NASA Technical Reports Server (NTRS)
DelPapa, Steven V.
2005-01-01
Arc jet tests of candidate tile repair materials and baseline Orbiter uncoated reusable surface insulation (RSI) were performed in the Johnson Space Center's (JSC) Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) from June 23, 2003, through August 19, 2003. These tests were performed to screen candidate tile repair materials by verifying the high temperature performance and determining the thermal stability. In addition, tests to determine the surface emissivity at high temperatures and the geometric shrinkage of bare RSI were performed. In addition, tests were performed to determine the surface emissivity at high temperatures and the geometric shrinkage of uncoated RSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blue, Thomas; Windl, Wolfgang
The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.
The procedure for determining the residual life of high-temperature aggregates
NASA Astrophysics Data System (ADS)
Nikiforov, A. S.; Prihodko, E. V.; Kinzhibekova, A. K.; Karmanov, A. E.
2018-01-01
One of the main reasons for the withdrawal of high-temperature aggregates for repairs is the destruction of enclosing structures due to the occurrence of temperature stresses. A wide range of refractory materials used, a large number of product names, a difference in the operation of even the same aggregates makes it impossible to apply general principles for determining the residual resource of high-temperature aggregates, which is based, as a rule, on the determination of temperature stresses. In the article there is suggested a technique based on the method of simulation modeling, allowing to estimate the remaining resource and reliability of the operating equipment. There are given data on the calculation of these indicators for a 25-ton steel-casting ladle. The values obtained make it possible to evaluate the rationality of the further operation of the high-temperature unit by the condition of reliability of the enclosing structures.
A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control
NASA Technical Reports Server (NTRS)
Ng, Daniel
1999-01-01
The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.
Twin solution calorimeter determines heats of formation of alloys at high temperatures
NASA Technical Reports Server (NTRS)
Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.
1968-01-01
Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuebing; Chen, Ting; Qi, Xintong
In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in anmore » offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.« less
Ultrasonic Al₂O₃ Ceramic Thermometry in High-Temperature Oxidation Environment.
Wei, Yanlong; Gao, Yubin; Xiao, Zhaoqian; Wang, Gao; Tian, Miao; Liang, Haijian
2016-11-11
In this study, an ultrasonic temperature measurement system was designed with Al₂O₃ high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C-1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.
NASA Astrophysics Data System (ADS)
Wähmer, M.; Anhalt, K.; Hollandt, J.; Klein, R.; Taubert, R. D.; Thornagel, R.; Ulm, G.; Gavrilov, V.; Grigoryeva, I.; Khlevnoy, B.; Sapritsky, V.
2017-10-01
Absolute spectral radiometry is currently the only established primary thermometric method for the temperature range above 1300 K. Up to now, the ongoing improvements of high-temperature fixed points and their formal implementation into an improved temperature scale with the mise en pratique for the definition of the kelvin, rely solely on single-wavelength absolute radiometry traceable to the cryogenic radiometer. Two alternative primary thermometric methods, yielding comparable or possibly even smaller uncertainties, have been proposed in the literature. They use ratios of irradiances to determine the thermodynamic temperature traceable to blackbody radiation and synchrotron radiation. At PTB, a project has been established in cooperation with VNIIOFI to use, for the first time, all three methods simultaneously for the determination of the phase transition temperatures of high-temperature fixed points. For this, a dedicated four-wavelengths ratio filter radiometer was developed. With all three thermometric methods performed independently and in parallel, we aim to compare the potential and practical limitations of all three methods, disclose possibly undetected systematic effects of each method and thereby confirm or improve the previous measurements traceable to the cryogenic radiometer. This will give further and independent confidence in the thermodynamic temperature determination of the high-temperature fixed point's phase transitions.
High temperature thermometric phosphors for use in a temperature sensor
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1998-03-24
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
Temperature and emissivity determination of liquid steel S235
NASA Astrophysics Data System (ADS)
Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.
2012-06-01
Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.
NASA Astrophysics Data System (ADS)
Perdelwitz, V.; Huke, P.
2018-06-01
Absorption cells filled with diatomic iodine are frequently employed as wavelength reference for high-precision stellar radial velocity determination due their long-term stability and low cost. Despite their wide-spread usage in the community, there is little documentation on how to determine the ideal operating temperature of an individual cell. We have developed a new approach to measuring the effective molecular temperature inside a gas absorption cell and searching for effects detrimental to a high precision wavelength reference, utilizing the Boltzmann distribution of relative line depths within absorption bands of single vibrational transitions. With a high resolution Fourier transform spectrometer, we took a series of 632 spectra at temperatures between 23 °C and 66 °C. These spectra provide a sufficient basis to test the algorithm and demonstrate the stability and repeatability of the temperature determination via molecular lines on a single iodine absorption cell. The achievable radial velocity precision σRV is found to be independent of the cell temperature and a detailed analysis shows a wavelength dependency, which originates in the resolving power of the spectrometer in use and the signal-to-noise ratio. Two effects were found to cause apparent absolute shifts in radial velocity, a temperature-induced shift of the order of ˜1 ms-1K-1 and a more significant effect resulting in abrupt jumps of ≥50 ms-1 is determined to be caused by the temperature crossing the dew point of the molecular iodine.
High temperature thermometric phosphors
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
High temperature thermometric phosphors
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Wolford, David S.
2000-01-01
A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.
NASA Astrophysics Data System (ADS)
Wang, Y.; Fei, Y.
2006-05-01
Carbon has been proposed to be one of the light elements in the Earth's core. Knowledge of phase relations in the Fe-C system at high pressure and temperature is needed to understand the carbon content in the core and its effect on the physical properties and the temperature of the core. Experimental data in this system at high pressure and temperature are limited. In this study we report new experimental data on melting relations up to 25 GPa. The experiments were performed using piston-cylinder and multi-anvil devices at the Geophysical Laboratory. Mixtures of fine power of pure iron and graphite with different carbon content were prepared as starting materials. The starting materials were loaded into MgO capsules and then compressed to the desired pressures, using various high-pressure cell assemblies that have been calibrated at high pressure. High temperatures were achieved using either graphite heater (<6 GPa) or rhenium heater at higher pressures and measured with a tungsten-rhenium thermocouple. Melting relations were determined with a JEOL JXA-8900 electron microprobe, based on quench textures and chemical composition of the quenched phases. Powder X- ray diffraction technique was also used to identify phases and determine unit cell parameters. A positive slope between the solubility of carbon in metallic iron and pressure was found at elevated temperatures. The eutectic temperature increases with increasing pressure. The liquidus temperature determined in this study is significantly lower than the calculated value in previous study. Our study presents directly experimental measurements of the melting relations in the Fe-C system at high pressure and temperature, which provides better constraints on composition and temperature of the Earth's core.
On the melting temperature measurements of metals under shock compression by pyrometry
NASA Astrophysics Data System (ADS)
Dai, Chengda; Hu, Jianbo; Tan, Hua
2009-06-01
The high-pressure melting temperatures are of interest in validating equation of state and modeling constitutive equation. The determination of melting temperatures for metals at megabars by pyrometry experiments is principally associated with the one-dimensional models for heat flow through dissimilar media: Grover-Urtiew model (J. App. Phys. 1974, 45: 146-152) and Tan-Ahrens model (High Press. Res. 1990, 2: 159-182). In the present work, we analyzed the insufficiency of Grover-Urtiew model in determining melting temperatures from observed interface temperatures. Based on the Tan-Ahrens model, we extracted the upper and lower bound on melting temperature at interface pressure, and proposed that the median of the both bounds was a good approximation to the melting temperatures at interface pressure. Pyrometry experiments were performed on tantalum, and the high-pressure melting temperatures were evaluated by application of the proposed approximation. The obtained results were compared with available theoretical calculations.
Processing of extraterrestrial materials by high temperature vacuum vaporization
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1983-01-01
It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.
High temperature thermometric phosphors for use in a temperature sensor
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1998-01-01
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
Song, Guicheng; Wang, Miaomiao; Zeng, Bin; Zhang, Jing; Jiang, Chenliang; Hu, Qirui; Geng, Guangtao; Tang, Canming
2015-05-01
Pollen tube growth in styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the adverse effect of high temperatures during square development. High-temperature stress during flowering influences the square development of upland cotton (Gossypium hirsutum L.) and cotton yield. Although it is well known that square development is sensitive to high temperature, high-temperature sensitive stages of square development and the effects of high temperature on pollen tube growth in the styles are unknown. The effect of high temperature on anther development corresponding to pollen vigor is unknown during anther development. The objectives of this study were to identify the stages of square development that are sensitive to high temperatures (37/30 and 40/34 °C), to determine whether the abnormal development of squares influenced by high temperature is responsible for the variation in the in vitro germination percent of pollen grains at anthesis, to identify the effect of high temperature on pollen germination in the styles, and to determine pollen thermotolerance heterosis. Our results show that the stages from the sporogenous cell to tetrad stage (square length <6.0 mm) were the most sensitive to high temperature, and the corresponding pollen viability at anthesis was consistent with the changes in the square development stage. Pollen tube growth in the styles was strongly inhibited by temperature above 35 °C, and the yield of cotton decreased because of the effect of high temperature during square development. The thermotolerance of hybrid F1 pollen showed heterosis, and pollen viability could be used as a criterion for screening for high-temperature tolerance cultivars. These results can be used in breeding to develop new cotton cultivars that can withstand high-temperature conditions, particularly in a future warmer climate.
Prediction of air temperature for thermal comfort of people using sleeping bags: a review
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions
NASA Technical Reports Server (NTRS)
Wang, Y.; Gupta, A. K.
2001-01-01
The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.
Prediction of air temperature for thermal comfort of people using sleeping bags: a review.
Huang, Jianhua
2008-11-01
Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christien, F., E-mail: frederic.christien@univ-nantes.fr; Telling, M.T.F.; Department of Materials, University of Oxford, Parks Road, Oxford
2013-08-15
Phase transformations in the 17-4PH martensitic stainless steel have been studied using different in-situ techniques, including dilatometry and high resolution neutron diffraction. Neutron diffraction patterns were quantitatively processed using the Rietveld refinement method, allowing the determination of the temperature-dependence of martensite (α′, bcc) and austenite (γ, fcc) phase fractions and lattice parameters on heating to 1000 °C and then cooling to room temperature. It is demonstrated in this work that dilatometry doesn't permit an accurate determination of the end temperature (Ac3) of the α′ → γ transformation which occurs upon heating to high temperature. The analysis of neutron diffraction datamore » has shown that the respective volumes of the two phases become very close to each other at high temperature, thus making the dilatometric technique almost insensitive in that temperature range. However, there is a very good agreement between neutron diffraction and dilatometry at lower temperature. The martensitic transformation occurring upon cooling has been analysed using the Koistinen–Marburger equation. The thermal expansion coefficients of the two phases have been determined in addition. A comparison of the results obtained in this work with data from literature is presented. - Highlights: • Martensite is still present at very high temperature (> 930 °C) upon heating. • The end of austenitisation cannot be accurately monitored by dilatometry. • The martensite and austenite volumes become similar at high temperature (> ∼ 850 °C)« less
Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)
NASA Technical Reports Server (NTRS)
Ammon, R. L.
1974-01-01
Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.
NASA Technical Reports Server (NTRS)
Cunnington, G. R.; Funai, A. I.
1972-01-01
The progress during the sixth quarterly period is reported on construction and assembly of a test facility to determine the high temperature emittance properties of candidate thermal protection system materials for the space shuttle. This facility will provide simulation of such reentry environment parameters as temperature, pressure, and gas flow rate to permit studies of the effects of these parameters on the emittance stability of the materials. Also reported are the completed results for emittance tests on a set of eight Rene 41 samples and one anodized titanium alloy sample which were tested at temperatures up to 1600 F in vacuum. The data includes calorimetric determinations of total hemispherical emittance, radiometric determinations of total and spectral normal emittance, and pre- and post-test room temperature reflectance measurements.
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
NASA Technical Reports Server (NTRS)
Opila, Elizabeth
2005-01-01
The chemical stability of high temperature materials must be known for use in the extreme environments of combustion applications. The characterization techniques available at NASA Glenn Research Center vary from fundamental thermodynamic property determination to material durability testing in actual engine environments. In this paper some of the unique techniques and facilities available at NASA Glenn will be reviewed. Multiple cell Knudsen effusion mass spectrometry is used to determine thermodynamic data by sampling gas species formed by reaction or equilibration in a Knudsen cell held in a vacuum. The transpiration technique can also be used to determine thermodynamic data of volatile species but at atmospheric pressures. Thermodynamic data in the Si-O-H(g) system were determined with this technique. Free Jet Sampling Mass Spectrometry can be used to study gas-solid interactions at a pressure of one atmosphere. Volatile Si(OH)4(g) was identified by this mass spectrometry technique. A High Pressure Burner Rig is used to expose high temperature materials in hydrocarbon-fueled combustion environments. Silicon carbide (SiC) volatility rates were measured in the burner rig as a function of total pressure, gas velocity and temperature. Finally, the Research Combustion Lab Rocket Test Cell is used to expose high temperature materials in hydrogen/oxygen rocket engine environments to assess material durability. SiC recession due to rocket engine exposures was measured as a function of oxidant/fuel ratio, temperature, and total pressure. The emphasis of the discussion for all techniques will be placed on experimental factors that must be controlled for accurate acquisition of results and reliable prediction of high temperature material chemical stability.
Temperature determination of shock layer using spectroscopic techniques
NASA Technical Reports Server (NTRS)
Akundi, Murty A.
1989-01-01
Shock layer temperature profiles are obtained through analysis of radiation from shock layers produced by a blunt body inserted in an arc jet flow. Spectral measurements of N2(+) have been made at 0.5 inch, 1.0 inch, and 1.4 inches from the blunt body. A technique is developed to measure the vibrational and rotational temperatures of N2(+). Temperature profiles from the radiation layers show a high temperature near the shock front and decreasing temperature near the boundary layer. Precise temperature measurements could not be made using this technique due to the limited resolution. Use of a high resolution grating will help to make a more accurate temperature determination. Laser induced fluorescence technique is much better since it gives the scope for selective excitation and a better spacial resolution.
Santidrián Tomillo, Pilar; Genovart, Meritxell; Paladino, Frank V; Spotila, James R; Oro, Daniel
2015-08-01
Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years. © 2015 John Wiley & Sons Ltd.
Ultra-High Temperature Materials Characterization for Space and Missile Applications
NASA Technical Reports Server (NTRS)
Rogers, Jan; Hyers, Robert
2007-01-01
Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.
High Temperature Evaluation of Tantalum Capacitors - Test 1
Cieslewski, Grzegorz
2014-09-28
Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.
Investigation of saponification for determination of polychlorinated biphenyls in marine sediments.
Numata, Masahiko; Yarita, Takashi; Aoyagi, Yoshie; Yamazaki, Misako; Takatsu, Akiko
2005-02-01
The effects of saponification conditions (temperature and water content of saponifying solution) on the determination of chlorinated biphenyls (CBs) in marine sediments were investigated. Although highly chlorinated biphenyls (nona- to deca-CBs) decomposed during high-temperature saponification, the degree of degradation was reduced by adding water to the ethanolic potassium hydroxide saponifying solution. Room-temperature saponification yielded quantitative recovery of highly chlorinated biphenyl surrogates but low extraction efficiencies of lightly chlorinated biphenyls (mono- to di-CBs). The same samples were analyzed by other extraction techniques, for example, pressurized liquid extraction, and analytical results were compared. The mono- and di-CB concentrations were correlated with the extraction temperatures of various extraction techniques. In particular, the concentrations of some CB congeners (CB11, CB14) were higher with saponification. The low degree of degradation of highly chlorinated biphenyls and the high recovery of lightly chlorinated biphenyls were compatible when room-temperature and high-temperature saponification were combined. Except for the anomalies of CB11 and CB14, the combined method gave satisfactory results for analysis of PCBs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skontorp, A.; Wang, S.S.; Shibuya, Y.
1994-12-31
In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using amore » two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.« less
Neuwald, Jennifer L; Valenzuela, Nicole
2011-03-23
Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD), as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions) has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta) were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change.
Li, X C; Wang, C C; Zhao, J M; Liu, L H
2018-02-10
The optical constants of five highly transparent substrates (polycrystalline BaF 2 , CaF 2 , MgF 2 , ZnSe, and ZnS) were experimentally determined based on a combined technique using both the double optical pathlength transmission method and the ellipsometry method within temperature range 20°C-350°C in the ultraviolet-infrared region (0.2-20 μm). The results show that the refractive index spectra of polycrystalline BaF 2 , CaF 2 , and MgF 2 are similar, but differ from that of polycrystalline ZnSe and ZnS. The thermo-optic coefficient of these highly transparent substrates increases with increasing temperature. The absorption indices show a significant temperature-dependent behavior, which increases with increasing temperature from 20°C to 350°C over the transparent region. For the sake of application, the fitted formulas of the refractive index of the five highly transparent substrates as a function of wavelength and temperature are presented.
Research On Bi-Based High-Temperature Superconductors
NASA Technical Reports Server (NTRS)
Banks, Curtis; Doane, George B., III; Golben, John
1993-01-01
Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.
Development of high temperature strain gages
NASA Technical Reports Server (NTRS)
Lemcoe, M. M.
1973-01-01
High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.
NASA Astrophysics Data System (ADS)
Franta, Daniel; Franta, Pavel; Vohánka, Jiří; Čermák, Martin; Ohlídal, Ivan
2018-05-01
Optical measurements of transmittance in the far infrared region performed on crystalline silicon wafers exhibit partially coherent interference effects appropriate for the determination of thicknesses of the wafers. The knowledge of accurate spectral and temperature dependencies of the optical constants of crystalline silicon in this spectral region is crucial for the determination of its thickness and vice versa. The recently published temperature dependent dispersion model of crystalline silicon is suitable for this purpose. Because the linear thermal expansion of crystalline silicon is known, the temperatures of the wafers can be determined with high precision from the evolution of the interference patterns at elevated temperatures.
Corrosion of Nickel-Based Alloys in Ultra-High Temperature Heat Transfer Fluid
NASA Astrophysics Data System (ADS)
Wang, Tao; Reddy, Ramana G.
2017-03-01
MgCl2-KCl binary system has been proposed to be used as high temperature reactor coolant. Due to its relatively low melting point, good heat capacity and excellent thermal stability, this system can also be used in high operation temperature concentrating solar power generation system as heat transfer fluid (HTF). The corrosion behaviors of nickel based alloys in MgCl2-KCl molten salt system at 1,000 °C were determined based on long-term isothermal dipping test. After 500 h exposure tests under strictly maintained high purity argon gas atmosphere, the weight loss and corrosion rate analysis were conducted. Among all the tested samples, Ni-201 demonstrated the lowest corrosion rate due to the excellent resistance of Ni to high temperature element dissolution. Detailed surface topography and corrosion mechanisms were also determined by using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS).
Refractory oxide insulated thermocouple designed and analyzed for high temperature applications
NASA Technical Reports Server (NTRS)
Popper, G. F.; Zeren, T. Z.
1969-01-01
Study establishes design criteria for constructing high temperature thermocouple to measure nuclear fuel pin temperature. The study included a literature search to determine the compatibility of material useful for thermocouples, a hot zone error analysis, and a prototype design for hot junction and connector pin connections.
Method and apparatus for nitrogen oxide determination
Hohorst, Frederick A.
1990-01-01
Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2004-01-01
A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).
Atmospheric pressure and temperature profiling using near IR differential absorption lidar
NASA Technical Reports Server (NTRS)
Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.
1983-01-01
The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.
Andrews, Robin M
2008-10-01
I evaluated the effect of incubation temperature on phenotypes of the veiled chameleon, Chamaeleo calyptratus. I chose this species for study because its large clutch size (30-40 eggs or more) allows replication within clutches both within and among experimental treatments. The major research objectives were (1) to assess the effect of constant low, moderate, and high temperatures on embryonic development, (2) to determine whether the best incubation temperature for embryonic development also produced the "best" hatchlings, and (3) to determine how a change in incubation temperature during mid-development would affect phenotype. To meet these objectives, I established five experimental temperature regimes and determined egg survival and incubation length and measured body size and shape, selected body temperatures, and locomotory performance of lizards at regular intervals from hatching to 90 d, or just before sexual maturity. Incubation temperature affected the length of incubation, egg survival, and body mass, but did not affect sprint speed or selected body temperature although selected body temperature affected growth in mass independently of treatment and clutch. Incubation at moderate temperatures provided the best conditions for both embryonic and post-hatching development. The highest incubation temperatures were disruptive to development; eggs had high mortality, developmental rate was low, and hatchlings grew slowly. Changes in temperature during incubation increased the among-clutch variance in incubation length relative to that of constant temperature treatments. Copyright 2008 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
A report is given on a new industrial method for the determination of carry-over alpha-amylase activity in raw and refined sugars, as well as a recommendation. In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) s...
Method for determining molten metal pool level in twin-belt continuous casting machines
Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.
1989-03-21
A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.
A New Method of Metallization for Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
The determination of the firing cycle in a horizontal tube furnace for MoO3: Sn ink composition applied by silk screening process on P or N structured solar cells is presented. In comparison with the strip heater used to determine the reaction mechanism, the reduction of MoO3 in the tube furnace progresses at a much faster rate and the Sn:Mo alloy forms at a much lower temperature. The device characteristics determined by the V-I curve showed a high resistance (approx. 10 Ohms) at peak temperatures between 600 C and 800 C. The high series resistance is attributed to the lack of formation of MoSi2 within the used temperature range.
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2016-01-01
Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.
NASA Astrophysics Data System (ADS)
Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.
2016-12-01
In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.
A New Temperature Determination Using the Fe XVII Emission of Capella
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Gu, M. F.; Lepson, J.; Desai, P.
2011-12-01
Typically, the most reliable way to spectroscopically determine the electron temperature is to measure the strength of dielectronic recombination (DR) satellite lines relative to the associated resonance line, IDR/ Ir, as this ratio varies steeply with temperature and does not require assumptions associated with the calculations of ionization equilibria. We have applied this method to the Fe XVII lines, which are very bright in the spectrum of Capella observed with high resolution with Chandra's High Energy Transmission Grating Spectrometer. In particular, we have determined the intensity of the dielectronic satellite lines next to the Fe XVII 2p-3d resonance line, commonly denoted 3C. The atomic data needed to do this are supplied by the Flexible Atomic Code. The temperature, TDR, we have derived from this method is somewhat lower than TDEM, derived from the differential emission measure for Fe XVII. We show that the precision of this method is very high, and we discuss the its limitations.
A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements
NASA Astrophysics Data System (ADS)
Vanderover, Jeremy
A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller than the estimated uncertainties of 2.5-3% in both sensor determined temperature and CO. Enhancement of the sensor sensitivity can be achieved through use wavelength-modulation spectroscopy (WMS). Similarly, under WMS operation the sensor was applied to room-temperature gas cell (297 K, 0.001-1 atm) measurements, which indicate that the sensor sensitivity in WMS operation is approximately an order-of-magnitude greater than that achieved in scanned-wavelength mode, and high-temperature shock-heated gases (850-3400 K, 1 atm), which validate the sensor for sensitive thermometry at combustion temperatures. In WMS mode the temperature measurements show 1-sigma deviation of +/-1.9% with the reflected shock conditions. High-temperature CO concentration measurements require calibration to scale the measured WMS-2f peak height with a simulated WMS-2 f line shape. However, using single point calibration for each CO containing mixture studied resulted in fairly good agreement (1-sigma deviation of +/-4.2%) between measured and simulated WMS-2f peak height. In other words, CO mole fraction determinations (proportional to peak height) were achieved with deviation of +/-4.2% with specified CO mole fraction. Sensor measurements made at a 1 kHz acquisition bandwidth in an atmospheric pressure ethylene/air flat-flame produced by a McKenna burner for equivalence ratios from 0.7 to 1.4 were in excellent accord with thermocouple measurements and chemical equilibrium predictions for CO based on the thermocouple temperatures for rich conditions. At lean conditions sensor temperature determinations are lower than thermocouple determinations by around 150 K due to the cool flame edge and sensor CO measurements are greater than those predicted by chemical equilibrium due to super-equilibrium CO in the cool flame edge. The CO sensor developed and described herein and validated in room-temperature cell, high-temperature shock tube, and flat-flame burner measurements has potential for a vast array of measurements in combustion, energy, and industrial gas sensing applications. It has unsurpassed sensitivity due to the use of the fundamental CO band at 4.6 mum and provides kHz acquisition bandwidths necessary for high-speed measurements in these systems. This research was directed by Professor Matt Oehlschlaeger and supported by the Office of Naval Research (ONR).
Thermomagnetic phenomena in the mixed state of high temperature superconductors
NASA Technical Reports Server (NTRS)
Meilikhov, E. Z.
1995-01-01
Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Jin, Helena
Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less
Outlook for ultraviolet astronomy
NASA Technical Reports Server (NTRS)
Boehm-Vitense, E.
1981-01-01
A brief overview of galactic and extragalactic research is given with emphasis on the problems of temperature determination, chemical abundance determination, and the question about the energy sources for the high temperature regions. Stellar astronomy, stellar winds, and the interstellar medium are among the topics covered.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.
Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W
2010-07-01
A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.
NASA Astrophysics Data System (ADS)
Parrilla, Nicholas; Ralph, Joe; Bachmann, Ben; Goyon, Clement; Dewald, Eduard
2017-10-01
The temperature profile from the Laser Entrance Hole to 3.5 mm from the exit point was measured for plasma with high atomic number (high-Z) of Depleted Uranium ignition scale hohlraums. Each hohlraum was filled with 0.6 mg/cc He as part of the high foot CH campaign. Temperature of the flowing plasma is measured by fitting the velocity distribution to a Maxwellian and considering the Planckian spectral distributions with and without a 42 um Ge filter. The two spectra are then compared to determine the temperature of the high-Z plasma.
Fuel processor temperature monitoring and control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2002-01-01
In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.
Development of advanced high-temperature heat flux sensors
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Strange, R. R.
1982-01-01
Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.
A Brief Review of Recent Superconductivity Research at NIST
Lundy, D. R.; Swartzendruber, L. J.; Bennett, L. H.
1989-01-01
A brief overview of recent superconductivity research at NIST is presented. Emphasis is placed on the new high-temperature oxide superconductors, though mention is made of important work on low-temperature superconductors, and a few historical notes are included. NIST research covers a wide range of interests. For the new high-temperature superconductors, research activities include determination of physical properties such as elastic constants and electronic structure, development of new techniques such as magnetic-field modulated microwave-absorption and determination of phase diagrams and crystal structure. For the low-temperature superconductors, research spans studying the effect of stress on current density to the fabrication of a new Josephson junction voltage standard. PMID:28053408
NASA Astrophysics Data System (ADS)
Huang, Victoria; Sakata, Jon T.; Rhen, Turk; Coomber, Patricia; Simmonds, Sarah; Crews, David
2008-12-01
Kratochvil et al. (Naturwissenschaften 95:209 215, 2008) reported recently that in the leopard gecko ( Eublepharis macularius) of the family Eublepharidae with temperature-dependent sex determination (TSD), clutches in which eggs were incubated at the same temperature produce only same-sex siblings. Interpreting this result in light of studies of sex steroid hormone involvement in sex determination, they suggested that maternally derived yolk steroid hormones could constrain sex-determining mechanisms in TSD reptiles. We have worked extensively with this species and have routinely incubated clutches at constant temperatures. To test the consistency of high frequency same-sex clutches across different incubation temperatures, we examined our records of clutches at the University of Texas at Austin from 1992 to 2001. We observed that clutches in which eggs were incubated at the same incubation temperature produced mixed-sex clutches as well as same-sex clutches. Furthermore, cases in which eggs within a clutch were separated and incubated at different temperatures produced the expected number of mixed-sex clutches. These results suggest that maternal influences on sex determination are secondary relative to incubation temperature effects.
Li, Fangfei; Li, Min; Cui, Qiliang; Cui, Tian; He, Zhi; Zhou, Qiang; Zou, Guangtian
2009-10-07
The high temperature and high pressure Brillouin scattering studies of liquid ammonia have been performed in a diamond anvil cell. Acoustic velocity, refractive index, adiabatic bulk modulus, and the equation of state of liquid ammonia were determined at temperatures up to 410 K and at pressures up to the solidification point. Velocity and refractive index increase smoothly with increasing pressure along isothermals but decrease slightly with the temperature increase. The bulk modulus increases linearly with pressure and its slope dB/dP decreases slightly with increasing temperature from 6.67 at 297 K to 5.94 at 410 K.
High temperature and performance in a flight task simulator.
DOT National Transportation Integrated Search
1972-05-01
The effects of high cockpit temperature on physiological responses and performance were determined on pilots in a general aviation simulator. The pilots (all instrument rated) 'flew' an instrument flight while exposed to each of three cockpit tempera...
High Temperature VARTM of Phenylethynyl Terminated Imides
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.
2009-01-01
LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.
Data center thermal management
Hamann, Hendrik F.; Li, Hongfei
2016-02-09
Historical high-spatial-resolution temperature data and dynamic temperature sensor measurement data may be used to predict temperature. A first formulation may be derived based on the historical high-spatial-resolution temperature data for determining a temperature at any point in 3-dimensional space. The dynamic temperature sensor measurement data may be calibrated based on the historical high-spatial-resolution temperature data at a corresponding historical time. Sensor temperature data at a plurality of sensor locations may be predicted for a future time based on the calibrated dynamic temperature sensor measurement data. A three-dimensional temperature spatial distribution associated with the future time may be generated based on the forecasted sensor temperature data and the first formulation. The three-dimensional temperature spatial distribution associated with the future time may be projected to a two-dimensional temperature distribution, and temperature in the future time for a selected space location may be forecasted dynamically based on said two-dimensional temperature distribution.
