Sample records for determine evolutionary relationships

  1. Phylogenetic Paleoecology: Tree-Thinking and Ecology in Deep Time.

    PubMed

    Lamsdell, James C; Congreve, Curtis R; Hopkins, Melanie J; Krug, Andrew Z; Patzkowsky, Mark E

    2017-06-01

    The new and emerging field of phylogenetic paleoecology leverages the evolutionary relationships among species to explain temporal and spatial changes in species diversity, abundance, and distribution in deep time. This field is poised for rapid progress as knowledge of the evolutionary relationships among fossil species continues to expand. In particular, this approach will lend new insights to many of the longstanding questions in evolutionary biology, such as: the relationships among character change, ecology, and evolutionary rates; the processes that determine the evolutionary relationships among species within communities and along environmental gradients; and the phylogenetic signal underlying ecological selectivity in background and mass extinctions and in major evolutionary radiations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Determination of evolutionary relationships of outbreak-associated Listeria monocytogenes strains of serotypes 1/2a and 1/2b by whole-genome sequencing

    USDA-ARS?s Scientific Manuscript database

    We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outb...

  3. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  4. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  5. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  6. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  7. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  8. Evolutionary genetics of maternal effects

    PubMed Central

    Wolf, Jason B.; Wade, Michael J.

    2016-01-01

    Maternal genetic effects (MGEs), where genes expressed by mothers affect the phenotype of their offspring, are important sources of phenotypic diversity in a myriad of organisms. We use a single‐locus model to examine how MGEs contribute patterns of heritable and nonheritable variation and influence evolutionary dynamics in randomly mating and inbreeding populations. We elucidate the influence of MGEs by examining the offspring genotype‐phenotype relationship, which determines how MGEs affect evolutionary dynamics in response to selection on offspring phenotypes. This approach reveals important results that are not apparent from classic quantitative genetic treatments of MGEs. We show that additive and dominance MGEs make different contributions to evolutionary dynamics and patterns of variation, which are differentially affected by inbreeding. Dominance MGEs make the offspring genotype‐phenotype relationship frequency dependent, resulting in the appearance of negative frequency‐dependent selection, while additive MGEs contribute a component of parent‐of‐origin dependent variation. Inbreeding amplifies the contribution of MGEs to the additive genetic variance and, therefore enhances their evolutionary response. Considering evolutionary dynamics of allele frequency change on an adaptive landscape, we show that this landscape differs from the mean fitness surface, and therefore, under some condition, fitness peaks can exist but not be “available” to the evolving population. PMID:26969266

  9. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes.

    PubMed

    Cui, Rongfeng; Schumer, Molly; Kruesi, Karla; Walter, Ronald; Andolfatto, Peter; Rosenthal, Gil G

    2013-08-01

    Hybridization is increasingly being recognized as a widespread process, even between ecologically and behaviorally divergent animal species. Determining phylogenetic relationships in the presence of hybridization remains a major challenge for evolutionary biologists, but advances in sequencing technology and phylogenetic techniques are beginning to address these challenges. Here we reconstruct evolutionary relationships among swordtails and platyfishes (Xiphophorus: Poeciliidae), a group of species characterized by remarkable morphological diversity and behavioral barriers to interspecific mating. Past attempts to reconstruct phylogenetic relationships within Xiphophorus have produced conflicting results. Because many of the 26 species in the genus are interfertile, these conflicts are likely due to hybridization. Using genomic data, we resolve a high-confidence species tree of Xiphophorus that accounts for both incomplete lineage sorting and hybridization. Our results allow us to reexamine a long-standing controversy about the evolution of the sexually selected sword in Xiphophorus, and demonstrate that hybridization has been strikingly widespread in the evolutionary history of this genus. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  10. Tracking the footsteps of an invasive plant pathogen: Intercontinental phylogeographic structure of the white-pine-blister-rust fungus, Cronartium ribicola

    Treesearch

    Bryce A. Richardson; Mee-Sook Kim; Ned B. Klopfenstein; Yuko Ota; Kwan Soo Woo; Richard C. Hamelin

    2009-01-01

    Presently, little is known about the worldwide genetic structure, diversity, or evolutionary relationships of the white-pineblister-rust fungus, Cronartium ribicola. A collaborative international effort is underway to determine the phylogeographic relationships among Asian, European, and North American sources of C. ribicola and...

  11. Evolutionary heritage influences Amazon tree ecology.

    PubMed

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  12. Evolutionary heritage influences Amazon tree ecology

    PubMed Central

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  13. Evolution of morphology and locomotor performance in anurans: relationships with microhabitat diversification.

    PubMed

    Citadini, J M; Brandt, R; Williams, C R; Gomes, F R

    2018-03-01

    The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post-cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi-aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein-Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi-aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi-aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  14. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    ERIC Educational Resources Information Center

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  15. Using Evolutionary Data in Developing Phylogenetic Trees: A Scaffolded Approach with Authentic Data

    ERIC Educational Resources Information Center

    Davenport, K. D.; Milks, Kirstin Jane; Van Tassell, Rebecca

    2015-01-01

    Analyzing evolutionary relationships requires that students have a thorough understanding of evidence and of how scientists use evidence to develop these relationships. In this lesson sequence, students work in groups to process many different lines of evidence of evolutionary relationships between ungulates, then construct a scientific argument…

  16. On suffering and sympathy: "Jude the Obscure," evolution, and ethics.

    PubMed

    Sumpter, Caroline

    2011-01-01

    This article links Thomas Hardy's exploration of sympathy in "Jude the Obscure" to contemporary scientific debates over moral evolution. Tracing the relationship between pessimism, progressivism, and determinism in Hardy's understanding of sympathy, it also considers Hardy's conception of the author as enlarger of 'social sympathies' - a position, I argue, that was shaped by Leslie Stephen's advocacy of novel writing as moral art. Considering Hardy's engagement with writings by Charles Darwin, T.H. Huxley, Herbert Spencer, and others, I explore the novel's participation in a debate about the evolutionary significance of sympathy and its implications for Hardy's understanding of moral agency. Hardy, I suggest, offered a stronger defence of morality based on biological determinism than Darwin, but this determinism was linked to an unexpected evolutionary optimism.

  17. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    PubMed

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  18. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  19. Ecological and evolutionary drivers of the elevational gradient of diversity.

    PubMed

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  20. Comprehensive Phylogenetic Analysis of Bovine Non-aureus Staphylococci Species Based on Whole-Genome Sequencing

    PubMed Central

    Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen

    2016-01-01

    Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335

  1. Antibody Epitope Analysis to Investigate Folded Structure, Allosteric Conformation, and Evolutionary Lineage of Proteins.

    PubMed

    Wong, Sienna; Jin, J-P

    2017-01-01

    Study of folded structure of proteins provides insights into their biological functions, conformational dynamics and molecular evolution. Current methods of elucidating folded structure of proteins are laborious, low-throughput, and constrained by various limitations. Arising from these methods is the need for a sensitive, quantitative, rapid and high-throughput method not only analysing the folded structure of proteins, but also to monitor dynamic changes under physiological or experimental conditions. In this focused review, we outline the foundation and limitations of current protein structure-determination methods prior to discussing the advantages of an emerging antibody epitope analysis for applications in structural, conformational and evolutionary studies of proteins. We discuss the application of this method using representative examples in monitoring allosteric conformation of regulatory proteins and the determination of the evolutionary lineage of related proteins and protein isoforms. The versatility of the method described herein is validated by the ability to modulate a variety of assay parameters to meet the needs of the user in order to monitor protein conformation. Furthermore, the assay has been used to clarify the lineage of troponin isoforms beyond what has been depicted by sequence homology alone, demonstrating the nonlinear evolutionary relationship between primary structure and tertiary structure of proteins. The antibody epitope analysis method is a highly adaptable technique of protein conformation elucidation, which can be easily applied without the need for specialized equipment or technical expertise. When applied in a systematic and strategic manner, this method has the potential to reveal novel and biomedically meaningful information for structure-function relationship and evolutionary lineage of proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Local population density and group composition influence the signal-preference relationship in Enchenopa treehoppers (Hemiptera: Membracidae).

    PubMed

    Fowler-Finn, K D; Cruz, D C; Rodríguez, R L

    2017-01-01

    Many animals exhibit social plasticity - changes in phenotype or behaviour in response to experience with conspecifics that change how evolutionary processes like sexual selection play out. Here, we asked whether social plasticity arising from variation in local population density in male advertisement signals and female mate preferences influences the form of sexual selection. We manipulated local density and determined whether this changed how the distribution of male signals overlapped with female preferences - the signal preference relationship. We specifically look at the shape of female mate preference functions, which, when compared to signal distributions, provide hypotheses about the form of sexual selection. We used Enchenopa binotata treehoppers, a group of plant-feeding insects that exhibit natural variation in local densities across individual host plants, populations, species and years. We measured male signal frequency and female preference functions across the density treatments. We found that male signals varied across local social groups, but not according to local density. By contrast, female preferences varied with local density - favouring higher signal frequencies in denser environments. Thus, local density changes the signal-preference relationship and, consequently, the expected form of sexual selection. We found no influence of sex ratio on the signal-preference relationship. Our findings suggest that plasticity arising from variation in local group density and composition can alter the form of sexual selection with potentially important consequences both for the maintenance of variation and for speciation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  3. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    PubMed

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  4. Evolutionary characterization of the West Nile Virus complete genome.

    PubMed

    Gray, R R; Veras, N M C; Santos, L A; Salemi, M

    2010-07-01

    The spatial dynamics of the West Nile Virus epidemic in North America are largely unknown. Previous studies that investigated the evolutionary history of the virus used sequence data from the structural genes (prM and E); however, these regions may lack phylogenetic information and obscure true evolutionary relationships. This study systematically evaluated the evolutionary patterns in the eleven genes of the WNV genome in order to determine which region(s) were most phylogenetically informative. We found that while the E region lacks resolution and can potentially result in misleading conclusions, the full NS3 or NS5 regions have strong phylogenetic signal. Furthermore, we show that geographic structure of WNV infection within the US is more pronounced than previously reported in studies that used the structural genes. We conclude that future evolutionary studies should focus on NS3 and NS5 in order to maximize the available sequences while retaining maximal interpretative power to infer temporal and geographic trends among WNV strains. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Bioinformatics analysis and genetic diversity of the poliovirus.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue

    2014-12-01

    Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. © 2014 The Authors.

  6. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    USDA-ARS?s Scientific Manuscript database

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  7. An Armillaria survey in Mexico: A basis for determining evolutionary relationships, assessing potentially invasive pathogens, evaluating future impacts of climate change, and developing international collaborations in forest pathology

    Treesearch

    Phil Cannon; Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Dionicio Alvarado Rosales

    2008-01-01

    In September 2007, a collaborative effort was made to survey Armillaria species in three general areas of south-central Mexico. Collected Armillaria isolates will be subjected to DNA analyses to examine genetic relationships with other Armillaria species. These studies will provide baseline information for examining evolution of Armillaria...

  8. Communicative genes in the evolution of empathy and altruism.

    PubMed

    Buck, Ross

    2011-11-01

    This paper discusses spontaneous communication and its implications for understanding empathy and altruism. The question of the possibility of "true" altruism-giving up one's genetic potential in favor of the genetic potential of another-is a fundamental issue common to the biological, behavioral, and social sciences. Darwin regarded "social instincts and sympathies" to be critical to the social order, but the possibility of biologically-based prosocial motives and emotions was questioned when selection was interpreted as operating at the level of the gene. In the selfish gene hypothesis, Dawkins argued that the unit of evolutionary selection must be an active, germ-line replicator: a unit whose activities determine whether copies of it are made across evolutionary timescales. He argued that the only active replicator existing across evolutionary timescales is the gene, so that the "selfish gene" is a replicator motivated only to make copies of itself. The communicative gene hypothesis notes that genes function by communicating, and the phenotype communication involves not only the individual sending and receiving abilities of the individual genes involved, but also the relationship between them relative to other genes. Therefore the selection of communication as phenotype involves the selection of individual genes and also their relationship. Relationships become replicators, and are selected across evolutionary timescales including social relationships (e.g., sex, nurturance, dominance-submission). An interesting implication of this view: apparent altruism has been interpreted by selfish gene theorists as due to kin selection and reciprocity, in which the survival of kin and comrade indirectly favor the genetic potential of the altruist. From the viewpoint of the communicative gene hypothesis, rather than underlying altruism, kin selection and reciprocity are ways of restricting altruism to kin and comrade: they are mechanisms not of altruism but of xenophobia.

  9. Determinants and consequences of female attractiveness and sexiness: realistic tests with restaurant waitresses.

    PubMed

    Lynn, Michael

    2009-10-01

    Waitresses completed an on-line survey about their physical characteristics, self-perceived attractiveness and sexiness, and average tips. The waitresses' self-rated physical attractiveness increased with their breast sizes and decreased with their ages, waist-to-hip ratios, and body sizes. Similar effects were observed on self-rated sexiness, with the exception of age, which varied with self-rated sexiness in a negative, quadratic relationship rather than a linear one. Moreover, the waitresses' tips varied with age in a negative, quadratic relationship, increased with breast size, increased with having blond hair, and decreased with body size. These findings, which are discussed from an evolutionary perspective, make several contributions to the literature on female physical attractiveness. First, they replicate some previous findings regarding the determinants of female physical attractiveness using a larger, more diverse, and more ecologically valid set of stimuli than has been studied before. Second, they provide needed evidence that some of those determinants of female beauty affect interpersonal behaviors as well as attractiveness ratings. Finally, they indicate that some determinants of female physical attractiveness do not have the same effects on overt interpersonal behavior (such as tipping) that they have on attractiveness ratings. This latter contribution highlights the need for more ecologically valid tests of evolutionary theories about the determinants and consequences of female beauty.

  10. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

    NASA Astrophysics Data System (ADS)

    Sharma, Deepak; Barakat, Nada

    2018-02-01

    An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ɛ-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

  11. Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae

    USDA-ARS?s Scientific Manuscript database

    Simple sequence repeats (SSRs) in chloroplast and mitochondrial DNA, which have not been previously developed or explored in the Ericaceae family or Vaccinium genus, can be powerful tools for determining evolutionary relationships between taxa. In this study, 30 chloroplast and 23 mitochondria, and ...

  12. "I'm Like You Not": Intergenerational Mobility of Working Class Students from a Cultural-Evolutionary Perspective

    ERIC Educational Resources Information Center

    Lovett, Trevor

    2016-01-01

    This retrospective narrative investigation challenges aspects of structural determinism. The biographical data generated in the study revealed that the baby-boomer, male participants were not academically constrained by their working class identities. Interpersonal relationships experienced within an individual's unique communities of practice…

  13. The evolution of body size in extant groups of North American freshwater fishes: speciation, size distributions, and Cope's rule.

    PubMed

    Knouft, Jason H; Page, Lawrence M

    2003-03-01

    Change in body size within an evolutionary lineage over time has been under investigation since the synthesis of Cope's rule, which suggested that there is a tendency for mammals to evolve larger body size. Data from the fossil record have subsequently been examined for several other taxonomic groups to determine whether they also displayed an evolutionary increase in body size. However, we are not aware of any species-level study that has investigated the evolution of body size within an extant continental group. Data acquired from the fossil record and data derived from the evolutionary relationships of extant species are not similar, with each set exhibiting both strengths and weaknesses related to inferring evolutionary patterns. Consequently, expectation that general trends exhibited in the fossil record will correspond to patterns in extant groups is not necessarily warranted. Using phylogenetic relationships of extant species, we show that five of nine families of North American freshwater fishes exhibit an evolutionary trend of decreasing body size. These trends result from the basal position of large species and the more derived position of small species within families. Such trends may be caused by the invasion of small streams and subsequent isolation and speciation. This pattern, potentially influenced by size-biased dispersal rates and the high percentage of small streams in North America, suggests a scenario that could result in the generation of the size-frequency distribution of North American freshwater fishes.

  14. Evolutionary Connectionism: Algorithmic Principles Underlying the Evolution of Biological Organisation in Evo-Devo, Evo-Eco and Evolutionary Transitions.

    PubMed

    Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel

    2016-01-01

    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions.

  15. Body size as a primary determinant of ecomorphological diversification and the evolution of mimicry in the lampropeltinine snakes (Serpentes: Colubridae).

    PubMed

    Pyron, R Alexander; Burbrink, F T

    2009-10-01

    Evolutionary correlations between functionally related character suites are expected as a consequence of coadaptation due to physiological relationships between traits. However, significant correlations may also exist between putatively unrelated characters due to shared relationships between those traits and underlying variables, such as body size. Although such patterns are often dismissed as simple body size scaling, this presumption may overlook important evolutionary patterns of diversification. If body size is the primary determinant of potential diversity in multiple unrelated characters, the observed differentiation of species may be governed by variability in body size, and any biotic or abiotic constraints on the diversification thereof. Here, we demonstrate that traits related to both predatory specialization (gape and diet preference) and predatory avoidance (the development of Batesian mimicry) are phylogenetically correlated in the North American snake tribe Lampropeltini. This is apparently due to shared relationships between those traits and adult body size, suggesting that size is the primary determinant of ecomorphological differentiation in the lampropeltinines. Diversification in body size is apparently not linked to climatic or environmental factors, and may have been driven by interspecific interactions such as competition. Additionally, we find the presence of a 'key zone' for the development of both rattle- and coral snake mimicry; only small snakes feeding primarily on ectothermic prey develop mimetic colour patterns, in or near the range of venomous model species.

  16. Undergraduate Students’ Initial Ability in Understanding Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Hidayat, T.; Sudargo, Fransisca

    2017-04-01

    The Phylogenetic tree is a visual representation depicts a hypothesis about the evolutionary relationship among taxa. Evolutionary experts use this representation to evaluate the evidence for evolution. The phylogenetic tree is currently growing for many disciplines in biology. Consequently, learning about the phylogenetic tree has become an important part of biological education and an interesting area of biology education research. Skill to understanding and reasoning of the phylogenetic tree, (called tree thinking) is an important skill for biology students. However, research showed many students have difficulty in interpreting, constructing, and comparing among the phylogenetic tree, as well as experiencing a misconception in the understanding of the phylogenetic tree. Students are often not taught how to reason about evolutionary relationship depicted in the diagram. Students are also not provided with information about the underlying theory and process of phylogenetic. This study aims to investigate the initial ability of undergraduate students in understanding and reasoning of the phylogenetic tree. The research method is the descriptive method. Students are given multiple choice questions and an essay that representative by tree thinking elements. Each correct answer made percentages. Each student is also given questionnaires. The results showed that the undergraduate students’ initial ability in understanding and reasoning phylogenetic tree is low. Many students are not able to answer questions about the phylogenetic tree. Only 19 % undergraduate student who answered correctly on indicator evaluate the evolutionary relationship among taxa, 25% undergraduate student who answered correctly on indicator applying concepts of the clade, 17% undergraduate student who answered correctly on indicator determines the character evolution, and only a few undergraduate student who can construct the phylogenetic tree.

  17. Delinquency, androgens, and the family: a test of evolutionary neuroandrogenic theory.

    PubMed

    Ellis, Lee; Das, Shyamal

    2013-08-01

    There is little doubt that family factors can influence involvement in delinquency, although the full nature and extent of their influences remain unclear. In recent decades, testosterone has been increasingly implicated as a contributor to adolescent offending. The present study sought to determine whether two important types of familial factors--parental socioeconomic status and amicable parent-child relationships--are interacting with testosterone (and possibly other androgens) to affect delinquency. A large sample of North American college students self-reported their involvement in eight categories of delinquency along with self-ratings of various androgen-promoted traits (e.g., muscularity and low-deep voice), parental social status, and the quality of the relationships they had with parents. In both sexes, parent-child relationships and androgens were significantly associated with delinquency but parental social status was not. Factor analysis revealed that the authors' measures of all four categories of variables exhibited strong loadings onto their respective factors. Androgens and amicable parent-child relationships were associated with delinquency but parental social status was not. About one third of the influence of parent-child relationships on delinquency appeared to be attributable to androgens. Findings are discussed from the perspective of the evolutionary neuroandrogenic theory of delinquent and criminal behavior.

  18. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes.

    PubMed

    Meng, Xiangfeng; Gangoiti, Joana; Bai, Yuxiang; Pijning, Tjaard; Van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2016-07-01

    Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.

  19. Physalis and physaloids: A recent and complex evolutionary history.

    PubMed

    Zamora-Tavares, María Del Pilar; Martínez, Mahinda; Magallón, Susana; Guzmán-Dávalos, Laura; Vargas-Ponce, Ofelia

    2016-07-01

    The complex evolutionary history of the subtribe Physalinae is reflected in the poor resolution of the relationships of Physalis and the physaloid genera. We hypothesize that this low resolution is caused by recent evolutionary history in a complex geographic setting. The aims of this study were twofold: (1) To determine the phylogenetic relationships of the current genera recognized in Physalinae in order to identify monophyletic groups and resolve the physaloid grade; and (2) to determine the probable causes of the recent divergence in Physalinae. We conducted phylogenetic analyses with maximum likelihood (ML) and Bayesian inference with 50 Physalinae species and 19 others as outgroups, using morphological and molecular data from five plastid and two nuclear regions. A relaxed molecular clock was obtained from the ML topology and ancestral area reconstruction was conducted using the DEC model. The genera Chamaesaracha, Leucophysalis, and Physalis subgenus Rydbergis were recovered as monophyletic. Three clades, Alkekengi-Calliphysalis, Schraderanthus-Tzeltalia, and Witheringia-Brachistus, also received good support. However, even with morphological data and that of the DNA of seven regions, the tree was not completely resolved and many clades remained unsupported. Physalinae diverged at the end of the Miocene (∼9.22Mya) with one trend indicating that the greatest diversification within the subtribe occurred during the last 5My. The Neotropical region presented the highest probability (45%) of being the ancestral area of Physalinae followed by the Mexican Transition Zone (35%). During the Pliocene and Pleistocene, the geographical areas where species were found experienced significant geological and climatic changes, giving rise to rapid and relatively recent diversification events in Physalinae. Thus, recent origin, high diversification, and morphological complexity have contributed, at least with the currently available methods, to the inability to completely disentangle the phylogenetic relationships of Physalinae. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Accounting for epistatic interactions improves the functional analysis of protein structures.

    PubMed

    Wilkins, Angela D; Venner, Eric; Marciano, David C; Erdin, Serkan; Atri, Benu; Lua, Rhonald C; Lichtarge, Olivier

    2013-11-01

    The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. lichtarge@bcm.edu. Supplementary data are available at Bioinformatics online.

  1. Accounting for epistatic interactions improves the functional analysis of protein structures

    PubMed Central

    Wilkins, Angela D.; Venner, Eric; Marciano, David C.; Erdin, Serkan; Atri, Benu; Lua, Rhonald C.; Lichtarge, Olivier

    2013-01-01

    Motivation: The constraints under which sequence, structure and function coevolve are not fully understood. Bringing this mutual relationship to light can reveal the molecular basis of binding, catalysis and allostery, thereby identifying function and rationally guiding protein redesign. Underlying these relationships are the epistatic interactions that occur when the consequences of a mutation to a protein are determined by the genetic background in which it occurs. Based on prior data, we hypothesize that epistatic forces operate most strongly between residues nearby in the structure, resulting in smooth evolutionary importance across the structure. Methods and Results: We find that when residue scores of evolutionary importance are distributed smoothly between nearby residues, functional site prediction accuracy improves. Accordingly, we designed a novel measure of evolutionary importance that focuses on the interaction between pairs of structurally neighboring residues. This measure that we term pair-interaction Evolutionary Trace yields greater functional site overlap and better structure-based proteome-wide functional predictions. Conclusions: Our data show that the structural smoothness of evolutionary importance is a fundamental feature of the coevolution of sequence, structure and function. Mutations operate on individual residues, but selective pressure depends in part on the extent to which a mutation perturbs interactions with neighboring residues. In practice, this principle led us to redefine the importance of a residue in terms of the importance of its epistatic interactions with neighbors, yielding better annotation of functional residues, motivating experimental validation of a novel functional site in LexA and refining protein function prediction. Contact: lichtarge@bcm.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24021383

  2. Overcoming the effects of rogue taxa: Evolutionary relationships of the bee flies

    PubMed Central

    Trautwein, Michelle D.; Wiegmann, Brian M.; Yeates, David K

    2011-01-01

    Bombyliidae (5000 sp.), or bee flies, are a lower brachyceran family of flower-visiting flies that, as larvae, act as parasitoids of other insects. The evolutionary relationships are known from a morphological analysis that yielded minimal support for higher-level groupings. We use the protein-coding gene CAD and 28S rDNA to determine phylogeny and to test the monophyly of existing subfamilies, the divisions Tomophtalmae, and ‘the sand chamber subfamilies’. Additionally, we demonstrate that consensus networks can be used to identify rogue taxa in a Bayesian framework. Pruning rogue taxa post-analysis from the final tree distribution results in increased posterior probabilities. We find 8 subfamilies to be monophyletic and the subfamilies Heterotropinae and Mythicomyiinae to be the earliest diverging lineages. The large subfamily Bombyliinae is found to be polyphyletic and our data does not provide evidence for the monophyly of Tomophthalmae or the ‘sand chamber subfamilies’. PMID:21686308

  3. Benefits of fidelity: does host specialization impact nematode parasite life history and fecundity?

    PubMed

    Koprivnikar, J; Randhawa, H S

    2013-04-01

    The range of hosts used by a parasite is influenced by macro-evolutionary processes (host switching, host-parasite co-evolution), as well as 'encounter filters' and 'compatibility filters' at the micro-evolutionary level driven by host/parasite ecology and physiology. Host specialization is hypothesized to result in trade-offs with aspects of parasite life history (e.g. reproductive output), but these have not been well studied. We used previously published data to create models examining general relationships among host specificity and important aspects of life history and reproduction for nematodes parasitizing animals. Our results indicate no general trade-off between host specificity and the average pre-patent period (time to first reproduction), female size, egg size, or fecundity of these nematodes. However, female size was positively related to egg size, fecundity, and pre-patent period. Host compatibility may thus not be the primary determinant of specificity in these parasitic nematodes if there are few apparent trade-offs with reproduction, but rather, the encounter opportunities for new host species at the micro-evolutionary level, and other processes at the macro-evolutionary level (i.e. phylogeny). Because host specificity is recognized as a key factor determining the spread of parasitic diseases understanding factors limiting host use are essential to predict future changes in parasite range and occurrence.

  4. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  5. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  6. Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process

    PubMed Central

    Woese, Carl R.; Olsen, Gary J.; Ibba, Michael; Söll, Dieter

    2000-01-01

    The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the “gemini group.” (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense. PMID:10704480

  7. Perceived consequences of evolution: College students perceive negative personal and social impact in evolutionary theory

    NASA Astrophysics Data System (ADS)

    Brem, Sarah K.; Ranney, Michael; Schindel, Jennifer

    2003-03-01

    Evolutionary science has consequences for individuals and society, ranging from the way we interpret human behavior to our notions of spirituality and the purpose of our existence. Popular portrayals of evolution depict a paradoxical theory, a source of knowledge and human connections, but also a threat to our humanity and freedom. Using quantitative and qualitative methodology, we examined how college-educated adults (n = 135) from diverse ethnic and religious backgrounds perceive the impact of evolutionary theory on individuals and society. We identified a continuum of perspectives, ranging from strong creationist to strong evolutionist. Using the model of knowledge as an ecology (Demastes, Good, & Peebles, Science Education, 79, 637-666, 1995; Nardi & O'Day, Information ecologies: Using technology with heart, MIT Press, Cambridge, MA, 1999), we examined the relationships among participants' beliefs, their perceptions regarding the social and personal impact of evolutionary theory, their prior exposure to and knowledge of evolutionary theory, and their opinions regarding the teaching of evolution. Evolutionists and creationists differed in their prior exposure to evolutionary theory, and their opinions about some aspects of teaching, but showed striking similarities regarding perceived impact. All groups viewed the consequences of accepting evolutionary principles in a way that might be considered undesirable: increased selfishness and racism, decreased spirituality, and a decreased sense of purpose and self-determination. From a science education perspective, this one-sided interpretation is troublesome because it runs counter to the available evidence and theories in evolutionary science, and we consider ways of fostering more balanced presentation and appraisal of evolutionary theory.

  8. Revisiting the cost of carnivory in mammals.

    PubMed

    Tucker, M A; Ord, T J; Rogers, T L

    2016-11-01

    Predator-prey relationships play a key role in the evolution and ecology of carnivores. An understanding of predator-prey relationships and how this differs across species and environments provides information on how carnivorous strategies have evolved and how they may change in response to environmental change. We aim to determine how mammals overcame the challenges of living within the marine environment; specifically, how this altered predator-prey body mass relationships relative to terrestrial mammals. Using predator and prey mass data collected from the literature, we applied phylogenetic piecewise regressions to investigate the relationship between predator and prey size across carnivorous mammals (51 terrestrial and 56 marine mammals). We demonstrate that carnivorous mammals have four broad dietary groups: small marine carnivores (< 11 000 kg) and small terrestrial carnivores (< 11 kg) feed on prey less than 5 kg and 2 kg, respectively. On average, large marine carnivores (> 11 000 kg) feed on prey equal to 0.01% of the carnivore's body size, compared to 45% or greater in large terrestrial carnivores (> 11 kg). We propose that differences in prey availability, and the relative ease of processing large prey in the terrestrial environment and small prey in marine environment, have led to the evolution of these novel foraging behaviours. Our results provide important insights into the selection pressures that may have been faced by early marine mammals and ultimately led to the evolution of a range of feeding strategies and predatory behaviours. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. A mechanistic stress model of protein evolution accounts for site-specific evolutionary rates and their relationship with packing density and flexibility

    PubMed Central

    2014-01-01

    Background Protein sites evolve at different rates due to functional and biophysical constraints. It is usually considered that the main structural determinant of a site’s rate of evolution is its Relative Solvent Accessibility (RSA). However, a recent comparative study has shown that the main structural determinant is the site’s Local Packing Density (LPD). LPD is related with dynamical flexibility, which has also been shown to correlate with sequence variability. Our purpose is to investigate the mechanism that connects a site’s LPD with its rate of evolution. Results We consider two models: an empirical Flexibility Model and a mechanistic Stress Model. The Flexibility Model postulates a linear increase of site-specific rate of evolution with dynamical flexibility. The Stress Model, introduced here, models mutations as random perturbations of the protein’s potential energy landscape, for which we use simple Elastic Network Models (ENMs). To account for natural selection we assume a single active conformation and use basic statistical physics to derive a linear relationship between site-specific evolutionary rates and the local stress of the mutant’s active conformation. We compare both models on a large and diverse dataset of enzymes. In a protein-by-protein study we found that the Stress Model outperforms the Flexibility Model for most proteins. Pooling all proteins together we show that the Stress Model is strongly supported by the total weight of evidence. Moreover, it accounts for the observed nonlinear dependence of sequence variability on flexibility. Finally, when mutational stress is controlled for, there is very little remaining correlation between sequence variability and dynamical flexibility. Conclusions We developed a mechanistic Stress Model of evolution according to which the rate of evolution of a site is predicted to depend linearly on the local mutational stress of the active conformation. Such local stress is proportional to LPD, so that this model explains the relationship between LPD and evolutionary rate. Moreover, the model also accounts for the nonlinear dependence between evolutionary rate and dynamical flexibility. PMID:24716445

  10. Teaching Tree-Thinking to Undergraduate Biology Students.

    PubMed

    Meisel, Richard P

    2010-07-27

    Evolution is the unifying principle of all biology, and understanding how evolutionary relationships are represented is critical for a complete understanding of evolution. Phylogenetic trees are the most conventional tool for displaying evolutionary relationships, and "tree-thinking" has been coined as a term to describe the ability to conceptualize evolutionary relationships. Students often lack tree-thinking skills, and developing those skills should be a priority of biology curricula. Many common student misconceptions have been described, and a successful instructor needs a suite of tools for correcting those misconceptions. I review the literature on teaching tree-thinking to undergraduate students and suggest how this material can be presented within an inquiry-based framework.

  11. Prevalent Role of Gene Features in Determining Evolutionary Fates of Whole-Genome Duplication Duplicated Genes in Flowering Plants1[W][OA

    PubMed Central

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-01-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs. PMID:23396833

  12. Differentiated evolutionary relationships among chordates from comparative alignments of multiple sequences of MyoD and MyoG myogenic regulatory factors.

    PubMed

    Oliani, L C; Lidani, K C F; Gabriel, J E

    2015-10-16

    MyoD and MyoG are transcription factors that have essential roles in myogenic lineage determination and muscle differentiation. The purpose of this study was to compare multiple amino acid sequences of myogenic regulatory proteins to infer evolutionary relationships among chordates. Protein sequences from Mus musculus (P10085 and P12979), human Homo sapiens (P15172 and P15173), bovine Bos taurus (Q7YS82 and Q7YS81), wild pig Sus scrofa (P49811 and P49812), quail Coturnix coturnix (P21572 and P34060), chicken Gallus gallus (P16075 and P17920), rat Rattus norvegicus (Q02346 and P20428), domestic water buffalo Bubalus bubalis (D2SP11 and A7L034), and sheep Ovis aries (Q90477 and D3YKV7) were searched from a non-redundant protein sequence database UniProtKB/Swiss-Prot, and subsequently analyzed using the Mega6.0 software. MyoD evolutionary analyses revealed the presence of three main clusters with all mammals branched in one cluster, members of the order Rodentia (mouse and rat) in a second branch linked to the first, and birds of the order Galliformes (chicken and quail) remaining isolated in a third. MyoG evolutionary analyses aligned sequences in two main clusters, all mammalian specimens grouped in different sub-branches, and birds clustered in a second branch. These analyses suggest that the evolution of MyoD and MyoG was driven by different pathways.

  13. Commitment in Age-Gap Heterosexual Romantic Relationships: A Test of Evolutionary and Socio-Cultural Predictions

    ERIC Educational Resources Information Center

    Lehmiller, Justin J.; Agnew, Christopher R.

    2008-01-01

    Little research has addressed age-gap romantic relationships (romantic involvements characterized by substantial age differences between partners). Drawing on evolutionary and socio-cultural perspectives, the present study examined normative beliefs and commitment processes among heterosexual women involved in age-gap and age-concordant…

  14. Evolutionary relationships of outbreak-associated Listeria monocytogenes strains of serotypes 1/2a and 1/2b determined by whole genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes (Lm) is a bacterial pathogen that is almost exclusively transmitted by food. Although listeriosis is relatively rare (~1600 cases occur annually in the U.S.), ~20% of cases are fatal and outbreaks are not uncommon. Molecular subtyping differentiates Lm into four lineages (LI –...

  15. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-04-29

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology.

  16. Undergraduate Students’ Difficulties in Reading and Constructing Phylogenetic Tree

    NASA Astrophysics Data System (ADS)

    Sa'adah, S.; Tapilouw, F. S.; Hidayat, T.

    2017-02-01

    Representation is a very important communication tool to communicate scientific concepts. Biologists produce phylogenetic representation to express their understanding of evolutionary relationships. The phylogenetic tree is visual representation depict a hypothesis about the evolutionary relationship and widely used in the biological sciences. Phylogenetic tree currently growing for many disciplines in biology. Consequently, learning about phylogenetic tree become an important part of biological education and an interesting area for biology education research. However, research showed many students often struggle with interpreting the information that phylogenetic trees depict. The purpose of this study was to investigate undergraduate students’ difficulties in reading and constructing a phylogenetic tree. The method of this study is a descriptive method. In this study, we used questionnaires, interviews, multiple choice and open-ended questions, reflective journals and observations. The findings showed students experiencing difficulties, especially in constructing a phylogenetic tree. The students’ responds indicated that main reasons for difficulties in constructing a phylogenetic tree are difficult to placing taxa in a phylogenetic tree based on the data provided so that the phylogenetic tree constructed does not describe the actual evolutionary relationship (incorrect relatedness). Students also have difficulties in determining the sister group, character synapomorphy, autapomorphy from data provided (character table) and comparing among phylogenetic tree. According to them building the phylogenetic tree is more difficult than reading the phylogenetic tree. Finding this studies provide information to undergraduate instructor and students to overcome learning difficulties of reading and constructing phylogenetic tree.

  17. Identification of Microbial Pathogens in Periodontal disease and Diabetic patients of South Indian Population

    PubMed Central

    Chiranjeevi, Tikka; Prasad, Osuru Hari; Prasad, Uppu Venkateswara; Kumar, Avula Kishor; Chakravarthi, Veeraraghavulu Praveen; Rao, Paramala Balaji; Sarma, Potuguchi Venkata Gurunadha Krishna; Reddy, Nagi reddy Raveendra; Bhaskar, Matcha

    2014-01-01

    Periodontitis have been referred to as the sixth complication of diabetes found in high prevalence among diabetic patients than among healthy controls. The aim of the present study was to examine the periodontal disease status among collected dental plaque samples. Chromosomal DNA was isolated and amplified by universal primers. The DNA was sequenced for bacterial confirmation and phylogenetic analysis performed for the evolutionary relationship with other known pathogens. No amplification products were observed in groups labeled non periodontal and non Diabetes (NP&ND) and non Periodontal and Diabetes (NP&D). But in the case of Periodontal and non Diabetes (P&ND) groups 22 amplified products were observed. In case of Periodontal and Diabetes (P&D), 32 amplified products were positive for microbes. Among the four microbial groups, Treponemadenticola, and Tannerella forsythia were found to be prevalent in P&D. The phylogenetic analysis of 16s rRNA of Treponemadenticola showed the relationship with other Treponema oral pathogen species and with the Spirochaetazuelaera. Tannerella forsythia shows its evolutionary relationship only with four oral pathogens (Macellibacteroidesfermentans, Porphyromadaceae bacterium, Parabacteroidesmeredae and Bacillus fosythus). Prevotellaintermedia also showed its evolutionary relationship only with Prevotella Spcs while Fusobacterium revealed close evolutionary relationship only with Porpiromonasgingivalis. PMID:24966528

  18. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution

    PubMed Central

    Kendall, Michelle; Colijn, Caroline

    2016-01-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. Key words: phylogenetics, evolution, tree metrics, genetics, sequencing. PMID:27343287

  19. Teaching Tree-Thinking to Undergraduate Biology Students

    PubMed Central

    2011-01-01

    Evolution is the unifying principle of all biology, and understanding how evolutionary relationships are represented is critical for a complete understanding of evolution. Phylogenetic trees are the most conventional tool for displaying evolutionary relationships, and “tree-thinking” has been coined as a term to describe the ability to conceptualize evolutionary relationships. Students often lack tree-thinking skills, and developing those skills should be a priority of biology curricula. Many common student misconceptions have been described, and a successful instructor needs a suite of tools for correcting those misconceptions. I review the literature on teaching tree-thinking to undergraduate students and suggest how this material can be presented within an inquiry-based framework. PMID:21572571

  20. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    PubMed Central

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of phylogenetic diversity in the mega-phylogeny were more consistent, thereby removing a potential source of bias at the plot-level, and demonstrating the value of assessing phylogenetic relationships simultaneously within a mega-phylogeny. An unexpected result of the comparisons among plots based on the mega-phylogeny was that the communities in the ForestGEO plots in general appear to be assemblages of more closely related species than expected by chance, and that differentiation among communities is very low, suggesting deep floristic connections among communities and new avenues for future analyses in community ecology. PMID:25414723

  1. When Relationships Depicted Diagrammatically Conflict with Prior Knowledge: An Investigation of Students' Interpretations of Evolutionary Trees

    ERIC Educational Resources Information Center

    Novick, Laura R.; Catley, Kefyn M.

    2014-01-01

    Science is an important domain for investigating students' responses to information that contradicts their prior knowledge. In previous studies of this topic, this information was communicated verbally. The present research used diagrams, specifically trees (cladograms) depicting evolutionary relationships among taxa. Effects of college…

  2. Characterization of sida golden mottle virus isolated from Sida santaremensis Monteiro in Florida.

    PubMed

    Al-Aqeel, H A; Iqbal, Zafar; Polston, J E

    2018-06-21

    The genome of sida golden mottle virus (SiGMoV) (GU997691 and GU997692) isolated from Sida santaremensis Monteiro in Manatee County, Florida, was sequenced and characterized. SiGMoV was determined to be a bipartite virus belonging to the genus Begomovirus with a genome organization typical of the New World viruses in the genus. SiGMoV DNA-A had the highest identity scores (89%) and showed the closest evolutionary relationships to sida golden mosaic Buckup virus (SiGMBuV) (JX162591 and HQ008338). However, SiGMoV DNA-B had the highest identity scores (93%) and showed the closest evolutionary relationship to corchorus yellow spot virus (DQ875869), SiGMBuV (JX162592) and sida golden mosaic Florida virus (SiGMFlV) (HE806443). There was extensive recombination in the SiGMoV DNA-A and much less in DNA-B. Full-length clones of SiGMoV were infectious and were able to infect and cause symptoms in several plant species.

  3. On origin and evolution of carbonic anhydrase isozymes: A phylogenetic analysis from whole-enzyme to active site.

    PubMed

    Banerjee, Srijoni; Deshpande, Parag A

    2016-04-01

    Genetic evolution of carbonic anhydrase enzyme provides an interesting instance of functional similarity in spite of structural diversity of the members of a given family of enzymes. Phylogenetic analysis of α-, β- and γ-carbonic anhydrase was carried out to determine the evolutionary relationships among various members of the family with the enzyme marking its presence in a wide range of cellular and chromosomal locations. The presence of more than one class of enzymes in a particular organism was revealed by phylogenetic time tree. The evolutionary relationships among the members of animal, plant and microbial kingdom were developed. The study revises a long-established notion of kingdom-specificity of the different classes of carbonic anhydrases and provides a new version of the presence of multiple classes of carbonic anhydrases in a single organism and the presence of a given class of carbonic anhydrase across different kingdoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Physical mechanism or evolutionary trade-off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles.

    PubMed

    Gudowska, Agnieszka; Schramm, Bartosz W; Czarnoleski, Marcin; Kozłowski, Jan; Bauchinger, Ulf

    2017-08-01

    The tight association between ambient temperature (T) and metabolic rate (MR) is a common occurrence in ectotherms, but the determinants of this association are not fully understood. This study examined whether the relationship between MR and T is the same among individuals, as predicted by the Universal Temperature Dependence hypothesis, or whether this relationship differs between them. We used flow-through respirometry to measure standard MR and to determine gas exchange patterns for 111 individuals of three Carabidae species which differ in size (Abax ovalis, Carabus linnei and C. coriaceus), exposed to four different temperatures (ten individuals of each species measured at 6, 11, 16 and 21°C). We found a significant interaction between ln body mass and the inverse of temperature, indicating that in a given species, the effect of temperature on MR was weaker in larger individuals than in smaller individuals. Overall, this finding shows that the thermal dependence of MR is not body mass invariant. We observed three types of gas exchange patterns among beetles: discontinuous, cyclic and continuous. Additionally, the appearance of these patterns was associated with MR and T. Evolution in diverse terrestrial environments could affect diverse ventilation patterns, which accommodate changes in metabolism in response to temperature variation. In conclusion, explaining the variance in metabolism only through fundamental physical laws of thermodynamics, as predicted by the Universal Temperature Dependence hypothesis, appears to oversimplify the complexity of nature, ignoring evolutionary trade-offs that should be taken into account in the temperature - metabolism relationship. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. e-GRASP: an integrated evolutionary and GRASP resource for exploring disease associations.

    PubMed

    Karim, Sajjad; NourEldin, Hend Fakhri; Abusamra, Heba; Salem, Nada; Alhathli, Elham; Dudley, Joel; Sanderford, Max; Scheinfeldt, Laura B; Chaudhary, Adeel G; Al-Qahtani, Mohammed H; Kumar, Sudhir

    2016-10-17

    Genome-wide association studies (GWAS) have become a mainstay of biological research concerned with discovering genetic variation linked to phenotypic traits and diseases. Both discrete and continuous traits can be analyzed in GWAS to discover associations between single nucleotide polymorphisms (SNPs) and traits of interest. Associations are typically determined by estimating the significance of the statistical relationship between genetic loci and the given trait. However, the prioritization of bona fide, reproducible genetic associations from GWAS results remains a central challenge in identifying genomic loci underlying common complex diseases. Evolutionary-aware meta-analysis of the growing GWAS literature is one way to address this challenge and to advance from association to causation in the discovery of genotype-phenotype relationships. We have created an evolutionary GWAS resource to enable in-depth query and exploration of published GWAS results. This resource uses the publically available GWAS results annotated in the GRASP2 database. The GRASP2 database includes results from 2082 studies, 177 broad phenotype categories, and ~8.87 million SNP-phenotype associations. For each SNP in e-GRASP, we present information from the GRASP2 database for convenience as well as evolutionary information (e.g., rate and timespan). Users can, therefore, identify not only SNPs with highly significant phenotype-association P-values, but also SNPs that are highly replicated and/or occur at evolutionarily conserved sites that are likely to be functionally important. Additionally, we provide an evolutionary-adjusted SNP association ranking (E-rank) that uses cross-species evolutionary conservation scores and population allele frequencies to transform P-values in an effort to enhance the discovery of SNPs with a greater probability of biologically meaningful disease associations. By adding an evolutionary dimension to the GWAS results available in the GRASP2 database, our e-GRASP resource will enable a more effective exploration of SNPs not only by the statistical significance of trait associations, but also by the number of studies in which associations have been replicated, and the evolutionary context of the associated mutations. Therefore, e-GRASP will be a valuable resource for aiding researchers in the identification of bona fide, reproducible genetic associations from GWAS results. This resource is freely available at http://www.mypeg.info/egrasp .

