normalization variable for VO2peak (r = .72; P ≤ .001; α-coefficient = 63.3 mL/min; 95% confidence interval [CI]: 3.48-123) followed by FFM (r = .63; P ≤ .001; α-coefficient = 19.6 mL/min; 95% CI: -57.9-97.0). On the other hand, a much weaker correlation and a markedly higher intercept were found for TBW (r = .42; P ≤ .001; α-coefficient = 579 mL/min; 95% CI: 483 to 675). Likewise, FM was also identified as a poor normalization variable (r = .10; P ≤ .001; α-coefficient = 2133; 95% CI: 2074-2191). Sex-stratified analyses confirmed the above order for the different normalization variables. Our results suggest that BCM, followed by FFM, might be the most appropriate marker for the normalization of VO2peak when comparing CPF between subjects with different body shape. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air
NASA Astrophysics Data System (ADS)
Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri
2018-04-01
C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.
NASA Astrophysics Data System (ADS)
Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun
Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).
NASA Astrophysics Data System (ADS)
Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang
2017-04-01
Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.
Wind Tunnel Testing of Various Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Mineck, Raymond E.; Keller, Donald F.; Bobskill, Maria V.
2003-01-01
Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes fabricated from F-111 fabric had significantly greater statically stable absolute trim angles of attack at equivalent test conditions as compared to those fabricated from MILC-7020 Type III fabric. This reduction in static stability exhibited by model parachutes fabricated from F-111 fabric was attributed to the lower permeability of the F-111 fabric. The drag and static stability coefficient results were interpolated to obtain their values at Mars flight conditions using total porosity as the interpolating parameter.
Rossi, Anthony M; Claiborne, Tina L; Thompson, Gregory B; Todaro, Stacey
2016-09-01
The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Cross-sectional study. Laboratory. Helmets with different finishes and different football jersey fabrics. The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.
Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne
2012-08-30
To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments. Copyright © 2012 Elsevier B.V. All rights reserved.
Study of VOCs transport and storage in porous media and assemblies
NASA Astrophysics Data System (ADS)
Xu, Jing
Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to the vapor pressure of the compound, but also increased with the increase of the Henry's law constant. Experiment results also showed that a higher relative humidity led to a larger effective diffusion coefficient for both conventional wallboard and green wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient increased slightly with the increase of relative humidity from 20% to 50% and 70%. Engineered wood products such as particleboard have widely been used with wood veneer and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in this dissertation comprised both numerical and experimental investigation of the VOCs emission from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, moisture and pollutant simulations) was first described. Later, the transport properties of each material layer were determined. Several emission cases from a three-layered heterogeneous work assembly were modeled using a developed simulation model. At last, the numerical model was verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard small scale chamber. The model is promising in predicting VOCs' emissions for multilayered porous materials in emission tests.
Bano, Kiran; Kennedy, Gareth F; Zhang, Jie; Bond, Alan M
2012-04-14
The theory for large amplitude Fourier transformed ac voltammetry at a rotating disc electrode is described. Resolution of time domain data into dc and ac harmonic components reveals that the mass transport for the dc component is controlled by convective-diffusion, while the background free higher order harmonic components are flow rate insensitive and mainly governed by linear diffusion. Thus, remarkable versatility is available; Levich behaviour of the dc component limiting current provides diffusion coefficient values and access to higher harmonics allows fast electrode kinetics to be probed. Two series of experiments (dc and ac voltammetry) have been required to extract these parameters; here large amplitude ac voltammetry with RDE methodology is used to demonstrate that kinetics and diffusion coefficient information can be extracted from a single experiment. To demonstrate the power of this approach, theoretical and experimental comparisons of data obtained for the reversible [Ru(NH(3))(6)](3+/2+) and quasi-reversible [Fe(CN)(6)](3-/4-) electron transfer processes are presented over a wide range of electrode rotation rates and with different concentrations and electrode materials. Excellent agreement of experimental and simulated data is achieved, which allows parameters such as electron transfer rate, diffusion coefficient, uncompensated resistance and others to be determined using a strategically applied approach that takes into account the different levels of sensitivity of each parameter to the dc or the ac harmonic.
Demonstration of uneven distribution of intracranial pulsatility in hydrocephalus patients.
Eide, Per K
2008-11-01
Data from intracranial pressure (ICP) recordings in patients with hydrocephalus were reviewed to determine whether intracranial pulsatility within the cerebrospinal fluid (CSF) of cerebral ventricles (ICP(LV)) may differ from that within the brain parenchyma (ICP(PAR)), and whether pulsatility may differ between noncommunicating ventricles. The authors retrieved data from recordings previously obtained in 7 patients with hydrocephalus (noncommunicating in 4 and communicating in 3) and shunt failure who received both an external ventricular drainage (EVD) and an ICP sensor as part of surveillance during intensive care. Simultaneous ICP(LV) and ICP(PAR) signals were available in 6 cases, and simultaneous signals from the lateral and fourth ventricles (ICP(LV) and ICP4V, respectively) were recorded in 1 case. The recordings with both signals were parsed into 6-second time windows. Pulsatility was characterized by the wave amplitude and rise time coefficient, and differences in pulsatility between the ICP(LV) and ICP(PAR) signals (6 cases) or ICP(LV) and ICP4V signals (1 case) were determined. There was uneven distribution of intracranial pulsatility in all 7 patients, shown as significantly elevated pulsatility (that is, higher wave amplitudes and rise time coefficients) within the ventricles (ICP(LV)) than within brain parenchyma (ICP(PAR)) in 6 patients, and significantly higher pulsatility in the fourth (ICP4V) than in the lateral (ICP(LV)) ventricles in 1 patient. Differences > or = 1 mm Hg in ICP wave amplitude were found in 0.5-100% (median 9.4%) of observations in the 7 patients (total number of 6-second time windows, 68,242). The present observations demonstrate uneven distribution of intracranial pulsatility in patients with hydrocephalus, higher pulse pressure amplitudes within the ventricular CSF (ICP(LV)) than within the brain parenchyma (ICP(PAR)). This may be one mechanism behind ventricular enlargement in hydrocephalus.
Dietary fiber intakes and insulin requirements in pregnant women with type 1 diabetes.
Kalkwarf, H J; Bell, R C; Khoury, J C; Gouge, A L; Miodovnik, M
2001-03-01
To determine whether higher dietary fiber intake (water soluble and insoluble) is associated with lower insulin requirements and better glycemic control in pregnant women with type 1 diabetes consuming a self-selected diet. A longitudinal, observational study. Pregnant women (n=141) with type 1 diabetes participating in an interdisciplinary program examining the effects of glycemic control on pregnancy outcome (Diabetes and Pregnancy Program, University of Cincinnati Medical Center). We determined total, water soluble and insoluble fiber intakes from 3-day food records kept each trimester during pregnancy. Outcome measures were insulin dose, pre-meal blood glucose, and glycated hemoglobin concentrations. Correlation coefficients, multiple regression, mixed-model analysis of variance. Mean intakes (g/day) of total, water soluble fiber, and insoluble fiber were 14.0 (range, 1.8-33.1), 4.8 (range, 0.6-10.5) and 9.0 (range, 1.1-24.0), respectively. In the second and third trimesters of pregnancy, insulin requirements were inversely associated with total, water soluble, and insoluble fiber intakes; the correlation coefficients ranged from -0.22 to -0.17 (P=.02 to .08). Insulin requirements associated with a higher fiber intake (20.5 g/day) were 16% to 18% lower than for a lower fiber intake (8.1 g/day). These relations remained after adjustment for body weight, disease severity and duration, insulin type, and study year in the second (P=.03 to .10) but not in the third trimester. Pre-meal blood glucose and glycated hemoglobin concentrations were not associated with fiber intake. Among pregnant women with type 1 diabetes, higher fiber intake is associated with lower daily insulin requirements. Dietary fiber intake should be considered when counseling patients about the management of blood glucose concentrations.
Sioen, Isabelle; Mouratidou, Theodora; Herrmann, Diana; De Henauw, Stefaan; Kaufman, Jean-Marc; Molnár, Dénes; Moreno, Luis A; Marild, Staffan; Barba, Gianvincenzo; Siani, Alfonso; Gianfagna, Francesco; Tornaritis, Michael; Veidebaum, Toomas; Ahrens, Wolfgang
2012-10-01
The aim of this study was to investigate the relationship between markers of body fat and bone status assessed as calcaneal bone stiffness in a large sample of European healthy pre- and primary school children. Participants were 7,447 children from the IDEFICS study (spread over eight different European countries), age 6.1 ± 1.8 years (range 2.1-9.9), 50.5 % boys. Anthropometric measurements (weight, height, bioelectrical impedance, waist and hip circumference, and tricipital and subscapular skinfold thickness) as well as quantitative ultrasonographic measurements to determine calcaneal stiffness index (SI) were performed. Partial correlation analysis, linear regression analysis, and ANCOVA were stratified by sex and age group: preschool boys (n = 1,699) and girls (n = 1,599) and primary school boys (n = 2,062) and girls (n = 2,087). In the overall study population, the average calcaneal SI was equal to 80.2 ± 14.0, ranging 42.4-153. The results showed that preschool children with higher body fat had lower calcaneal SI (significant correlation coefficients between -0.05 and -0.20), while primary school children with higher body fat had higher calcaneal SI (significant correlation coefficients between 0.05 and 0.13). After adjusting for fat-free mass, both preschool and primary school children showed an inverse relationship between body fat and calcaneal stiffness. To conclude, body fat is negatively associated with calcaneal bone stiffness in children after adjustment for fat-free mass. Fat-free mass may confound the association in primary school children but not in preschool children. Muscle mass may therefore be an important determinant of bone stiffness.
EMPIRICAL DETERMINATION OF EINSTEIN A-COEFFICIENT RATIOS OF BRIGHT [Fe II] LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giannini, T.; Antoniucci, S.; Nisini, B.
The Einstein spontaneous rates (A-coefficients) of Fe{sup +} lines have been computed by several authors with results that differ from each other by up to 40%. Consequently, models for line emissivities suffer from uncertainties that in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines that would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-Very Large Telescope X-shooter instrument between 3000 Å and 24700 Å, we obtainedmore » a spectrum of the bright Herbig-Haro object HH 1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratios ≥100. Among these latter lines, we selected those emitted by the same level, whose dereddened intensity ratios are direct functions of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH 1 through intensity ratios of atomic species, H I recombination lines and H{sub 2} ro-vibrational transitions. We provide seven reliable A-coefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (λ12570/λ16440 and λ13209/λ16440) are in better agreement with the predictions by the Quinet et al. relativistic Hartree-Fock model. However, none of the theoretical models predict A-coefficient ratios in agreement with all of our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.« less
Anisotropy indices and the effects on the hydric behaviour of natural stone
NASA Astrophysics Data System (ADS)
Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel
2010-05-01
Building stone is an anisotropic material. Each type of rock (granite, limestone, slate, marble, etc.) has a different anisotropy, which is related to its own geological history, i.e. formation conditions and alteration processes. Knowing the anisotropy of natural stone is a matter of interest for determining the most adequate way to extract it from the quarry, for a better use during its manufacture or processing, to determine the quality of elements to be used as ashlars/masonry or as ornamental elements carving, as well to their arrangement in a structure. At the same time, materiaĺs anisotropy will condition the placing of, for instance, anchorages in dressing stone slabs. Anisotropy of natural stone controls water entry and its mobility, together with atmospheric pollutantśs, processes that favour the stone decay in building works, mainly those that shows a marked directional component, as it is the case of capillary water absorption. Water tends to be absorbed differently along the distinct main anisotropy directions, which are principally marked due to the arrangement and distribution of porosity in the rock. The aim of this study is to perform a comparative analysis of the various anisotropy indices commonly used when dealing with natural stone, determined by ultrasonic propagation techniques, in order to establish how anisotropy (by means of these indices) affect the process of capillary water absorption. Different type of natural stones have been selected, according to their traditional use for the construction of buildings in the region of Madrid (Spain). Their petrophysical properties have been determined (density, porosity, water absorption, etc), as well as ultrasonic transmission velocity has been measured along the three spatial directions of the test specimens (from 50 to 100 for each petrological type). According to this, the stone specimens were classified in different anisotropy levels or classes. Results show that stones with the highest anisotropy are those with the highest capillarity coefficient. It can also be observed that for each petrological variety, this capillarity coefficient is higher in the specimens classified as a high level anisotropy class. At the same time, when capillary water is absorbed along the direction perpendicular to the anisotropic planes, the absorption capacity diminishes, no matter the anisotropy level of the stone is. On the contrary, capillary coefficients are higher when measurements are performed in a parallel direction to that of the greatest anisotropy of the stone specimen, where absorption tends to be faster with higher coefficients according to the porosity size and its geometry. These increments are more significant in the stone varieties in which anisotropy is mainly due to fissuring or schistosity planes, or related to stromatolitic planes or oriented minerals accumulation. The arrangement and placing of rocks used as building materials with a significant anisotropy will highly condition the durability and lifetime of a considered element. For that reason, is essential to determine anisotropy indices to obtain the best and most adequate arrangement of stone elements in building works, minimizing water entry and thus, the material decay. Acknowledgements: to both MATERNAS (0505/MAT/0094) and GEOMATERIALES (2009-1629) research programmes, funded by the Regional Government of Madrid; to the CONSOLIDER-INGENIO programme (CSD2007-0058), funded by the Spanish Ministry of Education and Science; and to the Spanish Geological and Mining Institute (IGME) for the specimens preparation and hydric behaviour measurements.
Higher-order Peregrine combs and Peregrine walls for the variable-coefficient Lenells-Fokas equation
NASA Astrophysics Data System (ADS)
Wang, Zi-Qi; Wang, Xin; Wang, Lei; Sun, Wen-Rong; Qi, Feng-Hua
2017-02-01
In this paper, we study the variable-coefficient Lenells-Fokas (LF) model. Under large periodic modulations in the variable coefficients of the LF model, the generalized Akhmediev breathers develop into the breather multiple births (BMBs) from which we obtain the Peregrine combs (PCs). The PCs can be considered as the limiting case of the BMBs and be transformed into the Peregrine walls (PWs) with a specific amplitude of periodic modulation. We further investigate the spatiotemporal characteristics of the PCs and PWs analytically. Based on the second-order breather and rogue-wave solutions, we derive the corresponding higher-order structures (higher-order PCs and PWs) under proper periodic modulations. What is particularly noteworthy is that the second-order PC can be converted into the Peregrine pyramid which exhibits the higher amplitude and thickness. Our results could be helpful for the design of experiments in the optical fiber communications.
Accurate determination of complex materials coefficients of piezoelectric resonators.
Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji
2003-03-01
This paper presents a method of accurately determining the complex piezoelectric and elastic coefficients of piezoelectric ceramic resonators from the measurement of the normalized electric admittance, Y, which is electric admittance Y of piezoelectric resonator normalized by the angular frequency omega. The coefficients are derived from the measurements near three special frequency points that correspond to the maximum and the minimum normalized susceptance (B) and the maximum normalized conductance (G). The complex elastic coefficient is determined from the frequencies at these points, and the real and imaginary parts of the piezoelectric coefficient are related to the derivative of the susceptance with respect to the frequency and the asymmetry of the conductance, respectively, near the maximum conductance point. The measurements for some lead zirconate titanate (PZT) based ceramics are used as examples to demonstrate the calculation and experimental procedures and the comparisons with the standard methods.
Single-image diffusion coefficient measurements of proteins in free solution.
Zareh, Shannon Kian; DeSantis, Michael C; Kessler, Jonathan M; Li, Je-Luen; Wang, Y M
2012-04-04
Diffusion coefficient measurements are important for many biological and material investigations, such as studies of particle dynamics and kinetics, and size determinations. Among current measurement methods, single particle tracking (SPT) offers the unique ability to simultaneously obtain location and diffusion information about a molecule while using only femtomoles of sample. However, the temporal resolution of SPT is limited to seconds for single-color-labeled samples. By directly imaging three-dimensional diffusing fluorescent proteins and studying the widths of their intensity profiles, we were able to determine the proteins' diffusion coefficients using single protein images of submillisecond exposure times. This simple method improves the temporal resolution of diffusion coefficient measurements to submilliseconds, and can be readily applied to a range of particle sizes in SPT investigations and applications in which diffusion coefficient measurements are needed, such as reaction kinetics and particle size determinations. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients
McCabe, Gregory J.; Hay, Lauren E.; Bock, Andy; Markstrom, Steven L.; Atkinson, R. Dwight
2015-01-01
Monthly calibrated values of the Hamon PET coefficient (C) are determined for 109,951 hydrologic response units (HRUs) across the conterminous United States (U.S.). The calibrated coefficient values are determined by matching calculated mean monthly Hamon PET to mean monthly free-water surface evaporation. For most locations and months the calibrated coefficients are larger than the standard value reported by Hamon. The largest changes in the coefficients were for the late winter/early spring and fall months, whereas the smallest changes were for the summer months. Comparisons of PET computed using the standard value of C and computed using calibrated values of C indicate that for most of the conterminous U.S. PET is underestimated using the standard Hamon PET coefficient, except for the southeastern U.S.
Geopotential coefficient determination and the gravimetric boundary value problem: A new approach
NASA Technical Reports Server (NTRS)
Sjoeberg, Lars E.
1989-01-01
New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.
Lee, Kil Yong; Burnett, William C
A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.
The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen
2017-10-01
In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.
Mattei, Lorenza; Di Puccio, Francesca; Joyce, Thomas J; Ciulli, Enrico
2015-03-01
In the present study, numerical and experimental wear investigations on reverse total shoulder arthroplasties (RTSAs) were combined in order to estimate specific wear coefficients, currently not available in the literature. A wear model previously developed by the authors for metal-on-plastic hip implants was adapted to RTSAs and applied in a double direction: firstly, to evaluate specific wear coefficients for RTSAs from experimental results and secondly, to predict wear distribution. In both cases, the Archard wear law (AR) and the wear law of UHMWPE (PE) were considered, assuming four different k functions. The results indicated that both the wear laws predict higher wear coefficients for RTSA with respect to hip implants, particularly the AR law, with k values higher than twofold the hip ones. Such differences can significantly affect predictive wear model results for RTSA, when non-specific wear coefficients are used. Moreover, the wear maps simulated with the two laws are markedly different, although providing the same wear volume. A higher wear depth (+51%) is obtained with the AR law, located at the dome of the cup, while with the PE law the most worn region is close to the edge. Taking advantage of the linear trend of experimental volume losses, the wear coefficients obtained with the AR law should be valid despite having neglected the geometry update in the model. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lungevics, J.; Jansons, E.; Gross, K. A.
2018-02-01
The ability to slide on ice has previously focused on the measurement of friction coefficient rather than the actual sliding velocity that is affected by it. The performance can only be directly measured by the sliding velocity, and therefore the objective was to design and setup a facility to measure velo-city, and determine how experimental conditions affect it. Optical sensors were placed on an angled ice track to provide sliding velocity measurements along three sections and the velocity for the total sliding distance. Experimental conditions included the surface roughness, ambient temperature and load. The effect of roughness was best reported with a Criterion of Contact that showed a similar sliding velocity for metal blocks abraded with sand paper smoother than 600 grit. Searching for the effect of temperature, the highest sliding velocity coincided with the previously reported lowest coefficient of ice friction. Load showed the greatest velocity increase at temperatures closer to the ice melting point suggesting that in such conditions metal block overcame friction forces more easily than in solid friction. Further research needs to be conducted on a longer ice track, with larger metal surfaces, heavier loads and higher velocities to determine how laboratory experiments can predict real-life situations.