Sun, Li Xue; Teng, Jian; Zhao, Yan; Li, Ning; Wang, Hui
2018-01-01
Background: Nowadays, the molecular mechanisms governing TSD (temperature-dependent sex determination) or GSD + TE (genotypic sex determination + temperature effects) remain a mystery in fish. Methods: We developed three all-female families of Nile tilapia (Oreochromis niloticus), and the family with the highest male ratio after high-temperature treatment was used for transcriptome analysis. Results: First, gonadal histology analysis indicated that the histological morphology of control females (CF) was not significantly different from that of high-temperature-treated females (TF) at various development stages. However, the high-temperature treatment caused a lag of spermatogenesis in high-temperature-induced neomales (IM). Next, we sequenced the transcriptome of CF, TF, and IM Nile tilapia. 79, 11,117, and 11,000 differentially expressed genes (DEGs) were detected in the CF–TF, CF–IM, and TF–IM comparisons, respectively, and 44 DEGs showed identical expression changes in the CF–TF and CF–IM comparisons. Principal component analysis (PCA) indicated that three individuals in CF and three individuals in TF formed a cluster, and three individuals in IM formed a distinct cluster, which confirmed that the gonad transcriptome profile of TF was similar to that of CF and different from that of IM. Finally, six sex-related genes were validated by qRT-PCR. Conclusions: This study identifies a number of genes that may be involved in GSD + TE, which will be useful for investigating the molecular mechanisms of TSD or GSD + TE in fish. PMID:29495590
Sun, Li Xue; Teng, Jian; Zhao, Yan; Li, Ning; Wang, Hui; Ji, Xiang Shan
2018-02-28
Nowadays, the molecular mechanisms governing TSD (temperature-dependent sex determination) or GSD + TE (genotypic sex determination + temperature effects) remain a mystery in fish. We developed three all-female families of Nile tilapia ( Oreochromis niloticus ), and the family with the highest male ratio after high-temperature treatment was used for transcriptome analysis. First, gonadal histology analysis indicated that the histological morphology of control females (CF) was not significantly different from that of high-temperature-treated females (TF) at various development stages. However, the high-temperature treatment caused a lag of spermatogenesis in high-temperature-induced neomales (IM). Next, we sequenced the transcriptome of CF, TF, and IM Nile tilapia. 79, 11,117, and 11,000 differentially expressed genes (DEGs) were detected in the CF-TF, CF-IM, and TF-IM comparisons, respectively, and 44 DEGs showed identical expression changes in the CF-TF and CF-IM comparisons. Principal component analysis (PCA) indicated that three individuals in CF and three individuals in TF formed a cluster, and three individuals in IM formed a distinct cluster, which confirmed that the gonad transcriptome profile of TF was similar to that of CF and different from that of IM. Finally, six sex-related genes were validated by qRT-PCR. This study identifies a number of genes that may be involved in GSD + TE, which will be useful for investigating the molecular mechanisms of TSD or GSD + TE in fish.
Abozaid, H; Wessels, S; Hörstgen-Schwark, G
2011-01-01
In zebrafish, Danio rerio, a polygenic pattern of sex determination or a female heterogamety with possible influences of environmental factors is assumed. The present study focuses on the effects of an elevated water temperature (35° C) during the embryonic development on sex determination in zebrafish. Eggs derived from 3 golden females were fertilized by the same mitotic gynogenetic male and exposed to a water temperature of 35° C, applied from 5 to 10 h post fertilization (hpf), from 5 to 24 hpf, and from 5 to 48 hpf, which correspond to the following developmental stages: gastrula, gastrula to segmentation, and gastrula to pharyngula stage, respectively. Hatching and survival rates decreased with increasing exposure to high water temperatures. Reductions in the hatching and survival rates were not responsible for differences in sex ratios. Accordingly, exposition of the fertilized eggs to a high temperature (35° C) leads to an increase of the male proportion from 22.0% in the controls to a balanced sex ratio (48.3, 47.5, and 52.6%) in the gastrula, segmentation, and pharyngula groups, respectively. These results prove the possibility to change the pathway of sexual determination during early embryonic stages in zebrafish by exposure to a high water temperature. Copyright © 2011 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.
2014-07-01
In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission sequences are presented for a variety for fuel and vitiated oxidizer combinations. For all cases considered, auto-ignition occurred at the periphery of the fuel jet, under very "lean" conditions, where the local mixture fraction was less than the stoichiometric mixture fraction ( ξ < ξ s). Furthermore, the ignition kernel formed in regions of low scalar dissipation rate, which agrees with previous results from direct numerical simulations.
Probabilistic thermal-shock strength testing using infrared imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, A.A.; Scheidt, R.A.; Ferber, M.K.
1999-12-01
A thermal-shock strength-testing technique has been developed that uses a high-resolution, high-temperature infrared camera to capture a specimen's surface temperature distribution at fracture. Aluminum nitride (AlN) substrates are thermally shocked to fracture to demonstrate the technique. The surface temperature distribution for each test and AlN's thermal expansion are used as input in a finite-element model to determine the thermal-shock strength for each specimen. An uncensored thermal-shock strength Weibull distribution is then determined. The test and analysis algorithm show promise as a means to characterize thermal shock strength of ceramic materials.
Evaluation of high temperature dielectric films for high voltage power electronic applications
NASA Technical Reports Server (NTRS)
Suthar, J. L.; Laghari, J. R.
1992-01-01
Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.
Dense simple plasmas as high-temperature liquid simple metals
NASA Technical Reports Server (NTRS)
Perrot, F.
1990-01-01
The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.
NASA Astrophysics Data System (ADS)
Benjamin, Russell D.
A photon counting detector based on an image intensified photodiode array was developed to meet the needs of one particular area of spectroscopic study, the determination of the kinetic temperature of impurity species. The image intensifier incorporates 3 high strip current ( ~300 muA) microchannel plates in a 'Z' configuration to achieve the gain required for the detection of single photon events. The design, construction, and laboratory testing of this system to determine its suitability for fusion plasma diagnostics is described, in particular, the ability to measure emission line profiles in order to determine the kinetic temperature of the emitting species. The photon counting detector, mounted on the exit plane of a 1m Ebert-Fastie spectrometer, was used to make spectroscopic measurements of the local ion temperature in Alcator C plasmas using impurity emission lines. Alcator experiments on one particular method of RF heating in a tokamak plasma, the launching of Ion Bernstein waves (IBW), are discussed. The O V kinetic temperature increases during IBW injection as the pre-RF plasma density is raised (on a shot-to-shot basis) above the region in which significant increases in the central ion temperature are observed. In addition, ion temperature profiles were measured during Ion Bernstein wave experiments by combining this point derived from the fit to the emission line of O VII with neutral particle analyzer data. The incorporation of the O VII temperature point in the determination of the pre-RF ion temperature profile results in a significant reduction (~0.4 cm) in the characteristic width of this profile. The high resolution and geometric stability of the photon counting detector made possible the measurement of small wavelength shifts (Deltalambda ~ 0.01 A) and, therefore, the determination of small bulk plasma motions (in this case, poloidal rotation of the plasma) through the Doppler shift of impurity emission lines. The Zeeman effect makes a significant contribution to the measured line profile in high field tokamaks, even in the ultraviolet. Modelling of the Zeeman effect is discussed and applied to the impurity species observed in Alcator C plasmas. (Abstract shortened with permission of author.).
Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K
NASA Astrophysics Data System (ADS)
Stranz, A.; Kähler, J.; Waag, A.; Peiner, E.
2013-07-01
Silicon is investigated as a low-cost, Earth-abundant thermoelectric material for high-temperature applications up to 900 K. For the calculation of module design the Seebeck coefficient and the electrical as well as thermal properties of silicon in the high-temperature range are of great importance. In this study, we evaluate the thermoelectric properties of low-, medium-, and high-doped silicon from room temperature to 900 K. In so doing, the Seebeck coefficient, the electrical and thermal conductivities, as well as the resulting figure of merit ZT of silicon are determined.
Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites
2014-10-01
Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC
Electrical and Thermal Transport Property Studies of High-Temperature Thermoelectric Materials.
1984-12-15
Transport Property Studies of High-Temperature Thermoelectric Mateial 12. PERSONAL AUTHIOR(S) 113. TYPE OF REPORT 13b. TIME COVERED Ai DATE OF REPORtT (Yr...with an ABO(3 perovskite structure. Transport properties have been determined for various doping ele- ments and for different compositions. These data...THERMAL TRANSPORT PROPERTY STUDIES Unannounced [j OF HIGH-TEMPERATURE THERMOELECTRIC MATERIALS Justi±icI iou. CONTRACT F-49620-83-0109 DEF By-- Battelle
An Investigation of a Photographic Technique of Measuring High Surface Temperatures
NASA Technical Reports Server (NTRS)
Siviter, James H., Jr.; Strass, H. Kurt
1960-01-01
A photographic method of temperature determination has been developed to measure elevated temperatures of surfaces. The technique presented herein minimizes calibration procedures and permits wide variation in emulsion developing techniques. The present work indicates that the lower limit of applicability is approximately 1,400 F when conventional cameras, emulsions, and moderate exposures are used. The upper limit is determined by the calibration technique and the accuracy required.
NASA Astrophysics Data System (ADS)
Shibata, Tomohiko; Tominaga, Ayane; Takayama, Haruki; Kojima, Seiji
2013-02-01
Brillouin scattering spectroscopy has been applied to study the dynamical properties of glass transition of trehalose aqueous solutions in a high-frequency gigahertz range and in the temperature range (-190°C ≤ T ≤ 100°C). The temperature variations of sound velocity and attenuation were accurately determined using the refractive index measured by a prism-coupling method. The temperature dependence of relaxation time of the structural relaxation process was determined by the Debye model. Its temperature dependence shows Arrhenius behavior in a liquid state. The parameters of Arrhenius law were also determined as a function of trehalose concentration.
Temperature Effects of Ultraviolet Irradiation on Material Degradation
NASA Astrophysics Data System (ADS)
Mori, Kazuyuki; Ishizawa, Junichiro
Ultraviolet rays (UV) cause organic materials to deteriorate. UV irradiation ground testing is therefore important to understand the “adequate lifetime assessment” and the “end-of-life (EOL) characteristic” of materials used in space. In previous experiments, high temperatures were found to accelerate the UV degradation of cross-linked ethylene tetrafluoroethylene (X-ETFE). This causes concern of potentially similar effects in other materials. In this study, we evaluated UV degradation at high temperatures and subsequently determined materials usable in space that had shown accelerated degradation due to UV irradiation at high temperatures.
Development of high temperature fasteners using directionally solidified eutectic alloys
NASA Technical Reports Server (NTRS)
George, F. D.
1972-01-01
The suitability of the eutectics for high temperature fasteners was investigated. Material properties were determined as a function of temperature, and included shear parallel and perpendicular to the growth direction and torsion parallel to it. Techniques for fabricating typical fastener shapes included grinding, creep forming, and direct casting. Both lamellar Ni3Al-Ni3Nb and fibrous (Co,Cr,Al)-(Cr,Co)7C3 alloys showed promise as candidate materials for high temperature fastener applications. A brief evaluation of the performance of the best fabricated fastener design was made.
Stabilization of high Tc phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1991-01-01
It has been widely ascertained that doping of lead in Bi-Sr-Ca-Cu-O systems promotes the growth of high T sub c (110 K) phase, improves critical current density, and lowers processing temperature. A systematic study was undertaken to determine optimum lead content and processing conditions to achieve these properties. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance temperature (R-T) measurements and x ray diffraction to determine the zero resistance temperature, T sub c(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 and 880 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T sub c single phase with highly stable superconducting properties.
Stabilization of high T(sub c) phase in bismuth cuprate superconductor by lead doping
NASA Technical Reports Server (NTRS)
Gupta, Ram. P.; Pachauri, J. P.; Khokle, W. S.; Nagpal, K. C.; Date, S. K.
1990-01-01
It has widely been ascertained that doping of lead in Bi:Sr:Ca:Cu:O systems promotes the growth of high T(sub c) (110 K) phase, improves critical current density, and lowers processing temperature. A systematic investigation is undertaken to determine optimum lead content and processing conditions to achieve these. A large number of samples with cationic compositions of Bi(2-x)Pb(x)Sr2Ca2Cu3 (x = 0.2 to 2.0) were prepared by conventional solid state reaction technique. Samples of all compositions were annealed together at a temperature and characterized through resistance-temperature (R-T) measurements and x ray diffraction (XRD) to determine the zero resistance temperature, T(sub c)(0) and to identify presence of phases, respectively. The annealing temperature was varied between 790 C to optimize processing parameters. Results are given. In brief, an optimum process is reported along with composition of leaded bismuth cuprate superconductor which yields nearly a high T(sub c) single phase with highly stable superconducting properties.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P
2017-09-01
We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.
Transportation monitoring unit qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Transportation monitoring unit (TMU) qualification testing was performed between 3 Mar. and 14 Dec. 1989. The purpose of the testing was to qualify the TMUs to monitor and store temperature and acceleration data on redesigned solid rocket motor segments and exit cones while they are being shipped from Utah's Thiokol Corporation, Space Operations, to Kennedy Space Center. TMUs were subjected to transportation tests that concerned the structural integrity of the TMUs only, and did not involve TMU measuring capability. This testing was terminated prior to completion due to mounting plate failures, high and low temperature shutdown failures, and data collection errors. Corrective actions taken by the vendor to eliminate high temperature shutdowns were ineffective. An evaluation was performed on the TMUs to determine the TMU vibration and temperature measuring accuracy at a variety of temperatures. This test demonstrated that TMU measured shock levels are high, and that TMUs are temperature sensitive because of decreased accuracy at high and low temperatures. It was determined that modifications to the current TMU system, such that it could be qualified for use, would require a complete redesign and remanufacture. Because the cost of redesigning and remanufacturing the present TMU system exceeds the cost of procuring a new system that could be qualified without modification, it is recommended that an alternate transportation monitoring system be qualified.
Investigation of breadboard temperature profiling system for SSME fuel preburner diagnostics
NASA Technical Reports Server (NTRS)
Shirley, J. A.
1986-01-01
The feasibility of measuring temperatures in the space shuttle main engine (SSME) fuel preburner using spontaneous Raman scattering from molecular hydrogen was studied. Laser radiation is transmitted to the preburner through a multimode optical fiber. Backscattered Raman-shifted light is collected and focused into a second fiber which connects to a remote-located spectrograph and a mutlichannel optical detector. Optics collimate and focus laser light from the transmitter fiber defining the probe volume. The high pressure, high temperature preburner environment was simulated by a heated pressure cell. Temperatures determined by the distribution of Q-branch co-vibrational transitions demonstrate precision and accuracy of 3%. It is indicated heat preburner temperatures can be determined with 5% accuracy with spatial resolution less than 1 cm and temporal resolution of 10 millisec at the nominal preburner operation conditions.
Mendelev, M. I.; Underwood, T. L.; Ackland, G. J.
2016-10-17
New interatomic potentials describing defects, plasticity, and high temperature phase transitions for Ti are presented. Fitting the martensitic hcp-bcc phase transformation temperature requires an efficient and accurate method to determine it. We apply a molecular dynamics method based on determination of the melting temperature of competing solid phases, and Gibbs-Helmholtz integration, and a lattice-switch Monte Carlo method: these agree on the hcp-bcc transformation temperatures to within 2 K. We were able to develop embedded atom potentials which give a good fit to either low or high temperature data, but not both. The first developed potential (Ti1) reproduces the hcp-bcc transformationmore » and melting temperatures and is suitable for the simulation of phase transitions and bcc Ti. Two other potentials (Ti2 and Ti3) correctly describe defect properties and can be used to simulate plasticity or radiation damage in hcp Ti. The fact that a single embedded atom method potential cannot describe both low and high temperature phases may be attributed to neglect of electronic degrees of freedom, notably bcc has a much higher electronic entropy. As a result, a temperature-dependent potential obtained from the combination of potentials Ti1 and Ti2 may be used to simulate Ti properties at any temperature.« less
Simulation of the real efficiencies of high-efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachenko, A. V., E-mail: sach@isp.kiev.ua; Skrebtii, A. I.; Korkishko, R. M.
The temperature dependences of the efficiency η of high-efficiency solar cells based on silicon are calculated. It is shown that the temperature coefficient of decreasing η with increasing temperature decreases as the surface recombination rate decreases. The photoconversion efficiency of high-efficiency silicon-based solar cells operating under natural (field) conditions is simulated. Their operating temperature is determined self-consistently by simultaneously solving the photocurrent, photovoltage, and energy-balance equations. Radiative and convective cooling mechanisms are taken into account. It is shown that the operating temperature of solar cells is higher than the ambient temperature even at very high convection coefficients (~300 W/m{sup 2}more » K). Accordingly, the photoconversion efficiency in this case is lower than when the temperature of the solar cells is equal to the ambient temperature. The calculated dependences for the open-circuit voltage and the photoconversion efficiency of high-quality silicon solar cells under concentrated illumination are discussed taking into account the actual temperature of the solar cells.« less
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.; Araujo, Myrian; Zimmerman, R. S.
1988-01-01
Multilayer insulations (MIs) which will operate in the 500 to 1000 C temperature range are being considered for possible applications on aerospace vehicles subject to convective and radiative heating during atmospheric entry. The insulations described consist of ceramic fibers, insulations, and metal foils quilted together with ceramic thread. As these types of insulations have highly anisotropic properties, the total heat transfer characteristics must be determined. Data are presented on the thermal diffusivity and thermal conductivity of four types of MIs and are compared to the baseline Advanced Flexible Reusable Surface Insulation currently used on the Space Shuttle Orbiter. In addition, the high temperature properties of the fibers used in these MIs are discussed. The fibers investigated included silica and three types of aluminoborosilicate (ABS). Static tension tests were performed at temperatures up to 1200 C and the ultimate strain, tensile strength, and tensile modulus of single fibers were determined.
NCTM of liquids at high temperatures using polarization techniques
NASA Technical Reports Server (NTRS)
Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.
1990-01-01
Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.
Zhang, Yang; Tang, Liguo; Tian, Hua; Wang, Jiyang; Cao, Wenwu; Zhang, Zhongwu
2017-08-15
Resonant ultrasound spectroscopy (RUS) was used to determine the temperature dependence of full matrix material constants of PZT-8 piezoceramics from room temperature to 100 °C. Property variations from sample to samples can be eliminated by using only one sample, so that data self-consistency can be guaranteed. The RUS measurement system error was estimated to be lower than 2.35%. The obtained full matrix material constants at different temperatures all have excellent self-consistency, which can help accurately predict device performance at high temperatures using finite element simulations.
Ceramic-to-Metal Joining for High Temperature, High Pressure Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mako, Frederick; Mako III, Frederick
2016-12-05
Designed and tested silicon carbide to metal joining and silicon carbide joining technology under high temperature and high pressure conditions. Determined that the joints maintained integrity and remained helium gas tight. These joined parts have been tested for mechanical strength, fracture toughness and hermeticity. A component testing chamber was designed and built and used for testing the joint integrity.
Robert C. Hare
1961-01-01
This review of knowledge concerning the effects of high temperatures on plants was undertaken in preparation for research aimed at determining how forest fires affect physiological processes in woody species. Major subjects discussed include morphological and physiological responses to high temperatures, external and internal factors governing these responses,...
A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials
NASA Technical Reports Server (NTRS)
Hurley, John S.
1990-01-01
Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.
Dreger, Z. A.; Breshike, C. J.; Gupta, Y. M.
2017-05-08
Raman spectroscopy was used to examine the high pressure-high temperature structural and chemical stability of an insensitive, high-performance energetic crystal – dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50). The phase diagram was determined over 8 GPa and (293-760) K. Under isobaric heating, the melting/decomposition of TKX-50 is preceded by a transformation to two consecutive high-temperature intermediates; a lower-temperature intermediate – diammonium 5,5’-bistetrazole-1,1'-diolate, and a higher-temperature intermediate – dihydroxylammonium 5,5'-bistetrazolate and/or diammonium 5,5'-bistetrazolate. Pressure strongly increases the transition temperatures for these transformations and subsequent decomposition. As a result, significant increase in the chemical stability of TKX-50 and intermediates with pressure was attributed to a suppressionmore » of hydrogen-transfer.« less
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stephen S.; White, Josh; Hosemann, Peter
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
High temperature XRD of Cu2.1Zn0.9SnSe4
NASA Astrophysics Data System (ADS)
Chetty, Raju; Mallik, Ramesh Chandra
2014-04-01
Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
Parker, Stephen S.; White, Josh; Hosemann, Peter; ...
2017-11-03
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
NASA Astrophysics Data System (ADS)
Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew
2018-02-01
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven
2013-06-01
The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.
NASA Astrophysics Data System (ADS)
Pohl, Leos; Britt, Daniel
2017-10-01
Some sub-types of carbonaceous chondrites contain a significant amount of hydrated minerals which produce specific absorption lines, typically due to the presence of hydroxyls. However, if these asteroids have come close enough to the Sun during their history, the high temperatures might have resulted in mineral decomposition and consequent loss of hydroxyl (or water) molecules in the surface layer and even to certain depths. Determination of the hydration state of phyllosilicates typically found on asteroids as well as the relative quantities of hydrated to desiccated phyllosilicates relies on experimental data - the temperature and rate of dehydration. Both dehydration temperature and rate depend on pressure. The rate also depends on the temperature. Experimentally determined phase curves for serpentine, that show for example decomposition of antigorite to forsterite and enstatite or talc and water, exist for GPa pressure levels. For antigorite, these temperatures span the range 500-750°C for pressures between 0.1 GPa and 8 GPa. However, these data are not suitable for vacuum environment found on asteroids; further, at lower pressures, the available data suggest a monotonically decreasing dehydration temperature with decreasing pressure. Also, the available data suggest dependence of both dehydration temperature and rate on the grain size distribution of the mineral. We have determined the temperature and rate of dehydration of the serpentine polymorphs antigorite, lizardite, cronstedtite, under high vacuum conditions and for various grain size distributions. The grain size distributions have been determined by particle analyzer and each sample source was also analyzed using X-Ray Diffraction.
Feasibility of Kevlar 49/PMR-15 Polyimide for High Temperature Applications
NASA Technical Reports Server (NTRS)
Hanson, M. P.
1980-01-01
Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.
Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications
NASA Technical Reports Server (NTRS)
Hanson, M. P.
1980-01-01
Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.
Determination of electron temperature in a penning discharge by the helium line ratio method
NASA Technical Reports Server (NTRS)
Richardson, R. W.
1975-01-01
The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.
Changes in dark chocolate volatiles during storage.
Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J
2012-05-09
Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity.
Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W; Bradford, Kent J
2008-10-01
Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.
High Temperature VARTM of Phenylethynyl Terminated Imides
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.
2009-01-01
Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.
Christie, Nicole E; Geist, Nicholas R
Changes in temperature regimes are occurring globally due to climate change as well as habitat alterations. Temperatures are expected to continue to rise in the future, along with a greater degree of climatic instability. Such changes could have potentially serious consequences for oviparous ectotherms, especially those with temperature-dependent sex determination. To investigate the effects of temperature on a range of developmental phenomena in a population of western pond turtles (Emys marmorata), we placed temperature sensors on top of each layer of eggs within nests and recorded temperatures hourly through the first 2-3 mo of incubation. These methods allowed us to look at in situ nest temperatures with high resolution. We found that mean incubation temperatures were similar between different nests and at different levels within nests but that incubation temperature fluctuations and maximum incubation temperatures differed greatly in both cases. The hatchling turtles were more likely to be female if they spent 30% or more of their sex-determining period of incubation above 29°C. Hatching success was best predicted by the maximum incubation temperature. We also found that incubation duration tended to be shorter as the mean temperature increased. However, exposure to either extremely high or low temperatures extended incubation times.
Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources
Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...
High-temperature effects on the light transmission through sapphire optical fiber
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
2018-03-13
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
High-temperature effects on the light transmission through sapphire optical fiber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Brandon A.; Petrie, Christian M.; Blue, Thomas E.
Single crystal sapphire optical fiber was tested at high temperatures (1500°C) to determine its suitability for optical instrumentation in high-temperature environments. Broadband light transmission (450-2300 nm) through sapphire fiber was measured as a function of temperature as a test of the fiber's ability to survive and operate in high-temperature environments. Upon heating sapphire fiber to 1400°C, large amounts of light attenuation were measured across the entire range of light wavelengths that were tested. SEM and TEM images of the heated sapphire fiber indicated that a layer had formed at the surface of the fiber, most likely due to a chemicalmore » change at high temperatures. The microscopy results suggest that the surface layer may be in the form of aluminum hydroxide. Subsequent tests of sapphire fiber in an inert atmosphere showed minimal light attenuation at high temperatures along with the elimination of any surface layers on the fiber, indicating that the air atmosphere is indeed responsible for the increased attenuation and surface layer formation at high temperatures.« less
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Mojzsis, S. J.
2009-12-01
We have conducted a rock magnetic and absolute paleointensity determination of the red dacite of the Duffer Formation of the Pilbara craton, Australia. The age of the dated rock unit is 3452 Ma +/-16 Ma. Vector analyses of step-wise alternating field (NRM up to 100 mT) and thermal demagnetization (from NRM up to 650 o C) results yield three components of magnetization. Curie point determinations indicate three characteristic temperatures, one at 280 o C, a second one at 358 o C and a third one at 630 o C. Magnetic grain-size experiments were performed on small specimens with a variable field translation balance (VFTB). The coercivity of remanence (Hcr) suggests that the NRM is carried by high-coercivity grains that is more likely carried from a hematite fraction as is also shown by the high-temperature component with blocking temperatures above 450{o}C and up to at least 640 o C. The ratios of the hysteresis parameters plotted as a Day diagram show that most grain sizes are scattered within the PSD and MD domain ranges. In addition to the rock magnetic experiments we have performed absolute paleointensity experiments on the samples using the modified Thellier-Coe double heating method to determine the paleointensities. pTRM checks were performed systematically to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50 o C between room temperature and 590 o^ C. The paleointensity determinations were obtained from the slope of Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range lower than 300 o C unless a clear and unique slope was present. Our paleointensity results indicate that the paleofield obtained was 6.5 micro-Teslas from a high temperature component ranging from 450 to 590 o^ C that has been interpreted to be the oldest magnetization yet recorded in paleomagnetic studies of the Duffer Formation. This primary high temperature component establishes the existence of the geomagnetic field at least 3.5 Ga ago with a relatively low absolute paleointensity during Archean times.
Density measurements of the lithium fluoride/lithium sulfide eutectic at high temperature
NASA Astrophysics Data System (ADS)
Lloyd, Charles L.; Gilbert, James B.
1994-10-01
A straightforward and reliable method to determine densities of molten salts at high temperatures was de-veloped by Janz and Lorenz several years ago.[1] This method was followed in order to determine the density of the LiF/Li2S eutectic[2] over the temperature range of 1176 to 1355 K in which the eutectic is liquid. The rel-ative lack of data for this eutectic is surprising given its potential usefulness in the study of advanced batteries'31 and electrowinning of metals from molten sulfides.[41] The method is based on the fact that a solid piece of metal of known volume suspended from a pan balance into a molten salt will weigh less than if it were sus-pended in air at the same temperature. This difference in weight measured in grams will be equal to the buoyant force of the liquid at that temperature. The density of the salt bath can then readily be determined by dividing this difference by the volume of the solid piece of metal that is immersed in the bath. The procedure can be re-peated to give density values over a range of temperatures.
Savvides, Andreas; Dieleman, Janneke A; van Ieperen, Wim; Marcelis, Leo F M
2016-04-01
Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs. We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies in dicots have not rigorously demonstrated that apical bud temperature controls LIR independent of other plant organs temperature. Many models assume that apical bud and leaf temperature are the same. In some environments, the temperature of the apical bud, where leaf initiation occurs, may differ by several degrees Celsius from the temperature of other plant organs. In a 28-days study, we maintained temperature differences between the apical bud and the rest of the individual Cucumis sativus plants from -7 to +8 °C by enclosing the apical buds in transparent, temperature-controlled, flow-through, spheres. Our results demonstrate that LIR was completely determined by apical bud temperature independent of other plant organs temperature. These results emphasize the need to measure or model apical bud temperatures in dicots to improve the prediction of crop development rates in simulation models.
Hull, John R.
2000-01-01
Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.
High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging
Devesse, Wim; De Baere, Dieter; Guillaume, Patrick
2017-01-01
A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2015-03-01
The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High throughput integrated thermal characterization with non-contact optical calorimetry
NASA Astrophysics Data System (ADS)
Hou, Sichao; Huo, Ruiqing; Su, Ming
2017-10-01
Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.
Thermal Protection Materials Development
NASA Technical Reports Server (NTRS)
Selvaduray, Guna; Cox, Michael
1998-01-01
The main portion of this contract year was spent on the development of materials for high temperature applications. In particular, thermal protection materials were constantly tested and evaluated for thermal shock resistance, high-temperature dimensional stability, and tolerance to hostile environmental effects. The analytical laboratory at the Thermal Protection Materials Branch (TPMB), NASA-Ames played an integral part in the process of materials development of high temperature aerospace applications. The materials development focused mainly on the determination of physical and chemical characteristics of specimens from the various research programs.
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated
NASA Technical Reports Server (NTRS)
Hunter, Gary W.
2002-01-01
The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for temperature control and signal conditioning, and packaging designed for high temperatures is necessary for the array to survive the engine environment.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Torek, Paul V; Hall, David L; Miller, Tiffany A; Wooldridge, Margaret S
2002-04-20
Water absorption spectroscopy has been successfully demonstrated as a sensitive and accurate means for in situ determination of temperature and H2O mole fraction in silica (SiO2) particle-forming flames. Frequency modulation of near-infrared emission from a semiconductor diode laser was used to obtain multiple line-shape profiles of H2O rovibrational (v1 + v3) transitions in the 7170-7185-cm(-1) region. Temperature was determined by the relative peak height ratios, and XH2O was determined by use of the line-shape profiles. Measurements were made in the multiphase regions of silane/hydrogen/oxygen/ argon flames to verify the applicability of the diagnostic approach to combustion synthesis systems with high particle loadings. A range of equivalence ratios was studied (phi = 0.47 - 2.15). The results were compared with flames where no silane was present and with adiabatic equilibrium calculations. The spectroscopic results for temperature were in good agreement with thermocouple measurements, and the qualitative trends as a function of the equivalence ratio were in good agreement with the equilibrium predictions. The determinations for water mole fraction were in good agreement with theoretical predictions but were sensitive to the spectroscopic model parameters used to describe collisional broadening. Water absorption spectroscopy has substantial potential as a valuable and practical technology for both research and production combustion synthesis facilities.