  6. The impact of digging on craniodental morphology and integration.

    PubMed

    McIntosh, A F; Cox, P G

    2016-12-01

    The relationship between the form and function of the skull has been the subject of a great deal of research, much of which has concentrated on the impact of feeding on skull shape. However, there are a number of other behaviours that can influence craniodental morphology. Previous work has shown that subterranean rodents that use their incisors to dig (chisel-tooth digging) have a constrained cranial shape, which is probably driven by a necessity to create high bite forces at wide gapes. Chisel-tooth-digging rodents also have an upper incisor root that is displaced further back into the cranium compared with other rodents. This study quantified cranial shape and upper incisors of a phylogenetically diverse sample of rodents to determine if chisel-tooth-digging rodents differ in craniodental morphology. The study showed that the crania of chisel-tooth-digging rodents shared a similar place in morphospace, but a strong phylogenetic signal within the sample meant that this grouping was nonsignificant. It was also found that the curvature of the upper incisor in chisel-tooth diggers was significantly larger than in other rodents. Interestingly, most subterranean rodents in the sample (both chisel-tooth and scratch diggers) had upper incisors that were better able to resist bending than those of terrestrial rodents, presumably due to their similar diets of tough plant materials. Finally, the incisor variables and cranial shape were not found to covary consistently in this sample, highlighting the complex relationship between a species' evolutionary history and functional morphology. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  7. Homosexual mating preferences from an evolutionary perspective: sexual selection theory revisited.

    PubMed

    Gobrogge, Kyle L; Perkins, Patrick S; Baker, Jessica H; Balcer, Kristen D; Breedlove, S Marc; Klump, Kelly L

    2007-10-01

    Studies in evolutionary psychology and sexual selection theory show that heterosexual men prefer younger mating partners than heterosexual women in order to ensure reproductive success. However, previous research has generally not examined differences in mating preferences as a function of sexual orientation or the type of relationship sought in naturalistic settings. Given that homosexual men seek partners for reasons other than procreation, they may exhibit different mating preferences than their heterosexual counterparts. Moreover, mating preferences may show important differences depending on whether an individual is seeking a long-term versus a short-term relationship. The purpose of the present study was to examine these issues by comparing partner preferences in terms of age and relationship type between homosexual and heterosexual men placing internet personal advertisements. Participants included 439 homosexual and 365 heterosexual men who placed internet ads in the U.S. or Canada. Ads were coded for the participant's age, relationship type (longer-term or short-term sexual encounter) sought, and partner age preferences. Significantly more homosexual than heterosexual men sought sexual encounters, although men (regardless of sexual orientation) seeking sexual encounters preferred a significantly wider age range of partners than men seeking longer-term relationships. These findings suggest that partner preferences are independent of evolutionary drives to procreate, since both types of men preferred similar ages in their partners. In addition, they highlight the importance of examining relationship type in evolutionary studies of mating preferences, as men's partner preferences show important differences depending upon the type of relationship sought.

  8. Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate

    PubMed Central

    Dehal, Paramvir; Boore, Jeffrey L

    2005-01-01

    The hypothesis that the relatively large and complex vertebrate genome was created by two ancient, whole genome duplications has been hotly debated, but remains unresolved. We reconstructed the evolutionary relationships of all gene families from the complete gene sets of a tunicate, fish, mouse, and human, and then determined when each gene duplicated relative to the evolutionary tree of the organisms. We confirmed the results of earlier studies that there remains little signal of these events in numbers of duplicated genes, gene tree topology, or the number of genes per multigene family. However, when we plotted the genomic map positions of only the subset of paralogous genes that were duplicated prior to the fish–tetrapod split, their global physical organization provides unmistakable evidence of two distinct genome duplication events early in vertebrate evolution indicated by clear patterns of four-way paralogous regions covering a large part of the human genome. Our results highlight the potential for these large-scale genomic events to have driven the evolutionary success of the vertebrate lineage. PMID:16128622

  9. JCoDA: a tool for detecting evolutionary selection.

    PubMed

    Steinway, Steven N; Dannenfelser, Ruth; Laucius, Christopher D; Hayes, James E; Nayak, Sudhir

    2010-05-27

    The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda.

  10. JCoDA: a tool for detecting evolutionary selection

    PubMed Central

    2010-01-01

    Background The incorporation of annotated sequence information from multiple related species in commonly used databases (Ensembl, Flybase, Saccharomyces Genome Database, Wormbase, etc.) has increased dramatically over the last few years. This influx of information has provided a considerable amount of raw material for evaluation of evolutionary relationships. To aid in the process, we have developed JCoDA (Java Codon Delimited Alignment) as a simple-to-use visualization tool for the detection of site specific and regional positive/negative evolutionary selection amongst homologous coding sequences. Results JCoDA accepts user-inputted unaligned or pre-aligned coding sequences, performs a codon-delimited alignment using ClustalW, and determines the dN/dS calculations using PAML (Phylogenetic Analysis Using Maximum Likelihood, yn00 and codeml) in order to identify regions and sites under evolutionary selection. The JCoDA package includes a graphical interface for Phylip (Phylogeny Inference Package) to generate phylogenetic trees, manages formatting of all required file types, and streamlines passage of information between underlying programs. The raw data are output to user configurable graphs with sliding window options for straightforward visualization of pairwise or gene family comparisons. Additionally, codon-delimited alignments are output in a variety of common formats and all dN/dS calculations can be output in comma-separated value (CSV) format for downstream analysis. To illustrate the types of analyses that are facilitated by JCoDA, we have taken advantage of the well studied sex determination pathway in nematodes as well as the extensive sequence information available to identify genes under positive selection, examples of regional positive selection, and differences in selection based on the role of genes in the sex determination pathway. Conclusions JCoDA is a configurable, open source, user-friendly visualization tool for performing evolutionary analysis on homologous coding sequences. JCoDA can be used to rapidly screen for genes and regions of genes under selection using PAML. It can be freely downloaded at http://www.tcnj.edu/~nayaklab/jcoda. PMID:20507581

  11. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures

    PubMed Central

    Someswara Rao, Chinta; Viswanadha Raju, S.

    2016-01-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc. PMID:26981409

  12. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    PubMed

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  13. The masculinity paradox: facial masculinity and beardedness interact to determine women's ratings of men's facial attractiveness.

    PubMed

    Dixson, B J W; Sulikowski, D; Gouda-Vossos, A; Rantala, M J; Brooks, R C

    2016-11-01

    In many species, male secondary sexual traits have evolved via female choice as they confer indirect (i.e. genetic) benefits or direct benefits such as enhanced fertility or survival. In humans, the role of men's characteristically masculine androgen-dependent facial traits in determining men's attractiveness has presented an enduring paradox in studies of human mate preferences. Male-typical facial features such as a pronounced brow ridge and a more robust jawline may signal underlying health, whereas beards may signal men's age and masculine social dominance. However, masculine faces are judged as more attractive for short-term relationships over less masculine faces, whereas beards are judged as more attractive than clean-shaven faces for long-term relationships. Why such divergent effects occur between preferences for two sexually dimorphic traits remains unresolved. In this study, we used computer graphic manipulation to morph male faces varying in facial hair from clean-shaven, light stubble, heavy stubble and full beards to appear more (+25% and +50%) or less (-25% and -50%) masculine. Women (N = 8520) were assigned to treatments wherein they rated these stimuli for physical attractiveness in general, for a short-term liaison or a long-term relationship. Results showed a significant interaction between beardedness and masculinity on attractiveness ratings. Masculinized and, to an even greater extent, feminized faces were less attractive than unmanipulated faces when all were clean-shaven, and stubble and beards dampened the polarizing effects of extreme masculinity and femininity. Relationship context also had effects on ratings, with facial hair enhancing long-term, and not short-term, attractiveness. Effects of facial masculinization appear to have been due to small differences in the relative attractiveness of each masculinity level under the three treatment conditions and not to any change in the order of their attractiveness. Our findings suggest that beardedness may be attractive when judging long-term relationships as a signal of intrasexual formidability and the potential to provide direct benefits to females. More generally, our results hint at a divergence of signalling function, which may result in a subtle trade-off in women's preferences, for two highly sexually dimorphic androgen-dependent facial traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Molecular Evolutionary Constraints that Determine the Avirulence State of Clostridium botulinum C2 Toxin.

    PubMed

    Prisilla, A; Prathiviraj, R; Chellapandi, P

    2017-04-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 toxin along with botulinum neurotoxins. C2 toxin is belonged to binary toxin A family in bacterial ADP-ribosylation superfamily. A structural and functional diversity of binary toxin A family was inferred from different evolutionary constraints to determine the avirulence state of C2 toxin. Evolutionary genetic analyses revealed evidence of C2 toxin cluster evolution through horizontal gene transfer from the phage or plasmid origins, site-specific insertion by gene divergence, and homologous recombination event. It has also described that residue in conserved NAD-binding core, family-specific domain structure, and functional motifs found to predetermine its virulence state. Any mutational changes in these residues destabilized its structure-function relationship. Avirulent mutants of C2 toxin were screened and selected from a crucial site required for catalytic function of C2I and pore-forming function of C2II. We found coevolved amino acid pairs contributing an essential role in stabilization of its local structural environment. Avirulent toxins selected in this study were evaluated by detecting evolutionary constraints in stability of protein backbone structure, folding and conformational dynamic space, and antigenic peptides. We found 4 avirulent mutants of C2I and 5 mutants of C2II showing more stability in their local structural environment and backbone structure with rapid fold rate, and low conformational flexibility at mutated sites. Since, evolutionary constraints-free mutants with lack of catalytic and pore-forming function suggested as potential immunogenic candidates for treating C. botulinum infected poultry and veterinary animals. Single amino acid substitution in C2 toxin thus provides a major importance to understand its structure-function link, not only of a molecule but also of the pathogenesis.

  15. Elucidating the genotype-phenotype relationships and network perturbations of human shared and specific disease genes from an evolutionary perspective.

    PubMed

    Begum, Tina; Ghosh, Tapash Chandra

    2014-10-05

    To date, numerous studies have been attempted to determine the extent of variation in evolutionary rates between human disease and nondisease (ND) genes. In our present study, we have considered human autosomal monogenic (Mendelian) disease genes, which were classified into two groups according to the number of phenotypic defects, that is, specific disease (SPD) gene (one gene: one defect) and shared disease (SHD) gene (one gene: multiple defects). Here, we have compared the evolutionary rates of these two groups of genes, that is, SPD genes and SHD genes with respect to ND genes. We observed that the average evolutionary rates are slow in SHD group, intermediate in SPD group, and fast in ND group. Group-to-group evolutionary rate differences remain statistically significant regardless of their gene expression levels and number of defects. We demonstrated that disease genes are under strong selective constraint if they emerge through edgetic perturbation or drug-induced perturbation of the interactome network, show tissue-restricted expression, and are involved in transmembrane transport. Among all the factors, our regression analyses interestingly suggest the independent effects of 1) drug-induced perturbation and 2) the interaction term of expression breadth and transmembrane transport on protein evolutionary rates. We reasoned that the drug-induced network disruption is a combination of several edgetic perturbations and, thus, has more severe effect on gene phenotypes. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    K.D. Klepzig; A.S. Adams; J. Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological,evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  17. Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans

    Treesearch

    Kier Klepzig; A.S. Adams; J Handelsman; K.F. Raffa

    2009-01-01

    Symbiosis is receiving increased attention among all aspects of biology because of the unifying themes it helps construct across ecological, evolutionary, developmental, semiochemical, and pest management theory. Insects show a vast array of symbiotic relationships with a wide diversity of microorganisms. These relationships may confer a variety of benefits to the host...

  18. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  19. Evolutionary performance of zero-determinant strategies in multiplayer games.

    PubMed

    Hilbe, Christian; Wu, Bin; Traulsen, Arne; Nowak, Martin A

    2015-06-07

    Repetition is one of the key mechanisms to maintain cooperation. In long-term relationships, in which individuals can react to their peers׳ past actions, evolution can promote cooperative strategies that would not be stable in one-shot encounters. The iterated prisoner׳s dilemma illustrates the power of repetition. Many of the key strategies for this game, such as ALLD, ALLC, Tit-for-Tat, or generous Tit-for-Tat, share a common property: players using these strategies enforce a linear relationship between their own payoff and their co-player׳s payoff. Such strategies have been termed zero-determinant (ZD). Recently, it was shown that ZD strategies also exist for multiplayer social dilemmas, and here we explore their evolutionary performance. For small group sizes, ZD strategies play a similar role as for the repeated prisoner׳s dilemma: extortionate ZD strategies are critical for the emergence of cooperation, whereas generous ZD strategies are important to maintain cooperation. In large groups, however, generous strategies tend to become unstable and selfish behaviors gain the upper hand. Our results suggest that repeated interactions alone are not sufficient to maintain large-scale cooperation. Instead, large groups require further mechanisms to sustain cooperation, such as the formation of alliances or institutions, or additional pairwise interactions between group members. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Universal scaling in the branching of the tree of life.

    PubMed

    Herrada, E Alejandro; Tessone, Claudio J; Klemm, Konstantin; Eguíluz, Víctor M; Hernández-García, Emilio; Duarte, Carlos M

    2008-07-23

    Understanding the patterns and processes of diversification of life in the planet is a key challenge of science. The Tree of Life represents such diversification processes through the evolutionary relationships among the different taxa, and can be extended down to intra-specific relationships. Here we examine the topological properties of a large set of interspecific and intraspecific phylogenies and show that the branching patterns follow allometric rules conserved across the different levels in the Tree of Life, all significantly departing from those expected from the standard null models. The finding of non-random universal patterns of phylogenetic differentiation suggests that similar evolutionary forces drive diversification across the broad range of scales, from macro-evolutionary to micro-evolutionary processes, shaping the diversity of life on the planet.

  1. An Evolutionary Perspective on Mate Rejection.

    PubMed

    Kelly, Ashleigh J; Dubbs, Shelli L; Barlow, Fiona Kate

    2016-01-01

    We argue that mate rejection and ex-partner relationships are important, multifaceted topics that have been underresearched in social and evolutionary psychology. Mate rejection and relationship dissolution are ubiquitous and form integral parts of the human experience. Both also carry with them potential risks and benefits to our fitness and survival. Hence, we expect that mate rejection would have given rise to evolved behavioral and psychological adaptations. Herein, we outline some of the many unanswered questions in evolutionary psychology on these topics, at each step presenting novel hypotheses about how men and women should behave when rejecting a mate or potential mate or in response to rejection. We intend these hypotheses and suggestions for future research to be used as a basis for enriching our understanding of human mating from an evolutionary perspective.

  2. Evolutionary Creation: Moving beyond the Evolution versus Creation Debate

    ERIC Educational Resources Information Center

    Lamoureux, Denis O.

    2010-01-01

    Evolutionary creation offers a conservative Christian approach to evolution. It explores biblical faith and evolutionary science through a Two Divine Books model and proposes a complementary relationship between Scripture and science. The Book of God's Words discloses the spiritual character of the world, while the Book of God's Works reveals the…

  3. Beyond the Pleistocene: Using Phylogeny and Constraint to Inform the Evolutionary Psychology of Human Mating

    ERIC Educational Resources Information Center

    Eastwick, Paul W.

    2009-01-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the…

  4. Mapping Phylogenetic Trees to Reveal Distinct Patterns of Evolution.

    PubMed

    Kendall, Michelle; Colijn, Caroline

    2016-10-01

    Evolutionary relationships are frequently described by phylogenetic trees, but a central barrier in many fields is the difficulty of interpreting data containing conflicting phylogenetic signals. We present a metric-based method for comparing trees which extracts distinct alternative evolutionary relationships embedded in data. We demonstrate detection and resolution of phylogenetic uncertainty in a recent study of anole lizards, leading to alternate hypotheses about their evolutionary relationships. We use our approach to compare trees derived from different genes of Ebolavirus and find that the VP30 gene has a distinct phylogenetic signature composed of three alternatives that differ in the deep branching structure. phylogenetics, evolution, tree metrics, genetics, sequencing. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Computationally mapping sequence space to understand evolutionary protein engineering.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce

    2008-01-01

    Evolutionary protein engineering has been dramatically successful, producing a wide variety of new proteins with altered stability, binding affinity, and enzymatic activity. However, the success of such procedures is often unreliable, and the impact of the choice of protein, engineering goal, and evolutionary procedure is not well understood. We have created a framework for understanding aspects of the protein engineering process by computationally mapping regions of feasible sequence space for three small proteins using structure-based design protocols. We then tested the ability of different evolutionary search strategies to explore these sequence spaces. The results point to a non-intuitive relationship between the error-prone PCR mutation rate and the number of rounds of replication. The evolutionary relationships among feasible sequences reveal hub-like sequences that serve as particularly fruitful starting sequences for evolutionary search. Moreover, genetic recombination procedures were examined, and tradeoffs relating sequence diversity and search efficiency were identified. This framework allows us to consider the impact of protein structure on the allowed sequence space and therefore on the challenges that each protein presents to error-prone PCR and genetic recombination procedures.

  6. New World feline APOBEC3 potently controls inter-genus lentiviral transmission.

    PubMed

    Konno, Yoriyuki; Nagaoka, Shumpei; Kimura, Izumi; Yamamoto, Keisuke; Kagawa, Yumiko; Kumata, Ryuichi; Aso, Hirofumi; Ueda, Mahoko Takahashi; Nakagawa, So; Kobayashi, Tomoko; Koyanagi, Yoshio; Sato, Kei

    2018-04-10

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) gene family appears only in mammalian genomes. Some A3 proteins can be incorporated into progeny virions and inhibit lentiviral replication. In turn, the lentiviral viral infectivity factor (Vif) counteracts the A3-mediated antiviral effect by degrading A3 proteins. Recent investigations have suggested that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins, and have further proposed that the Vif-A3 interaction may help determine the co-evolutionary history of cross-species lentiviral transmission in mammals. Here we address the co-evolutionary relationship between two New World felids, the puma (Puma concolor) and the bobcat (Lynx rufus), and their lentiviruses, which are designated puma lentiviruses (PLVs). We demonstrate that PLV-A Vif counteracts the antiviral action of APOBEC3Z3 (A3Z3) of both puma and bobcat, whereas PLV-B Vif counteracts only puma A3Z3. The species specificity of PLV-B Vif is irrespective of the phylogenic relationships of feline species in the genera Puma, Lynx and Acinonyx. We reveal that the amino acid at position 178 in the puma and bobcat A3Z3 is exposed on the protein surface and determines the sensitivity to PLV-B Vif-mediated degradation. Moreover, although both the puma and bobcat A3Z3 genes are polymorphic, their sensitivity/resistance to PLV Vif-mediated degradation is conserved. To the best of our knowledge, this is the first study suggesting that the host A3 protein potently controls inter-genus lentiviral transmission. Our findings provide the first evidence suggesting that the co-evolutionary arms race between lentiviruses and mammals has occurred in the New World.

  7. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer.

    PubMed

    Boto, Luis

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  8. From genes to ecosystems: Measuring evolutionary diversity and community structure with Forest Inventory and Analysis (FIA) data

    Treesearch

    Kevin M. Potter

    2009-01-01

    Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...

  9. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  10. Possible ancestral structure in human populations.

    PubMed

    Plagnol, Vincent; Wall, Jeffrey D

    2006-07-01

    Determining the evolutionary relationships between fossil hominid groups such as Neanderthals and modern humans has been a question of enduring interest in human evolutionary genetics. Here we present a new method for addressing whether archaic human groups contributed to the modern gene pool (called ancient admixture), using the patterns of variation in contemporary human populations. Our method improves on previous work by explicitly accounting for recent population history before performing the analyses. Using sequence data from the Environmental Genome Project, we find strong evidence for ancient admixture in both a European and a West African population (p approximately 10(-7)), with contributions to the modern gene pool of at least 5%. While Neanderthals form an obvious archaic source population candidate in Europe, there is not yet a clear source population candidate in West Africa.

  11. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae).

    PubMed

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy.

  12. Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses

    PubMed Central

    Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne

    2015-01-01

    Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026

  13. Parasites, ecosystems and sustainability: an ecological and complex systems perspective.

    PubMed

    Horwitz, Pierre; Wilcox, Bruce A

    2005-06-01

    Host-parasite relationships can be conceptualised either narrowly, where the parasite is metabolically dependent on the host, or more broadly, as suggested by an ecological-evolutionary and complex systems perspective. In this view Host-parasite relationships are part of a larger set of ecological and co-evolutionary interdependencies and a complex adaptive system. These interdependencies affect not just the hosts, vectors, parasites, the immediate agents, but also those indirectly or consequentially affected by the relationship. Host-parasite relationships also can be viewed as systems embedded within larger systems represented by ecological communities and ecosystems. So defined, it can be argued that Host-parasite relationships may often benefit their hosts and contribute significantly to the structuring of ecological communities. The broader, complex adaptive system view also contributes to understanding the phenomenon of disease emergence, the ecological and evolutionary mechanisms involved, and the role of parasitology in research and management of ecosystems in light of the apparently growing problem of emerging infectious diseases in wildlife and humans. An expanded set of principles for integrated parasite management is suggested by this perspective.

  14. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences.

    PubMed Central

    Lim, P O; Sears, B B

    1992-01-01

    The families within the class Mollicutes are distinguished by their morphologies, nutritional requirements, and abilities to metabolize certain compounds. Biosystematic classification of the plant-pathogenic mycoplasmalike organisms (MLOs) has been difficult because these organisms have not been cultured in vitro, and hence their nutritional requirements have not been determined nor have physiological characterizations been possible. To investigate the evolutionary relationship of the MLOs to other members of the class Mollicutes, a segment of a ribosomal protein operon was cloned and sequenced from an aster yellows-type MLO which is pathogenic for members of the genus Oenothera and from Acholeplasma laidlawii. The deduced amino acid sequence data from the rpl22 and rps3 genes indicate that the MLOs are more closely related to A. laidlawii than to animal mycoplasmas, confirming previous results from 16S rRNA sequence comparisons. This conclusion is also supported by the finding that the UGA codon is not read as a tryptophan codon in the MLO and A. laidlawii, in contrast to its usage in Mycoplasma capricolum. PMID:1556079

  15. Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences

    PubMed Central

    Tanaka, Keiko; Tomita, Taketeru; Suzuki, Shingo; Hosomichi, Kazuyoshi; Sano, Kazumi; Doi, Hiroyuki; Kono, Azumi; Inoko, Hidetoshi; Kulski, Jerzy K.; Tanaka, Sho

    2013-01-01

    Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks. PMID:24089661

  16. The Relationship Between College Zoology Students' Religious Beliefs and Their Ability to Objectively View the Scientific Evidence Supporting Evolutionary Theory.

    ERIC Educational Resources Information Center

    Sinclair, Anne; Baldwin, Beatrice

    An anonymous 12-item, multiple-choice questionnaire was administered to 218 southern college, introductory zoology students prior to and following a study of evolutionary theory to assess their understanding and acceptance of the credibility of the evidence supporting the theory. Key topics addressed were the history of evolutionary thought, basic…

  17. Allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity

    PubMed Central

    Ma, Pikyee; Patching, Simon G.; Ivanova, Ekaterina; Baldwin, Jocelyn M.; Sharples, David; Baldwin, Stephen A.

    2016-01-01

    This work reports the evolutionary relationships, amplified expression, functional characterization and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens, and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with 12 putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions determined for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5 % in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energized E. coli whole cells conformed to Michaelis–Menten kinetics with an apparent affinity (K mapp) of 24 ± 3 μM, therefore confirming that PucI is a medium-affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognizes some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilized from inner membranes using n-dodecyl-β-d-maltoside and purified. The isolated protein contained a substantial proportion of α-helix secondary structure, consistent with the predictions, and a 3D model was therefore constructed on a template of the Mhp1 structure, which aided localization of the potential ligand binding site in PucI. PMID:26967546

  18. Independent effects of apolipoprotein AV and apolipoprotein CIII on plasma triglyceride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer

    2003-08-15

    Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shownmore » to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data indicate that APOA5 and APOC3 independently influence plasma triglyceride concentrations but in an opposing manner.« less

  19. Evidence for inter-specific recombination among the mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex.

    PubMed

    Fourie, Gerda; van der Merwe, Nicolaas A; Wingfield, Brenda D; Bogale, Mesfin; Tudzynski, Bettina; Wingfield, Michael J; Steenkamp, Emma T

    2013-09-08

    The availability of mitochondrial genomes has allowed for the resolution of numerous questions regarding the evolutionary history of fungi and other eukaryotes. In the Gibberella fujikuroi species complex, the exact relationships among the so-called "African", "Asian" and "American" Clades remain largely unresolved, irrespective of the markers employed. In this study, we considered the feasibility of using mitochondrial genes to infer the phylogenetic relationships among Fusarium species in this complex. The mitochondrial genomes of representatives of the three Clades (Fusarium circinatum, F. verticillioides and F. fujikuroi) were characterized and we determined whether or not the mitochondrial genomes of these fungi have value in resolving the higher level evolutionary relationships in the complex. Overall, the mitochondrial genomes of the three species displayed a high degree of synteny, with all the genes (protein coding genes, unique ORFs, ribosomal RNA and tRNA genes) in identical order and orientation, as well as introns that share similar positions within genes. The intergenic regions and introns generally contributed significantly to the size differences and diversity observed among these genomes. Phylogenetic analysis of the concatenated protein-coding dataset separated members of the Gibberella fujikuroi complex from other Fusarium species and suggested that F. fujikuroi ("Asian" Clade) is basal in the complex. However, individual mitochondrial gene trees were largely incongruent with one another and with the concatenated gene tree, because six distinct phylogenetic trees were recovered from the various single gene datasets. The mitochondrial genomes of Fusarium species in the Gibberella fujikuroi complex are remarkably similar to those of the previously characterized Fusarium species and Sordariomycetes. Despite apparently representing a single replicative unit, all of the genes encoded on the mitochondrial genomes of these fungi do not share the same evolutionary history. This incongruence could be due to biased selection on some genes or recombination among mitochondrial genomes. The results thus suggest that the use of individual mitochondrial genes for phylogenetic inference could mask the true relationships between species in this complex.

  20. Functional Evolution of PLP-dependent Enzymes based on Active-Site Structural Similarities

    PubMed Central

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-01-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5’-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the Comparison of Protein Active Site Structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. PMID:24920327

  1. Functional evolution of PLP-dependent enzymes based on active-site structural similarities.

    PubMed

    Catazaro, Jonathan; Caprez, Adam; Guru, Ashu; Swanson, David; Powers, Robert

    2014-10-01

    Families of distantly related proteins typically have very low sequence identity, which hinders evolutionary analysis and functional annotation. Slowly evolving features of proteins, such as an active site, are therefore valuable for annotating putative and distantly related proteins. To date, a complete evolutionary analysis of the functional relationship of an entire enzyme family based on active-site structural similarities has not yet been undertaken. Pyridoxal-5'-phosphate (PLP) dependent enzymes are primordial enzymes that diversified in the last universal ancestor. Using the comparison of protein active site structures (CPASS) software and database, we show that the active site structures of PLP-dependent enzymes can be used to infer evolutionary relationships based on functional similarity. The enzymes successfully clustered together based on substrate specificity, function, and three-dimensional-fold. This study demonstrates the value of using active site structures for functional evolutionary analysis and the effectiveness of CPASS. © 2014 Wiley Periodicals, Inc.

  2. The σ law of evolutionary dynamics in community-structured population.

    PubMed

    Tang, Changbing; Li, Xiang; Cao, Lang; Zhan, Jingyuan

    2012-08-07

    Evolutionary game dynamics in finite populations provide a new framework to understand the selection of traits with frequency-dependent fitness. Recently, a simple but fundamental law of evolutionary dynamics, which we call σ law, describes how to determine the selection between two competing strategies: in most evolutionary processes with two strategies, A and B, strategy A is favored over B in weak selection if and only if σR+S>T+σP. This relationship holds for a wide variety of structured populations with mutation rate and weak selection under certain assumptions. In this paper, we propose a model of games based on a community-structured population and revisit this law under the Moran process. By calculating the average payoffs of A and B individuals with the method of effective sojourn time, we find that σ features not only the structured population characteristics, but also the reaction rate between individuals. That is to say, an interaction between two individuals are not uniform, and we can take σ as a reaction rate between any two individuals with the same strategy. We verify this viewpoint by the modified replicator equation with non-uniform interaction rates in a simplified version of the prisoner's dilemma game (PDG). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Biological and geophysical feedbacks with fire in the Earth system

    NASA Astrophysics Data System (ADS)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  4. The many voices of Darwin's descendants: reply to Schmitt (2014).

    PubMed

    Eastwick, Paul W; Luchies, Laura B; Finkel, Eli J; Hunt, Lucy L

    2014-05-01

    This article elaborates on evolutionary perspectives relevant to the meta-analytic portion of our recent review (Eastwick, Luchies, Finkel, & Hunt, 2014). We suggested that if men and women evolved sex-differentiated ideals (i.e., mate preferences), then they should exhibit sex-differentiated desires (e.g., romantic attraction) and/or relational outcomes (e.g., relationship satisfaction) with respect to live opposite-sex targets. Our meta-analysis revealed no support for these sex-differentiated desires and relational outcomes in either established relationship or mate selection contexts. With respect to established relationships, Schmitt (2014) has objected to the idea that relationship quality (one of our primarily romantic evaluation dependent measures) has functional relevance. In doing so, he neglects myriad evolutionary perspectives on the adaptive importance of the pair-bond and the wealth of data suggesting that relationship quality predicts the dissolution of pair-bonds. With respect to mate selection, Schmitt (2014) has continued to suggest that sex-differentiated patterns should emerge in these contexts despite the fact that our meta-analysis included this literature and found no sex differences. Schmitt (2014) also generated several novel sex-differentiated predictions with respect to attractiveness and earning prospects, but neither the existing literature nor reanalyses of our meta-analytic data reveal any support for his "proper" function-related hypotheses. In short, there are diverse evolutionary perspectives relevant to mating, including our own synthesis; Schmitt's (2014) conceptual analysis is not the one-and-only evolutionary psychological view, and his alternative explanations for our meta-analytic data remain speculative.

  5. Genome-scale rates of evolutionary change in bacteria

    PubMed Central

    Duchêne, Sebastian; Holt, Kathryn E.; Weill, François-Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Fourment, Mathieu

    2016-01-01

    Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria. PMID:28348834

  6. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily

    PubMed Central

    Akiva, Eyal; Copp, Janine N.; Tokuriki, Nobuhiko; Babbitt, Patricia C.

    2017-01-01

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. PMID:29078300

  7. Colonization and demographic expansion of freshwater fauna across the Hawaiian archipelago.

    PubMed

    Alda, F; Gagne, R B; Walter, R P; Hogan, J D; Moody, K N; Zink, F; McIntyre, P B; Gilliam, J F; Blum, M J

    2016-10-01

    It is widely accepted that insular terrestrial biodiversity progresses with island age because colonization and diversification proceed over time. Here, we assessed whether this principle extends to oceanic island streams. We examined rangewide mtDNA sequence variation in four stream-dwelling species across the Hawaiian archipelago to characterize the relationship between colonization and demographic expansion, and to determine whether either factor reflects island age. We found that colonization and demographic expansion are not related and that neither corresponds to island age. The snail Neritina granosa exhibited the oldest colonization time (~2.713 mya) and time since demographic expansion (~282 kya), likely reflecting a preference for lotic habitats most prevalent on young islands. Conversely, gobioid fishes (Awaous stamineus, Eleotris sandwicensis and Sicyopterus stimpsoni) colonized the archipelago only ~0.411-0.935 mya, suggesting ecological opportunities for colonization in this group were temporally constrained. These findings indicate that stream communities form across colonization windows, underscoring the importance of ecological opportunities in shaping island freshwater diversity. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  8. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    PubMed

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those associated with annual/perennial life history. Although we acknowledge current limitations of this kind of study, mainly due to a small sample size available and a distant taxonomic relationship of the model organisms, our results indicate that the genome-wide survey is a promising approach toward further understanding of the mechanism determining the molecular evolutionary rate at the genomic level.

  9. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  10. Monophyletic origin of domestic bactrian camel (Camelus bactrianus) and its evolutionary relationship with the extant wild camel (Camelus bactrianus ferus)

    PubMed Central

    Ji, R; Cui, P; Ding, F; Geng, J; Gao, H; Zhang, H; Yu, J; Hu, S; Meng, H

    2009-01-01

    The evolutionary relationship between the domestic bactrian camel and the extant wild two-humped camel and the factual origin of the domestic bactrian camel remain elusive. We determined the sequence of mitochondrial cytb gene from 21 camel samples, including 18 domestic camels (three Camelus bactrianus xinjiang, three Camelus bactrianus sunite, three Camelus bactrianus alashan, three Camelus bactrianus red, three Camelus bactrianus brown and three Camelus bactrianus normal) and three wild camels (Camelus bactrianus ferus). Our phylogenetic analyses revealed that the extant wild two-humped camel may not share a common ancestor with the domestic bactrian camel and they are not the same subspecies at least in their maternal origins. Molecular clock analysis based on complete mitochondrial genome sequences indicated that the sub-speciation of the two lineages had begun in the early Pleistocene, about 0.7 million years ago. According to the archaeological dating of the earliest known two-humped camel domestication (5000–6000 years ago), we could conclude that the extant wild camel is a separate lineage but not the direct progenitor of the domestic bactrian camel. Further phylogenetic analysis suggested that the bactrian camel appeared monophyletic in evolutionary origin and that the domestic bactrian camel could originate from a single wild population. The data presented here show how conservation strategies should be implemented to protect the critically endangered wild camel, as it is the last extant form of the wild tribe Camelina. PMID:19292708

  11. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: themore » mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.« less

  12. Decoupled leaf and root carbon economics is a key component in the ecological diversity and evolutionary divergence of deciduous and evergreen lineages of genus Rhododendron.

    PubMed

    Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar

    2017-06-01

    We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.

  13. Phylomemetics—Evolutionary Analysis beyond the Gene

    PubMed Central

    Howe, Christopher J.; Windram, Heather F.

    2011-01-01

    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements. PMID:21655311

  14. Evolutionary rescue in vertebrates: evidence, applications and uncertainty

    PubMed Central

    Vander Wal, E.; Garant, D.; Festa-Bianchet, M.; Pelletier, F.

    2013-01-01

    The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was rare and restricted to abundant and highly fecund species that faced severe intentional anthropogenic selective pressures. However, examples from adaptive tracking in common species and genetic rescues in species of conservation concern provide convincing evidence in favour of the mechanisms of evolutionary rescue. We conclude that low population size, long generation times and limited genetic variability will result in evolutionary rescue occurring rarely for endangered species without intervention. Owing to the risks presented by current environmental change and the possibility of evolutionary rescue in nature, we suggest means to study evolutionary rescue by mapping genotype → phenotype → demography → fitness relationships, and priorities for applying evolutionary rescue to wild populations. PMID:23209171

  15. Identifying Evolutionary Patterns of SMBHS Using Characteristic Variables of the Quasar AGNs of eBOSS

    NASA Astrophysics Data System (ADS)

    Martens, Sarah Katherine; Wilcots, Eric M.

    2017-01-01

    We investigate the redshift distribution and environmental conditions of quasar AGNs. The importance of studying these relationships is to use the evolutionary patterns of QSOs (features with many quantifiable characteristics) to gain insight into the evolutionary paths and environmental dependencies of their host super massive black holes (SMBHs), which are more difficult to study directly. We employ specific redshift bins within Data Release 13 of the Sloan Digital Sky Survey's (SDSS) Extended Baryonic Oscillation Spectroscopic Survey (eBOSS) and begin with a sample of 595,025 QSOs. We then incorporate overlapping data sets: The Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) which provides the HI detected QSOs in our sample, along with the galaxy group and cluster sample from Tempel, Tago, Liivamägi 2012 which we cross referenced with our QSO sample to see which of them exist in group environments. The addition of these data sets allows us to create a more holistic view of the processes at work within our sample of QSOs. Understanding the HI presence in different evolutionary phases will allow us to draw conclusions on potential star formation rates or quenching, and by understanding the populations of QSOs in galaxy groups we can determine if QSOs exist overwhelmingly in one particular environment and how environmental conditions effect the other characteristics of QSOs. Overall we provide a multi-faceted analysis of some of the evolutionary patterns and cycles of the eBOSS Data Release 13 QSOs and their implications on the evolutionary paths of SMBHs. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  16. Climbing Mount Probable

    ERIC Educational Resources Information Center

    Harper, Marc Allen

    2009-01-01

    This work attempts to explain the relationships between natural selection, information theory, and statistical inference. In particular, a geometric formulation of information theory known as information geometry and its deep connections to evolutionary game theory inform the role of natural selection in evolutionary processes. The goals of this…

  17. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

    PubMed

    Kriegs, Jan Ole; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen

    2007-04-01

    The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

  18. A single determinant dominates the rate of yeast protein evolution.

    PubMed

    Drummond, D Allan; Raval, Alpan; Wilke, Claus O

    2006-02-01

    A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.

  19. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with PSSM Relation Transformation.

    PubMed

    Zhou, Jiyun; Lu, Qin; Xu, Ruifeng; He, Yulan; Wang, Hongpeng

    2017-08-29

    Prediction of DNA-binding residue is important for understanding the protein-DNA recognition mechanism. Many computational methods have been proposed for the prediction, but most of them do not consider the relationships of evolutionary information between residues. In this paper, we first propose a novel residue encoding method, referred to as the Position Specific Score Matrix (PSSM) Relation Transformation (PSSM-RT), to encode residues by utilizing the relationships of evolutionary information between residues. PDNA-62 and PDNA-224 are used to evaluate PSSM-RT and two existing PSSM encoding methods by five-fold cross-validation. Performance evaluations indicate that PSSM-RT is more effective than previous methods. This validates the point that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction. An ensemble learning classifier (EL_PSSM-RT) is also proposed by combining ensemble learning model and PSSM-RT to better handle the imbalance between binding and non-binding residues in datasets. EL_PSSM-RT is evaluated by five-fold cross-validation using PDNA-62 and PDNA-224 as well as two independent datasets TS-72 and TS-61. Performance comparisons with existing predictors on the four datasets demonstrate that EL_PSSM-RT is the best-performing method among all the predicting methods with improvement between 0.02-0.07 for MCC, 4.18-21.47% for ST and 0.013-0.131 for AUC. Furthermore, we analyze the importance of the pair-relationships extracted by PSSM-RT and the results validates the usefulness of PSSM-RT for encoding DNA-binding residues. We propose a novel prediction method for the prediction of DNA-binding residue with the inclusion of relationship of evolutionary information and ensemble learning. Performance evaluation shows that the relationship of evolutionary information between residues is indeed useful in DNA-binding residue prediction and ensemble learning can be used to address the data imbalance issue between binding and non-binding residues. A web service of EL_PSSM-RT ( http://hlt.hitsz.edu.cn:8080/PSSM-RT_SVM/ ) is provided for free access to the biological research community.

  20. Evolutionary origins of leadership and followership.

    PubMed

    Van Vugt, Mark

    2006-01-01

    Drawing upon evolutionary logic, leadership is reconceptualized in terms of the outcome of strategic interactions among individuals who are following different, yet complementary, decision rules to solve recurrent coordination problems. This article uses the vast psychological literature on leadership as a database to test several evolutionary hypotheses about the origins of leadership and followership in humans. As expected, leadership correlates with initiative taking, trait measures of intelligence, specific task competencies, and several indicators of generosity. The review finds no link between leadership and dominance. The evolutionary analysis accounts for reliable age, health, and sex differences in leadership emergence. In general, evolutionary theory provides a useful, integrative framework for studying leader-follower relationships and generates various novel research hypotheses.

  1. The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system

    PubMed Central

    2011-01-01

    The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899

  2. How perfect can protein interactomes be?

    PubMed

    Levy, Emmanuel D; Landry, Christian R; Michnick, Stephen W

    2009-03-03

    Any engineered device should certainly not contain nonfunctional components, for this would be a waste of energy and money. In contrast, evolutionary theory tells us that biological systems need not be optimized and may very well accumulate nonfunctional elements. Mutational and demographic processes contribute to the cluttering of eukaryotic genomes and transcriptional networks with "junk" DNA and spurious DNA binding sites. Here, we question whether such a notion should be applied to protein interactomes-that is, whether these protein interactomes are expected to contain a fraction of nonselected, nonfunctional protein-protein interactions (PPIs), which we term "noisy." We propose a simple relationship between the fraction of noisy interactions expected in a given organism and three parameters: (i) the number of mutations needed to create and destroy interactions, (ii) the size of the proteome, and (iii) the fitness cost of noisy interactions. All three parameters suggest that noisy PPIs are expected to exist. Their existence could help to explain why PPIs determined from large-scale studies often lack functional relationships between interacting proteins, why PPIs are poorly conserved across organisms, and why the PPI space appears to be immensely large. Finally, we propose experimental strategies to estimate the fraction of evolutionary noise in PPI networks.

  3. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  4. Despotism, democracy, and the evolutionary dynamics of leadership and followership.

    PubMed

    Van Vugt, Mark

    2009-01-01

    Responds to comments made by George B. Graen and Stephen J. Guastello on the current author's article Leadership, followership, and evolution: Some lessons from the past by Van Vugt, Hogan, and Kaiser. In the original article my co-authors and I proposed a new way of thinking about leadership, informed by evolutionary (neo-Darwinian) theory. In the first commentary, Graen noted that we ignored a number of recently developed psychological theories of leadership that take into account the leader-follower relationship, most notably LMX theory. LMX theory asserts that leadership effectiveness and team performance are affected by the quality of working relationships between superior and subordinates. Because the original article primarily dealt with questions about the origins of leadership--the phylogenetic and evolutionary causes--we had to be concise in our review of proximate psychological theories of leadership. In the second commentary, Guastello concurred with the importance of an evolutionary game analysis for studying leadership but disagreed with certain details of our analysis. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  5. Inference is bliss: using evolutionary relationship to guide categorical inferences.

    PubMed

    Novick, Laura R; Catley, Kefyn M; Funk, Daniel J

    2011-01-01

    Three experiments, adopting an evolutionary biology perspective, investigated subjects' inferences about living things. Subjects were told that different enzymes help regulate cell function in two taxa and asked which enzyme a third taxon most likely uses. Experiment 1 and its follow-up, with college students, used triads involving amphibians, reptiles, and mammals (reptiles and mammals are most closely related evolutionarily) and plants, fungi, and animals (fungi are more closely related to animals than to plants). Experiment 2, with 10th graders, also included triads involving mammals, birds, and snakes/crocodilians (birds and snakes/crocodilians are most closely related). Some subjects received cladograms (hierarchical diagrams) depicting the evolutionary relationships among the taxa. The effect of providing cladograms depended on students' background in biology. The results illuminate students' misconceptions concerning common taxa and constraints on their willingness to override faulty knowledge when given appropriate evolutionary evidence. Implications for introducing tree thinking into biology curricula are discussed. Copyright © 2011 Cognitive Science Society, Inc.

  6. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia

    PubMed Central

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M.

    2016-01-01

    Abstract Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints. PMID:28175287

  7. Mammalian Comparative Genomics Reveals Genetic and Epigenetic Features Associated with Genome Reshuffling in Rodentia.

    PubMed

    Capilla, Laia; Sánchez-Guillén, Rosa Ana; Farré, Marta; Paytuví-Gallart, Andreu; Malinverni, Roberto; Ventura, Jacint; Larkin, Denis M; Ruiz-Herrera, Aurora

    2016-12-01

    Understanding how mammalian genomes have been reshuffled through structural changes is fundamental to the dynamics of its composition, evolutionary relationships between species and, in the long run, speciation. In this work, we reveal the evolutionary genomic landscape in Rodentia, the most diverse and speciose mammalian order, by whole-genome comparisons of six rodent species and six representative outgroup mammalian species. The reconstruction of the evolutionary breakpoint regions across rodent phylogeny shows an increased rate of genome reshuffling that is approximately two orders of magnitude greater than in other mammalian species here considered. We identified novel lineage and clade-specific breakpoint regions within Rodentia and analyzed their gene content, recombination rates and their relationship with constitutive lamina genomic associated domains, DNase I hypersensitivity sites and chromatin modifications. We detected an accumulation of protein-coding genes in evolutionary breakpoint regions, especially genes implicated in reproduction and pheromone detection and mating. Moreover, we found an association of the evolutionary breakpoint regions with active chromatin state landscapes, most probably related to gene enrichment. Our results have two important implications for understanding the mechanisms that govern and constrain mammalian genome evolution. The first is that the presence of genes related to species-specific phenotypes in evolutionary breakpoint regions reinforces the adaptive value of genome reshuffling. Second, that chromatin conformation, an aspect that has been often overlooked in comparative genomic studies, might play a role in modeling the genomic distribution of evolutionary breakpoints.