Letsas, Konstantinos P; Filippatos, Gerasimos S; Pappas, Loukas K; Mihas, Constantinos C; Markou, Virginia; Alexanian, Ioannis P; Efremidis, Michalis; Sideris, Antonios; Maisel, Alan S; Kardaras, Fotios
2009-02-01
The present study aimed to investigate the clinical and echocardiographic determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation (AF) and preserved left ventricular ejection fraction (LVEF). NT-pro-BNP levels were measured in 45 patients with paroxysmal AF, 41 patients with permanent AF and 48 controls. NT-pro-BNP levels were found significantly elevated in patients with paroxysmal (215+/-815 pg/ml) and permanent AF (1,086+/-835 pg/ml) in relation to control population (86.3+/-77.9 pg/ml) (P<0.001). According to the univariate linear regression analysis, age, hypertension, beta-blocker use, left atrial diameter (LAD), LVEF and AF status (paroxysmal or permanent or both) were significantly associated with NT-pro-BNP levels (P<0.05). In multiple linear regression analysis, LVEF (B coefficient: -53.030; CI: -95.738 to -10.322; P: 0.015) and LAD (B coefficient: 285.858; CI: 23.731-547.986; P: 0.033) were significant and independent determinants of NT-pro-BNP levels. Plasma NT-pro-BNP levels were significantly higher in patients with paroxysmal and permanent AF compared to those with sinus rhythm in the setting of preserved left ventricular systolic function. LVEF and LAD were independent predictors of NT-pro-BNP levels.
NASA Astrophysics Data System (ADS)
Nyilas, A.; Weiss, K. P.
2008-03-01
A new extensometer capable of measuring diametral strains during axial loading of structural materials and superconducting composite wires has been developed. Using this new transducer it is possible to determine both the averaged axial strain and the transverse strain. The diametral extensometer with a mass of around 1 g is foreseen to be clamped onto the wire inside the averaging double extensometer sensing device system. The sensitivity of this new diametral extensometer is very high, nearly a factor of ten higher than the axial extensometer system. In addition, for structural materials and for composite materials an adjustable diametral extensometer enabling to test specimens between 5 mm and 15 mm diameter has been also developed and tested successfully at 4 K. For materials 304 L, Inconel 718, and modified Type 316LN stainless steel cast alloy the Poisson's coefficient could be determined at 295 K. Type 310 S stainless steel has been investigated at 7 K and at 4 K using the adjustable extensometer to determine the Poisson's coefficient, too. Furthermore, different types of superconducting A15 phase composite wires with diameters between 0.8 and 1.3 mm's were characterized in axial and diametral orientation.
Determination of the carmine content based on spectrum fluorescence spectral and PSO-SVM
NASA Astrophysics Data System (ADS)
Wang, Shu-tao; Peng, Tao; Cheng, Qi; Wang, Gui-chuan; Kong, De-ming; Wang, Yu-tian
2018-03-01
Carmine is a widely used food pigment in various food and beverage additives. Excessive consumption of synthetic pigment shall do harm to body seriously. The food is generally associated with a variety of colors. Under the simulation context of various food pigments' coexistence, we adopted the technology of fluorescence spectroscopy, together with the PSO-SVM algorithm, so that to establish a method for the determination of carmine content in mixed solution. After analyzing the prediction results of PSO-SVM, we collected a bunch of data: the carmine average recovery rate was 100.84%, the root mean square error of prediction (RMSEP) for 1.03e-04, 0.999 for the correlation coefficient between the model output and the real value of the forecast. Compared with the prediction results of reverse transmission, the correlation coefficient of PSO-SVM was 2.7% higher, the average recovery rate for 0.6%, and the root mean square error was nearly one order of magnitude lower. According to the analysis results, it can effectively avoid the interference caused by pigment with the combination of the fluorescence spectrum technique and PSO-SVM, accurately determining the content of carmine in mixed solution with an effect better than that of BP.
Transport coefficients in high-temperature ionized air flows with electronic excitation
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
Chew, Siew-Choo; Khor, Geok-Lin; Loh, Su-Peng
2011-01-01
Folate is of prime interest among investigators in nutrition due to its multiple roles in maintaining health, especially in preventing neural tube defects and reducing the risk of cardiovascular diseases. We investigated the effect of dietary folate intake on blood folate, vitamin B(12), vitamin B(6), and homocysteine status. One hundred subjects consisting of Chinese and Malay subjects volunteered to participate in this cross-sectional study. Dietary folate intake was assessed by 24-h dietary recall and a food-frequency questionnaire (FFQ). Serum and red blood cell folate were analyzed using a microbiological assay, while serum vitamin B(12) was determined by electrochemiluminescence immunoassay (ECLIA), and high-performance liquid chromatography (HPLC) was used for the determination of serum vitamin B(6) and homocysteine. The mean folate intake, serum folate, RBC folate, serum vitamin B(12), and B(6), were higher in female subjects, with the exception of serum homocysteine. The Chinese tended to have higher folate intake, serum folate, RBC folate, and vitamin B(12). A positive association was found between folate intake and serum folate while a negative association was found between folate intake and serum homocysteine. Stepwise linear regression of serum folate showed a significant positive coefficient for folate intake whilst a significant negative coefficient was found for serum homocysteine when controlling for age, gender, and ethnicity. In conclusion, high dietary folate intake helps to increase serum folate and to lower the homocysteine levels.
Spectroscopic study of trivalent praseodymium in barium yttrium fluoride
NASA Astrophysics Data System (ADS)
Bowlby, Brian Edward
1998-09-01
This work investigates the spectroscopic properties of trivalent praseodymium (Pr3+) in barium yttrium fluoride (BaY2F8). Two doping concentrations were studied: BaY2F8:Pr3+ (.3%) and BaY2F8:Pr3+ (1%). Absorption spectra were taken at 77K and 300K and these were then used to calculate the Judd-Ofelt coefficients for both samples. These coefficients were then used to calculate the theoretical lifetimes and radiative branching ratios for all manifolds. Continuous luminescence spectra and lifetime measurements were also performed, and from these, experimentally determined values for the branching ratio and lifetimes were determined. These were then compared to their theoretical counterparts. It was found that while the theory gave values that were qualitatively correct, the quantitative correlation between theory and experiment shows the complexity of the physical reality and the difficulty of synthesizing an encompassing theoretical model. Absorption spectra and continuous luminescence spectra were also used to determine the energy levels of all manifolds in both samples. A total of 59 energy levels in 11 manifolds were identified in the BaY2F8:Pr3+ (1%) sample, while 51 levels in 11 manifolds were identified in the BaY2F8:Pr3+ (.3%) sample. Finally, the effects of temperature on the line width and line position for several radiative transitions was studied. It was found that while most transitions exhibited the expected broadening and shifting towards longer wavelengths at higher temperatures (a 'red shift'), the transition from the 3P0 level to the 3H4 ground state showed a shift towards shorter wavelengths at higher temperature (a 'blue shift'). Again this highlights the complexity of the ion- host interaction.
NASA Astrophysics Data System (ADS)
Staf, Hjalmar; Olsson, Erik; Lindskog, Per; Larsson, Per-Lennart
2018-03-01
The frictional behavior during powder compaction and ejection is studied using an instrumented die with eight radial sensors. The average friction over the total powder pillar is used to determine a local friction coefficient at each sensor. By comparing forces at compaction with forces at ejection, it can be shown that the Coulomb's friction coefficient can be described as a function of normal pressure. Also stick phenomena has been investigated in order to assess its influence on the determination of the local friction coefficient.
NASA Astrophysics Data System (ADS)
Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.
1992-09-01
A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.
ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients.
Kim, Seongho
2015-11-01
Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation using a recursive formula requires an enormous number of recursive calculations to obtain the correlation coefficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and semi-partial correlations without computational burden. The package ppcor further provides users with the level of the statistical significance with its test statistic.
Entropic Lattice Boltzmann Simulations of Turbulence
NASA Astrophysics Data System (ADS)
Keating, Brian; Vahala, George; Vahala, Linda; Soe, Min; Yepez, Jeffrey
2006-10-01
Because of its simplicity, nearly perfect parallelization and vectorization on supercomputer platforms, lattice Boltzmann (LB) methods hold great promise for simulations of nonlinear physics. Indeed, our MHD-LB code has the best sustained performance/PE of any code on the Earth Simulator. By projecting into the higher dimensional kinetic phase space, the solution trajectory is simpler and much easier to compute than standard CFD approach. However, simple LB -- with its simple advection and local BGK collisional relaxation -- does not impose positive definiteness of the distribution functions in the time evolution. This leads to numerical instabilities for very low transport coefficients. In Entropic LB (ELB) one determines a discrete H-theorem and the equilibrium distribution functions subject to the collisional invariants. The ELB algorithm is unconditionally stable to arbitrary small transport coefficients. Various choices of velocity discretization are examined: 15, 19 and 27-bit ELB models. The connection between Tsallis and Boltzmann entropies are clarified.
Development and application of a unified balancing approach with multiple constraints
NASA Technical Reports Server (NTRS)
Zorzi, E. S.; Lee, C. C.; Giordano, J. C.
1985-01-01
The development of a general analytic approach to constrained balancing that is consistent with past influence coefficient methods is described. The approach uses Lagrange multipliers to impose orbit and/or weight constraints; these constraints are combined with the least squares minimization process to provide a set of coupled equations that result in a single solution form for determining correction weights. Proper selection of constraints results in the capability to: (1) balance higher speeds without disturbing previously balanced modes, thru the use of modal trial weight sets; (2) balance off-critical speeds; and (3) balance decoupled modes by use of a single balance plane. If no constraints are imposed, this solution form reduces to the general weighted least squares influence coefficient method. A test facility used to examine the use of the general constrained balancing procedure and application of modal trial weight ratios is also described.
Liu, Yinghui; Zhang, Yanming; Cao, Xupeng; Xue, Song
2013-11-01
Malonyl-coenzymeA:acyl-carrier protein transacylase (MCAT), which catalyzes the transfer of the malonyl group from malonyl-CoA to acyl-carrier protein (ACP), is an essential enzyme in type II fatty-acid synthesis. The enzyme MCAT from Synechocystis sp. PCC 6803 (spMCAT), the first MCAT counterpart from a cyanobacterium, was cloned, purified and crystallized in order to determine its three-dimensional crystal structure. A higher-quality crystal with better diffraction was obtained by crystallization optimization. The crystal diffracted to 1.8 Å resolution and belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 43.22, b = 149.21, c = 40.59 Å. Matthews coefficient calculations indicated that the crystal contained one spMCAT molecule in the asymmetric unit with a Matthews coefficient of 2.18 Å(3) Da(-1) and a solvent content of 43.65%.
Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals
NASA Astrophysics Data System (ADS)
Levcenko, S.; Hajdeu-Chicarosh, E.; Garcia-Llamas, E.; Caballero, R.; Serna, R.; Bodnar, I. V.; Victorov, I. A.; Guc, M.; Merino, J. M.; Pérez-Rodriguez, A.; Arushanov, E.; León, M.
2018-04-01
The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devices.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nanotribological performance of fullerene-like carbon nitride films
NASA Astrophysics Data System (ADS)
Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier
2014-09-01
Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.
Aladko, E Ya; Dyadin, Yu A; Fenelonov, V B; Larionov, E G; Manakov, A Yu; Mel'gunov, M S; Zhurko, F V
2006-10-05
The experimental data on decomposition temperatures for the gas hydrates of ethane, propane, and carbon dioxide dispersed in silica gel mesopores are reported. The studies were performed at pressures up to 1 GPa. It is shown that the experimental dependence of hydrate decomposition temperature on the size of pores that limit the size of hydrate particles can be described on the basis of the Gibbs-Thomson equation only if one takes into account changes in the shape coefficient that is present in the equation; in turn, the value of this coefficient depends on a method of mesopore size determination. A mechanism of hydrate formation in mesoporous medium is proposed. Experimental data providing evidence of the possibility of the formation of hydrate compounds in hydrophobic matrixes under high pressure are reported. Decomposition temperature of those hydrate compounds is higher than that for the bulk hydrates of the corresponding gases.
NASA Astrophysics Data System (ADS)
Koenig, T. W.; Olson, D. L.; Mishra, B.; King, J. C.; Fletcher, J.; Gerstenberger, L.; Lawrence, S.; Martin, A.; Mejia, C.; Meyer, M. K.; Kennedy, R.; Hu, L.; Kohse, G.; Terry, J.
2011-06-01
To create an in-situ, real-time method of monitoring neutron damage within a nuclear reactor core, irradiated silicon carbide samples are examined to correlate measurable variations in the material properties with neutron fluence levels experienced by the silicon carbide (SiC) during the irradiation process. The reaction by which phosphorus doping via thermal neutrons occurs in the silicon carbide samples is known to increase electron carrier density. A number of techniques are used to probe the properties of the SiC, including ultrasonic and Hall coefficient measurements, as well as high frequency impedance analysis. Gamma spectroscopy is also used to examine residual radioactivity resulting from irradiation activation of elements in the samples. Hall coefficient measurements produce the expected trend of increasing carrier concentration with higher fluence levels, while high frequency impedance analysis shows an increase in sample impedance with increasing fluence.
Measurement of the Drell-Yan angular distribution in the dimuon channel using 2011 CMS data
NASA Astrophysics Data System (ADS)
Silvers, David I.
The angular distributions of muons produced by the Drell-Yan process are measured as a function of dimuon transverse momentum in two ranges of rapidity. Events from pp collisions at sqrt( s) = 7 TeV were collected with the CMS detector using dimuon triggers and selected from data samples corresponding to 4.9 fb-1 of integrated luminosity. The two-dimensional angular distribution dN/dO of the negative muon in the Collins-Soper frame is fitted to determine the coefficients in a parametric form of the angular distribution. The measured coefficients are compared to next-to-leading order calculations. We observe that qq and leading order qg production dominate the Drell-Yan process at pT (mumu) <55 GeV/c, while higher-order qg production dominates the Drell-Yan process for 55< pT (mumu) <120 GeV/c.
Miller, Bradley J.; Patten, Jr., Donald O.
1991-01-01
Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.
Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1960-01-01
The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.
Investigating Whistler Mode Wave Diffusion Coefficients at Mars
NASA Astrophysics Data System (ADS)
Shane, A. D.; Liemohn, M. W.; Xu, S.; Florie, C.
2017-12-01
Observations of electron pitch angle distributions have suggested collisions are not the only pitch angle scattering process occurring in the Martian ionosphere. This unknown scattering process is causing high energy electrons (>100 eV) to become isotropized. Whistler mode waves are one pitch angle scattering mechanism known to preferentially scatter high energy electrons in certain plasma regimes. The distribution of whistler mode wave diffusion coefficients are dependent on the background magnetic field strength and thermal electron density, as well as the frequency and wave normal angle of the wave. We have solved for the whistler mode wave diffusion coefficients using the quasi-linear diffusion equations and have integrated them into a superthermal electron transport (STET) model. Preliminary runs have produced results that qualitatively match the observed electron pitch angle distributions at Mars. We performed parametric sweeps over magnetic field, thermal electron density, wave frequency, and wave normal angle to understand the relationship between the plasma parameters and the diffusion coefficient distributions, but also to investigate what regimes whistler mode waves scatter only high energy electrons. Increasing the magnetic field strength and lowering the thermal electron density shifts the distribution of diffusion coefficients toward higher energies and lower pitch angles. We have created an algorithm to identify Mars Atmosphere Volatile and EvolutioN (MAVEN) observations of high energy isotropic pitch angle distributions in the Martian ionosphere. We are able to map these distributions at Mars, and compare the conditions under which these are observed at Mars with the results of our parametric sweeps. Lastly, we will also look at each term in the kinetic diffusion equation to determine if the energy and mixed diffusion coefficients are important enough to incorporate into STET as well.
Neutron fluence-to-dose conversion coefficients for embryo and fetus.
Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica
2004-01-01
A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.
NASA Astrophysics Data System (ADS)
Khan, Afed U.; Jiang, Jiping; Wang, Peng; Zheng, Yi
2017-10-01
Surface waters exhibit regionalization due to various climatic conditions and anthropogenic activities. Here we assess the impact of topographic and socio-economic factors on the climate sensitivity of surface water quality, estimated using an elasticity approach (climate elasticity of water quality (CEWQ)), and identify potential risks of instability in different regions and climatic conditions. Large global datasets were used for 12 main water quality parameters from 43 water quality monitoring stations located at large major rivers. The results demonstrated that precipitation elasticity shows higher sensitivity to topographic and socio-economic determinants as compared to temperature elasticity. In tropical climate class (A), gross domestic product (GDP) played an important role in stabilizing the CEWQ. In temperate climate class (C), GDP played the same role in stability, while the runoff coefficient, slope, and population density fuelled the risk of instability. The results implied that watersheds with lower runoff coefficient, thick population density, over fertilization and manure application face a higher risk of instability. We discuss the socio-economic and topographic factors that cause instability of CEWQ parameters and conclude with some suggestions for watershed managers to bring sustainability in freshwater bodies.
Mao, Like; Roos, Yrjö H; Miao, Song
2013-02-20
Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p < 0.05). However, volatiles had higher release rates in emulsions with higher MG contents. When oil content was reduced from 20 to 10%, C(initial) and C(max) increased for limonene and hexanal and decreased for propanol and diacetyl. When different oils were applied, both C(initial) and C(max) were significantly lower in medium-chain triglyceride emulsions than in soybean oil emulsions (p < 0.05). Static headspace analysis revealed that volatile compounds had significantly lower air-emulsion partition coefficients in the structured emulsions than in unstructured emulsions (p < 0.05). These results indicated that MG structured emulsions can be potentially used as delivery systems to modulate volatile release.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-05-01
Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-11-01
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
NASA Technical Reports Server (NTRS)
Righter, K.; Leeman, W. P.; Hervig, R. L.
2006-01-01
Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.
NASA Astrophysics Data System (ADS)
Lüdemann, L.; Sreenivasa, G.; Michel, R.; Rosner, C.; Plotkin, M.; Felix, R.; Wust, P.; Amthauer, H.
2006-06-01
Assessment of perfusion with 15O-labelled water (H215O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF.
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Walberg, G. D.
1980-01-01
Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained.
NASA Astrophysics Data System (ADS)
Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae
2018-07-01
It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.
Determining the Intermolecular Potential Energy in a Gas: A Physical Chemistry Experiment
ERIC Educational Resources Information Center
Olbregts, J.; Walgraeve, J. P.
1976-01-01
Describes an experiment in which gas viscosity coefficients over a large temperature range are used to determine the parameters of the intermolecular potential energy and other properties such as virial coefficients. (MLH)
An experimental determination of the drag coefficient of a Mens 8+ racing shell.
Buckmann, James G; Harris, Samuel D
2014-01-01
This study centered around an experimental analysis of a Mens Lightweight Eight racing shell and, specifically, determining an approximation for the drag coefficient. A testing procedure was employed that used a Global Positioning System (GPS) unit in order to determine the acceleration and drag force on the shell, and through calculations yield a drag coefficient. The testing was run over several days in numerous conditions, and a 95% confidence interval was established to capture the results. The results obtained, over these varying trials, maintained a successful level of consistency. The significance of this study transcends the determination an approximation for the drag coefficient of the racing shell; it defined a successful means of quantifying performance of the shell itself. The testing procedures outlined in the study represent a uniform means of evaluating the factors that influence drag on the shell, and thus influence speed.
Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements
NASA Technical Reports Server (NTRS)
Glenn, G. M.
1976-01-01
A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.
[Determination of the error of aerosol extinction coefficient measured by DOAS].
Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi
2006-10-01
The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.
NASA Astrophysics Data System (ADS)
Zeyada, H. M.; Makhlouf, M. M.
2016-04-01
The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.
NASA Astrophysics Data System (ADS)
Fry, Patrick M.; Sromovsky, L. A.
2009-09-01
Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.
Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang
2018-01-01
Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.
Newitt, David C; Malyarenko, Dariya; Chenevert, Thomas L; Quarles, C Chad; Bell, Laura; Fedorov, Andriy; Fennessy, Fiona; Jacobs, Michael A; Solaiyappan, Meiyappan; Hectors, Stefanie; Taouli, Bachir; Muzi, Mark; Kinahan, Paul E; Schmainda, Kathleen M; Prah, Melissa A; Taber, Erin N; Kroenke, Christopher; Huang, Wei; Arlinghaus, Lori R; Yankeelov, Thomas E; Cao, Yue; Aryal, Madhava; Yen, Yi-Fen; Kalpathy-Cramer, Jayashree; Shukla-Dave, Amita; Fung, Maggie; Liang, Jiachao; Boss, Michael; Hylton, Nola
2018-01-01
Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps. Phantom and in vivo breast studies were evaluated for two ([Formula: see text]) and four ([Formula: see text]) [Formula: see text]-value diffusion metrics. Concordance of the majority of implementations was excellent for both phantom ADC measures and in vivo [Formula: see text], with relative biases [Formula: see text] ([Formula: see text]) and [Formula: see text] (phantom [Formula: see text]) but with higher deviations in ADC at the lowest phantom ADC values. In vivo [Formula: see text] concordance was good, with typical biases of [Formula: see text] to 3% but higher for online maps. Multiple b -value ADC implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC differences ranged from negligible for phantom data to 2.8% for [Formula: see text] in vivo data. Some higher deviations were found for individual implementations and online parametric maps. Despite generally good concordance, implementation biases in ADC measures are sometimes significant and may be large enough to be of concern in multisite studies.
Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.
Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S
2008-01-01
To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
Determinig the Shape Coefficient A of Groove on the Pen for the Shaft
NASA Astrophysics Data System (ADS)
Křístek, Ivo; Havlík, Jiří; Mosler, Václav; Daniš, Igor
2017-12-01
This article focuses on creating a diagram for determining the shape coefficient α for a tongue groove on the shaft. Experimental determination of curve diagrams by comparing diagrams and monograms used using FEM calculations.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2018-06-01
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.
Burns, Scott A; Cleland, Joshua A; Carpenter, Kristin; Mintken, Paul E
2016-03-01
Examine the interrater reliability of cervicothoracic and shoulder physical examination in patients with a primary complaint of shoulder pain. Single-group repeated-measures design for interrater reliability. Orthopaedic physical therapy clinics. Twenty-one patients with a primary complaint of shoulder pain underwent a standardized examination by a physical therapist (PT). A PT conducted the first examination and one of two additional PTs conducted the 2nd examination. The Cohen κ and weighted κ were used to calculate the interrater reliability of ordinal level data. Intraclass correlation coefficients model 2,1 (ICC2,1) and the 95% confidence intervals were calculated to determine the interrater reliability. The kappa coefficients ranged from -.24 to .83 for the mobility assessment of the glenohumeral, acromioclavicular and sternoclavicular joints. The kappa coefficients ranged from -.20 to .58 for joint mobility assessment of the cervical and thoracic spine. The kappa coefficients ranged from .23 to 1.0 for special tests of the shoulder and cervical spine. The present study reported the reliability of a comprehensive upper quarter physical examination for a group of patients with a primary report of shoulder pain. The reliability varied considerably for the cervical and shoulder examination and was significantly higher for the examination of muscle length and cervical range of motion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Zaji, Amir Hossein
2018-03-01
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Incompressibility in finite nuclei and nuclear matter
NASA Astrophysics Data System (ADS)
Stone, J. R.; Stone, N. J.; Moszkowski, S. A.
2014-04-01
The incompressibility (compression modulus) K0 of infinite symmetric nuclear matter at saturation density has become one of the major constraints on mean-field models of nuclear many-body systems as well as of models of high density matter in astrophysical objects and heavy-ion collisions. It is usually extracted from data on the giant monopole resonance (GMR) or calculated using theoretical models. We present a comprehensive reanalysis of recent data on GMR energies in even-even 112-124Sn and 106,100-116Cd and earlier data on 58≤A≤208 nuclei. The incompressibility of finite nuclei KA is calculated from experimental GMR energies and expressed in terms of A-1/3 and the asymmetry parameter β =(N-Z)/A as a leptodermous expansion with volume, surface, isospin, and Coulomb coefficients Kvol, Ksurf, Kτ, and KCoul. Only data consistent with the scaling approximation, leading to a fast converging leptodermous expansion, with negligible higher-order-term contributions to KA, were used in the present analysis. Assuming that the volume coefficient Kvol is identified with K0, the KCoul=-(5.2±0.7) MeV and the contribution from the curvature term KcurvA-2/3 in the expansion is neglected, compelling evidence is found for K0 to be in the range 250
NASA Astrophysics Data System (ADS)
Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Golosov, Valentin; Wakiyama, Yoshifumi; Takase, Tsugiko; Yoschenko, Vasyl; Zheleznyak, Mark
2016-04-01
The mobility and bioavailability of radiocesium (r-Cs) of accidental origin is governed by the ratio of its chemical forms in fallout and site-specific environmental characteristics determining the rates of leaching, fixation-remobilization, as well as sorption-desorption of the mobile fraction (its solid-liquid distribution). R-Cs in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.). This is associated with two basic processes - high selective reversible sorption and fixation. Climate and geographical conditions for Fukushima Prefecture of Japan and Chernobyl zone differ. For example, the catchments of the Chernobyl zone are flat and characterized by low slopes, while Fukushima's watersheds are hilly with steep slopes. Annual precipitation also differs substantially, with annual average for Fukushima about 3 times higher than at Chernobyl. The soils on the north-east coast of the Honshu island that were primarily affected by the radioactive contamination from the Fukushima Daiichi nuclear power plant (FDNPP) accident differ significantly from the Chernobyl zone soils. The proportion of clays such as illite, vermiculite etc. is 20-30% at Fukushima, which is higher than in the sandy loam soils of the Chernobyl zone. In addition to the landscape differences, the speciation of r-Cs in fallout was also different between Fukushima and Chernobyl. It is a challenge to compare r-Cs behavior in FDNPP and Chernobyl zones. Comparative analysis has been carried out for r-Cs wash-off parameters and the distribution coefficient Kd in rivers and surface runoff on Fukushima and Chernobyl contaminated areas for the first years after the accidents. The r-Cs distribution coefficient in Fukushima rivers was 1-2 orders of magnitude higher than correspondent values for rivers and surface runoff of the Chernobyl zone. This suggests higher ability of Fukushima soils and sediments to bind r-Cs. The normalized dissolved wash-off coefficients for Fukushima river watersheds are 1-2 orders of magnitude lower than corresponding values for the Chernobyl zone. Normalized particulate wash-off coefficients are comparable for Fukushima and Chernobyl. The effective dispersion coefficients in the Fukushima soils were found to be relatively high (2-10 cm2/year) as compared to Chernobyl values. Investigation and analysis of Fukushima-derived r-Cs distribution in soils of Niida river catchment has led to identify accumulation zones of contaminated sediments on the floodplain. Contaminated sediment accumulation is one of the most important factors for predicting r-Cs redistribution on a catchment and its fluvial transport, and is also relevant for decision making on remediation options of contaminated territories.
Local Analogues: Comparing a 12 inch Telescope to the Hubble
NASA Astrophysics Data System (ADS)
Moore, Nathaniel; DeGroot, Laura
2018-01-01
The College of Wooster Campus Observatory is home to two telescopes: an 8 inch and a 12 inch. We aimed to test the limits of the observatory equipment and conditions by targeting nearby galaxies, to determine their morphology based on lower resolution. We suspected that this resolution would be similar to that of the Hubble Telescope (HST) for galaxies with a higher redshift. From our images, we hoped to find various variables related to the morphology of the nearby galaxies. These variables included the Sérsic index, concentration, asymmetry, smoothness, the Gini coefficient, and M20. From here, we hoped that these would allow us to create a comparison between lower resolution galaxies that are nearby and galaxies with a higher redshift with similar resolutions.
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
Measurement of diffusion coefficients of parabens and steroids in water and 1-octanol.
Seki, Toshinobu; Mochida, Junko; Okamoto, Maiko; Hosoya, Osamu; Juni, Kazuhiko; Morimoto, Kazuhiro
2003-06-01
Diffusion coefficients (D) of parabens and steroids in water and 1-octanol were determined by using the chromatographic broadening method at 37 degrees C, and the relationships between the D values and the physicochemical properties of the drugs were discussed. The D values in 1-octanol were lower than those in water because of the higher viscosity of 1-octanol. The D values depend on not only the molecular weight (MW), but also the lipophilicity of the drugs in water and on the ability for hydrogen-bonding in 1-octanol. When the lipophilic index (LI), calculated from the retention time using in a reverse-phase column, was used as a parameter of drug lipophilicity, the following equation was obtained for D in water (D(w)); log D(w)=-0.215.log MW-0.077.log LI-4.367. When the hydrogen bond index (HI), the logarithm of the ratio of the partition coefficient of the drugs in 1-octanol and cyclohexane, was used as an index of hydrogen-bonding, the following equation was obtained for D in 1-octanol (D(o)); log D(o)=-0.690.log MW-0.074.log HI-4.085.
Nolte, R; Mühlbradt, K-H; Meulders, J P; Stephan, G; Haney, M; Schmid, E
2005-12-01
The production of dicentric chromosomes in human lymphocytes by high-energy neutron radiation was studied using a quasi-monoenergetic 60 MeV neutron beam. The average yield coefficient [see text] of the linear dose-response relationship for dicentric chromosomes was measured to be (0.146+/-0.016) Gy-1. This confirms our earlier observations that above 400 keV, the yield of dicentric chromosomes decreases with increasing neutron energy. Using the linear-quadratic dose-response relationship for dicentric chromosomes established in blood of the same donor for 60Co gamma-rays as a reference radiation, an average maximum low-dose RBE (RBEM) of 14+/-4 for 60 MeV quasi-monoenergetic neutrons with a dose-weighted average energy [see text] of 41.0 MeV is obtained. A correction procedure was applied, to account for the low-energy continuum of the quasi-monoenergetic spectral neutron distribution, and the yield coefficient alpha for 60 MeV neutrons was determined from the measured average yield coefficient [see text]. For alpha, a value of (0.115+/-0.026) Gy-1 was obtained corresponding to an RBEM of 11+/-4. The present experiments extend earlier investigations with monoenergetic neutrons to higher energies.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.
1977-01-01
Drag and heating rates on wavy surfaces typical of current corrugated plate designs for thermal protection systems were determined experimentally. Pressure-distribution, heating-rate, and oil-flow tests were conducted in the Langley Unitary Plan wind tunnel at Mach numbers of 2.4 and 4.5 with the corrugated surface exposed to both thick and thin turbulent boundary layers. Tests were conducted with the corrugations at cross-flow angles from 0 deg to 90 deg to the flow. Results show that for cross-flow angles of 30 deg or less, the pressure drag coefficients are less than the local flat-plate skin-friction coefficients and are not significantly affected by Mach number, Reynolds number, or boundary-layer thickness over the ranges investigated. For cross-flow angles greater than 30 deg, the drag coefficients increase significantly with cross-flow angle and moderately with Reynolds number. Increasing the Mach number causes a significant reduction in the pressure drag. The average and peak heating penalties due to the corrugated surface are small for cross-flow angles of 10 deg or less but are significantly higher for the larger cross-flow angles.
Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations
NASA Astrophysics Data System (ADS)
Blossey, R.; Maggs, A. C.; Podgornik, R.
2017-06-01
We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.
The ADvanced SEParation (ADSEP)
NASA Technical Reports Server (NTRS)
1998-01-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
Soccer Ball Lift Coefficients via Trajectory Analysis
ERIC Educational Resources Information Center
Goff, John Eric; Carre, Matt J.
2010-01-01
We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…
Absorption coefficients of solid NH3 from 50 to 7000 per cm
NASA Technical Reports Server (NTRS)
Sill, G.; Fink, U.; Ferraro, J. R.
1980-01-01
Thin-film spectra of solid NH3 at a resolution of 1 per cm were used to determine its absorption coefficient over the range 50-7000 per cm. The thin films were formed inside a liquid N2 cooled dewar using a variety of substrates and dewar windows. The spectra were recorded with two Fourier spectrometers, one covering the range from 1 to 4 microns and the other from 2.6 to 200 microns. The thickness of the films was measured with a laser interference technique. The absorption coefficients were determined by application of Lambert's law and by a fitting procedure to the observed spectra using thin-film theory. Good agreement was found with the absorption coefficients recently determined by other investigators over a more restricted wavelength range. A metastable phase was observed near a temperature of 90 K and its absorption coefficient is reported. No other major spectral changes with temperature were noted for the range 88-120 K.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
A method for determination mass absorption coefficient of gamma rays by Compton scattering.
El Abd, A
2014-12-01
A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of transport coefficients on excitation of flare-induced standing slow-mode waves
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph
2017-08-01
The flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA, and interpreted as the slow-mode standing waves. By means of the seismology technique we have, for the first time, determined the transport coefficients in the hot (>9 MK) flare plasma, and found that thermal conductivity is suppressed by at least 3 times and viscosity coefficient is enhanced by a factor of 15 as the upper limit (Wang et al. 2015, ApJL, 811, L13). In this presentation, we first discuss possible causes for conduction suppression and viscosity enhancements. Then we use the nonlinear MHD simulations to validate the seismology method that is based on linear analytical analysis, and demonstrate the inversion scheme for determining transport coefficients using numerical parametric study. Finally, we show how the seismologically-determined transport coefficients are crucial for understanding the excitation of the observed standing slow-mode waves in coronal loops and the heating of the loop plasma by a footpoint flare.
Zhang, Chun-Yun; Chai, Xin-Sheng
2015-03-13
A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri
2018-01-01
This paper examines the impact of the characterisation technique considered for the determination of the Li+ solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. Li+ diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3.48×10−10 cm2·s−1 and 1.56×10−10 cm2·s−1 , respectively. The dependency of the Li+ diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1.76×10−15 cm2·s−1 and 4.06×10−12 cm2·s−1, while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV. PMID:29360787
Capron, Odile; Gopalakrishnan, Rahul; Jaguemont, Joris; Van Den Bossche, Peter; Omar, Noshin; Van Mierlo, Joeri
2018-01-23
This paper examines the impact of the characterisation technique considered for the determination of the L i + solid state diffusion coefficient in uncycled as in cycled Nickel Manganese Cobalt oxide (NMC) electrodes. As major characterisation techniques, Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT) and Electrochemical Impedance Spectroscopy (EIS) were systematically investigated. L i + diffusion coefficients during the lithiation process of the uncycled and cycled electrodes determined by CV at 3.71 V are shown to be equal to 3 . 48 × 10 - 10 cm 2 ·s - 1 and 1 . 56 × 10 - 10 cm 2 ·s - 1 , respectively. The dependency of the L i + diffusion with the lithium content in the electrodes is further studied in this paper with GITT and EIS. Diffusion coefficients calculated by GITT and EIS characterisations are shown to be in the range between 1 . 76 × 10 - 15 cm 2 ·s - 1 and 4 . 06 × 10 - 12 cm 2 ·s - 1 , while demonstrating the same decreasing trend with the lithiation process of the electrodes. For both electrode types, diffusion coefficients calculated by CV show greater values compared to those determined by GITT and EIS. With ageing, CV and EIS techniques lead to diffusion coefficients in the electrodes at 3.71 V that are decreasing, in contrast to GITT for which results indicate increasing diffusion coefficient. After long-term cycling, ratios of the diffusion coefficients determined by GITT compared to CV become more significant with an increase about 1 order of magnitude, while no significant variation is seen between the diffusion coefficients calculated from EIS in comparison to CV.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.
2018-01-01
A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.
Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent
NASA Technical Reports Server (NTRS)
Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.
2013-01-01
The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the geometric porosity distribution.
TEMPERATURE COEFFICIENTS OF HETEROGENEOUS U-238-U-235 FUELED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astley, E.R.; Mansius, C.A.
1958-05-14
An analytical method of determining the effective reactivity coefficient from fundamental cross sections using the four factor formula is presented. Values of the coefficient obtained by this method compare well with experiment. (A.C.)
NASA Astrophysics Data System (ADS)
Abdellatef, Hisham E.
2007-04-01
Picric acid, bromocresol green, bromothymol blue, cobalt thiocyanate and molybdenum(V) thiocyanate have been tested as spectrophotometric reagents for the determination of disopyramide and irbesartan. Reaction conditions have been optimized to obtain coloured comoplexes of higher sensitivity and longer stability. The absorbance of ion-pair complexes formed were found to increases linearity with increases in concentrations of disopyramide and irbesartan which were corroborated by correction coefficient values. The developed methods have been successfully applied for the determination of disopyramide and irbesartan in bulk drugs and pharmaceutical formulations. The common excipients and additives did not interfere in their determination. The results obtained by the proposed methods have been statistically compared by means of student t-test and by the variance ratio F-test. The validity was assessed by applying the standard addition technique. The results were compared statistically with the official or reference methods showing a good agreement with high precision and accuracy.
NASA Astrophysics Data System (ADS)
Chamidah, Nur; Rifada, Marisa
2016-03-01
There is significant of the coeficient correlation between weight and height of the children. Therefore, the simultaneous model estimation is better than partial single response approach. In this study we investigate the pattern of sex difference in growth curve of children from birth up to two years of age in Surabaya, Indonesia based on biresponse model. The data was collected in a longitudinal representative sample of the Surabaya population of healthy children that consists of two response variables i.e. weight (kg) and height (cm). While a predictor variable is age (month). Based on generalized cross validation criterion, the modeling result based on biresponse model by using local linear estimator for boy and girl growth curve gives optimal bandwidth i.e 1.41 and 1.56 and the determination coefficient (R2) i.e. 99.99% and 99.98%,.respectively. Both boy and girl curves satisfy the goodness of fit criterion i.e..the determination coefficient tends to one. Also, there is difference pattern of growth curve between boy and girl. The boy median growth curves is higher than those of girl curve.
Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city
Barbieri, Flavia L.; Gardon, Jacques; Ruiz-Castell, María; Paco V., Pamela; Muckelbauer, Rebecca; Casiot, Corinne; Freydier, Rémi; Duprey, Jean-Louis; Chen, Chih-Mei; Müller-Nordhorn, Jacqueline; Keil, Thomas
2016-01-01
This study assessed lead, arsenic, and antimony in maternal and cord blood, and associations between maternal concentrations and social determinants in the Bolivian mining city of Oruro using the baseline assessment of the ToxBol/Mine-Niño birth cohort. We recruited 467 pregnant women, collecting venous blood and sociodemographic information as well as placental cord blood at birth. Metallic/semimetallic trace elements were measured using inductively coupled plasma mass spectrometry. Lead medians in maternal and cord blood were significantly correlated (Spearman coefficient = 0.59; p < 0.001; 19.35 and 13.50 μg/L, respectively). Arsenic concentrations were above detection limit (3.30 μg/L) in 17.9 % of maternal and 34.6 % of cord blood samples. They were not associated (Fischer’s p = 0.72). Antimony medians in maternal and cord blood were weakly correlated (Spearman coefficient = 0.15; p < 0.03; 9.00 and 8.62 μg/L, respectively). Higher concentrations of toxic elements in maternal blood were associated with maternal smoking, low educational level, and partner involved in mining. PMID:26179629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gniewek, Piotr, E-mail: pgniewek@tiger.chem.uw.edu.pl; Jeziorski, Bogumił, E-mail: jeziorsk@chem.uw.edu.pl
The exchange splitting J of the interaction energy of the hydrogen atom with a proton is calculated using the conventional surface-integral formula J{sub surf}[Φ], the volume-integral formula of the symmetry-adapted perturbation theory J{sub SAPT}[Φ], and a variational volume-integral formula J{sub var}[Φ]. The calculations are based on the multipole expansion of the wave function Φ, which is divergent for any internuclear distance R. Nevertheless, the resulting approximations to the leading coefficient j{sub 0} in the large-R asymptotic series J(R) = 2e{sup −R−1}R(j{sub 0} + j{sub 1}R{sup −1} + j{sub 2}R{sup −2} + ⋯) converge with the rate corresponding to the convergencemore » radii equal to 4, 2, and 1 when the J{sub var}[Φ], J{sub surf}[Φ], and J{sub SAPT}[Φ] formulas are used, respectively. Additionally, we observe that also the higher j{sub k} coefficients are predicted correctly when the multipole expansion is used in the J{sub var}[Φ] and J{sub surf}[Φ] formulas. The symmetry adapted perturbation theory formula J{sub SAPT}[Φ] predicts correctly only the first two coefficients, j{sub 0} and j{sub 1}, gives a wrong value of j{sub 2}, and diverges for higher j{sub n}. Since the variational volume-integral formula can be easily generalized to many-electron systems and evaluated with standard basis-set techniques of quantum chemistry, it provides an alternative for the determination of the exchange splitting and the exchange contribution of the interaction potential in general.« less
Miller, Joseph M.; Harvey, Erin M.; Schwiegerling, Jim
2016-01-01
Purpose To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Methods Subjects were 218 Tohono O’odham Native American children 5–9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,−3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. Results The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm. All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Conclusions Tohono O’odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. PMID:26239206
Smedes, Foppe; Rusina, Tatsiana P; Beeltje, Henry; Mayer, Philipp
2017-11-01
Polymers are increasingly used for passive sampling of neutral hydrophobic organic substances (HOC) in environmental media including water, air, soil, sediment and even biological tissue. The equilibrium concentration of HOC in the polymer can be measured and then converted into equilibrium concentrations in other (defined) media, which however requires appropriate polymer to media partition coefficients. We determined thus polymer-lipid partition coefficients (K PL ) of various PCB, PAH and organochlorine pesticides by equilibration of two silicones and low density polyethylene (LDPE) with fish oil and Triolein at 4 °C and 20 °C. We observed (i) that K PL was largely independent of lipid type and temperature, (ii) that lipid diffusion rates in the polymers were higher compared to predictions based on their molecular volume, (iii) that silicones showed higher lipid diffusion and lower lipid sorption compared to LDPE and (iv) that absorbed lipid behaved like a co-solute and did not affect the partitioning of HOC at least for the smaller molecular size HOC. The obtained K PL can convert measured equilibrium concentrations in passive sampling polymers into equilibrium concentrations in lipid, which then can be used (1) for environmental quality monitoring and assessment, (2) for thermodynamic exposure assessment and (3) for assessing the linkage between passive sampling and the traditionally measured lipid-normalized concentrations in biota. LDPE-lipid partition coefficients may also be of use for a thermodynamically sound risk assessment of HOC contained in microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu
2017-09-01
Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.
Conversion coefficients for H'(3;Ω) for photons.
Behrens, Rolf
2017-06-26
In this work, conversion coefficients for the operational quantity H'(3;Ω) have been calculated for both mono-energetic photons from 2 keV to 50 MeV for angles of incidence from 0° up to 180° in steps of 15° (to complement ICRU 57) as well as for photon reference radiation qualities (to complement ISO 4037). Finally, parameters necessary to determine the influence of the air density on the conversion coefficients have been determined.
NASA Astrophysics Data System (ADS)
Santos, A.; Córdoba, E.; Ramírez, Z.; Sierra, C.; Ortega, Y.
2017-12-01
This project aims to determine the coefficient of dynamic friction between micrometric size coatings of alumina and metallic materials (Steel and aluminium); the methodology used to achieve the proposed objective consisted of 4 phases, in the first one was developed a procedure that allowed, from a Pin on Disk machine built based on the specifications given by the ASTM G99-05 standard (Standard test method for wear tests with a Pin on Disk machine), to determine the coefficient of dynamic friction between two materials in contact; subsequently the methodology was verified through tests between steel-steel and steel-aluminium, due to these values are widely reported in the literature; as a third step, deposits of alumina particles of micrometric size were made on a steel substrate through thermal spraying by flame; finally, the tests were carried out between pins of steel of aluminium and alumina coating to determine the coefficients of dynamic friction between these two surfaces. The results of the project allowed to verify that the developed methodology is valid to obtain coefficients of dynamic friction between surfaces in contact since the percentages of error were of 3.5% and 2.1% for steel-steel and aluminium-steel, respectively; additionally, it was found that the coefficient of friction between steel-alumina coatings is 0.36 and aluminium-alumina coating is 0.25.
Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo
2015-01-01
Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046
Chaurasia, Ashok; Harel, Ofer
2015-02-10
Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.
Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor
2009-06-01
Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.
Unsaturated soil moisture drying and wetting diffusion coefficient measurements in the laboratory.
DOT National Transportation Integrated Search
2009-09-01
ABSTRACTTransient moisture flow in an unsaturated soil in response to suction changes is controlled by the unsaturated moisture diffusion coefficient. The moisture diffusion coefficient can be determined by measuring suction profiles over time. The l...
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.
1998-10-01
The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Balasubramaniam, Krishna N; Beisner, Brianne A; Berman, Carol M; De Marco, Arianna; Duboscq, Julie; Koirala, Sabina; Majolo, Bonaventura; MacIntosh, Andrew J; McFarland, Richard; Molesti, Sandra; Ogawa, Hideshi; Petit, Odile; Schino, Gabriele; Sosa, Sebastian; Sueur, Cédric; Thierry, Bernard; de Waal, Frans B M; McCowan, Brenda
2018-01-01
Among nonhuman primates, the evolutionary underpinnings of variation in social structure remain debated, with both ancestral relationships and adaptation to current conditions hypothesized to play determining roles. Here we assess whether interspecific variation in higher-order aspects of female macaque (genus: Macaca) dominance and grooming social structure show phylogenetic signals, that is, greater similarity among more closely-related species. We use a social network approach to describe higher-order characteristics of social structure, based on both direct interactions and secondary pathways that connect group members. We also ask whether network traits covary with each other, with species-typical social style grades, and/or with sociodemographic characteristics, specifically group size, sex-ratio, and current living condition (captive vs. free-living). We assembled 34-38 datasets of female-female dyadic aggression and allogrooming among captive and free-living macaques representing 10 species. We calculated dominance (transitivity, certainty), and grooming (centrality coefficient, Newman's modularity, clustering coefficient) network traits as aspects of social structure. Computations of K statistics and randomization tests on multiple phylogenies revealed moderate-strong phylogenetic signals in dominance traits, but moderate-weak signals in grooming traits. GLMMs showed that grooming traits did not covary with dominance traits and/or social style grade. Rather, modularity and clustering coefficient, but not centrality coefficient, were strongly predicted by group size and current living condition. Specifically, larger groups showed more modular networks with sparsely-connected clusters than smaller groups. Further, this effect was independent of variation in living condition, and/or sampling effort. In summary, our results reveal that female dominance networks were more phylogenetically conserved across macaque species than grooming networks, which were more labile to sociodemographic factors. Such findings narrow down the processes that influence interspecific variation in two core aspects of macaque social structure. Future directions should include using phylogeographic approaches, and addressing challenges in examining the effects of socioecological factors on primate social structure. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang
2018-07-01
A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.
NASA Astrophysics Data System (ADS)
Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang
2018-05-01
A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.
Recovering DC coefficients in block-based DCT.
Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip
2006-11-01
It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken.
On the methods for determining the transverse dispersion coefficient in river mixing
NASA Astrophysics Data System (ADS)
Baek, Kyong Oh; Seo, Il Won
2016-04-01
In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid and liquid-solid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients kLa and kGa (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Fixed Packed Bed Reactors in Reduced Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro; McCready, Mark J.
2004-01-01
We present experimental data on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid flow through packed columns in microgravity. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under microgravity conditions compared to 1-g and the widely used Talmor map in 1-g is not applicable for predicting the transition boundaries. A new transition criterion between bubble and pulse flow in microgravity is proposed and tested using the data. Since there is no static head in microgravity, the pressure drop measured is the true frictional pressure drop. The pressure drop data, which has much smaller scatter than most reported 1-g data clearly shows that capillary effects can enhance the pressure drop (especially in the bubble flow regime) as much as 200% compared to that predicted by the single phase Ergun equation. The pressure drop data are correlated in terms of a two-phase friction factor and its dependence on the gas and liquid Reynolds numbers and the Suratman number. The influence of gravity on the pulse amplitude and frequency is also discussed and compared to that under normal gravity conditions. Experimental work is planned to determine the gas-liquid mass transfer coefficients. Because of enhanced interfacial effects, we expect the gas-liquid transfer coefficients k(L)a and k(G)a (where a is the gas-liquid interfacial area) to be higher in microgravity than in normal gravity at the same flow conditions. This will be verified by gas absorption experiments, with and without reaction in the liquid phase, using oxygen, carbon dioxide, water and dilute aqueous amine solutions. The liquid-solid mass transfer coefficient will also be determined in the bubble as well as the pulse flow regimes using solid benzoic acid particles in the packing and measuring their rate of dissolution. The mass transfer coefficients in microgravity will be compared to those in normal gravity cocurrent flow to determine the mass transfer enhancement and propose new mass transfer correlations for two-phase gas-liquid flows through packed beds in microgravity.
Poussaint, Tina Young; Vajapeyam, Sridhar; Ricci, Kelsey I.; Panigrahy, Ashok; Kocak, Mehmet; Kun, Larry E.; Boyett, James M.; Pollack, Ian F.; Fouladi, Maryam
2016-01-01
Background Diffuse intrinsic pontine glioma (DIPG) is associated with poor survival regardless of therapy. We used volumetric apparent diffusion coefficient (ADC) histogram metrics to determine associations with progression-free survival (PFS) and overall survival (OS) at baseline and after radiation therapy (RT). Methods Baseline and post-RT quantitative ADC histograms were generated from fluid-attenuated inversion recovery (FLAIR) images and enhancement regions of interest. Metrics assessed included number of peaks (ie, unimodal or bimodal), mean and median ADC, standard deviation, mode, skewness, and kurtosis. Results Based on FLAIR images, the majority of tumors had unimodal peaks with significantly shorter average survival. Pre-RT FLAIR mean, mode, and median values were significantly associated with decreased risk of progression; higher pre-RT ADC values had longer PFS on average. Pre-RT FLAIR skewness and standard deviation were significantly associated with increased risk of progression; higher pre-RT FLAIR skewness and standard deviation had shorter PFS. Nonenhancing tumors at baseline showed higher ADC FLAIR mean values, lower kurtosis, and higher PFS. For enhancing tumors at baseline, bimodal enhancement histograms had much worse PFS and OS than unimodal cases and significantly lower mean peak values. Enhancement in tumors only after RT led to significantly shorter PFS and OS than in patients with baseline or no baseline enhancement. Conclusions ADC histogram metrics in DIPG demonstrate significant correlations between diffusion metrics and survival, with lower diffusion values (increased cellularity), increased skewness, and enhancement associated with shorter survival, requiring future investigations in large DIPG clinical trials. PMID:26487690
Barreto, Carlos M; Ochoa, Ivania M; Garcia, Hector A; Hooijmans, Christine M; Livingston, Dennis; Herrera, Aridai; Brdjanovic, Damir
2018-08-01
The performance of a pilot-scale superoxygenation system was evaluated in clean water and mixed liquor. A mass balance was applied over the pilot-scale system to determine the overall oxygen mass transfer rate coefficient (K L a, h -1 ), the standard oxygen transfer rate (SOTR, kg O 2 d -1 ), and the standard oxygen transfer efficiency (SOTE, %). Additionally, the alpha factor (α) was determined at a mixed liquor suspend solids (MLSS) concentration of approximately 5 g L -1 . SOTEs of nearly 100% were obtained in clean water and mixed liquor. The results showed that at higher oxygen flowrates, higher transfer rates could be achieved; this however, at expenses of the transfer efficiency. As expected, lower transfer efficiencies were observed in mixed liquor compared to clean water. Alpha factors varied between 0.6 and 1.0. However, values of approximately 1.0 can be obtained in all cases by fine tuning the oxygen flowrate delivered to the system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Su, Jing-Wei; Lin, Yang-Hsien; Chiang, Chun-Ping; Lee, Jang-Ming; Hsieh, Chao-Mao; Hsieh, Min-Shu; Yang, Pei-Wen; Wang, Chen-Ping; Tseng, Ping-Huei; Lee, Yi-Chia; Sung, Kung-Bin
2015-01-01
The progression of epithelial precancers into cancer is accompanied by changes of tissue and cellular structures in the epithelium. Correlations between the structural changes and scattering coefficients of esophageal epithelia were investigated using quantitative phase images and the scattering-phase theorem. An ex vivo study of 14 patients demonstrated that the average scattering coefficient of precancerous epithelia was 37.8% higher than that of normal epithelia from the same patient. The scattering coefficients were highly correlated with morphological features including the cell density and the nuclear-to-cytoplasmic ratio. A high interpatient variability in scattering coefficients was observed and suggests identifying precancerous lesions based on the relative change in scattering coefficients. PMID:26504630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suriyawong, Adirek; Wongwises, Somchai
2010-11-15
A study of nucleate pool boiling heat transfer of TiO{sub 2}-water nanofluids is experimentally conducted. Nanofluids with various concentrations of 0.00005, 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. Horizontal circular plates made from copper and aluminium with different roughness values of 0.2 and 4 {mu}m are used as heating surfaces. The experiments are performed to explore the effects of nanofluids concentration as well as heating surface material and roughness on nucleate pool boiling characteristics and the heat transfer coefficient under ambient pressure. The results show that based on the copper heated surface which is tested with a concentration ofmore » 0.0001 vol.%, higher nucleate pool boiling heat transfer coefficient is obtained when compared with the base fluid. A 15% increase is obtained for the surface roughness of 0.2 {mu}m and a 4% increase is obtained for roughness of 4 {mu}m. For concentrations higher than 0.0001 vol.%, however, the higher the concentration, the lower the heat transfer coefficient. In the case of aluminium heated surface, the corresponding heat transfer coefficients are larger than for the copper surface by around 30% with a roughness of 0.2 {mu}m and around 27% with a roughness of 4 {mu}m. Moreover, the results also indicate that the heat transfer coefficient obtained based on a roughness of 4 {mu}m is higher than that for a roughness of 0.2 {mu}m by around 12% for aluminium and by around 13% for copper. (author)« less
NASA Astrophysics Data System (ADS)
Wen, D. S.; Wen, H.; Shi, Y. G.; Su, B.; Li, Z. C.; Fan, G. Z.
2018-01-01
The B-spline interpolation fitting baseline in electrochemical analysis by differential pulse voltammetry was established for determining the lower concentration 2,6-di-tert-butyl p-cresol(BHT) in Jet Fuel that was less than 5.0 mg/L in the condition of the presence of the 6-tert-butyl-2,4-xylenol.The experimental results has shown that the relative errors are less than 2.22%, the sum of standard deviations less than 0.134mg/L, the correlation coefficient more than 0.9851. If the 2,6-ditert-butyl p-cresol concentration is higher than 5.0mg/L, linear fitting baseline method would be more applicable and simpler.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
NASA Astrophysics Data System (ADS)
Yang, Qin; Zhang, Jie-Fang
Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrödinger equation (CQNLSE) with variable coefficients are considered. Based on the extended tanh-function method, we not only successfully obtained bright and dark quasi-soliton solutions, but also obtained the kink quasi-soliton solutions under certain parametric conditions. We conclude that the quasi-solitons induced by the combined effects of the group velocity dispersion (GVD) distribution, the nonlinearity distribution, higher-order nonlinearity distribution, and the amplification or absorption coefficient are quite different from those of the solitons induced only by the combined effects of the GVD, the nonlinearity distribution, and the amplification or absorption coefficient without considering the higher-order nonlinearity distribution (i.e. α(z)=0). Furthermore, we choose appropriate optical fiber parameters D(z) and R(z) to control the velocity of quasi-soliton and time shift, and discuss the evolution behavior of the special quasi-soliton.
Acoustic characterization of Thiel liver for magnetic resonance-guided focused ultrasound treatment.
Karakitsios, Ioannis; Joy, Joyce; Mihcin, Senay; Melzer, Andreas
2017-04-01
The purpose of this work was to measure the essential acoustic parameters, i.e., acoustic impedance, reflection coefficient, attenuation coefficient, of Thiel embalmed human and animal liver. The Thiel embalmed tissue can be a promising, pre-clinical model to study liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS). Using a single-element transducer and the contact pulse-echo method, the acoustic parameters, i.e., acoustic impedance, reflection coefficient and attenuation coefficient of Thiel embalmed human and animal liver were measured. The Thiel embalmed livers had higher impedance, similar reflection and lower attenuation compared to the fresh tissue. Embalming liver with Thiel fluid affects its acoustic properties. During MRgFUS sonication of a Thiel organ, more focused ultrasound (FUS) will be backscattered by the organ, and higher acoustic powers are required to reach coagulation levels (temperatures >56 °C).
NASA Technical Reports Server (NTRS)
Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.
1987-01-01
The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.
NASA Astrophysics Data System (ADS)
Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina
2017-11-01
In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.
NASA Technical Reports Server (NTRS)
Belskiy, S. A.; Dmitriev, B. A.; Romanov, A. M.
1975-01-01
The value of EW asymmetry and coupling coefficients at different zenith angles were measured by means of a double coincidence crossed telescope which gives an opportunity to measure simultaneously the intensity of the cosmic ray hard component at zenith angles from 0 to 84 deg in opposite azimuths. The advantages of determining the coupling coefficients by the cosmic ray azimuth effect as compared to their measurement by the latitudinal effect are discussed.
NASA Technical Reports Server (NTRS)
Racisz, Stanley F.
1946-01-01
Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.
2009-06-06
sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room
Study of Left Ventricular Mass and Its Determinants on Echocardiography.