Wang, Zhen-mei; Li, Hai-xia; Liu, Xiong-feng; He, Ying; Zeng, Han-lai
2015-04-01
Global warming affects both rice (Oryza sativa) yields and grain quality. Rice chalkiness due to high temperature during grain filling would lower the grain quality. The biochemical and molecular mechanisms responsible for the increased occurrence of chalkiness under high temperature are not fully understood. Previous research suggested that cytosolic pyruvate orthophosphate dikinase (cyPPDK, EC 2.7.9.1) in rice modulates carbon metabolism. The objective of this study was to determine the relationship between cyPPDK and high temperature-induced chalkiness. High temperature treatments were applied during the grain filling of two rice cultivars (9311 and TXZ-25) which had different sensitivity of chalkiness to high temperature. Chalkiness was increased significantly under high temperature treatment, especially for TXZ-25. A shortened grain filling duration and a decreased grain weight in both cultivars were caused by high temperature treatment. A reduction in PPDK activities due to high temperature was observed during the middle and late grain filling periods, accompanied by down regulated cyPPDK mRNA and protein levels. The temperature effects on the developmental regulation of PPDK activity were confirmed at transcription, translation and post-translational levels. PPDK activities were insensitive to variation in PPDK levels, suggesting the rapid phosphorylation mechanism of this protein. The two varieties showed similar responses to the high temperature treatment in both PPDK activities and chalkiness. We concluded that high temperature-induced chalkiness was associated with the reduction of PPDK activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Lindgren, Sara; Heiter, Ulrike
2017-08-01
Context. Reliable metallicity values for late K and M dwarfs are important for studies of the chemical evolution of the Galaxy and advancement of planet formation theory in low-mass environments. Historically it has been challenging to determine the stellar parameters of low-mass stars because of their low surface temperature, which causes several molecules to form in the photospheric layers. In our work we use the fact that infrared high-resolution spectrographs have opened up a new window for investigating M dwarfs. This enables us to use similar methods as for warmer solar-like stars. Aims: Metallicity determination with high-resolution spectra is more accurate than with low-resolution spectra, but it is rather time consuming. In this paper we expand our sample analyzed with this precise method both in metallicity and effective temperature to build a calibration sample for a future revised empirical calibration. Methods: Because of the relatively few molecular lines in the J band, continuum rectification is possible for high-resolution spectra, allowing the stellar parameters to be determined with greater accuracy than with optical spectra. We obtained high-resolution spectra with the CRIRES spectrograph at the Very Large Telescope (VLT). The metallicity was determined using synthetic spectral fitting of several atomic species. For M dwarfs that are cooler than 3575 K, the line strengths of FeH lines were used to determine the effective temperatures, while for warmer stars a photometric calibration was used. Results: We analyzed 16 targets with a range of effective temperature from 3350-4550 K. The resulting metallicities lie between -0.5< [M/H] < +0.4. A few targets have previously been analyzed using low-resolution spectra and we find a rather good agreement with our values. A comparison with available photometric calibrations shows varying agreement and the spread within all empirical calibrations is large. Conclusions: Including the targets from our previous paper, we analyzed 28 M dwarfs with high-resolution infrared spectra. The targets spread approximately one dex in metallicity and 1400 K in effective temperature. For individual M dwarfs we achieve uncertainties of 0.05 dex and 100 K on average. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 090.D-0796(A).
Determination of spin polarization using an unconventional iron superconductor
Gifford, J. A.; Chen, B. B.; Zhang, J.; ...
2016-11-21
Here, an unconventional iron superconductor, SmO 0.7F 0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La 0.67Sr 0.33MnO 3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.
NASA Technical Reports Server (NTRS)
Nicol, M.; Johnson, M.; Koumvakalis, A. S.
1985-01-01
The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.
Ioannone, F; Di Mattia, C D; De Gregorio, M; Sergi, M; Serafini, M; Sacchetti, G
2015-05-01
The effect of roasting on the content of flavanols and proanthocyanidins and on the antioxidant activity of cocoa beans was investigated. Cocoa beans were roasted at three temperatures (125, 135 and 145 °C), for different times, to reach moisture contents of about 2 g 100 g(-1). Flavanols and proanthocyanidins were determined, and the antioxidant activity was tested by total phenolic index (TPI), ferric reducing antioxidant power (FRAP) and total radical trapping antioxidant parameter (TRAP) methods. The rates of flavanol and total proanthocyanidin loss increased with roasting temperatures. Moisture content of the roasted beans being equal, high temperature-short time processes minimised proanthocyanidins loss. Moisture content being equal, the average roasting temperature (135 °C) determined the highest TPI and FRAP values and the highest temperature (145 °C) determined the lowest TPI values. Moisture content being equal, low temperature-long time roasting processes maximised the chain-breaking activity, as determined by the TRAP method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Work function determination of promising electrode materials for thermionic energy converters
NASA Technical Reports Server (NTRS)
Jacobson, D.; Storms, E.; Skaggs, B.; Kouts, T.; Jaskie, J.; Manda, M.
1976-01-01
The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lu
The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and onmore » potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.« less
High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in
2014-04-24
Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
NASA Astrophysics Data System (ADS)
Cline, Julia Elaine
2011-12-01
Ultra-high temperature deformation measurements are required to characterize the thermo-mechanical response of material systems for thermal protection systems for aerospace applications. The use of conventional surface-contacting strain measurement techniques is not practical in elevated temperature conditions. Technological advancements in digital imaging provide impetus to measure full-field displacement and determine strain fields with sub-pixel accuracy by image processing. In this work, an Instron electromechanical axial testing machine with a custom-designed high temperature gripping mechanism is used to apply quasi-static tensile loads to graphite specimens heated to 2000°F (1093°C). Specimen heating via Joule effect is achieved and maintained with a custom-designed temperature control system. Images are captured at monotonically increasing load levels throughout the test duration using an 18 megapixel Canon EOS Rebel T2i digital camera with a modified Schneider Kreutznach telecentric lens and a combination of blue light illumination and narrow band-pass filter system. Images are processed using an open-source Matlab-based digital image correlation (DIC) code. Validation of source code is performed using Mathematica generated images with specified known displacement fields in order to gain confidence in accurate software tracking capabilities. Room temperature results are compared with extensometer readings. Ultra-high temperature strain measurements for graphite are obtained at low load levels, demonstrating the potential for non-contacting digital image correlation techniques to accurately determine full-field strain measurements at ultra-high temperature. Recommendations are given to improve the experimental set-up to achieve displacement field measurements accurate to 1/10 pixel and strain field accuracy of less than 2%.
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Kazuei, E-mail: k-ishii@eng.hokudai.ac.jp; Furuichi, Toru
Highlights: • Optimized conditions were determined for the production of rice straw pellets. • The moisture content and forming temperature are key factors. • High quality rice pellets in the lower heating value and durability were produced. - Abstract: A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, storemore » and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ⩾12 MJ/kg for the lower heating value, and >95% durability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; ...
2017-09-11
Here, we present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 < T < 5000 K) and atmospheric pressure. The reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after theymore » pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.« less
NASA Technical Reports Server (NTRS)
Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.
2004-01-01
Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro
2018-02-05
Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
All-optical technique for measuring thermal properties of materials at static high pressure
NASA Astrophysics Data System (ADS)
Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.
2000-10-01
The development and implementation of an all-optical technique for measuring thermal transport properties of materials at high pressure in a gem anvil cell are reported. Thermal transport properties are determined by propagating a thermal wave in a material subjected to high pressures, and measuring the temperature as a function of time using an optical sensor embedded downstream in the material. Optical beams are used to deposit energy and to measure the sensor temperature and replace the resistive heat source and the thermocouples of previous methods. This overcomes the problems introduced with pressure-induced resistance changes and the spatial limitations inherent in previous high-pressure experimentation. Consistent with the heat conduction equation, the material's specific heat, thermal conductivity, and thermal diffusivity (κ) determine the sensor's temperature rise and its temporal profile. The all-optical technique described focuses on room-temperature thermal properties but can easily be applied to a wide temperature range (77-600 K). Measurements of thermal transport properties at pressure up to 2.0 GPa are reported, although extension to much higher pressures are feasible. The thermal properties of NaCl, a commonly used material for high-pressure experiments are measured and shown to be consistent with those obtained using the traditional methods.
NASA Astrophysics Data System (ADS)
Folkerts, Timothy John
A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.
Woolliams, E R; Anhalt, K; Ballico, M; Bloembergen, P; Bourson, F; Briaudeau, S; Campos, J; Cox, M G; del Campo, D; Dong, W; Dury, M R; Gavrilov, V; Grigoryeva, I; Hernanz, M L; Jahan, F; Khlevnoy, B; Khromchenko, V; Lowe, D H; Lu, X; Machin, G; Mantilla, J M; Martin, M J; McEvoy, H C; Rougié, B; Sadli, M; Salim, S G R; Sasajima, N; Taubert, D R; Todd, A D W; Van den Bossche, R; van der Ham, E; Wang, T; Whittam, A; Wilthan, B; Woods, D J; Woodward, J T; Yamada, Y; Yamaguchi, Y; Yoon, H W; Yuan, Z
2016-03-28
The thermodynamic temperature of the point of inflection of the melting transition of Re-C, Pt-C and Co-C eutectics has been determined to be 2747.84 ± 0.35 K, 2011.43 ± 0.18 K and 1597.39 ± 0.13 K, respectively, and the thermodynamic temperature of the freezing transition of Cu has been determined to be 1357.80 ± 0.08 K, where the ± symbol represents 95% coverage. These results are the best consensus estimates obtained from measurements made using various spectroradiometric primary thermometry techniques by nine different national metrology institutes. The good agreement between the institutes suggests that spectroradiometric thermometry techniques are sufficiently mature (at least in those institutes) to allow the direct realization of thermodynamic temperature above 1234 K (rather than the use of a temperature scale) and that metal-carbon eutectics can be used as high-temperature fixed points for thermodynamic temperature dissemination. The results directly support the developing mise en pratique for the definition of the kelvin to include direct measurement of thermodynamic temperature. © 2016 The Author(s).
Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W.; Bradford, Kent J.
2008-01-01
Lettuce (Lactuca sativa ‘Salinas’) seeds fail to germinate when imbibed at temperatures above 25°C to 30°C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37°C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis. PMID:18753282
Lubrication of optimized-design tapered-roller bearings to 2.4 million DN
NASA Technical Reports Server (NTRS)
Parker, R. J.; Pinel, S. I.; Signer, Hans R.
1980-01-01
The performance of 120.65 mm (4.75 in.) bore high speed design, tapered roller bearings was investigated at shaft speeds to 20,000 rpm (2.4 million DN) under combined thrust and radial load. The test bearing design was computer optimized for high speed operation. Temperature distribution bearing heat generation were determined as a function of shaft speed, radial and thrust loads, lubricant flow rates, and lubricant inlet temperature. The high speed design, tapered roller bearing operated successfully at shaft speeds up to 20,000 rpm under heavy thrust and radial loads. Bearing temperatures and heat generation with the high speed design bearing were significantly less than those of a modified standard bearing tested previously. Cup cooling was effective in decreasing the high cup temperatures to levels equal to the cone temperature.
High Temperature Aerogels in the Al2O3-SiO2 System
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Aranda, Denisse V.; Gallagher, Meghan E.
2008-01-01
Al2O3-SiO2 aerogels are of interest as constituents of thermal insulation systems for use at high temperatures. Al2O3 and mullite aerogels are expected to crystallize at higher temperatures than their SiO2 counterparts, hence avoiding the shrinkages that accompany the formation of lower temperature SiO2 phases and preserving pore structures into higher temperature regimes. The objective of this work is to determine the influence of processing parameters on shrinkage, gel structure (including surface area, pore size and distribution) and pyrolysis behavior.
Giegold, Sascha; Teutenberg, Thorsten; Tuerk, Jochen; Kiffmeyer, Thekla; Wenclawiak, Bernd
2008-10-01
A fast HPLC method for the analysis of eight selected sulfonamides (SA) and trimethoprim has been developed with the use of high temperature HPLC. The separation could be achieved in less than 1.5 min on a 50 mm sub 2 microm column with simultaneous solvent and temperature gradient programming. Due to the lower viscosity of the mobile phase and the increased mass transfer at higher temperatures, the separation could be performed on a conventional HPLC system obtaining peak widths at half height between 0.6 and 1.3 s.
NASA Astrophysics Data System (ADS)
Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed
2014-04-01
We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.
Gan, Yingye; Mo, Kun; Yun, Di; ...
2017-03-19
Nanostructured ferritic alloys (NFAs) are promising structural materials for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner's model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young's modulus and Poisson's ratio of the NFAs. Temperature dependencemore » of elastic anisotropy was observed in the NFAs. Lastly, an analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
Strand, Linn B; Barnett, Adrian G; Tong, Shilu
2011-04-01
Seasonal patterns of birth outcomes, such as low birth weight, preterm birth and stillbirth, have been found around the world. As a result, there has been an increasing interest in evaluating short-term exposure to ambient temperature as a determinant of adverse birth outcomes. This paper reviews the epidemiological evidence on seasonality of birth outcomes and the impact of prenatal exposure to ambient temperature on birth outcomes. We identified 20 studies that investigated seasonality of birth outcomes, and reported statistically significant seasonal patterns. Most of the studies found peaks of preterm birth, stillbirth and low birth weight in winter, summer or both, which indicates the extremes of temperature may be an important determinant of poor birth outcomes. We identified 13 studies that investigated the influence of exposure to ambient temperature on birth weight and preterm birth (none examined stillbirth). The evidence for an adverse effect of high temperatures was stronger for birth weight than for preterm birth. More research is needed to clarify whether high temperatures have a causal effect on fetal health. Copyright © 2011 Elsevier Inc. All rights reserved.
Accelerated life testing effects on CMOS microcircuit characteristics, phase 1
NASA Technical Reports Server (NTRS)
Maximow, B.
1976-01-01
An accelerated life test of sufficient duration to generate a minimum of 50% cumulative failures in lots of CMOS devices was conducted to provide a basis for determining the consistency of activation energy at 250 C. An investigation was made to determine whether any thresholds were exceeded during the high temperature testing, which could trigger failure mechanisms unique to that temperature. The usefulness of the 250 C temperature test as a predictor of long term reliability was evaluated.
Freezing avoidance mechanisms in juveniles of giant rosette plants of the genus Espeletia
NASA Astrophysics Data System (ADS)
García-Varela, Sonia; Rada, Fermín
2003-07-01
Along soil-air gradients in tropical high mountains, plants growing at soil level tolerate frost while those growing well above ground, including all species in the genus Espeletia, use freezing avoidance mechanisms to survive low nighttime temperatures. The question that arises and the objective of this work were: What are the low temperature resistance mechanisms in giant rosettes when they are within the juvenile stages, i.e. closer to the ground? Juveniles of Espeletia spicata and Espeletia timotensis, dominant plants of the high Venezuelan Andes, were chosen for this study. To determine resistance mechanisms for these species, air and leaf temperatures were recorded in the field in 24 h cycles, while thermal analysis and injury temperature were determined in the laboratory. Both E. spicata and E. timotensis juveniles depend on avoidance mechanisms through a high supercooling capacity, permitting leaves to resist low nighttime temperatures. Minimum leaf temperatures were -4.9 and -5.1 °C, for E. spicata and E. timotensis, respectively, occurring during the dry season. Ice formation occurred at -14.3 and -15.3 °C for E. spicata and E. timotensis, respectively. Injury occurred at approximately -15 °C in both species. Low temperature resistance mechanisms in juveniles are similar to those in adult plants.
NASA Astrophysics Data System (ADS)
Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.
2018-05-01
It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.
Feasibility study of a high temperature radiation furnace for space applications
NASA Technical Reports Server (NTRS)
Eiss, A.; Dussan, B.; Shadis, W.; Frank, L.
1973-01-01
The feasibility was investigated of a high temperature general purpose furnace for use in space. It was determined that no commercial furnaces exist which could, even with extensive modifications, meet the goals of temperature, power, weight, volume, and versatility originally specified in the contract Statement of Work. A feasible furnace design which does substantially meet these goals while employing many of the advanced features of the commercial furnaces is developed and presented.
NASA Astrophysics Data System (ADS)
Gallart, M.; Ziegler, M.; Crégut, O.; Feltin, E.; Carlin, J.-F.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P.
2017-07-01
Applying four-wave mixing spectroscopy to a high-quality GaN/AlGaN single quantum well, we report on the experimental determination of excitonic dephasing times at different temperatures and exciton densities in III-nitride heterostructures. By comparing the evolution with the temperature of the dephasing and the spin-relaxation rate, we conclude that both processes are related to the rate of excitonic collisions. When spin relaxation occurs in the motional-narrowing regime, it remains constant over a large temperature range as the spin-precession frequency increases linearly with temperature, hence compensating for the observed decrease in the dephasing time. From those measurements, a value of the electron-hole exchange interaction strength of 0.45 meV at T =10 K is inferred.
NASA Astrophysics Data System (ADS)
Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.
2018-05-01
As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.
Prasad, P. V. V.; Djanaguiraman, Maduraimuthu; Perumal, Ramasamy; Ciampitti, Ignacio A.
2015-01-01
Sorghum [Sorghum bicolor (L.) Moench] yield formation is severely affected by high temperature stress during reproductive stages. This study pursues to (i) identify the growth stage(s) most sensitive to high temperature stress during reproductive development, (ii) determine threshold temperature and duration of high temperature stress that decreases floret fertility and individual grain weight, and (iii) quantify impact of high daytime temperature during floret development, flowering and grain filling on reproductive traits and grain yield under field conditions. Periods between 10 and 5 d before anthesis; and between 5 d before- and 5 d after-anthesis were most sensitive to high temperatures causing maximum decreases in floret fertility. Mean daily temperatures >25°C quadratically decreased floret fertility (reaching 0% at 37°C) when imposed at the start of panicle emergence. Temperatures ranging from 25 to 37°C quadratically decreased individual grain weight when imposed at the start of grain filling. Both floret fertility and individual grain weights decreased quadratically with increasing duration (0–35 d or 49 d during floret development or grain filling stage, respectively) of high temperature stress. In field conditions, imposition of temperature stress (using heat tents) during floret development or grain filling stage also decreased floret fertility, individual grain weight, and grain weight per panicle. PMID:26500664
High-Temperature Natural Antioxidant Improves Soy Oil for Frying
USDA-ARS?s Scientific Manuscript database
The objectives of this study were to determine the frying stability of soybean oil (SBO) treated with a natural citric acid-based antioxidant, EPT-OILShield able to withstand high temperatures and to establish the oxidative stability of food fried in the treated oil. Soybean oil with 0.05% and 0.5%...
Method to determine thermal profiles of nanoscale circuitry
Zettl, Alexander K; Begtrup, Gavi E
2013-04-30
A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.
NASA Astrophysics Data System (ADS)
Ohse, R. W.
1990-07-01
The necessity for increased high-temperature data reliability and extension of thermophysical property measurements up to 5000 K and above are discussed. A new transient-type laser-autoclave technique (LAT) has been developed to extend density and heat capacity measurements of high-temperature multicomponent systems far beyond their melting and boiling points. Pulsed multibeam laser heating is performed in an autoclave under high inert gas pressure to eliminate evaporation. The spherical samples are positioned by containment-free acoustic levitation regardless of their conductive or magnetic properties. Temperature, spectral and total emittances are determined by a new microsecond six-wavelength pyrometer coupled to a fast digital data acquisition system. The density is determined by high resolution microfocus X-ray shadow technique. The heat capacity is obtained from the cooling rate. Further applications are a combination of the laser-autoclave with splat cooling techniques for metastable structure synthesis and amorphous metals research and an extension of the LAT for the study of critical phenomena and the measurement of critical-point temperatures.
NASA Astrophysics Data System (ADS)
Shulga, A. V.
2017-12-01
This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.
Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures
Haglund, A.; Koehler, M.; Catoor, D.; ...
2014-12-05
A FCC high-entropy alloy (HEA) that exhibits strong temperature dependence of strength at low homologous temperatures in sharp contrast to pure FCC metals like Ni that show weak temperature dependence is CrMnCoFeNi. In order to understand this behavior, elastic constants were determined as a function of temperature. From 300 K down to 55 K, the shear modulus (G) of the HEA changes by only 8%, increasing from 80 to 86 GPa. Moreover, this temperature dependence is weaker than that of FCC Ni, whose G increases by 12% (81–91 GPa). Therefore, the uncharacteristic temperature-dependence of the strength of the HEA ismore » not due to the temperature dependence of its shear modulus.« less
Experimental Determination of η/s for Finite Nuclear Matter.
Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S; Pal, Surajit; Dey, Balaram; Bhattacharya, Srijit; De, A; Bhattacharya, Soumik; Bhattacharyya, S; Roy, Pratap; Banerjee, K; Banerjee, S R
2017-05-12
We present, for the first time, simultaneous determination of shear viscosity (η) and entropy density (s) and thus, η/s for equilibrated nuclear systems from A∼30 to A∼208 at different temperatures. At finite temperature, η is estimated by utilizing the γ decay of the isovector giant dipole resonance populated via fusion evaporation reaction, while s is evaluated from the nuclear level density parameter (a) and nuclear temperature (T), determined precisely by the simultaneous measurements of the evaporated neutron energy spectra and the compound nuclear angular momenta. The transport parameter η and the thermodynamic parameter s both increase with temperature, resulting in a mild decrease of η/s with temperature. The extracted η/s is also found to be independent of the neutron-proton asymmetry at a given temperature. Interestingly, the measured η/s values are comparable to that of the high-temperature quark-gluon plasma, pointing towards the fact that strong fluidity may be the universal feature of the strong interaction of many-body quantum systems.
Swan, Raymond A.
1994-01-01
A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.
Runowski, Marcin; Shyichuk, Andrii; Tymiński, Artur; Grzyb, Tomasz; Lavín, Víctor; Lis, Stefan
2018-05-23
Upconversion luminescence of nano-sized Yb 3+ and Tm 3+ codoped rare earth phosphates, that is, LaPO 4 and YPO 4 , has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm -1 ), the thermalized states of Tm 3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm 3+ band ratio ( 3 F 2,3 → 3 H 6 / 3 H 4 → 3 H 6 ), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).
Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billone, M. C.; Burtseva, T. A.
2016-08-30
The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).
Phase relations of Fe Ni alloys at high pressure and temperature
NASA Astrophysics Data System (ADS)
Mao, Wendy L.; Campbell, Andrew J.; Heinz, Dion L.; Shen, Guoyin
2006-04-01
Using a diamond anvil cell and double-sided laser-heating coupled with synchrotron X-ray diffraction, we determined phase relations for three compositions of Fe-rich FeNi alloys in situ at high pressure and high temperature. We studied Fe with 5, 15, and 20 wt.% Ni to 55, 62, and 72 GPa, respectively, at temperatures up to ˜3000 K. Ni stabilizes the face-centered cubic phase to lower temperatures and higher pressure, and this effect increases with increasing pressure. Extrapolation of our experimental results for Fe with 15 wt.% Ni suggests that the stable phase at inner core conditions is hexagonal close packed, although if the temperature at the inner core boundary is higher than ˜6400 K, a two phase outer region may also exist. Comparison to previous laser-heated diamond anvil cell studies demonstrates the importance of kinetics even at high temperatures.
Titanium Dioxide Volatility in High Temperature Water Vapor
NASA Technical Reports Server (NTRS)
Nguyen, QynhGiao N.
2008-01-01
Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study will evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400 C - 1200 C in water containing environments to determine the volatile hydroxyl species using the transpiration method. The water content ranged from 0-76 mole% and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation for all three temperatures: TiO2 (s) + H2O (g) = TiO(OH)2 (g).
Shock initiation of explosives: High temperature hot spots explained
NASA Astrophysics Data System (ADS)
Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.
2017-08-01
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kyei-Sing; Bennett, James P.
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures
Kwong, Kyei-Sing; Bennett, James P.
2016-11-25
Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less
Compression of helium to high pressures and temperatures using a ballistic piston apparatus
NASA Technical Reports Server (NTRS)
Roman, B. P.; Rovel, G. P.; Lewis, M. J.
1971-01-01
Some preliminary experiments are described which were carried out in a high enthalpy laboratory to investigate the compression of helium, a typical shock-tube driver gas, to very high pressures and temperatures by means of a ballistic piston. The purpose of these measurements was to identify any problem areas in the compression process, to determine the importance of real gas effects duDC 47355s process, and to establish the feasibility of using a ballistic piston apparatus to achieve temperatures in helium in excess of 10,000 K.
Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels
NASA Astrophysics Data System (ADS)
Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong
2016-12-01
This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.
High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes
NASA Astrophysics Data System (ADS)
Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.
2012-05-01
Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.
Micromechanics of shear localization in granular rocks - effect of temperature
NASA Astrophysics Data System (ADS)
Kanaya, T.; Hirth, G.
2017-12-01
We conducted detailed microscopy on porous sandstones deformed to varying axial strains in the low-temperature, brittle faulting regime and high-temperature, semibrittle faulting regime. This study is aimed to test the hypothsis that macroscopic faulting results from the interaction of distributed microfractures in granular rocks, and to assess how elevated temperature influences these shear loalization processes. We determined the ratio of fracture length vs. spacing for distributed microfractures (away from macroscopic faults) and compared it with fracture mechanics models of crack interaction. At low temperature, both tensile and shear microfractures obtain the critical geometry for crack-tip interaction. Both modes of microfractures occur at initial yielding and continue to lengthen with strain, in which many tensile microfractures propagate across grains. In contrast, at high temperature, only shear microfractures continue to lengthen with strain and reach the critical geometry; almost all tensile microfracutures arrest at grain boundaries. In addition, using the observed microfracture lengths and stresses, we determined the energy release rate (including interaction effects) for the longest shear microfractues characterized. These microfractures show length and stress consistent with Griffith criteria. At low temperature, shear fractures show energy release rate far greater than fracture energy, consistent with the observed dynamic failure. In contrast, at high temperature, shear microfractures show energy release rate similar to fracture energy, consistent with observed stable failire. Taken toghether, our resutls show that the linkage of shear microfracture is far more important for shear localization (macroscopic faulting) in granular rocks than in non-porous rocks. The interaction of both tentile and shear microfractures is important at low temperature, whereas that of teneile fracture is less improtant at high temperature. In addition, structure (desnity distirbution and orientation) of microfractures within the fault tip region is being investigated.
Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.
1993-01-01
Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487
Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence
NASA Astrophysics Data System (ADS)
Liu, Chunsheng; Gu, Zhifeng; Xing, Mengxin; Sun, Yun; Chen, Siqing; Chen, Zhaoting
2018-03-01
Cnidarians, being regarded as `basal' metazoan animals, are considered to have relatively high plasticity in terms of sex reversal. In this study we used an experimental approach to demonstrate sexual differentiation and plasticity in benthic polyps and pelagic medusae of Aurelia sp.1 maintained at different temperatures. Results indicated that in Aurelia sp.1, sex differentiation has been determined at the polyp stage and that all medusae originating from a given polyp are, phenotypically, of the same sex. In addition, the sex of polyps budding from the same clone (either male or female) at different temperatures appears to be the same as that of the parent. The sex of medusae that had originated from a known-sex polyp was observed to remain the same as that of the parent, irrespective of differences in strobilation or rearing temperatures. These results indicate that the mechanism of sex determination of Aurelia sp.1. is not influenced by prevailing temperature regimes. A comparison of variability in terms of sexual plasticity of Aurelia sp.1 with that of Hydrozoa and Anthozoa suggests that species characterized by a free-swimming medusa life stage have a high dispersal potential, which probably results in a lower rate of sex reversal.
Depth and temperature of permafrost on the Alaskan Arctic Slope; preliminary results
Lachenbruch, Arthur H.; Sass, J.H.; Lawver, L.A.; Brewer, M.C.; Moses, T.H.
1982-01-01
As permafrost is defined by its temperature, the only way to determine its depth is to monitor the return to equilibrium of temperatures in boreholes that penetrate permafrost. Such measurements are under way in 25 wells on the Alaskan Arctic Slope; 21 are in Naval Petroleum Reserve Alaska (NPRA), and 4 are in the foothills to the east. Near-equilibrium results indicate that permafrost thickness in NPRA generally ranges between 200 and 400 m (compared to 600+ m at Prudhoe Bay); there are large local variations and no conspicuous regional trends. By contrast the long-term mean temperature of the ground surface (one factor determining permafrost depth) varies systematically from north to south in a pattern modified by the regional topography. The observed variation in permafrost temperature and depth cannot result primarily from effects of surface bodies of water or regional variations in heat flow; they are consistent, however, with expectable variations in the thermal conductivity of the sediments. It remains to be determined (with conductivity measurements) whether certain sites with anomalously high local gradients have anomalously high heat flow; if they do, they might indicate upwelling of interstitial fluids in the underlying basin sediments.
Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz
2007-11-08
Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.
New Submount Requirement of Conductively Cooled Laser Diodes for Lidar Applications
NASA Technical Reports Server (NTRS)
Mo, S. Y.; Cutler, A. D.; Choi, S. H.; Lee, M. H.; Singh, U. N.