  8. The evolutionary origins of Syngnathidae: pipefishes and seahorses.

    PubMed

    Wilson, A B; Orr, J W

    2011-06-01

    Despite their importance as evolutionary and ecological model systems, the phylogenetic relationships among gasterosteiforms remain poorly understood, complicating efforts to understand the evolutionary origins of the exceptional morphological and behavioural diversity of this group. The present review summarizes current knowledge on the origin and evolution of syngnathids, a gasterosteiform family with a highly developed form of male parental care, combining inferences based on morphological and molecular data with paleontological evidence documenting the evolutionary history of the group. Molecular methods have provided new tools for the study of syngnathid relationships and have played an important role in recent conservation efforts. Despite recent insights into syngnathid evolution, however, a survey of the literature reveals a strong taxonomic bias towards studies on the species-rich genera Hippocampus and Syngnathus, with a lack of data for many morphologically unique members of the family. The study of the evolutionary pressures responsible for generating the high diversity of syngnathids would benefit from a wider perspective, providing a comparative framework in which to investigate the evolution of the genetic, morphological and behavioural traits of the group as a whole. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  9. Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes.

    PubMed

    Prigoda, Nadia L; Nassuth, Annette; Mable, Barbara K

    2005-07-01

    The highly divergent alleles of the SRK gene in outcrossing Arabidopsis lyrata have provided important insights into the evolutionary history of self-incompatibility (SI) alleles and serve as an ideal model for studies of the evolutionary and molecular interactions between alleles in cell-cell recognition systems in general. One tantalizing question is how new specificities arise in systems that require coordination between male and female components. Allelic recruitment via gene conversion has been proposed as one possibility, based on the division of DNA sequences at the SRK locus into two distinctive groups: (1) sequences whose relationships are not well resolved and display the long branch lengths expected for a gene under balancing selection (Class A); and (2) sequences falling into a well-supported group with shorter branch lengths (Class B) that are closely related to an unlinked paralogous locus. The purpose of this study was to determine if differences in phenotype (site of expression assayed using allele-specific reverse transcription-polymerase chain reaction) or function (dominance relationships assayed through controlled pollinations) accompany the sequence-based classification. Expression of Class A alleles was restricted to floral tissues, as predicted for genes involved in the SI response. In contrast, Class B alleles, despite being tightly linked to the SI phenotype, were unexpectedly expressed in both leaves and floral tissues; the same pattern found for a related unlinked paralogous sequence. Whereas Class A included haplotypes in three different dominance classes, all Class B haplotypes were found to be recessive to all except one Class A haplotype. In addition, mapping of expression and dominance patterns onto an S-domain-based genealogy suggested that allelic dominance may be determined more by evolutionary history than by frequency-dependent selection for lowered dominance as some theories suggest. The possibility that interlocus gene conversion might have contributed to allelic diversity is discussed.

  10. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses.

    PubMed

    Mavian, Carla; López-Bueno, Alberto; Balseiro, Ana; Casais, Rosa; Alcamí, Antonio; Alejo, Alí

    2012-04-01

    Worldwide amphibian population declines have been ascribed to global warming, increasing pollution levels, and other factors directly related to human activities. These factors may additionally be favoring the emergence of novel pathogens. In this report, we have determined the complete genome sequence of the emerging common midwife toad ranavirus (CMTV), which has caused fatal disease in several amphibian species across Europe. Phylogenetic and gene content analyses of the first complete genomic sequence from a ranavirus isolated in Europe show that CMTV is an amphibian-like ranavirus (ALRV). However, the CMTV genome structure is novel and represents an intermediate evolutionary stage between the two previously described ALRV groups. We find that CMTV clusters with several other ranaviruses isolated from different hosts and locations which might also be included in this novel ranavirus group. This work sheds light on the phylogenetic relationships within this complex group of emerging, disease-causing viruses.

  11. The organization and control of an evolving interdependent population

    PubMed Central

    Vural, Dervis C.; Isakov, Alexander; Mahadevan, L.

    2015-01-01

    Starting with Darwin, biologists have asked how populations evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. Specifically of interest is the emergence of cooperation and multicellularity where the fitness of individuals often appears in conflict with that of the population. Theories of social evolution and evolutionary game theory have produced a number of fruitful results employing two-state two-body frameworks. In this study, we depart from this tradition and instead consider a multi-player, multi-state evolutionary game, in which the fitness of an agent is determined by its relationship to an arbitrary number of other agents. We show that populations organize themselves in one of four distinct phases of interdependence depending on one parameter, selection strength. Some of these phases involve the formation of specialized large-scale structures. We then describe how the evolution of independence can be manipulated through various external perturbations. PMID:26040593

  12. Evolutionary distance from human homologs reflects allergenicity of animal food proteins.

    PubMed

    Jenkins, John A; Breiteneder, Heimo; Mills, E N Clare

    2007-12-01

    In silico analysis of allergens can identify putative relationships among protein sequence, structure, and allergenic properties. Such systematic analysis reveals that most plant food allergens belong to a restricted number of protein superfamilies, with pollen allergens behaving similarly. We have investigated the structural relationships of animal food allergens and their evolutionary relatedness to human homologs to define how closely a protein must resemble a human counterpart to lose its allergenic potential. Profile-based sequence homology methods were used to classify animal food allergens into Pfam families, and in silico analyses of their evolutionary and structural relationships were performed. Animal food allergens could be classified into 3 main families--tropomyosins, EF-hand proteins, and caseins--along with 14 minor families each composed of 1 to 3 allergens. The evolutionary relationships of each of these allergen superfamilies showed that in general, proteins with a sequence identity to a human homolog above approximately 62% were rarely allergenic. Single substitutions in otherwise highly conserved regions containing IgE epitopes in EF-hand parvalbumins may modulate allergenicity. These data support the premise that certain protein structures are more allergenic than others. Contrasting with plant food allergens, animal allergens, such as the highly conserved tropomyosins, challenge the capability of the human immune system to discriminate between foreign and self-proteins. Such immune responses run close to becoming autoimmune responses. Exploiting the closeness between animal allergens and their human homologs in the development of recombinant allergens for immunotherapy will need to consider the potential for developing unanticipated autoimmune responses.

  13. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    PubMed

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Acceptance of evolutionary explanations as they are applied to plants, animals, and humans

    NASA Astrophysics Data System (ADS)

    Thanukos, Anastasia

    In four investigations using Likert-scale questionnaires and think-aloud protocols with 173 university students in total, the willingness to accept evolutionary explanations regarding plant, animal, and human characteristics was examined. Participants were presented with evolutionary explanations for features and behaviors and were asked to rate how much they agreed with evolution as an explanation for each scenario. Some were also asked to explain their reasoning in think-aloud protocols or to discuss item ratings with one another. Overall, participants thought evolutionary explanations appropriate, with median ratings in the upper quarter of the rating scale. They were slightly more willing to ascribe evolutionary explanations to plant than to human phenomena; however, this general effect was mediated by more specific aspects of the evolutionary scenarios in question. Participants who were generally negative regarding evolution were particularly negative towards human evolution. Those who were positive or neutral towards evolution in general were more willing to accept human evolution, but were more likely to use evolution to explain similarities between humans and other species than to explain particular human adaptations. For example, they were more likely to agree that evolution is responsible for the DNA similarities between humans and chimpanzees than that evolution is responsible for human behavioral characteristics, such as the fight or flight response. Think-aloud protocols suggest that, while people are more familiar with human evolutionary relationships than plant evolutionary relationships, they may be less likely to see human characteristics as adaptively valuable. One plausible explanation for these patterns is that an evolutionary explanation is judged jointly by its availability in an individual's memory and its plausibility (i.e., its congruence with the individual's worldview). Popular media coverage, with its focus on controversy and litigation, makes it likely that awareness of human evolution is high, compared with plant evolution (which may not even "enter the radar screen" when most people think of evolution). Some aspects of human evolution, such as the basic relationship between all primates, may have become so pedestrian that they do not threaten many individuals' worldviews. However, even for those positively disposed towards evolution, extending the ramifications of human evolution by suggesting that evolution shapes our behaviors and physical traits may pose a threat to their sense of personal agency. This threat is not associated with plant evolution.

  15. Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses.

    PubMed

    Komoto, Satoshi; Pongsuwanna, Yaowapa; Tacharoenmuang, Ratana; Guntapong, Ratigorn; Ide, Tomihiko; Higo-Moriguchi, Kyoko; Tsuji, Takao; Yoshikawa, Tetsushi; Taniguchi, Koki

    2016-11-15

    Bovine group A rotavirus (RVA) is an important cause of acute diarrhea in calves worldwide. In order to obtain precise information on the origin and evolutionary dynamics of bovine RVA strains, we determined and analyzed the complete nucleotide sequences of the whole genomes of six archival bovine RVA strains; four Thai strains (RVA/Cow-tc/THA/A5-10/1988/G8P[1], RVA/Cow-tc/THA/A5-13/1988/G8P[1], RVA/Cow-tc/THA/61A/1989/G10P[5], and RVA/Cow-tc/THA/A44/1989/G10P[11]), one American strain (RVA/Cow-tc/USA/B223/1983/G10P[11]), and one Japanese strain (RVA/Cow-tc/JPN/KK3/1983/G10P[11]). On whole genomic analysis, the 11 gene segments of strains A5-10, A5-13, 61A, A44, B223, and KK3 were found to be considerably genetically diverse, but to share a conserved non-G/P genotype constellation except for the NSP1 gene (I2-R2-C2-M2-(A3/11/13/14)-N2-T6-E2-H3), which is commonly found in RVA strains from artiodactyls such as cattle. Furthermore, phylogenetic analysis revealed that most genes of the six strains were genetically related to bovine and bovine-like strains. Of note is that the VP1, VP3, and NSP2 genes of strains A5-10 and A5-13 exhibited a closer relationship with the cognate genes of human DS-1-like strains than those of other RVA strains. Furthermore, the VP6 genes of strains A5-10 and A5-13 appeared to be equally related to both human DS-1-like and bovine strains. Thus, strains A5-10 and A5-13 were suggested to be derived from the same evolutionary origin as human DS-1-like strains, and were assumed to be examples of bovine RVA strains that provide direct evidence for a close evolutionary relationship between bovine and human DS-1-like strains. Our findings will provide important insights into the origin of bovine RVA strains, and into evolutionary links between bovine and human RVA strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.

    PubMed

    Kim, K S; Lee, S E; Jeong, H W; Ha, J H

    1998-10-01

    The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.

  17. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases

    NASA Astrophysics Data System (ADS)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-10-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  18. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    PubMed

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  19. Evolutionary morphology in shape and size of haptoral anchors in 14 Ligophorus spp. (Monogenea: Dactylogyridae)

    PubMed Central

    Rodríguez-González, Abril; Sarabeev, Volodimir; Balbuena, Juan Antonio

    2017-01-01

    The search for phylogenetic signal in morphological traits using geometric morphometrics represents a powerful approach to estimate the relative weights of convergence and shared evolutionary history in shaping organismal form. We assessed phylogenetic signal in the form of ventral and dorsal haptoral anchors of 14 species of Ligophorus occurring on grey mullets (Osteichthyes: Mugilidae) from the Mediterranean, the Black Sea and the Sea of Azov. The phylogenetic relationships among these species were mapped onto the morphospaces of shape and size of dorsal and ventral anchors and two different tests were applied to establish whether the spatial positions in the morphospace were dictated by chance. Overall significant phylogenetic signal was found in the data. Allometric effects on anchor shape were moderate or non-significant in the case of evolutionary allometry. Relatively phylogenetically distant species occurring on the same host differed markedly in anchor morphology indicating little influence of host species on anchor form. Our results suggest that common descent and shared evolutionary history play a major role in determining the shape and, to a lesser degree in the size of haptoral anchors in Ligophorus spp. The present approach allowed tracing paths of morphological evolution in anchor shape. Species with narrow anchors and long shafts were associated predominately with Liza saliens. This morphology was considered to be ancestral relative to anchors of species occurring on Liza haematocheila and M. cephalus possessing shorter shafts and longer roots. Evidence for phylogenetic signal was more compelling for the ventral anchors, than for the dorsal ones, which could reflect different functional roles in attachment to the gills. Although phylogeny and homoplasy may act differently in other monogeneans, the present study delivers a common framework to address effectively the relationships among morphology, phylogeny and other traits, such as host specificity or niche occupancy. PMID:28542570

  20. Cancer Evolution: Mathematical Models and Computational Inference

    PubMed Central

    Beerenwinkel, Niko; Schwarz, Roland F.; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. PMID:25293804

  1. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    ERIC Educational Resources Information Center

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  2. Bullying and Evolutionary Psychology: The Dominance Hierarchy among Students and Implications for School Personnel

    ERIC Educational Resources Information Center

    Kolbert, Jered B.; Crothers, Laura M.

    2003-01-01

    The phenomenon of childhood bullying is conceptualized from an evolutionary psychological perspective. In this manuscript, the research literature is examined regarding the role of the relationship between aggression, testosterone, and social status in the development and maintenance of dominance hierarchies, which involve a reciprocal…

  3. A Coevolutionary Arms Race: Understanding Plant-Herbivore Interactions

    ERIC Educational Resources Information Center

    Becklin, Katie M.

    2008-01-01

    Plants and insects share a long evolutionary history characterized by relationships that affect individual, population, and community dynamics. Plant-herbivore interactions are a prominent feature of this evolutionary history; it is by plant-herbivore interactions that energy is transferred from primary producers to the rest of the food web. Not…

  4. The Relationship between College Zoology Students' Beliefs about Evolutionary Theory and Religion.

    ERIC Educational Resources Information Center

    Sinclair, Anne; And Others

    1997-01-01

    Researchers administered surveys to college zoology students prior to, and immediately following a study of evolutionary theory, to assess their understanding and acceptance of evidence supporting the theory. Results showed students had many misconceptions about the theory. Their beliefs interfered with their ability to objectively view scientific…

  5. The Use of Aftereffects in the Study of Relationships among Emotion Categories

    ERIC Educational Resources Information Center

    Rutherford, M. D.; Chattha, Harnimrat Monica; Krysko, Kristen M.

    2008-01-01

    The perception of visual aftereffects has been long recognized, and these aftereffects reveal a relationship between perceptual categories. Thus, emotional expression aftereffects can be used to map the categorical relationships among emotion percepts. One might expect a symmetric relationship among categories, but an evolutionary, functional…

  6. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals.

    PubMed

    Tourmente, M; Delbarco Trillo, J; Roldan, E R S

    2015-10-01

    Post-copulatory sexual selection, in the form sperm competition, has influenced the evolution of several male reproductive traits. However, theory predicts that sperm competition would lead to trade-offs between numbers and size of spermatozoa because increased costs per cell would result in a reduction of sperm number if both traits share the same energetic budget. Theoretical models have proposed that, in large animals, increased sperm size would have minimal fitness advantage compared with increased sperm numbers. Thus, sperm numbers would evolve more rapidly than sperm size under sperm competition pressure. We tested in mammals whether sperm competition maximizes sperm numbers and size, and whether there is a trade-off between these traits. Our results showed that sperm competition maximizes sperm numbers in eutherian and metatherian mammals. There was no evidence of a trade-off between sperm numbers and sperm size in any of the two mammalian clades as we did not observe any significant relationship between sperm numbers and sperm size once the effect of sperm competition was taken into account. Maximization of both numbers and size in mammals may occur because each trait is crucial at different stages in sperm's life; for example size-determined sperm velocity is a key determinant of fertilization success. In addition, numbers and size may also be influenced by diverse energetic budgets required at different stages of sperm formation. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  7. Sex in an Evolutionary Perspective: Just Another Reaction Norm

    PubMed Central

    Nylin, Sören

    2010-01-01

    It is common to refer to all sorts of clear-cut differences between the sexes as something that is biologically almost inevitable. Although this does not reflect the status of evolutionary theory on sex determination and sexual dimorphism, it is probably a common view among evolutionary biologists as well, because of the impact of sexual selection theory. To get away from thinking about biological sex and traits associated with a particular sex as something static, it should be recognized that in an evolutionary perspective sex can be viewed as a reaction norm, with sex attributes being phenotypically plastic. Sex determination itself is fundamentally plastic, even when it is termed “genetic”. The phenotypic expression of traits that are statistically associated with a particular sex always has a plastic component. This plasticity allows for much more variation in the expression of traits according to sex and more overlap between the sexes than is typically acknowledged. Here we review the variation and frequency of evolutionary changes in sex, sex determination and sex roles and conclude that sex in an evolutionary time-frame is extremely variable. We draw on recent findings in sex determination mechanisms, empirical findings of morphology and behaviour as well as genetic and developmental models to explore the concept of sex as a reaction norm. From this point of view, sexual differences are not expected to generally fall into neat, discrete, pre-determined classes. It is important to acknowledge this variability in order to increase objectivity in evolutionary research. PMID:21170116

  8. [The Evolutionary Origin of Placodes and Neural Crest Cells

    NASA Technical Reports Server (NTRS)

    Bronner-Fraser, Marianne

    2003-01-01

    The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.

  9. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    PubMed

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  10. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    PubMed Central

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes. PMID:23755192

  11. There must be a prokaryote somewhere: microbiology's search for itself

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1994-01-01

    While early microbiologists showed considerable interest in the problem of the natural (evolutionary) relationships among prokaryotes, by the middle of this century that problem had largely been discarded as being unsolvable. In other words, the science of microbiology developed without an evolutionary framework, the lack of which kept it a weak discipline, defined largely by external forces. Modern technology has allowed microbiology finally to develop the needed evolutionary framework, and with this comes a sense of coherence, a sense of identity. Not only is this development radically changing microbiology itself, but also it will change microbiology's relationship to the other biological disciplines. Microbiology of the future will become the primary biological science, the base upon which our future understanding of the living world rests, and the font from which new understanding of it flows.

  12. Phylogeny and species traits predict bird detectability

    USGS Publications Warehouse

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  13. The Evolutionary History of Protein Domains Viewed by Species Phylogeny

    PubMed Central

    Yang, Song; Bourne, Philip E.

    2009-01-01

    Background Protein structural domains are evolutionary units whose relationships can be detected over long evolutionary distances. The evolutionary history of protein domains, including the origin of protein domains, the identification of domain loss, transfer, duplication and combination with other domains to form new proteins, and the formation of the entire protein domain repertoire, are of great interest. Methodology/Principal Findings A methodology is presented for providing a parsimonious domain history based on gain, loss, vertical and horizontal transfer derived from the complete genomic domain assignments of 1015 organisms across the tree of life. When mapped to species trees the evolutionary history of domains and domain combinations is revealed, and the general evolutionary trend of domain and combination is analyzed. Conclusions/Significance We show that this approach provides a powerful tool to study how new proteins and functions emerged and to study such processes as horizontal gene transfer among more distant species. PMID:20041107

  14. The concept of ageing in evolutionary algorithms: Discussion and inspirations for human ageing.

    PubMed

    Dimopoulos, Christos; Papageorgis, Panagiotis; Boustras, George; Efstathiades, Christodoulos

    2017-04-01

    This paper discusses the concept of ageing as this applies to the operation of Evolutionary Algorithms, and examines its relationship to the concept of ageing as this is understood for human beings. Evolutionary Algorithms constitute a family of search algorithms which base their operation on an analogy from the evolution of species in nature. The paper initially provides the necessary knowledge on the operation of Evolutionary Algorithms, focusing on the use of ageing strategies during the implementation of the evolutionary process. Background knowledge on the concept of ageing, as this is defined scientifically for biological systems, is subsequently presented. Based on this information, the paper provides a comparison between the two ageing concepts, and discusses the philosophical inspirations which can be drawn for human ageing based on the operation of Evolutionary Algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Beyond the pleistocene: using phylogeny and constraint to inform the evolutionary psychology of human mating.

    PubMed

    Eastwick, Paul W

    2009-09-01

    Evolutionary psychologists explore the adaptive function of traits and behaviors that characterize modern Homo sapiens. However, evolutionary psychologists have yet to incorporate the phylogenetic relationship between modern Homo sapiens and humans' hominid and pongid relatives (both living and extinct) into their theorizing. By considering the specific timing of evolutionary events and the role of evolutionary constraint, researchers using the phylogenetic approach can generate new predictions regarding mating phenomena and derive new explanations for existing evolutionary psychological findings. Especially useful is the concept of the adaptive workaround-an adaptation that manages the maladaptive elements of a pre-existing evolutionary constraint. The current review organizes 7 features of human mating into their phylogenetic context and presents evidence that 2 adaptive workarounds played a critical role as Homo sapiens's mating psychology evolved. These adaptive workarounds function in part to mute or refocus the effects of older, previously evolved adaptations and highlight the layered nature of humans' mating psychology. (c) 2009 APA, all rights reserved.

  16. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

    PubMed Central

    Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.

    2015-01-01

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis. PMID:25473009

  17. Reasoning about Evolution's Grand Patterns: College Students' Understanding of the Tree of Life

    ERIC Educational Resources Information Center

    Novick, Laura R.; Catley, Kefyn M.

    2013-01-01

    Tree thinking involves using cladograms, hierarchical diagrams depicting the evolutionary history of a set of taxa, to reason about evolutionary relationships and support inferences. Tree thinking is indispensable in modern science. College students' tree-thinking skills were investigated using tree (much more common in professional biology) and…

  18. Conceptual Ecology of Evolution Acceptance among Greek Education Students: The Contribution of Knowledge Increase

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…

  19. Evolutionary speed limited by water in arid Australia

    PubMed Central

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-01-01

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns. PMID:20410038

  20. Evolutionary speed limited by water in arid Australia.

    PubMed

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-09-07

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.

  1. Human Facial Expressions as Adaptations:Evolutionary Questions in Facial Expression Research

    PubMed Central

    SCHMIDT, KAREN L.; COHN, JEFFREY F.

    2007-01-01

    The importance of the face in social interaction and social intelligence is widely recognized in anthropology. Yet the adaptive functions of human facial expression remain largely unknown. An evolutionary model of human facial expression as behavioral adaptation can be constructed, given the current knowledge of the phenotypic variation, ecological contexts, and fitness consequences of facial behavior. Studies of facial expression are available, but results are not typically framed in an evolutionary perspective. This review identifies the relevant physical phenomena of facial expression and integrates the study of this behavior with the anthropological study of communication and sociality in general. Anthropological issues with relevance to the evolutionary study of facial expression include: facial expressions as coordinated, stereotyped behavioral phenotypes, the unique contexts and functions of different facial expressions, the relationship of facial expression to speech, the value of facial expressions as signals, and the relationship of facial expression to social intelligence in humans and in nonhuman primates. Human smiling is used as an example of adaptation, and testable hypotheses concerning the human smile, as well as other expressions, are proposed. PMID:11786989

  2. Influences on Understanding and Belief About the Origin of Species in Chinese and American Adolescents

    NASA Astrophysics Data System (ADS)

    Smith, Erin Irene

    Although beliefs about origins and evolutionary knowledge have been considered independent, research has suggested that both are influenced by cognitive constraints of psychological essentialism and teleology. Most research supporting these claims has been conducted with children from Western cultures; little is known about the psychological processes underpinning beliefs and knowledge about the natural world outside Western contexts or during adolescence. Claims about the universality of beliefs, knowledge, and the possible relationship between should be made after examining samples that differ in theoretically relevant ways from a typical Western sample, such as a Chinese sample in which religious explanations are rare or an adolescent sample in which brain development promotes the coordination of conflicting information. To examine how belief and knowledge are related in Western- and non-Western samples, as well as the factors that predict both independently, 238 Chinese (M = 15.85 years old, SD = .85 years; 36.6% male) and 277 American adolescents (M = 15.80 years, SD = 1.34 years; 51.6% male) were recruited from their high schools to participate. Adolescents completed a survey measuring beliefs about the origin of living and non-living exemplars, evolutionary knowledge, and variables that were likely to influence belief and knowledge such as science preference, epistemology, psychological essentialism, teleological reasoning, and religious beliefs. American adolescents were more creationist than Chinese adolescents. Chinese adolescents displayed more sophisticated evolutionary knowledge than American adolescents although overall performance was low. Finally, there was no relationship between belief and knowledge for American adolescents yet there was a small, positive relationship for Chinese adolescents such that adolescents who believed in creation also tended to demonstrate more evolutionary knowledge. Additional analyses employed mediation techniques to explain why cultural differences in creation belief and evolutionary knowledge exist. Age was unrelated to belief and to knowledge. The discussion focuses on the aspects of cultural membership that contribute to belief and evolutionary knowledge. Additional discussion highlights the role of classroom curriculum, curriculum testing, and focusing on uncovering variables and techniques that promote evolutionary learning.

  3. Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages

    USGS Publications Warehouse

    Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.

    2008-01-01

    Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.

  4. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  5. Ultimate Realities: Deterministic and Evolutionary

    PubMed Central

    Moxley, Roy A

    2007-01-01

    References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489

  6. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family.

    PubMed

    Bustamante, Juan P; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A; Ten Have, Arjen; Martí, Marcelo A

    2016-01-01

    Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends.

  7. Evolutionary and Functional Relationships in the Truncated Hemoglobin Family

    PubMed Central

    Bustamante, Juan P.; Radusky, Leandro; Boechi, Leonardo; Estrin, Darío A.; ten Have, Arjen; Martí, Marcelo A.

    2016-01-01

    Predicting function from sequence is an important goal in current biological research, and although, broad functional assignment is possible when a protein is assigned to a family, predicting functional specificity with accuracy is not straightforward. If function is provided by key structural properties and the relevant properties can be computed using the sequence as the starting point, it should in principle be possible to predict function in detail. The truncated hemoglobin family presents an interesting benchmark study due to their ubiquity, sequence diversity in the context of a conserved fold and the number of characterized members. Their functions are tightly related to O2 affinity and reactivity, as determined by the association and dissociation rate constants, both of which can be predicted and analyzed using in-silico based tools. In the present work we have applied a strategy, which combines homology modeling with molecular based energy calculations, to predict and analyze function of all known truncated hemoglobins in an evolutionary context. Our results show that truncated hemoglobins present conserved family features, but that its structure is flexible enough to allow the switch from high to low affinity in a few evolutionary steps. Most proteins display moderate to high oxygen affinities and multiple ligand migration paths, which, besides some minor trends, show heterogeneous distributions throughout the phylogenetic tree, again suggesting fast functional adaptation. Our data not only deepens our comprehension of the structural basis governing ligand affinity, but they also highlight some interesting functional evolutionary trends. PMID:26788940

  8. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  9. Evaluating the relationship between diploid and tetraploid Vaccinium oxycoccos (Ericaceae) in eastern Canada

    USDA-ARS?s Scientific Manuscript database

    Vaccinium oxycoccos s. l. is a complex of diploid and polyploid plants. The evolutionary relationship between the cytotypes is uncertain, with conflicting treatments in recent taxonomic studies. To clarify this situation, we investigated the relationships among ploidy, morphology and genetic diversi...

  10. Diversity of small, single-stranded DNA viruses of invertebrates and their chaotic evolutionary past.

    PubMed

    Tijssen, Peter; Pénzes, Judit J; Yu, Qian; Pham, Hanh T; Bergoin, Max

    2016-10-01

    A wide spectrum of invertebrates is susceptible to various single-stranded DNA viruses. Their relative simplicity of replication and dependence on actively dividing cells makes them highly pathogenic for many invertebrates (Hexapoda, Decapoda, etc.). We present their taxonomical classification and describe the evolutionary relationships between various groups of invertebrate-infecting viruses, their high degree of recombination, and their relationship to viruses infecting mammals or other vertebrates. They share characteristics of the viruses within the various families, including structure of the virus particle, genome properties, and gene expression strategy. Copyright © 2016. Published by Elsevier Inc.

  11. Mitochondrial genomes of two Australian fishflies with an evolutionary timescale of Chauliodinae.

    PubMed

    Yang, Fan; Jiang, Yunlan; Yang, Ding; Liu, Xingyue

    2017-06-30

    Fishflies (Corydalidae: Chauliodinae) with a total of ca. 130 extant species are one of the major groups of the holometabolous insect order Megaloptera. As a group which originated during the Mesozoic, the phylogeny and historical biogeography of fishflies are of high interest. The previous hypothesis on the evolutionary history of fishflies was based primarily on morphological data. To further test the existing phylogenetic relationships and to understand the divergence pattern of fishflies, we conducted a molecule-based study. We determined the complete mitochondrial (mt) genomes of two Australian fishfly species, Archichauliodes deceptor Kimmins, 1954 and Protochauliodes biconicus Kimmins, 1954, both members of a major subgroup of Chauliodinae with high phylogenetic significance. A phylogenomic analysis was carried out based on 13 mt protein coding genes (PCGs) and two rRNAs genes from the megalopteran species with determined mt genomes. Both maximum likelihood and Bayesian inference analyses recovered the Dysmicohermes clade as the sister group of the Archichauliodes clade + the Protochauliodes clade, which is consistent with the previous morphology-based hypothesis. The divergence time estimation suggested that the divergence among the three major subgroups of fishflies occurred during the Late Jurassic and Early Cretaceous when the supercontinent Pangaea was undergoing sequential breakup.

  12. The influence of feeding on the evolution of sensory signals: a comparative test of an evolutionary trade-off between masticatory and sensory functions of skulls in southern African horseshoe bats (Rhinolophidae).

    PubMed

    Jacobs, D S; Bastian, A; Bam, L

    2014-12-01

    The skulls of animals have to perform many functions. Optimization for one function may mean another function is less optimized, resulting in evolutionary trade-offs. Here, we investigate whether a trade-off exists between the masticatory and sensory functions of animal skulls using echolocating bats as model species. Several species of rhinolophid bats deviate from the allometric relationship between body size and echolocation frequency. Such deviation may be the result of selection for increased bite force, resulting in a decrease in snout length which could in turn lead to higher echolocation frequencies. If so, there should be a positive relationship between bite force and echolocation frequency. We investigated this relationship in several species of southern African rhinolophids using phylogenetically informed analyses of the allometry of their bite force and echolocation frequency and of the three-dimensional shape of their skulls. As predicted, echolocation frequency was positively correlated with bite force, suggesting that its evolution is influenced by a trade-off between the masticatory and sensory functions of the skull. In support of this, variation in skull shape was explained by both echolocation frequency (80%) and bite force (20%). Furthermore, it appears that selection has acted on the nasal capsules, which have a frequency-specific impedance matching function during vocalization. There was a negative correlation between echolocation frequency and capsule volume across species. Optimization of the masticatory function of the skull may have been achieved through changes in the shape of the mandible and associated musculature, elements not considered in this study. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    PubMed

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Evolutionary relationships between miRNA genes and their activity.

    PubMed

    Zhu, Yan; Skogerbø, Geir; Ning, Qianqian; Wang, Zhen; Li, Biqing; Yang, Shuang; Sun, Hong; Li, Yixue

    2012-12-22

    The emergence of vertebrates is characterized by a strong increase in miRNA families. MicroRNAs interact broadly with many transcripts, and the evolution of such a system is intriguing. However, evolutionary questions concerning the origin of miRNA genes and their subsequent evolution remain unexplained. In order to systematically understand the evolutionary relationship between miRNAs gene and their function, we classified human known miRNAs into eight groups based on their evolutionary ages estimated by maximum parsimony method. New miRNA genes with new functional sequences accumulated more dynamically in vertebrates than that observed in Drosophila. Different levels of evolutionary selection were observed over miRNA gene sequences with different time of origin. Most genic miRNAs differ from their host genes in time of origin, there is no particular relationship between the age of a miRNA and the age of its host genes, genic miRNAs are mostly younger than the corresponding host genes. MicroRNAs originated over different time-scales are often predicted/verified to target the same or overlapping sets of genes, opening the possibility of substantial functional redundancy among miRNAs of different ages. Higher degree of tissue specificity and lower expression level was found in young miRNAs. Our data showed that compared with protein coding genes, miRNA genes are more dynamic in terms of emergence and decay. Evolution patterns are quite different between miRNAs of different ages. MicroRNAs activity is under tight control with well-regulated expression increased and targeting decreased over time. Our work calls attention to the study of miRNA activity with a consideration of their origin time.

  15. On Reciprocal Causation in the Evolutionary Process.

    PubMed

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach might have been underestimated by critics of contemporary evolutionary biology.

  16. [Charles Darwin and the problem of evolutionary progress].

    PubMed

    Iordanskiĭ, N N

    2010-01-01

    According to Ch. Darwin's evolutionary theory, evolutionary progress (interpreted as morpho-physiological progress or arogenesis in recent terminology) is one of logical results of natural selection. At the same time, natural selection does not hold any factors especially promoting evolutionary progress. Darwin emphasized that the pattern of evolutionary changes depends on organism nature more than on the pattern of environment changes. Arogenesis specificity is determined by organization of rigorous biological systems - integral organisms. Onward progressive development is determined by fundamental features of living organisms: metabolism and homeostasis. The concept of social Darwinism differs fundamentally from Darwin's ideas about the most important role of social instincts in progress of mankind. Competition and selection play secondary role in socio-cultural progress of human society.

  17. Molecular Phylogenetics of the Genus Neoconocephalus (Orthoptera, Tettigoniidae) and the Evolution of Temperate Life Histories

    PubMed Central

    Snyder, Robert L.; Frederick-Hudson, Katy H.; Schul, Johannes

    2009-01-01

    Background The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus. Methodology/Principal Findings We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical species. Conclusions/Significance Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive, however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will strengthen conclusions from comparative work in this group. PMID:19779617

  18. Cancer evolution: mathematical models and computational inference.

    PubMed

    Beerenwinkel, Niko; Schwarz, Roland F; Gerstung, Moritz; Markowetz, Florian

    2015-01-01

    Cancer is a somatic evolutionary process characterized by the accumulation of mutations, which contribute to tumor growth, clinical progression, immune escape, and drug resistance development. Evolutionary theory can be used to analyze the dynamics of tumor cell populations and to make inference about the evolutionary history of a tumor from molecular data. We review recent approaches to modeling the evolution of cancer, including population dynamics models of tumor initiation and progression, phylogenetic methods to model the evolutionary relationship between tumor subclones, and probabilistic graphical models to describe dependencies among mutations. Evolutionary modeling helps to understand how tumors arise and will also play an increasingly important prognostic role in predicting disease progression and the outcome of medical interventions, such as targeted therapy. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  19. A few good reasons why species-area relationships do not work for parasites.

    PubMed

    Strona, Giovanni; Fattorini, Simone

    2014-01-01

    Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.

  20. The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome.

    PubMed

    Nikaido, Masato; Cao, Ying; Okada, Norihiro; Hasegawa, Masami

    2003-02-01

    The complete mitochondrial genome of a lesser hedgehog tenrec Echinops telfairi was determined in this study. It is an endemic African insectivore that is found specifically in Madagascar. The tenrec's back is covered with hedgehog-like spines. Unlike other spiny mammals, such as spiny mice, spiny rats, spiny dormice and porcupines, lesser hedgehog tenrecs look amazingly like true hedgehogs (Erinaceidae). However, they are distinguished morphologically from hedgehogs by the absence of a jugal bone. We determined the complete sequence of the mitochondrial genome of a lesser hedgehog tenrec and analyzed the results phylogenetically to determine the relationships between the tenrec and other insectivores (moles, shrews and hedgehogs), as well as the relationships between the tenrec and endemic African mammals, classified as Afrotheria, that have recently been shown by molecular analysis to be close relatives of the tenrec. Our data confirmed the afrotherian status of the tenrec, and no direct relation was recovered between the tenrec and the hedgehog. Comparing our data with those of others, we found that within-species variations in the mitochondrial DNA of lesser hedgehog tenrecs appear to be the largest recognized to date among mammals, apart from orangutans, which might be interesting from the view point of evolutionary history of tenrecs on Madagascar.

  1. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.

    PubMed

    Larson-Johnson, Kathryn

    2016-01-01

    As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation.

    PubMed

    Pagán, Israel; Holmes, Edward C

    2010-06-01

    Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.

  3. A comparative perspective on longevity: the effect of body size dominates over ecology in moths.

    PubMed

    Holm, S; Davis, R B; Javoiš, J; Õunap, E; Kaasik, A; Molleman, F; Tammaru, T

    2016-12-01

    Both physiologically and ecologically based explanations have been proposed to account for among-species differences in lifespan, but they remain poorly tested. Phylogenetically explicit comparative analyses are still scarce and those that exist are biased towards homoeothermic vertebrates. Insect studies can significantly contribute as lifespan can feasibly be measured in a high number of species, and the selective forces that have shaped it may differ largely between species and from those acting on larger animals. We recorded adult lifespan in 98 species of geometrid moths. Phylogenetic comparative analyses were applied to study variation in species-specific values of lifespan and to reveal its ecological and life-history correlates. Among-species and between-gender differences in lifespan were found to be notably limited; there was also no evidence of phylogenetic signal in this trait. Larger moth species were found to live longer, with this result supporting a physiological rather than ecological explanation of this relationship. Species-specific lifespan values could not be explained by traits such as reproductive season and larval diet breadth, strengthening the evidence for the dominance of physiological determinants of longevity over ecological ones. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  4. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  5. New Insights into Flavivirus Evolution, Taxonomy and Biogeographic History, Extended by Analysis of Canonical and Alternative Coding Sequences

    PubMed Central

    Moureau, Gregory; Cook, Shelley; Lemey, Philippe; Nougairede, Antoine; Forrester, Naomi L.; Khasnatinov, Maxim; Charrel, Remi N.; Firth, Andrew E.; Gould, Ernest A.; de Lamballerie, Xavier

    2015-01-01

    To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses. PMID:25719412

  6. Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution.

    PubMed

    Zhao, Chen; Pyle, Anna Marie

    2016-06-01

    Group II introns are self-splicing ribozymes that are essential in many organisms, and they have been hypothesized to share a common evolutionary ancestor with the spliceosome. Although structural similarity of RNA components supports this connection, it is of interest to determine whether associated protein factors also share an evolutionary heritage. Here we present the crystal structures of reverse transcriptase (RT) domains from two group II intron-encoded proteins (maturases) from Roseburia intestinalis and Eubacterium rectale, obtained at 1.2-Å and 2.1-Å resolution, respectively. These domains are more similar in architecture to the spliceosomal Prp8 RT-like domain than to any other RTs, and they share substantial similarity with flaviviral RNA polymerases. The RT domain itself is sufficient for binding intron RNA with high affinity and specificity, and it is contained within an active RT enzyme. These studies provide a foundation for understanding structure-function relationships within group II intron-maturase complexes.

  7. Quantitative analysis of RNA-protein interactions on a massively parallel array for mapping biophysical and evolutionary landscapes

    PubMed Central

    Buenrostro, Jason D.; Chircus, Lauren M.; Araya, Carlos L.; Layton, Curtis J.; Chang, Howard Y.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of MS2 coat protein to >107 RNA targets generated on a flow-cell surface by in situ transcription and inter-molecular tethering of RNA to DNA. We decompose the binding energy contributions from primary and secondary RNA structure, finding that differences in affinity are often driven by sequence-specific changes in association rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis, and a long-hypothesized structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNAMaP) relationships across molecular variants. PMID:24727714

  8. Comparison of the genetic relationship between nine Cephalopod species based on cluster analysis of karyotype evolutionary distance

    PubMed Central

    Wang, Jin-hai; Zheng, Xiao-dong

    2017-01-01

    Abstract Karyotype analysis was carried out on gill cells of three species of octopods using a conventional air-drying method. The karyotype results showed that all the three species have the same diploid chromosome number, 2n=60, but with different karyograms as 2n=38M+6SM+8ST+8T, FN (fundamental number)=104 (Cistopus chinensis Zheng et al., 2012), 2n=42M+6SM+4ST+8T, FN=108 (Octopus minor (Sasaki, 1920)) and 2n=32M+16SM+12T, FN=108 (Amphioctopus fangsiao (d’Orbigny, 1839–1841)). These findings were combined with data from earlier studies to infer the genetic relationships between nine species via cluster analysis using the karyotype evolutionary distance (De) and resemblance-near coefficient (λ). The resulting tree revealed a clear distinction between different families and orders which was substantially consistent with molecular phylogenies. The smallest intraspecific evolutionary distance (De=0.2013, 0.2399) and largest resemblance-near coefficient (λ=0.8184, 0.7871) appeared between O. minor and C. chinensis, and Sepia esculenta Hoyle, 1885 and S. lycidas Gray, 1849, respectively, indicating that these species have the closest relationship. The largest evolutionary gap appeared between species with complicated karyotypes and species with simple karyotypes. Cluster analysis of De and λ provides information to supplement traditional taxonomy and molecular systematics, and it would serve as an important auxiliary for routine phylogenetic study. PMID:29093799

  9. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.

    PubMed

    Bouzat, Juan L; Hoostal, Matthew J

    2013-05-01

    Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

  10. AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae).

    PubMed

    Gaudeul, Myriam; Rouhan, Germinal; Gardner, Martin F; Hollingsworth, Peter M

    2012-01-01

    Despite its small size, New Caledonia is characterized by a very diverse flora and striking environmental gradients, which make it an ideal setting to study species diversification. Thirteen of the 19 Araucaria species are endemic to the territory and form a monophyletic group, but patterns and processes that lead to such a high species richness are largely unexplored. We used 142 polymorphic AFLP markers and performed analyses based on Bayesian clustering algorithms, genetic distances, and cladistics on 71 samples representing all New Caledonian Araucaria species. We examined correlations between the inferred evolutionary relationships and shared morphological, ecological, or geographic parameters among species, to investigate evolutionary processes that may have driven speciation. We showed that genetic divergence among the present New Caledonian Araucaria species is low, suggesting recent diversification rather than pre-existence on Gondwana. We identified three genetic groups that included small-leaved, large-leaved, and coastal species, but detected no association with soil preference, ecological habitat, or rainfall. The observed patterns suggested that speciation events resulted from both differential adaptation and vicariance. Last, we hypothesize that speciation is ongoing and/or there are cryptic species in some genetically (sometimes also morphologically) divergent populations. Further data are required to provide better resolution and understanding of the diversification of New Caledonian Araucaria species. Nevertheless, our study allowed insights into their evolutionary relationships and provides a framework for future investigations on the evolution of this emblematic group of plants in one of the world's biodiversity hotspots.

  11. The Implications of the Cognitive Sciences for the Relation between Religion and Science Education: The Case of Evolutionary Theory

    ERIC Educational Resources Information Center

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-01-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive…

  12. Searching for consensus in molt terminology 11 years after Howell et al.'s "first basic problem"

    Treesearch

    Jared D. Wolfe; Erik I. Johnson; Ryan S. Terrill

    2014-01-01

    Howell et al. (2003) published an innovative augmentation to terminology proposed by Humphrey and Parkes (1959) that classified bird molt on the basis of perceived evolutionary relationships. Despite apparent universal applicability, Howell et al.’s (2003) proposed terminological changes were met with criticism that cited a failure to verify the evolutionary...

  13. Top predators induce the evolutionary diversification of intermediate predator species.

    PubMed

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Evolutionary potential of upper thermal tolerance: biogeographic patterns and expectations under climate change.

    PubMed

    Diamond, Sarah E

    2017-02-01

    How will organisms respond to climate change? The rapid changes in global climate are expected to impose strong directional selection on fitness-related traits. A major open question then is the potential for adaptive evolutionary change under these shifting climates. At the most basic level, evolutionary change requires the presence of heritable variation and natural selection. Because organismal tolerances of high temperature place an upper bound on responding to temperature change, there has been a surge of research effort on the evolutionary potential of upper thermal tolerance traits. Here, I review the available evidence on heritable variation in upper thermal tolerance traits, adopting a biogeographic perspective to understand how heritability of tolerance varies across space. Specifically, I use meta-analytical models to explore the relationship between upper thermal tolerance heritability and environmental variability in temperature. I also explore how variation in the methods used to obtain these thermal tolerance heritabilities influences the estimation of heritable variation in tolerance. I conclude by discussing the implications of a positive relationship between thermal tolerance heritability and environmental variability in temperature and how this might influence responses to future changes in climate. © 2016 New York Academy of Sciences.

  15. Epidemiological, evolutionary and co-evolutionary implications of context-dependent parasitism

    PubMed Central

    Vale, Pedro F.; Wilson, Alastair J.; Best, Alex; Boots, Mike; Little, Tom J.