Guleri, Namrata; Rana, Susheela; Chauhan, Randhir S; Negi, Prakash Chand; Diwan, Yogesh; Diwan, Deepa
2017-09-01
Increased Left Ventricular Mass (LVM) is an independent risk factor for cardiovascular morbidity and mortality. This study was done to find the prevalence and determinants of LVM in the Northern Indian population. A prospective cross-sectional observational study was carried out in a tertiary care centre in Himachal Pradesh, India and the study population included all consecutive patients fulfilling the inclusion criteria attending cardiology OPD on seeking medical attention with various symptoms for dyslipidaemia, hypertension but not on medication over a period of one year. Focused history was taken; physical examination and investigations were done. Data collected was analysed using Epi-info software version 3.5.1. We calculated means of LVM index for categorical variables i.e., sex, tobacco consumption, alcohol consumption and sedentary lifestyle etc., and also calculated p-values as test of significance for mean difference across the exposure variable groups. The Pearson correlation coefficient was calculated and 2 tailed significance at p< 0.05 was taken as statistically significant. Mean age of study population was 42.30±9.8 years and 62.9% were males. The mean LVM index was significantly higher in men than in women 77.7 ± 11.4 vs.71.3 ± 15.7 (p-value <0.01). Strong positive correlation was observed between increased waist hip ratio and increased Left Ventricular Mass Index (LVMI). The Pearson correlation coefficient was 36.77 and it was statistically significant with p-value 0.04. We found positive and independent correlation of increased LVMI with increased Waist Hip Ratio (WHR). A positive independent correlation was also observed with higher fasting blood sugar levels.
Ferguson, Kristi J; Kreiter, Clarence D; Haugen, Thomas H; Dee, Fred R
2018-02-20
As medical schools move from discipline-based courses to more integrated approaches, identifying assessment tools that parallel this change is an important goal. The authors describe the use of test item statistics to assess the reliability and validity of web-enabled mechanistic case diagrams (MCDs) as a potential tool to assess students' ability to integrate basic science and clinical information. Students review a narrative clinical case and construct an MCD using items provided by the case author. Students identify the relationships among underlying risk factors, etiology, pathogenesis and pathophysiology, and the patients' signs and symptoms. They receive one point for each correctly-identified link. In 2014-15 and 2015-16, case diagrams were implemented in consecutive classes of 150 medical students. The alpha reliability coefficient for the overall score, constructed using each student's mean proportion correct across all cases, was 0.82. Discrimination indices for each of the case scores with the overall score ranged from 0.23 to 0.51. In a G study using those students with complete data (n = 251) on all 16 cases, 10% of the variance was true score variance, and systematic case variance was large. Using 16 cases generated a G coefficient (relative score reliability) equal to .72 and a Phi equal to .65. The next phase of the project will involve deploying MCDs in higher-stakes settings to determine whether similar results can be achieved. Further analyses will determine whether these assessments correlate with other measures of higher-order thinking skills.
Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay.
Kasar, Sharayu; Kumar, Sumit; Bajpai, R K; Tomar, B S
2016-01-01
Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay, proposed as a backfill material in the Indian geological repository, was studied using the out-diffusion method. Radiotracers (22)Na, (137)Cs, (85)Sr and (154)Eu were used; the first three are carrier-free enabling experimental work at sub-micromolar metal ion concentration, and Eu(III) tracer (154)Eu was used at sub millimolar concentration. An out-diffusion methodology, wherein a thin planar source of radioactivity placed between two clay columns diffuses out, was used to obtain the apparent diffusion coefficient (Da) values. This methodology enabled determination of diffusion coefficient even for strongly sorbing (154)Eu. Da values for (22)Na, (137)Cs, (85)Sr and (154)Eu were 2.35 (±0.14) × 10(-11), 2.65 (±0.09) × 10(-12), 3.32 (±0.15) × 10(-11) and 1.23 (±0.15) × 10(-13) m(2) s(-1), respectively. Da values were found to be in fair agreement with literature data reported for similar mineralogical sediments. Sorption of radionuclides on the clay was also determined in the present study and differences in Da values were rationalized on the basis of sorption data. Distribution ratios (Kd) for Cs(I) and Eu(III) were higher than that for Sr(II), which in turn was higher than that for Na(I). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lundstrom, Reginald R; Baber, Hal T , Jr
1956-01-01
A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
NASA Astrophysics Data System (ADS)
de Oliveira, Lília M.; Santos, Nádia A. P.; Maillard, Philippe
2013-10-01
Non-point source pollution (NPSP) is perhaps the leading cause of water quality problems and one of the most challenging environmental issues given the difficulty of modeling and controlling it. In this article, we applied the Manning equation, a hydraulic concept, to improve models of non-point source pollution and determine its influence as a function of slope - land cover roughness for runoff to reach the stream. In our study the equation is somewhat taken out of its usual context to be applies to the flow of an entire watershed. Here a digital elevation model (DEM) from the SRTM satellite was used to compute the slope and data from the RapidEye satellite constellation was used to produce a land cover map later transformed into a roughness surface. The methodology is applied to a 1433 km2 watershed in Southeast Brazil mostly covered by forest, pasture, urban and wetlands. The model was used to create slope buffer of varying width in which the proportions of land cover and roughness coefficient were obtained. Next we correlated these data, through regression, with four water quality parameters measured in situ: nitrate, phosphorous, faecal coliform and turbidity. We compare our results with the ones obtained by fixed buffer. It was found that slope buffer outperformed fixed buffer with higher coefficients of determination up to 15%.
Chotimah, Chusnul; Sudjadi; Riyanto, Sugeng; Rohman, Abdul
2015-01-01
Purpose: Analysis of drugs in multicomponent system officially is carried out using chromatographic technique, however, this technique is too laborious and involving sophisticated instrument. Therefore, UV-VIS spectrophotometry coupled with multivariate calibration of partial least square (PLS) for quantitative analysis of metamizole, thiamin and pyridoxin is developed in the presence of cyanocobalamine without any separation step. Methods: The calibration and validation samples are prepared. The calibration model is prepared by developing a series of sample mixture consisting these drugs in certain proportion. Cross validation of calibration sample using leave one out technique is used to identify the smaller set of components that provide the greatest predictive ability. The evaluation of calibration model was based on the coefficient of determination (R2) and root mean square error of calibration (RMSEC). Results: The results showed that the coefficient of determination (R2) for the relationship between actual values and predicted values for all studied drugs was higher than 0.99 indicating good accuracy. The RMSEC values obtained were relatively low, indicating good precision. The accuracy and presision results of developed method showed no significant difference compared to those obtained by official method of HPLC. Conclusion: The developed method (UV-VIS spectrophotometry in combination with PLS) was succesfully used for analysis of metamizole, thiamin and pyridoxin in tablet dosage form. PMID:26819934
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
Future geodesy missions: Tethered systems and formation flying
NASA Astrophysics Data System (ADS)
Fontdecaba, Jordi; Sanjurjo, Manuel; Pelaez, Jesus; Metris, Gilles; Exertier, Pierre
Recent gravity field determination missions have shown the possibility of improving our Earth knowledge from space. GRACE has helped to the determination of temporal variations of low and mean degrees of the field while GOCE will improve the precision in the determination of higher degrees. But there is still some needs for geophysics which are not satisfied by these missions. Two areas where improvements must be done are (i) perenniality of the observations, and (ii) determination of temporal variations of higher degrees of the gravity field. These improvements can be achieved thanks to new measurement technologies with higher precision, but also using new observables. Historically, space determination of the gravity field has been done observing the perturbations of the orbit of the satellites. More recently, GRACE has introduced the use of satellite-tosatellite ranging. Goce will use onboard gradiometry. The authors have explored the possibilities of two new technologies for the determination of the gravity field: (i) tethered systems, and (ii) formation flying for all kind of configurations (not just leader-follower). To analyze the possibilities of these technologies, we obtain the covariance matrix of the coefficients of the gravity field for the different observables. This can be done providing some very reasonable hypothesis are accepted. This matrix contains a lot of information concerning the behavior of the observable. In order to obtain the matrix, we use the so-called lumped coefficients approach. We have used this method for three observables (i) tethered systems, (ii) formation flying and (iii) gradiometry (for comparison purposes). Tethers appear as a very long base gradiometers, with very interesting properties, but also very challenging from a technological point of view. One of the major advantages of the tethered systems is their multitask design. Indeed, the same cable can be used for propulsion purposes in some phases of the mission, and for geodesy purposes in other phases. Several studies have been presented using formation flying, but none of them is exhaustive in terms of number of satellites, configuration, and plan of the motion. We study formation flying using differential orbital elements in order to be as general as possible. The advantage of this representation is the possibility to study all sort of initial conditions and reference orbits with a posterior analysis of covariance matrices. Our results show the intrinsic possibilities of these new two systems and their comparison with existing ones. We also define some baseline scenarios for future missions.
Gluing for Raman lidar systems using the lamp mapping technique.
Walker, Monique; Venable, Demetrius; Whiteman, David N
2014-12-20
In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.
Bitter, T; Khan, I; Marriott, T; Schreurs, B W; Verdonschot, N; Janssen, D
2016-03-01
The modular taper junction in total hip replacements has been implicated as a possible source of wear. The finite-element (FE) method can be used to study the wear potential at the taper junction. For such simulations it is important to implement representative contact parameters, in order to achieve accurate results. One of the main parameters in FE simulations is the coefficient of friction. However, in current literature, there is quite a wide spread in coefficient of friction values (0.15 - 0.8), which has a significant effect on the outcome of the FE simulations. Therefore, to obtain more accurate results, one should use a coefficient of friction that is determined for the specific material couple being analyzed. In this study, the static coefficient of friction was determined for two types of titanium-on-titanium stem-adaptor couples, using actual cut-outs of the final implants, to ensure that the coefficient of friction was determined consistently for the actual implant material and surface finish characteristics. Two types of tapers were examined, Biomet type-1 and 12/14, where type-1 has a polished surface finish and the 12/14 is a microgrooved system. We found static coefficients of friction of 0.19 and 0.29 for the 12/14 and type-1 stem-adaptor couples, respectively.
Molecular Diffusion Coefficients: Experimental Determination and Demonstration.
ERIC Educational Resources Information Center
Fate, Gwendolyn; Lynn, David G.
1990-01-01
Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.
2014-06-01
In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.
Lim, Travis W; Frangakis, Constantine; Latkin, Carl; Ha, Tran Viet; Minh, Nguyen Le; Zelaya, Carla; Quan, Vu Minh; Go, Vivian F
2014-01-01
Socioeconomic status has a robust positive relationship with several health outcomes at the individual and population levels, but in the case of HIV prevalence, income inequality may be a better predictor than absolute level of income. Most studies showing a relationship between income inequality and HIV have used entire countries as the unit of analysis. In this study, we examine the association between income inequality at the community level and HIV prevalence in a sample of persons who inject drugs (PWID) in a concentrated epidemic setting. We recruited PWID and non-PWID community participants in Thai Nguyen, Vietnam, and administered a cross-sectional questionnaire; PWID were tested for HIV. We used ecologic regression to model HIV burden in our PWID study population on GINI indices of inequality calculated from total reported incomes of non-PWID community members in each commune. We also modeled HIV burden on interaction terms between GINI index and median commune income, and finally used a multi-level model to control for community level inequality and individual level income. HIV burden among PWID was significantly correlated with the commune GINI coefficient (r = 0.53, p = 0.002). HIV burden was also associated with GINI coefficient (β = 0.082, p = 0.008) and with median commune income (β = -0.018, p = 0.023) in ecological regression. In the multi-level model, higher GINI coefficient at the community level was associated with higher odds of individual HIV infection in PWID (OR = 1.46 per 0.01, p = 0.003) while higher personal income was associated with reduced odds of infection (OR = 0.98 per $10, p = 0.022). This study demonstrates a context where income inequality is associated with HIV prevalence at the community level in a concentrated epidemic. It further suggests that community level socioeconomic factors, both contextual and compositional, could be indirect determinants of HIV infection in PWID.
Lim, Travis W.; Frangakis, Constantine; Latkin, Carl; Ha, Tran Viet; Minh, Nguyen Le; Zelaya, Carla; Quan, Vu Minh; Go, Vivian F.
2014-01-01
Socioeconomic status has a robust positive relationship with several health outcomes at the individual and population levels, but in the case of HIV prevalence, income inequality may be a better predictor than absolute level of income. Most studies showing a relationship between income inequality and HIV have used entire countries as the unit of analysis. In this study, we examine the association between income inequality at the community level and HIV prevalence in a sample of persons who inject drugs (PWID) in a concentrated epidemic setting. We recruited PWID and non-PWID community participants in Thai Nguyen, Vietnam, and administered a cross-sectional questionnaire; PWID were tested for HIV. We used ecologic regression to model HIV burden in our PWID study population on GINI indices of inequality calculated from total reported incomes of non-PWID community members in each commune. We also modeled HIV burden on interaction terms between GINI index and median commune income, and finally used a multi-level model to control for community level inequality and individual level income. HIV burden among PWID was significantly correlated with the commune GINI coefficient (r = 0.53, p = 0.002). HIV burden was also associated with GINI coefficient (β = 0.082, p = 0.008) and with median commune income (β = −0.018, p = 0.023) in ecological regression. In the multi-level model, higher GINI coefficient at the community level was associated with higher odds of individual HIV infection in PWID (OR = 1.46 per 0.01, p = 0.003) while higher personal income was associated with reduced odds of infection (OR = 0.98 per $10, p = 0.022). This study demonstrates a context where income inequality is associated with HIV prevalence at the community level in a concentrated epidemic. It further suggests that community level socioeconomic factors, both contextual and compositional, could be indirect determinants of HIV infection in PWID. PMID:24618892
How to Test the SME with Space Missions?
NASA Technical Reports Server (NTRS)
Hees, A.; Lamine, B.; Le Poncin-Lafitte, C.; Wolf, P.
2013-01-01
In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radio science observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.
McBride, Devin W.; Rodgers, Victor G. J.
2013-01-01
The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733
The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.
Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng
2012-10-21
A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.
Vendelin, Marko; Birkedal, Rikke
2008-01-01
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 ± 14 μm2/s in the longitudinal and 52 ± 16 μm2/s in the transverse directions (n = 8, mean ± SD). Those values are ∼2 (longitudinal) and ∼3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes. PMID:18815224
NASA Astrophysics Data System (ADS)
Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.
2017-11-01
The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.; ...
2018-05-05
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Matthews, Austin C.; Orme, Christopher J.
Understanding “Where?” and “How much?” oxidation has occurred in a nuclear graphite component is critical to predicting any deleterious effects to physical, mechanical, and thermal properties. A key factor in answering these questions is characterizing the effective mass transport rates of gas species in nuclear graphites. Effective gas diffusion coefficients were determined for twenty-six graphite specimens spanning six modern grades of nuclear graphite. A correlation was established for the majority of grades examined allowing a reasonable estimate of the effective diffusion coefficient to be determined purely from an estimate of total porosity. The importance of Knudsen diffusion to the measuredmore » diffusion coefficients is also shown for modern grades. Furthermore, Knudsen diffusion has not historically been considered to contribute to measured diffusion coefficients of nuclear graphite.« less
Stabilized determination of geopotential coefficients by the mixed hom-BLUP approach
NASA Technical Reports Server (NTRS)
Middel, B.; Schaffrin, B.
1989-01-01
For the determination of geopotential coefficients, data can be used from rather different sources, e.g., satellite tracking, gravimetry, or altimetry. As each data type is particularly sensitive to certain wavelengths of the spherical harmonic coefficients it is of essential importance how they are treated in a combination solution. For example the longer wavelengths are well described by the coefficients of a model derived by satellite tracking, while other observation types such as gravity anomalies, delta g, and geoid heights, N, from altimetry contain only poor information for these long wavelengths. Therefore, the lower coefficients of the satellite model should be treated as being superior in the combination. In the combination a new method is presented which turns out to be highly suitable for this purpose due to its great flexibility combined with robustness.
Determination of the Peltier Coefficient of Germanium in a Vertical Bridgeman-Stockbarger Furnace
NASA Technical Reports Server (NTRS)
Weigel, Michaela E. K.; Matthiesen, David H.
1997-01-01
The Peltier effect is the fundamental mechanism that makes interface demarcation through current pulsing possible. If a method for calculating the necessary current density for effective demarcation is to be developed, it will be necessary to know the value of the Peltier coefficient. This study determined experimentally the value of the Peltier coefficient for gallium-doped germanium by comparing the change in average growth rates between current-on and current-off periods. Current-on and current-off layer thickness measurements were made using differential interference contrast microscopy and atomic force microscopy. It was found that the Joule and Thomson effects could not be neglected. Peltier coefficients calculated from the experimental data with an analysis that accounts for Joule, Thomson, and Peltier effects yielded an average value for the Peltier coefficient of 0.076 +/- 0.015 V.
Determination of optical absorption coefficient with focusing photoacoustic imaging.
Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R
2012-06-01
Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.
Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
NASA Astrophysics Data System (ADS)
Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.
2018-01-01
Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.
Kuu, Wei Y; Nail, Steven L; Hardwick, Lisa M
2007-01-01
The spatial distribution of local shelf heat transfer coefficients, Ks, was determined by mapping the transient temperature response of the shelf surface along the serpentine internal channels of the shelf while the temperature of the heat transfer fluid was ramped from -40 degrees to 40 degrees C. The solution of a first-order non-steady-state differential equation resulted in a predicted shelf surface temperature as a function of the shelf fluid temperature at any point along the flow path. During the study, the shelf surfaces were maintained under a thermally insulated condition so that the heat transfers by gas conduction and radiation were negligible. To minimize heat conduction by gas, the chamber was evacuated to a low pressure, such as 100 mTorr. To minimize heat transfers between shelves, shelves were moved close together, with a gap of approximately 3 mm between any two shelves, because the shelf surface temperatures at corresponding vertical locations of two shelves are virtually equal. In addition, this also provides a shielding from radiation heat transfer from shelf to walls. Local heat transfer coefficients at the probed locations h(x) ( approximately Ks) were calculated by fitting the experimental shelf temperature response to the theoretical value. While the resulting values of K(s) are in general agreement with previously reported values, the values of Ks close to the inlet are significantly higher than those of other locations of the shelf channel. This observation is most likely attributed to the variation of the flow pattern of heat transfer fluid within the channels.
Influence of process fluids properties on component surface convective heat emission
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Zavialov, P. M.
2018-03-01
When grinding with metal-working process fluid, a thin layer of inhibited liquid is formed between the component and the grinding wheel under the action of viscous forces. This can be defined as a hydrodynamic boundary layer or a thermal boundary layer. In this work, the thickness of the layers is studied depending on the viscosity of the fluid, inertia forces, velocity and pressure of the flow; also the causes of their occurrence are identified. It is established that under turbulent flow, the viscosity of the flow and the diffusion rate are much higher than in laminar flow, which also affects heat emission. Calculation of heat transfer in a single-phase chemically homogeneous medium of process liquids has shown that their properties, such as viscosity, thermal conductivity, density and heat capacity are of primary importance. The results of experimental studies of these characteristics are presented. When determining the heat transfer coefficient, functional correlations between the physical variables of the process fluid and the change in time and space have been established. As a result of the studies carried out to determine the heat transfer coefficient of a plate immersed in the process fluid, it is established that the intensification of the cooling process of the treated surface immersed in the coolant is more intense than with other methods of coolant supplying. An increase in the pulsation rate of the process liquid flow and the length of the flow displacement path leads to an increase in the heat transfer coefficient of the treated surface and a decrease in the temperature that arises during grinding.