2000-01-01
New submount technology is essential for the development of conductively cooled high power diode laser. The simulation and experimental results indicate that thermal conductivity of submount for high power laser-diode must be at least 600 W/m/k or higher for stable operation. We have simulated several theoretical thermal model based on new submount designs and characterized high power diode lasers to determine temperature effects on the performances of laser diodes. The characterization system measures the beam power, output beam profile, temperature distribution, and spectroscopic property of high power diode laser. The characterization system is composed of four main parts: an infrared imaging camera, a CCD camera, a monochromator, and a power meter. Thermal characteristics of two commercial-grade CW 20-W diode laser bars with open heat-sink type were determined with respect to the line shift of emission spectra and beam power stability. The center wavelength of laser emission has a tendency to shift toward longer wavelength as the driving current and heat sink temperature are increased. The increase of heat sink temperature decreases the output power of the laser bar too. Such results lay the guidelines for the design of new submount for high power laser-diodes.
Northwest Manufacturing Initiative
2013-03-26
Testing of Metallic Materials] specifications. For high temperature tests, a heated water bath was use while for low temperature testing down to...Weld metal and heat affected zones were evaluated using Charpy and E399 fracture toughness methods. The influence of temperature , loading rate, CVN...determine the influence of fracture test methods and welding procedures on toughness. Room temperature E399 tests, (CTS) were carried out under
NASA Technical Reports Server (NTRS)
Tubbs, L. D.; Williams, D.
1972-01-01
The strengths of the rotational lines in the R branch of the CO fundamental have been determined at temperatures of 298, 202, and 132 K by means of a high-resolution spectrograph. The results can be used to determine line strengths at other temperatures by means of the Herman-Wallis relation or by considerations of the populations of the rotational levels in the ground vibrational state. Parameters describing the self-broadening and carbon dioxide broadening of CO lines have been determined at 298 and 202 K. The results are compared with other recent experimental and theoretical studies.
Methods for determining enzymatic activity comprising heating and agitation of closed volumes
Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee
2016-03-15
Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.
Water temperature in the steamboat drainage.
George W. Brown; Gerald W. Swank; Jack Rothacher
1971-01-01
High quality water from our forest lands is subject to a rapidly increasing demand. Water from forested watersheds is suitable for many uses. One of the characteristics that determines water's usability, particularly for fish, is temperature.
Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.
2010-01-01
A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502
High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.
Zars, Melissa; Zars, Troy
2006-07-01
Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.
Wang, Hai-Feng; Lu, Hai; Li, Jia; Sun, Guo-Hua; Wang, Jun; Dai, Xin-Hua
2014-02-01
The present paper reported the differential scanning calorimetry-thermogravimetry curves and the infrared (IR) absorption spectrometry under the temperature program analyzed by the combined simultaneous thermal analysis-IR spectrometer. The gas products of coal were identified by the IR spectrometry. This paper emphasized on the combustion at high temperature-IR absorption method, a convenient and accurate method, which measures the content of sulfur in coal indirectly through the determination of the content of sulfur dioxide in the mixed gas products by IR absorption. It was demonstrated, when the instrument was calibrated by varied pure compounds containing sulfur and certified reference materials (CRMs) for coal, that there was a large deviation in the measured sulfur contents. It indicates that the difference in chemical speciations of sulfur between CRMs and the analyte results in a systematic error. The time-IR absorption curve was utilized to analyze the composition of sulfur at low temperatures and high temperatures and then the sulfur content of coal sample was determined by using a CRM for coal with a close composition of sulfur. Therefore, the systematic error due to the difference in chemical speciations of sulfur between the CRM and analyte was eliminated. On the other hand, in this combustion at high temperature-IR absorption method, the mass of CRM and analyte were adjusted to assure the sulfur mass equal and then the CRM and the analyte were measured alternately. This single-point calibration method reduced the effect of the drift of the IR detector and improved the repeatability of results, compared with the conventional multi-point calibration method using the calibration curves of signal intensity vs sulfur mass. The sulfur content results and their standard deviations of an anthracite coal and a bituminous coal with a low sulfur content determined by this modified method were 0.345% (0.004%) and 0.372% (0.008%), respectively. The uncertainty (U, k =2) of sulfur contents of two coal samples was evaluated to be 0.019% and 0.021%, respectively. Two main modifications, namely the calibration using the coal CRM with a similar composition of low-temperature sulfur and high temperature sulfur, and the single-point calibration alternating CRM and analyte, endow the combustion at high temperature-IR absorption method with an accuracy obviously better than that of the ASTM method. Therefore, this modified method has a well potential in the analysis of sulfur content.
Zhang, Lei; Zhong, Yuxin; Liu, Xin; Bao, Yan; Zhao, Yunfeng; Wu, Yongning; Cai, Zongwei; Li, Jingguang
2017-09-01
The determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in blood from a non-occupational population is essential for the investigation of adverse health effects from these pollutants. In this study, a sensitive method based on programmable-temperature vaporization with large-volume injection coupled with gas chromatography with high-resolution mass spectrometry was developed to determine these pollutants in 1-2 mL of human serum samples. Various key parameters of programmable-temperature vaporization injector, including vent temperature, vent time, vent flow, transfer temperature and transfer time were optimized by factorial design. The accuracy and precision as well as applicability were assessed by determining polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in calibration standard solutions, standard reference materials and real human serum samples from non-occupational population. The method detection limits of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls were 1.5-9.0 and 0.005-0.02 ng/kg wet weight, respectively. By comparing with typically splitless injection, the application of programmable-temperature vaporization injector could effectively lead to higher detectable rate of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in 1-2 mL of human serum samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce
2015-02-01
Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming developments in beamline optics, detectors and synchrotron sources will enable the use of true microcrystals. This high-throughput, high-dose-rate methodology provides a new route to investigating the structure and dynamics of macromolecules at ambient temperature.
NASA Astrophysics Data System (ADS)
Hrutkay, Kyle
Haynes 230 and Inconel 617 are austenitic nickel based superalloys, which are candidate structural materials for next generation high temperature nuclear reactors. High temperature deformation behavior of Haynes 230 and Inconel 617 have been investigated at the microstructural level in order to gain a better understanding of mechanical properties. Tensile tests were performed at strain rates ranging from 10-3-10-5 s -1 at room temperature, 600 °C, 800 °C and 950 °C. Subsequent microstructural analysis, including Scanning Electron Microscopy, Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-Ray Diffraction were used to relate the microstructural evolution at high temperatures to that of room temperature samples. Grain sizes and precipitate morphologies were used to determine high temperature behavior and fracture mechanics. Serrated flow was observed at intermediate and high temperatures as a result of discontinuous slip and dynamic recrystallization. The amplitude of serration increased with a decrease in the strain rate and increase in the temperature. Dynamic strain ageing was responsible for serrations at intermediate temperatures by means of a locking and unlocking phenomenon between dislocations and solute atoms. Dynamic recrystallization nucleated by grain and twin bulging resulting in a refinement of grain size. Existing models found in the literature were discussed to explain both of these phenomena.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Jacobson, Nathan S.; Miller, Robert A.
1999-01-01
Single crystal oxides such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium-aluminum-garnet (Y3Al5O12, or YAG), magnesium oxide (MgO) and sapphire (Al2O3) have been considered as refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermal mechanical reliability of the oxide components in severe thermal environments during space mission sun/shade transitions is of great concern. In this paper, critical mechanical properties of these oxide crystals are determined by the indentation technique. Thermal shock resistance of the oxides is evaluated using a high power CO, laser under high temperature-high thermal gradients. Thermal stress fracture behavior and failure mechanisms of these oxide materials are investigated under various temperature and heating conditions.
Hu, Jiangping; Ding, Hong
2012-01-01
Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479
Flux pinning characteristics and irreversibility line in high temperature superconductors
NASA Technical Reports Server (NTRS)
Matsushita, T.; Ihara, N.; Kiuchi, M.
1995-01-01
The flux pinning properties in high temperature superconductors are strongly influenced by thermally activated flux motion. The scaling relation of the pinning force density and the irreversibility line in various high temperature superconductors are numerically analyzed in terms of the flux creep model. The effect of two factors, i.e., the flux pinning strength and the dimensionality of the material, on these properties are investigated. It is speculated that the irreversibility line in Bi-2212 superconductors is one order of magnitude smaller than that in Y-123, even if the flux pinning strength in Bi-2212 is improved up to the level of Y-123. It is concluded that these two factors are equally important in determination of the flux pinning characteristics at high temperatures.
Rhen, Turk; Fagerlie, Ruby; Schroeder, Anthony; Crossley, Dane A; Lang, Jeffrey W
2015-01-01
Ambient temperatures during embryonic development determine gonadal sex in many reptiles. The temperature sensitive period for sex determination has been defined by shifting eggs between female- and male-producing temperatures in a few species. This phase spans 20-35% of embryogenesis in most species, which makes it difficult to define the mechanisms that transduce temperature into a signal for ovarian versus testicular development. We present an extensive set of studies that define a brief period when high temperature specifies, and then determines, ovarian fate in a northern population of snapping turtles, Chelydra serpentina. We shifted embryos from male to female temperatures, or vice versa, at various stages of development. Gonads in embryos incubated at female temperatures commit to ovarian fate earlier (by stage 18) than gonads in embryos incubated at male temperatures commit to testicular fate (by stages 19-21). In double shift studies, embryos were incubated at a female temperature, exposed to a male temperature for set times, and shifted back to the original temperature, or vice versa. The time required to induce ovarian development (≤6 days at female temperatures) was much shorter than the time required to induce testicular formation (>20 days at male temperatures). Differentiation of the gonads at the histological level occurred after the sex-determining period. Nevertheless, we found that a change in temperature rapidly (within 24h) influenced expression and splicing of WT1 mRNA: the absolute abundance of WT1 mRNA, the relative abundance of +KTS versus -KTS isoforms, as well as the ratio of +KTS:-KTS isoforms was higher in gonads at a male versus a female temperature. In conclusion, ovarian fate is more readily determined than testicular fate in snapping turtle embryos. The short sex-determining period in this species (6-8% of embryogenesis) will facilitate studies of molecular mechanisms for specification and determination of gonad fate by temperature. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Ojeda-Pérez, Zaida Zarely; Jiménez-Bremont, Juan Francisco; Delgado-Sánchez, Pablo
2017-01-01
Opuntia plants grow naturally in areas where temperatures are extreme and highly variable in the day during the entire year. These plants survive through different adaptations to respond to adverse environmental conditions. Despite this capability, it is unknown how CAM photosynthetic activity and growth in Opuntia plantlets is affected by constant heat or cold. Therefore, the main objective of this research was to evaluate the short-term effect of high (40°C) and low (4°C) continuous temperatures on the photosynthetic efficiency, the organic acid content (malic acid) and the relative growth rate (RGR) in seven-month-old Opuntia streptacantha plantlets during 5, 10, and 15 days. Chlorophyll fluorescence analysis allowed us to determine that high temperatures negatively impact the photosynthetic efficiency of O. streptacantha plantlets, which exhibited the lowest values of maximum quantum efficiency of the photosystem II (Fv/Fm = 52%, Fv/F0 = 85%), operational quantum yield of PS (ΦPSII = 65%) and relative electron transport rate (rETR = 65%), as well as highest values of basal fluorescence (F0 = 226%) during 15 days of treatment. Similarly, low temperatures decreased Fv/Fm (16%), Fv/F0 (50%), ΦPSII and rETR (16%). High temperatures also decreased nocturnal acidification in approximately 34-50%, whereas low temperatures increased it by 30-36%. Additionally, both continuous temperatures affected drastically diurnal consumption of malic acid, which was related to a significant RGR inhibition, where the specific photosynthetic structure area component was the most affected. Our results allowed determining that, despite the high tolerance to extreme temperatures described for Opuntia plants, young individuals of O. streptacantha suffered photosynthetic impairment that led to the inhibition of their growth. Thus, the main findings reported in this study can help to predict the potential impact of climatic change on the establishment and survival of succulent species of arid and semiarid regions of Mexico.
Ojeda-Pérez, Zaida Zarely; Jiménez-Bremont, Juan Francisco
2017-01-01
Opuntia plants grow naturally in areas where temperatures are extreme and highly variable in the day during the entire year. These plants survive through different adaptations to respond to adverse environmental conditions. Despite this capability, it is unknown how CAM photosynthetic activity and growth in Opuntia plantlets is affected by constant heat or cold. Therefore, the main objective of this research was to evaluate the short-term effect of high (40°C) and low (4°C) continuous temperatures on the photosynthetic efficiency, the organic acid content (malic acid) and the relative growth rate (RGR) in seven-month-old Opuntia streptacantha plantlets during 5, 10, and 15 days. Chlorophyll fluorescence analysis allowed us to determine that high temperatures negatively impact the photosynthetic efficiency of O. streptacantha plantlets, which exhibited the lowest values of maximum quantum efficiency of the photosystem II (Fv/Fm = 52%, Fv/F0 = 85%), operational quantum yield of PS (ΦPSII = 65%) and relative electron transport rate (rETR = 65%), as well as highest values of basal fluorescence (F0 = 226%) during 15 days of treatment. Similarly, low temperatures decreased Fv/Fm (16%), Fv/F0 (50%), ΦPSII and rETR (16%). High temperatures also decreased nocturnal acidification in approximately 34–50%, whereas low temperatures increased it by 30–36%. Additionally, both continuous temperatures affected drastically diurnal consumption of malic acid, which was related to a significant RGR inhibition, where the specific photosynthetic structure area component was the most affected. Our results allowed determining that, despite the high tolerance to extreme temperatures described for Opuntia plants, young individuals of O. streptacantha suffered photosynthetic impairment that led to the inhibition of their growth. Thus, the main findings reported in this study can help to predict the potential impact of climatic change on the establishment and survival of succulent species of arid and semiarid regions of Mexico. PMID:29059203
NASA Astrophysics Data System (ADS)
Kelly, James P.
Ultra-high temperature ceramics (UHTCs) are a unique class of materials with the potential to withstand harsh environments due to covalent bonding, which gives these materials high melting temperatures, although decomposition temperatures should also be considered. For example, the melting temperature of TaC is near 4000 K, but may vaporize at lower temperatures. The high melting temperatures also make them difficult to process without high pressures and temperatures and to achieve dense ceramics with a nanostructure. Such materials however are appealing for aerospace technologies. The ability to generate high density compacts and maintain a nanostructure could allow for unprecedented control and improvement to the mechanical properties. The goal of this work is to develop processes for the synthesis and consolidation of nanostructured UHTCs. A self-propagating solvothermal synthesis technique for making UHTC nanopowders is presented. The technique is fast, scalable, and requires minimal external energy input. Synthesis of transition metal boride, carbide, and nitride powders is demonstrated. TaC is synthesized using a range of synthesis conditions and characterized to determine the fundamental mechanisms controlling the nanopowder characteristics. Discussion on purification of the powders is also presented. The sintering of TaC nanopowders produced by the solvothermal synthesis method is performed by resistance sintering. The effects of temperature, heating rate, and dwell time on densification and grain growth is presented. Adequate powder processing, carbon content, volatilization, and additives are found to be critical factors affecting the densification, microstructure, and grain growth. The optimal range of carbon addition for minimizing oxygen content is determined. WC and ZrC are evaluated as additives for reducing grain growth of TaC. Secondary phases and/or solid solutions are capable of suppressing grain growth. A unified approach to solid solution chemistries to control the densification, microstructure, and properties of UHTCs in general is presented. This work has important consequences on advancing the properties of UHTCs.
Investigation on the mode of AC discharge in H2O affected by temperature
NASA Astrophysics Data System (ADS)
Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU
2018-04-01
In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.
NASA Technical Reports Server (NTRS)
Stark, G.; Yoshino, K.; Smith, P. L.; Esmond, J. R.; Ito, K.; Stevens, M. H.
1993-01-01
Photoabsorption cross sections for five CO bands, at wavelengths between 96.7 and 98.8 nm, have been measured at high-resolution in a supersonic jet-cooled source at the Photon Factory synchrotron facility. New integrated cross sections are reported for the K-X, L(prime)-X, and L-X bands. Low-temperature spectra of the J-X and W-X bands, which were used in the determination of the absorbing CO column densities, are also presented. The rotational structures of the K-X, L(prime)-X, and L-X bands do not overlap in the low-temperature spectra, allowing for the first unambiguous determination of these band oscillator strengths. We also report revised room temperature measurements of integrated cross sections for the K-X, L(prime)-X, and L-X bands, in which distortions in the measured spectra due to insufficient instrumental resolution have been minimized; the revised room temperature integrated cross sections are consistent with the low-temperature results.
NASA Astrophysics Data System (ADS)
Aykutlu, Isil; Bezen, Sevim; Bayrak, Celal
2017-02-01
This study is a qualitative one conducted in order to determine 9th, 10th, and 11th grade high school students' conceptual structures of heat and temperature through concept maps. The study was realized with the participation of a total of 80 students. As data gathering tool, a concept map developed by the researchers, which includes such items as heat, temperature, and matter, was used. Students were asked to form a concept map by using the concepts in the form and the concepts they thought were related with these. Data obtained from the research was analyzed via content analysis. As a result of the study, it was determined that students have misconceptions and lack of knowledge of heat and temperature. Lastly, the following can be given as examples of students' misconceptions or lack of knowledge: they think temperature comes into being as a result of heat and that heat is a kind of energy.
USDA-ARS?s Scientific Manuscript database
Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...
High Temperature Lightweight Self-Healing Ceramic Composites for Aircraft Engine Applications
NASA Technical Reports Server (NTRS)
Raj, Sai V.; Singh, Mrityunjay; Bhatt, Ramakrishna T.
2014-01-01
The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered matrix composites (EMCs) with sufficient high temperature plasticity to reduce crack propagation and self-healing capabilities to fill surface-connected cracks to prevent the oxygen ingress to the fibers. A matrix engineered with these capabilities is expected to increase the load bearing capabilities of SiCSiC CMCs at high temperatures. Several matrix compositions were designed to match the coefficient of thermal expansion (CTE) of the SiC fibers using a rule of mixture (ROM) approach. The CTE values of these matrices were determined and it was demonstrated that they were generally in good agreement with that of monolithic SiC between room temperature and 1525 K. The parameters to hot press the powders were optimized, and specimens were fabricated for determining bend strength, CTE, oxidation and microstructural characteristics of the engineered matrices. The oxidation tests revealed that some of the matrices exhibited catastrophic oxidation, and therefore, these were eliminated from further consideration. Two promising compositions were down selected based on these results for further development. Four-point bend tests were conducted on these two promising matrices between room temperature and 1698 K. Although theses matrices were brittle and failed at low stresses at room temperature, they exhibited high temperature ductility and higher stresses at the higher temperatures. The effects of different additives on the self-healing capabilities of these matrices were investigated. The results of preliminary studies conducted to slurry and melt infiltration trials with CrSi2 are described.
Final Report. IUT No. B560420 with UC Berkeley. Organic Chemistry at High Pressures &Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montgomery, W; Crowhurst, J C; Zaug, J M
We have successfully completed the research outlined in our proposal: Organic Chemistry at High Pressures and Temperatures. We have experimentally determined a phase diagram which documents the phases and reaction regimes of cyanuric acid , H{sub 3}C{sub 3}N{sub 3}O{sub 3} (1,3,5-triazine-2,4,6-trione), from 300 - 750 K and 0 - 8.1 GPa. We utilized a comparatively new technique to study thin samples of cyanuric acid in the diamond anvil cell in order to collect ambient temperature, high pressure FTIR and Raman data as well as the high-pressure, high-temperature data used in the phase diagram. These experiments made use of the CMLSmore » High-pressure lab's diamond anvil facilities as well as the FTIR and Raman systems.« less
Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing
NASA Astrophysics Data System (ADS)
Dunz, M.; Schmalhorst, J.; Meinert, M.
2018-05-01
We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.
Kegler, Pia; Baum, Gunilla; Indriana, Lisa F; Wild, Christian; Kunzmann, Andreas
2015-01-01
Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16-95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81-100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming.
Kegler, Pia; Baum, Gunilla; Indriana, Lisa F.; Wild, Christian; Kunzmann, Andreas
2015-01-01
Knowledge on interactive effects of global (e.g. ocean warming) and local stressors (e.g. pollution) is needed to develop appropriate management strategies for coral reefs. Surfactants and diesel are common coastal pollutants, but knowledge of their effects on hard corals as key reef ecosystem engineers is scarce. This study thus investigated the physiological reaction of Pocillopora verrucosa from Lombok, Indonesia, to exposure with a) the water-soluble fraction of diesel (determined by total polycyclic aromatic hydrocarbons (PAH); 0.69 ± 0.14 mg L-1), b) the surfactant linear alkylbenzene sulfonate (LAS; 0.95 ± 0.02 mg L-1) and c) combinations of each pollutant with high temperature (+3°C). To determine effects on metabolism, respiration, photosynthetic efficiency and coral tissue health were measured. Findings revealed no significant effects of diesel, while LAS resulted in severe coral tissue losses (16–95% after 84 h). High temperature led to an increase in photosynthetic yield of corals after 48 h compared to the control treatment, but no difference was detected thereafter. In combination, diesel and high temperature significantly increased coral dark respiration, whereas LAS and high temperature caused higher tissue losses (81–100% after 84 h) and indicated a severe decline in maximum quantum yield. These results confirm the hypothesized combined effects of high temperature with either of the two investigated pollutants. Our study demonstrates the importance of reducing import of these pollutants in coastal areas in future adaptive reef management, particularly in the context of ocean warming. PMID:26555818
Spectral measurement of nonequilibrium arc-jet free-stream flow
NASA Technical Reports Server (NTRS)
Gopaul, Nigel K. J. M.
1993-01-01
Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.
Triacylglycerols determine the unusual storage physiology of Cuphea seed.
Crane, Jennifer; Miller, Annette L; van Roekel, J William; Walters, Christina
2003-09-01
Many species within the genus Cuphea (Lythraceae) produce seed with high levels of medium-chain fatty acids. Seeds of some Cuphea species lose viability when placed into storage at -18 degrees C. These species tolerate significant drying to 0.05 g/g and may, therefore, be intermediate in their storage characteristics. The thermal properties of seed lipids were observed using differential scanning calorimetry. Species with peak lipid melting temperatures >/=27 degrees C were found to be sensitive to -18 degrees C exposure while those with melting temperatures <27 degrees C were able to tolerate low-temperature exposure. This relationship was determined by the triacylglycerol composition of the individual species. Sensitive species have high concentrations of lauric acid (C(12)) and/or myristic acid (C(14)). Species with high concentrations of capric (C(8)) or caprylic acid (C(10)) or with high concentrations of unsaturated fatty acids tolerate low temperature exposure. Potential damage caused by low temperature exposure can be avoided by exposing seeds to a brief heat pulse of 45 degrees C to melt solidified lipids prior to imbibition. The relationship between the behavior of triacylglycerols in vivo, seed storage behavior and sensitivity to imbibitional damage is previously unreported and may apply to other species with physiologies that make them difficult to store.
ERIC Educational Resources Information Center
Gurcay, Deniz; Gulbas, Etna
2018-01-01
The purpose of this research is to investigate the relationships between high school students' learning approaches and logical thinking abilities and their understandings of heat, temperature and internal energy concepts. Learning Approach Questionnaire, Test of Logical Thinking and Three-Tier Heat, Temperature and Internal Energy Test were used…
Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W
2015-12-23
A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.
Wolska, Jolanta; Czop, Michał; Jakubczyk, Karolina; Janda, Katarzyna
Stinging nettle (Urtica dioica L.) can be found in temperate climate zones of Europe, Africa and America Nettle may be a source of nutritional ingredients, mineral salts, vitamins and antioxidants. The aim of the study was to determine the effect of temperature and brewing time Urtica dioica L. infusions from different parts of this plant on vitamin C (ascorbic acid) content. Infusions of nettle leaf, stem and root were prepared at room temperature, 50°C, 60°C, 70°C and 80°C for 10 minutes. Leaf infusions were also brewed for 5, 10, 15 and 20 minutes at initial water temperature of 60°C. The amount of vitamin C was determined by the spectrophotometric method. The best temperature of brewing nettle infusions, in terms of vitamin C concentration, is between 50 °C and 60 °C as it is sufficient to extract the substance, yet not high enough to destroy it. The optimal time of brewing appeared to be 10 minutes as the prolonged exposure to high temperature appeared to be detrimental for ascorbic acid as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yingye; Mo, Kun; Yun, Di
2017-04-01
Nanostructured ferritic alloys (NFAs) are a promising structural material for advanced nuclear systems due to their exceptional radiation tolerance and high-temperature mechanical properties. Their remarkable properties result from the ultrafine ultrahigh density Y-Ti-O nanoclusters dispersed within the ferritic matrix. In this work, we performed in-situ synchrotron X-ray diffraction tests to study the tensile deformation process of the three types of NFAs: 9YWTV, 14YWT-sm13, and 14YWT-sm170 at both room temperature and elevated temperatures. A technique was developed, combining Kroner’s model and X-ray measurement, to determine the intrinsic monocrystal elastic-stiffness constants, and polycrystal Young’s modulus and Poisson’s ratio of the NFAs. Temperaturemore » dependence of elastic anisotropy was observed in the NFAs. An analysis of intergranular strain and strengthening factors determined that 14YWT-sm13 had a higher resistance to temperature softening compared to 9YWTV, attributed to the more effective nanoparticle strengthening during high-temperature mechanical loading.« less
Simulation of the planetary interior differentiation processes in the laboratory.
Fei, Yingwei
2013-11-15
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.
Simulation of the Planetary Interior Differentiation Processes in the Laboratory
Fei, Yingwei
2013-01-01
A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process. PMID:24326245
FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Herring, Helen M.
2001-01-01
A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.
NASA Astrophysics Data System (ADS)
Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Baciu, E. R.; Istrate, B.; Basescu, N.
2015-10-01
Aluminum alloy present numerous advantages like lightness, high specific strength and diversity which recommend them to a high number of applications from different fields. In extreme environments the protection of aluminum alloys is difficult and requires a high number of requirements like high temperature resistance, thermal fatigue resistance, corrosion fatigue resistance and galvanic corrosion resistance. To obtain these characteristics coatings can be applied to the surfaces so they can enhance the mechanical and chemical properties of the parts. In this paper two coatings were considered for deposition on an AA2024 aluminum alloy, ZrO2/20%Y2O3 and Al2O3. To obtain a better adherence of the coating to the base material an additional bond layer of NiCr is used. Both the coatings and bond layer were deposited by atmospheric plasma spraying on the samples. The samples were subjected to a temperature of 500 °C and after that slowly cooled to room temperature. The samples were analyzed by electron microscopy and X-ray diffraction to determine the morphological and phase changes that occurred during the temperature exposure. To determine the stress level in the parts due to thermal expansion a finite element analysis was performed in the same conditions as the tests.
HyspIRI High-Temperature Saturation Study
NASA Technical Reports Server (NTRS)
Realmuto, V.; Hook, S.; Foote, M.; Csiszar, I.; Dennison, P.; Giglio, L.; Ramsey, M.; Vaughan, R.G.; Wooster, M.; Wright, R.
2011-01-01
As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature.
Rhenium-Oxygen Interactions at High Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Myers, Dwight L.; Zhu, Dongming; Humphrey, Donald
2000-01-01
The reaction of pure rhenium metal with dilute oxygen/argon mixtures was studied from 600 to 1400 C. Temperature, oxygen pressure, and flow rates were systematically varied to determine the rate-controlling steps. At lower temperatures the oxygen/rhenium chemical reaction is rate limiting; at higher temperatures gas-phase diffusion of oxygen through the static boundary layer is rate limiting. At all temperatures post-reaction microstructures indicate preferential attack along certain crystallographic planes and defects.
Precise Temperature Mapping of GaN-Based LEDs by Quantitative Infrared Micro-Thermography
Chang, Ki Soo; Yang, Sun Choel; Kim, Jae-Young; Kook, Myung Ho; Ryu, Seon Young; Choi, Hae Young; Kim, Geon Hee
2012-01-01
A method of measuring the precise temperature distribution of GaN-based light-emitting diodes (LEDs) by quantitative infrared micro-thermography is reported. To reduce the calibration error, the same measuring conditions were used for both calibration and thermal imaging; calibration was conducted on a highly emissive black-painted area on a dummy sapphire wafer loaded near the LED wafer on a thermoelectric cooler mount. We used infrared thermal radiation images of the black-painted area on the dummy wafer and an unbiased LED wafer at two different temperatures to determine the factors that degrade the accuracy of temperature measurement, i.e., the non-uniform response of the instrument, superimposed offset radiation, reflected radiation, and emissivity map of the LED surface. By correcting these factors from the measured infrared thermal radiation images of biased LEDs, we determined a precise absolute temperature image. Consequently, we could observe from where the local self-heat emerges and how it distributes on the emitting area of the LEDs. The experimental results demonstrated that highly localized self-heating and a remarkable temperature gradient, which are detrimental to LED performance and reliability, arise near the p-contact edge of the LED surface at high injection levels owing to the current crowding effect. PMID:22666050
NASA Astrophysics Data System (ADS)
Schmidt, V. H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.
Primary Radiometry for the mise-en-pratique: The Laser-Based Radiance Method Applied to a Pyrometer
NASA Astrophysics Data System (ADS)
Briaudeau, S.; Sadli, M.; Bourson, F.; Rougi, B.; Rihan, A.; Zondy, J.-J.
2011-12-01
A new setup has been implemented at LCM-LNE-CNAM for the determination "of the spectral responsivity of radiation thermometers for the determination" of the thermodynamic temperature of high-temperature blackbodies at the temperature of a metal-carbon eutectic phase transition. In this new setup, an innovative acoustic-optic modulator feedback loop is used to stabilize the radiance of a wavelength tunable laser. The effect of residual optical interferences on the calibration of a test pyrometer is analyzed. The full uncertainty budget is presented.
NASA Astrophysics Data System (ADS)
Nguyen, Quynhgiao N.