    2013-01-01

    Victims of infection are expected to suffer increasingly as parasite population growth increases. Yet, under some conditions, faster growing parasites do not appear to cause more damage and infections can be quite tolerable. We studied these conditions by assessing how the relationship between parasite population growth and host health is sensitive to environmental variation. In experimental infections of the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa we show how easily an interaction can shift from a severe interaction, i.e. when host fitness declines substantially with each unit of parasite growth, to a tolerable relationship by changing only simple environmental variables: temperature and food availability. We explored the evolutionary and epidemiological implications of such a shift by modelling pathogen evolution and disease spread under different levels of infection severity, and find that environmental shifts that promote tolerance ultimately result in populations harbouring more parasitized individuals. We also find that the opportunity for selection, as indicated by the variance around traits, varied considerably with the environmental treatment. Thus our results suggest two mechanisms that could underlie co-evolutionary hot- and coldspots: spatial variation in tolerance and spatial variation in the opportunity for selection. PMID:21460572

  16. Evolutionary model of the growth and size of firms

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2012-07-01

    The key idea of this model is that firms are the result of an evolutionary process. Based on demand and supply considerations the evolutionary model presented here derives explicitly Gibrat's law of proportionate effects as the result of the competition between products. Applying a preferential attachment mechanism for firms, the theory allows to establish the size distribution of products and firms. Also established are the growth rate and price distribution of consumer goods. Taking into account the characteristic property of human activities to occur in bursts, the model allows also an explanation of the size-variance relationship of the growth rate distribution of products and firms. Further the product life cycle, the learning (experience) curve and the market size in terms of the mean number of firms that can survive in a market are derived. The model also suggests the existence of an invariant of a market as the ratio of total profit to total revenue. The relationship between a neo-classic and an evolutionary view of a market is discussed. The comparison with empirical investigations suggests that the theory is able to describe the main stylized facts concerning the size and growth of firms.

  17. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  18. New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae).

    PubMed

    Cosacov, Andrea; Sérsic, Alicia N; Sosa, Victoria; De-Nova, J Arturo; Nylinder, Stephan; Cocucci, Andrea A

    2009-12-01

    Biogeographical patterns and diversification processes in Andean and Patagonian flora are not yet well understood. Calceolaria is a highly diversified genus of these areas, representing one of the most specialized plant-pollinator systems because flowers produce nonvolatile oils, a very unusual floral reward. Phylogenetic analyses with molecular (ITS and matK) and morphological characters from 103 Calceolaria species were conducted to examine relationships, to understand biogeographic patterns, and to detect evolutionary patterns of floral and ecological characters. Total evidence analysis retrieved three major clades, which strongly correspond to the three previously recognized subgenera, although only subgenus Rosula was retrieved as a monophyletic group. A single historical event explains the expansion from the southern to central Andes, while different parallel evolutionary lines show a northward expansion from the central to northern Andes across the Huancabamba Deflection, an important geographical barrier in northern Peru. Polyploidy, acquisition of elaiophores, and a nototribic pollination mechanism are key aspects of the evolutionary history of Calceolaria. Pollination interactions were more frequently established with Centris than with Chalepogenus oil-collecting bee species. The repeated loss of the oil gland and shifts to pollen as the only reward suggest an evolutionary tendency from highly to moderately specialized pollination systems.

  19. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities.

    PubMed

    Lázaro, Amparo; Hegland, Stein Joar; Totland, Orjan

    2008-08-01

    The pollination syndrome hypothesis has provided a major conceptual framework for how plants and pollinators interact. However, the assumption of specialization in pollination systems and the reliability of floral traits in predicting the main pollinators have been questioned recently. In addition, the relationship between ecological and evolutionary specialization in pollination interactions is still poorly understood. We used data of 62 plant species from three communities across southern Norway to test: (1) the relationships between floral traits and the identity of pollinators, (2) the association between floral traits (evolutionary specialization) and ecological generalization, and (3) the consistency of both relationships across communities. Floral traits significantly affected the identity of pollinators in the three communities in a way consistent with the predictions derived from the pollination syndrome concept. However, hover flies and butterflies visited flowers with different shapes in different communities, which we mainly attribute to among-community variation in pollinator assemblages. Interestingly, ecological generalization depended more on the community-context (i.e. the plant and pollinator assemblages in the communities) than on specific floral traits. While open yellow and white flowers were the most generalist in two communities, they were the most specialist in the alpine community. Our results warn against the use of single measures of ecological generalization to question the pollination syndrome concept, and highlight the importance of community comparisons to assess the pollination syndromes, and to understand the relationships between ecological and evolutionary specialization in plant-pollinator interactions.

  20. Evaluation of Generation Alternation Models in Evolutionary Robotics

    NASA Astrophysics Data System (ADS)

    Oiso, Masashi; Matsumura, Yoshiyuki; Yasuda, Toshiyuki; Ohkura, Kazuhiro

    For efficient implementation of Evolutionary Algorithms (EA) to a desktop grid computing environment, we propose a new generation alternation model called Grid-Oriented-Deletion (GOD) based on comparison with the conventional techniques. In previous research, generation alternation models are generally evaluated by using test functions. However, their exploration performance on the real problems such as Evolutionary Robotics (ER) has not been made very clear yet. Therefore we investigate the relationship between the exploration performance of EA on an ER problem and its generation alternation model. We applied four generation alternation models to the Evolutionary Multi-Robotics (EMR), which is the package-pushing problem to investigate their exploration performance. The results show that GOD is more effective than the other conventional models.

  1. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato

    PubMed Central

    Margos, Gabriele; Vollmer, Stephanie A.; Ogden, Nicholas H.; Fish, Durland

    2011-01-01

    In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria. PMID:21843658

  2. The pipid root.

    PubMed

    Bewick, Adam J; Chain, Frédéric J J; Heled, Joseph; Evans, Ben J

    2012-12-01

    The estimation of phylogenetic relationships is an essential component of understanding evolution. Accurate phylogenetic estimation is difficult, however, when internodes are short and old, when genealogical discordance is common due to large ancestral effective population sizes or ancestral population structure, and when homoplasy is prevalent. Inference of divergence times is also hampered by unknown and uneven rates of evolution, the incomplete fossil record, uncertainty in relationships between fossil and extant lineages, and uncertainty in the age of fossils. Ideally, these challenges can be overcome by developing large "phylogenomic" data sets and by analyzing them with methods that accommodate features of the evolutionary process, such as genealogical discordance, recurrent substitution, recombination, ancestral population structure, gene flow after speciation among sampled and unsampled taxa, and variation in evolutionary rates. In some phylogenetic problems, it is possible to use information that is independent of fossils, such as the geological record, to identify putative triggers for diversification whose associated estimated divergence times can then be compared a posteriori with estimated relationships and ages of fossils. The history of diversification of pipid frog genera Pipa, Hymenochirus, Silurana, and Xenopus, for instance, is characterized by many of these evolutionary and analytical challenges. These frogs diversified dozens of millions of years ago, they have a relatively rich fossil record, their distributions span continental plates with a well characterized geological record of ancient connectivity, and there is considerable disagreement across studies in estimated evolutionary relationships. We used high throughput sequencing and public databases to generate a large phylogenomic data set with which we estimated evolutionary relationships using multilocus coalescence methods. We collected sequence data from Pipa, Hymenochirus, Silurana, and Xenopus and the outgroup taxon Rhinophrynus dorsalis from coding sequence of 113 autosomal regions, averaging ∼300 bp in length (range: 102-1695 bp) and also a portion of the mitochondrial genome. Analysis of these data using multiple approaches recovers strong support for the ((Xenopus, Silurana)(Pipa, Hymenochirus)) topology, and geologically calibrated divergence time estimates that are consistent with estimated ages and phylogenetic affinities of many fossils. These results provide new insights into the biogeography and chronology of pipid diversification during the breakup of Gondwanaland and illustrate how phylogenomic data may be necessary to tackle tough problems in molecular systematics. [Coalescence; gene tree; high-throughout sequencing; lineage sorting; pipid; species tree; Xenopus.].

  3. Trophic state, eutrophication and nutrient criteria in streams.

    PubMed

    Dodds, Walter K

    2007-12-01

    Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.

  4. The organism and the habitation atmosphere

    NASA Technical Reports Server (NTRS)

    Agadzhanyan, N. A.

    1978-01-01

    Experimental data is examined on the study of the influence of the different parameters of the atmosphere on the organism for the purpose of making a physiological determination of the permissible oxygen concentrations in inhabited airtight compartments. The application of high oxygen concentrations for respiration and for medical purposes are considered. Data is presented on the evolution of the atmosphere and of the role of O2 in the process of the evolutionary development of living beings; the influence of an organism of an artificial, high and low oxygen concentration atmospheres; the laws of oxygen permeation into fluid media of the organism; the biological role of inert gases; etc. The relationship between the gas medium of habitation and reactivity of the organism is determined.

  5. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory

    PubMed Central

    Ferriere, Regis; Legendre, Stéphane

    2013-01-01

    Adaptive dynamics theory has been devised to account for feedbacks between ecological and evolutionary processes. Doing so opens new dimensions to and raises new challenges about evolutionary rescue. Adaptive dynamics theory predicts that successive trait substitutions driven by eco-evolutionary feedbacks can gradually erode population size or growth rate, thus potentially raising the extinction risk. Even a single trait substitution can suffice to degrade population viability drastically at once and cause ‘evolutionary suicide’. In a changing environment, a population may track a viable evolutionary attractor that leads to evolutionary suicide, a phenomenon called ‘evolutionary trapping’. Evolutionary trapping and suicide are commonly observed in adaptive dynamics models in which the smooth variation of traits causes catastrophic changes in ecological state. In the face of trapping and suicide, evolutionary rescue requires that the population overcome evolutionary threats generated by the adaptive process itself. Evolutionary repellors play an important role in determining how variation in environmental conditions correlates with the occurrence of evolutionary trapping and suicide, and what evolutionary pathways rescue may follow. In contrast with standard predictions of evolutionary rescue theory, low genetic variation may attenuate the threat of evolutionary suicide and small population sizes may facilitate escape from evolutionary traps. PMID:23209163

  6. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.

  7. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae?

    PubMed Central

    Marek, Paul E.

    2017-01-01

    For the past several centuries, millipede taxonomists have used the morphology of male copulatory structures (modified legs called gonopods), which are strongly variable and suggestive of species-level differences, as a source to understand taxon relationships. Millipedes in the family Xystodesmidae are blind, dispersal-limited and have narrow habitat requirements. Therefore, geographical proximity may instead be a better predictor of evolutionary relationship than morphology, especially since gonopodal anatomy is extremely divergent and similarities may be masked by evolutionary convergence. Here we provide a phylogenetics-based test of the power of morphological versus geographical character sets for resolving phylogenetic relationships in xystodesmid millipedes. Molecular data from 90 species-group taxa in the family were included in a six-gene phylogenetic analysis to provide the basis for comparing trees generated from these alternative character sets. The molecular phylogeny was compared to topologies representing three hypotheses: (1) a prior classification formulated using morphological and geographical data, (2) hierarchical groupings derived from Euclidean geographical distance, and (3) one based solely on morphological data. Euclidean geographical distance was not found to be a better predictor of evolutionary relationship than the prior classification, the latter of which was the most similar to the molecular topology. However, all three of the alternative topologies were highly divergent (Bayes factor >10) from the molecular topology, with the tree inferred exclusively from morphology being the most divergent. The results of this analysis show that a high degree of morphological convergence from substantial gonopod shape divergence generated spurious phylogenetic relationships. These results indicate the impact that a high degree of morphological homoplasy may have had on prior treatments of the family. Using the results of our phylogenetic analysis, we make several changes to the classification of the family, including transferring the rare state-threatened species Sigmoria whiteheadi Shelley, 1986 to the genus Apheloria Chamberlin, 1921—a relationship not readily apparent based on morphology alone. We show that while gonopod differences are a premier source of taxonomic characters to diagnose species pairwise, the traits should be viewed critically as taxonomic features uniting higher levels. PMID:29038750

  8. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements

    PubMed Central

    Prangishvili, David

    2016-01-01

    ABSTRACT Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. IMPORTANCE Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. PMID:27681128

  9. Aggressive mimicry coexists with mutualism in an aphid.

    PubMed

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-27

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant-aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism-antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid-ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation.

  10. Aggressive mimicry coexists with mutualism in an aphid

    PubMed Central

    Salazar, Adrián; Fürstenau, Benjamin; Quero, Carmen; Pérez-Hidalgo, Nicolás; Carazo, Pau; Font, Enrique; Martínez-Torres, David

    2015-01-01

    Understanding the evolutionary transition from interspecific exploitation to cooperation is a major challenge in evolutionary biology. Ant–aphid relationships represent an ideal system to this end because they encompass a coevolutionary continuum of interactions ranging from mutualism to antagonism. In this study, we report an unprecedented interaction along this continuum: aggressive mimicry in aphids. We show that two morphs clonally produced by the aphid Paracletus cimiciformis during its root-dwelling phase establish relationships with ants at opposite sides of the mutualism–antagonism continuum. Although one of these morphs exhibits the conventional trophobiotic (mutualistic) relationship with ants of the genus Tetramorium, aphids of the alternative morph are transported by the ants to their brood chamber and cared for as if they were true ant larvae. Gas chromatography-mass spectrometry analyses reveal that the innate cuticular hydrocarbon profile of the mimic morph resembles the profile of ant larvae more than that of the alternative, genetically identical nonmimic morph. Furthermore, we show that, once in the brood chamber, mimic aphids suck on ant larva hemolymph. These results not only add aphids to the limited list of arthropods known to biosynthesize the cuticular chemicals of their deceived hosts to exploit their resources but describe a remarkable case of plastic aggressive mimicry. The present work adds a previously unidentified dimension to the classical textbook paradigm of aphid–ant relationships by showcasing a complex system at the evolutionary interface between cooperation and exploitation. PMID:25583474

  11. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    PubMed

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  12. Ecological and phylogenetic variability in the spinalis muscle of snakes.

    PubMed

    Tingle, J L; Gartner, G E A; Jayne, B C; Garland, T

    2017-11-01

    Understanding the origin and maintenance of functionally important subordinate traits is a major goal of evolutionary physiologists and ecomorphologists. Within the confines of a limbless body plan, snakes are diverse in terms of body size and ecology, but we know little about the functional traits that underlie this diversity. We used a phylogenetically diverse group of 131 snake species to examine associations between habitat use, sidewinding locomotion and constriction behaviour with the number of body vertebrae spanned by a single segment of the spinalis muscle, with total numbers of body vertebrae used as a covariate in statistical analyses. We compared models with combinations of these predictors to determine which best fit the data among all species and for the advanced snakes only (N = 114). We used both ordinary least-squares models and phylogenetic models in which the residuals were modelled as evolving by the Ornstein-Uhlenbeck process. Snakes with greater numbers of vertebrae tended to have spinalis muscles that spanned more vertebrae. Habitat effects dominated models for analyses of all species and advanced snakes only, with the spinalis length spanning more vertebrae in arboreal species and fewer vertebrae in aquatic and burrowing species. Sidewinding specialists had shorter muscle lengths than nonspecialists. The relationship between prey constriction and spinalis length was less clear. Differences among clades were also strong when considering all species, but not for advanced snakes alone. Overall, these results suggest that muscle morphology may have played a key role in the adaptive radiation of snakes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  13. Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin

    PubMed Central

    Randall, Thomas A.; Perera, Lalith; London, Robert E.; Mueller, Geoffrey A.

    2013-01-01

    The major allergen domain (MA) is widely distributed in insects. The crystal structure of a single Bla g 1 MA revealed a novel protein fold in which the fundamental structure was a duplex of two subsequences (monomers), which had diverged over time. This suggested that the evolutionary origin of the MA structure may have been a homodimer of this smaller subsequence. Using publicly available genomic data, the distribution of the basic unit of this class of proteins was determined to better understand its evolutionary history. The duplication and divergence is examined at three distinct levels of resolution: 1) within the orders Diptera and Hymenoptera, 2) within one genus Drosophila, and 3) within one species Aedes aegypti. Within the family Culicidae, we have found two separate occurrences of monomers as independent genes. The organization of the gene family in A. aegypti shows a common evolutionary origin for its monomer and several closely related MAs. Molecular modeling of the A. aegypti monomer with the unique Bla g 1 fold confirms the distant evolutionary relationship and supports the feasibility of homodimer formation from a single monomer. RNAseq data for A. aegypti confirms that the monomer is expressed in the mosquito similar to other A. aegypti MAs after a blood meal. Together, these data support the contention that the detected monomer shares similar functional characteristics to related MAs in other insects. An extensive search for this domain outside of Insecta confirms that the MAs are restricted to insects. PMID:24253356

  14. Simulating natural selection in landscape genetics

    Treesearch

    E. L. Landguth; S. A. Cushman; N. Johnson

    2012-01-01

    Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...

  15. From philosophy to science (to natural philosophy): evolutionary developmental perspectives.

    PubMed

    Love, Alan C

    2008-03-01

    This paper focuses on abstraction as a mode of reasoning that facilitates a productive relationship between philosophy and science. Using examples from evolutionary developmental biology, I argue that there are two areas where abstraction can be relevant to science: reasoning explication and problem clarification. The value of abstraction is characterized in terms of methodology (modeling or data gathering) and epistemology (explanatory evaluation or data interpretation).

  16. Lifemap: Exploring the Entire Tree of Life.

    PubMed

    de Vienne, Damien M

    2016-12-01

    The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.

  17. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    PubMed

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism.

    PubMed

    Malé, P-J G; Leroy, C; Humblot, P; Dejean, A; Quilichini, A; Orivel, J

    2016-12-01

    Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning.

    PubMed

    Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R

    2016-09-01

    Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.

  20. Phylogenetic relationships and divergence dates of softshell turtles (Testudines: Trionychidae) inferred from complete mitochondrial genomes.

    PubMed

    Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L

    2017-05-01

    The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    PubMed

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  2. Xylanase II from an alkaliphilic thermophilic Bacillus with a distinctly different structure from other xylanases: evolutionary relationship to alkaliphilic xylanases.

    PubMed

    Kulkarni, N; Lakshmikumaran, M; Rao, M

    1999-10-05

    A 1.0 kilobase gene fragment from the genomic DNA of an alkaliphilic thermophilic Bacillus was found to code for a functional xylanase (XynII). The complete nucleotide sequence including the structural gene and the 5' and 3' flanking sequences of the xylanase gene have been determined. An open reading frame starting from ATG initiator codon comprising 402 nucleotides gave a preprotein of 133 amino acids of calculated molecular mass 14.090 kDa. The occurrence of three potential N-glycosylation sites in XynII gene is a unique feature for a gene of bacterial origin. The stop codon was followed by hairpin loop structures indicating the presence of transcription termination signals. The secondary structure analysis of XynII predicted that the polypeptide was primarily formed of beta-sheets. XynII appeared to be a member of family G/11 of xylanases based on its molecular weight and basic pI (8.0). However, sequence homology revealed similar identity with families 10 and 11 of xylanases. The conserved triad (Val-Val-Xaa, where Xaa is Asn or Asp) was identified only in the xylanases from alkaliphilic organisms. Our results implicate for the first time the concept of convergent evolution for XynII and provide a basis for research in evolutionary relationship among the xylanases from alkaliphilic and neutrophilic organisms. Copyright 1999 Academic Press.

  3. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family

    PubMed Central

    Bevans, Carville G.; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant α-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades. PMID:26230708

  4. Karyotype morphology suggests that the Nyctibius griseus (Gmelin, 1789) carries an ancestral ZW-chromosome pair to the order Caprimulgiformes (Aves)

    PubMed Central

    Nieto, Leonardo Martin; Kretschmer, Rafael; Ledesma, Mario Angel; Garnero, Analía Del Valle; Gunski, Ricardo José

    2012-01-01

    Abstract Studies of karyotypes have been revealing important information on the taxonomic relationships and evolutionary patterns in various groups of birds. However, the order Caprimulgiformes is one of the least known in terms of its cytotaxonomy. So far, there are no cytogenetic data in the literature on birds belonging to 3 of 5 families of this order -Nyctibiidae, Steatornithidae and Aegothelidae. For this reason, the aim of our study was to describe the karyotype of Nyctibius griseus (Gmelin, 1789) (Aves, Nyctibiidae, Caprimulgiformes) and contribute with new data that could help to clarify the evolutionary relationships in this group. Bone marrow was cultured directly to obtain material for the chromosome study. C-banding was used to visualize the constitutive heterochromatin and Ag-NOR-banding to reveal nucleolus organizer regions. The diploid number observed was 2n=86±. Using sequential Giemsa/C-banding staining, we determined that the W chromosome was entirely C-band positive with the two most prominent markers in the interstitial and distal regions of the long arm. The nucleolus organizer regions showed a typical location in a pair of microchromosomes that exhibited Ag-NOR.The results obtained for Nyctibius griseus suggest that, of all the species studied in the references cited, it has the most ancestral sex chromosome composition of the order Caprimulgiformes. PMID:24260678

  5. LinkFinder: An expert system that constructs phylogenic trees

    NASA Technical Reports Server (NTRS)

    Inglehart, James; Nelson, Peter C.

    1991-01-01

    An expert system has been developed using the C Language Integrated Production System (CLIPS) that automates the process of constructing DNA sequence based phylogenies (trees or lineages) that indicate evolutionary relationships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It measures variations between the sequences, selects appropriate proportionality constants, and estimates the time that has passed since each pair of organisms diverged from a common ancestor. It then designs and outputs a phylogenic map summarizing these results. LinkFinder can find genetic relationships between different species, and between individuals of the same species, including humans. It was designed to take advantage of the vast amount of sequence data being produced by the Genome Project, and should be of value to evolution theorists who wish to utilize this data, but who have no formal training in molecular genetics. Evolutionary theory holds that distinct organisms carrying a common gene inherited that gene from a common ancestor. Homologous genes vary from individual to individual and species to species, and the amount of variation is now believed to be directly proportional to the time that has passed since divergence from a common ancestor. The proportionality constant must be determined experimentally; it varies considerably with the types of organisms and DNA molecules under study. Given an appropriate constant, and the variation between two DNA sequences, a simple linear equation gives the divergence time.

  6. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    PubMed

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  7. The Implications of the Cognitive Sciences for the Relation Between Religion and Science Education: The Case of Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-08-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive perspective on how students manage to reconcile evolutionary theory with their religious beliefs. We underwrite the claim developed by cognitive scientists and anthropologists that religion is natural because it taps into people's intuitive understanding of the natural world which is constrained by essentialist, teleological and intentional biases. After contrasting the naturalness of religion with the unnaturalness of science, we discuss the difficulties cognitive and developmental scientists have identified in learning and accepting evolutionary theory. We indicate how religious beliefs impede students' understanding and acceptance of evolutionary theory. We explore a number of options available to students for reconciling an informed understanding of evolutionary theory with their religious beliefs. To conclude, we discuss the implications of our account for science and biology teachers.

  8. Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective.

    PubMed

    Inoue, Jun G; Miya, Masaki; Lam, Kevin; Tay, Boon-Hui; Danks, Janine A; Bell, Justin; Walker, Terrence I; Venkatesh, Byrappa

    2010-11-01

    With our increasing ability for generating whole-genome sequences, comparative analysis of whole genomes has become a powerful tool for understanding the structure, function, and evolutionary history of human and other vertebrate genomes. By virtue of their position basal to bony vertebrates, cartilaginous fishes (class Chondrichthyes) are a valuable outgroup in comparative studies of vertebrates. Recently, a holocephalan cartilaginous fish, the elephant shark, Callorhinchus milii (Subclass Holocephali: Order Chimaeriformes), has been proposed as a model genome, and low-coverage sequence of its genome has been generated. Despite such an increasing interest, the evolutionary history of the modern holocephalans-a previously successful and diverse group but represented by only 39 extant species-and their relationship with elasmobranchs and other jawed vertebrates has been poorly documented largely owing to a lack of well-preserved fossil materials after the end-Permian about 250 Ma. In this study, we assembled the whole mitogenome sequences for eight representatives from all the three families of the modern holocephalans and investigated their phylogenetic relationships and evolutionary history. Unambiguously aligned sequences from these holocephalans together with 17 other vertebrates (9,409 nt positions excluding entire third codon positions) were subjected to partitioned maximum likelihood analysis. The resulting tree strongly supported a single origin of the modern holocephalans and their sister-group relationship with elasmobranchs. The mitogenomic tree recovered the most basal callorhinchids within the chimaeriforms, which is sister to a clade comprising the remaining two families (rhinochimaerids and chimaerids). The timetree derived from a relaxed molecular clock Bayesian method suggests that the holocephalans originated in the Silurian about 420 Ma, having survived from the end-Permian (250 Ma) mass extinction and undergoing familial diversifications during the late Jurassic to early Cretaceous (170-120 Ma). This postulated evolutionary scenario agrees well with that based on the paleontological observations.

  9. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes

    PubMed Central

    2017-01-01

    Rapid diversification often involves complex histories of gene flow that leave variable and conflicting signatures of evolutionary relatedness across the genome. Identifying the extent and source of variation in these evolutionary relationships can provide insight into the evolutionary mechanisms involved in rapid radiations. Here we compare the discordant evolutionary relationships associated with species phenotypes across 42 whole genomes from a sympatric adaptive radiation of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas and several outgroup pupfish species in order to understand the rarity of these trophic specialists within the larger radiation of Cyprinodon. 82% of the genome depicts close evolutionary relationships among the San Salvador Island species reflecting their geographic proximity, but the vast majority of variants fixed between specialist species lie in regions with discordant topologies. Top candidate adaptive introgression regions include signatures of selective sweeps and adaptive introgression of genetic variation from a single population in the northwestern Bahamas into each of the specialist species. Hard selective sweeps of genetic variation on San Salvador Island contributed 5 times more to speciation of trophic specialists than adaptive introgression of Caribbean genetic variation; however, four of the 11 introgressed regions came from a single distant island and were associated with the primary axis of oral jaw divergence within the radiation. For example, standing variation in a proto-oncogene (ski) known to have effects on jaw size introgressed into one San Salvador Island specialist from an island 300 km away approximately 10 kya. The complex emerging picture of the origins of adaptive radiation on San Salvador Island indicates that multiple sources of genetic variation contributed to the adaptive phenotypes of novel trophic specialists on the island. Our findings suggest that a suite of factors, including rare adaptive introgression, may be necessary for adaptive radiation in addition to ecological opportunity. PMID:28796803

  10. A continuum model for damage evolution in laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, D. C.; Allen, D. H.; Harris, C. E.

    1991-01-01

    The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.

  11. Using Chou's general PseAAC to analyze the evolutionary relationship of receptor associated proteins (RAP) with various folding patterns of protein domains.

    PubMed

    Muthu Krishnan, S

    2018-05-14

    The receptor-associated protein (RAP) is an inhibitor of endocytic receptors that belong to the lipoprotein receptor gene family. In this study, a computational approach was tried to find the evolutionarily related fold of the RAP proteins. Through the structural and sequence-based analysis, found various protein folds that are very close to the RAP folds. Remote homolog datasets were used potentially to develop a different support vector machine (SVM) methods to recognize the homologous RAP fold. This study helps in understanding the relationship of RAP homologs folds based on the structure, function and evolutionary history. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae).

    PubMed

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns.

  13. The plastid genomes of flowering plants.

    PubMed

    Ruhlman, Tracey A; Jansen, Robert K

    2014-01-01

    The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.

  14. Constructing phylogenetic trees using interacting pathways.

    PubMed

    Wan, Peng; Che, Dongsheng

    2013-01-01

    Phylogenetic trees are used to represent evolutionary relationships among biological species or organisms. The construction of phylogenetic trees is based on the similarities or differences of their physical or genetic features. Traditional approaches of constructing phylogenetic trees mainly focus on physical features. The recent advancement of high-throughput technologies has led to accumulation of huge amounts of biological data, which in turn changed the way of biological studies in various aspects. In this paper, we report our approach of building phylogenetic trees using the information of interacting pathways. We have applied hierarchical clustering on two domains of organisms-eukaryotes and prokaryotes. Our preliminary results have shown the effectiveness of using the interacting pathways in revealing evolutionary relationships.

  15. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae)

    PubMed Central

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Abstract Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns. PMID:29674904

  16. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees.

    PubMed

    DeBlasio, Dan F; Wisecaver, Jennifer H

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  17. Let's get serious: communicating commitment in romantic relationships.

    PubMed

    Ackerman, Joshua M; Griskevicius, Vladas; Li, Norman P

    2011-06-01

    Are men or women more likely to confess love first in romantic relationships? And how do men and women feel when their partners say "I love you"? An evolutionary-economics perspective contends that women and men incur different potential costs and gain different potential benefits from confessing love. Across 6 studies testing current and former romantic relationships, we found that although people think that women are the first to confess love and feel happier when they receive such confessions, it is actually men who confess love first and feel happier when receiving confessions. Consistent with predictions from our model, additional studies have shown that men's and women's reactions to love confessions differ in important ways depending on whether the couple has engaged in sexual activity. These studies have demonstrated that saying and hearing "I love you" has different meanings depending on who is doing the confessing and when the confession is being made. Beyond romantic relationships, an evolutionary-economics perspective suggests that displays of commitment in other types of relationships--and reactions to these displays--will be influenced by specific, functional biases. 2011 APA, all rights reserved

  18. Network Analysis of Plasmidomes: The Azospirillum brasilense Sp245 Case

    PubMed Central

    Fondi, Marco

    2014-01-01

    Azospirillum brasilense is a nitrogen-fixing bacterium living in association with plant roots. The genome of the strain Sp245, isolated in Brazil from wheat roots, consists of one chromosome and six plasmids. In this work, the A. brasilense Sp245 plasmids were analyzed in order to shed some light on the evolutionary pathways they followed over time. To this purpose, a similarity network approach was applied in order to identify the evolutionary relationships among all the A. brasilense plasmids encoded proteins; in this context a computational pipeline specifically devoted to the analysis and the visualization of the network-like evolutionary relationships among different plasmids molecules was developed. This information was supplemented with a detailed (in silico) functional characterization of both the connected (i.e., sharing homology with other sequences in the dataset) and the unconnected (i.e., not sharing homology) components of the network. Furthermore, the most likely source organism for each of the genes encoded by A. brasilense plasmids was checked, allowing the identification of possible trends of gene loss/gain in this microorganism. Data obtained provided a detailed description of the evolutionary landscape of the plasmids of A. brasilense Sp245, suggesting some of the molecular mechanisms responsible for the present-day structure of these molecules. PMID:25610702

  19. Evolutionary relationships of flying foxes (genus Pteropus) in the Philippines inferred from DNA sequences of cytochrome b gene.

    PubMed

    Bastian, S T; Tanaka, K; Anunciado, R V P; Natural, N G; Sumalde, A C; Namikawa, T

    2002-04-01

    Six flying fox species, genus Pteropus (four from the Philippines) were investigated using complete cytochrome b gene sequences (1140 bp) to infer their evolutionary relationships. The DNA sequences generated via polymerase chain reaction were analyzed using the neighbor-joining, parsimony, and maximum likelihood methods. We estimated that the first evolutionary event among these Pteropus species occurred approximately 13.90 +/- 1.49 MYA. Within this short period of evolutionary time we further hypothesized that the ancestors of the flying foxes found in the Philippines experienced a subsequent diversification forming two clusters in the topology. The first cluster is composed of P. pumilus (Philippine endemic), P. speciosus (restricted in western Mindanao) with P. scapulatus, while the second one comprised P. vampyrus and P. dasymallus species based on the analysis from first and second codon positions. Consistently, all phylogenetic analyses divulged close association of P. dasymallus with P. vampyrus contradicting the previous report categorizing P. dasymallus under subniger species group with P. pumilus. P. speciosus, and P. hypomelanus. The Philippine endemic species (P. pumilus) is closely linked with P. speciosus. The representative samples of P. vampyrus showed a large genetic distance of 1.87%. The large genetic distance between P. dasymallus and P. hypomelanus, P. pumilus and P. speciosus denotes a distinct species group.

  20. A Cross-Cultural Comparison of Korean and American Science Teachers' Views of Evolution and the Nature of Science

    NASA Astrophysics Data System (ADS)

    Kim, Sun Young; Nehm, Ross H.

    2011-01-01

    Despite a few international comparisons of the evolutionary beliefs of the general public, comparatively less research has focused on science teachers. Cross-cultural studies offer profitable opportunities for exploring the interactions among knowledge and belief variables in regard to evolution in different socio-cultural contexts. We investigated the evolutionary worldviews of pre-service science teachers from Asia (specifically South Korea), a region often excluded from international comparisons. We compared Korean and American science teachers': (1) understandings of evolution and the nature of science, and (2) acceptance of evolution in order to elucidate how knowledge and belief relationships are manifested in different cultural contexts. We found that Korean science teachers exhibited 'moderate' evolutionary acceptance levels comparable to or lower than American science teacher samples. Gender was significantly related to Korean teachers' evolution content knowledge and acceptance of evolution, with female Christian biology teachers displaying the lowest values on all measures. Korean science teachers' understandings of nature of science were significantly related to their acceptance and understanding of evolution; this relationship appears to transcend cultural boundaries. Our new data on Korean teachers, combined with studies from more than 20 other nations, expose the global nature of science teacher ambivalence or antipathy toward evolutionary knowledge.

  1. Can fat explain the human brain's big bang evolution?-Horrobin's leads for comparative and functional genomics.

    PubMed

    Erren, T C; Erren, M

    2004-04-01

    When David Horrobin suggested that phospholipid and fatty acid metabolism played a major role in human evolution, his 'fat utilization hypothesis' unified intriguing work from paleoanthropology, evolutionary biology, genetic and nervous system research in a novel and coherent lipid-related context. Interestingly, unlike most other evolutionary concepts, the hypothesis allows specific predictions which can be empirically tested in the near future. This paper summarizes some of Horrobin's intriguing propositions and suggests as to how approaches of comparative genomics published in Cell, Nature, Science and elsewhere since 1997 may be used to examine his evolutionary hypothesis. Indeed, systematic investigations of the genomic clock in the species' mitochondrial DNA, the Y and autosomal chromosomes as evidence of evolutionary relationships and distinctions can help to scrutinize associated predictions for their validity, namely that key mutations which differentiate us from Neanderthals and from great apes are in the genes coding for proteins which regulate fat metabolism, and particularly the phospholipid metabolism of the synapses of the brain. It is concluded that beyond clues to humans' relationships with living primates and to the Neanderthals' cognitive performance and their disappearance, the suggested molecular clock analyses may provide crucial insights into the biochemical evolution-and means of possible manipulation-of our brain.

  2. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    PubMed

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Zhenyu; Wang, Song; Fan, Zhou; Zhou, Xu; Wu, Jianghua; Jiang, Zhaoji; Chen, Jiansheng

    2010-10-01

    M31 globular cluster B379 is the first extragalactic cluster whose age was determined by main-sequence photometry. In the main-sequence photometric method, the age of a cluster is obtained by fitting its color-magnitude diagram (CMD) with stellar evolutionary models. However, different stellar evolutionary models use different parameters of stellar evolution, such as range of stellar masses, different opacities and equations of state, and different recipes, and so on. So, it is interesting to check whether different stellar evolutionary models can give consistent results for the same cluster. Brown et al. constrained the age of B379 by comparing its CMD with isochrones of the 2006 VandenBerg models. Using SSP models of Bruzual & Charlot and its multiphotometry, ZMa et al. independently determined the age of B379, which is in good agreement with the determination of Brown et al. The models of Bruzual & Charlot are calculated based on the Padova evolutionary tracks. It is necessary to check whether the age of B379 as determined based on the Padova evolutionary tracks is in agreement with the determination of Brown et al.. In this article, we redetermine the age of B379 using isochrones of the Padova stellar evolutionary models. In addition, the metal abundance, the distance modulus, and the reddening value for B379 are reported. The results obtained are consistent with the previous determinations, which include the age obtained by Brown et al. This article thus confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones; i.e., the comparison between the results of Brown et al. and Ma et al. is meaningful. The results reported in this article of values found for B379 are: metallicity [M/H] = log(Z/Z ⊙) = -0.325, age τ = 11.0 ± 1.5 Gyr, reddening E(B - V) = 0.08, and distance modulus (m - M)0 = 24.44 ± 0.10.

  4. Evolutionary biochemistry: revealing the historical and physical causes of protein properties

    PubMed Central

    Harms, Michael J.; Thornton, Joseph W.

    2014-01-01

    The repertoire of proteins and nucleic acids in the living world is determined by evolution; their properties are determined by the laws of physics and chemistry. Explanations of these two kinds of causality — the purviews of evolutionary biology and biochemistry, respectively — are typically pursued in isolation, but many fundamental questions fall squarely at the interface of fields. Here we articulate the paradigm of evolutionary biochemistry, which aims to dissect the physical mechanisms and evolutionary processes by which biological molecules diversified and to reveal how their physical architecture facilitates and constrains their evolution. We show how an integration of evolution with biochemistry moves us towards a more complete understanding of why biological molecules have the properties that they do. PMID:23864121

  5. Assessing the determinants of evolutionary rates in the presence of noise.

    PubMed

    Plotkin, Joshua B; Fraser, Hunter B

    2007-05-01

    Although protein sequences are known to evolve at vastly different rates, little is known about what determines their rate of evolution. However, a recent study using principal component regression (PCR) has concluded that evolutionary rates in yeast are primarily governed by a single determinant related to translation frequency. Here, we demonstrate that noise in biological data can confound PCRs, leading to spurious conclusions. When equalizing noise levels across 7 predictor variables used in previous studies, we find no evidence that protein evolution is dominated by a single determinant. Our results indicate that a variety of factors--including expression level, gene dispensability, and protein-protein interactions--may independently affect evolutionary rates in yeast. More accurate measurements or more sophisticated statistical techniques will be required to determine which one, if any, of these factors dominates protein evolution.

  6. Long-Term Evolution of the Luteoviridae: Time Scale and Mode of Virus Speciation▿ †

    PubMed Central

    Pagán, Israel; Holmes, Edward C.

    2010-01-01

    Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature. PMID:20375155

  7. Phylogenomics of palearctic Formica species suggests a single origin of temporary parasitism and gives insights to the evolutionary pathway toward slave-making behaviour.

    PubMed

    Romiguier, Jonathan; Rolland, Jonathan; Morandin, Claire; Keller, Laurent

    2018-03-28

    The ants of the Formica genus are classical model species in evolutionary biology. In particular, Darwin used Formica as model species to better understand the evolution of slave-making, a parasitic behaviour where workers of another species are stolen to exploit their workforce. In his book "On the Origin of Species" (1859), Darwin first hypothesized that slave-making behaviour in Formica evolved in incremental steps from a free-living ancestor. The absence of a well-resolved phylogenetic tree of the genus prevent an assessment of whether relationships among Formica subgenera are compatible with this scenario. In this study, we resolve the relationships among the 4 palearctic Formica subgenera (Formica str. s., Coptoformica, Raptiformica and Serviformica) using a phylogenomic dataset of 945 genes for 16 species. We provide a reference tree resolving the relationships among the main Formica subgenera with high bootstrap supports. The branching order of our tree suggests that the free-living lifestyle is ancestral in the Formica genus and that parasitic colony founding could have evolved a single time, probably acting as a pre-adaptation to slave-making behaviour. This phylogenetic tree provides a solid backbone for future evolutionary studies in the Formica genus and slave-making behaviour.

  8. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism.

    PubMed Central

    Fernandes, A P; Nelson, K; Beverley, S M

    1993-01-01

    Molecular evolutionary relationships within the protozoan order Kinetoplastida were deduced from comparisons of the nuclear small and large subunit ribosomal RNA (rRNA) gene sequences. These studies show that relationships among the trypanosomatid protozoans differ from those previously proposed from studies of organismal characteristics or mitochondrial rRNAs. The genera Leishmania, Endotrypanum, Leptomonas, and Crithidia form a closely related group, which shows progressively more distant relationships to Phytomonas and Blastocrithidia, Trypanosoma cruzi, and lastly Trypanosoma brucei. The rooting of the trypanosomatid tree was accomplished by using Bodo caudatus (family Bodonidae) as an outgroup, a status confirmed by molecular comparisons with other eukaryotes. The nuclear rRNA tree agrees well with data obtained from comparisons of other nuclear genes. Differences with the proposed mitochondrial rRNA tree probably reflect the lack of a suitable outgroup for this tree, as the topologies are otherwise similar. Small subunit rRNA divergences within the trypanosomatids are large, approaching those among plants and animals, which underscores the evolutionary antiquity of the group. Analysis of the distribution of different parasitic life-styles of these species in conjunction with a probable timing of evolutionary divergences suggests that vertebrate parasitism arose multiple times in the trypanosomatids. PMID:8265597

  9. Evolutionary relationships among food habit, loss of flight, and reproductive traits: life-history evolution in the Silphinae (Coleoptera: Silphidae).

    PubMed

    Ikeda, Hiroshi; Kagaya, Takashi; Kubota, Kohei; Abe, Toshio

    2008-08-01

    Flightlessness in insects is generally thought to have evolved due to changes in habitat environment or habitat isolation. Loss of flight may have changed reproductive traits in insects, but very few attempts have been made to assess evolutionary relationships between flight and reproductive traits in a group of related species. We elucidated the evolutionary history of flight loss and its relationship to evolution in food habit, relative reproductive investment, and egg size in the Silphinae (Coleoptera: Silphidae). Most flight-capable species in this group feed primarily on vertebrate carcasses, whereas flightless or flight-dimorphic species feed primarily on soil invertebrates. Ancestral state reconstruction based on our newly constructed molecular phylogenetic tree implied that flight muscle degeneration occurred twice in association with food habit changes from necrophagy to predatory, suggesting that flight loss could evolve independently from changes in the environmental circumstances per se. We found that total egg production increased with flight loss. We also found that egg size increased with decreased egg number following food habit changes in the lineage leading to predaceous species, suggesting that selection for larger larvae intensified with the food habit change. This correlated evolution has shaped diverse life-history patterns among extant species of Silphinae.

  10. Are some chromosomes particularly good at sex? Insights from amniotes.

    PubMed

    O'Meally, Denis; Ezaz, Tariq; Georges, Arthur; Sarre, Stephen D; Graves, Jennifer A Marshall

    2012-01-01

    Several recent studies have produced comparative maps of genes on amniote sex chromosomes, revealing homology of gene content and arrangement across lineages as divergent as mammals and lizards. For example, the chicken Z chromosome, which shares homology with the sex chromosomes of all birds, monotremes, and a gecko, is a striking example of stability of genome organization and retention, or independent acquisition, of function in sex determination. In other lineages, such as snakes and therian mammals, well conserved but independently evolved sex chromosome systems have arisen. Among lizards, novel sex chromosomes appear frequently, even in congeneric species. Here, we review recent gene mapping data, examine the evolutionary relationships of amniote sex chromosomes and argue that gene content can predispose some chromosomes to a specialized role in sex determination.

  11. Pedagogy as influencing nursing students' essentialized understanding of culture.

    PubMed

    Gregory, David; Harrowing, Jean; Lee, Bonnie; Doolittle, Lisa; O'Sullivan, Patrick S

    2010-01-01

    In this qualitative study, we explored how students understood "culture." Participants defined culture and wrote narratives regarding specific cultural encounters. The sample comprised both nursing (n=14) and non-nursing (n=8) students to allow for comparison groups. Content analysis of the narratives revealed two broad paradigms of cultural understanding: essentialist and constructivist. Essentialist narratives comprised four themes: determinism (culture defied individual resistance); relativism (the possibility of making value judgments disappeared); Othering (culture was equated to exotica, and emphasized difference); and, reductionism (personhood was eclipsed by culture). In contrast, the constructivist narratives were characterized by influence (non-determinism), dynamism (culture was dynamic and evolutionary); and, relationship-building. The unintended negative consequences of essentialist notions of culture were revealed in the nursing students' narratives. Pedagogy is implicated in nursing students' essentialized understanding of culture.

  12. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.

    PubMed

    Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane

    2016-05-21

    The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.

  13. Evolutionary Game Analysis of Government Regulation and Enterprise Emission from the Perspective of Environmental Tax

    NASA Astrophysics Data System (ADS)

    Mai, Yazong

    2017-12-01

    In the context of the upcoming implementation of the environmental tax policy, there is a need for a focus on the relationship between government regulation and corporate emissions. To achieve the real effect of environmental tax policy, government need to regulate the illegal emissions of enterprises. Based on the hypothesis of bounded rationality, this paper analyses the strategic set of government regulators and polluting enterprises in the implementation of environmental tax policy. By using the evolutionary game model, the utility function and payoff matrix of the both sides are constructed, and the evolutionary analysis and strategy adjustment of the environmental governance target and the actual profit of the stakeholders are carried out. Thus, the wrong behaviours could be corrected so that the equilibrium of the evolutionary system can be achieved gradually, which could also get the evolutionary stable strategies of the government and the polluting enterprises in the implementation of environmental tax policy.

  14. An evolutionary game approach for determination of the structural conflicts in signed networks

    PubMed Central

    Tan, Shaolin; Lü, Jinhu

    2016-01-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks. PMID:26915581

  15. Phylogenomic analyses of nuclear genes reveal the evolutionary relationships within the BEP clade and the evidence of positive selection in Poaceae.

    PubMed

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family.