Residual stress dependant anisotropic band gap of various (hkl) oriented BaI{sub 2} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Pradeep; Gulia, Vikash; Vedeshwar, Agnikumar G., E-mail: agni@physics.du.ac.in, E-mail: agvedeshwar@gmail.com
2013-11-21
The thermally evaporated layer structured BaI{sub 2} grows in various completely preferred (hkl) film orientations with different growth parameters like film thickness, deposition rate, substrate temperature, etc. which were characterized by structural, morphological, and optical absorption measurements. Structural analysis reveals the strain in the films and the optical absorption shows a direct type band gap. The varying band gaps of these films were found to scale linearly with their strain. The elastic moduli and other constants were also calculated using Density Functional Theory (DFT) formalism implemented in WIEN2K code for converting the strain into residual stress. Films of different sixmore » (hkl) orientations show stress free anisotropic band gaps (2.48–3.43 eV) and both positive and negative pressure coefficients. The negative and positive pressure coefficients of band gap are attributed to the strain in I-I (or Ba-Ba or both) and Ba-I distances along [hkl], respectively. The calculated band gaps are also compared with those experimentally determined. The average pressure coefficient of band gap of all six orientations (−0.071 eV/GPa) found to be significantly higher than that calculated (−0.047 eV/GPa) by volumetric pressure dependence. Various these issues have been discussed with consistent arguments. The electron effective mass m{sub e}{sup *}=0.66m{sub 0} and the hole effective mass m{sub h}{sup *}=0.53m{sub 0} have been determined from the calculated band structure.« less
Light scattering by dust and anthropogenic aerosol at a remote site in the Negev desert, Israel
NASA Astrophysics Data System (ADS)
Andreae, Tracey W.; Andreae, Meinrat O.; Ichoku, Charles; Maenhaut, Willy; Cafmeyer, Jan; Karnieli, Arnon; Orlovsky, Leah
2002-01-01
We investigated aerosol optical properties, mass concentration, and chemical composition over a 2 year period at a remote site in the Negev desert, Israel (Sde Boker, 30° 51'N, 34° 47'E, 470 m above sea level). Light-scattering measurements were made at three wavelengths (450, 550, and 700 nm), using an integrating nephelometer, and included the separate determination of the backscatter fraction. Aerosol coarse and fine fractions were collected with stacked filter units; mass concentrations were determined by weighing, and the chemical composition by proton-induced X-ray emission and instrumental neutron activation analysis. The total scattering coefficient at 550 nm showed a median of 66.7 Mm-1(mean value 75.2 Mm-1, standard deviation 41.7 Mm-1) typical of moderately polluted continental air masses. Values of 1000 Mm-1and higher were encountered during severe dust storm events. During the study period, 31 such dust events were detected. In addition to high scattering levels, they were characterized by a sharp drop in the Ångström coefficient (i.e., the spectral dispersion of the light scattering) to values near zero. Mass-scattering efficiencies were obtained by a multivariate regression of the scattering coefficients on dust, sulfate, and residual components. An analysis of the contributions of these components to the total scattering observed showed that anthropogenic aerosol accounted for about 70% of scattering. The rest was dominated by the effect of the large dust events mentioned above and of small dust episodes typically occurring during midafternoon.
Metal/Silicate Partitioning at High Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Shofner, G.; Campbell, A.; Danielson, L.; Righter, K.; Rahman, Z.
2010-01-01
The behavior of siderophile elements during metal-silicate segregation, and their resulting distributions provide insight into core formation processes. Determination of partition coefficients allows the calculation of element distributions that can be compared to established values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Moderately siderophile elements, including W, are particularly useful in constraining core formation conditions because they are sensitive to variations in T, P, oxygen fugacity (fO2), and silicate composition. To constrain the effect of pressure on W metal/silicate partitioning, we performed experiments at high pressures and temperatures using a multi anvil press (MAP) at NASA Johnson Space Center and laser-heated diamond anvil cells (LHDAC) at the University of Maryland. Starting materials consisted of natural peridotite mixed with Fe and W metals. Pressure conditions in the MAP experiments ranged from 10 to 16 GPa at 2400 K. Pressures in the LHDAC experiments ranged from 26 to 58 GPa, and peak temperatures ranged up to 5000 K. LHDAC experimental run products were sectioned by focused ion beam (FIB) at NASA JSC. Run products were analyzed by electron microprobe using wavelength dispersive spectroscopy. Liquid metal/liquid silicate partition coefficients for W were calculated from element abundances determined by microprobe analyses, and corrected to a common fO2 condition of IW-2 assuming +4 valence for W. Within analytical uncertainties, W partitioning shows a flat trend with increasing pressure from 10 to 16 GPa. At higher pressures, W becomes more siderophile, with an increase in partition coefficient of approximately 0.5 log units.
Molotsi, Annelin H; Taylor, Jeremy F; Cloete, Schalk W P; Muchadeyi, Farai; Decker, Jared E; Whitacre, Lynsey K; Sandenbergh, Lise; Dzama, Kennedy
2017-12-01
A population structure study was performed in South African ovine populations using the OvineSNP50 beadchip. Blood samples were obtained from 295 sheep of which 172 had been identified as smallholder Dorpers, 4 smallholder White Dorpers, 46 purebred Dorpers, 26 purebred South African Mutton Merinos and 47 purebred Namaqua Afrikaners. Blood from the latter three breeds were obtained from a resource flock maintained on the Nortier research farm. Genetic diversity was estimated using allelic richness (A r ), observed heterozygosity (H o ), expected heterozygosity (H e ) and inbreeding coefficient (F). Population structure analysis was performed using fastSTRUCTURE to determine the breed composition of each genotyped individual. The Namaqua Afrikaner had the lowest H e of 0.280 ± 0.18 while the H e of smallholder Dorper, Dorper and South African Mutton Merino did not differ and were 0.364 ± 0.13, 0.332 ± 0.16 and 0.329 ± 0.17, respectively. The average inbreeding coefficient was highest for the pure breeds, Namaqua Afrikaner, Dorper and South African Mutton Merino compared to the average inbreeding coefficient for the smallholder Dorper population. The smallholder Dorper were introgressed with Namaqua Afrikaner, South African Mutton Merino and White Dorpers. Similarly, the smallholder Dorper population was more genetically diverse than the purebred Dorper, South African Mutton Merino and Namaqua Afrikaner from the research farm. The higher genetic diversity among the smallholder sheep may be advantageous for their fitness and can be used to facilitate selective breeding.
Influence of leucite content on slow crack growth of dental porcelains.
Cesar, Paulo F; Soki, Fabiana N; Yoshimura, Humberto N; Gonzaga, Carla C; Styopkin, Victor
2008-08-01
To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Bars were fired according to manufacturers' instructions and polished before induction of cracks by a Vickers indenter (19.6N, 20s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: approximately 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was [2/(3n+2)]. Microstructural analysis was performed to determine LC. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment.
NASA Technical Reports Server (NTRS)
Donegan, James J; Robinson, Samuel W , Jr; Gates, Ordway, B , jr
1955-01-01
A method is presented for determining the lateral-stability derivatives, transfer-function coefficients, and the modes for lateral motion from frequency-response data for a rigid aircraft. The method is based on the application of the vector technique to the equations of lateral motion, so that the three equations of lateral motion can be separated into six equations. The method of least squares is then applied to the data for each of these equations to yield the coefficients of the equations of lateral motion from which the lateral-stability derivatives and lateral transfer-function coefficients are computed. Two numerical examples are given to demonstrate the use of the method.
Determination of optical coefficients of biological tissue from a single integrating-sphere
NASA Astrophysics Data System (ADS)
Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang
2012-01-01
The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.
Phase-resolved reflectance spectroscopy on layered turbid media
NASA Astrophysics Data System (ADS)
Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.
1995-05-01
In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.
NASA Astrophysics Data System (ADS)
Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.
2016-02-01
The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.
Resonant structure of low-energy H3+ dissociative recombination
NASA Astrophysics Data System (ADS)
Petrignani, Annemieke; Altevogt, Simon; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Hoffmann, Jens; Jordon-Thaden, Brandon; Krantz, Claude; Mendes, Mario B.; Novotný, Oldřich; Novotny, Steffen; Orlov, Dmitry A.; Repnow, Roland; Sorg, Tobias; Stützel, Julia; Wolf, Andreas; Buhr, Henrik; Kreckel, Holger; Kokoouline, Viatcheslav; Greene, Chris H.
2011-03-01
High-resolution dissociative recombination rate coefficients of rotationally cool and hot H3+ in the vibrational ground state have been measured with a 22-pole trap setup and a Penning ion source, respectively, at the ion storage-ring TSR. The experimental results are compared with theoretical calculations to explore the dependence of the rate coefficient on ion temperature and to study the contributions of different symmetries to probe the rich predicted resonance spectrum. The kinetic energy release was investigated by fragment imaging to derive internal temperatures of the stored parent ions under differing experimental conditions. A systematic experimental assessment of heating effects is performed which, together with a survey of other recent storage-ring data, suggests that the present rotationally cool rate-coefficient measurement was performed at 380-130+50 K and that this is the lowest rotational temperature so far realized in storage-ring rate-coefficient measurements on H3+. This partially supports the theoretical suggestion that temperatures higher than assumed in earlier experiments are the main cause for the large gap between the experimental and the theoretical rate coefficients. For the rotationally hot rate-coefficient measurement a temperature of below 3250 K is derived. From these higher-temperature results it is found that increasing the rotational ion temperature in the calculations cannot fully close the gap between the theoretical and the experimental rate coefficients.
Genetic diversity of popcorn genotypes using molecular analysis.
Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M
2015-08-19
In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting
2007-04-02
The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (p<0.001). The steady state permeation rates also showed a good agreement between ASTM F739 and immersion experiments (r(2)=0.973, p<0.001). Using a one-dimensional diffusion equation based on Fick's second law, the diffusion and solubility coefficients obtained by immersion test resulted in over estimates of the ASTM F739 permeation results. The modeling results indicated that the diffusion and solubility coefficients should be obtained using ASTM F739 method which closely simulates the practical application of HDPE as barriers in the field.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
Hühn, Jonas; Fedeli, Chiara; Zhang, Qian; Masood, Atif; Del Pino, Pablo; Khashab, Niveen M; Papini, Emanuele; Parak, Wolfgang J
2016-06-01
Protein adsorption to nanoparticles is described as a chemical reaction in which proteins attach to binding sites on the nanoparticle surface. This process is defined by a dissociation coefficient, which tells how many proteins are adsorbed per nanoparticle in dependence of the protein concentration. Different techniques to experimentally determine dissociation coefficients of protein adsorption to nanoparticles are reviewed. Results of more than 130 experiments in which dissociation coefficients have been determined are compared. Data show that different methods, nanoparticle systems, and proteins can lead to significantly different dissociation coefficients. However, we observed a clear tendency of smaller dissociation coefficients upon less negative towards more positive zeta potentials of the nanoparticles. The zeta potential thus is a key parameter influencing protein adsorption to the surface of nanoparticles. Our analysis highlights the importance of the characterization of the parameters governing protein-nanoparticle interaction for quantitative evaluation and objective literature comparison. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sanwald, Alice; Theurl, Engelbert
2016-12-01
Dental services differ from other health services in several dimensions. One important difference is that a substantial share of costs of dental services-especially costs beyond routine dental treatment-is paid directly by the patient out-of-pocket. This study analyses the socio-economic determinants of out-of-pocket expenditure for dental services (OOPE) in Austria at the household level. Cross-sectional information on OOPE and household characteristics provided by the Austrian household budget survey 2009/10 was analysed. A two-part model (Logit/GLM) and one-part GLM was applied. The probability of OOPE is strongly affected by the life cycle (structure) of the household. It is higher for higher age classes, higher income, and partially higher levels of education. The type of public insurance has an influence on expenditure probability while the existence of private health insurance has no significant effect. In contrast to the highly statistically significant coefficients in the first stage, the covariates of the second stage remain predominantly insignificant. According to the results, the level of expenditure is driven mainly by the level of education and income. The results of the one-part GLM confirm the results of the two-part model. The results allow new insights into the determinants of OOPE for dental care. The household level turns out to be an adequate basis to study the determinants of OOPE, although caution should be applied before jumping to conclusions for the individual level.
Failure analysis of glass-ceramic insulators of shock tested vacuum (neutron) tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, R.K.
1980-08-25
Eight investigative techniques were used to examine the glass-ceramic insulators in vacuum (neutron) tubes. The insulators were extracted from units that had been subjected to low temperature mechanical shock tests. Two of the three units showed reduced neutron output after these tests and an insulator on one of these two was cracked completely through which probably occurred during shock testing. The objective of this study was to determine if any major differences existed between the insulators of these tubes. After eight analyses, it was concluded that no appreciable differences existed. It appeared that cracking of the one glass-ceramic sample wasmore » initiated at inner-sleeve interface voids. For this sample, the interface void density was much higher than is presently acceptable. All insulators were made with glass-ceramic having a Na/sub 2/O content of 4.6 wt%. An increased Na/sub 2/O content will cause an increase in the coefficient of expansion and will reduce the residual stress level since the molybdenum has a higher coefficient of thermal expansion than the insulator. Thus, it is believed that a decrease in interface voids and an increase in Na/sub 2/O should aid in reduced cracking of the insulator during these tests.« less
Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil.
Hamamoto, Shoichiro; Seki, Katsutoshi; Miyazaki, Tsuyoshi
2009-07-15
The understanding of the gaseous adsorption process and the parameters of volatile organic compounds such as organic solvents or fuels onto soils is very important in the analysis of the transport or fate of these chemicals in soils. Batch adsorption experiments with six different treatments were conducted to determine the adsorption of isohexane, a gaseous aliphatic, onto volcanic ash soil (Tachikawa loam). The measured gas adsorption coefficient for samples of Tachikawa loam used in the first three treatments, Control, AD (aggregate destroyed), and AD-OMR (aggregate destroyed and organic matter removed), implied that the aggregate structure of volcanic ash soil as well as organic matter strongly enhanced gas adsorption under the dry condition, whereas under the wet condition, the aggregate structure played an important role in gas adsorption regardless of the insolubility of isohexane. In the gas adsorption experiments for the last three treatments, soils were sieved in different sizes of mesh and were separated into three different aggregate or particle size fractions (2.0-1.0mm, 1.0-0.5mm, and less than 0.5mm). Tachikawa loam with a larger size fraction showed higher gas adsorption coefficient, suggesting the higher contributions of macroaggregates to isohexane gas adsorption under dry and wet conditions.
van der Leeuw, Sander; van der Molen, Thys; Dekhuijzen, PN Richard; Fonseca, Joao A; van Gemert, Frederik A; Gerth van Wijk, Roy; Kocks, Janwillem WH; Oosterom, Helma; Riemersma, Roland A; Tsiligianni, Ioanna G; de Weger, Letty A; Oude Elberink, Joanne NG; Flokstra-de Blok, Bertine MJ
2015-01-01
Background: The Control of Allergic Rhinitis and Asthma Test (CARAT) monitors control of asthma and allergic rhinitis. Aims: To determine the CARAT’s minimal clinically important difference (MCID) and to evaluate the psychometric properties of the Dutch CARAT. Methods: CARAT was applied in three measurements at 1-month intervals. Patients diagnosed with asthma and/or rhinitis were approached. MCID was evaluated using Global Rating of Change (GRC) and standard error of measurement (s.e.m.). Cronbach’s alpha was used to evaluate internal consistency. Spearman’s correlation coefficients were calculated between CARAT, the Asthma Control Questionnaire (ACQ5) and the Visual Analog Scale (VAS) on airway symptoms to determine construct and longitudinal validity. Test–retest reliability was evaluated with intra-class correlation coefficient (ICC). Changes in pollen counts were compared with delta CARAT and ACQ5 scores. Results: A total of 92 patients were included. The MCID of the CARAT was 3.50 based on GRC scores; the s.e.m. was 2.83. Cronbach’s alpha was 0.82. Correlation coefficients between CARAT and ACQ5 and VAS questions ranged from 0.64 to 0.76 (P<0.01). Longitudinally, correlation coefficients between delta CARAT scores and delta ACQ5 and VAS scores ranged from 0.41 to 0.67 (P<0.01). Test–retest reliability showed an ICC of 0.81 (P<0.01) and 0.80 (P<0.01). Correlations with pollen counts were higher for CARAT than for ACQ5. Conclusions: This is the first investigation of the MCID of the CARAT. The CARAT uses a whole-point scale, which suggests that the MCID is 4 points. The CARAT is a valid and reliable tool that is also applicable in the Dutch population. PMID:25569880
Rossi, Anthony M.; Claiborne, Tina L.; Thompson, Gregory B.; Todaro, Stacey
2016-01-01
Context: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. Objective: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Helmets with different finishes and different football jersey fabrics. Main Outcome Measure(s): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. Results: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). Conclusions: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety. PMID:27824251
Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions
NASA Astrophysics Data System (ADS)
Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong
2017-05-01
We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.
NASA Astrophysics Data System (ADS)
Bahadur, Ranjit; Russell, Lynn M.
2008-09-01
Deliquescence properties of sodium chloride are size dependent for particles smaller than 100 nm. Molecular dynamics (MD) simulations are used to determine deliquescence relative humidity (DRH) for particles in this size range by modeling idealized particles in contact with humid air. Constant humidity conditions are simulated by inclusion of a liquid reservoir of NaCl solution in contact with the vapor phase, which acts as a source of water molecules as uptake by the nanoparticle proceeds. DRH is bounded between the minimum humidity at which sustained water accumulation is observed at the particle surface and the maximum humidity at which water accumulation is not observed. Complete formation of a liquid layer is not observed due to computational limitations. The DRH determined increases with decreasing particle diameter, rising to between 91% and 93% for a 2.2 nm particle and between 81% and 85% for an 11 nm particle, higher than the 75% expected for particles larger than 100 nm. The simulated size dependence of DRH agrees well with predictions from bulk thermodynamic models and appears to converge with measurements for sizes larger than 10 nm. Complete deliquescence of nanoparticles in the 2-11 nm size range requires between 1 and 100 μs, exceeding the available computational resources for this study. Water uptake coefficients are near 0.1 with a negligible contribution from diffusion effects. Planar uptake coefficients decrease from 0.41 to 0.09 with increasing fractional water coverage from 0.002 to 1, showing a linear dependence on the logarithm of the coverage fraction with a slope of -0.08+/-0.01 (representing the effect of solvation). Particle uptake coefficients increase from 0.13 at 11 nm to 0.65 at 2.2 nm, showing a linear dependence on the logarithm of the edge fraction (which is a function of diameter) with a slope of 0.74+/-0.04 (representing larger edge effects in smaller particles).
NASA Astrophysics Data System (ADS)
Flanagan, Harold Patrick
A major issue in the process of predicting the future position of satellites in low earth orbit (LEO) is that the drag coefficient of a satellite is generally not precisely known throughout the satellite's lifespan. One reason for this problem is that as a satellite travels through the Earth's thermosphere, variations in the composition of the thermosphere directly affect the drag coefficient of the satellite. The greatest amount of uncertainty in the drag coefficient from these variations in the thermosphere comes from the amount of atomic oxygen that covers the satellites surface as the satellite descends to lower altitudes. This percent surface coverage of atomic oxygen directly affects the interaction between the surface of the satellite and the gas through which it is passing. The work performed in this thesis determines the drag coefficients of the ANDE-2 satellites over their life spans by using satellite laser ranging (SLR) data of the ANDE-2 satellites in unison with gas-surface interaction equations. The fractional coverage of atomic oxygen is determined by using empirically determined data and semi-empirical models that attempt to predict the fractional coverage of oxygen relative to the composition of the atmosphere. These drag coefficients are then used to determine the atmospheric densities experienced by these satellites over various days, so that inaccuracies in the atmospheric models can be observed. The drag coefficients of the ANDE-2 satellites decrease throughout the satellites' life, and vary most due to changes in the temperature and density of the atmosphere. The greatest uncertainty in the atmosphere's composition occurs at lower altitudes at the end of ANDE-2's life.