Titanium (Ti) containing materials are of high interest to the aerospace industry due to its high temperature capability, strength, and light weight. As with most metals an exterior oxide layer naturally exists in environments that contain oxygen (i.e. air). At high temperatures, water vapor plays a key role in the volatility of materials including oxide surfaces. This study first evaluates several hot-pressed Ti-containing compositions at high temperatures as a function of oxidation resistance. This study will also evaluate cold pressed titanium dioxide (TiO2) powder pellets at a temperature range of 1400°C--1200°C in water containing environments to determine the volatile hydoxyl species using the transpiration method. The water content ranged from 0-76 mole % and the oxygen content range was 0-100 mole % during the 20-250 hour exposure times. Preliminary results indicate that oxygen is not a key contributor at these temperatures and the following reaction is the primary volatile equation at all three temperatures: TiO 2 (s) + H2O (g) = TiO(OH)2 (g).
Levitsky VYu; Panova, A A; Mozhaev, V V
1994-01-15
A correlation between the stability of alpha-chymotrypsin against irreversible thermal inactivation at high temperatures (long-term stability) and the coefficient of Setchenov equation as a measure of salting-in/out efficiency of solutes in the Hofmeister series has been found. An increase in the concentration of salting-in solutes (KSCN, urea, guanidinium chloride, formamide) leads to a many-fold decrease of the inactivation rate of the enzyme. In contrast, addition of salting-out solutes has a small effect on the long-term stability of alpha-chymotrypsin at high temperatures. The effects of solutes are additive with respect to their salting-in/out capacities; the stabilizing action of the solutes is determined by the calculated Setchenov coefficient of solution. The correlation is explained by a solute-driven shift of the conformational equilibrium between the 'low-temperature' native and the 'high-temperature' denatured forms of the enzyme within the range of the kinetic scheme put forward in the preceding paper in this journal: irreversible inactivation of the high-temperature form proceeds much more slowly compared with the low-temperature form.
Development of lightweight ceramic ablators and arc-jet test results
NASA Technical Reports Server (NTRS)
Tran, Huy K.
1994-01-01
Lightweight ceramic ablators (LCA's) were recently developed at Ames to investigate the use of low density fibrous substrates and organic resins as high temperature, high strength ablative heat shields. Unlike the traditional ablators, LCA's use porous ceramic/carbon fiber matrices as substrates for structural support, and polymeric resins as fillers. Several substrates and resins were selected for the initial studies, and the best performing candidates were further characterized. Three arcjet tests were conducted to determine the LCA's thermal performance and ablation characteristics in a high enthalpy, hypersonic flow environment. Mass loss and recession measurements were obtained for each sample at post test, and the recession rates were determined from high speed motion films. Surface temperatures were also obtained from optical pyrometers.
High-sensitivity temperature sensor based on highly-birefringent microfiber
NASA Astrophysics Data System (ADS)
Sun, Li-Peng; Li, Jie; Jin, Long; Gao, Shuai; Tian, Zhuang; Ran, Yang; Guan, Bai-Ou
2013-09-01
We demonstrate an ultrasensitive temperature sensor by sealing a highly-birefringent microfiber into an alcoholinfiltrated copper capillary. With a Sagnac loop configuration, the interferometric spectrum is strongly dependent on the external refractive index (RI) with sensitivity of 36800nm/RIU around RI=1.356. As mainly derived from the ultrahigh RI sensitivity, the temperature response can reach as high as -14.72 nm/°C in the range of 30.9-36.9 °C. The measured response time is ~8s, as determined by the heat-conducting characteristic of the device and the diameter of the copper capillary. Our sensor is featured with low cost, easy fabrication and robustness.
Stability of Materials in High Temperature Water Vapor: SOFC Applications
NASA Technical Reports Server (NTRS)
Opila, E. J.; Jacobson, N. S.
2010-01-01
Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.
Shi, Wanju; Li, Xiang; Schmidt, Ralf C; Struik, Paul C; Yin, Xinyou; Jagadish, S V Krishna
2018-01-15
High-temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day-time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high-night-time-temperature treatments. The day-time temperature played a dominant role in determining spikelet fertility compared with the night-time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high-yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high-temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early-morning flowering as a promising trait for mitigating HDT stress impact at flowering. © 2018 John Wiley & Sons Ltd.
Souza, M F; Veloso, L F A; Sampaio, M V; Davis, J A
2017-08-01
Biological features of Diaeretiella rapae (McIntosh), an aphid parasitoid, are conditioned by temperature and host. However, studies of host quality changes due to temperature adaptability have not been performed previously. Therefore, this study evaluated the adaptability of Lipaphis pseudobrassicae (Davis) and Myzus persicae (Sulzer) to high temperature, high temperature effect on their quality as hosts for D. rapae, and on parasitoid's thermal threshold. Aphid development, survivorship, fecundity, and longevity were compared at 19 °C and 28 °C. Host quality in different temperatures was determined through evaluation of parasitoid biology. Thermal threshold of D. rapae was determined using development time data. At 28 °C, development time, rate of immature survival, and total fecundity rates were greater in L. pseudobrassicae than in M. persicae. Development time of D. rapae in L. pseudobrassicae was shorter than that in M. persicae at 28 °C and 31 °C for females and at 31 °C for males. The thermal threshold of D. rapae was 6.38 °C and 3.33 °C for females and 4.45 °C and 3.63 °C for males developed on L. pseudobrassicae and M. persicae, respectively. Diaeretiella rapae size gain was greater in L. pseudobrassicae than that in M. persicae at 25 °C and 28 °C. Lipaphis pseudobrassicae showed better adaptation than M. persicae to elevated temperatures, which resulted in a better quality host for D. rapae at temperatures of 28 °C and 31 °C and a higher lower thermal threshold when the parasitoid developed within L. pseudobrassicae. The host's adaptation to high temperatures is a determinant of host quality for the parasitoid at that same climatic condition. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.
2009-01-01
A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] < 2.5). The Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.
NASA Technical Reports Server (NTRS)
Hahs, C. A.
1990-01-01
The Wake Shield Facility (WSF) can provide an ideal vacuum environment for the purification of high temperature metals in space. The Modular Electromagnetic Levitator (MEL), will provide the opportunity to study undercooling of metals in space and allow to determine material properties in space. The battery powered rf levitation and heating system developed for the MEL demonstrated efficiency of 36 percent. This system is being considered to purify metals at temperatures below 3000 C.
An Equipment to Measure the Freezing Point of Soils under Higher Pressure
NASA Astrophysics Data System (ADS)
Wang, Dayan; Guan, Hui; Wen, Zhi; Ma, Wei
2014-05-01
Soil freezing point is the highest temperature at which ice can be presented in the system and soil can be referred to as frozen. The freezing temperature of soil is an important parameter for solving many practical problems in civil engineering, such as evaluation of soil freezing depth, prediction of soil heaving, force of soil suction, etc. However, as the freezing temperature is always affected by many factors like soil particle size, mineral composition, water content and the external pressure endured by soils, to measure soil freezing point is a rather difficult task until now, not to mention the soil suffering higher pressure. But recently, with the artificial freezing technology widely used in the excavation of deep underground space, the frozen wall thickness is a key factor to impact the security and stability of deep frozen wall. To determine the freeze wall thickness, the location of the freezing front must be determined firstly, which will deal with the determination of the soil freezing temperature. So how to measure the freezing temperature of soil suffering higher pressure is an important problem to be solved. This paper will introduce an equipment which was developed lately by State Key Laboratory of Frozen Soil Engineering to measure the freezing-point of soils under higher pressure. The equipment is consisted of cooling and keeping temperature system, temperature sensor and data collection system. By cooling and keeping temperature system, not only can we make the higher pressure soil sample's temperature drop to a discretionary minus temperature, but also keep it and reduce the heat exchange of soil sample with the outside. The temperature sensor is the key part to our measurement, which is featured by high precision and high sensitivity, what is more important is that the temperature sensor can work in a higher pressure condition. Moreover, the major benefit of this equipment is that the soil specimen's loads can be loaded by any microcomputer control electron universal testing machines. All of above mentioned advantages of this equipment ensures one to catch up the moment soil turns from the thawed state into ice and enable one to determine the freezing point experimentally by recording the temperature-time history (cooling curve) at particular points within the sample used for analysis. Therefore, this equipment has excellent characteristics such as compact construction, convenient operation, high reliability and the measuring accuracy. The authors would like to thank the following agents for their financial supports: the National Natural Science Foundation (No.41071048),Hundred Talent Young Scientists program of the Chinese Academy of Sciences granted to Dr. Zhi Wen.
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Benz, Frank J.
1986-01-01
Results from frictional heating tests to determine the effects of oxygen pressure on the Pv production required for igntion are presented. Materials tested include: Monel K-500 and 1015 carbon steels at pressures varied from 100 to 3000 PSIG).
Phase transformation of GaAs at high pressures and temperatures
NASA Astrophysics Data System (ADS)
Ono, Shigeaki; Kikegawa, Takumi
2018-02-01
The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).
NASA Astrophysics Data System (ADS)
Greffrath, Fabian; Prieler, Robert; Telle, Rainer
2014-11-01
A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.
NASA Astrophysics Data System (ADS)
Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou
2017-10-01
Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.
NASA Technical Reports Server (NTRS)
Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.
2005-01-01
Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.
Effects of high summer temperatures on mortality in 50 Spanish cities.
Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio; Diaz, Julio
2014-06-09
Periods of high temperature have been widely found to be associated with excess mortality but with variable relationships in different cities. How these specifics depend on climatic and other characteristics of cities is not well understood. We assess summer temperature-mortality relationships using data from 50 provincial capitals in Spain, during the period 1990-2004. Poisson time series regression analyses were applied to daily temperature and mortality data, adjusting for potential confounding seasonal factors. Associations of heat with mortality were summarised for each city as the risk increments at the 99th compared to the 90th percentiles of the whole-year temperature distributions, as predicted from spline curves. Risk increments averaged 14.6% between both centiles, or 3.3% per 1 Celsius degree. Although risk increments varied substantially between cities, the range of temperature from the 90th to 99th centile was the only characteristic independently significantly associated with them. The heat increment did not depend on other city climatic, socio-demographic and geographic determinants. Cities in Spain are partially adapted to high mean summer temperatures but not to high variation in summer temperatures.
NASA Astrophysics Data System (ADS)
Klaessens, John H.; van der Veen, Albert; Verdaasdonk, Rudolf M.
2017-03-01
Recently, low cost smart phone based thermal cameras are being considered to be used in a clinical setting for monitoring physiological temperature responses such as: body temperature change, local inflammations, perfusion changes or (burn) wound healing. These thermal cameras contain uncooled micro-bolometers with an internal calibration check and have a temperature resolution of 0.1 degree. For clinical applications a fast quality measurement before use is required (absolute temperature check) and quality control (stability, repeatability, absolute temperature, absolute temperature differences) should be performed regularly. Therefore, a calibrated temperature phantom has been developed based on thermistor heating on both ends of a black coated metal strip to create a controllable temperature gradient from room temperature 26 °C up to 100 °C. The absolute temperatures on the strip are determined with software controlled 5 PT-1000 sensors using lookup tables. In this study 3 FLIR-ONE cameras and one high end camera were checked with this temperature phantom. The results show a relative good agreement between both low-cost and high-end camera's and the phantom temperature gradient, with temperature differences of 1 degree up to 6 degrees between the camera's and the phantom. The measurements were repeated as to absolute temperature and temperature stability over the sensor area. Both low-cost and high-end thermal cameras measured relative temperature changes with high accuracy and absolute temperatures with constant deviations. Low-cost smart phone based thermal cameras can be a good alternative to high-end thermal cameras for routine clinical measurements, appropriate to the research question, providing regular calibration checks for quality control.
High-Temperature Electromechanical Characterization of AlN Single Crystals.
Kim, Taeyang; Kim, Jinwook; Dalmau, Rafael; Schlesser, Raoul; Preble, Edward; Jiang, Xiaoning
2015-10-01
Hexagonal AlN is a non-ferroelectric material and does not have any phase transition up to its melting point (>2000°C), which indicates the potential use of AlN for high-temperature sensing. In this work, the elastic, dielectric, and piezoelectric constants of AlN single crystals were investigated at elevated temperatures up to 1000°C by the resonance method. We used resonators of five different modes to obtain a complete set of material constants of AlN single crystals. The electrical resistivity of AlN at elevated temperature (1000°C) was found to be greater than 5 × 10(10) Ω · cm. The resonance frequency of the resonators, which was mainly determined by the elastic compliances, decreased linearly with increasing temperature, and was characterized by a relatively low temperature coefficient of frequency, in the range of -20 to -36 ppm/°C. For all the investigated resonator modes, the elastic constants and the electromechanical coupling factors exhibited excellent temperature stability, with small variations over the full temperature range, <11.2% and <17%, respectively. Of particular significance is that due to the pyroelectricity of AlN, both the dielectric and the piezoelectric constants had high thermal resistivity even at extreme high temperature (1000°C). Therefore, high electrical resistivity, temperature independence of electromechanical properties, as well as high thermal resistivity of the elastic, dielectric, and piezoelectric properties, suggest that AlN single crystals are a promising candidate for high-temperature piezoelectric sensing applications.
Frequency spectrum of tantalum at temperatures of 293-2300 K
NASA Astrophysics Data System (ADS)
Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.
2010-05-01
The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.
The temperature of solar flares determined from X-ray spectral line ratios
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feldman, U.
1987-01-01
The effect on derived solar flare plasma temperatures of (1) a power-law distribution of emission measure as a function of temperature, (2) a high-temperature isothermal source coupled to a low-temperature power-law distribution of emission measure, and (3) two isothermal sources is calculated for line ratios involving the ions S XV, Ca XIX, Ca XX, Fe XXV, Ni XXVII, and Fe XXVI. It is shown that if the Fe XXV temperature is less than about 25 million K, as is true for the majority of flares, then about 75 percent or more of the emission measure is produced by plasma at temperatures equal to or less than the Fe XXV temperature plus about 3 million K. If the Fe XXV temperature is 20 million K or higher, this percentage can be larger. This result is obtained even if a superhot component exists that extends up to several hundred million degrees. Temperatures determined from Fe XXVI demonstrate the presence of a superhot component.
High temperature antenna development for space shuttle, volume 1
NASA Technical Reports Server (NTRS)
Kuhlman, E. A.
1973-01-01
Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.
Damping of High-temperature Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.
2008-01-01
Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf
Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys
NASA Astrophysics Data System (ADS)
Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely
2018-03-01
An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Hammoud, Ahmad
2015-01-01
Silicon carbide (SiC) devices are becoming widely used in electronic power circuits as replacement for conventional silicon parts due to their attractive properties that include low on-state resistance, high temperature tolerance, and high frequency operation. These attributes have a significant impact by reducing system weight, saving board space, and conserving power. In this work, the performance of an automotive-grade high speed gate driver with potential use in controlling SiC FETs (field-Effect Transistors) in converters or motor control applications was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to assess performance and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.
Fuel properties effect on the performance of a small high temperature rise combustor
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Beckel, Stephen A.
1989-01-01
The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.
NASA Astrophysics Data System (ADS)
Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael
2018-03-01
The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.
Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium
NASA Astrophysics Data System (ADS)
Prosvirnikov, D. B.; Safin, R. G.; Ziatdinova, D. F.; Timerbaev, N. F.; Lashkov, V. A.
2016-04-01
The paper analyses experimental data obtained in studies of high-temperature treatment of softwood and hardwood in an environment of saturated water steam. Data were processed in the Curve Expert software for the purpose of statistical modelling of processes and phenomena occurring during this process. The multifactorial modelling resulted in the empirical dependences, allowing determining the main parameters of this type of hydrothermal treatment with high accuracy.
Dynamic compressive behavior of Pr-Nd alloy at high strain rates and temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Huanran; Cai Canyuan; Chen Danian
2012-07-01
Based on compressive tests, static on 810 material test system and dynamic on the first compressive loading in split Hopkinson pressure bar (SHPB) tests for Pr-Nd alloy cylinder specimens at high strain rates and temperatures, this study determined a J-C type [G. R. Johnson and W. H. Cook, in Proceedings of Seventh International Symposium on Ballistics (The Hague, The Netherlands, 1983), pp. 541-547] compressive constitutive equation of Pr-Nd alloy. It was recorded by a high speed camera that the Pr-Nd alloy cylinder specimens fractured during the first compressive loading in SHPB tests at high strain rates and temperatures. From highmore » speed camera images, the critical strains of the dynamic shearing instability for Pr-Nd alloy in SHPB tests were determined, which were consistent with that estimated by using Batra and Wei's dynamic shearing instability criterion [R. C. Batra and Z. G. Wei, Int. J. Impact Eng. 34, 448 (2007)] and the determined compressive constitutive equation of Pr-Nd alloy. The transmitted and reflected pulses of SHPB tests for Pr-Nd alloy cylinder specimens computed with the determined compressive constitutive equation of Pr-Nd alloy and Batra and Wei's dynamic shearing instability criterion could be consistent with the experimental data. The fractured Pr-Nd alloy cylinder specimens of compressive tests were investigated by using 3D supper depth digital microscope and scanning electron microscope.« less
Dammeier, J; Colberg, M; Friedrichs, G
2007-08-21
The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K < T < 1305 K behind reflected shock waves and, for the purpose of a consistency check, in a slow flow reactor at room temperature. HCO radicals were generated by 193 nm excimer laser photolysis of diluted gas mixtures containing glyoxal, (CHO)(2), and NO or NO(2) in argon and were monitored using frequency modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).
Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.
2007-01-01
Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.
A New Probe to Change Curie Temperature of PbTiO3 Sensors
NASA Technical Reports Server (NTRS)
Katiyar, R. S.; Jinfang, Meng
1997-01-01
High temperature Raman spectra of nanocrystalline Pb(0.8)Ba(0.2)TiO3, Pb(0.8)Sr(0.2) TiO3, Pb(0.8)La(0.2)TiO3 and Pb(0.8)Ba(0.2)TiO3, have been measured, as a function of particle size. There appears respectively a distinct temperature-induced soft mode phase transition in every sample whose Curie temperature can be determined from the mean-field theory. The detailed Curie temperature shift in modified PbTi03 ceramics by Ba, Sr, La, and Zr, has also been investigated as a function of particle size. This study will favor preparations of high efficiency PbTi03 sensors with an adjustable Curie temperature.
High-resolution absorption measurements of NH3 at high temperatures: 500-2100 cm-1
NASA Astrophysics Data System (ADS)
Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander
2015-12-01
High-resolution absorption spectra of NH3 in the region 500-2100 cm-1 at temperatures up to 1027 °C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm, 0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high temperature gas flow cells using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. Measurements at 22.7 °C are compared to high-resolution cross sections available from the Pacific Northwest National Laboratory (PNNL). The higher temperature spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. Approximately 2000 lines have been assigned, of which 851 are newly assigned to mainly hot bands involving vibrational states as high as v2=5.
Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure
NASA Astrophysics Data System (ADS)
Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.
2004-05-01
The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.
Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, J.; Kwak, M.; Ha, K.
2007-12-01
A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.
Walsh, M.G.; Bjorgo, K.A.; Isely, J.J.
2000-01-01
To determine the effects of surgical implantation method and temperature on mortality and transmitter loss, we compared two antenna placements (trailing antenna versus shielded needle) and two suture materials (absorbable versus nonabsorbable) in hybrid striped bass Morone saxitilis x Morone chrysops (227-410 mm total length) that had been surgically implanted with simulated transmitters and held at high (22-29??C) and low (12-18??C) temperatures for 120 d. Fish were individually examined after 7, 30, 60. 90. and 120 d to evaluate suture and wound condition as well as transmitter loss. Neither suture material nor antenna placement affected transmitter loss, mortality, or growth at either high or low temperatures. Absorbable sutures were lost more quickly than were nonabsorbable sutures, but they persisted beyond incision closure at both high and low temperatures. At high temperatures, 50% suture loss occurred by 30 d for absorbable sutures and by 60 d for nonabsorbable sutures. Mortality occurred only at high temperatures but was delayed and was likely caused by peritoneal infection. Transmitter loss was not significant; it occurred only in the low-temperature trial and was caused by pressure necrosis at the incision rather than by suture failure. Temperature significantly affected all responses examined in this study. Significant irritation, infection, and mortality occurred in all treatment groups at high temperatures.
Universal intrinsic scale of the hole concentration in high- Tc cuprates
NASA Astrophysics Data System (ADS)
Honma, T.; Hor, P. H.; Hsieh, H. H.; Tanimoto, M.
2004-12-01
We have measured thermoelectric power (TEP) as a function of hole concentration per CuO2 layer Ppl in Y1-xCaxBa2Cu3O6 (Ppl=x/2) with no oxygen in the Cu-O chain layer. The room-temperature TEP as a function of Ppl , S290(Ppl) , of Y1-xCaxBa2Cu3O6 behaves identically to that of La2-zSrzCuO4 (Ppl=z) . We argue that S290(Ppl) represents a measure of the intrinsic equilibrium electronic states of doped holes and, therefore, can be used as a common scale for the carrier concentrations of layered cuprates. We shows that the Ppl determined by this new universal scale is consistent with both hole concentration microscopically determined by NQR and the hole concentration macroscopically determined by the formal valency of Cu . We find two characteristic scaling temperatures, TS* and TS2* , in the TEP versus temperature curves that change systematically with doping. Based on the universal scale, we uncover a universal phase diagram in which almost all the experimentally determined pseudogap temperatures as a function of Ppl fall on two common curves; lower pseudogap temperature defined by the TS* versus Ppl curve and upper pseudogap temperature defined by the TS2* versus Ppl curve. We find that while pseudogaps are intrinsic properties of doped holes of a single CuO2 layer for all high- Tc cuprates, Tc depends on the number of layers, therefore, the inter layer coupling, in each individual system.
Method and apparatus for determining peak temperature along an optical fiber
Fox, R.J.
1982-07-29
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Method and apparatus for determining peak temperature along an optical fiber
Fox, Richard J.
1985-01-01
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Analysis of uncertainties in turbine metal temperature predictions
NASA Technical Reports Server (NTRS)
Stepka, F. S.
1980-01-01
An analysis was conducted to examine the extent to which various factors influence the accuracy of analytically predicting turbine blade metal temperatures and to determine the uncertainties in these predictions for several accuracies of the influence factors. The advanced turbofan engine gas conditions of 1700 K and 40 atmospheres were considered along with those of a highly instrumented high temperature turbine test rig and a low temperature turbine rig that simulated the engine conditions. The analysis showed that the uncertainty in analytically predicting local blade temperature was as much as 98 K, or 7.6 percent of the metal absolute temperature, with current knowledge of the influence factors. The expected reductions in uncertainties in the influence factors with additional knowledge and tests should reduce the uncertainty in predicting blade metal temperature to 28 K, or 2.1 percent of the metal absolute temperature.
Accelerated fatigue durability of a high performance composite
NASA Technical Reports Server (NTRS)
Rotem, A.
1982-01-01
The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.
NASA Astrophysics Data System (ADS)
Zhang, Feng; Ikeda, Masao; Zhang, Shuming; Liu, Jianping; Tian, Aiqin; Wen, Pengyan; Cheng, Yang; Yang, Hui
2017-10-01
Thermal etching effect of GaN during growth interruption in the metalorganic chemical vapor deposition reactor was investigated in this paper. The thermal etching rate was determined by growing a series of AlGaN/GaN superlattice structures with fixed GaN growth temperature at 735 °C and various AlGaN growth temperature changing from 900 °C to 1007 °C. It was observed that the GaN layer was etched off during the growth interruption when the growth temperature ramped up to AlGaN growth temperature. The etching thickness was determined by high resolution X-ray diffractometer and the etching rate was deduced accordingly. An activation energy of 2.53 eV was obtained for the thermal etching process.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Ghose, Sayata; Watson, Kent A.; Chunchu, Prasad B.; Jensen, Brian J.; Connell, John W.
2012-01-01
Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.
Temperature Dependent Modal Test/Analysis Correlation of X-34 Fastrac Composite Rocket Nozzle
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Brunty, Joseph A. (Technical Monitor)
2001-01-01
A unique high temperature modal test and model correlation/update program has been performed on the composite nozzle of the FASTRAC engine for the NASA X-34 Reusable Launch Vehicle. The program was required to provide an accurate high temperature model of the nozzle for incorporation into the engine system structural dynamics model for loads calculation; this model is significantly different from the ambient case due to the large decrease in composite stiffness properties due to heating. The high-temperature modal test was performed during a hot-fire test of the nozzle. Previously, a series of high fidelity modal tests and finite element model correlation of the nozzle in a free-free configuration had been performed. This model was then attached to a modal-test verified model of the engine hot-fire test stand and the ambient system mode shapes were identified. A reduced set of accelerometers was then attached to the nozzle, the engine fired full-duration, and the frequency peaks corresponding to the ambient nozzle modes individually isolated and tracked as they decreased during the test. To update the finite-element model of the nozzle to these frequency curves, the percentage differences of the anisotropic composite moduli due to temperature variation from ambient, which had been used in the initial modeling and which were obtained by small sample coupon testing, were multiplied by an iteratively determined constant factor. These new properties were used to create high-temperature nozzle models corresponding to 10 second engine operation increments and tied into the engine system model for loads determination.
Georges, Arthur
1989-11-01
Mean daily temperature in natural nests of freshwater turtles with temperature-dependent sex determination is known to be a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a model was developed on the assumption that females will emerge from eggs when more than half of embryonic development occurs above the threshold temperature for sex determination rather than from eggs that spend more than half their time above the threshold. The model is consistent with previously published data and in particular explains the phenomenon whereby the mean temperature that best distinguishes between male and female nests decreases with increasing variability in nest temperature. The model, if verified by controlled experiments, has important implications for our understanding of temperature-dependent sex determination in natural nests. Both mean nest temperature and "hours spent above the threshold" will be poor predictors of hatchling sex ratios. Studies designed to investigate latitudinal trends and inter-specific differences in the threshold temperature will need to consider latitudinal and inter-specific variation in the magnitude of diel fluctuations in nest temperature, and variation in factors influencing the magnitude of those fluctuations, such as nest depth. Furthermore, any factor that modifies the relationship between developmental rate and temperature can be expected to influence hatchling sex ratios in natural nests, especially when nest temperatures are close to the threshold.
High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
Meir, Jessica U; Milsom, William K
2013-06-15
The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.
Hui, Wang; Jiahui, Liu; Hongshuai, Yang; Jin, Liu; Zhigang, Liu
2014-04-01
The combined effects of temperature and ammonia concentration on the percent fertilization and percent hatching in Crassostrea ariakensis were examined under laboratory conditions using the central composite design and response surface methodology. The results indicated: (1) The linear effects of temperature and ammonia concentration on the percent fertilization were significant (P<0.05), and the quadratic effects were highly significant (P<0.01). The interactive effect between temperature and ammonia concentration on the percent fertilization was not significant (P>0.05). (2) The linear effect of temperature on the percent hatching was highly significant (P<0.01), and that of ammonia concentration was nonsignificant (P>0.05). The quadratic effects of temperature and ammonia concentration on the percent hatching were highly significant (P<0.01). The interaction on the percent hatching was not significant (P>0.05). Temperature was more important than ammonia in influencing the fertilization and hatching in C. ariakensis. (3) The model equations of the percent fertilization and hatching towards temperature and ammonia concentration were established, with the coefficients of determination R(2)=99.4% and 99.76%, respectively. Through the lack-of-fit test, these models were of great adequacy. The predictive coefficients of determination for the two model equations were as high as 94.6% and 98.03%, respectively, showing that they could be used for practical projection. (4) Via the statistical simultaneous optimization technique, the optimal factor level combination, i.e., 25°C/0.038mgmL(-1), was derived, at which the greatest percent fertilization 95.25% and hatching 83.26% was achieved, with the desirability being 97.81%. Our results may provide advantageous guidelines for the successful reproduction of C. ariakensis. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bilyeu, Bryan
Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the unmodified epoxy, while the others showed much higher wear rates.
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.
NASA Astrophysics Data System (ADS)
Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei
2018-01-01
High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.
Ultrasonic techniques for measuring physical properties of fluids in harsh environments
NASA Astrophysics Data System (ADS)
Pantea, Cristian
Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.
Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang
2018-05-30
Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.
NASA Astrophysics Data System (ADS)
Boyd, Donald M.
1989-10-01
Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.
Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie
2014-09-10
Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute in a low molecular weight amorphous matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Fire modeling in a nonventilated corridor
NASA Astrophysics Data System (ADS)
Lulea, Marius Dorin; Iordache, Vlad; Năstase, Ilinca
2018-02-01
The main objective of this study was to determine the effect of fire in a nonventilated corridor. A real-scale model of a corridor has been modeled in Fire Dynamics Simulator(F.D.S.) in order to determine the evolution of indoor temperatures, the visibility and the oxygen quantities during a fire. The start time of a sprinkler has also been determined. The use of sprinklers in buildings has become a necessity and a requirement imposed by technical norms. The provision of this type of installation has become a common feature in buildings with a high fire risk, with two main effects: fire extinction and protection of structural and partition elements from high temperatures[
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M
2012-01-31
Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear opticalmore » phenomena)« less
Additive Manufacturing of Advanced High Temperature Masking Fixtures for EBPVD TBC Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, III, Frederick Alyious; Feuerstein, Albert; Dehoff, Ryan
2016-03-30
The purpose of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Praxair Surface Technologies, Inc. (PST) and Oak Ridge National Laboratory (ORNL) was to develop an additive manufacturing process to fabricate next generation high temperature masking fixtures for coating of turbine airfoils with ceramic Thermal Barrier Coatings (TBC) by the Electron Beam Physical Vapor Deposition (EBPVD) process. Typical masking fixtures are sophisticated designs and require complex part manipulation in order to achieve the desired coating distribution. Fixtures are typically fabricated from high temperature nickel (Ni) based superalloys. The fixtures are fabricated from conventional processes by welding of thin sheetmore » material into a complex geometry, to decrease the weight load for the manipulator and to reduce the thermal mass of the fixture. Recent attempts have been made in order to fabricate the fixtures through casting, but thin walled sections are difficult to cast and have high scrap rates. This project focused on understanding the potential for fabricating high temperature Ni based superalloy fixtures through additive manufacturing. Two different deposition processes; electron beam melting (EBM) and laser powder bed fusion were evaluated to determine the ideal processing route of these materials. Two different high temperature materials were evaluated. The high temperature materials evaluated were Inconel 718 and another Ni base alloy, designated throughout the remainder of this document as Alloy X, as the alloy composition is sensitive. Inconel 718 is a more widely utilized material for additive manufacturing although it is not currently the material utilized for current fixtures. Alloy X is the alloy currently used for the fixtures, but is not a commercially available alloy for additive manufacturing. Praxair determined it was possible to build the fixture using laser powder bed technology from Inconel 718. ORNL fabricated the fixture geometry using the EBM technology in order to compare deposition features such as surface roughness, geometric accuracy, deposition rate, surface and subsurface porosity, and material quality. It was determined that the laser powder bed technology was ideal for the geometry and requirements of the fixture set by Praxair, and Praxair moved forward with the purchase of a laser powder bed system. The subsequent portion of the project focused on determining the ideal processing parameters for alloy X for the laser powder bed system using ORNL’s Renishaw laser powder bed system. Praxair supplied gas atomized powders of alloy X material with properties specified by ORNL. ORNL printed text cube arrays in order to determine the ideal combination of laser powder and laser travel speed in order to maximize material density, improve surface quality, and maintain geometric accuracy. Additional powder supplied by Praxair was used to fabricate a full-scale fixture component.« less
3D thermography for improving temperature measurements in thermal vacuum testing
NASA Astrophysics Data System (ADS)
Robinson, D. W.; Simpson, R.; Parian, J. A.; Cozzani, A.; Casarosa, G.; Sablerolle, S.; Ertel, H.
2017-09-01
The application of thermography to thermal vacuum (TV) testing of spacecrafts is becoming a vital additional tool in the mapping of structures during thermal cycles and thermal balance (TB) testing. Many of the customers at the European Space Agency (ESA) test centre, European Space Research and Technology Centre (ESTEC), The Netherlands, now make use of a thermal camera during TB-TV campaigns. This complements the use of embedded thermocouples on the structure, providing the prospect of monitoring temperatures at high resolution and high frequency. For simple flat structures with a well-defined emissivity, it is possible to determine the surface temperatures with reasonable confidence. However, for most real spacecraft and sub-systems, the complexity of the structure's shape and its test environment creates inter-reflections from external structures. This and the additional complication of angular and spectral variations of the spacecraft surface emissivity make the interpretation of the radiation detected by a thermal camera more difficult in terms of determining a validated temperature with high confidence and well-defined uncertainty. One solution to this problem is: to map the geometry of the test specimen and thermal test environment; to model the surface temperatures and emissivity variations of the structures and materials; and to use this model to correct the apparent temperatures recorded by the thermal camera. This approach has been used by a team from NPL (National Physical Laboratory), Psi-tran, and PhotoCore, working with ESA, to develop a 3D thermography system to provide a means to validate thermal camera temperatures, based on a combination of thermal imaging photogrammetry and ray-tracing scene modeling. The system has been tested at ESTEC in ambient conditions with a dummy spacecraft structure containing a representative set of surface temperatures, shapes, and spacecraft materials, and with hot external sources and a high power lamp as a sun simulator. The results are presented here with estimated temperature measurement uncertainties and defined confidence levels according to the internationally accepted Guide to Uncertainty of Measurement as used in the IEC/ISO17025 test and measurement standard. This work is understood to represent the first application of well-understood thermal imaging theory, commercial photogrammetry software, and open-source ray-tracing software (adapted to realize the Planck function for thermal wavebands and target emission), and to produce from these elements a complete system for determining true surface temperatures for complex spacecraft-testing applications.
Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events
NASA Astrophysics Data System (ADS)
Ballard, T.; Diffenbaugh, N. S.
2016-12-01
Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.
Sang, Qinqin; Shan, Xi; An, Yahong; Shu, Sheng; Sun, Jin; Guo, Shirong
2017-01-01
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch. PMID:28220137
Sang, Qinqin; Shan, Xi; An, Yahong; Shu, Sheng; Sun, Jin; Guo, Shirong
2017-01-01
Polyamines are phytohormones that regulate plant growth and development as well as the response to environmental stresses. To evaluate their functions in high-temperature stress responses, the effects of exogenous spermidine (Spd) were determined in tomato leaves using two-dimensional electrophoresis and MALDI-TOF/TOF MS. A total of 67 differentially expressed proteins were identified in response to high-temperature stress and/or exogenous Spd, which were grouped into different categories according to biological processes. The four largest categories included proteins involved in photosynthesis (27%), cell rescue, and defense (24%), protein synthesis, folding and degradation (22%), and energy and metabolism (13%). Exogenous Spd up-regulated most identified proteins involved in photosynthesis, implying an enhancement in photosynthetic capacity. Meanwhile, physiological analysis showed that Spd could improve net photosynthetic rate and the biomass accumulation. Moreover, an increased high-temperature stress tolerance by exogenous Spd would contribute to the higher expressions of proteins involved in cell rescue and defense, and Spd regulated the antioxidant enzymes activities and related genes expression in tomato seedlings exposed to high temperature. Taken together, these findings provide a better understanding of the Spd-induced high-temperature resistance by proteomic approaches, providing valuable insight into improving the high-temperature stress tolerance in the global warming epoch.
ERIC Educational Resources Information Center
Meyer, Edwin F.; Meyer, Joseph A.
1980-01-01
Describes an experiment as an alternative to undergraduate experiments limited to high temperature metal systems or lower temperature systems involving objectionable or unstable materials. Lists six advantages of the experiment. (Author/JN)
How Does Ambient Air Temperature Affect Diabetes Mortality in Tropical Cities?
Seposo, Xerxes T; Dang, Tran Ngoc; Honda, Yasushi
2017-04-05
Diabetes is well-known as one of the many chronic diseases that affect different age groups. Currently, most studies that evaluated the effects of temperature on diabetes mortality focused on temperate and subtropical settings, but no study has been conducted to assess the relationship in a tropical setting. We conducted the first multi-city study carried out in tropical cities, which evaluated the temperature-diabetes relationship. We collected daily diabetes mortality (ICD E10-E14) of four Philippine cities from 2006 to 2011. Same period meteorological data were obtained from the National Oceanic and Atmospheric Administration. We used a generalized additive model coupled with a distributed lag non-linear model (DLNM) in determining the relative risks. Results showed that both low and high temperatures pose greater risks among diabetics. Likewise, the study was able to observe the: (1) high risk brought about by low temperature, aside from the largely observed high risks by high temperature; and (2) protective effects in low temperature percentile. These results provide significant policy implications with strategies related to diabetes risk groups in relation to health service and care strategies.
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
Infrared fiber optic sensor for measurements of nonuniform temperature distributions
NASA Astrophysics Data System (ADS)
Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham
1992-04-01
Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.
Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B
2004-01-01
This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.
Method of preparing high-temperature-stable thin-film resistors
Raymond, L.S.
1980-11-12
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
The solubility of hen egg-white lysozyme
NASA Technical Reports Server (NTRS)
Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.
1988-01-01
The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.
Method of preparing high-temperature-stable thin-film resistors
Raymond, Leonard S.
1983-01-01
A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.
NASA Technical Reports Server (NTRS)
Lagen, Nicholas T.; Seiner, John M.
1990-01-01
The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula.
Determination of the continuous cooling transformation diagram of a high strength low alloyed steel
NASA Astrophysics Data System (ADS)
Kang, Hun Chul; Park, Bong June; Jang, Ji Hun; Jang, Kwang Soon; Lee, Kyung Jong
2016-11-01
The continuous cooling transformation diagram of a high strength low alloyed steel was determined by a dilatometer and microscopic analysis (OM, SEM) as well as thermodynamic analysis. As expected, Widmanstätten ferrite, bainite and martensite coexisted for most cooling rates, which made it difficult to determine the transformation kinetics of individual phases. However, peaks were clearly observed in the dilatometric {d( {LVDT} )}/{dT} curves. By overlapping the {d( {LVDT} )}/{dT} curves, which were determined using various cooling rates, peaks were separated and the peak rate temperatures, as well as the temperature at the start of transformation (5%) and the end of transformation (95%) of an individual phase, were determined. A SEM analysis was also conducted to identify which phase existed and to quantify the volume fraction of each phase. It was confirmed that the additional {d( {LVDT} )}/{dT} curve analysis described the transformation behavior more precisely than the conventional continuous cooling transformation diagram, as determined by the volume measured from the microstructure analysis.
Activation energy of tantalum-tungsten oxide thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA
2011-01-15
The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less
NASA Astrophysics Data System (ADS)
Oruganti, Malavika
This thesis conducts an investigation to study the effects of hydrogen exposure at high temperature and pressure on the behavior of AISI 4140 steel. Piezoelectric ultrasonic technique was primarily used to evaluate surface longitudinal wave velocity and defect geometry variations, as related to time after exposure to hydrogen at high temperature and pressure. Critically refracted longitudinal wave technique was used for the former and pulse-echo technique for the latter. Optical microscopy and scanning electron microscopy were used to correlate the ultrasonic results with the microstructure of the steel and to provide better insight into the steel behavior. The results of the investigation indicate that frequency analysis of the defect echo, determined using the pulse-echo technique at regular intervals of time, appears to be a promising tool for monitoring defect growth induced by a high temperature and high pressure hydrogen-related attack.
NASA Astrophysics Data System (ADS)
Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
2017-04-01
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.
Thermodynamic Assessment of Cr-Rare Earth Systems
2009-02-01
alloys. These disadvantages are high ductile-to-brittle transition temperature (DBTT – 150°C for unalloyed recrystallized chromium of commercial purity... eutectic temperature. Data from Kobzenko et al. [7] show appreciable scatter for both solidus and liquidus lines with temperatures ranging from 1790...0.56-0.75 at.% to 2.72 at.% [6]. The eutectic temperature was determined to be 780°C based on thermal analysis of cerium-rich alloys [6]. The phase
NASA Astrophysics Data System (ADS)
Matsumoto, Takahiro; Nagata, Yasuaki; Nose, Tetsuro; Kawashima, Katsuhiro
2001-06-01
We show two kinds of demonstrations using a laser ultrasonic method. First, we present the results of Young's modulus of ceramics at temperatures above 1600 °C. Second, we introduce the method to determine the internal temperature distribution of a hot steel plate with errors of less than 3%. We compare the results obtained by this laser ultrasonic method with conventional contact techniques to show the validity of this method.
Analysis of breast thermograms for ROI extraction and description using mathematical morphology
NASA Astrophysics Data System (ADS)
Zermeño-Loreto, O. A.; Toxqui-Quitl, C.; Orozco Guillén, E. E.; Padilla-Vivanco, A.
2017-09-01
The detection of a temperature increase or hot spots in breast thermograms can be related with high metabolic activity of disease cells. Image processing algorithms to seek mainly temperature increases above 3°C which have a high probability of being a malignancy are proposed. Also a derivative operator is used to highlights breast regions of interest (ROI). In order to determinate a medical alert, a feature descriptor of the ROI is constructed using its maximum temperature, maximum increase of temperature, sector/quadrant position in the breast, and area. The proposed algorithms are tested in a home database and a public database for mastology research.
Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina
NASA Technical Reports Server (NTRS)
Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.
1992-01-01
The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.
Løkke, Mette Marie; Seefeldt, Helene Fast; Edwards, Gareth; Green, Ole
2011-01-01
In order to design optimal packages, it is of pivotal importance to determine the rate at which harvested fresh fruits and vegetables consume oxygen. The respiration rate of oxygen (RRO2) is determined by measuring the consumed oxygen per hour per kg plant material, and the rate is highly influenced by temperature and gas composition. Traditionally, RRO2 has been determined at discrete time intervals. In this study, wireless sensor networks (WSNs) were used to determine RRO2 continuously in plant material (fresh cut broccoli florets) at 5 °C, 10 °C and 20 °C and at modified gas compositions (decreasing oxygen and increasing carbon dioxide levels). Furthermore, the WSN enabled concomitant determination of oxygen and temperature in the very close vicinity of the plant material. This information proved a very close relationship between changes in temperature and respiration rate. The applied WSNs were unable to determine oxygen levels lower than 5% and carbon dioxide was not determined. Despite these drawbacks in relation to respiration analysis, the WSNs offer a new possibility to do continuous measurement of RRO2 in post harvest research, thereby investigating the close relation between temperature and RRO2. The conclusions are that WSNs have the potential to be used as a monitor of RRO2 of plant material after harvest, during storage and packaging, thereby leading to optimized consumer products. PMID:22164085
Theurer, Miles E; White, Brad J; Anderson, David E; Miesner, Matt D; Mosier, Derek A; Coetzee, Johann F; Amrine, David E
2013-03-01
To determine the effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers. 20 heifers (mean body weight, 217.8 kg). Ten heifers were transported 518 km when the maximum ambient temperature was ≥ 32.2°C while the other 10 heifers served as untransported controls. Blood samples were collected from transported heifers at predetermined intervals during the transportation period. For all heifers, body weights, nasal and rectal temperatures, and behavioral indices were measured at predetermined intervals for 3 days after transportation. A week later, the entire process was repeated such that each group was transported twice and served as the control twice. Transported heifers spent more time near the hay feeder on the day of transportation, had lower nasal and rectal temperatures for 24 hours after transportation, and spent more time lying down for 2 days after transportation, compared with those indices for control heifers. Eight hours after transportation, the weight of transported heifers decreased 6%, whereas that of control heifers increased 0.6%. At 48 hours after initiation of transportation, weight, rectal temperature, and time spent at various pen locations did not differ between transported and control heifers. Cortisol concentrations were higher 4 hours after initiation of transportation, compared with those determined just prior to transportation. Results indicated transportation during periods of high ambient temperatures caused transient changes in physiologic and behavioral indices of beef heifers.
Reinvestigation of the Cd–Gd phase diagram
Reichmann, Thomas L.; Ipser, Herbert
2014-01-01
The complete Cd–Gd equilibrium phase diagram was investigated by a combination of powder-XRD, SEM and DTA. All previously reported phases, i.e., CdGd, Cd2Gd, Cd3Gd, Cd45Gd11, Cd58Gd13, and Cd6Gd, could be confirmed. In addition, a new intermetallic compound with a stoichiometric composition corresponding to “Cd8Gd” was found to exist. It was obtained that “Cd8Gd” decomposes peritectically at 465 °C. Homogeneity ranges of all intermetallic compounds were determined at distinct temperatures. In addition, the maximum solubilities of Cd in the low- and high-temperature modifications of Gd were determined precisely as 4.6 and 22.6 at.%, respectively. All invariant reaction temperatures (with the exception of the formation of Cd58Gd13) as well as liquidus temperatures were determined, most probably, Cd58Gd13 is formed in a peritectoid reaction from Cd45Gd11 and Cd6Gd at a temperature below 700 °C. PMID:25544803
Basic factors controlling pest in high temperature systems
NASA Technical Reports Server (NTRS)
Berkowitz-Mattuck, J.; Rossetti, M.
1971-01-01
The catastrophic disintegration in air at intermediate temperatures of refractory materials which are very resistant to oxidation at high temperatures is known as pest. A study was undertaken to determine whether the mechanism proposed for pest failure in silicides might also be responsible for pest failure in NbAl3. The aim was to correlate oxidation kinetics in the range where disintegration of NbAl3 is observed with delayed failure data obtained under similar conditions. Studies were also undertaken to develop some understanding of deformation mechanisms in both silicides and aluminides.
Potential use of ceramic coating as a thermal insulation on cooled turbine hardware
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Stepka, F. S.
1976-01-01
An analysis was made to determine the potential benefits of using a ceramic thermal insulation coating of calcia-stabilized zirconia on cooled engine parts. The analysis was applied to turbine vanes of a high temperature and high pressure core engine and a moderate temperature and low pressure research engine. Measurements made during engine operation showed that the coating substantially reduced vane metal wall temperatures. Evaluation of the durability of the coating on turbine vanes and blades in a furnace and engine were encouraging.
Adaptive temperature-accelerated dynamics
NASA Astrophysics Data System (ADS)
Shim, Yunsic; Amar, Jacques G.
2011-02-01
We present three adaptive methods for optimizing the high temperature Thigh on-the-fly in temperature-accelerated dynamics (TAD) simulations. In all three methods, the high temperature is adjusted periodically in order to maximize the performance. While in the first two methods the adjustment depends on the number of observed events, the third method depends on the minimum activation barrier observed so far and requires an a priori knowledge of the optimal high temperature T^{opt}_{high}(E_a) as a function of the activation barrier Ea for each accepted event. In order to determine the functional form of T^{opt}_{high}(E_a), we have carried out extensive simulations of submonolayer annealing on the (100) surface for a variety of metals (Ag, Cu, Ni, Pd, and Au). While the results for all five metals are different, when they are scaled with the melting temperature Tm, we find that they all lie on a single scaling curve. Similar results have also been obtained for (111) surfaces although in this case the scaling function is slightly different. In order to test the performance of all three methods, we have also carried out adaptive TAD simulations of Ag/Ag(100) annealing and growth at T = 80 K and compared with fixed high-temperature TAD simulations for different values of Thigh. We find that the performance of all three adaptive methods is typically as good as or better than that obtained in fixed high-temperature TAD simulations carried out using the effective optimal fixed high temperature. In addition, we find that the final high temperatures obtained in our adaptive TAD simulations are very close to our results for T^{opt}_{high}(E_a). The applicability of the adaptive methods to a variety of TAD simulations is also briefly discussed.
Chemical stability of molten 2,4,6-trinitrotoluene at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Dana M., E-mail: danadat@lanl.gov; Chellappa, Raja S.; Bowden, Patrick R.
2014-01-13
2,4,6-trinitrotoluene (TNT) is a molecular explosive that exhibits chemical stability in the molten phase at ambient pressure. A combination of visual, spectroscopic, and structural (x-ray diffraction) methods coupled to high pressure, resistively heated diamond anvil cells was used to determine the melt and decomposition boundaries to >15 GPa. The chemical stability of molten TNT was found to be limited, existing in a small domain of pressure-temperature conditions below 2 GPa. Decomposition dominates the phase diagram at high temperatures beyond 6 GPa. From the calculated bulk temperature rise, we conclude that it is unlikely that TNT melts on its principal Hugoniot.
Structure of deformed silicon and implications for low cost solar cells
NASA Technical Reports Server (NTRS)
Mardesich, N.; Leipold, M. H.; Turner, G. B.; Digges, T. G., Jr.
1978-01-01
The microstructure and minority carrier lifetime of silicon were investigated in uniaxially compressed silicon samples. The objective of the investigation was to determine if it is feasible to produce silicon solar cells from sheet formed by high temperature rolling. The initial structure of the silicon samples ranged from single crystal to fine-grained polycrystals. The samples had been deformed at strain rates of 0.1 to 8.5/sec and temperatures of 1270-1380 C with subsequent annealing at 1270-1380 C. The results suggest that high temperature rolling of silicon to produce sheet for cells of high efficiency is not practical.
Song, Bo; Nelson, Kevin; Lipinski, Ronald; ...
2015-05-29
In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s -1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-08-26
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes, O; Kuntz, J; Gash, A
2010-02-25
The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300more » C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.« less
Vugrinovich, R.
1989-01-01
Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.
NASA Technical Reports Server (NTRS)
Cook, J. W.; Ewing, J. A.
1990-01-01
A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.; School of Sciences, Anhui University of Science and Technology, Huainan 232001; He, G., E-mail: hegang@ahu.edu.cn
2015-10-15
Highlights: • ALD-derived HfO{sub 2} gate dielectrics have been deposited on Si substrates. • The leakage current mechanism for different deposition temperature was discussed. • Different emission at different field region has been determined precisely. - Abstract: The effect of deposition temperature on the growth rate, band gap energy and electrical properties of HfO{sub 2} thin film deposited by atomic layer deposition (ALD) has been investigated. By means of characterization of spectroscopy ellipsometry and ultraviolet–visible spectroscopy, the growth rate and optical constant of ALD-derived HfO{sub 2} gate dielectrics are determined precisely. The deposition temperature dependent electrical properties of HfO{sub 2}more » films were determined by capacitance–voltage (C–V) and leakage current density–voltage (J–V) measurements. The leakage current mechanism for different deposition temperature has been discussed systematically. As a result, the optimized deposition temperature has been obtained to achieve HfO{sub 2} thin film with high quality.« less
Channel Temperature Determination for AlGaN/GaN HEMTs on SiC and Sapphire
NASA Technical Reports Server (NTRS)
Freeman, Jon C.; Mueller, Wolfgang
2008-01-01
Numerical simulation results (with emphasis on channel temperature) for a single gate AlGaN/GaN High Electron Mobility Transistor (HEMT) with either a sapphire or SiC substrate are presented. The static I-V characteristics, with concomitant channel temperatures (T(sub ch)) are calculated using the software package ATLAS, from Silvaco, Inc. An in-depth study of analytical (and previous numerical) methods for the determination of T(sub ch) in both single and multiple gate devices is also included. We develop a method for calculating T(sub ch) for the single gate device with the temperature dependence of the thermal conductivity of all material layers included. We also present a new method for determining the temperature on each gate in a multi-gate array. These models are compared with experimental results, and show good agreement. We demonstrate that one may obtain the channel temperature within an accuracy of +/-10 C in some cases. Comparisons between different approaches are given to show the limits, sensitivities, and needed approximations, for reasonable agreement with measurements.
Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus.
Willett, Christopher S
2010-09-01
Thermal adaptation to spatially varying environmental conditions occurs in a wide range of species, but what is less clear is the nature of fitness trade-offs associated with this temperature adaptation. Here, populations of the intertidal copepod Tigriopus californicus are examined at both local and latitudinal scales to determine whether these populations have evolved differences in their survival under high temperature stress. A clear pattern of increasing high temperature stress tolerance is seen with decreasing latitude, consistent with temperature adaptation. Additionally, there is also evidence for significant variation in thermal tolerance on a smaller scale. The competitive fitness of pairs of northern and southern copepod populations were also examined under a series of lower, more moderate temperatures. These fitness assays show that the southern populations that have the best survival under extreme high temperatures have lowered competitive fitness at the lower temperatures tested, whereas the fitness of the southern populations exceeded that of the northern populations at the highest temperatures tested. Combined, these results suggest that there may be evolutionary trade-offs between performance at high and stressful temperatures and fitness at moderate temperatures in this species. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.
Electrochemical high-temperature gas sensors
NASA Astrophysics Data System (ADS)
Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.
2012-06-01
Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.
Alternate working fluids for solar air conditioning applications
NASA Technical Reports Server (NTRS)
Evans, R. D.; Beck, J. K.
1978-01-01
An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.
van Genderen, E; Clabbers, M T B; Das, P P; Stewart, A; Nederlof, I; Barentsen, K C; Portillo, Q; Pannu, N S; Nicolopoulos, S; Gruene, T; Abrahams, J P
2016-03-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼ 0.013 e(-) Å(-2) s(-1)) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014).
Mineralogy of ash of some American coals: variations with temperature and source
Mitchell, R.S.; Gluskoter, H.J.
1976-01-01
Ten samples of mineral-matter residue were obtained by the radio-frequency low-temperature ashing of subbituminous and bituminous coals. The low-temperature ash samples were then heated progressively from 400 ??C to 1400 ??C at 100 ??C intervals. Mineral phases present at each temperature interval were determined by X-ray diffraction analyses. The minerals originally present in the coals (quartz, kaolinite, illite, pyrite, calcite, gypsum, dolomite, and sphalerite) were all altered to higher temperature phases. Several of these phases, including kaolinite, metakaolinite, mullite, anhydrite, and anorthite, were found only in limited temperature ranges. Therefore the temperature of formation of the ashes in which they occur may be determined. Mineralogical differences were observed between coal samples from the Rocky Mountain Province, the Illinois Basin, and the Appalachians; and as a result of these mineralogical differences, different high-temperature phases resulted as the samples were heated. However, regional generalizations cannot be made until a greater number of samples have been studied. ?? 1976.
Sato, Suguru; Peet, Mary M; Thomas, Judith F
2002-05-01
To determine the thermosensitive periods and physiological processes in tomato flowers exposed to moderately elevated temperatures, tomato plants (Lycopersicon esculentum Mill., cv. NC 8288) were grown at 28/22 degrees C or 32/26 degrees C day/night temperature regimes and then transferred to the opposite regime for 0-15 d before or 0-24 h after anthesis. For plants initially grown at 28/22 degrees C, moderate temperature stress before anthesis decreased the percentage of fruit set per plant, but did not clarify the thermosensitive period. The same level of stress did not significantly reduce fruit set when applied immediately after anthesis. For plants initially grown at 32/26 degrees C, fruit set was completely prevented unless a relief period of more than 5 d was provided before anthesis. The same level of stress relief for 3-24 h after anthesis also increased fruit set. Plants were most sensitive to 32/26 degrees C temperatures 7-15 d before anthesis. Microscopic investigation of anthers in plants grown continuously at high temperature indicated disruption of development in the pollen, endothecium, epidermis, and stomium. This disruption was reduced, but still observable in plants relieved from high temperature for 10 d before anthesis.
Forster, A.; Merriam, D.F.; Davis, J.C.
1997-01-01
Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7 ??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids. ?? Springer-Verlag 1997.
Forster, A.; Merriam, D.F.; Davis, J.C.
1997-01-01
Large numbers of bottom-hole temperatures (BHTs) and temperatures measured during drill-stem tests (DSTs) are available in areas explored for hydrocarbons, but their usefulness for estimating geothermal gradients and heat-flow density is limited. We investigated a large data set of BHT and DST measurements taken in boreholes in the American Midcontinent, a geologically uniform stable cratonic area, and propose an empirical correction for BHTs based on relationships between BHTs, DSTs, and thermal logs. This empirical correction is compared with similar approaches determined for other areas. The data were analyzed by multivariate statistics prior to the BHT correction to identify anomalous measurements and quantify external influences. Spatial patterns in temperature measurements for major stratigraphic units outline relations to regional structure. Comparision of temperature and structure trend-surface residuals reveals a relationship between temperature highs and local structure highs. The anticlines, developed by continuous but intermittent movement of basement fault blocks in the Late Paleozoic, are subtle features having closures of 10-30 m and contain relatively small hydrocarbon reservoirs. The temperature anomalies of the order of 5-7??C may reflect fluids moving upward along fractures and faults, rather than changes in thermal conductivity resulting from different pore fluids.
Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCary, Kelly Marie
Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff
2006-01-01
TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.
Understanding the high-temperature deformation
NASA Astrophysics Data System (ADS)
Gyurko, Angela M.; Vignoul, Gregory E.; Tien, John K.; Sanchez, Juan M.
1992-11-01
Engineering, University of Texas at Austin, Austin, TX 78712 While much of the high-temperature intermetallics research has centered around Ni3Al and other aluminum-based systems, the present study focuses on the Engel-Brewer Ll2 intermetallic Ir3Zr, which has a melting temperature approaching that of ceramics (2280 °C). Due to limited material availability, the technique of microindentation was used to study both the temperature and time dependence of strength. Because of the widely held belief that certain mechanical properties of intermetallics scale roughly with temperature, Ir3Zr was expected to exhibit high strength. The microhardness was observed to vary from 225 MPa at room temperature to 75 MPa at 1400 °C, which is significantly lower than the behavior of Ni3Al. The activation energy for creep was determined to be 467 kJ/mole, and the stress exponent was found to be 18.2. The ordering energy of this system was calculated to be 0.114 eV. If it can be assumed that high ordering energy correlates to a high antiphase boundary (APB) energy, then the behavior of this system is consistent with a model that predicts highly glissile dislocation cores.
Verification of Experimental Techniques for Flow Surface Determination
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.
1996-01-01
The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).
Stability relationship for water droplet crystallization with the NASA Lewis icing spray
NASA Technical Reports Server (NTRS)
Marek, C. John; Bartlett, C. Scott
1987-01-01
In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.
Guo, Yanbing; Yao, Chengwu; Feng, Kai; Li, Zhuguo; Chu, Paul K.; Wu, Yixiong
2017-01-01
The growth and propagation behavior of austenite-to-bainite isothermal transformation in laser-cladded, Si-rich, and Fe-based coatings is investigated. The crystallographic features, orientation relationship at different isothermal temperatures, and the morphology of the nanostructured bainite are determined. The Nishiyama-Wassermann type orientation relationship is observed at a high temperature and at a low temperature, and mixed Nishiyama-Wassermann and Kurdjumov-Sach mechanisms are seen. The growth direction is investigated by the partial dislocation theory and an extrapolated model based on the repeated formation of lenticular-shaped subunits and pile-up along the close-packed directions of the close-packed planes. The variants of the bainite growth directions would be more selective at the high transformation temperature. PMID:28773161
Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Witzke, W. R.
1972-01-01
A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.
NASA Astrophysics Data System (ADS)
Ren, Tao; Modest, Michael F.; Fateev, Alexander; Clausen, Sønnik
2015-01-01
In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements of temperature and gas concentration.
Methods for determining the degree of baking in anodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, C.P.