  16. Phylogenomic Analyses of Nuclear Genes Reveal the Evolutionary Relationships within the BEP Clade and the Evidence of Positive Selection in Poaceae

    PubMed Central

    Zhao, Lei; Zhang, Ning; Ma, Peng-Fei; Liu, Qi; Li, De-Zhu; Guo, Zhen-Hua

    2013-01-01

    BEP clade of the grass family (Poaceae) is composed of three subfamilies, i.e. Bambusoideae, Ehrhartoideae, and Pooideae. Controversies on the phylogenetic relationships among three subfamilies still persist in spite of great efforts. However, previous evidence was mainly provided from plastid genes with only a few nuclear genes utilized. Given different evolutionary histories recorded by plastid and nuclear genes, it is indispensable to uncover their relationships based on nuclear genes. Here, eleven species with whole-sequenced genome and six species with transcriptomic data were included in this study. A total of 121 one-to-one orthologous groups (OGs) were identified and phylogenetic trees were reconstructed by different tree-building methods. Genes which might have undergone positive selection and played important roles in adaptive evolution were also investigated from 314 and 173 one-to-one OGs in two bamboo species and 14 grass species, respectively. Our results support the ((B, P) E) topology with high supporting values. Besides, our findings also indicate that 24 and nine orthologs with statistically significant evidence of positive selection are mainly involved in abiotic and biotic stress response, reproduction and development, plant metabolism and enzyme etc. from two bamboo species and 14 grass species, respectively. In summary, this study demonstrates the power of phylogenomic approach to shed lights on the evolutionary relationships within the BEP clade, and offers valuable insights into adaptive evolution of the grass family. PMID:23734211

  17. Rapid radiation events in the family Ursidae indicated by likelihood phylogenetic estimation from multiple fragments of mtDNA.

    PubMed

    Waits, L P; Sullivan, J; O'Brien, S J; Ward, R H

    1999-10-01

    The bear family (Ursidae) presents a number of phylogenetic ambiguities as the evolutionary relationships of the six youngest members (ursine bears) are largely unresolved. Recent mitochondrial DNA analyses have produced conflicting results with respect to the phylogeny of ursine bears. In an attempt to resolve these issues, we obtained 1916 nucleotides of mitochondrial DNA sequence data from six gene segments for all eight bear species and conducted maximum likelihood and maximum parsimony analyses on all fragments separately and combined. All six single-region gene trees gave different phylogenetic estimates; however, only for control region data was this significantly incongruent with the results from the combined data. The optimal phylogeny for the combined data set suggests that the giant panda is most basal followed by the spectacled bear. The sloth bear is the basal ursine bear, and there is weak support for a sister taxon relationship of the American and Asiatic black bears. The sun bear is sister taxon to the youngest clade containing brown bears and polar bears. Statistical analyses of alternate hypotheses revealed a lack of strong support for many of the relationships. We suggest that the difficulties surrounding the resolution of the evolutionary relationships of the Ursidae are linked to the existence of sequential rapid radiation events in bear evolution. Thus, unresolved branching orders during these time periods may represent an accurate representation of the evolutionary history of bear species. Copyright 1999 Academic Press.

  18. Global distribution and evolvement of urbanization and PM2.5 (1998-2015)

    NASA Astrophysics Data System (ADS)

    Yang, Dongyang; Ye, Chao; Wang, Xiaomin; Lu, Debin; Xu, Jianhua; Yang, Haiqing

    2018-06-01

    PM2.5 concentrations increased and have been one of the major social issues along with rapid urbanization in many regions of the world in recent decades. The development of urbanization differed among regions, PM2.5 pollution also presented discrepant distribution across the world. Thus, this paper aimed to grasp the profile of global distribution of urbanization and PM2.5 and their evolutionary relationships. Based on global data for the proportion of the urban population and PM2.5 concentrations in 1998-2015, this paper investigated the spatial distribution, temporal variation, and evolutionary relationships of global urbanization and PM2.5. The results showed PM2.5 presented an increasing trend along with urbanization during the study period, but there was a variety of evolutionary relationships in different countries and regions. Most countries in East Asia, Southeast Asia, South Asia, and some African countries developed with the rapid increase in both urbanization and PM2.5. Under the impact of other socioeconomic factors, such as industry and economic growth, the development of urbanization increased PM2.5 concentrations in most Asian countries and some African countries, but decreased PM2.5 concentrations in most European and American countries. The findings of this study revealed the spatial distributions of global urbanization and PM2.5 pollution and provided an interpretation on the evolution of urbanization-PM2.5 relationships, which can contribute to urbanization policies making aimed at successful PM2.5 pollution control and abatement.

  19. Relationships and the social brain: integrating psychological and evolutionary perspectives.

    PubMed

    Sutcliffe, Alistair; Dunbar, Robin; Binder, Jens; Arrow, Holly

    2012-05-01

    Psychological studies of relationships tend to focus on specific types of close personal relationships (romantic, parent-offspring, friendship) and examine characteristics of both the individuals and the dyad. This paper looks more broadly at the wider range of relationships that constitute an individual's personal social world. Recent work on the composition of personal social networks suggests that they consist of a series of layers that differ in the quality and quantity of relationships involved. Each layer increases relationship numbers by an approximate multiple of 3 (5-15-50-150) but decreasing levels of intimacy (strong, medium, and weak ties) and frequency of interaction. To account for these regularities, we draw on both social and evolutionary psychology to argue that relationships at different layers serve different functions and have different cost-benefit profiles. At each layer, the benefits are asymptotic but the costs of maintaining a relationship at that level (most obviously, the time that has to be invested in servicing it) are roughly linear with the number of relationships. The trade-off between costs and benefits at a given level, and across the different types of demands and resources typical of different levels, gives rise to a distribution of social effort that generates and maintains a hierarchy of layered sets of relationships within social networks. We suggest that, psychologically, these trade-offs are related to the level of trust in a relationship, and that this is itself a function of the time invested in the relationship. ©2011 The British Psychological Society.

  20. Spiders in Motion: Demonstrating Adaptation, Structure-Function Relationships, and Trade-Offs in Invertebrates

    ERIC Educational Resources Information Center

    Bowlin, Melissa S.; McLeer, Dorothy F.; Danielson-Francois, Anne M.

    2014-01-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students…

  1. How Humans Evolved According to Grade 12 Students in Singapore

    ERIC Educational Resources Information Center

    Seoh, Kah Huat Robin; Subramaniam, R.; Hoh, Yin Kiong

    2016-01-01

    Tree thinking, the understanding of the evolutionary relationships between organisms depicted in different types of tree diagrams, is an integral part of understanding evolution. Novice learners often read tree diagrams differently from specialists, resulting in diverse interpretations of the relationships depicted. The aim of this study is to…

  2. Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses

    USDA-ARS?s Scientific Manuscript database

    Literature published after 1984 were reviewed to address: (1) genome relationships among monogenomic diploid species, (2) progenitors of the unknown Y genome in Elymus polyploids, X in Thinopyrum intermedium, and Xm in Leymus, and (3) genome constitutions of some perennial Triticeae species that wer...

  3. Dissecting the relationship between protein structure and sequence variation

    NASA Astrophysics Data System (ADS)

    Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team

    2015-03-01

    Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.

  4. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny

    PubMed Central

    2009-01-01

    Background Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. Results In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. Conclusion This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny. PMID:19922605

  5. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny.

    PubMed

    Singh, Tiratha Raj; Tsagkogeorga, Georgia; Delsuc, Frédéric; Blanquart, Samuel; Shenkar, Noa; Loya, Yossi; Douzery, Emmanuel Jp; Huchon, Dorothée

    2009-11-17

    Tunicates represent a key metazoan group as the sister-group of vertebrates within chordates. The six complete mitochondrial genomes available so far for tunicates have revealed distinctive features. Extensive gene rearrangements and particularly high evolutionary rates have been evidenced with regard to other chordates. This peculiar evolutionary dynamics has hampered the reconstruction of tunicate phylogenetic relationships within chordates based on mitogenomic data. In order to further understand the atypical evolutionary dynamics of the mitochondrial genome of tunicates, we determined the complete sequence of the solitary ascidian Herdmania momus. This genome from a stolidobranch ascidian presents the typical tunicate gene content with 13 protein-coding genes, 2 rRNAs and 24 tRNAs which are all encoded on the same strand. However, it also presents a novel gene arrangement, highlighting the extreme plasticity of gene order observed in tunicate mitochondrial genomes. Probabilistic phylogenetic inferences were conducted on the concatenation of the 13 mitochondrial protein-coding genes from representatives of major metazoan phyla. We show that whereas standard homogeneous amino acid models support an artefactual sister position of tunicates relative to all other bilaterians, the CAT and CAT+BP site- and time-heterogeneous mixture models place tunicates as the sister-group of vertebrates within monophyletic chordates. Moreover, the reference phylogeny indicates that tunicate mitochondrial genomes have experienced a drastic acceleration in their evolutionary rate that equally affects protein-coding and ribosomal-RNA genes. This is the first mitogenomic study supporting the new chordate phylogeny revealed by recent phylogenomic analyses. It illustrates the beneficial effects of an increased taxon sampling coupled with the use of more realistic amino acid substitution models for the reconstruction of animal phylogeny.

  6. Evolution of the beta-amylase gene in the temperate grasses: Non-purifying selection, recombination, semiparalogy, homeology and phylogenetic signal.

    PubMed

    Minaya, Miguel; Díaz-Pérez, Antonio; Mason-Gamer, Roberta; Pimentel, Manuel; Catalán, Pilar

    2015-10-01

    Low-copy nuclear genes (LCNGs) have complex genetic architectures and evolutionary dynamics. However, unlike multicopy nuclear genes, LCNGs are rarely subject to gene conversion or concerted evolution, and they have higher mutation rates than organellar or nuclear ribosomal DNA markers, so they have great potential for improving the robustness of phylogenetic reconstructions at all taxonomic levels. In this study, our first objective is to evaluate the evolutionary dynamics of the LCNG β-amylase by testing for potential pseudogenization, paralogy, homeology, recombination, and phylogenetic incongruence within a broad representation of the main Pooideae lineages. Our second objective is to determine whether β-amylase shows sufficient phylogenetic signal to reconstruct the evolutionary history of the Pooid grasses. A multigenic (ITS, matK, ndhF, trnTL, and trnLF) tree of the study group provided a framework for assessing the β-amylase phylogeny. Eight accessions showed complete absence of selection, suggesting putative pseudogenic copies or other relaxed selection pressures; resolution of Vulpia alopecuros 2x clones indicated its potential (semi) paralogy; and homeologous copies of allopolyploid species Festuca simensis, F. fenas, and F. arundinacea tracked their Mediterranean origin. Two recombination events were found within early-diverged Pooideae lineages, and five within the PACCMAD clade. The unexpected phylogenetic relationships of 37 grass species (26% of the sampled species) highlight the frequent occurrence of non-treelike evolutionary events, so this LCNG should be used with caution as a phylogenetic marker. However, once the pitfalls are identified and removed, the phylogenetic reconstruction of the grasses based on the β-amylase exon+intron positions is optimal at all taxonomic levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Ancient papillomavirus-host co-speciation in Felidae

    PubMed Central

    Rector, Annabel; Lemey, Philippe; Tachezy, Ruth; Mostmans, Sara; Ghim, Shin-Je; Van Doorslaer, Koenraad; Roelke, Melody; Bush, Mitchell; Montali, Richard J; Joslin, Janis; Burk, Robert D; Jenson, Alfred B; Sundberg, John P; Shapiro, Beth; Van Ranst, Marc

    2007-01-01

    Background Estimating evolutionary rates for slowly evolving viruses such as papillomaviruses (PVs) is not possible using fossil calibrations directly or sequences sampled over a time-scale of decades. An ability to correlate their divergence with a host species, however, can provide a means to estimate evolutionary rates for these viruses accurately. To determine whether such an approach is feasible, we sequenced complete feline PV genomes, previously available only for the domestic cat (Felis domesticus, FdPV1), from four additional, globally distributed feline species: Lynx rufus PV type 1, Puma concolor PV type 1, Panthera leo persica PV type 1, and Uncia uncia PV type 1. Results The feline PVs all belong to the Lambdapapillomavirus genus, and contain an unusual second noncoding region between the early and late protein region, which is only present in members of this genus. Our maximum likelihood and Bayesian phylogenetic analyses demonstrate that the evolutionary relationships between feline PVs perfectly mirror those of their feline hosts, despite a complex and dynamic phylogeographic history. By applying host species divergence times, we provide the first precise estimates for the rate of evolution for each PV gene, with an overall evolutionary rate of 1.95 × 10-8 (95% confidence interval 1.32 × 10-8 to 2.47 × 10-8) nucleotide substitutions per site per year for the viral coding genome. Conclusion Our work provides evidence for long-term virus-host co-speciation of feline PVs, indicating that viral diversity in slowly evolving viruses can be used to investigate host species evolution. These findings, however, should not be extrapolated to other viral lineages without prior confirmation of virus-host co-divergence. PMID:17430578

  8. Mitochondrial phylogeny, divergence history and high-altitude adaptation of grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) inhabiting the Tibetan Plateau.

    PubMed

    Yuan, Ming-Long; Zhang, Qi-Lin; Zhang, Li; Jia, Cheng-Lin; Li, Xiao-Peng; Yang, Xing-Zhuo; Feng, Run-Qiu

    2018-05-01

    Grassland caterpillars (Lepidoptera: Lymantriinae: Gynaephora) are the most important pests in alpine meadows of the Tibetan Plateau (TP) and have well adapted to high-altitude environments. To further understand the evolutionary history and their adaptation to the TP, we newly determined seven complete TP Gynaephora mitogenomes. Compared to single genes, whole mitogenomes provided the best phylogenetic signals and obtained robust results, supporting the monophyly of the TP Gynaephora species and a phylogeny of Arctiinae + (Aganainae + Lymantriinae). Incongruent phylogenetic signals were found among single mitochondrial genes, none of which recovered the same phylogeny as the whole mitogenome. We identified six best-performing single genes using Shimodaira-Hasegawa tests and found that the combinations of rrnS and either cox1 or cox3 generated the same phylogeny as the whole mitogenome, indicating the phylogenetic potential of these three genes for future evolutionary studies of Gynaephora. The TP Gynaephora species were estimated to radiate on the TP during the Pliocene and Quaternary, supporting an association of the diversification and speciation of the TP Gynaephora species with the TP uplifts and associated climate changes during this time. Selection analyses revealed accelerated evolutionary rates of the mitochondrial protein-coding genes in the TP Gynaephora species, suggesting that they accumulated more nonsynonymous substitutions that may benefit their adaptation to high altitudes. Furthermore, signals of positive selection were detected in nad5 of two Gynaephora species with the highest altitude-distributions, indicating that this gene may contribute to Gynaephora's adaptation to divergent altitudes. This study adds to the understanding of the TP Gynaephora evolutionary relationships and suggests a link between mitogenome evolution and ecological adaptation to high-altitude environments in grassland caterpillars. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The evolution of virulence in primate malaria parasites based on Bayesian reconstructions of ancestral states.

    PubMed

    Garamszegi, László Zsolt

    2011-02-01

    Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. Testing the role of phenotypic plasticity for local adaptation: growth and development in time-constrained Rana temporaria populations.

    PubMed

    Lind, M I; Johansson, F

    2011-12-01

    Phenotypic plasticity can be important for local adaptation, because it enables individuals to survive in a novel environment until genetic changes have been accumulated by genetic accommodation. By analysing the relationship between development rate and growth rate, it can be determined whether plasticity in life-history traits is caused by changed physiology or behaviour. We extended this to examine whether plasticity had been aiding local adaptation, by investigating whether the plastic response had been fixed in locally adapted populations. Tadpoles from island populations of Rana temporaria, locally adapted to different pool-drying regimes, were monitored in a common garden. Individual differences in development rate were caused by different foraging efficiency. However, developmental plasticity was physiologically mediated by trading off growth against development rate. Surprisingly, plasticity has not aided local adaptation to time-stressed environments, because local adaptation was not caused by genetic assimilation but on selection on the standing genetic variation in development time. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  11. Morphological Characteristics and Phylogenetic Trends of Trematode Cercariae in Freshwater Snails from Nakhon Nayok Province, Thailand

    PubMed Central

    Chontananarth, Thapana; Tejangkura, Thanawan; Wetchasart, Napat; Chimburut, Cherdchay

    2017-01-01

    The prevalence of cercarial infection in freshwater snails and their evolutionary trends were studied in Nakhon Nayok province, Thailand. A total of 2,869 individual snails were examined for parasitic infections. The results showed that 12 snail species were found to host larval stages of trematodes with an overall prevalence of 4.7%. The infected specimens included 7 types at the cercarial stage; cercariae, megalurous cercariae, echinostome cercariae, furcocercous cercariae, parapleurolophocercous cercariae, virgulate cercariae, and xiphidiocercariae. Regarding molecular identification, ITS2 sequence data of each larval trematode were analyzed, and a dendrogram was constructed using the neighbor-joining method with 10,000 replicates. The dendrogram was separated into 6 clades (order/family), including Echinostomatida/Echinostomatidae, Echinostomatida/Philophthalmidae, Opisthorchiida/Heterophyidae, Plagiorchiida/Prosthogonimidae, Plagiorchiida/Lecithodendriidae, and Strigeatida/Cyathocotylidae. These findings were used to confirm morphological characteristics and evolutionary trends of each type of cercariae discovered in Nakhon Nayok province. Furthermore, this investigation confirmed that the ITS2 data of cercariae could be used to study on phylogenetic relationships or to determine classification of this species at order and/or family level when possible. PMID:28285506

  12. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family

    PubMed Central

    Lin, Choun-Sea; Chen, Jeremy J. W.; Huang, Yao-Ting; Chan, Ming-Tsair; Daniell, Henry; Chang, Wan-Jung; Hsu, Chen-Tran; Liao, De-Chih; Wu, Fu-Huei; Lin, Sheng-Yi; Liao, Chen-Fu; Deyholos, Michael K.; Wong, Gane Ka-Shu; Albert, Victor A.; Chou, Ming-Lun; Chen, Chun-Yi; Shih, Ming-Che

    2015-01-01

    The NAD(P)H dehydrogenase complex is encoded by 11 ndh genes in plant chloroplast (cp) genomes. However, ndh genes are truncated or deleted in some autotrophic Epidendroideae orchid cp genomes. To determine the evolutionary timing of the gene deletions and the genomic locations of the various ndh genes in orchids, the cp genomes of Vanilla planifolia, Paphiopedilum armeniacum, Paphiopedilum niveum, Cypripedium formosanum, Habenaria longidenticulata, Goodyera fumata and Masdevallia picturata were sequenced; these genomes represent Vanilloideae, Cypripedioideae, Orchidoideae and Epidendroideae subfamilies. Four orchid cp genome sequences were found to contain a complete set of ndh genes. In other genomes, ndh deletions did not correlate to known taxonomic or evolutionary relationships and deletions occurred independently after the orchid family split into different subfamilies. In orchids lacking cp encoded ndh genes, non cp localized ndh sequences were identified. In Erycina pusilla, at least 10 truncated ndh gene fragments were found transferred to the mitochondrial (mt) genome. The phenomenon of orchid ndh transfer to the mt genome existed in ndh-deleted orchids and also in ndh containing species. PMID:25761566

  13. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs.

    PubMed

    Erickson, Gregory M; Makovicky, Peter J; Currie, Philip J; Norell, Mark A; Yerby, Scott A; Brochu, Christopher A

    2004-08-12

    How evolutionary changes in body size are brought about by variance in developmental timing and/or growth rates (also known as heterochrony) is a topic of considerable interest in evolutionary biology. In particular, extreme size change leading to gigantism occurred within the dinosaurs on multiple occasions. Whether this change was brought about by accelerated growth, delayed maturity or a combination of both processes is unknown. A better understanding of relationships between non-avian dinosaur groups and the newfound capacity to reconstruct their growth curves make it possible to address these questions quantitatively. Here we study growth patterns within the Tyrannosauridae, the best known group of large carnivorous dinosaurs, and determine the developmental means by which Tyrannosaurus rex, weighing 5,000 kg and more, grew to be one of the most enormous terrestrial carnivorous animals ever. T. rex had a maximal growth rate of 2.1 kg d(-1), reached skeletal maturity in two decades and lived for up to 28 years. T. rex's great stature was primarily attained by accelerating growth rates beyond that of its closest relatives.

  14. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    PubMed

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  15. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Role of Evolutionary Biology in Research and Control of Liver Flukes in Southeast Asia

    PubMed Central

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F.; Wilcox, Bruce A.

    2016-01-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  17. Neptunism and Transformism: Robert Jameson and other Evolutionary Theorists in Early Nineteenth-Century Scotland.

    PubMed

    Jenkins, Bill

    2016-08-01

    This paper sheds new light on the prevalence of evolutionary ideas in Scotland in the early nineteenth century and establish what connections existed between the espousal of evolutionary theories and adherence to the directional history of the earth proposed by Abraham Gottlob Werner and his Scottish disciples. A possible connection between Wernerian geology and theories of the transmutation of species in Edinburgh in the period when Charles Darwin was a medical student in the city was suggested in an important 1991 paper by James Secord. This study aims to deepen our knowledge of this important episode in the history of evolutionary ideas and explore the relationship between these geological and evolutionary discourses. To do this it focuses on the circle of natural historians around Robert Jameson, Wernerian geologist and professor of natural history at the University of Edinburgh from 1804 to 1854. From the evidence gathered here there emerges a clear confirmation that the Wernerian model of geohistory facilitated the acceptance of evolutionary explanations of the history of life in early nineteenth-century Scotland. As Edinburgh was at this time the most important center of medical education in the English-speaking world, this almost certainly influenced the reception and development of evolutionary ideas in the decades that followed.

  18. GPSit: An automated method for evolutionary analysis of nonculturable ciliated microeukaryotes.

    PubMed

    Chen, Xiao; Wang, Yurui; Sheng, Yalan; Warren, Alan; Gao, Shan

    2018-05-01

    Microeukaryotes are among the most important components of the microbial food web in almost all aquatic and terrestrial ecosystems worldwide. In order to gain a better understanding their roles and functions in ecosystems, sequencing coupled with phylogenomic analyses of entire genomes or transcriptomes is increasingly used to reconstruct the evolutionary history and classification of these microeukaryotes and thus provide a more robust framework for determining their systematics and diversity. More importantly, phylogenomic research usually requires high levels of hands-on bioinformatics experience. Here, we propose an efficient automated method, "Guided Phylogenomic Search in trees" (GPSit), which starts from predicted protein sequences of newly sequenced species and a well-defined customized orthologous database. Compared with previous protocols, our method streamlines the entire workflow by integrating all essential and other optional operations. In so doing, the manual operation time for reconstructing phylogenetic relationships is reduced from days to several hours, compared to other methods. Furthermore, GPSit supports user-defined parameters in most steps and thus allows users to adapt it to their studies. The effectiveness of GPSit is demonstrated by incorporating available online data and new single-cell data of three nonculturable marine ciliates (Anteholosticha monilata, Deviata sp. and Diophrys scutum) under moderate sequencing coverage (~5×). Our results indicate that the former could reconstruct robust "deep" phylogenetic relationships while the latter reveals the presence of intermediate taxa in shallow relationships. Based on empirical phylogenomic data, we also used GPSit to evaluate the impact of different levels of missing data on two commonly used methods of phylogenetic analyses, maximum likelihood (ML) and Bayesian inference (BI) methods. We found that BI is less sensitive to missing data when fast-evolving sites are removed. © 2018 John Wiley & Sons Ltd.

  19. Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships.

    PubMed

    Koletić, Nikola; Novosel, Maja; Rajević, Nives; Franjević, Damjan

    2015-01-01

    Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies can reach the size of several tens of centimeters, while individual units within a colony are the size of a few millimeters. Each individual within a colony works as a separate zooid and is genetically identical to each other individual within the same colony. Most freshwater species of bryozoans belong to the Phylactolaemata class, while several species that tolerate brackish water belong to the Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part of Croatia (Europe). Freshwater and brackish taxons of bryozoans were genetically analyzed for the purpose of creating phylogenetic relationships between freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata classes and determining the role of brackish species in colonizing freshwater and marine ecosystems. Phylogenetic relationships inferred on the genes for 18S rRNA, 28S rRNA, COI, and ITS2 region confirmed Phylactolaemata bryozoans as radix bryozoan group. Phylogenetic analysis proved Phylactolaemata bryozoan's close relations with taxons from Phoronida phylum as well as the separation of the Lophopodidae family from other families within the Plumatellida genus. Comparative analysis of existing knowledge about the phylogeny of bryozoans and the expansion of known evolutionary hypotheses is proposed with the model of settlement of marine and freshwater ecosystems by the bryozoans group during their evolutionary past. In this case study, brackish bryozoan taxons represent a link for this ecological phylogenetic hypothesis. Comparison of brackish bryozoan species Lophopus crystallinus and Conopeum seurati confirmed a dual colonization of freshwater ecosystems throughout evolution of this group of animals.

  20. Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi.

    PubMed

    Tomasini, Nicolás

    2018-02-01

    Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.

  1. Evolutionary history and molecular epidemiology of rabbit haemorrhagic disease virus in the Iberian Peninsula and Western Europe

    PubMed Central

    2010-01-01

    Background Rabbit haemorrhagic disease virus (RHDV) is a highly virulent calicivirus, first described in domestic rabbits in China in 1984. RHDV appears to be a mutant form of a benign virus that existed in Europe long before the first outbreak. In the Iberian Peninsula, the first epidemic in 1988 severely reduced the populations of autochthonous European wild rabbit. To examine the evolutionary history of RHDV in the Iberian Peninsula, we collected virus samples from wild rabbits and sequenced a fragment of the capsid protein gene VP60. These data together with available sequences from other Western European countries, were analyzed following Bayesian Markov chain Monte Carlo methods to infer their phylogenetic relationships, evolutionary rates and demographic history. Results Evolutionary relationships of RHDV revealed three main lineages with significant phylogeographic structure. All lineages seem to have emerged at a common period of time, between ~1875 and ~1976. The Iberian Peninsula showed evidences of genetic isolation, probably due to geographic barriers to gene flow, and was also the region with the youngest MRCA. Overall, demographic analyses showed an initial increase and stabilization of the relative genetic diversity of RHDV, and a subsequent reduction in genetic diversity after the first epidemic breakout in 1984, which is compatible with a decline in effective population size. Conclusions Results were consistent with the hypothesis that the current Iberian RHDV arose from a single infection between 1869 and 1955 (95% HPD), and rendered a temporal pattern of appearance and extinction of lineages. We propose that the rising positive selection pressure observed throughout the history of RHDV is likely mediated by the host immune system as a consequence of the genetic changes that rendered the virus virulent. Consequently, this relationship is suggested to condition RHDV demographic history. PMID:21067589

  2. On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

    PubMed Central

    DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim. PMID:23922810

  3. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

    PubMed Central

    Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295

  4. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  5. Relative body weight as a factor in the decision to abort.

    PubMed

    Thelen, T H; Alumbaugh, R V

    1983-06-01

    Abortion referral data of 692 pregnant women visiting a large urban planned parenthood clinic were analyzed to determine whether relative weight, as measured by an adiposity index, as well as other variables, were associated with a decision to terminate or not terminate a pregnancy. Relative weight, length of pregnancy, education, age, ethnicity, and marital status were found to be associated with the decision to abort. While most of these variables were previously shown to have been related to the decision to terminate or not terminate a pregnancy, a relationship between relative weight and abortion has not previously been reported. In the analyses of all the women in this study and of a subsample consisting only of those in the early stages of their pregnancies, increased relative weight was associated with a decrease in the likelihood of pregnancy termination. Possible reasons for this relationship and the evolutionary implications are discussed.

  6. Evolutionary relationships among pathogenic Candida species and relatives.

    PubMed Central

    Barns, S M; Lane, D J; Sogin, M L; Bibeau, C; Weisburg, W G

    1991-01-01

    Small subunit rRNA sequences have been determined for 10 of the most clinically important pathogenic species of the yeast genus Candida (including Torulopsis [Candida] glabrata and Yarrowia [Candida] lipolytica) and for Hansenula polymorpha. Phylogenetic analyses of these sequences and those of Saccharomyces cerevisiae, Kluyveromyces marxianus var. lactis, and Aspergillus fumigatus indicate that Candida albicans, C. tropicalis, C. parapsilosis, and C. viswanathii form a subgroup within the genus. The remaining significant pathogen, T. glabrata, falls into a second, distinct subgroup and is specifically related to S. cerevisiae and more distantly related to C. kefyr (psuedotropicalis) and K. marxianus var. lactis. The 18S rRNA sequence of Y. lipolytica has evolved rapidly in relation to the other Candida sequences examined and appears to be only distantly related to them. As anticipated, species of several other genera appear to bear specific relationships to members of the genus Candida. PMID:2007550

  7. The evolution of island gigantism and body size variation in tortoises and turtles

    PubMed Central

    Jaffe, Alexander L.; Slater, Graham J.; Alfaro, Michael E.

    2011-01-01

    Extant chelonians (turtles and tortoises) span almost four orders of magnitude of body size, including the startling examples of gigantism seen in the tortoises of the Galapagos and Seychelles islands. However, the evolutionary determinants of size diversity in chelonians are poorly understood. We present a comparative analysis of body size evolution in turtles and tortoises within a phylogenetic framework. Our results reveal a pronounced relationship between habitat and optimal body size in chelonians. We found strong evidence for separate, larger optimal body sizes for sea turtles and island tortoises, the latter showing support for the rule of island gigantism in non-mammalian amniotes. Optimal sizes for freshwater and mainland terrestrial turtles are similar and smaller, although the range of body size variation in these forms is qualitatively greater. The greater number of potential niches in freshwater and terrestrial environments may mean that body size relationships are more complicated in these habitats. PMID:21270022

  8. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae.

    PubMed

    Grose, Julianne H; Casjens, Sherwood R

    2014-11-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.

  9. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    PubMed Central

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  10. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae)

    PubMed Central

    Chumová, Zuzana; Krejčíková, Jana; Mandáková, Terezie; Suda, Jan; Trávníček, Pavel

    2015-01-01

    The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x–18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus. PMID:26207824

  11. Water-energy dynamics, habitat heterogeneity, history, and broad-scale patterns of mammal diversity

    NASA Astrophysics Data System (ADS)

    Ferrer-Castán, Dolores; Morales-Barbero, Jennifer; Vetaas, Ole R.

    2016-11-01

    Numerous hypotheses on diversity patterns are often presented as if they were mutually exclusive. However, because of multicollinearity, correlational analyses are not able to distinguish the causal effects of different factors on these patterns. For this reason, we examine the interrelationships among current climate, habitat heterogeneity and evolutionary history by partitioning the variation in both total and non-volant mammal species richness in the Iberian Peninsula. Thus, it is possible to determine the variation accounted for by each one of these three components that is not shared by the others, and the respective overlaps. More specifically, we hypothesize that (H1) in warm temperate zones, a small increase in the available energy has strong negative effects on mammal richness if water availability is limiting; (H2) there are functional relationships between woody plant species richness (WOOD) and the richness of mammal species; (H3) there is a signal of evolutionary history in contemporary patterns of species richness, and (H4) mammal richness and the historical variable mean root distance (MRD) respond to the same driving forces. Additionally, we also test for spatial autocorrelation. We found a sharp nonlinear decrease in mammal richness with increasing energy and a monotonic increase with increasing water availability. Moreover, an interaction term between these two climate factors appeared to be statistically significant, so H1 could not be rejected. WOOD remained significant after partialling out both current climate and MRD at the family level (MRDf), supporting H2. The relationship between mammal diversity and MRD averaged by species richness was found to be spurious, but there appeared a significant historical signal using MRDf (this supports H3). The overlaps among these factors are consistent with H4 and suggest that water-energy dynamics have probably been active drivers throughout evolutionary history with habitat heterogeneity, and biotic interactions playing an important role.

  12. Nest desertion and cowbird parasitism: evidence for evolved responses and evolutionary lag.

    PubMed

    Hosoi; Rothstein

    2000-04-01

    Nest desertion with subsequent renesting is a frequently cited response to parasitism by the brown-headed cowbird, Molothrus ater, yet the role of desertion as an antiparasite defence is widely debated. To determine whether desertion represents an evolutionary response to brown-headed cowbird parasitism, we searched the primary literature, yielding data on the desertion frequencies of 60 host populations from 35 species. Species were categorized according to three habitat types (forest, intermediate and nonforest). Because cowbirds prefer open habitat and rarely penetrate deeply into forests, nonforest species have long been exposed to widespread cowbird parasitism, whereas forest species have not. However, due to increased forest fragmentation, forest species are being increasingly exposed to extensive parasitism. The frequency of desertion of parasitized nests was significantly higher in nonforest than forest species, suggesting that the latter experience evolutionary lag. We also considered whether desertion is affected by predation frequency, degree of current or recent sympatry with cowbirds, parasitism frequency, length of host laying season, phylogenetic relationships, and potential cost of cowbird parasitism. None of these variables created biases that could account for the observed difference in desertion frequencies of nonforest and forest species. However, species that incur large costs when parasitized had higher desertion rates among nonforest species but not among forest species. These results indicate that increased nest desertion is an evolved response to cowbird parasitism, as one would otherwise expect no relationship between desertion frequency and thezx costs and length of exposure to cowbird parasitism. Although nearly all hosts have eggs easily distinguished from cowbird eggs, few or none desert in response to cowbird eggs. Instead, desertion may be a response to adult cowbirds. The scarcity of species that desert in response to cowbird eggs suggests that egg recognition is more difficult to evolve than heightened desertion tendencies and that egg recognition quickly leads to ejection behaviour once it does develop. Copyright 2000 The Association for the Study of Animal Behaviour.

  13. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae).

    PubMed

    Chumová, Zuzana; Krejčíková, Jana; Mandáková, Terezie; Suda, Jan; Trávníček, Pavel

    2015-01-01

    The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x-18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.

  14. Evolutionary history of the third chromosome gene arrangements of Drosophila pseudoobscura inferred from inversion breakpoints.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2011-08-01

    The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral arrangement. One of the youngest arrangements, Arrowhead, has one of the highest population frequencies suggesting that selection has been responsible for its rapid increase.

  15. Uncoupling proteins of invertebrates: A review.

    PubMed

    Slocinska, Malgorzata; Barylski, Jakub; Jarmuszkiewicz, Wieslawa

    2016-09-01

    Uncoupling proteins (UCPs) mediate inducible proton conductance in the mitochondrial inner membrane. Herein, we summarize our knowledge regarding UCPs in invertebrates. Since 2001, the presence of UCPs has been demonstrated in nematodes, mollusks, amphioxi, and insects. We discuss the following important issues concerning invertebrate UCPs: their evolutionary relationships, molecular and functional properties, and physiological impact. Evolutionary analysis indicates that the branch of vertebrate and invertebrate UCP4-5 diverged early in the evolutionary process prior to the divergence of the animal groups. Several proposed physiological roles of invertebrate UCPs are energy control, metabolic balance, and preventive action against oxidative stress. © 2016 IUBMB Life, 68(9):691-699, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Evolutionary origins of mechanosensitive ion channels.

    PubMed

    Martinac, Boris; Kloda, Anna

    2003-01-01

    According to the recent revision, the universal phylogenetic tree is composed of three domains: Eukarya (eukaryotes), Bacteria (eubacteria) and Archaea (archaebacteria). Mechanosensitive (MS) ion channels have been documented in cells belonging to all three domains suggesting their very early appearance during evolution of life on Earth. The channels show great diversity in conductance, selectivity and voltage dependence, while sharing the property of being gated by mechanical stimuli exerted on cell membranes. In prokaryotes, MS channels were first documented in Bacteria followed by their discovery in Archaea. The finding of MS channels in archaeal cells helped to recognize and establish the evolutionary relationship between bacterial and archaeal MS channels and to show that this relationship extends to eukaryotic Fungi (Schizosaccharomyces pombe) and Plants (Arabidopsis thaliana). Similar to their bacterial and archaeal homologues, MS channels in eukaryotic cell-walled Fungi and Plants may serve in protecting the cellular plasma membrane from excessive dilation and rupture that may occur during osmotic stress. This review summarizes briefly some of the recent developments in the MS channel research field that may ultimately lead to elucidation of the biophysical and evolutionary principles underlying the mechanosensory transduction in living cells.

  17. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    PubMed

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  18. Replaying evolutionary transitions from the dental fossil record

    PubMed Central

    Harjunmaa, Enni; Seidel, Kerstin; Häkkinen, Teemu; Renvoisé, Elodie; Corfe, Ian J.; Kallonen, Aki; Zhang, Zhao-Qun; Evans, Alistair R.; Mikkola, Marja L.; Salazar-Ciudad, Isaac; Klein, Ophir D.; Jernvall, Jukka

    2014-01-01

    The evolutionary relationships of extinct species are ascertained primarily through the analysis of morphological characters. Character inter-dependencies can have a substantial effect on evolutionary interpretations, but the developmental underpinnings of character inter-dependence remain obscure because experiments frequently do not provide detailed resolution of morphological characters. Here we show experimentally and computationally how gradual modification of development differentially affects characters in the mouse dentition. We found that intermediate phenotypes could be produced by gradually adding ectodysplasin A (EDA) protein in culture to tooth explants carrying a null mutation in the tooth-patterning gene Eda. By identifying development-based character interdependencies, we show how to predict morphological patterns of teeth among mammalian species. Finally, in vivo inhibition of sonic hedgehog signalling in Eda null teeth enabled us to reproduce characters deep in the rodent ancestry. Taken together, evolutionarily informative transitions can be experimentally reproduced, thereby providing development-based expectations for character state transitions used in evolutionary studies. PMID:25079326

  19. The one-third law of evolutionary dynamics.

    PubMed

    Ohtsuki, Hisashi; Bordalo, Pedro; Nowak, Martin A

    2007-11-21

    Evolutionary game dynamics in finite populations provide a new framework for studying selection of traits with frequency-dependent fitness. Recently, a "one-third law" of evolutionary dynamics has been described, which states that strategy A fixates in a B-population with selective advantage if the fitness of A is greater than that of B when A has a frequency 13. This relationship holds for all evolutionary processes examined so far, from the Moran process to games on graphs. However, the origin of the "number"13 is not understood. In this paper we provide an intuitive explanation by studying the underlying stochastic processes. We find that in one invasion attempt, an individual interacts on average with B-players twice as often as with A-players, which yields the one-third law. We also show that the one-third law implies that the average Malthusian fitness of A is positive.

  20. Evolutionary analysis of the TPP-dependent enzyme family.

    PubMed

    Costelloe, Seán J; Ward, John M; Dalby, Paul A

    2008-01-01

    The evolutionary relationships of the thiamine pyrophosphate (TPP)-dependent family of enzymes was investigated by generation of a neighbor joining phylogenetic tree using sequences from the conserved pyrophosphate (PP) and pyrimidine (Pyr) binding domains of 17 TPP-dependent enzymes. This represents the most comprehensive analysis of TPP-dependent enzyme evolution to date. The phylogeny was shown to be robust by comparison with maximum likelihood trees generated for each individual enzyme and also broadly confirms the evolutionary history proposed recently from structural comparisons alone (Duggleby 2006). The phylogeny is most parsimonious with the TPP enzymes having arisen from a homotetramer which subsequently diverged into an alpha(2)beta(2) heterotetramer. The relationship between the PP- and Pyr-domains and the recruitment of additional protein domains was examined using the transketolase C-terminal (TKC)-domain as an example. This domain has been recruited by several members of the family and yet forms no part of the active site and has unknown function. Removal of the TKC-domain was found to increase activity toward beta-hydroxypyruvate and glycolaldehyde. Further truncations of the Pyr-domain yielded several variants with retained activity. This suggests that the influence of TKC-domain recruitment on the evolution of the mechanism and specificity of transketolase (TK) has been minor, and that the smallest functioning unit of TK comprises the PP- and Pyr-domains, whose evolutionary histories extend to all TPP-dependent enzymes.

  1. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution.

    PubMed

    Zhao, Yongchao; Zheng, Hao; Xu, Anying; Yan, Donghua; Jiang, Zijian; Qi, Qi; Sun, Jingchen

    2016-08-24

    Analysis of codon usage bias is an extremely versatile method using in furthering understanding of the genetic and evolutionary paths of species. Codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) has remained largely unexplored at present. Hence, the codon usage bias of NPV envelope glycoprotein was analyzed here to reveal the genetic and evolutionary relationships between different viral species in baculovirus genus. A total of 9236 codons from 18 different species of NPV of the baculovirus genera were used to perform this analysis. Glycoprotein of NPV exhibits weaker codon usage bias. Neutrality plot analysis and correlation analysis of effective number of codons (ENC) values indicate that natural selection is the main factor influencing codon usage bias, and that the impact of mutation pressure is relatively smaller. Another cluster analysis shows that the kinship or evolutionary relationships of these viral species can be divided into two broad categories despite all of these 18 species are from the same baculovirus genus. There are many elements that can affect codon bias, such as the composition of amino acids, mutation pressure, natural selection, gene expression level, and etc. In the meantime, cluster analysis also illustrates that codon usage bias of virus envelope glycoprotein can serve as an effective means of evolutionary classification in baculovirus genus.

  2. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  3. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data

    PubMed Central

    2010-01-01

    Background Leuciscinae is a subfamily belonging to the Cyprinidae fish family that is widely distributed in Circum-Mediterranean region. Many efforts have been carried out to deciphering the evolutionary history of this group. Thus, different biogeographical scenarios have tried to explain the colonization of Europe and Mediterranean area by cyprinids, such as the "north dispersal" or the "Lago Mare dispersal" models. Most recently, Pleistocene glaciations influenced the distribution of leuciscins, especially in North and Central Europe. Weighing up these biogeographical scenarios, this paper constitutes not only the first attempt at deciphering the mitochondrial and nuclear relationships of Mediterranean leuciscins but also a test of biogeographical hypotheses that could have determined the current distribution of Circum-Mediterranean leuciscins. Results A total of 4439 characters (mitochondrial + nuclear) from 321 individuals of 176 leuciscine species rendered a well-supported phylogeny, showing fourteen main lineages. Analyses of independent mitochondrial and nuclear markers supported the same main lineages, but basal relationships were not concordant. Moreover, some incongruence was found among independent mitochondrial and nuclear phylogenies. The monophyly of some poorly known genera such as Pseudophoxinus and Petroleuciscus was rejected. Representatives of both genera belong to different evolutionary lineages. Timing of cladogenetic events among the main leuciscine lineages was gained using mitochondrial and all genes data set. Conclusions Adaptations to a predatory lifestyle or miniaturization have superimposed the morphology of some species. These species have been separated into different genera, which are not supported by a phylogenetic framework. Such is the case of the genera Pseudophoxinus and Petroleuciscus, which real taxonomy is not well known. The diversification of leuciscine lineages has been determined by intense vicariant events following the paleoclimatological and hydrogeological history of Mediterranean region. We propose different colonization models of Mediterranean region during the early Oligocene. Later vicariance events promoted Leuciscinae diversification during Oligocene and Miocene periods. Our data corroborate the presence of leuciscins in North Africa before the Messinian salinity crisis. Indeed, Messinian period appears as a stage of gradually Leuciscinae diversification. The rise of humidity at the beginning of the Pliocene promoted the colonization and posterior isolation of newly established freshwater populations. Finally, Pleistocene glaciations determined the current European distribution of some leuciscine species. PMID:20807419

  4. Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics.

    PubMed

    Kaneko, Kunihiko; Furusawa, Chikara

    2018-05-20

    We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.

  5. Genetic Diversity and Evolution of Salmonella enterica Serovar Enteritidis Strains with Different Phage Types

    PubMed Central

    Pettengill, James; Strain, Errol; Allard, Marc W.; Ahmed, Rafiq; Zhao, Shaohua; Brown, Eric W.

    2014-01-01

    Phage typing has been used for the epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decades. However, knowledge of the genetic and evolutionary relationships between phage types is very limited, making differences difficult to interpret. Here, single nucleotide polymorphisms (SNPs) identified from whole-genome comparisons were used to determine the relationships between some S. Enteritidis phage types (PTs) commonly associated with food-borne outbreaks in the United States. Emphasis was placed on the predominant phage types PT8, PT13a, and PT13 in North America. With >89,400 bp surveyed across 98 S. Enteritidis isolates representing 14 distinct phage types, 55 informative SNPs were discovered within 23 chromosomally anchored loci. To maximize the discriminatory and evolutionary partitioning of these highly homogeneous strains, sequences comprising informative SNPs were concatenated into a single combined data matrix and subjected to phylogenetic analysis. The resultant phylogeny allocated most S. Enteritidis isolates into two distinct clades (clades I and II) and four subclades. Synapomorphic (shared and derived) sets of SNPs capable of distinguishing individual clades/subclades were identified. However, individual phage types appeared to be evolutionarily disjunct when mapped to this phylogeny, suggesting that phage typing may not be valid for making phylogenetic inferences. Furthermore, the set of SNPs identified here represents useful genetic markers for strain differentiation of more clonal S. Enteritidis strains and provides core genotypic markers for future development of a SNP typing scheme with S. Enteritidis. PMID:24574287

  6. Extrafloral Nectaries in Aspen (Populus tremuloides): Heritable Genetic Variation and Herbivore-induced Expression

    PubMed Central

    Wooley, Stuart C.; Donaldson, Jack R.; Gusse, Adam C.; Lindroth, Richard L.; Stevens, Michael T.