NASA Astrophysics Data System (ADS)
Leinonen, Olli; Ilmola, Joonas; Seppälä, Oskari; Pohjonen, Aarne; Paavola, Jussi; Koskenniska, Sami; Larkiola, Jari
2018-05-01
In modeling of hot rolling pass schedules the heat transfer phenomena have to be known. Radiation to ambient, between rolls and a steel slab as well as heat transfer in contacts must be considered to achieve accurate temperature distribution and thereby accurate material behavior in simulations. Additional heat is generated by friction between the slab and the work roll and by plastic deformation. These phenomena must be taken into account when the effective heat transfer coefficient is determined from experimental data. In this paper we determine the effective heat transfer coefficient at the contact interface and emissivity factor of slab surface for 1100MPa strength carbon steel for hot rolling simulations. Experimental pilot rolling test were carried out and slab temperatures gathered right below the interface and at the mid thickness of the slab. Emissivity factor tests were carried out in the same manner but without rolling. Experimental data is utilized to derive contact heat transfer coefficient at the interface and emissivity factor of slab surface. Pilot rolling test is reproduced in FE-analysis to further refine the heat transfer coefficient and emissivity factor. Material mechanical properties at rolling temperatures were determined by Gleeble™ thermo-mechanical simulator and IDS thermodynamic-kinetic-empirical software.
Evaporation of Lennard-Jones fluids.
Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S
2011-06-14
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
Permeability of boric acid across lipid bilayers and factors affecting it.
Dordas, C; Brown, P H
2000-05-15
Boron enters plant roots as undissociated boric acid (H(3)BO(3)). Significant differences in B uptake are frequently observed even when plants are grown under identical conditions. It has been theorized that these differences reflect species differences in permeability coefficient of H(3)BO(3) across plasma membrane. The permeability coefficient of boric acid however, has not been experimentally determined across any artificial or plant membrane. In the experiments described here the permeability coefficient of boric acid in liposomes made of phosphatidylcholine was 4.9x10(-6) cm sec(-1), which is in good agreement with the theoretical value. The permeability coefficient varied from 7x10(-6) to 9.5x10(-9) cm sec(-1) with changes in sterols (cholesterol), the type of phospholipid head group, the length of the fatty acyl chain, and the pH of the medium. In this study we also used Arabidopsis thaliana mutants which differ in lipid composition to study the effect of lipid composition on B uptake. The chs1-1 mutant which has lower proportion of sterols shows 30% higher B uptake compared with the wild type, while the act1-1 mutant which has an increased percentage of longer fatty acids, exhibited 35% lower uptake than the wild type. Lipid composition changes in each of the remaining mutants influenced B uptake to various extents. These data suggest that lipid composition of the plasma membrane can affect total B uptake.
Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.
Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela
2012-01-01
The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.
Aad, G.
2014-11-26
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √s NN = 2.76 TeV are shown using a dataset of approximately 7 μb –1 collected at the LHC in 2010. The measurements are performed for charged particles with transverse momenta 0.5 < p T < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, v n, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence ofmore » the v n coefficients are presented. The elliptic flow, v 2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v 3 and v 4, are determined with two- and four-particle cumulants. Flow harmonics v n measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multi-particle cumulants are shown as a function of transverse momentum and the collision centrality. As a result, models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.« less
Al-Gheethi, A A; Mohamed, R M; Jais, N M; Efaq, A N; Abd Halid, Abdullah; Wurochekke, A A; Amir-Hashim, M K
2017-10-01
The present study aims to investigate the influence of Staphylococcus aureus, Escherichia coli and Enterococcus faecalis in public market wastewater on the removal of nutrients in terms of ammonium (NH 4 - ) and orthophosphate (PO 4 3 ) using Scenedesmus sp. The removal rates of NH 4 - and orthophosphate PO 4 3- and batch kinetic coefficient of Scenedesmus sp. were investigated. The phycoremediation process was carried out at ambient temperature for 6 days. The results revealed that the pathogenic bacteria exhibited survival potential in the presence of microalgae but they were reduced by 3-4 log at the end of the treatment process. The specific removal rates of NH 4 - and PO 4 3- have a strong relationship with initial concentration in the public market wastewater (R 2 = 0.86 and 0.80, respectively). The kinetic coefficient of NH 4 - removal by Scenedesmus sp. was determined as k = 4.28 mg NH 4 - 1 log 10 cell mL -1 d -1 and k m = 52.01 mg L -1 (R 2 = 0.94) while the coefficient of PO 4 3- removal was noted as k = 1.09 mg NH 4 - 1 log 10 cell mL -1 d -1 and k m = 85.56 mg L -1 (R 2 = 0.92). It can be concluded that Scenedesmus sp. has high competition from indigenous bacteria in the public market wastewater to remove nutrients, with a higher coefficient of removal of NH 4 - than PO 4 3 .
Equations of prediction for abdominal fat in brown egg-laying hens fed different diets.
Souza, C; Jaimes, J J B; Gewehr, C E
2017-06-01
The objective was to use noninvasive measurements to formulate equations for predicting the abdominal fat weight of laying hens in a noninvasive manner. Hens were fed with different diets; the external body measurements of birds were used as regressors. We used 288 Hy-Line Brown laying hens, distributed in a completely randomized design in a factorial arrangement, submitted for 16 wk to 2 metabolizable energy levels (2,550 and 2,800 kcal/kg) and 3 levels of crude protein in the diet (150, 160, and 170 g/kg), totaling 6 treatments, with 48 hens each. Sixteen hens per treatment of 92 wk age were utilized to evaluate body weight, bird length, tarsus and sternum, greater and lesser diameter of the tarsus, and abdominal fat weight, after slaughter. The equations were obtained by using measures evaluated with regressors through simple and multiple linear regression with the stepwise method of indirect elimination (backward), with P < 0.10 for all variables remaining in the model. The weight of abdominal fat as predicted by the equations and observed values for each bird were subjected to Pearson's correlation analysis. The equations generated by energy levels showed coefficients of determination of 0.50 and 0.74 for 2,800 and 2,550 kcal/kg of metabolizable energy, respectively, with correlation coefficients of 0.71 and 0.84, with a highly significant correlation between the calculated and observed values of abdominal fat. For protein levels of 150, 160, and 170 g/kg in the diet, it was possible to obtain coefficients of determination of 0.75, 0.57, and 0.61, with correlation coefficients of 0.86, 0.75, and 0.78, respectively. Regarding the general equation for predicting abdominal fat weight, the coefficient of determination was 0.62; the correlation coefficient was 0.79. The equations for predicting abdominal fat weight in laying hens, based on external measurements of the birds, showed positive coefficients of determination and correlation coefficients, thus allowing researchers to determine abdominal fat weight in vivo. © 2016 Poultry Science Association Inc.
Quantitative Ultrasound Imaging Using Acoustic Backscatter Coefficients.
NASA Astrophysics Data System (ADS)
Boote, Evan Jeffery
Current clinical ultrasound scanners render images which have brightness levels related to the degree of backscattered energy from the tissue being imaged. These images offer the interpreter a qualitative impression of the scattering characteristics of the tissue being examined, but due to the complex factors which affect the amplitude and character of the echoed acoustic energy, it is difficult to make quantitative assessments of scattering nature of the tissue, and thus, difficult to make precise diagnosis when subtle disease effects are present. In this dissertation, a method of data reduction for determining acoustic backscatter coefficients is adapted for use in forming quantitative ultrasound images of this parameter. In these images, the brightness level of an individual pixel corresponds to the backscatter coefficient determined for the spatial position represented by that pixel. The data reduction method utilized rigorously accounts for extraneous factors which affect the scattered echo waveform and has been demonstrated to accurately determine backscatter coefficients under a wide range of conditions. The algorithms and procedures used to form backscatter coefficient images are described. These were tested using tissue-mimicking phantoms which have regions of varying scattering levels. Another phantom has a fat-mimicking layer for testing these techniques under more clinically relevant conditions. Backscatter coefficient images were also formed of in vitro human liver tissue. A clinical ultrasound scanner has been adapted for use as a backscatter coefficient imaging platform. The digital interface between the scanner and the computer used for data reduction are described. Initial tests, using phantoms are presented. A study of backscatter coefficient imaging of in vivo liver was performed using several normal, healthy human subjects.
Respiratory Therapist Job Perceptions: The Impact of Protocol Use.
Metcalf, Ashley Y; Stoller, James K; Habermann, Marco; Fry, Timothy D
2015-11-01
Demand for respiratory care services and staffing levels of respiratory therapists (RTs) is expected to increase over the next several years. Hence, RT job satisfaction will be a critical factor in determining recruitment and retention of RTs. Determinants of RT job satisfaction measures have received little attention in the literature. This study examines the use of respiratory care protocols and associated levels of RT job satisfaction, turnover intentions, and job stress. Four-hundred eighty-one RTs at 44 hospitals responded to an online survey regarding job satisfaction, turnover intentions, and job stress. Random coefficient modeling was used for analysis and to account for the nested structure of the data. Higher levels of RT protocol use were associated with higher levels of job satisfaction, lower rates of turnover intentions, and lower levels of job stress. In addition, RTs with greater experience had higher levels of job satisfaction, and RTs working at teaching hospitals had lower rates of turnover intentions. The study extends prior research by examining how the use of respiratory care protocols favorably affects RTs' perceptions of job satisfaction, turnover intention, and job stress. In a time of increasing demand for respiratory care services, protocols may enhance retention of RTs. Copyright © 2015 by Daedalus Enterprises.
Pedersen, T V; Olsen, D R; Skretting, A
1997-08-01
A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.
Wei, Wang; Yuan-Yuan, Jin; Ci, Yan; Ahan, Alayi; Ming-Qin, Cao
2016-10-06
The spatial interplay between socioeconomic factors and tuberculosis (TB) cases contributes to the understanding of regional tuberculosis burdens. Historically, local Poisson Geographically Weighted Regression (GWR) has allowed for the identification of the geographic disparities of TB cases and their relevant socioeconomic determinants, thereby forecasting local regression coefficients for the relations between the incidence of TB and its socioeconomic determinants. Therefore, the aims of this study were to: (1) identify the socioeconomic determinants of geographic disparities of smear positive TB in Xinjiang, China (2) confirm if the incidence of smear positive TB and its associated socioeconomic determinants demonstrate spatial variability (3) compare the performance of two main models: one is Ordinary Least Square Regression (OLS), and the other local GWR model. Reported smear-positive TB cases in Xinjiang were extracted from the TB surveillance system database during 2004-2010. The average number of smear-positive TB cases notified in Xinjiang was collected from 98 districts/counties. The population density (POPden), proportion of minorities (PROmin), number of infectious disease network reporting agencies (NUMagen), proportion of agricultural population (PROagr), and per capita annual gross domestic product (per capita GDP) were gathered from the Xinjiang Statistical Yearbook covering a period from 2004 to 2010. The OLS model and GWR model were then utilized to investigate socioeconomic determinants of smear-positive TB cases. Geoda 1.6.7, and GWR 4.0 software were used for data analysis. Our findings indicate that the relations between the average number of smear-positive TB cases notified in Xinjiang and their socioeconomic determinants (POPden, PROmin, NUMagen, PROagr, and per capita GDP) were significantly spatially non-stationary. This means that in some areas more smear-positive TB cases could be related to higher socioeconomic determinant regression coefficients, but in some areas more smear-positive TB cases were found to do with lower socioeconomic determinant regression coefficients. We also found out that the GWR model could be better exploited to geographically differentiate the relationships between the average number of smear-positive TB cases and their socioeconomic determinants, which could interpret the dataset better (adjusted R 2 = 0.912, AICc = 1107.22) than the OLS model (adjusted R 2 = 0.768, AICc = 1196.74). POPden, PROmin, NUMagen, PROagr, and per capita GDP are socioeconomic determinants of smear-positive TB cases. Comprehending the spatial heterogeneity of POPden, PROmin, NUMagen, PROagr, per capita GDP, and smear-positive TB cases could provide valuable information for TB precaution and control strategies.
A comparison of roughness parameters and friction coefficients of aesthetic archwires.
Rudge, Philippa; Sherriff, Martyn; Bister, Dirk
2015-02-01
Compare surface roughness of 'aesthetic' nickel-titanium (NiTi) archwires with their dynamic frictional properties. Archwires investigated were: four fully coated tooth coloured [Forestadent: Biocosmetic (FB) and Titanol Cosmetic (FT); TOC Tooth Tone (TT); and Hawley Russell Coated Superelastic NiTi (HRC)]; two partially coated tooth coloured [DB Euroline Microcoated (DB) and TP Aesthetic NiTi (TP)]; two rhodium coated [TOC Sentalloy (TS) and Hawley Russell Rhodium Coated Superelastic NiTi (HRR)]; and two controls: stainless steel [Forestadent Steel (FS)] and NiTi archwire [Forestadent Titanol Superelastic (FN)]. Surface roughness [profilometry (Rugosurf)] was compared with frictional coefficients for archwire/bracket/ligature combinations (n = 10). Analysis of variance, Sidak's multiple comparison of means, and Spearman's correlation coefficient were used for analysis. Roughness coefficients were from low to high: FB; FN; TT; FS; TS; HRR; FT; DB; TP; HRC. Friction coefficients were from low to high: TP; FS; FN; HRR; FT; DB; FB; HRC; TS; TT. Coated archwires generally exhibited higher friction than uncoated controls. TP had the lowest friction but this was not statistically significant (P < 0.05). Friction of tooth coloured coated archwires were significantly different for some wires. Spearman's correlation did not demonstrate consistency between surface roughness (R a) and dynamic friction. Aesthetic archwires investigated had either low surface roughness or low frictional resistance but not both properties simultaneously. Causes for friction are likely to be multifactorial and do not appear to be solely determined by surface roughness (measured by profilometry). For selecting the most appropriate aligning archwire, both surface roughness and frictional resistance need to be considered. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi
2014-05-01
The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Hall, David O; Fernández, F G Acién; Guerrero, E Cañizares; Rao, K Krishna; Grima, E Molina
2003-04-05
The production of the microalga Phaeodactylum tricornutum in an outdoor helical reactor was analyzed. First, fluid dynamics, mass-transfer capability, and mixing of the reactor was evaluated at different superficial gas velocities. Performance of the reactor was controlled by power input per culture volume. A maximum liquid velocity of 0.32 m s(-1) and mass transfer coefficient of 0.006 s(-1) were measured at 3200 W m(-3). A model of the influence of superficial gas velocity on the following reactor parameters was proposed: gas hold-up, induced liquid velocity, and mass transfer coefficient, with the accuracy of the model being demonstrated. Second, the influence of superficial gas velocity on the yield of the culture was evaluated in discontinuous and continuous cultures. Mean daily values of culture parameters, including dissolved oxygen, biomass concentration, chlorophyll fluorescence (F(v)/F(m) ratio), growth rate, biomass productivity, and photosynthetic efficiency, were determined. Different growth curves were measured when the superficial gas velocity was modified-the higher the superficial gas velocity, the higher the yield of the system. In continuous mode, biomass productivity increased by 35%, from 1.02 to 1.38 g L(-1) d(-1), when the superficial gas velocity increased from 0.27 to 0.41 m s(-1). Maximal growth rates of 0.068 h(-1), biomass productivities up to 1.4 g L(-1) d(-1), and photosynthetic efficiency of up to 15% were obtained at the higher superficial gas velocity of 0.41 m s(-1). The fluorescence parameter, F(v)/F(m), which reflects the maximal efficiency of PSII photochemistry, showed that the cultures were stressed at average irradiances within the culture higher than 280 microE m(-2) s(-1) at every superficial gas velocity. For nonstressed cultures, the yield of the system was a function of average irradiance inside the culture, with the superficial gas velocity determining this relationship. When superficial gas velocity was increased, higher growth rates, biomass productivities, and photosynthetic efficiencies were obtained for similar average irradiance values. The higher the superficial gas velocity, the higher the liquid velocity, with this increase enhancing the movement of the cells inside the culture. In this way the efficiency of the cells increased and higher biomass concentrations and productivities were reached for the same solar irradiance. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 62-73, 2003.
Transonic aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 31
NASA Technical Reports Server (NTRS)
Harris, C. D.
1975-01-01
Refinements in a 10 percent thick supercritical airfoil (airfoil 31) have produced significant improvements in the drag characteristics compared with those for an earlier supercritical airfoil (airfoil 12) designed for the same normal force coefficient of 0.7. Drag creep was practically eliminated at normal force coefficients between about 0.4 and 0.7 and was greatly reduced at other normal force coefficients. Substantial reductions in the drag levels preceding drag divergence were also achieved at all normal force coefficients. The Mach numbers at which drag diverges were delayed for airfoil 31 at normal force coefficients up to about 0.6 (by approximately 0.01 and 0.02 at normal force coefficients of 0.4 and 0.6, respectively) but drag divergence occurred at slightly lower Mach numbers at higher normal force coefficients.
Lunar gravity derived from long-period satellite motion, a proposed method
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.
The dissociative recombination of O2/+/ in the ionosphere
NASA Technical Reports Server (NTRS)
Torr, M. R.; Torr, D. G.
1981-01-01
Aeronomical determinations of the dissociative recombination reaction rate coefficient for O2(+) and alpha depend directly on a knowledge of the rate coefficient for the charge exchange of O(+) with O2 and k. The aeronomical determination of alpha is reevaluated using Atmosphere Explorer satellite data in light of a subsequent laboratory measurement of k (Chen et al., 1978). The results are found to be in good agreement with laboratory determinations of the coefficient for night-time conditions. For data obtained under sunlit conditions, however, the results differed significantly with those of the laboratory measurements. These results imply that the state of the O2(+) molecule major thermospheric processes needs to be examined in greater detail.
NASA Astrophysics Data System (ADS)
Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.
1999-12-01
A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.
Determination of extinction coefficients of human hemoglobin in various redox states
Meng, Fantao; Alayash, Abdu I.
2017-01-01
The role of hemoglobin (Hb) redox forms in tissue and organ toxicities remain ambiguous despite the well-documented contribution of Hb redox reactivity to cellular and subcellular oxidative changes. Moreover, several recent studies, in which Hb toxicity were investigated, have shown conflicting outcomes. Uncertainties over the potential role of these species may in part be due to the protein preparation method of choice, the use of published extinction coefficients and the lack of suitable controls for Hb oxidation and heme loss. Highly purified and well characterized redox forms of human Hb were used in this study and the extinction coefficients of each Hb species (ferrous/oxy, ferric/met and ferryl) were determined. A new set of equations were established to improve accuracy in determining the transient ferryl Hb species. Additionally, heme concentrations in solutions and in human plasma were determined using a novel reversed phase HPLC method in conjugation with our photometric measurements. The use of more accurate redox-specific extinction coefficients and method calculations will be an invaluable tool for both in vitro and in vivo experiments aimed at determining the role of Hb-mediated vascular pathology in hemolytic anemias and when Hb is used as oxygen therapeutics. PMID:28069451
Temporal correlation coefficient for directed networks.
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.
Determination of the diffusion coefficient and solubility of radon in plastics.
Pressyanov, D; Georgiev, S; Dimitrova, I; Mitev, K; Boshkova, T
2011-05-01
This paper describes a method for determination of the diffusion coefficient and the solubility of radon in plastics. The method is based on the absorption and desorption of radon in plastics. Firstly, plastic specimens are exposed for controlled time to referent (222)Rn concentrations. After exposure, the activity of the specimens is followed by HPGe gamma spectrometry. Using the mathematical algorithm described in this report and the decrease of activity as a function of time, the diffusion coefficient can be determined. In addition, if the referent (222)Rn concentration during the exposure is known, the solubility of radon can be determined. The algorithm has been experimentally applied for different plastics. The results show that this approach allows the specified quantities to be determined with a rather high accuracy-depending on the quality of the counting equipment, it can be better than 10 %.