    2007-01-01

    Background and Aims A wide variety of plants produce extrafloral nectaries (EFNs) that are visited by predatory arthropods. But very few studies have investigated the relationship between plant genetic variation and EFNs. The presence of foliar EFNs is highly variable among different aspen (Populus tremuloides) genotypes and the EFNs are visited by parasitic wasps and predatory flies. The aim here was to determine the heritability of EFNs among aspen genotypes and age classes, possible trade-offs between direct and indirect defences, EFN induction following herbivory, and the relationship between EFNs and predatory insects. Methods EFN density was quantified among aspen genotypes in Wisconsin on trees of different ages and broad-sense heritability from common garden trees was calculated. EFNs were also quantified in natural aspen stands in Utah. From the common garden trees foliar defensive chemical levels were quantified to evaluate their relationship with EFN density. A defoliation experiment was performed to determine if EFNs can be induced in response to herbivory. Finally, predatory arthropod abundance among aspen trees was quantified to determine the relationship between arthropod abundance and EFNs. Key Results Broad-sense heritability for expression (0·74–0·82) and induction (0·85) of EFNs was high. One-year-old trees had 20% greater EFN density than 4-year-old trees and more than 50% greater EFN density than ≥10-year-old trees. No trade-offs were found between foliar chemical concentrations and EFN density. Predatory fly abundance varied among aspen genotypes, but predatory arthropod abundance and average EFN density were not related. Conclusions Aspen extrafloral nectaries are strongly genetically determined and have the potential to respond rapidly to evolutionary forces. The pattern of EFN expression among different age classes of trees appears to follow predictions of optimal defence theory. The relationship between EFNs and predators likely varies in relation to multiple temporal and environmental factors. PMID:17951361

  7. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    PubMed

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions regarding their origins and position in the global virosphere. Analysis of 5,740 protein sequences from 116 genomes allowed dissection of the archaeal virus network and showed that most groups of archaeal viruses are evolutionarily connected to capsidless mobile genetic elements, including various plasmids and transposons. This finding could reflect actual independent origins of the distinct groups of archaeal viruses from different nonviral elements, providing important insights into the emergence and evolution of the archaeal virome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    PubMed

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony vertebrates (Euteleostomi). Diversification of SERCA regulators was much less extensive, indicating they operate under different evolutionary constraints. Finally, we found that FXYDs in extant vertebrates can be classified into 13 gene subfamilies, which do not always correspond to the established FXYD classification. We therefore propose a revised classification that is based on evolutionary history of FXYDs and that is consistent across vertebrate species. Collectively, our findings provide an improved framework for investigating the function of ion transport in health and disease. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  9. Divergent trait and environment relationships among parallel radiations in Pelargonium (Geraniaceae): a role for evolutionary legacy?

    PubMed

    Moore, Timothy E; Schlichting, Carl D; Aiello-Lammens, Matthew E; Mocko, Kerri; Jones, Cynthia S

    2018-05-11

    Functional traits in closely related lineages are expected to vary similarly along common environmental gradients as a result of shared evolutionary and biogeographic history, or legacy effects, and as a result of biophysical tradeoffs in construction. We test these predictions in Pelargonium, a relatively recent evolutionary radiation. Bayesian phylogenetic mixed effects models assessed, at the subclade level, associations between plant height, leaf area, leaf nitrogen content and leaf mass per area (LMA), and five environmental variables capturing temperature and rainfall gradients across the Greater Cape Floristic Region of South Africa. Trait-trait integration was assessed via pairwise correlations within subclades. Of 20 trait-environment associations, 17 differed among subclades. Signs of regression coefficients diverged for height, leaf area and leaf nitrogen content, but not for LMA. Subclades also differed in trait-trait relationships and these differences were modulated by rainfall seasonality. Leave-one-out cross-validation revealed that whether trait variation was better predicted by environmental predictors or trait-trait integration depended on the clade and trait in question. Legacy signals in trait-environment and trait-trait relationships were apparently lost during the earliest diversification of Pelargonium, but then retained during subsequent subclade evolution. Overall, we demonstrate that global-scale patterns are poor predictors of patterns of trait variation at finer geographic and taxonomic scales. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds.

    PubMed

    Lind, O; Delhey, K

    2015-03-01

    Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet-sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV-sensitive (UVS) cones maximally sensitive at 360-370 nm. The reasons for VS-UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS-cone vision is linked to plumage colours so that visual sensitivity and feather coloration are 'matched'. This leads to the specific prediction that UVS-cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS-bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS-cone vision and plumage colour evolution. Instead, we suggest that UVS-cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  11. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA.

    PubMed

    Sum, Jia-Siang; Lee, Wenn-Chyau; Amir, Amirah; Braima, Kamil A; Jeffery, John; Abdul-Aziz, Noraishah M; Fong, Mun-Yik; Lau, Yee-Ling

    2014-07-03

    Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population.

  12. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    PubMed Central

    2014-01-01

    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection status, and DNA extraction was performed for PCR with primers targeting the ITS2 rDNA region. Sequencing was done and phylogenetic tree was constructed to study the evolutionary relationship among Anopheles mosquitoes within Peninsular Malaysia, as well as across the Asian region. Results A total of 133 Anopheles mosquitoes consisting of six different species were collected from eight different locations across Peninsular Malaysia. Of these, 65 ITS2 rDNA sequences were obtained. The ITS2 rDNA amplicons of the studied species were of different sizes. One collected species, Anopheles sinensis, shows two distinct pools of population in Peninsular Malaysia, suggesting evolvement of geographic race or allopatric speciation. Conclusion Anopheles mosquitoes from Peninsular Malaysia show close evolutionary relationship with the Asian anophelines. Nevertheless, genetic differences due to geographical segregation can be seen. Meanwhile, some Anopheles mosquitoes in Peninsular Malaysia show vicariance, exemplified by the emergence of distinct cluster of An. sinensis population. PMID:24993022

  13. Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution.

    PubMed

    Caraballo, Diego A; Abruzzese, Giselle A; Rossi, María Susana

    2012-06-01

    Tuco-tucos (small subterranean rodents of the genus Ctenomys) that inhabit sandy soils of the area under the influence of the second largest wetland of South America, in Northeastern Argentina (Corrientes province), are a complex of species and forms whose taxonomic status were not defined, nor are the evolutionary relationships among them. The tuco-tuco populations of this area exhibit one of the most ample grades of chromosomal variability within the genus. In order to analyze evolutionary relationships within the Corrientes group and its chromosomal variability, we completed the missing karyotypic information and performed a phylogenetic analysis. We obtained partial sequences of three mitochondrial markers: D-loop, cytochrome b and cytochrome oxidase I. The Corrientes group was monophyletic and split into three main clades that grouped related karyomorphs. The phylogeny suggested an ancestral condition of the karyomorph with diploid number (2n) 70 and fundamental number (FN) 84 that has evolved mainly via reductions of the FN although amplifications occurred in certain lineages. We discuss the relationship between patterns of chromosomal variability and species and groups boundaries. From the three main clades the one named iberá exhibited a remarkable karyotypic homogeneity, and could be considered as an independent and cohesive evolutionary lineage. On the contrary, the former recognized species C. dorbignyi is a polyphyletic lineage and hence its systematic classification should be reviewed.

  14. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock.

    PubMed

    Burress, E D; Alda, F; Duarte, A; Loureiro, M; Armbruster, J W; Chakrabarty, P

    2018-01-01

    The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Predator and prey functional traits: understanding the adaptive machinery driving predator–prey interactions

    PubMed Central

    Schmitz, Oswald

    2017-01-01

    Predator–prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator–prey relationships. Recent approaches have begun to explore predator–prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator–prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator–prey interaction, causing predator and prey to adapt their traits—through phenotypically plastic or rapid evolutionary responses—and the nature of their interaction. Research shows that examining predator–prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator–prey interactions observed in different ecological contexts. PMID:29043073

  16. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  17. Evolutionary process of deep-sea bathymodiolus mussels.

    PubMed

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.

  18. The contrasting phylodynamics of human influenza B viruses.

    PubMed

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G

    2015-01-16

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

  19. Stochastic dynamics and stable equilibrium of evolutionary optional public goods game in finite populations

    NASA Astrophysics Data System (ADS)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2018-07-01

    Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.

  20. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships.

    PubMed

    Bland, Nicholas D; Pinney, John W; Thomas, Josie E; Turner, Anthony J; Isaac, R Elwyn

    2008-01-23

    The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles. The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity.

  1. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  2. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  3. Available Transfer Capability Determination Using Hybrid Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Jirapong, Peeraool; Ongsakul, Weerakorn

    2008-10-01

    This paper proposes a new hybrid evolutionary algorithm (HEA) based on evolutionary programming (EP), tabu search (TS), and simulated annealing (SA) to determine the available transfer capability (ATC) of power transactions between different control areas in deregulated power systems. The optimal power flow (OPF)-based ATC determination is used to evaluate the feasible maximum ATC value within real and reactive power generation limits, line thermal limits, voltage limits, and voltage and angle stability limits. The HEA approach simultaneously searches for real power generations except slack bus in a source area, real power loads in a sink area, and generation bus voltages to solve the OPF-based ATC problem. Test results on the modified IEEE 24-bus reliability test system (RTS) indicate that ATC determination by the HEA could enhance ATC far more than those from EP, TS, hybrid TS/SA, and improved EP (IEP) algorithms, leading to an efficient utilization of the existing transmission system.

  4. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples.

    PubMed

    U'ren, Jana M; Dalling, James W; Gallery, Rachel E; Maddison, David R; Davis, E Christine; Gibson, Cara M; Arnold, A Elizabeth

    2009-04-01

    Fungi associated with seeds of tropical trees pervasively affect seed survival and germination, and thus are an important, but understudied, component of forest ecology. Here, we examine the diversity and evolutionary origins of fungi isolated from seeds of an important pioneer tree (Cecropia insignis, Cecropiaceae) following burial in soil for five months in a tropical moist forest in Panama. Our approach, which relied on molecular sequence data because most isolates did not sporulate in culture, provides an opportunity to evaluate several methods currently used to analyse environmental samples of fungi. First, intra- and interspecific divergence were estimated for the nu-rITS and 5.8S gene for four genera of Ascomycota that are commonly recovered from seeds. Using these values we estimated species boundaries for 527 isolates, showing that seed-associated fungi are highly diverse, horizontally transmitted, and genotypically congruent with some foliar endophytes from the same site. We then examined methods for inferring the taxonomic placement and phylogenetic relationships of these fungi, evaluating the effects of manual versus automated alignment, model selection, and inference methods, as well as the quality of BLAST-based identification using GenBank. We found that common methods such as neighbor-joining and Bayesian inference differ in their sensitivity to alignment methods; analyses of particular fungal genera differ in their sensitivity to alignments; and numerous and sometimes intricate disparities exist between BLAST-based versus phylogeny-based identification methods. Lastly, we used our most robust methods to infer phylogenetic relationships of seed-associated fungi in four focal genera, and reconstructed ancestral states to generate preliminary hypotheses regarding the evolutionary origins of this guild. Our results illustrate the dynamic evolutionary relationships among endophytic fungi, pathogens, and seed-associated fungi, and the apparent evolutionary distinctiveness of saprotrophs. Our study also elucidates the diversity, taxonomy, and ecology of an important group of plant-associated fungi and highlights some of the advantages and challenges inherent in the use of ITS data for environmental sampling of fungi.

  5. The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape.

    PubMed

    Yousaf, Aisha; Sohail Raza, Muhammad; Ali Abbasi, Amir

    2015-08-06

    Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates' conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water-land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods' enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Evolutionary trade-offs in plants mediate the strength of trophic cascades.

    PubMed

    Mooney, Kailen A; Halitschke, Rayko; Kessler, Andre; Agrawal, Anurag A

    2010-03-26

    Predators determine herbivore and plant biomass via so-called trophic cascades, and the strength of such effects is influenced by ecosystem productivity. To determine whether evolutionary trade-offs among plant traits influence patterns of trophic control, we manipulated predators and soil fertility and measured impacts of a major herbivore (the aphid Aphis nerii) on 16 milkweed species (Asclepias spp.) in a phylogenetic field experiment. Herbivore density was determined by variation in predation and trade-offs between herbivore resistance and plant growth strategy. Neither herbivore density nor predator effects on herbivores predicted the cascading effects of predators on plant biomass. Instead, cascade strength was strongly and positively associated with milkweed response to soil fertility. Accordingly, contemporary patterns of trophic control are driven by evolutionary convergent trade-offs faced by plants.

  7. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Gupta, R.; Zillig, W.; Woese, C. R.

    1988-01-01

    The sequence of the 16S ribosomal RNA gene from the archaebacterium Thermococcus celer shows the organism to be related to the methanogenic archaebacteria rather than to its phenotypic counterparts, the extremely thermophilic archaebacteria. This conclusion turns on the position of the root of the archaebacterial phylogenetic tree, however. The problems encountered in rooting this tree are analyzed in detail. Under conditions that suppress evolutionary noise both the parsimony and evolutionary distance methods yield a root location (using a number of eubacterial or eukaryotic outgroup sequences) that is consistent with that determined by an "internal rooting" method, based upon an (approximate) determination of relative evolutionary rates.

  8. The Reciprocal Links between Evolutionary-Ecological Sciences and Environmental Ethics.

    ERIC Educational Resources Information Center

    Rozzi, Ricardo

    1999-01-01

    Illustrates the reciprocal relationships between the sciences and environmental ethics by examining the Darwinian theory of evolution and discussing its implications for ecologists and ethicists. (CCM)

  9. COGcollator: a web server for analysis of distant relationships between homologous protein families.

    PubMed

    Dibrova, Daria V; Konovalov, Kirill A; Perekhvatov, Vadim V; Skulachev, Konstantin V; Mulkidjanian, Armen Y

    2017-11-29

    The Clusters of Orthologous Groups (COGs) of proteins systematize evolutionary related proteins into specific groups with similar functions. However, the available databases do not provide means to assess the extent of similarity between the COGs. We intended to provide a method for identification and visualization of evolutionary relationships between the COGs, as well as a respective web server. Here we introduce the COGcollator, a web tool for identification of evolutionarily related COGs and their further analysis. We demonstrate the utility of this tool by identifying the COGs that contain distant homologs of (i) the catalytic subunit of bacterial rotary membrane ATP synthases and (ii) the DNA/RNA helicases of the superfamily 1. This article was reviewed by Drs. Igor N. Berezovsky, Igor Zhulin and Yuri Wolf.

  10. Attachment. A pancultural need but a cultural construct.

    PubMed

    Keller, Heidi

    2016-04-01

    Attachment theory can be considered as the most important theory for children's socioemotional development during the first years of life with substantial implications also for the application in clinical and educational fields. Attachment theory has been developed out of the prevailing Euro-American childcare philosophy and based on a selective review of knowledge available from different disciplines, including evolutionary theory, ethology, and systems theory. What is left out is systematic evidence for relationship formation beyond the exclusive dyadic Western mother-child format. Recent evidence published by cultural anthropologists, psychologists, and evolutionary theorists is discussed in this paper especially with respect to caregiving arrangements with multiple caregivers. It is concluded that there is not one model of relationship formation that is adaptive for all of the world's population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sperm midpiece length predicts sperm swimming velocity in house mice.

    PubMed

    Firman, Renée C; Simmons, Leigh W

    2010-08-23

    Evolutionary biologists have argued that there should be a positive relationship between sperm size and sperm velocity, and that these traits influence a male's sperm competitiveness. However, comparative analyses investigating the evolutionary associations between sperm competition risk and sperm morphology have reported inconsistent patterns of association, and in vitro sperm competition experiments have further confused the issue; in some species, males with longer sperm achieve more competitive fertilization, while in other species males with shorter sperm have greater sperm competitiveness. Few investigations have attempted to address this problem. Here, we investigated the relationship between sperm morphology and sperm velocity in house mice (Mus domesticus). We conducted in vitro sperm velocity assays on males from established selection lines, and found that sperm midpiece size was the only phenotypic predictor of sperm swimming velocity.

  12. Phylogeny of lion tamarins (Leontopithecus spp) based on interphotoreceptor retinol binding protein intron sequences.

    PubMed

    Mundy, N I; Kelly, J

    2001-05-01

    The evolutionary relationships of the lion tamarins (Leontopithecus) were investigated using nuclear interphotoreceptor retinol binding protein (IRBP) intron sequences. Phylogenetic reconstructions strongly support the monophyly of the genus, and a sister relationship between the golden lion tamarin, Leontopithecus rosalia, and the black lion tamarin, L. chrysopygus, to the exclusion of the golden-headed lion tamarin, L. chrysomelas. The most parsimonious evolutionary reconstruction suggests that the ancestral lion tamarin and the common ancestor of L. rosalia and L. chrysopygus had predominantly black coats. This reconstruction is not consistent with a theory of orthogenetic evolution of coat color that was based on coat color evolution in marmosets and tamarins. An alternative reconstruction that is consistent with metachromism requires that ancestral lion tamarins had agouti hairs. Copyright 2001 Wiley-Liss, Inc.

  13. Evolutionary insights from studies on viruses of hyperthermophilic archaea.

    PubMed

    Prangishvili, David

    2003-05-01

    The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.

  14. Structure-function relationships in the evolutionary framework of spermine oxidase.

    PubMed

    Cervelli, Manuela; Salvi, Daniele; Polticelli, Fabio; Amendola, Roberto; Mariottini, Paolo

    2013-06-01

    Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure-function relationships in the evolution of spermine oxidase.

  15. Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences.

    PubMed

    Zhang, Y P; Ryder, O A

    1994-12-01

    The phylogenetic relationships among some bear species are still open questions. We present here mitochondrial DNA sequences of D-loop region, cytochrome b, 12S rRNA, tRNA(Pro), and tRNA(Thr) genes from all bear species and the giant panda. A series of evolutionary trees with concordant topology has been derived based on the combined data set of all of the mitochondrial DNA sequences, which may have resolved the evolutionary relationships of all bear species: the ancestor of the spectacled bear diverged first, followed by the sloth bear; the brown bear and polar bear are sister taxa relative to the Asiatic black bear; the closest relative of the American black bear is the sun bear. Primers for forensic identification of the giant panda and bears are proposed. Analysis of these data, in combination with data from primates and antelopes, suggests that relative substitutional rates between different mitochondrial DNA regions may vary greatly among different taxa of the vertebrates.

  16. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  17. Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific

    PubMed Central

    Price, Mark T.; Fullerton, Heather; Moyer, Craig L.

    2015-01-01

    Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, making biogeographic patterns and evolutionary relationships apparent. Isolates were differentiated into regionally endemic populations however there was also evidence in some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus isolates and presence of distinct lineages within the same vent site suggests the utilization of varying ecological niches in this genus. In addition to resolving biogeographic patterns in Thermococcus, this study has raised new questions about the closely related Pyrococcus genus. The phylogenetic placement of Pyrococcus type strains shows the close relationship between Thermococcus and Pyrococcus and the unresolved divergence of these two genera. PMID:26441901

  18. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences.

    PubMed

    Kusumi, J; Tsumura, Y; Yoshimaru, H; Tachida, H

    2000-10-01

    Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.

  19. How evolutionary principles improve the understanding of human health and disease.

    PubMed

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  20. How evolutionary principles improve the understanding of human health and disease

    PubMed Central

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-01-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies. PMID:25567971

  1. Integration of vessel traits, wood density, and height in angiosperm shrubs and trees.

    PubMed

    Martínez-Cabrera, Hugo I; Schenk, H Jochen; Cevallos-Ferriz, Sergio R S; Jones, Cynthia S

    2011-05-01

    Trees and shrubs tend to occupy different niches within and across ecosystems; therefore, traits related to their resource use and life history are expected to differ. Here we analyzed how growth form is related to variation in integration among vessel traits, wood density, and height. We also considered the ecological and evolutionary consequences of such differences. In a sample of 200 woody plant species (65 shrubs and 135 trees) from Argentina, Mexico, and the United States, standardized major axis (SMA) regression, correlation analyses, and ANOVA were used to determine whether relationships among traits differed between growth forms. The influence of phylogenetic relationships was examined with a phylogenetic ANOVA and phylogenetically independent contrasts (PICs). A principal component analysis was conducted to determine whether trees and shrubs occupy different portions of multivariate trait space. Wood density did not differ between shrubs and trees, but there were significant differences in vessel diameter, vessel density, theoretical conductivity, and as expected, height. In addition, relationships between vessel traits and wood density differed between growth forms. Trees showed coordination among vessel traits, wood density, and height, but in shrubs, wood density and vessel traits were independent. These results hold when phylogenetic relationships were considered. In the multivariate analyses, these differences translated as significantly different positions in multivariate trait space occupied by shrubs and trees. Differences in trait integration between growth forms suggest that evolution of growth form in some lineages might be associated with the degree of trait interrelation.

  2. Spreading of multiple epidemics with cross immunization.

    PubMed

    Uekermann, Florian; Sneppen, Kim

    2012-09-01

    Pathogen-host relationships are the result of an ongoing coevolutionary race where the immune system of the host attempts to eliminate the pathogen, while the successful pathogen mutates to become invisible for the host's immune system. We here propose a minimal pathogen-host evolution model that takes into account cross immunization and allows for evolution of a spatially heterogeneous immune status of a population of hosts. With only the mutation rate as a determining parameter, the model allows us to produce an evolutionary tree of diseases which is highly branched, but hardly ever splits into separate long-lived trunks. Side branches remain short lived and seldom diverge to the extent of losing all cross immunizations.

  3. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    NASA Astrophysics Data System (ADS)

    Stringer, Martin; Cole, Shaun; Frenk, Carlos S.; Stark, Daniel P.

    2011-07-01

    Star formation rate and accumulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z˜ 4, have led to opposite conclusions. Using a model galaxy population, we investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to a major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within the hierarchical galaxy formation theory.

  4. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  5. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    PubMed Central

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  6. Evolutionary relationships in Vaccinium section Cyanococcus

    USDA-ARS?s Scientific Manuscript database

    The North American Vaccinium section Cyanococcus includes the ecologically and economically important blueberry species, Vaccinium corymbosum (highbush blueberry), Vaccinium angustifolium (lowbush blueberry), Vaccinium myrtilloides (velvet-leaf blueberry), and Vaccinium virgatum (rabbiteye blueberry...

  7. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    PubMed

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Comparative In silico Study of Sex-Determining Region Y (SRY) Protein Sequences Involved in Sex-Determining.

    PubMed

    Vakili Azghandi, Masoume; Nasiri, Mohammadreza; Shamsa, Ali; Jalali, Mohsen; Shariati, Mohammad Mahdi

    2016-04-01

    The SRY gene (SRY) provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/) and MEGA6 softwares. The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale) and Tursiopsaduncus (dolphin) have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee) have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  9. Evolutionary model of an anonymous consumer durable market

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.

  10. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    PubMed Central

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  11. Integrating evo-devo with ecology for a better understanding of phenotypic evolution

    PubMed Central

    Emília Santos, M.; Berger, Chloé S.; Refki, Peter N.

    2015-01-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. PMID:25750411

  12. Sequence similarities and evolutionary relationships of microbial, plant and animal alpha-amylases.

    PubMed

    Janecek, S

    1994-09-01

    Amino acid sequence comparison of 37 alpha-amylases from microbial, plant and animal sources was performed to identify their mutual sequence similarities in addition to the five already described conserved regions. These sequence regions were examined from structure/function and evolutionary perspectives. An unrooted evolutionary tree of alpha-amylases was constructed on a subset of 55 residues from the alignment of sequence similarities along with conserved regions. The most important new information extracted from the tree was as follows: (a) the close evolutionary relationship of Alteromonas haloplanctis alpha-amylase (thermolabile enzyme from an antarctic psychrotroph) with the already known group of homologous alpha-amylases from streptomycetes, Thermomonospora curvata, insects and mammals, and (b) the remarkable 40.1% identity between starch-saccharifying Bacillus subtilis alpha-amylase and the enzyme from the ruminal bacterium Butyrivibrio fibrisolvens, an alpha-amylase with an unusually large polypeptide chain (943 residues in the mature enzyme). Due to a very high degree of similarity, the whole amino acid sequences of three groups of alpha-amylases, namely (a) fungi and yeasts, (b) plants, and (c) A. haloplanctis, streptomycetes, T. curvata, insects and mammals, were aligned independently and their unrooted distance trees were calculated using these alignments. Possible rooting of the trees was also discussed. Based on the knowledge of the location of the five disulfide bonds in the structure of pig pancreatic alpha-amylase, the possible disulfide bridges were established for each of these groups of homologous alpha-amylases.

  13. The evolution of life-history variation in fishes, with particular reference to flatfishes

    NASA Astrophysics Data System (ADS)

    Roff, Derek A.

    This paper explores four aspects of the evolution of life-history variation in fish, with particular reference to the flatfishes: 1. genetic variation and evolutionary response; 2. the size and age at first reproduction; 3. adult lifespan and variation in recruitment; 4. the relationship between reproductive effort and age. Evolutionary response may be limited by previous evolutionary pathways (phylogenetic variation) or by lack of genetic variation due to selection for a single trait. Estimates of heritability suggest, as predicted, that selection is stronger on life-history traits than morphological traits; but there is still adequate genetic variation to permit fairly rapid evolutionary changes. Several approaches to the analysis of the optimal age and size at first reproduction are discussed in the light of a general life-history model based on the assumption that natural selection maximizes r or R 0. It is concluded that one of the most important areas of future research is the relationship between reproduction and mortality. Murphy's hypothesis that the reproductive lifespan should increase with variation in spawning success is shown to be incorrect for fish, at least at the level of interspecific comparison. The model of Charlesworth & León predicting the sufficient condition for reproductive effort to increase with age is tested: in 28 of 31 cases the model predicts an increase of reproductive effort with age. These results suggest that, in general, reproductive effort should increase with age in fish. This prediction is confirmed in the 15 species for which adequate data exist.

  14. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    PubMed

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  15. Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus).

    PubMed

    Reynolds, R Graham; Niemiller, Matthew L; Hedges, S Blair; Dornburg, Alex; Puente-Rolón, Alberto R; Revell, Liam J

    2013-09-01

    The evolutionary and biogeographic history of West Indian boid snakes (Epicrates), a group of nine species and 14 subspecies, was once thought to be well understood; however, new research has indicated that we are missing a clear understanding of the evolutionary relationships of this group. Here, we present the first multilocus, species-tree based analyses of the evolutionary relationships, divergence times, and historical biogeography of this clade with data from 10 genes and 6256 bp. We find evidence for a single colonization of the Caribbean from mainland South America in the Oligocene or early Miocene, followed by a radiation throughout the Greater Antilles and Bahamas. These findings support the previous suggestion that Epicrates sensu lato Wagler is paraphyletic with respect to the anacondas (Eunectes Wagler), and hence we restrict Epicrates to the mainland clade and use the available name Chilabothrus Duméril and Bibron for the West Indian clade. Our results suggest some diversification occurred within island banks, though most species divergence events seem to have occurred in allopatry. We also find evidence for a remarkable diversification within the Bahamian archipelago suggesting that the recognition of another Bahamian endemic species C. strigilatus is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Thioredoxin and evolution

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1991-01-01

    Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.

  17. Pareto-optimal phylogenetic tree reconciliation

    PubMed Central

    Libeskind-Hadas, Ran; Wu, Yi-Chieh; Bansal, Mukul S.; Kellis, Manolis

    2014-01-01

    Motivation: Phylogenetic tree reconciliation is a widely used method for reconstructing the evolutionary histories of gene families and species, hosts and parasites and other dependent pairs of entities. Reconciliation is typically performed using maximum parsimony, in which each evolutionary event type is assigned a cost and the objective is to find a reconciliation of minimum total cost. It is generally understood that reconciliations are sensitive to event costs, but little is understood about the relationship between event costs and solutions. Moreover, choosing appropriate event costs is a notoriously difficult problem. Results: We address this problem by giving an efficient algorithm for computing Pareto-optimal sets of reconciliations, thus providing the first systematic method for understanding the relationship between event costs and reconciliations. This, in turn, results in new techniques for computing event support values and, for cophylogenetic analyses, performing robust statistical tests. We provide new software tools and demonstrate their use on a number of datasets from evolutionary genomic and cophylogenetic studies. Availability and implementation: Our Python tools are freely available at www.cs.hmc.edu/∼hadas/xscape. Contact: mukul@engr.uconn.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24932009

  18. Wealth, fertility and adaptive behaviour in industrial populations

    PubMed Central

    2016-01-01

    The lack of association between wealth and fertility in contemporary industrialized populations has often been used to question the value of an evolutionary perspective on human behaviour. Here, we first present the history of this debate, and the evolutionary explanations for why wealth and fertility (the number of children) are decoupled in modern industrial settings. We suggest that the nature of the relationship between wealth and fertility remains an open question because of the multi-faceted nature of wealth, and because existing cross-sectional studies are ambiguous with respect to how material wealth and fertility are linked. A literature review of longitudinal studies on wealth and fertility shows that the majority of these report positive effects of wealth, although levels of fertility seem to fall below those that would maximize fitness. We emphasize that reproductive decision-making reflects a complex interplay between individual and societal factors that resists simple evolutionary interpretation, and highlight the role of economic insecurity in fertility decisions. We conclude by discussing whether the wealth–fertility relationship can inform us about the adaptiveness of modern fertility behaviour, and argue against simplistic claims regarding maladaptive behaviour in humans. PMID:27022080

  19. Wealth, fertility and adaptive behaviour in industrial populations.

    PubMed

    Stulp, Gert; Barrett, Louise

    2016-04-19

    The lack of association between wealth and fertility in contemporary industrialized populations has often been used to question the value of an evolutionary perspective on human behaviour. Here, we first present the history of this debate, and the evolutionary explanations for why wealth and fertility (the number of children) are decoupled in modern industrial settings. We suggest that the nature of the relationship between wealth and fertility remains an open question because of the multi-faceted nature of wealth, and because existing cross-sectional studies are ambiguous with respect to how material wealth and fertility are linked. A literature review of longitudinal studies on wealth and fertility shows that the majority of these report positive effects of wealth, although levels of fertility seem to fall below those that would maximize fitness. We emphasize that reproductive decision-making reflects a complex interplay between individual and societal factors that resists simple evolutionary interpretation, and highlight the role of economic insecurity in fertility decisions. We conclude by discussing whether the wealth-fertility relationship can inform us about the adaptiveness of modern fertility behaviour, and argue against simplistic claims regarding maladaptive behaviour in humans. © 2016 The Author(s).

  20. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia.

    PubMed

    Liu, Tong; Sun, Keping; Park, Yung Chul; Feng, Jiang

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum , is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations.

  1. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia

    PubMed Central

    Liu, Tong; Park, Yung Chul

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum, is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations. PMID:27761309

  2. Some results on ethnic conflicts based on evolutionary game simulation

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Yi, Yunfei; Wu, Hongrun; Liu, Yuhang; Tong, Xiaonian; Zheng, Bojin

    2014-07-01

    The force of the ethnic separatism, essentially originating from the negative effect of ethnic identity, is damaging the stability and harmony of multiethnic countries. In order to eliminate the foundation of the ethnic separatism and set up a harmonious ethnic relationship, some scholars have proposed a viewpoint: ethnic harmony could be promoted by popularizing civic identity. However, this viewpoint is discussed only from a philosophical prospective and still lacks support of scientific evidences. Because ethnic group and ethnic identity are products of evolution and ethnic identity is the parochialism strategy under the perspective of game theory, this paper proposes an evolutionary game simulation model to study the relationship between civic identity and ethnic conflict based on evolutionary game theory. The simulation results indicate that: (1) the ratio of individuals with civic identity has a negative association with the frequency of ethnic conflicts; (2) ethnic conflict will not die out by killing all ethnic members once for all, and it also cannot be reduced by a forcible pressure, i.e., increasing the ratio of individuals with civic identity; (3) the average frequencies of conflicts can stay in a low level by promoting civic identity periodically and persistently.

  3. Evolutionary relationships among sympatric life history forms of Dolly Varden inhabiting the landlocked Kronotsky Lake, Kamchatka, and a neighboring anadromous population

    USGS Publications Warehouse

    Ostberg, C.O.; Pavlov, S.D.; Hauser, L.

    2009-01-01

    We investigated the evolutionary relationships among five sympatric morphs of Dolly Varden Salvelinus malma (white, Schmidti, longhead, river, and dwarf) inhabiting landlocked Kronotsky Lake on the Kamchatka Peninsula, Russia, and an anadromous population below the barrier waterfall on the outflowing Kronotsky River. Morphological analyses indicated phenotypic differentiation corresponding to preferred habitat, the longhead (a limnetic piscivorous morph) having a fusiform body, long jaw, and short fins and the Schmidti (a benthic morph) having a robust body, small jaw, and long fins. Analysis of molecular variance among the Kronotsky Lake morphs indicated that contemporary gene flow is restricted both among morphs within locations and among locations within morphs. Gene flow from Kronotsky Lake into the anadromous population also appears to be restricted. Our findings indicate that there are two divergent evolutionary lineages, one consisting of the white, Schmidti, river, and dwarf morphs and the other of the longhead morph and the anadromous population, which suggests that Kronotsky Lake was subject to separate waves of immigration. The Kronotsky Lake Dolly Varden morphs may represent an example of ecological speciation in progress, and we present a working hypothesis for the diversification of morphs within Kronotsky Lake.

  4. Molecular Phylogeny of the Animal Kingdom.

    ERIC Educational Resources Information Center

    Field, Katharine G.; And Others

    1988-01-01

    A rapid sequencing method for ribosomal RNA was applied to the resolution of evolutionary relationships among Metazoa. Describes the four groups (chordates, echinoderms, arthropods, and eucoelomate protostomes) that radiated from the coelomates. (TW)

  5. [The effect of prostitution on the stability of romantic relationships. Empirical testing of an evolutionary model].

    PubMed

    Meskó, Norbert; Láng, András; Bernáth, László

    2012-01-01

    Until now prostitution has only been explained from two evolutionary points of view. According to the short-term mate choice strategy approach motives for seeking prostitutes are to be found in the nature of male sexuality. Another theory - the evolutionary interpretation of female promiscuity's motivational base - indirectly completes the understanding of prostitution. This theory emphasizes the adaptive benefits of female promiscuity under certain circumstances. The aim of our study was to test a third idea (Adaptive Support Theory), according to which women in long-term relationships support their partners' (husbands') sexual relations with prostitutes. University female students (n=208, age mean±SD=23.55±7.13, min=18, max=50) completed our questionnaire. Female participants are presumed to recognize the advantages and threats of their partners' sexual relations with prostitutes compared to other possible forms of betrayal. Hence it is hypothesized that women overtly support the possibility of their partners' relations with prostitutes. Our results show that women are able to assess the favorable and unfavorable effects of their partners' relations with prostitutes. At the same time they do not directly support this form of betrayal over other possibilities. However, female participants were more approving of their partners' relations with prostitutes (in a thought- experiment), than they guessed their partner would demand such services. According to our model women living in long-term relationship are adaptively interested in their partner's cheating on them with a prostitute (rather than engaging in other kinds of sexual relations), because this finance based external sexual liaison is the least threatening for the stability of the long-term relationship.

  6. Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group.

    PubMed

    Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D

    2018-08-01

    Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Evaluating community–environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly

    PubMed Central

    Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191

  8. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  9. Theoretical Foundation of the RelTime Method for Estimating Divergence Times from Variable Evolutionary Rates

    PubMed Central

    Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir

    2018-01-01

    Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954

  10. Evolutionary game theory: cells as players.

    PubMed

    Hummert, Sabine; Bohl, Katrin; Basanta, David; Deutsch, Andreas; Werner, Sarah; Theissen, Günter; Schroeter, Anja; Schuster, Stefan

    2014-12-01

    In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.

  11. Evolutionary ethnobiology and cultural evolution: opportunities for research and dialog.

    PubMed

    Santoro, Flávia Rosa; Nascimento, André Luiz Borba; Soldati, Gustavo Taboada; Ferreira Júnior, Washington Soares; Albuquerque, Ulysses Paulino

    2018-01-09

    The interest in theoretical frameworks that improve our understanding of social-ecological systems is growing within the field of ethnobiology. Several evolutionary questions may underlie the relationships between people and the natural resources that are investigated in this field. A new branch of research, known as evolutionary ethnobiology (EE), focuses on these questions and has recently been formally conceptualized. The field of cultural evolution (CE) has significantly contributed to the development of this new field, and it has introduced the Darwinian concepts of variation, competition, and heredity to studies that focus on the dynamics of local knowledge. In this article, we introduce CE as an important theoretical framework for evolutionary ethnobiological research. We present the basic concepts and assumptions of CE, along with the adjustments that are necessary for its application in EE. We discuss different ethnobiological studies in the context of this new framework and the new opportunities for research that exist in this area. We also propose a dialog that includes our findings in the context of cultural evolution.

  12. Symmetric Decomposition of Asymmetric Games.

    PubMed

    Tuyls, Karl; Pérolat, Julien; Lanctot, Marc; Ostrovski, Georg; Savani, Rahul; Leibo, Joel Z; Ord, Toby; Graepel, Thore; Legg, Shane

    2018-01-17

    We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.

  13. Disease and Evolution.

    ERIC Educational Resources Information Center

    Wells, Calvin

    1978-01-01

    Discusses disease and genetic disorders as evolutionary mechanisms. Emphasizes the archeological evidence from past human populations and societies, mentioning albinism, scurvy, sleeping sickness, bone conditions, various host-parasite relationships, rickets, sickle-cell anemia, diabetes, and influenza. (CS)

  14. Exploring the evolutionary mechanism of complex supply chain systems using evolving hypergraphs

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Sun, Shiwei; Liu, Han

    2018-01-01

    A new evolutionary model is proposed to describe the characteristics and evolution pattern of supply chain systems using evolving hypergraphs, in which nodes represent enterprise entities while hyperedges represent the relationships among diverse trades. The nodes arrive at the system in accordance with a Poisson process, with the evolving process incorporating the addition of new nodes, linking of old nodes, and rewiring of links. Grounded in the Poisson process theory and continuum theory, the stationary average hyperdegree distribution is shown to follow a shifted power law (SPL), and the theoretical predictions are consistent with the results of numerical simulations. Testing the impact of parameters on the model yields a positive correlation between hyperdegree and degree. The model also uncovers macro characteristics of the relationships among enterprises due to the microscopic interactions among individuals.

  15. Evolution of the arginase fold and functional diversity

    PubMed Central

    Dowling, Daniel P.; Costanzo, Luigi Di; Gennadios, Heather A.; Christianson, David W.

    2009-01-01

    The large number of protein structures deposited in the Protein Data Bank allows for the identification of novel structural superfamilies based on conservation of fold in addition to conservation of amino acid sequence. Since sequence diverges more rapidly than fold in protein evolution, proteins with little or no significant sequence identity are occasionally observed to adopt similar folds, thereby reflecting unanticipated evolutionary relationships. Here, we review the unique α/β fold first observed in the manganese metalloenzyme rat liver arginase, consisting of a parallel 8 stranded β-sheet surrounded by several helices, and its evolutionary relationship with the zinc-requiring and/or iron-requiring histone deacetylases and acetylpolyamine amidohydrolases. Structural comparisons reveal key features of the core α/β fold that contribute to the divergent metal ion specificity and stoichiometry required for the chemical and biological functions of these enzymes. PMID:18360740

  16. What are the taxonomic and evolutionary relationships of the Protozoa to the Protista?

    PubMed

    Corliss, J O

    1981-01-01

    In order to consider the problems of protist-protozoan interrelationships in proper perspective, a new "packaging" of phyla within the great kingdom Protista is proposed. Although it is based largely on historical groupings and is admittedly "unnatural" (nor are taxonomic names proposed for my five supraphyletic groupings), the arrangement may clarify some long-persisting problems, especially with regard to mixed algal-protozoan groups and/or phylogenies. Some three dozen phyla are recognized as comprising the kingdom, with the number that might be considered as "protozoan" ranging from 10 to 25, depending on one's viewpoint. No taxon should have the formal name "Protozoa", "Phytoflagellate" and "zooflagellate" are also misleading categories. Taxonomic and evolutionary relationships of phyla containing protozoa (with small "p") are inextricably intermeshed with those of other protist phyla, and thus no unified protozoan super-group exists.

  17. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  18. Evolutionary tree design: An exploratory study of the influence of linear versus branching format on visitors' interpretation and understanding across age groups

    NASA Astrophysics Data System (ADS)

    MacDonald, Teresa Elise

    This exploratory study sought to investigate the influence of tree graphic design---specifically linear versus branching depictions of taxa---on visitors in three different age groups (aged 11-13, 14-18, adults) interpretation and understanding using a multiple-case study strategy. The findings from this research indicate that linear and branched depictions elicit qualitatively different narratives and explanations about the relationships between the taxa in all age groups. Branched tree graphics support scientifically appropriate explanations of evolutionary relationships, i.e. that taxa are related via shared or common ancestry; while linear representations reinforce intuitive interpretations of ancestor-descendant or anagenic relationships. Furthermore, differences in the language used for linear and branched trees suggests that there is a spectrum within an analogy of developmental change that is thought to serve as a transitional concept between intuitive and scientific understanding--with 'evolved from' for branched depictions of taxa representing a shift towards an interpretation of shared ancestry rather than an individual transformation from one thing into another. In addition, branched graphics appear to support the correct reading and interpretation of shared or common ancestry in tree diagrams. Mixed reasoning was common and overall reasoning patterns were broadly similar among participants in all age groups, however, older youth (aged 14 to 18) and adults often provided more detail in their explanations and sometimes included references to evolutionary ideas such as variation, inheritance and selection.

  19. Genomic Data from Extinct North American Camelops Revise Camel Evolutionary History.

    PubMed

    Heintzman, Peter D; Zazula, Grant D; Cahill, James A; Reyes, Alberto V; MacPhee, Ross D E; Shapiro, Beth

    2015-09-01

    Recent advances in paleogenomic technologies have enabled an increasingly detailed understanding of the evolutionary relationships of now-extinct mammalian taxa. However, a number of enigmatic Quaternary species have never been characterized with molecular data, often because available fossils are rare or are found in environments that are not optimal for DNA preservation. Here, we analyze paleogenomic data extracted from bones attributed to the late Pleistocene western camel, Camelops cf. hesternus, a species that was distributed across central and western North America until its extinction approximately 13,000 years ago. Despite a modal sequence length of only around 35 base pairs, we reconstructed high-coverage complete mitochondrial genomes and low-coverage partial nuclear genomes for each specimen. We find that Camelops is sister to African and Asian bactrian and dromedary camels, to the exclusion of South American camelids (llamas, guanacos, alpacas, and vicuñas). These results contradict previous morphology-based phylogenetic models for Camelops, which suggest instead a closer relationship between Camelops and the South American camelids. The molecular data imply a Late Miocene divergence of the Camelops clade from lineages that separately gave rise to the extant camels of Eurasia. Our results demonstrate the increasing capacity of modern paleogenomic methods to resolve evolutionary relationships among distantly related lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity

    PubMed Central

    Wei, Ran; Yan, Yue-Hong; Harris, AJ; Kang, Jong-Soo; Shen, Hui; Zhang, Xian-Chun

    2017-01-01

    Abstract The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. PMID:28854625

  1. Selection within organisms in the nineteenth century: Wilhelm Roux's complex legacy.

    PubMed

    Heams, Thomas

    2012-09-01

    Selectionism, or the extension of darwinian chance/selection dynamics beyond the individual level, has a long history in biological thought. It has generated important theories in immunology or neurology, and turns out to be a convincing framework to account for the intrinsic stochastic nature of core events in cellular biology. When looking back at the intellectual origins of selectionism, the essay by the German embryologist Wilhelm Roux, Der Kampf der Theile im Organismus (The Struggle of the Parts in the Organism - 1881) might be one, if not the earliest reference after the darwinian revolution. It describes the individual as a multilevel structure, where each level results from a 'darwinian' struggle of its parts (molecules, cells, tissues, organs). But Roux's theory, far from being a simple extension of natural selection, has complex and even conflictual relationships with darwinism. This essay is worth rediscovering as a subtle historical testimony of the evolutionary and developmental life sciences debates of its time. Moreover, some of its theses may also enrich some current debates among evolutionary biologists over levels of selection, and among cellular and molecular biologists over the status of determinism in biology today. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Evolution of extortion in Iterated Prisoner's Dilemma games.

    PubMed

    Hilbe, Christian; Nowak, Martin A; Sigmund, Karl

    2013-04-23

    Iterated games are a fundamental component of economic and evolutionary game theory. They describe situations where two players interact repeatedly and have the ability to use conditional strategies that depend on the outcome of previous interactions, thus allowing for reciprocation. Recently, a new class of strategies has been proposed, so-called "zero-determinant" strategies. These strategies enforce a fixed linear relationship between one's own payoff and that of the other player. A subset of those strategies allows "extortioners" to ensure that any increase in one player's own payoff exceeds that of the other player by a fixed percentage. Here, we analyze the evolutionary performance of this new class of strategies. We show that in reasonably large populations, they can act as catalysts for the evolution of cooperation, similar to tit-for-tat, but that they are not the stable outcome of natural selection. In very small populations, however, extortioners hold their ground. Extortion strategies do particularly well in coevolutionary arms races between two distinct populations. Significantly, they benefit the population that evolves at the slower rate, an example of the so-called "Red King" effect. This may affect the evolution of interactions between host species and their endosymbionts.

  3. Association between genomic instability and evolutionary chromosomal rearrangements in Neotropical Primates.

    PubMed

    Puntieri, Fiona; Andrioli, Nancy B; Nieves, Mariela

    2018-06-14

    During the last decades the mammalian genome has been proposed to have regions prone to breakage and reorganization concentrated in certain chromosomal bands that seem to correspond to evolutionary breakpoints. These bands are likely to be involved in chromosome fragility or instability. In Primates, some biomarkers of genetic damage may be associated with various degrees of genomic instability. Here, we investigated the usefulness of Sister Chromatid Exchange (SCE) as a biomarker of potential sites of frequent chromosome breakage and rearrangement in Alouatta caraya, Ateles chamek, Ateles paniscus and Cebus cay. These Neotropical species have particular genomic and chromosomal features allowing the analysis of genomic instability for comparative purposes. We determined the frequency of spontaneous induction of SCEs and assessed the relationship between these and structural rearrangements implicated in the evolution of the primates of interest. Overall, A. caraya and C. cay presented a low proportion of statistically significant unstable bands, suggesting fairly stable genomes and the existence of some kind of protection against endogenous damage. In contrast, Ateles showed a highly significant proportion of unstable bands; these were mainly found in the rearranged regions, which is consistent with the numerous genomic reorganizations that might have occurred during the evolution of this genus.

  4. Host specificity in biological control: insights from opportunistic pathogens

    PubMed Central

    Brodeur, Jacques

    2012-01-01

    Host/prey specificity is a significant concern in biological control. It influences the effectiveness of a natural enemy and the risks it might have on non-target organisms. Furthermore, narrow host specificity can be a limiting factor for the commercialization of natural enemies. Given the great diversity in taxonomy and mode of action of natural enemies, host specificity is a highly variable biological trait. This variability can be illustrated by opportunist fungi from the genus Lecanicillium, which have the capacity to exploit a wide range of hosts – from arthropod pests to fungi causing plant diseases – through different modes of action. Processes determining evolutionary trajectories in host specificity are closely linked to the modes of action of the natural enemy. This hypothesis is supported by advances in fungal genomics concerning the identity of genes and biological traits that are required for the evolution of life history strategies and host range. Despite the significance of specificity, we still need to develop a conceptual framework for better understanding of the relationship between specialization and successful biological control. The emergence of opportunistic pathogens and the development of ‘omic’ technologies offer new opportunities to investigate evolutionary principles and applications of the specificity of biocontrol agents. PMID:22949922

  5. Molecular classification of pesticides including persistent organic pollutants, phenylurea and sulphonylurea herbicides.

    PubMed

    Torrens, Francisco; Castellano, Gloria

    2014-06-05

    Pesticide residues in wine were analyzed by liquid chromatography-tandem mass spectrometry. Retentions are modelled by structure-property relationships. Bioplastic evolution is an evolutionary perspective conjugating effect of acquired characters and evolutionary indeterminacy-morphological determination-natural selection principles; its application to design co-ordination index barely improves correlations. Fractal dimensions and partition coefficient differentiate pesticides. Classification algorithms are based on information entropy and its production. Pesticides allow a structural classification by nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours depend on number of cycles. The novelty of the approach is that the structural parameters are related to retentions. Classification algorithms are based on information entropy. When applying procedures to moderate-sized sets, excessive results appear compatible with data suffering a combinatorial explosion. However, equipartition conjecture selects criterion resulting from classification between hierarchical trees. Information entropy permits classifying compounds agreeing with principal component analyses. Periodic classification shows that pesticides in the same group present similar properties; those also in equal period, maximum resemblance. The advantage of the classification is to predict the retentions for molecules not included in the categorization. Classification extends to phenyl/sulphonylureas and the application will be to predict their retentions.

  6. Student Interpretations of Phylogenetic Trees in an Introductory Biology Course

    PubMed Central

    Dees, Jonathan; Niemi, Jarad; Montplaisir, Lisa

    2014-01-01

    Phylogenetic trees are widely used visual representations in the biological sciences and the most important visual representations in evolutionary biology. Therefore, phylogenetic trees have also become an important component of biology education. We sought to characterize reasoning used by introductory biology students in interpreting taxa relatedness on phylogenetic trees, to measure the prevalence of correct taxa-relatedness interpretations, and to determine how student reasoning and correctness change in response to instruction and over time. Counting synapomorphies and nodes between taxa were the most common forms of incorrect reasoning, which presents a pedagogical dilemma concerning labeled synapomorphies on phylogenetic trees. Students also independently generated an alternative form of correct reasoning using monophyletic groups, the use of which decreased in popularity over time. Approximately half of all students were able to correctly interpret taxa relatedness on phylogenetic trees, and many memorized correct reasoning without understanding its application. Broad initial instruction that allowed students to generate inferences on their own contributed very little to phylogenetic tree understanding, while targeted instruction on evolutionary relationships improved understanding to some extent. Phylogenetic trees, which can directly affect student understanding of evolution, appear to offer introductory biology instructors a formidable pedagogical challenge. PMID:25452489

  7. Small subunit ribosomal RNA genes of tabanids and hippoboscids (Diptera: Brachycera): evolutionary relationships and comparison with other Diptera.

    PubMed

    Carreno, R A; Barta, J R

    1998-11-01

    The small subunit ribosomal RNA (SSU rRNA) genes of hippoboscid (Ornithoica vicina Walker) and tabanid (Chrysops niger Macquart) Diptera were sequenced to determine their phylogenetic position within the order and to determine whether or not extensive hypervariable regions in this gene are widespread in the Diptera. A parsimony analysis of an alignment containing 8 dipteran sequences produced a single most parsimonious tree that placed O. vicina as sister group to Drosophila melanogaster Meigen. The tabanid Chrysops niger was sister group to the asilomorphan taxa, and the sister group to the Brachycera was a Tipula sp. although this relationship was not supported by bootstrap analysis. The hippoboscid and tabanid sequences contain extensive hypervariable regions in the V2, V4, V6, and V7 regions as do other Diptera. When these regions of the alignment were excluded from the phylogenetic analysis, a single most parsimonious tree was found. This tree had an identical overall topology to the tree obtained from the total data set. The hypervariable regions in parts of the dipteran SSU rRNA genes were more extensive in the nematocerous dipteran sequences used in this study than in the other dipteran representatives; these hypervariable regions may be of more utility in inferring relationship among species and subspecies than at the suprageneric level.

  8. Properties of Artifact Representations for Evolutionary Design

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2004-01-01

    To achieve evolutionary design systems that scale to the levels achieved by man-made artifacts we can look to their characteristics of modularity, hierarchy and regularity to guide us. For this we focus on design representations, since they strongly determine the ability of evolutionary design systems to evolve artifacts with these characteristics. We identify three properties of design representations - combination, control-flow and abstraction - and discuss how they relate to hierarchy, modularity and regularity.

  9. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Treesearch

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  10. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci.

    Treesearch

    John Syring; Ann Willyard; Richard Cronn; Aaron Liston

    2005-01-01

    Sequence data from nrITS and cpDNA have failed to fully resolve phylogenetic relationships among Pinus species. Four low-copy nuclear genes, developed from the screening of 73 mapped conifer anchor loci, were sequenced from 12 species representing all subsections. Individual loci do not uniformly support either the nrITS or cpDNA hypotheses and in...

  11. The contrasting phylodynamics of human influenza B viruses

    PubMed Central

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne CF; Halpin, Rebecca; Lee, Raphael TC; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin JD; Barr, Ian G

    2015-01-01

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology. DOI: http://dx.doi.org/10.7554/eLife.05055.001 PMID:25594904

  12. A predicted astrometric microlensing event by a nearby white dwarf

    NASA Astrophysics Data System (ADS)

    McGill, Peter; Smith, Leigh C.; Evans, N. Wyn; Belokurov, Vasily; Smart, R. L.

    2018-07-01

    We used the Tycho-Gaia Astrometric Solution catalogue, part of Gaia Data Release 1, to search for candidate astrometric microlensing events expected to occur within the remaining lifetime of the Gaia satellite. Our search yielded one promising candidate. We predict that the nearby DQ type white dwarf LAWD 37 (WD 1142-645) will lens a background star and will reach closest approach on 2019 November 11 (±4 d) with impact parameter 380 ± 10 mas. This will produce an apparent maximum deviation of the source position of 2.8 ± 0.1 mas. In the most propitious circumstance, Gaia will be able to determine the mass of LAWD 37 to {˜ }3 per cent. This mass determination will provide an independent check on atmospheric models of white dwarfs with helium rich atmospheres, as well as tests of white dwarf mass radius relationships and evolutionary theory.

  13. A Predicted Astrometric Microlensing Event by a Nearby White Dwarf

    NASA Astrophysics Data System (ADS)

    McGill, Peter; Smith, Leigh C.; Wyn Evans, N.; Belokurov, Vasily; Smart, R. L.

    2018-04-01

    We used the Tycho-Gaia Astrometric Solution catalogue, part of Gaia Data Release 1, to search for candidate astrometric microlensing events expected to occur within the remaining lifetime of the Gaia satellite. Our search yielded one promising candidate. We predict that the nearby DQ type white dwarf LAWD 37 (WD 1142-645) will lens a background star and will reach closest approach on November 11th 2019 (± 4 days) with impact parameter 380 ± 10 mas. This will produce an apparent maximum deviation of the source position of 2.8 ± 0.1 mas. In the most propitious circumstance, Gaia will be able to determine the mass of LAWD 37 to ˜3%. This mass determination will provide an independent check on atmospheric models of white dwarfs with helium rich atmospheres, as well as tests of white dwarf mass radius relationships and evolutionary theory.

  14. The application of evolutionary medicine principles for sustainable malaria control: a scoping study.

    PubMed

    Ocampo, Denise; Booth, Mark

    2016-07-22

    Current interventions against malaria have significantly reduced the number of people infected and the number of deaths. Concerns about emerging resistance of both mosquitoes and parasites to intervention have been raised, and questions remain about how best to generate wider knowledge of the underlying evolutionary processes. The pedagogical and research principles of evolutionary medicine may provide an answer to this problem. Eight programme managers and five academic researchers were interviewed by telephone or videoconference to elicit their first-hand views and experiences of malaria control given that evolution is a constant threat to sustainable control. Interviewees were asked about their views on the relationship between practit groups and academics and for their thoughts on whether or not evolutionary medicine may provide a solution to reported tensions. There was broad agreement that evolution of both parasites and vectors presents an obstacle to sustainable control. It was also widely agreed that through more efficient monitoring, evolution could be widely monitored. Interviewees also expressed the view that even well planned interventions may fail if the evolutionary biology of the disease is not considered, potentially making current tools redundant. This scoping study suggests that it is important to make research, including evolutionary principles, available and easily applicable for programme managers and key decision-makers, including donors and politicians. The main conclusion is that sharing knowledge through the educational and research processes embedded within evolutionary medicine has potential to relieve tensions and facilitate sustainable control of malaria and other parasitic infections.

  15. Why don't zebras have machine guns? Adaptation, selection, and constraints in evolutionary theory.

    PubMed

    Shanahan, Timothy

    2008-03-01

    In an influential paper, Stephen Jay Gould and Richard Lewontin (1979) contrasted selection-driven adaptation with phylogenetic, architectural, and developmental constraints as distinct causes of phenotypic evolution. In subsequent publications Gould (e.g., 1997a,b, 2002) has elaborated this distinction into one between a narrow "Darwinian Fundamentalist" emphasis on "external functionalist" processes, and a more inclusive "pluralist" emphasis on "internal structuralist" principles. Although theoretical integration of functionalist and structuralist explanations is the ultimate aim, natural selection and internal constraints are treated as distinct causes of evolutionary change. This distinction is now routinely taken for granted in the literature in evolutionary biology. I argue that this distinction is problematic because the effects attributed to non-selective constraints are more parsimoniously explained as the ordinary effects of selection itself. Although it may still be a useful shorthand to speak of phylogenetic, architectural, and developmental constraints on phenotypic evolution, it is important to understand that such "constraints" do not constitute an alternative set of causes of evolutionary change. The result of this analysis is a clearer understanding of the relationship between adaptation, selection and constraints as explanatory concepts in evolutionary theory.

  16. Individual genetic diversity and probability of infection by avian malaria parasites in blue tits (Cyanistes caeruleus).

    PubMed

    Ferrer, E S; García-Navas, V; Sanz, J J; Ortego, J

    2014-11-01

    Understanding the importance of host genetic diversity for coping with parasites and infectious diseases is a long-standing goal in evolutionary biology. Here, we study the association between probability of infection by avian malaria (Plasmodium relictum) and individual genetic diversity in three blue tit (Cyanistes caeruleus) populations that strongly differ in prevalence of this parasite. For this purpose, we screened avian malaria infections and genotyped 789 blue tits across 26 microsatellite markers. We used two different arrays of markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found a significant relationship between probability of infection and host genetic diversity estimated at the subset of neutral markers that was not explained by strong local effects and did not differ among the studied populations. This relationship was not linear, and probability of infection increased up to values of homozygosity by locus (HL) around 0.15, reached a plateau at values of HL from 0.15 to 0.40 and finally declined among a small proportion of highly homozygous individuals (HL > 0.4). We did not find evidence for significant identity disequilibrium, which may have resulted from a low variance of inbreeding in the study populations and/or the small power of our set of markers to detect it. A combination of subtle positive and negative local effects and/or a saturation threshold in the association between probability of infection and host genetic diversity in combination with increased resistance to parasites in highly homozygous individuals may explain the observed negative quadratic relationship. Overall, our study highlights that parasites play an important role in shaping host genetic variation and suggests that the use of large sets of neutral markers may be more appropriate for the study of heterozygosity-fitness correlations. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders

    PubMed Central

    Pacheco, M. Andreína; Battistuzzi, Fabia U.; Lentino, Miguel; Aguilar, Roberto F.; Kumar, Sudhir; Escalante, Ananias A.

    2011-01-01

    Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds. PMID:21242529

  18. Why get big in the cold? Size-fecundity relationships explain the temperature-size rule in a pulmonate snail (Physa).

    PubMed

    Arendt, J

    2015-01-01

    Most ectotherms follow a pattern of size plasticity known as the temperature-size rule where individuals reared in cold environments are larger at maturation than those reared in warm environments. This pattern seems maladaptive because growth is slower in the cold so it takes longer to reach a large size. However, it may be adaptive if reaching a large size has a greater benefit in a cold than in a warm environment such as when size-dependent mortality or size-dependent fecundity depends on temperature. I present a theoretical model showing how a correlation between temperature and the size-fecundity relationship affects optimal size at maturation. I parameterize the model using data from a freshwater pulmonate snail from the genus Physa. Nine families were reared from hatching in one of three temperature regimes (daytime temperature of 22, 25 or 28 °C, night-time temperature of 22 °C, under a 12L:12D light cycle). Eight of the nine families followed the temperature-size rule indicating genetic variation for this plasticity. As predicted, the size-fecundity relationship depended upon temperature; fecundity increases steeply with size in the coldest treatment, less steeply in the intermediate treatment, and shows no relationship with size in the warmest treatment. Thus, following the temperature-size rule is adaptive for this species. Although rarely measured under multiple conditions, size-fecundity relationships seem to be sensitive to a number of environmental conditions in addition to temperature including local productivity, competition and predation. If this form of plasticity is as widespread as it appears to be, this model shows that such plasticity has the potential to greatly modify current life-history theory. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  19. Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera.

    PubMed

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-02-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116-145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.

  20. Nucleotide Variability at Its Limit? Insights into the Number and Evolutionary Dynamics of the Sex-Determining Specificities of the Honey Bee Apis mellifera

    PubMed Central

    Lechner, Sarah; Ferretti, Luca; Schöning, Caspar; Kinuthia, Wanja; Willemsen, David; Hasselmann, Martin

    2014-01-01

    Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner (csd) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene. PMID:24170493

  1. Learning, epigenetics, and computation: An extension on Fitch's proposal. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    NASA Astrophysics Data System (ADS)

    Okanoya, Kazuo

    2014-09-01

    The comparative computational approach of Fitch [1] attempts to renew the classical David Marr paradigm of computation, algorithm, and implementation, by introducing evolutionary view of the relationship between neural architecture and cognition. This comparative evolutionary view provides constraints useful in narrowing down the problem space for both cognition and neural mechanisms. I will provide two examples from our own studies that reinforce and extend Fitch's proposal.

  2. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  3. Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2.

    PubMed

    McLean, Richard; Hobbs, Joanne K; Suits, Michael D; Tuomivaara, Sami T; Jones, Darryl R; Boraston, Alisdair B; Abbott, D Wade

    2015-08-28

    Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Lack of host specificity of copepod crustaceans associated with mushroom corals in the Red Sea.

    PubMed

    Ivanenko, Viatcheslav N; Hoeksema, Bert W; Mudrova, Sofya V; Nikitin, Mikhail A; Martínez, Alejandro; Rimskaya-Korsakova, Nadezda N; Berumen, Michael L; Fontaneto, Diego

    2018-06-14

    The radiation of symbiotic copepods (Crustacea: Copepoda) living in association with stony corals (Cnidaria: Scleractinia) is considered host-specific and linked to the phylogenetic diversification of their hosts. However, symbiotic copepods are poorly investigated, occurrence records are mostly anecdotal, and no explicit analysis exists regarding their relationship with the hosts. Here, we analysed the occurrence of symbiotic copepods on different co-occurring and phylogenetically closely related scleractinian corals. We used an innovative approach of DNA extraction from single microscopic specimens that preserves the shape of the organisms for integrative morphological studies. The rationale of the study involved: (i) sampling of mushroom corals (Fungiidae) belonging to 13 species and eight genera on different reefs along the Saudi coastline in the Red Sea, (ii) extraction of all the associated copepods, (iii) morphological screening and identification of copepod species, (iv) use of DNA taxonomy on mitochondrial and nuclear markers to determine species boundaries for morphologically unknown copepod species, (v) reconstruction of phylogenies to understand their evolutionary relationships, and (vi) analysis of the ecological drivers of the occurrence, diversity and host specificity of the copepods. The seven species of coral-associated copepods, all new to science, did not show any statistically significant evidence of host-specificity or other pattern of ecological association. We thus suggest that, contrary to most assumptions and previous anecdotal evidence on this coral-copepod host-symbiont system, the association between copepods and their host corals is rather labile, not strict, and not phylogenetically constrained, changing our perception on evolutionary patterns and processes in symbiotic copepods. Copyright © 2018. Published by Elsevier Inc.

  5. Social traits, social networks and evolutionary biology.

    PubMed

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic effects) provides the potential to understand how entire networks of social interactions in populations influence phenotypes and predict how these traits may evolve. By theoretical integration of social network analysis and quantitative genetics, we hope to identify areas of compatibility and incompatibility and to direct research efforts towards the most promising areas. Continuing this synthesis could provide important insights into the evolution of traits expressed in a social context and the evolutionary consequences of complex and nuanced social phenotypes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  6. Life is determined by its environment

    NASA Astrophysics Data System (ADS)

    Torday, John S.; Miller, William B.

    2016-10-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges.

  7. Life is determined by its environment

    PubMed Central

    Torday, John S.; Miller, William B.

    2016-01-01

    A well-developed theory of evolutionary biology requires understanding of the origins of life on Earth. However, the initial conditions (ontology) and causal (epistemology) bases on which physiology proceeded have more recently been called into question, given the teleologic nature of Darwinian evolutionary thinking. When evolutionary development is focused on cellular communication, a distinctly different perspective unfolds. The cellular communicative-molecular approach affords a logical progression for the evolutionary narrative based on the basic physiologic properties of the cell. Critical to this appraisal is recognition of the cell as a fundamental reiterative unit of reciprocating communication that receives information from and reacts to epiphenomena to solve problems. Following the course of vertebrate physiology from its unicellular origins instead of its overt phenotypic appearances and functional associations provides a robust, predictive picture for the means by which complex physiology evolved from unicellular organisms. With this foreknowledge of physiologic principles, we can determine the fundamentals of Physiology based on cellular first principles using a logical, predictable method. Thus, evolutionary creativity on our planet can be viewed as a paradoxical product of boundary conditions that permit homeostatic moments of varying length and amplitude that can productively absorb a variety of epigenetic impacts to meet environmental challenges. PMID:27708547

  8. Chaos in Environmental Education.

    ERIC Educational Resources Information Center

    Hardy, Joy

    1999-01-01

    Explores chaos theory, the evolutionary capacity of chaotic systems, and the philosophical implications of chaos theory in general and for education. Compares the relationships between curriculum vision based on chaos theory and critical education for the environment. (Author/CCM)

  9. Evolutionary Relationships Based on Cellular Structure.

    ERIC Educational Resources Information Center

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  10. 'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).

    PubMed Central

    Meagher, Thomas R; Costich, Denise E

    2004-01-01

    Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614

  11. The role of bone shape in determining gender differences in vertebral bone mass.

    PubMed

    Barlow, Tricia; Carlino, Will; Blades, Heather Z; Crook, Jon; Harrison, Rachel; Arundel, Paul; Bishop, Nick J

    2011-01-01

    Dual-energy X-ray absorptiometry (DXA) measures of bone mineral density (BMD) in children fail to account for growth because bone depth is unmeasured. While multiple adjustment methods have been proposed using body or bone size, the effect of vertebral shape is relatively unknown. Our study aimed to determine gender differences in vertebral shape and their impact on areal BMD (aBMD). We recruited 189 children, including 107 boys, aged 4-17 years, who attended the emergency department due to trauma. None had fractured. Height, weight, Tanner stage, and DXA measurements of the lumbar spine (LS) and total body were obtained. Cylindrical models were used to predict relationships between vertebral width (VW) and areal density for a given vertebral area assuming uniform volumetric density. The actual relationships between VW, bone area, and aBMD for the LS in the children were then determined. The theoretical models predicted a positive relationship between width and areal density for a constant vertebral area. Actual vertebral measurements demonstrated that boys had greater VW for a given vertebral area but lower aBMD for a given VW than girls at any age. The most likely explanation for the apparent paradox was that vertebral cortical thickness relative to width was greater in girls. This difference remained after adjusting for lean mass, suggesting that bone's response to mechanical stimulation may vary between the sexes during growth with consequent evolutionary advantage for girls approaching reproductive age. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  12. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2017-01-01

    Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking. PMID:28690608

  13. Flatfish monophyly refereed by the relationship of Psettodes in Carangimorphariae.

    PubMed

    Shi, Wei; Chen, Shixi; Kong, Xiaoyu; Si, Lizhen; Gong, Li; Zhang, Yanchun; Yu, Hui

    2018-05-25

    The monophyly of flatfishes has not been supported in many molecular phylogenetic studies. The monophyly of Pleuronectoidei, which comprises all but one family of flatfishes, is broadly supported. However, the Psettodoidei, comprising the single family Psettodidae, is often found to be most closely related to other carangimorphs based on substantial sequencing efforts and diversely analytical methods. In this study, we examined why this particular result is often obtained. The mitogenomes of five flatfishes were determined. Select mitogenomes of representative carangimorph species were further employed for phylogenetic and molecular clock analyses. Our phylogenetic results do not fully support Psettodes as a sister group to pleuronectoids or other carangimorphs. And results also supported the evidence of long-branch attraction between Psettodes and the adjacent clades. Two chronograms, derived from Bayesian relaxed-clock methods, suggest that over a short period in the early Paleocene, a series of important evolutionary events occurred in carangimorphs. Based on insights provided by the molecular clock, we propose the following evolutionary explanation for the difficulty in determining the phylogenetic position of Psettodes: The initial diversification of Psettodes was very close in time to the initial diversification of carangimorphs, and the primary diversification time of pleuronectoids, the other suborder of flatfishes, occurred later than that of some percomorph taxa. Additionally, the clade of Psettodes is long and naked branch, which supports the uncertainty of its phylogenetic placement. Finally, we confirmed the monophyly of flatfishes, which was accepted by most ichthyologists.

  14. Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera).

    PubMed

    Vargas, Sergio; Kelly, Michelle; Schnabel, Kareen; Mills, Sadie; Bowden, David; Wörheide, Gert

    2015-01-01

    The approximately 350 demosponge species that have been described from Antarctica represent a faunistic component distinct from that of neighboring regions. Sponges provide structure to the Antarctic benthos and refuge to other invertebrates, and can be dominant in some communities. Despite the importance of sponges in the Antarctic subtidal environment, sponge DNA barcodes are scarce but can provide insight into the evolutionary relationships of this unique biogeographic province. We sequenced the standard barcoding COI region for a comprehensive selection of sponges collected during expeditions to the Ross Sea region in 2004 and 2008, and produced DNA-barcodes for 53 demosponge species covering about 60% of the species collected. The Antarctic sponge communities are phylogenetically diverse, matching the diversity of well-sampled sponge communities in the Lusitanic and Mediterranean marine provinces in the Temperate Northern Atlantic for which molecular data are readily available. Additionally, DNA-barcoding revealed levels of in situ molecular evolution comparable to those present among Caribbean sponges. DNA-barcoding using the Segregating Sites Algorithm correctly assigned approximately 54% of the barcoded species to the morphologically determined species. A barcode library for Antarctic sponges was assembled and used to advance the systematic and evolutionary research of Antarctic sponges. We provide insights on the evolutionary forces shaping Antarctica's diverse sponge communities, and a barcode library against which future sequence data from other regions or depth strata of Antarctica can be compared. The opportunity for rapid taxonomic identification of sponge collections for ecological research is now at the horizon.

  15. Molecular characterization and evolutionary insights into potential sex-determination genes in the western orchard predatory mite Metaseiulus occidentalis (Chelicerata: Arachnida: Acari: Phytoseiidae).

    PubMed

    Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y

    2015-01-01

    Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.

  16. Fundamental population-productivity relationships can be modified through density-dependent feedbacks of life-history evolution.

    PubMed

    Kuparinen, Anna; Stenseth, Nils Christian; Hutchings, Jeffrey A

    2014-12-01

    The evolution of life histories over contemporary time scales will almost certainly affect population demography. One important pathway for such eco-evolutionary interactions is the density-dependent regulation of population dynamics. Here, we investigate how fisheries-induced evolution (FIE) might alter density-dependent population-productivity relationships. To this end, we simulate the eco-evolutionary dynamics of an Atlantic cod (Gadus morhua) population under fishing, followed by a period of recovery in the absence of fishing. FIE is associated with increases in juvenile production, the ratio of juveniles to mature population biomass, and the ratio of the mature population biomass relative to the total population biomass. In contrast, net reproductive rate (R 0 ) and per capita population growth rate (r) decline concomitantly with evolution. Our findings suggest that FIE can substantially modify the fundamental population-productivity relationships that underlie density-dependent population regulation and that form the primary population-dynamical basis for fisheries stock-assessment projections. From a conservation and fisheries-rebuilding perspective, we find that FIE reduces R 0 and r, the two fundamental correlates of population recovery ability and inversely extinction probability.

  17. The evolution of orbit orientation and encephalization in the Carnivora (Mammalia)

    PubMed Central

    Finarelli, John A; Goswami, Anjali

    2009-01-01

    Evolutionary change in encephalization within and across mammalian clades is well-studied, yet relatively few comparative analyses attempt to quantify the impact of evolutionary change in relative brain size on cranial morphology. Because of the proximity of the braincase to the orbits, and the inter-relationships among ecology, sensory systems and neuroanatomy, a relationship has been hypothesized between orbit orientation and encephalization for mammals. Here, we tested this hypothesis in 68 fossil and living species of the mammalian order Carnivora, comparing orbit orientation angles (convergence and frontation) to skull length and encephalization. No significant correlations were observed between skull length and orbit orientation when all taxa were analysed. Significant correlations were observed between encephalization and orbit orientation; however, these were restricted to the families Felidae and Canidae. Encephalization is positively correlated with frontation in both families and negatively correlated with convergence in canids. These results indicate that no universal relationship exists between encephalization and orbit orientation for Carnivora. Braincase expansion impacts orbit orientation in specific carnivoran clades, the nature of which is idiosyncratic to the clade itself. PMID:19438762

  18. Complete mitochondrial genome of the Asian pencil halfbeak Hyporhamphus intermedius (Beloniformes, Hemirhamphidae).

    PubMed

    Song, Chao; Hu, Gengdong; Qiu, Liping; Fan, Limin; Meng, Shunlong; Chen, Jiazhang

    2016-11-01

    The complete mitochondrial genome of Hyporhamphus intermedius was determined to be 16,720 bp in length with (A + T) content of 56.3%, and it consists of 13 protein-coding genes, 22 tRNAs, two ribosomal RNAs, and a control region. The gene composition and the structural arrangement of the H. intermedius complete mtDNA were identical to most of the other vertebrates. Interestingly, two tandem repeat units were identified across tRNA-Pro and control region (2*41 bp), while in most of the fishes the tandem repeat units are located in the control region. The molecular data we presented here could play a useful role to study the evolutionary relationships and population genetics of Hemirhamphidae fish.

  19. Arabidopsis non-host resistance to powdery mildews.

    PubMed

    Lipka, Ulrike; Fuchs, Rene; Lipka, Volker

    2008-08-01

    Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.

  20. Regional topographic rises on Venus - Geology of Western Eistla Regio and comparison to Beta Regio and Atla Regio

    NASA Technical Reports Server (NTRS)

    Senske, D. A.; Schaber, G. G.; Stofan, E. R.

    1992-01-01

    Magellan images are used to assess regional stratigraphic relationships in an attempt to establish the evolutionary history and characterize the styles of volcanism at Western Eistla Regio. The regional geologic characteristics of Beta Regio and Atla Regio, imaged by Magellan during the latter part of its first mapping cycle, are also assessed and compared to those of Western Eistla Regio so as to determine if all three of these areas evolved in a similar manner. The detailed characteristics of each region show them to be quite variable in the presence and distribution of coronae and tessera, suggesting that the detailed characteristics of the individual highlands are linked to the local geologic environment.

  1. Historical contingency and ecological determinism interact to prime speciation in sticklebacks, Gasterosteus.

    PubMed Central

    Taylor, E B; McPhail, J D

    2000-01-01

    Historical contingency and determinism are often cast as opposing paradigms under which evolutionary diversification operates. It may be, however, that both factors act together to promote evolutionary divergence, although there are few examples of such interaction in nature. We tested phylogenetic predictions of an explicit historical model of divergence (double invasions of freshwater by marine ancestors) in sympatric species of three-spined sticklebacks (Gasterosteus aculeatus) where determinism has been implicated as an important factor driving evolutionary novelty. Microsatellite DNA variation at six loci revealed relatively low genetic variation in freshwater populations, supporting the hypothesis that they were derived by colonization of freshwater by more diverse marine ancestors. Phylogenetic and genetic distance analyses suggested that pairs of sympatric species have evolved multiple times, further implicating determinism as a factor in speciation. Our data also supported predictions based on the hypothesis that the evolution of sympatric species was contingent upon 'double invasions' of postglacial lakes by ancestral marine sticklebacks. Sympatric sticklebacks, therefore, provide an example of adaptive radiation by determinism contingent upon historical conditions promoting unique ecological interactions, and illustrate how contingency and determinism may interact to generate geographical variation in species diversity PMID:11133026

  2. Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases

    NASA Astrophysics Data System (ADS)

    Pizzolato, N.; Maggio, A.; Sciortino, S.

    2000-09-01

    We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.

  3. Biodiversity: Habitat Suitability

    EPA Science Inventory

    Habitat suitability quantifies the relationship between species and habitat, and is evaluated according to the species’ fitness (i.e. proportion of birth rate to death rate). Even though it might maximize evolutionary success, species are not always in habitat that optimizes fit...

  4. Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium.

    PubMed

    Yamagishi, Takahiro; Kai, Atsushi; Kawai, Hiroshi

    2012-04-01

    Trichocysts are ejectile organelles found in cryptomonads, dinoflagellates, and peniculine ciliates. The fine structure of trichocysts differs considerably among lineages, and their evolutionary relationships are unclear. The biochemical makeup of the trichocyst constituents has been studied in the ciliate Paramecium, but there have been no investigations of cryptomonads and dinoflagellates. Furthermore, morphological similarity between the contents of cryptomonad trichocysts and the R-bodies of the endosymbiotic bacteria of Paramecium has been reported. In this study, we identified the proteins of the trichocyst constituents in a red cryptomonad, Pyrenomonas helgolandii, and found their closest relationships to be with rebB that comprises the R-bodies of Caedibacter taeniospiralis (gammaproteobacteria), which is an endosymbiont of Paramecium. In addition, the biochemical makeups of the trichocysts are entirely different between cryptomonads and peniculine ciliates, and therefore, cryptomonad trichocysts have an evolutionary origin independent from the peniculine ciliate trichocysts.

  5. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  6. Beyond Linear Sequence Comparisons: The use of genome-levelcharacters for phylogenetic reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.

    2004-11-27

    Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less

  7. Interdependence of specialization and biodiversity in Phanerozoic marine invertebrates.

    PubMed

    Nürnberg, Sabine; Aberhan, Martin

    2015-03-17

    Studies of the dynamics of biodiversity often suggest that diversity has upper limits, but the complex interplay between ecological and evolutionary processes and the relative role of biotic and abiotic factors that set upper limits to diversity are poorly understood. Here we statistically assess the relationship between global biodiversity and the degree of habitat specialization of benthic marine invertebrates over the Phanerozoic eon. We show that variation in habitat specialization correlates positively with changes in global diversity, that is, times of high diversity coincide with more specialized faunas. We identify the diversity dynamics of specialists but not generalists, and origination rates but not extinction rates, as the main drivers of this ecological interdependence. Abiotic factors fail to show any significant relationship with specialization. Our findings suggest that the overall level of specialization and its fluctuations over evolutionary timescales are controlled by diversity-dependent processes--driven by interactions between organisms competing for finite resources.

  8. Indirect evolutionary rescue: prey adapts, predator avoids extinction

    PubMed Central

    Yamamichi, Masato; Miner, Brooks E

    2015-01-01

    Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be investigated in a multispecies context. We argue that the persistence or extinction of a focal species can be determined solely by evolutionary change in an interacting species. We demonstrate that prey adaptive evolution can prevent predator extinction in two-species predator–prey models, and we derive the conditions under which this indirect evolutionary interaction is essential to prevent extinction following environmental change. A nonevolving predator can be rescued from extinction by adaptive evolution of its prey due to a trade-off for the prey between defense against predation and population growth rate. As prey typically have larger populations and shorter generations than their predators, prey evolution can be rapid and have profound effects on predator population dynamics. We suggest that this process, which we term ‘indirect evolutionary rescue’, has the potential to be critically important to the ecological and evolutionary responses of populations and communities to dramatic environmental change. PMID:26366196

  9. Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium

    PubMed Central

    Yang, Jiao; Yue, Ming; Niu, Chuan; Ma, Xiong-Feng; Li, Zhong-Hu

    2017-01-01

    Notopterygium H. de Boissieu (Apiaceae) is an endangered perennial herb endemic to China. A good knowledge of phylogenetic evolution and population genomics is conducive to the establishment of effective management and conservation strategies of the genus Notopterygium. In this study, the complete chloroplast (cp) genomes of four Notopterygium species (N. incisum C. C. Ting ex H. T. Chang, N. oviforme R. H. Shan, N. franchetii H. de Boissieu and N. forrestii H. Wolff) were assembled and characterized using next-generation sequencing. We investigated the gene organization, order, size and repeat sequences of the cp genome and constructed the phylogenetic relationships of Notopterygium species based on the chloroplast DNA and nuclear internal transcribed spacer (ITS) sequences. Comparative analysis of plastid genome showed that the cp DNA are the standard double-stranded molecule, ranging from 157,462 bp (N. oviforme) to 159,607 bp (N. forrestii) in length. The circular DNA each contained a large single-copy (LSC) region, a small single-copy (SSC) region, and a pair of inverted repeats (IRs). The cp DNA of four species contained 85 protein-coding genes, 37 transfer RNA (tRNA) genes and 8 ribosomal RNA (rRNA) genes, respectively. We determined the marked conservation of gene content and sequence evolutionary rate in the cp genome of four Notopterygium species. Three genes (psaI, psbI and rpoA) were possibly under positive selection among the four sampled species. Phylogenetic analysis showed that four Notopterygium species formed a monophyletic clade with high bootstrap support. However, the inconsistent interspecific relationships with the genus Notopterygium were identified between the cp DNA and ITS markers. The incomplete lineage sorting, convergence evolution or hybridization, gene infiltration and different sampling strategies among species may have caused the incongruence between the nuclear and cp DNA relationships. The present results suggested that Notopterygium species may have experienced a complex evolutionary history and speciation process. PMID:28422071

  10. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan

    PubMed Central

    Gómez, José M.; Torices, Ruben; Lorite, Juan; Klingenberg, Christian Peter; Perfectti, Francisco

    2016-01-01

    Background and Aims Brassicaceae is one of the most diversified families in the angiosperms. However, most species from this family exhibit a very similar floral bauplan. In this study, we explore the Brassicaceae floral morphospace, examining how corolla shape variation (an estimation of developmental robustness), integration and disparity vary among phylogenetically related species. Our aim is to check whether these floral attributes have evolved in this family despite its apparent morphological conservation, and to test the role of pollinators in driving this evolution. Methods Using geometric morphometric tools, we calculated the phenotypic variation, disparity and integration of the corolla shape of 111 Brassicaceae taxa. We subsequently inferred the phylogenetic relationships of these taxa and explored the evolutionary lability of corolla shape. Finally, we sampled the pollinator assemblages of every taxon included in this study, and determined their pollination niches using a modularity algorithm. We explore the relationship between pollination niche and the attributes of corolla shape. Key Results Phylogenetic signal was weak for all corolla shape attributes. All taxa had generalized pollination systems. Nevertheless, they belong to different pollination niches. There were significant differences in corolla shape among pollination niches even after controlling for the phylogenetic relationship of the plant taxa. Corolla shape variation and disparity was significantly higher in those taxa visited mostly by nocturnal moths, indicating that this pollination niche is associated with a lack of developmental robustness. Corolla integration was higher in those taxa visited mostly by hovering long-tongued flies and long-tongued large bees. Conclusions Corolla variation, integration and disparity were evolutionarily labile and evolved very recently in the evolutionary history of the Brassicaceae. These floral attributes were strongly related to the pollination niche. Even in a plant clade having a very generalized pollination system and exhibiting a conserved floral bauplan, pollinators can drive the evolution of important developmental attributes of corolla shape. PMID:26884512

  11. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    PubMed

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation.

    PubMed

    Inglin, Raffael C; Meile, Leo; Stevens, Marc J A

    2018-04-24

    Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20'800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species' level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class "genetic information processing" is conserved in the core-genome but that "signaling and cellular processes" is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus' evolution is directed by the environment and HGT.

  13. Three routes to crypsis: Stasis, convergence, and parallelism in the Mastigias species complex (Scyphozoa, Rhizostomeae).

    PubMed

    Swift, H F; Gómez Daglio, L; Dawson, M N

    2016-06-01

    Evolutionary inference can be complicated by morphological crypsis, particularly in open marine systems that may rapidly dissipate signals of evolutionary processes. These complications may be alleviated by studying systems with simpler histories and clearer boundaries, such as marine lakes-small bodies of seawater entirely surrounded by land. As an example, we consider the jellyfish Mastigias spp. which occurs in two ecotypes, one in marine lakes and one in coastal oceanic habitats, throughout the Indo-West Pacific (IWP). We tested three evolutionary hypotheses to explain the current distribution of the ecotypes: (H1) the ecotypes originated from an ancient divergence; (H2) the lake ecotype was derived recently from the ocean ecotype during a single divergence event; and (H3) the lake ecotype was derived from multiple, recent, independent, divergences. We collected specimens from 21 locations throughout the IWP, reconstructed multilocus phylogenetic and intraspecific relationships, and measured variation in up to 40 morphological characters. The species tree reveals three reciprocally monophyletic regional clades, two of which contain ocean and lake ecotypes, suggesting repeated, independent evolution of coastal ancestors into marine lake ecotypes, consistent with H3; hypothesis testing and an intraspecific haplotype network analysis of samples from Palau reaffirms this result. Phylogenetic character mapping strongly correlates morphology to environment rather than lineage (r=0.7512, p<0.00001). Considering also the deeper relationships among regional clades, morphological similarity in Mastigias spp. clearly results from three separate patterns of evolution: morphological stasis in ocean medusae, convergence of lake morphology across distinct species and parallelism between lake morphologies within species. That three evolutionary routes each result in crypsis illustrates the challenges of interpreting evolutionary processes from patterns of biogeography and diversity in the seas. Identifying cryptic species is only the first step in understanding these processes; an equally important second step is exploring and understanding the processes and patterns that create crypsis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds.

    PubMed

    Mason, Nicholas A; Shultz, Allison J; Burns, Kevin J

    2014-08-07

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Genome-Wide Identification and Comparative Analysis of Albumin Family in Vertebrates

    PubMed Central

    Li, Shugang; Cao, Yiping; Geng, Fang

    2017-01-01

    Albumins are the most well-known globular proteins, and the most typical representatives are the serum albumins. However, less attention was paid to the albumin family, except for the human and bovine serum albumin. To characterize the features of albumin family, we have mined all the putative albumin proteins from the available genome sequences. The results showed that albumin is widely distributed in vertebrates, but not present in the bacteria and archaea. The phylogenetic analysis of vertebrate albumin family implied an evolutionary relationship between members of serum albumin, α-fetoprotein, vitamin D–binding protein, and afamin. Meanwhile, a new member from the albumin family was found, namely, extracellular matrix protein 1. The structural analysis revealed that the motifs for forming the internal disulfide bonds are highly conserved in the albumin family, despite the low overall sequence identity across the family. The domain arrangement of albumin proteins indicated that most of vertebrate albumins contain 3 characteristic domains, arising from 2 evolutionary patterns. And a significant trend has been observed that the albumin proteins in higher vertebrate species tend to possess more characteristic domains. This study has provided the fundamental information required for achieving a better understanding of the albumin distribution, phylogenetic relationship, characteristic motif, structure, and new insights into the evolutionary pattern. PMID:28680266

  16. Between-sex differences in romantic jealousy: substance or spin? A qualitative analysis.

    PubMed

    Fussell, Nicola J; Stollery, Brian T

    2012-03-29

    An influential evolutionary account of romantic jealousy proposes that natural selection shaped a specific sexually-dimorphic psychological mechanism in response to relationship threat. However, this account has faced considerable theoretical and methodological criticism and it remains unclear whether putative sex differences in romantic jealousy actually exist and, if they do, whether they are consistent with its predictions. Given the multidimensional nature of romantic jealousy, the current study employed a qualitative design to examine these issues. We report the results of sixteen semi-structured interviews that were conducted with heterosexual men and women with the purpose of exploring the emotions, cognitions and behaviors that formed their subjective, lived experience in response to relationship threat. Interpretative phenomenological analysis revealed four super-ordinate themes ("threat appraisal", "emotional episodes", "sex-specific threat" and "forgive and forget") and unequivocal sex differences in romantic jealousy consistent with the evolutionary account. Self-esteem, particularly when conceptualized as an index of mate value, emerged as an important proximal mediator for both sexes. However, specific outcomes were dependent upon domains central to the individual's self concept that were primarily sex-specific. The findings are integrated within the context of existing self-esteem and evolutionary theory and future directions for romantic jealousy research are suggested.

  17. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    PubMed Central

    Van Holle, Sofie; De Schutter, Kristof; Eggermont, Lore; Tsaneva, Mariya; Dang, Liuyi; Van Damme, Els J. M.

    2017-01-01

    Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica). The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST), hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins. PMID:28587095

  18. Hierarchical complexity and the size limits of life.

    PubMed

    Heim, Noel A; Payne, Jonathan L; Finnegan, Seth; Knope, Matthew L; Kowalewski, Michał; Lyons, S Kathleen; McShea, Daniel W; Novack-Gottshall, Philip M; Smith, Felisa A; Wang, Steve C

    2017-06-28

    Over the past 3.8 billion years, the maximum size of life has increased by approximately 18 orders of magnitude. Much of this increase is associated with two major evolutionary innovations: the evolution of eukaryotes from prokaryotic cells approximately 1.9 billion years ago (Ga), and multicellular life diversifying from unicellular ancestors approximately 0.6 Ga. However, the quantitative relationship between organismal size and structural complexity remains poorly documented. We assessed this relationship using a comprehensive dataset that includes organismal size and level of biological complexity for 11 172 extant genera. We find that the distributions of sizes within complexity levels are unimodal, whereas the aggregate distribution is multimodal. Moreover, both the mean size and the range of size occupied increases with each additional level of complexity. Increases in size range are non-symmetric: the maximum organismal size increases more than the minimum. The majority of the observed increase in organismal size over the history of life on the Earth is accounted for by two discrete jumps in complexity rather than evolutionary trends within levels of complexity. Our results provide quantitative support for an evolutionary expansion away from a minimal size constraint and suggest a fundamental rescaling of the constraints on minimal and maximal size as biological complexity increases. © 2017 The Author(s).