NASA Astrophysics Data System (ADS)
Haendel, A.; Ohrnberger, M.; Krüger, F.
2016-11-01
Knowledge of the quality factor of near-surface materials is of fundamental interest in various applications. Attenuation can be very strong close to the surface and thus needs to be properly assessed. In recent years, several researchers have studied the retrieval of attenuation coefficients from the cross correlation of ambient seismic noise. Yet, the determination of exact amplitude information from noise-correlation functions is, in contrast to the extraction of traveltimes, not trivial. Most of the studies estimated attenuation coefficients on the regional scale and within the microseism band. In this paper, we investigate the possibility to derive attenuation coefficients from seismic noise at much shallower depths and higher frequencies (>1 Hz). The Euroseistest area in northern Greece offers ideal conditions to study quality factor retrieval from ambient noise for different rock types. Correlations are computed between the stations of a small scale array experiment (station spacings <2 km) that was carried out in the Euroseistest area in 2011. We employ the correlation of the coda of the correlation (C3) method instead of simple cross correlations to mitigate the effect of uneven noise source distributions on the correlation amplitude. Transient removal and temporal flattening are applied instead of 1-bit normalization in order to retain relative amplitudes. The C3 method leads to improved correlation results (higher signal-to-noise ratio and improved time symmetry) compared to simple cross correlations. The C3 functions are rotated from the ZNE to the ZRT system and we focus on Love wave arrivals on the transverse component and on Love wave quality factors QL. The analysis is performed for selected stations being either situated on soft soil or on weathered rock. Phase slowness is extracted using a slant-stack method. Attenuation parameters are inferred by inspecting the relative amplitude decay of Love waves with increasing interstation distance. We observe that the attenuation coefficient γ and QL can be reliably extracted for stations situated on soft soil whereas the derivation of attenuation parameters is more problematic for stations that are located on weathered rock. The results are in acceptable conformance with theoretical Love wave attenuation curves that were computed using 1-D shear wave velocity and quality factor profiles from the Euroseistest area.
Seasonal And Regional Differentiation Of Bio-Optical Properties Within The North Polar Atlantic
NASA Technical Reports Server (NTRS)
Stramska, Malgorzata; Stramski, Dariusz; Kaczmarek, Slawomir; Allison, David B.; Schwarz, Jill
2005-01-01
Using data collected during spring and summer seasons in the north polar Atlantic we examined the variability of the spectral absorption, a(lambda), and backscattering, b(sub b)(lambda), coefficients of surface waters and its relation to phytoplankton pigment concentration and composition. For a given chlorophyll a concentration (TChla), the concentrations of photosynthetic carotenoids (PSC), photoprotective carotenoids (PPC), and total accessory pigments (AP) were consistently lower in spring than in summer. The chlorophyll-specific absorption coefficients of phytoplankton and total particulate matter were also lower in spring, which can be partly attributed to lower proportions of PPC, PSC, and AP in spring. The spring values of the green-to-blue band ratio of the absorption coefficient were higher than the summer ratios. The blue-to-green ratios of backscattering coefficient were also higher in spring. The higher b(sub b) values and lower blue-to-green b(sub b) ratios in summer were likely associated with higher concentrations of detrital particles in summer compared to spring. Because the product of the green-to-blue absorption ratio and the blue-to-green backscattering ratio is a proxy for the blue-to-green ratio of remote-sensing reflectance, we conclude that the performance of ocean color band-ratio algorithms for estimating pigments in the north polar Atlantic is significantly affected by seasonal shifts in the relationships between absorption and TChla as well as between backscattering and TChla. Intriguingly, however, fairly good estimate of the particulate beam attenuation coefficient at 660 nm (potential measure of total particulate matter or particulate organic carbon concentration) can be obtained by applying a single blue-to-green band-ratio algorithm for both spring and summer seasons.
ACCUMULATION OF RADIOACTIVE STRONTIUM BY HYDROPHYTES AND DETRITUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agre, A.L.; Telitchenko, M.M.
1963-11-01
Uptake and accumulation of Sr/sup 90/ was studied in several species of green algae, blue-green algae, diatoms, mosses, and in duckweed. The organdisms were placed in experimental solutions made of standing tap water into which Sr/ sup 90/ was introduced as SrCl/sub 2/. Activity of the solutions was 10/sup -8/ to 10/sup -6/ Curie per liter. Radioactivity of the organisms was determined every 25 days on a B unit with an SI-2B leadshielded end-window counter according to standard method. The values of the coefficients of Sr/sup 90/ accumulation by the hydrophytes were found to be inversely proportional to the isotopicmore » concentration of the medium. Algae had higher Sr/sup 90/ accumulation coefficients than did mosses, an the accumulation in algae was more rapid. Experiments showed that organic wastes effected 80% decontamination of the solutions, on the average. It is suggested that hydrophytes and organic wastes may consequently be used for decontamination of water containing Sr/sup 90/. (H.M.G.)« less
Piot, Madeleine; Hupin, Sébastien; Lavanant, Hélène; Afonso, Carlos; Bouteiller, Laurent; Proust, Anna; Izzet, Guillaume
2017-07-17
The metal-driven self-assembly of a Keggin-based hybrid bearing two remote pyridine units was investigated. The resulting supramolecular species were identified by combination of 2D diffusion NMR spectroscopy (DOSY) and electrospray ionization mass spectrometry (ESI-MS) as a mixture of molecular triangles and squares. This behavior is different from that of the structural analogue Dawson-based hybrid displaying a higher charge, which only led to the formation of molecular triangles. This study highlights the decisive effect of the charge of the POMs in their self-assembly processes that disfavors the formation of large assemblies. An isothermal titration calorimetry (ITC) experiment confirmed the stronger binding in the case of the Keggin hybrids. A correlation between the diffusion coefficient D and the molecular mass M of the POM-based building block and its coordination oligomers was also observed. We show that the diffusion coefficient of these compounds is mainly determined by their occupied volume rather than by their shape.
Corneal aberrations in keratoconic eyes: influence of pupil size and centering
NASA Astrophysics Data System (ADS)
Comastri, S. A.; Perez, L. I.; Pérez, G. D.; Martin, G.; Bianchetti, A.
2011-01-01
Ocular aberrations vary among subjects and under different conditions and are commonly analyzed expanding the wavefront aberration function in Zernike polynomials. In previous articles, explicit analytical formulas to transform Zernike coefficients of up to 7th order corresponding to an original pupil into those related to a contracted displaced new pupil are obtained. In the present paper these formulas are applied to 20 keratoconic corneas of varying severity. Employing the SN CT1000 topographer, aberrations of the anterior corneal surface for a pupil of semi-diameter 3 mm centered on the keratometric axis are evaluated, the relation between the higher-order root mean square wavefront error and the index KISA% characterizing keratoconus is studied and the size and centering of the ocular photopic natural pupil are determined. Using these data and the transformation formulas, new coefficients associated to the photopic pupil size are computed and their variation when coordinates origin is shifted from the keratometric axis to the ocular pupil centre is analyzed.
Liu, Shiyuan; Xu, Shuang; Wu, Xiaofei; Liu, Wei
2012-06-18
This paper proposes an iterative method for in situ lens aberration measurement in lithographic tools based on a quadratic aberration model (QAM) that is a natural extension of the linear model formed by taking into account interactions among individual Zernike coefficients. By introducing a generalized operator named cross triple correlation (CTC), the quadratic model can be calculated very quickly and accurately with the help of fast Fourier transform (FFT). The Zernike coefficients up to the 37th order or even higher are determined by solving an inverse problem through an iterative procedure from several through-focus aerial images of a specially designed mask pattern. The simulation work has validated the theoretical derivation and confirms that such a method is simple to implement and yields a superior quality of wavefront estimate, particularly for the case when the aberrations are relatively large. It is fully expected that this method will provide a useful practical means for the in-line monitoring of the imaging quality of lithographic tools.
Liu, Chang-Fu; He, Xing-Yuan; Chen, Wei; Zhao, Gui-Ling; Xue, Wen-Duo
2008-06-01
Based on the fractal theory of forest growth, stepwise regression was employed to pursue a convenient and efficient method of measuring the three-dimensional green biomass (TGB) of urban forests in small area. A total of thirteen simulation equations of TGB of urban forests in Shenyang City were derived, with the factors affecting the TGB analyzed. The results showed that the coefficients of determination (R2) of the 13 simulation equations ranged from 0.612 to 0.842. No evident pattern was shown in residual analysis, and the precisions were all higher than 87% (alpha = 0.05) and 83% (alpha = 0.01). The most convenient simulation equation was ln Y = 7.468 + 0.926 lnx1, where Y was the simulated TGB and x1 was basal area at breast height per hectare (SDB). The correlations between the standard regression coefficients of the simulation equations and 16 tree characteristics suggested that SDB was the main factor affecting the TGB of urban forests in Shenyang.
Effects of nanosilver on sound absorption coefficients in solid wood species.
Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib
2016-06-01
Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.
Simulation of the real efficiencies of high-efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachenko, A. V., E-mail: sach@isp.kiev.ua; Skrebtii, A. I.; Korkishko, R. M.
The temperature dependences of the efficiency η of high-efficiency solar cells based on silicon are calculated. It is shown that the temperature coefficient of decreasing η with increasing temperature decreases as the surface recombination rate decreases. The photoconversion efficiency of high-efficiency silicon-based solar cells operating under natural (field) conditions is simulated. Their operating temperature is determined self-consistently by simultaneously solving the photocurrent, photovoltage, and energy-balance equations. Radiative and convective cooling mechanisms are taken into account. It is shown that the operating temperature of solar cells is higher than the ambient temperature even at very high convection coefficients (~300 W/m{sup 2}more » K). Accordingly, the photoconversion efficiency in this case is lower than when the temperature of the solar cells is equal to the ambient temperature. The calculated dependences for the open-circuit voltage and the photoconversion efficiency of high-quality silicon solar cells under concentrated illumination are discussed taking into account the actual temperature of the solar cells.« less
Campbell, J Elliott; Moen, Jeremie C; Ney, Richard A; Schnoor, Jerald L
2008-03-01
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively.
NASA Astrophysics Data System (ADS)
Devoino, O. G.; Feldshtein, E. É.; Kardapolova, M. A.; Lutsko, N. I.
2017-03-01
Some parameters of laser surfacing of self-fluxing nickel alloy PG-12N-01 are considered. Different structures containing a low-melting γ-Ni - Ni3B eutectic and a γ-Ni - Cr3C2 eutectic that crystallizes at a higher temperature and forms the strength skeleton of the coating may form depending on the rate of the surfacing. The effect of the rate of the surfacing on the wear resistance of the coating and on the coefficients of dry friction are determined.
Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals
NASA Astrophysics Data System (ADS)
Lee, Roman N.; Mingulov, Kirill T.
2018-04-01
We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).
Experimental study of the valence band of Bi 2 Se 3
Gao, Yi-Bin; He, Bin; Parker, David; ...
2014-09-26
The valence band of Bi 2Se 3 is investigated with Shubnikov - de Haas measurements, galvanomagnetic and thermoelectric transport. At low hole concentration, the hole Fermi surface is closed and box-like, but at higher concentrations it develops tube-like extensions that are open. The experimentally determined density-of-states effective mass is lighter than density-functional theory calculations predict; while we cannot give a definitive explanation for this, we suspect that the theory may lack sufficient precision to compute room-temperature transport properties, such as the Seebeck coefficient, in solids in which there are Van der Waals interlayer bonds.
Pressure Dependence of the Superfluid Fraction in 3He-A1
NASA Astrophysics Data System (ADS)
Bastea, M.; Okuda, Y.; Kojima, H.
1995-03-01
The superfluid fraction of 3He-A1 was determined in the Ginzburg-Landau (GL) region as a function of pressure between 10 and 30 bars from the measured spin-entropy wave velocity. The pressure dependence of the parameter β24, proportional to the fourth order coefficients of GL free energy expansion, was measured for the first time. At low pressures the parameter approaches the weak coupling limit in agreement with the theory of Sauls and Serene. The extracted strong coupling corrections to β24 and β5 at higher pressures are also consistent with the theory.
NASA Astrophysics Data System (ADS)
Shevchenko, Svetlana Yu.; Melnik, Yury A.; Smirnov, Andrey E.; Htet, Wai Yan Min
2018-03-01
Temperature dependences of heat transfer coefficients of liquid and gaseous quenching media were determined using a gradient probe and prismatic probe of more simple design. The probes of two different designs were tested in the same conditions. Analysis of heat transfer coefficients showed good agreement between the data obtained. The tests were carried out with liquid and gaseous quenching media: water, polymer quenchant, quenching oil and high-pressure nitrogen. Methods of mathematical modeling of steel samples quenching show the adequacy of the results.
NASA Astrophysics Data System (ADS)
Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.
2016-03-01
A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
NASA Astrophysics Data System (ADS)
Chang, Lienard A.
In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Bennett, Gordon D.; Patten, E.P.
1962-01-01
This report describes the theory and field procedures for determining the transmissibility and storage coefficients and the original hydrostatic head of each aquifer penetrated by a multiaquifer well. The procedure involves pumping the well in such a manner that the drawdown of water level is constant while the discharges of the different aquifers are measured by means of borehole flowmeters. The theory is developed by analogy to the heat-flow problem solved by Smith. The internal discharge between aquifers after the well is completed is analyzed as the first step. Pumping at constant, drawdown constitutes the second step. Transmissibility and storage coefficients are determined by a method described by Jacob and Lohman, after the original internal discharge to or from the aquifer has been compensated for in the calculations. The original hydrostatic head of each aquifer is then determined by resubstituting the transmissibility and storage coefficients into the first step of the analysis. The method was tested on a well in Chester County, Pa., but the results were not entirely satisfactory, owing to the lack of sufficiently accurate methods of flow measurement and, probably, to the effects of entrance losses in the well. The determinations of the transmissibility coefficient and static head can be accepted as having order-of-magnitude significance, but the determinations of the storage coefficient, which is highly sensitive to experimental error, must be rejected. It is felt that better results may be achieved in the future, as more reliable devices for metering the flow become available and as more is learned concerning the nature of entrance losses. If accurate data can be obtained, recently developed techniques of digital or analog computation may permit determination of the response of each aquifer in the well to any form of pumping.
Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.
2016-01-01
Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025
Activity coefficients from molecular simulations using the OPAS method
NASA Astrophysics Data System (ADS)
Kohns, Maximilian; Horsch, Martin; Hasse, Hans
2017-10-01
A method for determining activity coefficients by molecular dynamics simulations is presented. It is an extension of the OPAS (osmotic pressure for the activity of the solvent) method in previous work for studying the solvent activity in electrolyte solutions. That method is extended here to study activities of all components in mixtures of molecular species. As an example, activity coefficients in liquid mixtures of water and methanol are calculated for 298.15 K and 323.15 K at 1 bar using molecular models from the literature. These dense and strongly interacting mixtures pose a significant challenge to existing methods for determining activity coefficients by molecular simulation. It is shown that the new method yields accurate results for the activity coefficients which are in agreement with results obtained with a thermodynamic integration technique. As the partial molar volumes are needed in the proposed method, the molar excess volume of the system water + methanol is also investigated.
Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O
NASA Technical Reports Server (NTRS)
Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.
1999-01-01
Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.
Determination of the Drag Resistance Coefficients of Different Vehicles
ERIC Educational Resources Information Center
Fahsl, Christoph; Vogt, Patrik
2018-01-01
While it has been demonstrated how air resistance could be analyzed by using mobile devices, this paper demonstrates a method of how to determine the drag resistance coefficient "c" of a commercial automobile by using the acceleration sensor of a smartphone or tablet. In an academic context, the drag resistance is often mentioned, but…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.
A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less
Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal
2012-10-01
Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.
Investigation into the Effects of Textural Properties on Cuttability Performance of a Chisel Tool
NASA Astrophysics Data System (ADS)
Tumac, Deniz; Copur, Hanifi; Balci, Cemal; Er, Selman; Avunduk, Emre
2018-04-01
The main objective of this study is to investigate the effect of textural properties of stones on cutting performance of a standard chisel tool. Therewithal, the relationships between textural properties and cutting performance parameters and physical and mechanical properties were statistically analyzed. For this purpose, physical and mechanical property tests and mineralogical and petrographic analyses were carried out on eighteen natural stone samples, which can be grouped into three fundamentally different geological origins, i.e., metamorphic, igneous, and sedimentary. Then, texture coefficient analyses were performed on the samples. To determine the cuttability of the stones; the samples were cut with a portable linear cutting machine using a standard chisel tool at different depths of cut in unrelieved (non-interactive) cutting mode. The average and maximum forces (normal and cutting) and specific energy were measured, and the obtained values were correlated with texture coefficient, packing weighting, and grain size. With reference to the relation between depth of cut and cutting performance of the chisel tool for three types of natural stone groups, specific energy decreases with increasing depth of cut, and cutting forces increase in proportion to the depth of cut. The same is observed for the relationship between packing weighting and both of specific energy and cutter forces. On the other hand, specific energy and the forces decrease while grain size increases. Based on the findings of the present study, texture coefficient has strong correlation with specific energy. Generally, the lower depth of cut values in cutting tests shows higher and more reliable correlations with texture coefficient than the increased depth of cut. The results of cutting tests show also that, at a lower depth of cut (less than 1.5 mm), even stronger correlations can be observed between texture coefficient and cutting performance. Experimental studies indicate that cutting performance of chisel tools can be predicted based on texture coefficients of the natural stones.
El Saiedi, Sonia A; Mira, Marwa F; Sharaf, Sahar A; Al Musaddar, Maysoun M; El Kaffas, Rania M H; AbdelMassih, Antoine F; Barsoum, Ihab H Y
2018-01-01
Obesity increases the risk for various cardiovascular problems. Increase in body mass index is often an independent risk factor for the development of elevated blood pressure and clustering of various cardiovascular risk factors. To determine early markers of left ventricular affection in obese patients before the appearance of left ventricular hypertrophy. In this cross-sectional study, we evaluated 42 obese patients and 30 healthy controls. Their ages ranged from 6 to 19 years. Studied children were subjected to anthropometric, lipid profile, and serum Troponin I level measurements. Echocardiographic evaluation performed to assess the left ventricle included left ventricular dimension measurement using motion-mode echocardiography, based on which patients with left ventricular hypertrophy (10 patients) were eliminated, as well as conventional and tissue Doppler imaging. Tissue Doppler findings in the study groups showed that the ratio of transmitral early diastolic filling velocity to septal peak early diastolic myocardial velocity (E/e') was significantly higher in cases compared with controls [6.9±1.4 versus 9.0±1.6, p (Pearson's coefficient)=0.001, respectively]. The level of cardiac troponin I was significantly higher in cases compared with controls [0.14±0.39 ng/ml versus 0.01±0.01 ng/ml, p (Pearson's coefficient)=0.047, respectively] and there was a significant correlation between troponin I and transmitral early diastolic filling velocity to septal peak early diastolic myocardial velocity ratio (E/e') [R (correlation coefficient)=0.6]. Tissue Doppler Imaging and Troponin I evaluation proved useful tools to detect early affection of the left ventricle in obese patients even in the absence of left ventricular hypertrophy.
Zehnder, Pascal; Roth, Beat; Burkhard, Fiona C; Kessler, Thomas M
2008-09-01
We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.