  19. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    PubMed Central

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  20. Coevolution between invasive and native plants driven by chemical competition and soil biota.

    PubMed

    Lankau, Richard A

    2012-07-10

    Although reciprocal evolutionary responses between interacting species are a driving force behind the diversity of life, pairwise coevolution between plant competitors has received less attention than other species interactions and has been considered relatively less important in explaining ecological patterns. However, the success of species transported across biogeographic boundaries suggests a stronger role for evolutionary relationships in shaping plant interactions. Alliaria petiolata is a Eurasian species that has invaded North American forest understories, where it competes with native understory species in part by producing compounds that directly and indirectly slow the growth of competing species. Here I show that populations of A. petiolata from areas with a greater density of interspecific competitors invest more in a toxic allelochemical under common conditions. Furthermore, populations of a native competitor from areas with highly toxic invaders are more tolerant to competition from the invader, suggesting coevolutionary dynamics between the species. Field reciprocal transplants confirmed that native populations more tolerant to the invader had higher fitness when the invader was common, but these traits came at a cost when the invader was rare. Exotic species are often detrimentally dominant in their new range due to their evolutionary novelty; however, the development of new coevolutionary relationships may act to integrate exotic species into native communities.

  1. Evolutionary implications of phylogenetic analyses of the gene transfer agent (GTA) of Rhodobacter capsulatus.

    PubMed

    Lang, Andrew S; Taylor, Terumi A; Beatty, J Thomas

    2002-11-01

    The gene transfer agent (GTA) of the a-proteobacterium Rhodobacter capsulatus is a cell-controlled genetic exchange vector. Genes that encode the GTA structure are clustered in a 15-kb region of the R. capsulatus chromosome, and some of these genes show sequence similarity to known bacteriophage head and tail genes. However, the production of GTA is controlled at the level of transcription by a cellular two-component signal transduction system. This paper describes homologues of both the GTA structural gene cluster and the GTA regulatory genes in the a-proteobacteria Rhodopseudomonas palustris, Rhodobacter sphaeroides, Caulobacter crescentus, Agrobacterium tumefaciens and Brucella melitensis. These sequences were used in a phylogenetic tree approach to examine the evolutionary relationships of selected GTA proteins to these homologues and (pro)phage proteins, which was compared to a 16S rRNA tree. The data indicate that a GTA-like element was present in a single progenitor of the extant species that contain both GTA structural cluster and regulatory gene homologues. The evolutionary relationships of GTA structural proteins to (pro)phage proteins indicated by the phylogenetic tree patterns suggest a predominantly vertical descent of GTA-like sequences in the a-proteobacteria and little past gene exchange with (pro)phages.

  2. Evolutionary lineages of marine snails identified using molecular phylogenetics and geometric morphometric analysis of shells.

    PubMed

    Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary

    2018-06-15

    The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Using single cell sequencing data to model the evolutionary history of a tumor.

    PubMed

    Kim, Kyung In; Simon, Richard

    2014-01-24

    The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.

  4. Predicting protein contact map using evolutionary and physical constraints by integer programming.

    PubMed

    Wang, Zhiyong; Xu, Jinbo

    2013-07-01

    Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.

  5. Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree.

    PubMed

    Herrera, James P; Dávalos, Liliana M

    2016-09-01

    Paleontological and neontological systematics seek to answer evolutionary questions with different data sets. Phylogenies inferred for combined extant and extinct taxa provide novel insights into the evolutionary history of life. Primates have an extensive, diverse fossil record and molecular data for living and extinct taxa are rapidly becoming available. We used two models to infer the phylogeny and divergence times for living and fossil primates, the tip-dating (TD) and fossilized birth-death process (FBD). We collected new morphological data, especially on the living and extinct endemic lemurs of Madagascar. We combined the morphological data with published DNA sequences to infer near-complete (88% of lemurs) time-calibrated phylogenies. The results suggest that primates originated around the Cretaceous-Tertiary boundary, slightly earlier than indicated by the fossil record and later than previously inferred from molecular data alone. We infer novel relationships among extinct lemurs, and strong support for relationships that were previously unresolved. Dates inferred with TD were significantly older than those inferred with FBD, most likely related to an assumption of a uniform branching process in the TD compared with a birth-death process assumed in the FBD. This is the first study to combine morphological and DNA sequence data from extinct and extant primates to infer evolutionary relationships and divergence times, and our results shed new light on the tempo of lemur evolution and the efficacy of combined phylogenetic analyses. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae).

    PubMed

    Hernández-Hernández, Tania; Hernández, Héctor M; De-Nova, J Arturo; Puente, Raul; Eguiarte, Luis E; Magallón, Susana

    2011-01-01

    Cactaceae is one of the most charismatic plant families because of the extreme succulence and outstanding diversity of growth forms of its members. Although cacti are conspicuous elements of arid ecosystems in the New World and are model systems for ecological and anatomical studies, the high morphological convergence and scarcity of phenotypic synapomorphies make the evolutionary relationships and trends among lineages difficult to understand. We performed phylogenetic analyses implementing parsimony ratchet and likelihood methods, using a concatenated matrix with 6148 bp of plastid and nuclear markers (trnK/matK, matK, trnL-trnF, rpl16, and ppc). We included 224 species representing approximately 85% of the family's genera. Likelihood methods were used to perform an ancestral character reconstruction within Cactoideae, the richest subfamily in terms of morphological diversity and species number, to evaluate possible growth form evolutionary trends. Our phylogenetic results support previous studies showing the paraphyly of subfamily Pereskioideae and the monophyly of subfamilies Opuntioideae and Cactoideae. After the early divergence of Blossfeldia, Cactoideae splits into two clades: Cacteae, including North American globose and barrel-shaped members, and core Cactoideae, including the largest diversity of growth forms distributed throughout the American continent. Para- or polyphyly is persistent in different parts of the phylogeny. Main Cactoideae clades were found to have different ancestral growth forms, and convergence toward globose, arborescent, or columnar forms occurred in different lineages. Our study enabled us to provide a detailed hypothesis of relationships among cacti lineages and represents the most complete general phylogenetic framework available to understand evolutionary trends within Cactaceae.

  7. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics

    PubMed Central

    Mira, Alex; Pushker, Ravindra; Legault, Boris A; Moreira, David; Rodríguez-Valera, Francisco

    2004-01-01

    Background The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools. Results The data indicate that Fusobacterium has a core genome of a very different nature to other bacterial lineages, and branches out at the base of Firmicutes. However, depending on the method used, 35–56% of Fusobacterium genes appear to have a xenologous origin from bacteroidetes, proteobacteria, spirochaetes and the Firmicutes themselves. A high number of hypothetical ORFs with unusual codon usage and short lengths were found and hypothesized to be remnants of transferred genes that were discarded. Some proteins and operons are also hypothesized to be of mixed ancestry. A large portion of the Gram-negative cell wall-related genes seems to have been transferred from proteobacteria. Conclusions Many instances of similarity to other inhabitants of the dental plaque that have been sequenced were found. This suggests that the close physical contact found in this environment might facilitate horizontal gene transfer, supporting the idea of niche-specific gene pools. We hypothesize that at a point in time, probably associated to the rise of mammals, a strong selective pressure might have existed for a cell with a Clostridia-like metabolic apparatus but with the adhesive and immune camouflage features of Proteobacteria. PMID:15566569

  8. Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae; Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation.

    PubMed

    Govindarajulu, Rajanikanth; Hughes, Colin E; Bailey, C Donovan

    2011-12-01

    Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.

  9. Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae).

    PubMed

    Rojas-Aréchiga, Mariana; Mandujano, María C; Golubov, Jordan K

    2013-05-01

    The response of seed germination towards light and the relationship to seed traits has been studied particularly well in tropical forests. Several authors have shown a clear adaptive response of seed size and photoblastism, however, the evolutionary significance of this relationship for species inhabiting arid environments has not been fully understood and only some studies have considered the response in a phylogenetic context. We collected seeds from 54 cacti species spread throughout the tribe Cacteae to test whether there was correlated evolution of photoblastism, seed traits and germination using a reconstructed phylogeny of the tribe. For each species we determined the photoblastic response under controlled conditions, and seed traits, and analyzed the results using phylogenetically independent contrasts. All studied species were positive photoblastic contrasting with the basal Pereskia suggesting an early evolution of this trait. Seeds from basal species were mostly medium-sized, diverging into two groups. Seeds tend to get smaller and lighter suggesting an evolution to smaller sizes. No evidence exists of a relationship between seed size and photoblastic response suggesting that the photoblastic response within members of this tribe is not adaptive though it is phylogenetically fixed and that is coupled with environmental cues that fine tune the germination response.

  10. Is the Link Between the Observed Velocities of Neutron Stars and their Progenitors a Simple Mass Relationship?

    NASA Astrophysics Data System (ADS)

    Bray, J. C.

    2017-11-01

    While the imparting of velocity `kicks' to compact remnants from supernovae is widely accepted, the relationship of the `kick' to the progenitor is not. We propose the `kick' is predominantly a result of conservation of momentum between the ejected and compact remnant masses. We propose the `kick' velocity is given by v kick = α(M ejecta/M remnant)+β, where α and β are constants we wish to determine. To test this we use the BPASS v2 (Binary Population and Spectral Synthesis) code to create stellar populations from both single star and binary star evolutionary pathways. We then use our Remnant Ejecta and Progenitor Explosion Relationship (REAPER) code to apply `kicks' to neutron stars from supernovae in these models using a grid of α and β values, (from 0 to 200 km s-1 in steps of 10 km s-1), in three different `kick' orientations, (isotropic, spin-axis aligned and orthogonal to spin-axis) and weighted by three different Salpeter initial mass functions (IMF's), with slopes of -2.0, -2.35 and -2.70. We compare our synthetic 2D and 3D velocity probability distributions to the distributions provided by Hobbs et al. (1995).

  11. Evolution, Biology, and Society: A Conversation for the 21st-Century Sociology Classroom

    ERIC Educational Resources Information Center

    Machalek, Richard; Martin, Michael W.

    2010-01-01

    Recently, a growing contingent of "evolutionary sociologists" has begun to integrate theoretical ideas and empirical findings derived from evolutionary biology, especially sociobiology, into a variety of sociological inquiries. Without capitulating to a naive version of either biological reductionism or genetic determinism, these researchers and…

  12. Misrepresentations of evolutionary psychology in sex and gender textbooks.

    PubMed

    Winegard, Benjamin M; Winegard, Bo M; Deaner, Robert O

    2014-05-20

    Evolutionary psychology has provoked controversy, especially when applied to human sex differences. We hypothesize that this is partly due to misunderstandings of evolutionary psychology that are perpetuated by undergraduate sex and gender textbooks. As an initial test of this hypothesis, we develop a catalog of eight types of errors and document their occurrence in 15 widely used sex and gender textbooks. Consistent with our hypothesis, of the 12 textbooks that discussed evolutionary psychology, all contained at least one error, and the median number of errors was five. The most common types of errors were "Straw Man," "Biological Determinism," and "Species Selection." We conclude by suggesting improvements to undergraduate sex and gender textbooks.

  13. Cocoa/Cotton Comparative Genomics

    USDA-ARS?s Scientific Manuscript database

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  14. Gramene database: navigating plant comparative genomics resources

    USDA-ARS?s Scientific Manuscript database

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  15. Veterinary Fusarioses within the United States

    USDA-ARS?s Scientific Manuscript database

    Multilocus DNA sequence data was used to retrospectively assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically dist...

  16. Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C.

    PubMed

    Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu

    2011-01-01

    Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the evolutionary method is viewed in comparison to the traditional one. The multifaceted discrimination into all five degrees of fibrosis and the slightly less difficult common separation into solely three related stages are both investigated. The resulting performance proves the superiority over the standard support vector classification and the attained formula is helpful in providing an immediate calculation of the liver stage for new cases, while establishing the presence/absence and comprehending the weight of each medical factor with respect to a certain fibrosis level. The use of the evolutionary technique for fibrosis degree prediction triggers simplicity and offers a direct expression of the influence of dynamically selected indicators on the corresponding stage. Perhaps most importantly, it significantly surpasses the classical support vector machines, which are both widely used and technically sound. All these therefore confirm the promise of the new methodology towards a dependable support within the medical decision-making. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Does playing pay? The fitness-effect of free play during childhood.

    PubMed

    Greve, Werner; Thomsen, Tamara; Dehio, Cornelia

    2014-04-29

    Evolutionary developmental psychology claims that the sequences and processes of human development, in fact the mere fact of ontogeny itself, have to be viewed as evolutionary products. However, although the functional benefits of childish behavior (child playing) for cognitive and emotional development have been shown repeatedly, claiming evolutionary adaptiveness of playing in childhood suggests that childish play supports evolutionary success in mature stages of development. This hypothesis is tested in a study with N=134 adults (93 females; age range 20-66 years). Participants were asked to recollect their play experiences during childhood in detail, and to report their current developmental status with respect to several aspects of social success. Results show that the opportunity for and the promotion of free play in childhood significantly predict some indicators of social success. Additional analyses strive to explore mediating processes for this relationship. In particular, the mediating role of individual adaptivity (flexibility of goal adjustment) is investigated. Results suggest that freely playing in childhood promotes developmental resources, in particular individual adaptivity in adulthood, which, in turn, promote developmental success.

  18. Maintenance of polygenic sex determination in a fluctuating environment: an individual-based model.

    PubMed

    Bateman, A W; Anholt, B R

    2017-05-01

    R. A. Fisher predicted that individuals should invest equally in offspring of both sexes, and that the proportion of males and females produced (the primary sex ratio) should evolve towards 1:1 when unconstrained. For many species, sex determination is dependent on sex chromosomes, creating a strong tendency for balanced sex ratios, but in other cases, multiple autosomal genes interact to determine sex. In such cases, the maintenance of multiple sex-determining alleles at multiple loci and the consequent among-family variability in sex ratios presents a puzzle, as theory predicts that such systems should be unstable. Theory also predicts that environmental influences on sex can complicate outcomes of genetic sex determination, and that population structure may play a role. Tigriopus californicus, a copepod that lives in splash-pool metapopulations and exhibits polygenic and environment-dependent sex determination, presents a test case for relevant theory. We use this species as a model for parameterizing an individual-based simulation to investigate conditions that could maintain polygenic sex determination. We find that metapopulation structure can delay the degradation of polygenic sex determination and that periods of alternating frequency-dependent selection, imposed by seasonal fluctuations in environmental conditions, can maintain polygenic sex determination indefinitely. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  19. Theoretical Perspectives on Sibling Relationships

    PubMed Central

    Whiteman, Shawn D.; McHale, Susan M.; Soli, Anna

    2011-01-01

    Although siblings are a fixture of family life, research on sibling relationships lags behind that on other family relationships. To stimulate interest in sibling research and to serve as a guide for future investigations by family scholars, we review four theoretical psychologically oriented perspectives—(a) psychoanalytic-evolutionary, (b) social psychological, (c) social learning, and (d) family-ecological systems—that can inform research on sibling relationships, including perspectives on the nature and influences on developmental, individual, and group differences in sibling relationships. Given that most research on siblings has focused on childhood and adolescence, our review highlights these developmental periods, but we also incorporate the limited research on adult sibling relationships, including in formulating suggestions for future research on this fundamental family relationship. PMID:21731581

  20. [book review] Systematics and Taxonomy of Australian Birds -- Les Christidis and Walter E. Boles. Collingwood, VIC, Australia: CSIRO Publishing, 2008

    USGS Publications Warehouse

    Chesser, R. Terry

    2009-01-01

    Systematists argue that the importance of our work lies not only in the elucidation of evolutionary relationships, but also in the incorporation of evolutionary information into classifications and the use of these classifications by government agencies, nongovernmental organizations, professional scientists, and others interested in biodiversity. If this is true, and I think that it is, then synthetic publications that make our findings accessible to a wide audience, such as Christidis and Boles' new Systematics and Taxonomy of Australian Birds, may be among the most significant works that we publish.

  1. Toward a theory of holistic needs and the brain.

    PubMed

    Silton, Nava R; Flannelly, Laura T; Flannelly, Kevin J; Galek, Kathleen

    2011-01-01

    This article reviews Maslow's theory of motivation wherein he proposes a hierarchy of human needs. First, it describes the principal elements of Maslow's theory and discusses considerations relating to the flexibility of the hierarchy. Second, it explains the relationship among Maslow's theory of human needs, attachment theory, and evolutionary threat assessment system theory. Third, it provides an overview of the brain structures posited to be involved in attachment and evolutionary threat assessment system theory and their relation to Maslow's hierarchy. Finally, it explains how the 3 theories converge to form a theory of holistic needs.

  2. Modeling evolution of crosstalk in noisy signal transduction networks

    NASA Astrophysics Data System (ADS)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  3. Resolving the evolutionary paradox of genetic instability: a cost-benefit analysis of DNA repair in changing environments.

    PubMed

    Breivik, Jarle; Gaudernack, Gustav

    2004-04-09

    Loss of genetic stability is a critical phenomenon in cancer and antibiotic resistance, and the prevailing dogma is that unstable cells survive because instability provides adaptive mutations. Challenging this view, we have argued that genetic instability arises because DNA repair may be a counterproductive strategy in mutagenic environments. This paradoxical relationship has also been confirmed by explicit experiments, but the underlying evolutionary principles remain controversial. This paper aims to clarify the issue, and presents a model that explains genetic instability from the basic perspective of molecular evolution and information processing.

  4. Development of Genetic Therapies for the Hemidesmosol Subtypes of Junction Epidermolysis Bullosa

    DTIC Science & Technology

    2003-11-01

    Aita, V.M. and Christiano, A.M. (2001) Structural Analysis Reflects the Evolutionary Relationship between the Desmocollin Gene Family Mambers. Exp...Christiano, A.M. and Zlotogorski, A. (2003) Atrichia With Papular Lesions In Non Consanguineous Families. J. Invest. Dermatol. (in press). 36 %9 172...phenotype-genotype correlations in this disorder as well as the relationship between the skin, the musculoskeletal and the nervous systems. The Ogna Variant

  5. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria).

    PubMed

    Bapst, D W; Wright, A M; Matzke, N J; Lloyd, G T

    2016-07-01

    Dated phylogenies of fossil taxa allow palaeobiologists to estimate the timing of major divergences and placement of extinct lineages, and to test macroevolutionary hypotheses. Recently developed Bayesian 'tip-dating' methods simultaneously infer and date the branching relationships among fossil taxa, and infer putative ancestral relationships. Using a previously published dataset for extinct theropod dinosaurs, we contrast the dated relationships inferred by several tip-dating approaches and evaluate potential downstream effects on phylogenetic comparative methods. We also compare tip-dating analyses to maximum-parsimony trees time-scaled via alternative a posteriori approaches including via the probabilistic cal3 method. Among tip-dating analyses, we find opposing but strongly supported relationships, despite similarity in inferred ancestors. Overall, tip-dating methods infer divergence dates often millions (or tens of millions) of years older than the earliest stratigraphic appearance of that clade. Model-comparison analyses of the pattern of body-size evolution found that the support for evolutionary mode can vary across and between tree samples from cal3 and tip-dating approaches. These differences suggest that model and software choice in dating analyses can have a substantial impact on the dated phylogenies obtained and broader evolutionary inferences. © 2016 The Author(s).

  6. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence.

    PubMed

    Kress, W J; Prince, L M; Hahn, W J; Zimmer, E A

    2001-01-01

    The Zingiberales are a tropical group of monocotyledons that includes bananas, gingers, and their relatives. The phylogenetic relationships among the eight families currently recognized are investigated here by using parsimony and maximum likelihood analyses of four character sets: morphological features (1), and sequence data of the (2) chloroplast rbcL gene, (3) chloroplast atpB gene, and (4) nuclear 18S rDNA gene. Outgroups for the analyses include the closely related Commelinaceae + Philydraceae + Haemodoraceae + Pontederiaceae + Hanguanaceae as well as seven more distantly related monocots and paleoherbs. Only slightly different estimates of evolutionary relationships result from the analysis of each character set. The morphological data yield a single fully resolved most-parsimonious tree. None of the molecular datasets alone completely resolves interfamilial relationships. The analyses of the combined molecular dataset provide more resolution than do those of individual genes, and the addition of the morphological data provides a well-supported estimate of phylogenetic relationships: (Musaceae ((Strelitziaceae, Lowiaceae) (Heliconiaceae ((Zingiberaceae, Costaceae) (Cannaceae, Marantaceae))))). Evidence from branch lengths in the parsimony analyses and from the fossil record suggests that the Zingiberales originated in the Early Cretaceous and underwent a rapid radiation in the mid-Cretaceous, by which time most extant family lineages had diverged.

  7. Patterns in leaf morphological traits of Chinese woody plants and the application for paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Yaoqi; Wang, Zhiheng

    2017-04-01

    Leaf morphological traits (LMTs) directly influence carbon-uptake and water-loss of plants in different habitats, and hence can be sensitive indicators of plant interaction with climate. The relationships between community-aggregated LMTs and their surrounding climate have been used to reconstruct paleoclimate. However, the uncertainties in its application remain poorly explored. Using distribution maps and LMTs data (leaf margin states, leaf length, leaf width, and length-width product/ratio) of 10480 Chinese woody dicots and dated family-level phylogenies, we demonstrated the variations of LMTs in geographical patterns, and analyzed their relationships with climate across different life-forms (evergreen and deciduous; trees, shrubs and lianas) and species quartiles with different family-ages. Results showed that from southern to northern China, leaves became shorter and narrower, while leaf length-width ratio increased and toothed-margin percentage decreased. Our results revealed great uncertainties in leaf margin-temperature relationships induced by life-form, precipitation and evolutionary history, and suggested that the widely-used method, leaf margin analysis, should be applied cautiously on paleotemperature reconstruction. Differently, mean leaf size responded tightly to spatial variations in annual evapotranspiration (AET) and primary productivity (GPP and NPP), and these relationships remained constant across different life-forms and evolutionary history, suggesting that leaf size could be a useful surrogate for paleo primary productivity.

  8. Assessment of student learning associated with tree thinking in an undergraduate introductory organismal biology course.

    PubMed

    Smith, James J; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is "better"; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor-descendant relationships. A pre-post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor-descendant relationships.

  9. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    PubMed Central

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor–descendant relationships, a core concept of evolutionary theory. We introduced “tree thinking” into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted of designing and implementing a set of experiences to help students learn to read, interpret, and manipulate phylogenetic trees, with a particular emphasis on using data to evaluate alternative phylogenetic hypotheses (trees). To assess the outcomes of these learning experiences, we designed and implemented a Phylogeny Assessment Tool (PhAT), an open-ended response instrument that asked students to: 1) map characters on phylogenetic trees; 2) apply an objective criterion to decide which of two trees (alternative hypotheses) is “better”; and 3) demonstrate understanding of phylogenetic trees as depictions of ancestor–descendant relationships. A pre–post test design was used with the PhAT to collect data from students in two consecutive Fall semesters. Students in both semesters made significant gains in their abilities to map characters onto phylogenetic trees and to choose between two alternative hypotheses of relationship (trees) by applying the principle of parsimony (Occam's razor). However, learning gains were much lower in the area of student interpretation of phylogenetic trees as representations of ancestor–descendant relationships. PMID:24006401

  10. Mating Goals Moderate Power's Effect on Conspicuous Consumption Among Women.

    PubMed

    Zhao, Taiyang; Jin, Xiaotong; Xu, Wei; Zuo, Xiaomeng; Cui, Hongjing

    2017-01-01

    This study aimed to use evolutionary psychology to explain conspicuous consumption's relationship with mating goals among women. We used experiments to show that power moderates conspicuous consumption's relationship with mating goals among women through an underlying relationship with women's social comparison tendencies. In Study 1, the participants read a passage describing a young woman wearing a coat made by a conspicuous brand (vs. an ordinary brand) who aimed to attract a desired man (vs. aiming to guard against potential competitors' attempts to disrupt her established intimate relationship). Participants in the conspicuous-brand condition were more confident that the young woman would succeed in mate attraction and guarding than participants in the ordinary-brand condition, suggesting the participants believed the conspicuous brands facilitated mate attraction and mate guarding more than ordinary brands. Study 2 manipulated the participants' power states and mating goals and measured participants' social comparison tendencies and conspicuous consumption index values. In the mate-guarding condition, high-power participants showed more inclination toward conspicuous consumption than low-power participants. In the mate-attraction condition, low-power participants showed a greater inclination toward conspicuous consumption than did high-power participants. Comparison orientation also mediated power's effect on conspicuous consumption inclination. The evolutionary psychological basis for the above findings is discussed, and suggestions are offered regarding product marketing.

  11. Ecological variation in wealth–fertility relationships in Mongolia: the ‘central theoretical problem of sociobiology’ not a problem after all?

    PubMed Central

    Alvergne, Alexandra; Lummaa, Virpi

    2014-01-01

    The negative wealth–fertility relationship brought about by market integration remains a puzzle to classic evolutionary models. Evolutionary ecologists have argued that this phenomenon results from both stronger trade-offs between reproductive and socioeconomic success in the highest social classes and the comparison of groups rather than individuals. Indeed, studies in contemporary low fertility settings have typically used aggregated samples that may mask positive wealth–fertility relationships. Furthermore, while much evidence attests to trade-offs between reproductive and socioeconomic success, few studies have explicitly tested the idea that such constraints are intensified by market integration. Using data from Mongolia, a post-socialist nation that underwent mass privatization, we examine wealth–fertility relationships over time and across a rural–urban gradient. Among post-reproductive women, reproductive fitness is the lowest in urban areas, but increases with wealth in all regions. After liberalization, a demographic–economic paradox emerges in urban areas: while educational attainment negatively impacts female fertility in all regions, education uniquely provides socioeconomic benefits in urban contexts. As market integration progresses, socio-economic returns to education increase and women who limit their reproduction to pursue education get wealthier. The results support the view that selection favoured mechanisms that respond to opportunities for status enhancement rather than fertility maximization. PMID:25320175

  12. Lactarius subgenus Russularia (Basidiomycota, Russulales): novel Asian species, worldwide phylogeny and evolutionary relationships.

    PubMed

    Wisitrassameewong, Komsit; Looney, Brian P; Le, Huyen T; De Crop, Eske; Das, Kanad; Van de Putte, Kobeke; Eberhardt, Ursula; Jiayu, Guo; Stubbe, Dirk; Hyde, Kevin D; Verbeken, Annemieke; Nuytinck, Jorinde

    2016-12-01

    Lactarius subg. Russularia is a large group of milkcaps occurring almost worldwide and dominant in many ecosystems. In this study we focus on new diversity, evolutionary relationships, divergence time, and origin of the subgenus. Six conifer symbionts are described as new to science: Lactarius atrii, L. aurantionitidus, L. dombangensis, L. flavigalactus, L. lachungensis, and L. sikkimensis. Species delimitation is assessed based on the concordance between morphological characteristics and an ITS phylogeny. Infrageneric relationships were studied using a phylogeny constructed from concatenated ITS-rpb2 data using Maximum Likelihood and Bayesian inference. Results show that species in this subgenus do not cluster together according to their geographic origin. Intercontinental sister relationships between Europe/Asia/North America are common but actual conspecificity is rare. This result suggests that allopatric speciation has played an important role within this subgenus. Only few morphological characteristics tend to be phylogenetically informative, with the most important being presence or absence of true cystidia and the pileipellis structure. Two datasets were generated in order to estimate the age of L. subg. Russularia. The results suggest the origin of L. subg. Russularia to be in the Mid Miocene period. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers.

    PubMed Central

    Selander, R K; Beltran, P; Smith, N H; Helmuth, R; Rubin, F A; Kopecko, D J; Ferris, K; Tall, B D; Cravioto, A; Musser, J M

    1990-01-01

    Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not. Although the clones of S. decatur and S. choleraesuis are serologically and biochemically similar, they are genotypically very distinct. Two clones of S. typhi were distinguished, one globally distributed and another apparently confined to Africa; both clones are distantly related to those of all other serovars studied. Images PMID:1973153

  14. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships

    PubMed Central

    2008-01-01

    Background The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a broad range of physiological roles. Conclusion The M13 family of peptidases have diversified extensively in all species examined, indicating wide ranging roles in numerous physiological processes. It is predicted that differences in the S2' subsite are fundamental to determining the substrate specificities that facilitate this functional diversity. PMID:18215274

  15. Determining Selection across Heterogeneous Landscapes: A Perturbation-Based Method and Its Application to Modeling Evolution in Space.

    PubMed

    Wickman, Jonas; Diehl, Sebastian; Blasius, Bernd; Klausmeier, Christopher A; Ryabov, Alexey B; Brännström, Åke

    2017-04-01

    Spatial structure can decisively influence the way evolutionary processes unfold. To date, several methods have been used to study evolution in spatial systems, including population genetics, quantitative genetics, moment-closure approximations, and individual-based models. Here we extend the study of spatial evolutionary dynamics to eco-evolutionary models based on reaction-diffusion equations and adaptive dynamics. Specifically, we derive expressions for the strength of directional and stabilizing/disruptive selection that apply both in continuous space and to metacommunities with symmetrical dispersal between patches. For directional selection on a quantitative trait, this yields a way to integrate local directional selection across space and determine whether the trait value will increase or decrease. The robustness of this prediction is validated against quantitative genetics. For stabilizing/disruptive selection, we show that spatial heterogeneity always contributes to disruptive selection and hence always promotes evolutionary branching. The expression for directional selection is numerically very efficient and hence lends itself to simulation studies of evolutionary community assembly. We illustrate the application and utility of the expressions for this purpose with two examples of the evolution of resource utilization. Finally, we outline the domain of applicability of reaction-diffusion equations as a modeling framework and discuss their limitations.

  16. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study.

    PubMed

    Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir

    2017-09-01

    Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    PubMed

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  18. phyloXML: XML for evolutionary biology and comparative genomics

    PubMed Central

    Han, Mira V; Zmasek, Christian M

    2009-01-01

    Background Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. Results We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. Conclusion PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at . PMID:19860910

  19. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  20. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  1. INTEGRATING PARASITES AND PATHOGENS INTO THE STUDY OF GEOGRAPHIC RANGE LIMITS.

    PubMed

    Bozick, Brooke A; Real, Leslie A

    2015-12-01

    The geographic distributions of all species are limited, and the determining factors that set these limits are of fundamental importance to the fields of ecology and evolutionary biology. Plant and animal ranges have been of primary concern, while those of parasites, which represent much of the Earth's biodiversity, have been neglected. Here, we review the determinants of the geographic ranges of parasites and pathogens, and explore how parasites provide novel systems with which to investigate the ecological and evolutionary processes governing host/parasite spatial distributions. Although there is significant overlap in the causative factors that determine range borders of parasites and free-living species, parasite distributions are additionally constrained by the geographic range and ecology of the host species' population, as well as by evolutionary factors that promote host-parasite coevolution. Recently, parasites have been used to infer population demographic and ecological information about their host organisms and we conclude that this strategy can be further exploited to understand geographic range limitations of both host and parasite populations.

  2. 76 FR 72451 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ..., Department of Ecology and Evolutionary Biology, University of California--Santa Cruz, Long Marine Lab, 100... trophic relationships and feeding habits of marine mammals, based on the demonstration that isotopic...

  3. Modelling the influence of parental effects on gene-network evolution.

    PubMed

    Odorico, Andreas; Rünneburger, Estelle; Le Rouzic, Arnaud

    2018-05-01

    Understanding the importance of nongenetic heredity in the evolutionary process is a major topic in modern evolutionary biology. We modified a classical gene-network model by allowing parental transmission of gene expression and studied its evolutionary properties through individual-based simulations. We identified ontogenetic time (i.e. the time gene networks have to stabilize before being submitted to natural selection) as a crucial factor in determining the evolutionary impact of this phenotypic inheritance. Indeed, fast-developing organisms display enhanced adaptation and greater robustness to mutations when evolving in presence of nongenetic inheritance (NGI). In contrast, in our model, long development reduces the influence of the inherited state of the gene network. NGI thus had a negligible effect on the evolution of gene networks when the speed at which transcription levels reach equilibrium is not constrained. Nevertheless, simulations show that intergenerational transmission of the gene-network state negatively affects the evolution of robustness to environmental disturbances for either fast- or slow-developing organisms. Therefore, these results suggest that the evolutionary consequences of NGI might not be sought only in the way species respond to selection, but also on the evolution of emergent properties (such as environmental and genetic canalization) in complex genetic architectures. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  5. Preliminary Evolutionary Explanations: A Basic Framework for Conceptual Change and Explanatory Coherence in Evolution

    ERIC Educational Resources Information Center

    Kampourakis, Kostas; Zogza, Vasso

    2009-01-01

    This study aimed to explore secondary students' explanations of evolutionary processes, and to determine how consistent these were, after a specific evolution instruction. In a previous study it was found that before instruction students provided different explanations for similar processes to tasks with different content. Hence, it seemed that…

  6. Masses and ages of Delta Scuti stars in eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Ts. G.; Petrova, Ts. C.

    1993-05-01

    By using data mainly from Frolov et al. (1982) for four Delta Scuti stars in eclipsing binary systems, AB Cas, Y Cam, RS Cha, and AI Hya, their physical parameters, distances, and radial pulsation modes are determined. The evolutionary track systems of Iben (1967), Paczynski (1970), and Maeder and Meynet (1988) are interpolated in order to estimate evolutionary masses Me and ages t of these variables. Their pulsation masses MQ are estimated from the fitting formulae of Faulkner (1977) and Fitch (1981). Our estimates of evolutionary masses M(e) and pulsation masses M(Q) are close to the masses M determined by Frolov et al. from the star binarity. The only exception is AB Cas, for which there is no agreement between certain star parameters. Another, independent approach is also applied to the stars RS Cha and AI Hya: by using their photometric indices b - y and c(1) from the catalog of Lopez de Coca et al. (1990) and appropriate photometric calibrations, other sets of physical parameters, distances, modes, ages, and evolutionary and pulsation masses of both variables are obtained.

  7. The relationship between familial resemblance and sexual attraction: an update on Westermarck, Freud, and the incest taboo.

    PubMed

    Lieberman, Debra; Fessler, Daniel M T; Smith, Adam

    2011-09-01

    Foundational principles of evolutionary theory predict that inbreeding avoidance mechanisms should exist in all species--including humans--in which close genetic relatives interact during periods of sexual maturity. Voluminous empirical evidence, derived from diverse taxa, supports this prediction. Despite such results, Fraley and Marks claim to provide evidence that humans are sexually attracted to close genetic relatives and that such attraction is held in check by cultural taboos. Here, the authors show that Fraley and Marks, in their search for an alternate explanation of inbreeding avoidance, misapply theoretical constructs from evolutionary biology and social psychology, leading to an incorrect interpretation of their results. The authors propose that Fraley and Marks's central findings can be explained in ways consistent with existing evolutionary models of inbreeding avoidance. The authors conclude that appropriate application of relevant theory and stringent experimental design can generate fruitful investigations into sexual attraction, inbreeding avoidance, and incest taboos.

  8. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    PubMed

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Aging and human sexual behavior: biocultural perspectives - a mini-review.

    PubMed

    Gray, Peter B; Garcia, Justin R

    2012-01-01

    In this mini-review, we consider an evolutionary biocultural perspective on human aging and sexuality. An evolutionary approach to senescence highlights the energetic trade-offs between fertility and mortality. By comparing humans to other primates, we situate human senescence as an evolutionary process, with shifts in postreproductive sexual behavior in this light. Age-related declines in sexual behavior are typical for humans but also highly contingent on the sociocultural context within which aging individuals express their sexuality. We briefly review some of the most comprehensive studies of aging and sexual behavior, both from the USA and cross-culturally. We frame these patterns with respect to the long-term relationships within which human sexual behavior typically occurs. Because sexuality is typically expressed within pair-bonds, sexual behavior sometimes declines in both members of a couple with age, but also exhibits sex-specific effects that have their roots in evolved sex differences. Copyright © 2012 S. Karger AG, Basel.

  10. When Field Experiments Yield Unexpected Results: Lessons Learned from Measuring Selection in White Sands Lizards

    PubMed Central

    Hardwick, Kayla M.; Harmon, Luke J.; Hardwick, Scott D.; Rosenblum, Erica Bree

    2015-01-01

    Determining the adaptive significance of phenotypic traits is key for understanding evolution and diversification in natural populations. However, evolutionary biologists have an incomplete understanding of how specific traits affect fitness in most populations. The White Sands system provides an opportunity to study the adaptive significance of traits in an experimental context. Blanched color evolved recently in three species of lizards inhabiting the gypsum dunes of White Sands and is likely an adaptation to avoid predation. To determine whether there is a relationship between color and susceptibility to predation in White Sands lizards, we conducted enclosure experiments, quantifying survivorship of Holbrookia maculate exhibiting substrate-matched and substrate-mismatched phenotypes. Lizards in our study experienced strong predation. Color did not have a significant effect on survival, but we found several unexpected relationships including variation in predation over small spatial and temporal scales. In addition, we detected a marginally significant interaction between sex and color, suggesting selection for substrate matching may be stronger for males than females. We use our results as a case study to examine six major challenges frequently encountered in field-based studies of natural selection, and suggest that insight into the complexities of selection often results when experiments turn out differently than expected. PMID:25714838

  11. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients

    PubMed Central

    Fitzpatrick, Matthew C.; Sanders, Nathan J.; Normand, Signe; Svenning, Jens-Christian; Ferrier, Simon; Gove, Aaron D.; Dunn, Robert R.

    2013-01-01

    A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change. PMID:23926147

  12. A proposed analytic framework for determining the impact of an antimicrobial resistance intervention.

    PubMed

    Grohn, Yrjo T; Carson, Carolee; Lanzas, Cristina; Pullum, Laura; Stanhope, Michael; Volkova, Victoriya

    2017-06-01

    Antimicrobial use (AMU) is increasingly threatened by antimicrobial resistance (AMR). The FDA is implementing risk mitigation measures promoting prudent AMU in food animals. Their evaluation is crucial: the AMU/AMR relationship is complex; a suitable framework to analyze interventions is unavailable. Systems science analysis, depicting variables and their associations, would help integrate mathematics/epidemiology to evaluate the relationship. This would identify informative data and models to evaluate interventions. This National Institute for Mathematical and Biological Synthesis AMR Working Group's report proposes a system framework to address the methodological gap linking livestock AMU and AMR in foodborne bacteria. It could evaluate how AMU (and interventions) impact AMR. We will evaluate pharmacokinetic/dynamic modeling techniques for projecting AMR selection pressure on enteric bacteria. We study two methods to model phenotypic AMR changes in bacteria in the food supply and evolutionary genotypic analyses determining molecular changes in phenotypic AMR. Systems science analysis integrates the methods, showing how resistance in the food supply is explained by AMU and concurrent factors influencing the whole system. This process is updated with data and techniques to improve prediction and inform improvements for AMU/AMR surveillance. Our proposed framework reflects both the AMR system's complexity, and desire for simple, reliable conclusions.

  13. Using Fossil Shark Teeth to Illustrate Evolution and Introduce Basic Geologic Concepts in a High School Biology Classroom

    NASA Astrophysics Data System (ADS)

    Agnew, J. G.; Nunn, J. A.

    2007-12-01

    Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first appearance in the fossil record. This is followed by a group discussion of each group's predictions. Next students are given photographs of teeth from different megatoothed sharks, and a geologic time scale with the sharks stratigraphic ranges. Students are asked to describe evolutionary trends in the fossil megatoothed lineage and formulate several hypotheses to explain the observed evolutionary trends. The exercise is concluded with a discussion of the environmental and biotic events occurring between the Eocene and Miocene epochs that may have caused the evolutionary changes in the megatoothed shark's teeth.

  14. Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii

    PubMed Central

    Zou, Jiabin; Sun, Yongshuai; Li, Long; Wang, Gaini; Yue, Wei; Lu, Zhiqiang; Wang, Qian; Liu, Jianquan

    2013-01-01

    Background and Aims Genetic drift due to geographical isolation, gene flow and mutation rates together make it difficult to determine the evolutionary relationships of present-day species. In this study, population genetic data were used to model and decipher interspecific relationships, speciation patterns and gene flow between three species of spruce with similar morphology, Picea wilsonii, P. neoveitchii and P. morrisonicola. Picea wilsonii and P. neoveitchii occur from central to north-west China, where they have overlapping distributions. Picea morrisonicola, however, is restricted solely to the island of Taiwan and is isolated from the other two species by a long distance. Methods Sequence variations were examined in 18 DNA fragments for 22 populations, including three fragments from the chloroplast (cp) genome, two from the mitochondrial (mt) genome and 13 from the nuclear genome. Key Results In both the cpDNA and the mtDNA, P. morrisonicola accumulated more species-specific mutations than the other two species. However, most nuclear haplotypes of P. morrisonicola were shared by P. wilsonii, or derived from the dominant haplotypes found in that species. Modelling of population genetic data supported the hypothesis that P. morrisonicola derived from P. wilsonii within the more recent past, most probably indicating progenitor–derivative speciation with a distinct bottleneck, although further gene flow from the progenitor to the derivative continued. In addition, the occurrence was detected of an obvious mtDNA introgression from P. neoveitchii to P. wilsonii despite their early divergence. Conclusions The extent of mutation, introgression and lineage sorting taking place during interspecific divergence and demographic changes in the three species had varied greatly between the three genomes. The findings highlight the complex evolutionary histories of these three Asian spruce species. PMID:24220103

  15. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  16. Floral associations of cyclocephaline scarab beetles.

    PubMed

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: (1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, (2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and (3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms.

  17. Floral Associations of Cyclocephaline Scarab Beetles

    PubMed Central

    Moore, Matthew Robert; Jameson, Mary Liz

    2013-01-01

    The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms. PMID:24738782

  18. Contribution of TyrB26 to the Function and Stability of Insulin

    PubMed Central

    Pandyarajan, Vijay; Phillips, Nelson B.; Rege, Nischay; Lawrence, Michael C.; Whittaker, Jonathan; Weiss, Michael A.

    2016-01-01

    Crystallographic studies of insulin bound to receptor domains have defined the primary hormone-receptor interface. We investigated the role of TyrB26, a conserved aromatic residue at this interface. To probe the evolutionary basis for such conservation, we constructed 18 variants at B26. Surprisingly, non-aromatic polar or charged side chains (such as Glu, Ser, or ornithine (Orn)) conferred high activity, whereas the weakest-binding analogs contained Val, Ile, and Leu substitutions. Modeling of variant complexes suggested that the B26 side chains pack within a shallow depression at the solvent-exposed periphery of the interface. This interface would disfavor large aliphatic side chains. The analogs with highest activity exhibited reduced thermodynamic stability and heightened susceptibility to fibrillation. Perturbed self-assembly was also demonstrated in studies of the charged variants (Orn and Glu); indeed, the GluB26 analog exhibited aberrant aggregation in either the presence or absence of zinc ions. Thus, although TyrB26 is part of insulin's receptor-binding surface, our results suggest that its conservation has been enjoined by the aromatic ring's contributions to native stability and self-assembly. We envisage that such classical structural relationships reflect the implicit threat of toxic misfolding (rather than hormonal function at the receptor level) as a general evolutionary determinant of extant protein sequences. PMID:27129279

  19. Ecotypic differentiation under farmers' selection: Molecular insights into the domestication of Pachyrhizus Rich. ex DC. (Fabaceae) in the Peruvian Andes.

    PubMed

    Delêtre, Marc; Soengas, Beatriz; Vidaurre, Prem Jai; Meneses, Rosa Isela; Delgado Vásquez, Octavio; Oré Balbín, Isabel; Santayana, Monica; Heider, Bettina; Sørensen, Marten

    2017-06-01

    Understanding the distribution of crop genetic diversity in relation to environmental factors can give insights into the eco-evolutionary processes involved in plant domestication. Yam beans ( Pachyrhizus Rich. ex DC.) are leguminous crops native to South and Central America that are grown for their tuberous roots but are seed-propagated. Using a landscape genetic approach, we examined correlations between environmental factors and phylogeographic patterns of genetic diversity in Pachyrhizus landrace populations. Molecular analyses based on chloroplast DNA sequencing and a new set of nuclear microsatellite markers revealed two distinct lineages, with strong genetic differentiation between Andean landraces (lineage A) and Amazonian landraces (lineage B). The comparison of different evolutionary scenarios for the diversification history of yam beans in the Andes using approximate Bayesian computation suggests that Pachyrhizus ahipa and Pachyrhizus tuberosus share a progenitor-derivative relationship, with environmental factors playing an important role in driving selection for divergent ecotypes. The new molecular data call for a revision of the taxonomy of Pachyrhizus but are congruent with paleoclimatic and archeological evidence, and suggest that selection for determinate growth was part of ecophysiological adaptations associated with the diversification of the P. tuberosus - P. ahipa complex during the Mid-Holocene.

  20. Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.

    PubMed

    de Waal, C; Rodger, J G; Anderson, B; Ellis, A G

    2014-05-01

    Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

Top