Anode baking temperature is recognized as a critical factor in determining anode quality and performance. It is difficult and costly to measure directly and an indirect method, the coke L{sub c} technique, is often used. In this technique, baking temperature is estimated from the average crystallite size in the c direction (L{sub c}) of a coke sample placed in the anode stubhole. The paper details the results of a large statistically designed experimental program in which coke L{sub c} results were compared to anode properties routinely measured by smelters. Anode thermal conductivity and air and carboxy reactivity were found tomore » correlate well with baking temperature. A direct anode L{sub c} measurement technique was also strongly associated with temperature, particularly at high baking temperatures. Recommendations are given on the usefulness and simplicity of traditional anode property measurements for assessing baking temperatures as alternatives to the coke L{sub c} method.« less
Dong, Yun-wei
2015-01-01
To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus) from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50), less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change. PMID:26580550
Wang, Qing-Lin; Yu, Shan-Shan; Dong, Yun-Wei
2015-01-01
To evaluate the thermal resistance of marine invertebrates to elevated temperatures under scenarios of future climate change, it is crucial to understand parental effect of long acclimatization on thermal tolerance of offspring. To test whether there is parental effect of long acclimatization, adult sea cucumbers (Apostichopus japonicus) from the same broodstock were transplanted southward and acclimatized at high temperature in field mesocosms. Four groups of juvenile sea cucumbers whose parents experienced different durations of high temperature acclimatization were established. Upper thermal limits, oxygen consumption and levels of heat shock protein mRNA of juveniles was determined to compare thermal tolerance of individuals from different groups. Juvenile sea cucumbers whose parents experienced high temperature could acquire high thermal resistance. With the increase of parental exposure duration to high temperature, offspring became less sensitive to high temperature, as indicated by higher upper thermal limits (LT50), less seasonal variations of oxygen consumption, and stable oxygen consumption rates between chronic and acute thermal stress. The relatively high levels of constitutive expression of heat-shock proteins should contribute to the high thermal tolerance. Together, these results indicated that the existence of a parental effect of long acclimatization would increase thermal tolerance of juveniles and change the thermal sensitivity of sea cucumber to future climate change.
Bruch, Mary K.; Smith, Frederick W.
1968-01-01
To determine parameters that would assure sterility of a sealed seam of film for application in “split-seam entry,” spores of Bacillus subtilis var. niger were sprayed onto pieces of Kapton and Teflon film. Short-time, high-temperature (200 to 270 C) exposures were made with film pieces between aluminum blocks in a hot-air oven, and the D and z values were determined after subculture of surviving spores. The use of Kapton film allowed the study of high temperatures, since it is not heat sealable and could be used to make thin packages for heat treatment. Spores on Teflon were dry-heat treated in a package designed to simulate an actual seam to be sealed. The z values of 29.1 C (52.4 F) for spores on Kapton and 139 C (250.4 F) for spores on Teflon were calculated. Images Fig. 1 Fig. 2 Fig. 3 PMID:4973071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, V.H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less
NASA Astrophysics Data System (ADS)
Najafi, Pardis; Zulkifli, Idrus; Amat Jajuli, Nurfarahin; Farjam, Abdoreza Soleimani; Ramiah, Suriya Kumari; Amir, Anna Aryani; O'Reily, Emily; Eckersall, David
2015-11-01
An experiment was conducted to determine the effect of different stocking densities on serum corticosterone (CORT), ovotransferrin (OVT), α1-acid glycoprotein (AGP) and ceruloplasmin (CP) concentrations, brain heat shock protein (HSP) 70 expression and performance in broiler chickens exposed to unheated and heated conditions. Day-old chicks were stocked at 0.100 m2/bird (low density (LD)) or 0.063 m2/bird (high density (HD)), in battery cages and housed in environmentally controlled rooms. From 21 to 35 days of age, birds from each stocking density group were exposed to either 24 or 32 °C. Growth performance was recorded during the heat treatment period, and blood and brain samples were collected to determine CORT, OVT, AGP, CP and HSP 70 levels on day 35. Heat treatment but not stocking density was detrimental to growth performance. There were significant temperature × density interactions for CORT, CP and OVT on day 35. Although HD elevated CORT, CP and OVT when compared to LD, the effects of the former were more obvious under heated condition. Both temperature and density had significant effect on AGP and HSP 70. In conclusion, irrespective of temperature, high stocking density was physiologically stressful to broiler chickens, as indicated by CORT, AGP, CP, OVT and HSP 70, but not detrimental to growth performance and survivability. As it was shown in the present study, AGP, CP and OVT could be useful biomarkers to determine the effect of overcrowding and high temperature on the welfare of broiler chickens.
NASA Astrophysics Data System (ADS)
Kaszynska, Maria; Skibicki, Szymon
2017-12-01
High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.
Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years
NASA Astrophysics Data System (ADS)
Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.
2014-10-01
We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.
A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression
NASA Technical Reports Server (NTRS)
Johnson, Aldie E , Jr; Semonian, Joseph W
1956-01-01
Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.
Improved Creep Measurements for Ultra-High Temperature Materials
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Ye, X.; Rogers, Jan R.
2010-01-01
Our team has developed a novel approach to measuring creep at extremely high temperatures using electrostatic levitation (ESL). This method has been demonstrated on niobium up to 2300 C, while ESL has melted tungsten (3400 C). This method has been extended to lower temperatures and higher stresses and applied to new materials, including a niobium-based superalloy, MASC. High-precision machined spheres of the sample are levitated in the NASA MSFC ESL, a national user facility and heated with a laser. The samples are rotated with an induction motor at up to 30,000 revolutions per second. The rapid rotation loads the sample through centripetal acceleration, producing a shear stress of about 60 MPa at the center, causing the sample to deform. The deformation of the sample is captured on high-speed video, which is analyzed by machine-vision software from the University of Massachusetts. The deformations are compared to finite element models to determine the constitutive constants in the creep relation. Furthermore, the non-contact method exploits stress gradients within the sample to determine the stress exponent in a single test.
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Miller, Robert A.
2004-01-01
The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.
Alexander, Crispin G.; Wanner, Randy; Johnson, Christopher M.; Breitsprecher, Dennis; Winter, Gerhard; Duhr, Stefan; Baaske, Philipp; Ferguson, Neil
2014-01-01
Chemical denaturant titrations can be used to accurately determine protein stability. However, data acquisition is typically labour intensive, has low throughput and is difficult to automate. These factors, combined with high protein consumption, have limited the adoption of chemical denaturant titrations in commercial settings. Thermal denaturation assays can be automated, sometimes with very high throughput. However, thermal denaturation assays are incompatible with proteins that aggregate at high temperatures and large extrapolation of stability parameters to physiological temperatures can introduce significant uncertainties. We used capillary-based instruments to measure chemical denaturant titrations by intrinsic fluorescence and microscale thermophoresis. This allowed higher throughput, consumed several hundred-fold less protein than conventional, cuvette-based methods yet maintained the high quality of the conventional approaches. We also established efficient strategies for automated, direct determination of protein stability at a range of temperatures via chemical denaturation, which has utility for characterising stability for proteins that are difficult to purify in high yield. This approach may also have merit for proteins that irreversibly denature or aggregate in classical thermal denaturation assays. We also developed procedures for affinity ranking of protein–ligand interactions from ligand-induced changes in chemical denaturation data, and proved the principle for this by correctly ranking the affinity of previously unreported peptide–PDZ domain interactions. The increased throughput, automation and low protein consumption of protein stability determinations afforded by using capillary-based methods to measure denaturant titrations, can help to revolutionise protein research. We believe that the strategies reported are likely to find wide applications in academia, biotherapeutic formulation and drug discovery programmes. PMID:25262836
NASA Astrophysics Data System (ADS)
Sadoh, Taizoh; Kai, Yuki; Matsumura, Ryo; Moto, Kenta; Miyao, Masanobu
2016-12-01
To realize the advanced thin-film transistors (TFTs), high-carrier-mobility semiconductor films on insulator structures should be fabricated with low-temperature processing conditions (≤500 °C). To achieve this, we investigated the solid-phase crystallization of amorphous-GeSn films on insulating substrates under a wide range of Sn concentrations (0%-20%), film thicknesses (30-500 nm), and annealing temperatures (380-500 °C). Our results reveal that a Sn concentration close to the solid solubility of Sn in Ge (˜2%) is effective in increasing the grain-size of poly-GeSn. In addition, we discovered that the carrier mobility depends on the film thickness, where the mobilities are determined by the counterbalance between two different carrier scattering mechanisms. Here, vacancy-related defects dominate the carrier scattering near the insulating substrates (≤˜120 nm), and grain-size determined by bulk nucleation dominates the grain-boundary scattering of thick films (≥˜200 nm). Consequently, we obtained the maximum mobilities in samples with a Sn concentration of 2% and a film thickness of 200 nm. The effect of increasing the grain-size of poly-GeSn by lowering the annealing temperature was also clarified. By combining these results, a very high carrier mobility of 320 cm2/Vs was obtained at a low temperature of 380 °C. This mobility is about 2.5 times as high as previously reported data for Ge and GeSn films grown at low temperatures (≤500 °C). Our technique therefore opens up the possibility of high-speed TFTs for use in the next generation of electronics.
USDA-ARS?s Scientific Manuscript database
Three growth trials were conducted with juvenile sunshine bass reared at temperatures typical of winter or summer pond culture in the Southeastern United States. The trials were designed to determine if there was an advantage to feeding a commercial high-protein/high-fat diet during winter and a lo...
High-Temperature and Pressure Aluminum Reactions in Carbon Dioxide Rich Post-Detonation Environments
NASA Astrophysics Data System (ADS)
Tappan, Bryce; Manner, Virginia; Pemberton, Steven; Lieber, Mark; Johnson, Carl; Sanders, Eric
2013-06-01
Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.
High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments
NASA Astrophysics Data System (ADS)
Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.
2014-05-01
Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
The Processing of High Temperature Ceramic Superconducting Devices. Volume 1.
1992-01-31
assuming frequency squared dependence) for ease of comparison with other measurements. At the low power levels the surface resistance is I 200 micro ...transition temperature is 106K, where the measured resistivity becomes zero. The noimal state resistivity at the transition temperature, 100 micro -ohms...our films at temperatures down t o 4K. A four-point measurement is used, and the criterion of 1 micro -volt per millimeter is usedI to determine
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
DETERMINATION OF 16 LARGEST PEAKS IN COMMERCIAL TECHNICAL TOXAPHENE BY GC/MS
Under typical temperature and high vacuum associated with GC/MS technique, Toxaphene decomposes and produces countless fragments which are impractical to quantify. A GC/MS method has been developed using the lowest possible temperature to resolve more peaks and lower the interfer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guangming; Zhou, Zhangjian; Mo, Kun
An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at highmore » temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.« less
Temperature correction in conductivity measurements
Smith, Stanford H.
1962-01-01
Electrical conductivity has been widely used in freshwater research but usual methods employed by limnologists for converting measurements to conductance at a given temperature have not given uniformly accurate results. The temperature coefficient used to adjust conductivity of natural waters to a given temperature varies depending on the kinds and concentrations of electrolytes, the temperature at the time of measurement, and the temperature to which measurements are being adjusted. The temperature coefficient was found to differ for various lake and stream waters, and showed seasonal changes. High precision can be obtained only by determining temperature coefficients for each water studied. Mean temperature coefficients are given for various temperature ranges that may be used where less precision is required.
Effects of high ambient temperature on urea-nitrogen recycling in lactating dairy cows.
Obitsu, Taketo; Kamiya, Mitsuru; Kamiya, Yuko; Tanaka, Masahito; Sugino, Toshihisa; Taniguchi, Kohzo
2011-08-01
Effects of exposure to hot environment on urea metabolism were studied in lactating Holstein cows. Four cows were fed ad libitum a total mixed ration and housed in a temperature-controlled chamber at constant moderate (18°C) or high (28°C) ambient temperatures in a cross-over design. Urea nitrogen (N) kinetics was measured by determining urea isotopomer in urine after single injection of [(15) N(2) ]urea into the jugular vein. Both dry matter intake and milk yield were decreased under high ambient temperature. Intakes of total N and digestible N were decreased under high ambient temperature but urinary urea-N excretion was increased. The ratio of urea-N production to digestible N was increased, whereas the proportion of gut urea-N entry to urea-N production tended to be decreased under high ambient temperature. Neither return to the ornithine cycle, anabolic use nor fecal excretion of urea-N recycled to the gut was affected by ambient temperature. Under high ambient temperature, renal clearance of plasma urea was not affected but the gut clearance was decreased. Increase of urea-N production and reduction of gut urea-N entry, in relative terms, were associated with increased urinary urea-N excretion of lactating dairy cows in higher thermal environments. 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients
NASA Astrophysics Data System (ADS)
Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.
1984-06-01
To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.
Heat transfer in thermal barrier coated rods with circumferential and radial temperature gradients
NASA Technical Reports Server (NTRS)
Chung, B. T. F.; Kermani, M. M.; Braun, M. J.; Padovan, J.; Hendricks, R.
1984-01-01
To study the heat transfer in ceramic coatings applied to the heated side of internally cooled hot section components of the gas turbine engine, a mathematical model is developed for the thermal response of plasma-sprayed ZrO2-Y2O3 ceramic materials with a Ni-Cr-AL-Y bond coat on a Rene 41 rod substrate subject to thermal cycling. This multilayered cylinder with temperature dependent thermal properties is heated in a cross-flow by a high velocity flame and then cooled by ambient air. Due to high temperature and high velocity of the flame, both gas radiation and forced convection are taken into consideration. Furthermore, the local turbulent heat transfer coefficient is employed which varies with angular position as well as the surface temperature. The transient two-dimensional (heat transfer along axial direction is neglected) temperature distribution of the composite cylinder is determined numerically.
Selective growth of Ge nanowires by low-temperature thermal evaporation.
Sutter, Eli; Ozturk, Birol; Sutter, Peter
2008-10-29
High-quality single-crystalline Ge nanowires with electrical properties comparable to those of bulk Ge have been synthesized by vapor-liquid-solid growth using Au growth seeds on SiO(2)/Si(100) substrates and evaporation from solid Ge powder in a low-temperature process at crucible temperatures down to 700 °C. High nanowire growth rates at these low source temperatures have been identified as being due to sublimation of GeO from substantial amounts of GeO(2) on the powder. The Ge nanowire synthesis from GeO is highly selective at our substrate temperatures (420-500 °C), i.e., occurs only on Au vapor-liquid-solid growth seeds. For growth of nanowires of 10-20 µm length on Au particles, an upper bound of 0.5 nm Ge deposition was determined in areas of bare SiO(2)/Si substrate without Au nanoparticles.
Temperature discrimination by captive free-swimming tuna, Euthynnus affinis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steffel, S.; Dizon, A.E.; Magnuson, J.J.
1976-09-01
Captive kawakawa, Euthynnus affinis, were instrumentally conditioned to respond to an increase in temperature to determine discrimination abilities. Two fish yielded a discrimination threshold of 0.10 to 0.15/sup 0/C. Thermal sensitivity of this high-seas pelagic fish is thus no more acute than that of inshore fishes and appears inadequate for direct sensing of weak horizontal temperature gradients at sea.
NASA Technical Reports Server (NTRS)
Tuma, Margaret L.; Weisshaar, Andreas; Li, Jian; Beheim, Glenn
1995-01-01
To determine the feasibility of coupling the output of a single-mode optical fiber into a single-mode rib waveguide in a temperature varying environment, a theoretical calculation of the coupling efficiency between the two was investigated. Due to the complex geometry of the rib guide, there is no analytical solution to the wave equation for the guided modes, thus, approximation and/or numerical techniques must be utilized to determine the field patterns of the guide. In this study, three solution methods were used for both the fiber and guide fields; the effective-index method (EIM), Marcatili's approximation, and a Fourier method. These methods were utilized independently to calculate the electric field profile of each component at two temperatures, 20 C and 300 C, representing a nominal and high temperature. Using the electric field profile calculated from each method, the theoretical coupling efficiency between an elliptical-core optical fiber and a rib waveguide was calculated using the overlap integral and the results were compared. It was determined that a high coupling efficiency can be achieved when the two components are aligned. The coupling efficiency was more sensitive to alignment offsets in the y direction than the x, due to the elliptical modal field profile of both components. Changes in the coupling efficiency over temperature were found to be minimal.
NASA Astrophysics Data System (ADS)
Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun
2017-10-01
In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers
NASA Technical Reports Server (NTRS)
Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.
1992-01-01
Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.
High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers
NASA Astrophysics Data System (ADS)
Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.
1992-06-01
Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
Bilgili, Mehmet; Sahin, Besir; Sangun, Levent
2013-01-01
The aim of this study is to estimate the soil temperatures of a target station using only the soil temperatures of neighboring stations without any consideration of the other variables or parameters related to soil properties. For this aim, the soil temperatures were measured at depths of 5, 10, 20, 50, and 100 cm below the earth surface at eight measuring stations in Turkey. Firstly, the multiple nonlinear regression analysis was performed with the "Enter" method to determine the relationship between the values of target station and neighboring stations. Then, the stepwise regression analysis was applied to determine the best independent variables. Finally, an artificial neural network (ANN) model was developed to estimate the soil temperature of a target station. According to the derived results for the training data set, the mean absolute percentage error and correlation coefficient ranged from 1.45% to 3.11% and from 0.9979 to 0.9986, respectively, while corresponding ranges of 1.685-3.65% and 0.9988-0.9991, respectively, were obtained based on the testing data set. The obtained results show that the developed ANN model provides a simple and accurate prediction to determine the soil temperature. In addition, the missing data at the target station could be determined within a high degree of accuracy.
Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency
NASA Astrophysics Data System (ADS)
Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.
2015-03-01
Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.
Application of a Model for Quenching and Partitioning in Hot Stamping of High-Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Bin; Liu, Zhuang; Wang, Yanan; Rolfe, Bernard; Wang, Liang; Zhang, Yisheng
2018-04-01
Application of quenching and partitioning process in hot stamping has proven to be an effective method to improve the plasticity of advanced high-strength steels (AHSSs). In this study, the hot stamping and partitioning process of advanced high-strength steel 30CrMnSi2Nb is investigated with a hot stamping mold. Given the specific partitioning time and temperature, the influence of quenching temperature on the volume fraction of microstructure evolution and mechanical properties of the above steel are studied in detail. In addition, a model for quenching and partitioning process is applied to predict the carbon diffusion and interface migration during partitioning, which determines the retained austenite volume fraction and final properties of the part. The predicted trends of the retained austenite volume fraction agree with the experimental results. In both cases, the volume fraction of retained austenite increases first and then decreases with the increasing quenching temperature. The optimal quenching temperature is approximately 290 °C for 30CrMnSi2Nb with the partition conditions of 425 °C and 20 seconds. It is suggested that the model can be used to help determine the process parameters to obtain retained austenite as much as possible.
Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.
2001-01-01
Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.
NASA Astrophysics Data System (ADS)
Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.
1989-05-01
High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin; Lipinski, Ronald
In this study, conventional Kolsky tension bar techniques were modified to characterize an iridium alloy in tension at elevated strain rates and temperatures. The specimen was heated to elevated temperatures with an induction coil heater before dynamic loading; whereas, a cooling system was applied to keep the bars at room temperature during heating. A preload system was developed to generate a small pretension load in the bar system during heating in order to compensate for the effect of thermal expansion generated in the high-temperature tensile specimen. A laser system was applied to directly measure the displacements at both ends ofmore » the tensile specimen in order to calculate the strain in the specimen. A pair of high-sensitivity semiconductor strain gages was used to measure the weak transmitted force due to the low flow stress in the thin specimen at elevated temperatures. The dynamic high-temperature tensile stress–strain curves of a DOP-26 iridium alloy were experimentally obtained at two different strain rates (~1000 and 3000 s -1) and temperatures (~750 and 1030°C). The effects of strain rate and temperature on the tensile stress–strain response of the iridium alloy were determined. Finally, the iridium alloy exhibited high ductility in stress–strain response that strongly depended on strain-rate and temperature.« less
NASA Technical Reports Server (NTRS)
Tan, Benjamin
1995-01-01
Using thermochromatic liquid crystal to measure surface temperature, an automated transient method with time-varying free-stream temperature is developed to determine local heat transfer coefficients. By allowing the free-stream temperature to vary with time, the need for complicated mechanical components to achieve a step temperature change is eliminated, and by using the thermochromatic liquid crystals as temperature indicators, the labor intensive task of installing many thermocouples is omitted. Bias associated with human perception of the transition of the thermochromatic liquid crystal is eliminated by using a high speed digital camera and a computer. The method is validated by comparisons with results obtained by the steady-state method for a circular Jet impinging on a flat plate. Several factors affecting the accuracy of the method are evaluated.
Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures
NASA Technical Reports Server (NTRS)
Harris, J. A., Jr.; Vanwanderham, M. C.
1973-01-01
Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.
Nickel, H; Quadakkers, W J; Singheiser, L
2002-10-01
In three different examples, the effects of the oxidation behaviour as well as the microstructural stability of high temperature materials and protective coatings was determined by combining the results of kinetic studies with extensive analytical investigations using, among other techniques, SNMS, SIMS, SEM, TEM, Rutherford back scattering (RBS) as well as X-ray diffraction. 1). The effect of water vapour on the oxidation behaviour of 9% Cr steels in simulated combustion gases has been determined. The effects of O2 and H2O content on the oxidation behaviour of 9% Cr steel in the temperature range 600-800 degrees C showed that in dry oxygen a protective scale was formed with an oxidation rate controlled by diffusion in the protective scale. In the presence of water vapour, after an incubation period, the scales became non-protective as a result of a change in the oxidation limiting process. The destruction of the protective scale by water vapour does not only depend on H2O content but also on the H2O/O2-ratio. 2). The increase of component surface temperature in modern gas turbines leads to an enhanced oxidation attack of the blade coating. Improvements in corrosion resistance and longer lifetime thermal barrier coatings in gas turbines have been achieved by improvement of the high temperature properties of MCrAlY coatings by additions of minor alloying elements such as yttrium, silicon and titanium. 3). The use of oxide dispersion strengthened (ODS) alloys provides excellent creep resistance up to much higher temperatures than can be achieved with conventional wrought or cast alloys in combination with suitable high temperature oxidation/corrosion resistance. Investigation of the growth mechanisms of protective chromia and alumina scales were examined by a two-stage oxidation method with 18O tracer. The distribution of the oxygen isotopes in the oxide scale was determined by SIMS and SNMS. The results show the positive influence of a Y2O3 dispersion on the oxidation resistance of the ODS alloys and its effect on growth mechanisms.
How Does Ambient Air Temperature Affect Diabetes Mortality in Tropical Cities?
Seposo, Xerxes T.; Dang, Tran Ngoc; Honda, Yasushi
2017-01-01
Diabetes is well-known as one of the many chronic diseases that affect different age groups. Currently, most studies that evaluated the effects of temperature on diabetes mortality focused on temperate and subtropical settings, but no study has been conducted to assess the relationship in a tropical setting. We conducted the first multi-city study carried out in tropical cities, which evaluated the temperature–diabetes relationship. We collected daily diabetes mortality (ICD E10–E14) of four Philippine cities from 2006 to 2011. Same period meteorological data were obtained from the National Oceanic and Atmospheric Administration. We used a generalized additive model coupled with a distributed lag non-linear model (DLNM) in determining the relative risks. Results showed that both low and high temperatures pose greater risks among diabetics. Likewise, the study was able to observe the: (1) high risk brought about by low temperature, aside from the largely observed high risks by high temperature; and (2) protective effects in low temperature percentile. These results provide significant policy implications with strategies related to diabetes risk groups in relation to health service and care strategies. PMID:28379204
Atomic Layer Deposition of Vanadium Dioxide and a Temperature-dependent Optical Model.
Currie, Marc; Mastro, Michael A; Wheeler, Virginia D
2018-05-23
Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10 -4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.
Deveson, Ira W.; Holleley, Clare E.; Blackburn, James; Marshall Graves, Jennifer A.; Mattick, John S.; Waters, Paul D.; Georges, Arthur
2017-01-01
In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD. PMID:28630932
Deveson, Ira W; Holleley, Clare E; Blackburn, James; Marshall Graves, Jennifer A; Mattick, John S; Waters, Paul D; Georges, Arthur
2017-06-01
In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3 , in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.
Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Little, Reginald B.; Lochner, Eric; Goddard, Robert
2005-01-01
Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.
High temperature behaviour of self-consolidating concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fares, Hanaa, E-mail: hanaafares@yahoo.f; Remond, Sebastien; Noumowe, Albert
2010-03-15
This paper presents an experimental study on the properties of self-compacting concrete (SCC) subjected to high temperature. Two SCC mixtures and one vibrated concrete mixture were tested. These concrete mixtures come from the French National Project B-P. The specimens of each concrete mixture were heated at a rate of 1 deg. C/min up to different temperatures (150, 300, 450 and 600 deg. C). In order to ensure a uniform temperature throughout the specimens, the temperature was held constant at the maximum temperature for 1 h before cooling. Mechanical properties at ambient temperature and residual mechanical properties after heating have alreadymore » been determined. In this paper, the physicochemical properties and the microstuctural characteristics are presented. Thermogravimetric analysis, thermodifferential analysis, X-ray diffraction and SEM observations were used. The aim of these studies was in particular to explain the observed residual compressive strength increase between 150 and 300 deg. C.« less
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.
2014-10-01
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-01-01
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation. PMID:28788507
Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C
NASA Technical Reports Server (NTRS)
Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.
1998-01-01
An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.
Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo
2014-02-12
The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Cruzen, Scott; Condevaux, J. J.; Senk, J. R.; Paul, A. D.
2011-01-01
Surface temperature measurements were conducted on metallic specimens coated with an yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with a YAG:Dy phosphor layer that were subjected to an aggressive high-velocity combustor burner environment. Luminescence-based surface temperature measurements of the same TBC system have previously been demonstrated for specimens subjected to static furnace or laser heating. Surface temperatures were determined from the decay time of the luminescence signal of the YAG:Dy phosphor layer that was excited by a pulsed laser source. However, the furnace and laser heating provides a much more benign environment than that which exists in a turbine engine, where there are additional challenges of a highly radiant background and high velocity gases. As the next step in validating the suitability of luminescence-based temperature measurements for turbine engine environments, new testing was performed where heating was provided by a high-velocity combustor burner rig at Williams International. Real-time surface temperature measurements during burner rig heating were obtained from the decay of the luminescence from the YAG:Dy surface layer. The robustness of several temperature probe designs in the sonic velocity, high radiance flame environment was evaluated. In addition, analysis was performed to show whether the luminescence decay could be satisfactorily extracted from the high radiance background.
A high-temperature gas-and-steam turbine plant operating on combined fuel
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.
2015-11-01
A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.
Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs
NASA Astrophysics Data System (ADS)
Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan
2013-12-01
Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.
The anomalously high melting temperature of bilayer ice.
Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria
2010-03-28
Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.
The initial freezing point temperature of beef rises with the rise in pH: a short communication.
Farouk, M M; Kemp, R M; Cartwright, S; North, M
2013-05-01
This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Jingliang; Su, Jun; Kochan, Orest; Levkiv, Mariana
2018-04-01
The simplified metrological software test (MST) for modeling the method of determining the thermocouple (TC) error in situ during operation is considered in the paper. The interaction between the proposed MST and a temperature measuring system is also reflected in order to study the error of determining the TC error in situ during operation. The modelling studies of the random error influence of the temperature measuring system, as well as interference magnitude (both the common and normal mode noises) on the error of determining the TC error in situ during operation using the proposed MST, have been carried out. The noise and interference of the order of 5-6 μV cause the error of about 0.2-0.3°C. It is shown that high noise immunity is essential for accurate temperature measurements using TCs.
Estimation of sea surface temperature from remote sensing in the 11-13 micron window region
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Dalu, G.; Kunde, V. G.
1974-01-01
The Nimbus 3 and 4 IRIS spectral data in the 11-13 micron water vapor window region are analyzed to determine the sea surface temperature (SST). The high spectral resolution data of IRIS are averaged over approximately 1 micron wide intervals to simulate channels of a radiometer to measure the SST. Three channels are utilized to measure SST over cloud-free oceans. However, two of these channels are sufficient in routine SST determination. The differential absorption properties of water vapor in the two channels enable one to determine the water vapor absorption correction without detailed knowledge of the vertical profiles of temperature and water vapor. The feasibility of determining the SST is demonstrated globally with Nimbus 3 data where cloud-free areas can be selected with the help of albedo data from the MRIR experiment on board the same satellite.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Chorey, C. M.
1990-01-01
Epitaxial YBa2Cu3O7 films were grown on several microwave substrates. Surface resistance and penetration depth measurements were performed to determine the quality of these films. Here, the properties of these films on key microwave substrates are described. The fabrication and characterization of a microwave ring resonator circuit to determine transmission line losses are presented. Lower losses than those observed in gold resonator circuits were observed at temperatures lower than critical transition temperature. Based on these results, potential applications of microwave superconducting circuits such as filters, resonators, oscillators, phase shifters, and antenna elements in space communication systems are identified.
Effect of solutes in binary columbium /Nb/ alloys on creep strength
NASA Technical Reports Server (NTRS)
Klein, M. J.; Metcalfe, A. G.
1973-01-01
The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
Zhang, Yan; Hattori, Ricardo S; Sarida, Munti; García, Estefany L; Strüssmann, Carlos Augusto; Yamamoto, Yoji
2018-03-15
To shed light on the mechanisms of and interactions of GSD and TSD in pejerrey, we investigated how the transcriptional profiles of amhy and amha are affected by feminizing (17 °C) and masculinizing (29 °C) temperatures during the critical period of sex determination/differentiation and their relation with the expression profiles of AMH receptor type II (amhrII), gonadal aromatase (cyp19a1a), and 11 beta-hydroxysteroid dehydrogenase 2 (hsd11b2). Careful consideration of the results of this study and all information currently available for this species, including similar analyzes for an intermediate, mixed-sex promoting temperature (25 °C), suggests a model for genotypic/temperature-dependent sex determination and gonadal sex differentiation that involves a) cyp19a1a-dependent, developmentally-programmed ovarian development as the default state that becomes self-sustaining in the absence of a potent and timely masculinizing stimulus, b) early, developmentally-programmed amhy expression and high temperature as masculinization signals that antagonize the putative female pathway by suppressing cyp19a1a expression, c) increasing stress response, cortisol, and the synthesis of the masculinizing androgen 11-keto-testosterone via hsd11b2 with increasing temperature that is important for masculinization in both genotypes but particularly so in XX individuals, and d) an endocrine network with positive/negative feedback mechanisms that ensure fidelity of the male/female pathway once started. The proposed model, albeit tentative and non-all inclusive, accounts for the continuum of responses, from all-females at low temperatures to all-males at high temperatures and for the balanced-, genotype-linked sex ratios obtained at intermediate temperatures, and therefore supports the coexistence of TSD and GSD in pejerrey across the range of viable temperatures for this species. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)
2014-01-01
Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
Design and Application of a High-Temperature Linear Ion Trap Reactor
NASA Astrophysics Data System (ADS)
Jiang, Li-Xue; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui
2018-01-01
A high-temperature linear ion trap reactor with hexapole design was homemade to study ion-molecule reactions at variable temperatures. The highest temperature for the trapped ions is up to 773 K, which is much higher than those in available reports. The reaction between V2O6 - cluster anions and CO at different temperatures was investigated to evaluate the performance of this reactor. The apparent activation energy was determined to be 0.10 ± 0.02 eV, which is consistent with the barrier of 0.12 eV calculated by density functional theory. This indicates that the current experimental apparatus is prospective to study ion-molecule reactions at variable temperatures, and more kinetic details can be obtained to have a better understanding of chemical reactions that have overall barriers. [Figure not available: see fulltext.
Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.
1993-01-01
Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.
NASA Astrophysics Data System (ADS)
Amare, Belachew N.
Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural coating. During this project it was found that stiffness response to increase and remain stable to a certain level and reduce at latter stages of thermal cyclic exposure. The predominant growth and adherent Ni-rich outer oxide scale was found on top of the alumina scale throughout the oxidation cycles. The FEA analysis revealed that ODS alloys could be potential high temperature turbine coating materials if micro-channel cooling system is implemented.
Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.
Digital control of diode laser for atmospheric spectroscopy
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Rutledge, C. W. (Inventor)
1985-01-01
A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.
Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC
NASA Astrophysics Data System (ADS)
Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua
2018-05-01
The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivas, Eric Richard
2016-02-26
A conjugate heat transfer and thermal structural analysis was completed, with the objective of determining the following: Lead bismuth eutectic (LBE) peak temperature, free convective velocity patterns in the LBE, peak beam window temperature, and thermal stress/deformation in the window.
USDA-ARS?s Scientific Manuscript database
Greenhouse and controlled-environment studies were conducted to determine the effects of incubation temperature, dew period temperature and duration, plant growth stage, and cell concentration on the bioherbicidal efficacy of a highly virulent isolate (LVA987) of the bacterial pathogen, Xanthomonas ...
NASA Astrophysics Data System (ADS)
Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu
2017-11-01
In the present work the thermal degradation of IV curves of AlAs/GaAs resonant tunneling diodes using artificial aging method was investigated. The dependency of AuGeNi specific ohmic contact resistance on time and temperature was determined.
Unique thermocouple to measure the temperatures of squibs, igniters, propellants, and rocket nozzles
NASA Astrophysics Data System (ADS)
Nanigian, Jacob; Nanigian, Dan
2006-05-01
The temperatures produced by the various components in the propulsion system of rockets and missiles determine the performance of the rocket. Since these temperatures occur very rapidly and under extreme conditions, standard thermocouples fail before any meaningful temperatures are measured. This paper describes the features of a special family of high performance thermocouples, which can measure these transient temperatures with millisecond response times and under the most severe conditions of erosion. Examples of igniter, propellant and rocket nozzle temperatures are included in this paper. Also included is heat flux measurements made by these sensors in rocket applications.
NASA Astrophysics Data System (ADS)
Fuhrer, Michael Sears
This thesis is divided into three sections. The first section discusses the electrical transport properties of a highly anisotropic high temperature superconductor, Bi2Sr2CaCu2O8, in magnetic fields. High temperature superconductivity has greatly expanded the study of vortex matter: the state of the quantized magnetic field excitations, or vortices, in a superconductor. The effects of tilted fields and fields parallel to the planes are studied: striking deviations from the expectations of a simple anisotropic superconductivity model are found, indicating that the layered structure of high temperature superconductors plays a significant role in determining the dynamics and phases of vortex matter. For the case of parallel magnetic fields, the Josephson vortex state, a new phase transition is identified, the melting of the Josephson vortex lattice. A mechanism for Josephson vortex lattice melting is proposed to explain the differences in the phase diagrams from the usual case of Abrikosov vortex lattice melting. The second section discusses experiments on C60-containing solids. A method for growing high quality single crystals of C60 is described. Isotopically pure single crystal samples of the fulleride superconductor Rb3C60 were synthesized in order to measure the carbon isotope effect on superconductivity. By measuring the superconducting transitions in the resistance of single crystals of Rb3C60, the carbon isotope effect was determined with unprecedented accuracy. Measurement of the isotope effect gives essential information for determination of the superconducting parameters, necessary for a complete theoretical picture of superconductivity in this material. New intercalated graphite compounds containing C60, and their electronic properties, are also discussed. The third section discusses the electrical transport and magnetotransport properties of mats of single-walled carbon nanotubes. Single-walled nanotubes are an intriguing new physical system: nanowires of pure carbon with nanometerscale diameters and lengths of microns. The previously unexplained low-temperature properties are shown to be due to localization. The radius of the localized states is determined, and the hopping conduction is found to be three-dimensional in nature. The magnetotransport also agrees with models of variable range hopping in two or greater dimensions, indicating that mats of single-walled nanotubes are well-connected metallic networks.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-10-18
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Pavlick, M. M.; Oliver, M. S.
2005-01-01
Composite materials are being used in the aerospace industry as a means of reducing vehicle weight. In particular, polymer matrix composites (PMC) are good candidates due to their high strength-to-weight and high stiffness-to-weight ratios. Future reusable space launch vehicles and space exploration structures will need advanced light weight composites in order to minimize vehicle weight while demonstrating robustness and durability, guaranteeing high factors of safety. In particular, the implementation of composite cryogenic propellant fuel tanks (cryotanks) for future reusable launch vehicles (RLVs) could greatly reduce the vehicle's weight versus identically sized cryotanks constructed of metallic materials. One candidate composite material for future cryotank designs is IM7/977-2, which is a graphite/epoxy system. A successful candidate must demonstrate reasonable structural properties over a wide range of temperatures. Since the matrix material is normally the weak link in the composite, tests that emphasize matrix-dominated behavior need to be conducted. Therefore, the objective of this work is to determine the mode I interlaminar fracture toughness of "unidirectional" 8-ply and 16-ply IM7/977-2 through experimental testing. Tests were performed at -196 degrees Celsius (-320 degrees Fahrenheit), 22 degrees Celsius (72 degrees Fahrenheit), 93 degrees Celsius (200 degrees Fahrenheit) and 160 degrees C (320 degrees Fahrenheit). Low temperature testing was completed while the specimen was submerged in a liquid nitrogen bath. High temperature testing was completed in a temperature-controlled oven.
Gao, Xun; Li, Qingde; Cheng, Wanli; Han, Guangping; Xuan, Lihui
2016-01-01
The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE) composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased. PMID:28773963
Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.; ...
2017-02-24
There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltrus, John P.; Holcomb, Gordon R.; Tylczak, Joseph H.
There is interest in using Au-nanoparticle incorporated oxide films as functional sensor layers for high-temperature applications in optical-based sensors for measurements in both highly-oxidizing and highly-reducing atmospheres at temperatures approaching 900°C-1000°C because of a relatively high melting temperature combined with the inert nature of Au nanoparticles. This study includes a systematic series of experiments and theoretical calculations targeted at further understanding stability of Au-nanoparticle incorporated TiO 2 films as archetype sensing materials. A combination of thermodynamic modeling and long-term exposure tests were utilized to unambiguously determine that gas stream composition-dependent reactive evaporation of Au (to form predominately Au(g) or AuH(g),more » depending upon the environment) at the surface of the nanoparticles is the dominant mechanism for mass loss of Au. Primary factors dictating the rate of reactive evaporation, and hence the associated film stability, were determined to be the gas stream temperature and the concentration of H 2, with the former playing a more significant role over the ranges of temperatures (700°C - 800°C) and H 2 concentrations (1% to 29% H 2 by volume) explored. The mitigation of Au-mass loss through reactive evaporation was also successfully demonstrated by depositing a SiO 2 overlayer on the Au-nanoparticle embedded films to prevent direct Au-nanoparticle/vapor-phase contact.« less
The phase diagram of ammonium nitrate.
Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-14
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
The phase diagram of ammonium nitrate
NASA Astrophysics Data System (ADS)
Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen
2012-08-01
The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Hurkman, William J.; Wood, Delilah F.
2010-06-01
High temperatures during wheat grain fill decrease starch and protein levels, adversely affecting wheat yield and flour quality. To determine the effect of high temperature on starchy endosperm cell development, grain (Triticum aestivum L. 'Butte 86') was produced under a 24/17°C or 37/28°C day/night regimen imposed from flowering to maturity and starch and protein deposition examined using scanning electron microscopy. The high temperature regimen shortened the duration of grain fill from 40 to 18 days. Under the 37/28°C regimen, A- and B-type starch granules decreased in size. A-type starch granules also exhibited pitting, suggesting enhanced action of starch degradative enzymes. Under both temperature regimens, protein bodies originated early in development and coalesced during mid to late development to form a continuous protein matrix surrounding the starch granules. Under the 37/28°C regimen, the proportion of protein matrix increased in endosperm cells of mature grain. Taken together, the changes in starch granule number and size and in protein matrix amount provide clues for understanding how high temperature during grain fill can affect end use properties of wheat flour.
Low Temperature Rhombohedral Single Crystal SiGe Epitaxy on c-plane Sapphire
NASA Technical Reports Server (NTRS)
Duzik, Adam J.; Choi, Sang H.
2016-01-01
Current best practice in epitaxial growth of rhombohedral SiGe onto (0001) sapphire (Al2O3) substrate surfaces requires extreme conditions to grow a single crystal SiGe film. Previous models described the sapphire surface reconstruction as the overriding factor in rhombohedral epitaxy, requiring a high temperature Al-terminated surface for high quality films. Temperatures in the 850-1100 C range were thought to be necessary to get SiGe to form coherent atomic matching between the (111) SiGe plane and the (0001) sapphire surface. Such fabrication conditions are difficult and uneconomical, hindering widespread application. This work proposes an alternative model that considers the bulk sapphire structure and determines how the SiGe film nucleates and grows. Accounting for thermal expansion effects, calculations using this new model show that both pure Ge and SiGe can form single crystal films in the 450-550 C temperature range. Experimental results confirm these predictions, where x-ray diffraction and atomic force microscopy show the films fabricated at low temperature rival the high temperature films in crystallographic and surface quality. Finally, an explanation is provided for why films of comparable high quality can be produced in either temperature range.
Martins, Isabella Vilhena Freire; de Avelar, Barbara Rauta; Pereira, Maria Julia Salim; da Fonseca, Adevair Henrique
2012-09-01
A model based on geographical information systems for mapping the risk of fascioliasis was developed for the southern part of Espírito Santo state, Brazil. The determinants investigated were precipitation, temperature, elevation, slope, soil type and land use. Weightings and grades were assigned to determinants and their categories according to their relevance with respect to fascioliasis. Theme maps depicting the spatial distribution of risk areas indicate that over 50% of southern Espírito Santo is either at high or at very high risk for fascioliasis. These areas were found to be characterized by comparatively high temperature but relatively low slope, low precipitation and low elevation corresponding to periodically flooded grasslands or soils that promote water retention.
Universal optimal hole-doping concentration in single-layer high-temperature cuprate superconductors
NASA Astrophysics Data System (ADS)
Honma, T.; Hor, P. H.
2006-09-01
We argue that in cuprate physics there are two types, hole content per CuO2 plane (Ppl) and the corresponding hole content per unit volume (P3D), of hole-doping concentrations for addressing physical properties that are two dimensional (2D) and three dimensional (3D) in nature, respectively. We find that the superconducting transition temperature (Tc) varies systematically with P3D as a superconducting 'dome' with a universal optimal hole-doping concentration of P3Dopt = 1.6 × 1021 cm-3 for single-layer high-temperature superconductors. We suggest that P3Dopt determines the upper bound of the electronic energy of underdoped single-layer high-Tc cuprates.
Superconducting gamma and fast-neutron spectrometers with high energy resolution
Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.
2008-11-04
Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.
High temperature materials characterization
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.
NASA Technical Reports Server (NTRS)
Wiesner, Valerie L.; Youngblood, Jeffrey; Trice, Rodney
2014-01-01
Room-temperature injection molding is proposed as a novel, low-cost and more energy efficient manufacturing process capable of forming complex-shaped zirconium diboride (ZrB2) parts. This innovative processing method utilized aqueous suspensions with high powder loading and a minimal amount (5 vol.) of water-soluble polyvinylpyrrolidone (PVP), which was used as a viscosity modifier. Rheological characterization was performed to evaluate the room-temperature flow properties of ZrB2-PVP suspensions. ZrB2 specimens were fabricated with high green body strength and were machinable prior to binder removal despite their low polymer content. After binder burnout and pressureless sintering, the bulk density and microstructure of specimens were characterized using Archimedes technique and scanning electron microscopy. X-Ray Diffraction was used to determine the phase compositions present in sintered specimens. Ultimate strength of sintered specimens will be determined using ASTM C1323-10 compressive C-ring test.
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feldman, U.; Cowan, R. D.
1981-01-01
The paper examines high-resolution solar flare iron line spectra recorded between 1.82 and 1.97 A by a spectrometer flown by the Naval Research Laboratory on an Air Force spacecraft launched on 1979 February 24. The emission line spectrum is due to inner-shell transitions in the ions Fe XX-Fe XXV. Using theoretical spectra and calculations of line intensities obtained by methods discussed by Merts, Cowan, and Magee (1976), electron temperatures as a function of time for two large class X flares are derived. These temperatures are deduced from intensities of lines of Fe XXII, Fe XXIII, and Fe XXIV. The determination of the differential emission measure between about 12-million and 20-million K using these temperatures is considered. The possibility of determining electron densities in flare and tokamak plasmas using the inner-shell spectra of Fe XXI and Fe XX is discussed.
van Genderen, E.; Clabbers, M. T. B.; Das, P. P.; Stewart, A.; Nederlof, I.; Barentsen, K. C.; Portillo, Q.; Pannu, N. S.; Nicolopoulos, S.; Gruene, T.; Abrahams, J. P.
2016-01-01
Until recently, structure determination by transmission electron microscopy of beam-sensitive three-dimensional nanocrystals required electron diffraction tomography data collection at liquid-nitrogen temperature, in order to reduce radiation damage. Here it is shown that the novel Timepix detector combines a high dynamic range with a very high signal-to-noise ratio and single-electron sensitivity, enabling ab initio phasing of beam-sensitive organic compounds. Low-dose electron diffraction data (∼0.013 e− Å−2 s−1) were collected at room temperature with the rotation method. It was ascertained that the data were of sufficient quality for structure solution using direct methods using software developed for X-ray crystallography (XDS, SHELX) and for electron crystallography (ADT3D/PETS, SIR2014). PMID:26919375
Field Performance of Photovoltaic Systems in the Tucson Desert
NASA Astrophysics Data System (ADS)
Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander
2011-10-01
At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.
Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...
2014-10-10
Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less
NASA Technical Reports Server (NTRS)
Devi, V. Malathy; Benner, D. Chris; Smith, M. A. H.; Mantz, A. W.; Sung, K.; Brown, L. R.; Predoi-Cross, A.
2012-01-01
Temperature dependences of pressure-broadened half-width and pressure-induced shift coefficients along with accurate positions and intensities have been determined for transitions in the 2<--0 band of C-12 O-16 from analyzing high-resolution and high signal-to-noise spectra recorded with two different Fourier transform spectrometers. A total of 28 spectra, 16 self-broadened and 12 air-broadened, recorded using high- purity (greater than or equal to 99.5% C-12-enriched) CO samples and CO diluted with dry air(research grade) at different temperatures and pressures, were analyzed simultaneously to maximize the accuracy of the retrieved parameters. The sample temperatures ranged from 150 to 298K and the total pressures varied between 5 and 700 Torr. A multispectrum nonlinear least squares spectrum fitting technique was used to adjust the rovibrational constants (G, B, D, etc.) and intensity parameters (including Herman-Wallis coefficients), rather than determining individual line positions and intensities. Self-and air-broadened Lorentz half-width coefficients, their temperature dependence exponents, self- and air-pressure-induced shift coefficients, their temperature dependences, self- and air-line mixing coefficients, their temperature dependences and speed dependence have been retrieved from the analysis. Speed-dependent line shapes with line mixing employing off-diagonal relaxation matrix element formalism were needed to minimize the fit residuals. This study presents a precise and complete set of spectral line parameters that consistently reproduce the spectrum of carbon monoxide over terrestrial atmospheric conditions.
Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric
2016-01-01
A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5–43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3–37.2°C, maximum temperatures at which the species could germinate varied from 27.7–43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices. PMID:27532825
Honey bee nest thermoregulation: diversity promotes stability.
Jones, Julia C; Myerscough, Mary R; Graham, Sonia; Oldroyd, Benjamin P
2004-07-16
A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform ones (i.e., those sired by one male). One reason this increased stability arises is because genetically determined diversity in workers' temperature response thresholds modulates the hive-ventilating behavior of individual workers, preventing excessive colony-level responses to temperature fluctuations.
Tunable diode-laser absorption measurements of methane at elevated temperatures
NASA Astrophysics Data System (ADS)
Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.
1996-07-01
A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilbert
The objective for this project is to develop thermal management strategies to enable efficient and high-temperature wide-bandgap (WBG)-based power electronic systems (e.g., emerging inverter and DC-DC converter). Device- and system-level thermal analyses are conducted to determine the thermal limitations of current automotive power modules under elevated device temperature conditions. Additionally, novel cooling concepts and material selection will be evaluated to enable high-temperature silicon and WBG devices in power electronics components. WBG devices (silicon carbide [SiC], gallium nitride [GaN]) promise to increase efficiency, but will be driven as hard as possible. This creates challenges for thermal management and reliability.
Cator, Lauren J; Thomas, Shalu; Paaijmans, Krijn P; Ravishankaran, Sangamithra; Justin, Johnson A; Mathai, Manu T; Read, Andrew F; Thomas, Matthew B; Eapen, Alex
2013-03-02
Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings.
Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India
2013-01-01
Background Environmental temperature is an important driver of malaria transmission dynamics. Both the parasite and vector are sensitive to mean ambient temperatures and daily temperature variation. To understand transmission ecology, therefore, it is important to determine the range of microclimatic temperatures experienced by malaria vectors in the field. Methods A pilot study was conducted in the Indian city of Chennai to determine the temperature variation in urban microclimates and characterize the thermal ecology of the local transmission setting. Temperatures were measured in a range of probable indoor and outdoor resting habitats of Anopheles stephensi in two urban slum malaria sites. Mean temperatures and daily temperature fluctuations in local transmission sites were compared with standard temperature measures from the local weather station. The biological implications of the different temperatures were explored using temperature-dependent parasite development models to provide estimates of the extrinsic incubation period (EIP) of Plasmodium vivax and Plasmodium falciparum. Results Mean daily temperatures within the urban transmission sites were generally warmer than those recorded at the local weather station. The main reason was that night-time temperatures were higher (and hence diurnal temperature ranges smaller) in the urban settings. Mean temperatures and temperature variation also differed between specific resting sites within the transmission environments. Most differences were of the order of 1-3°C but were sufficient to lead to important variation in predicted EIPs and hence, variation in estimates of transmission intensity. Conclusions Standard estimates of environmental temperature derived from local weather stations do not necessarily provide realistic measures of temperatures within actual transmission environments. Even the small differences in mean temperatures or diurnal temperature ranges reported in this study can lead to large variations in key mosquito and/or parasite life history traits that determine transmission intensity. Greater effort should be directed at quantifying adult mosquito resting behaviour and determining the temperatures actually experienced by mosquitoes and parasites in local transmission environments. In the absence of such highly resolved data, the approach used in the current study provides a framework for improved thermal characterization of transmission settings. PMID:23452620
A Comparison of Theory and Experiment for High-speed Free-molecule Flow
NASA Technical Reports Server (NTRS)
Stalder, Jackson R; Goodwin, Glen; Creager, Marcus O
1951-01-01
A comparison is made of free-molecule-flow theory with the results of wind-tunnel tests performed to determine the drag and temperature-rise characteristics of a transverse circular cylinder. The measured values of the cylinder center-point temperature confirmed the salient point of the heat-transfer analysis which was the prediction that an insulated cylinder would attain a temperature higher than the stagnation temperature of the stream. Good agreement was obtained between the theoretical and the experimental values for the drag coefficient.
2013-12-01
and the signal is read as a photocurrent or at a photovoltaic p-n junction. These detectors can provide high-sensitivity and fast refresh rates and...Alternative methods can be used to modulate the sample temperature directly; for example, by using modern Peltier devices and thermoelectric ...commercially-available hardware. The setup consist of three main components: (1) A temperature regulated thermoelectric stage; (2) A high-sensitivity
Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.
2016-01-01
Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Gozdz, A. S.; Mani, S.
2009-01-01
With the intent of improving the performance of lithium-ion cells at high temperatures, we have investigated the use of a number of electrolyte additives in experimental MCMB- Li(x)Ni(y)Co(1-y)O2 cells, which were exposed to temperatures as high as 80 C. In the present work, we have evaluated the use of a number of additives, namely vinylene carbonate (VC), dimethyl acetamide (DMAc), and mono-fluoroethylene carbonate (FEC), in an electrolyte solution anticipated to perform well at warm temperature (i.e., 1.0M LiPF6 in EC+EMC (50:50 v/v %). In addition, we have explored the use of novel electrolyte additives, namely lithium oxalate and lithium tetraborate. In addition to determining the capacity and power losses at various temperatures sustained as a result of high temperature cycling (cycling performed at 60 and 80 C), the three-electrode MCMB-Li(x)Ni(y)Co(1-y)O2 cells (lithium reference) enabled us to study the impact of high temperature storage upon the solid electrolyte interphase (SEI) film characteristics on carbon anodes (MCMB-based materials), metal oxide cathodes, and the subsequent impact upon electrode kinetics.
Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.
Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M
2016-08-23
Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
The effect of residual stress on performance of high temperature coatings
NASA Technical Reports Server (NTRS)
1972-01-01
Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.
Effects of Dopant on Depoling Temperature in Modified BiScO3 - PbTiO3
NASA Technical Reports Server (NTRS)
Kowalski, Benjamin; Sehirlioglu, Alp
2014-01-01
In recent years there has been a renewed interest for high temperature piezoelectrics for both terrestrial and aerospace applications. These applications are limited in part by the operating temperature, which is usually taken as one half of the Curie temperature (Tc), and is 200C for one of the most widely used commercial piezoelectrics, Pb(Zr,Ti)O3 (PZT). In an effort to increase Tc, subsequent research into high temperature Bi(BB)O3 PbTiO3 piezoelectrics led to the discovery of the morphotropic phase boundary (MPB) in the high-Tc BiScO3 PbTiO3 (BS-PT) system with a Tc of 460C and a d33 of 460 pmV. The Tc marks the ferroelectric to paraelectric phase transformation and while, in general, a phase transformation leads to thermal depoling in piezoelectrics with low or moderate Tcs, for high Tc piezoelectrics thermally assisted dipole rotation can lead to randomization of domains at temperatures below Tc. It becomes necessary to determine the depoling temperature (Td) which dictates the actual working temperature range. By doping for Sc and Ti the Td can be shifted while maintaining similar electromechanical properties as a function of temperature. The effect of this B-site doping on depoling temperature has been explored through the characterization of microstructure and weakhigh field measurements.
NASA Astrophysics Data System (ADS)
Schoof, J. T.
2017-12-01
Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.
A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases
NASA Technical Reports Server (NTRS)
Evans, Albert; Hibbard, Robert R
1954-01-01
A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.
The behavioural consequences of sex reversal in dragons
Li, Hong; Holleley, Clare E.; Elphick, Melanie; Georges, Arthur
2016-01-01
Sex differences in morphology, physiology, and behaviour are caused by sex-linked genes, as well as by circulating sex-steroid levels. Thus, a shift from genotypic to environmental sex determination may create an organism that exhibits a mixture of male-like and female-like traits. We studied a lizard species (Central Bearded Dragon, Pogona vitticeps), in which the high-temperature incubation of eggs transforms genetically male individuals into functional females. Although they are reproductively female, sex-reversed dragons (individuals with ZZ genotype reversed to female phenotype) resemble genetic males rather than females in morphology (relative tail length), general behaviour (boldness and activity level), and thermoregulatory tactics. Indeed, sex-reversed ‘females’ are more male-like in some behavioural traits than are genetic males. This novel phenotype may impose strong selection on the frequency of sex reversal within natural populations, facilitating rapid shifts in sex-determining systems. A single period of high incubation temperatures (generating thermally induced sex reversal) can produce functionally female individuals with male-like (or novel) traits that enhance individual fitness, allowing the new temperature-dependent sex-determining system to rapidly replace the previous genetically based one.
Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus
2016-09-28
The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.
Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard
2014-01-01
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251
Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow
NASA Technical Reports Server (NTRS)
Akyuzlu, Kazim M.; Coote, David
2013-01-01
A mathematical model and a solution algorithm is developed to study the physics of high temperature heat transfer and material ablation and identify the problems associated with the flow of hydrogen gas at very high temperatures and velocities through pipes and various components of Nuclear Thermal Rocket (NTR) motors. Ablation and melting can be experienced when the inner solid surface of the cooling channels and the diverging-converging nozzle of a Nuclear Thermal Rocket (NTR) motor is exposed to hydrogen gas flow at temperatures around 2500 degrees Kelvin and pressures around 3.4 MPa. In the experiments conducted on typical NTR motors developed in 1960s, degradation of the cooling channel material (cracking in the nuclear fuel element cladding) and in some instances melting of the core was observed. This paper presents the results of a preliminary study based on two types of physics based mathematical models that were developed to simulate the thermal-hydrodynamic conditions that lead to ablation of the solid surface of a stainless steel pipe exposed to high temperature hydrogen gas near sonic velocities. One of the proposed models is one-dimensional and assumes the gas flow to be unsteady, compressible and viscous. An in-house computer code was developed to solve the conservations equations of this model using a second-order accurate finite-difference technique. The second model assumes the flow to be three-dimensional, unsteady, compressible and viscous. A commercial CFD code (Fluent) was used to solve the later model equations. Both models assume the thermodynamic and transport properties of the hydrogen gas to be temperature dependent. In the solution algorithm developed for this study, the unsteady temperature of the pipe is determined from the heat equation for the solid. The solid-gas interface temperature is determined from an energy balance at the interface which includes heat transfer from or to the interface by conduction, convection, radiation, and ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.
Oxidation kinetics and soot formation
NASA Technical Reports Server (NTRS)
Glassman, I.; Brezinsky, K.
1983-01-01
The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; FINFROCK,C.C.
2000-10-01
As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirablemore » and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic regime. At temperatures below 1173 K, the rate of oxidation of the Inconel 718 surface was found to decrease markedly with time; the parabolic oxidation rate coefficient was not a constant but decreased with time. This was taken to indicate that the oxide film on the surface was having a passivating effect on oxygen transport through the oxide to the underlying metal. For temperatures in the range 1173 K to 1573 K, the time-dependent rate of oxidation as determined once again by weight-gain measurements was found to display the classical parabolic rate behavior, indicating that the rate of transport of reactants through the oxide was controlled by diffusion through the growing oxide layer. Parabolic rate coefficients were determined by least-squares analysis of time-dependent mass-gain data at 1173 K, 1273 K, 1373 K, 1473 K and 1573 K. At temperatures above 1540 K, post test examination of the oxidized samples revealed that the Inconel 718 began to lose strength and to deform. At 1540 K, samples which were suspended from their ends during testing began to demonstrate axial curvature as they lost strength and bowed under their own weight. As the temperatures of the tests were increased, rivulets were seen to appear on the surfaces of the test specimens; damage became severe at 1560 K. Although melting was never observed in any of these tests even up to. 1620 K, it was concluded from these data that the Inconel 718 clad should not be expected to protect the underlying tungsten at temperatures above 1540 K.« less
Spatial and temporal variation in the association between temperature and salmonellosis in NZ.
Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P
2016-04-01
Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Astrophysics Data System (ADS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-04-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
Characterization of polybenzimidazole (PBI) film at high temperatures
NASA Technical Reports Server (NTRS)
Hammoud, Ahmad N.; Suthar, J. L.
1992-01-01
Polybenzimidazole, a linear thermoplastic polymer with excellent thermal stability and strength retention over a wide range of temperatures, was evaluated for its potential use as the main dielectric in high temperature capacitors. The film was characterized in terms of its dielectric properties in a frequency range of 50 Hz to 100 kilo-Hz. These properties, which include the dielectric constant and dielectric loss, were also obtained in a temperature range from 20 C to 300 C with an electrical stress of 60 Hz, 50 V/mil present. The alternating and direct current breakdown voltages of silicone oil impregnated films as a function of temperature were also determined. The results obtained indicate that while the film remained relatively stable up to 200 C, it exhibited an increase in its dielectric properties as the temperature was raised to 300 C. It was also found that conditioning of the film by heat treatment at 60 C for six hours tended to improve its dielectric and breakdown properties. The results are discussed and conclusions made concerning the suitability of the film as a high temperature capacitor dielectric.
Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Lundsgaard Hansen, John; Nylandsted Larsen, Arne; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut
2017-01-01
Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing. PMID:28773172
Radek, Manuel; Liedke, Bartosz; Schmidt, Bernd; Voelskow, Matthias; Bischoff, Lothar; Hansen, John Lundsgaard; Larsen, Arne Nylandsted; Bougeard, Dominique; Böttger, Roman; Prucnal, Slawomir; Posselt, Matthias; Bracht, Hartmut
2017-07-17
Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.
Simulations of magnetic hysteresis loops at high temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plumer, M. L.; Whitehead, J. P.; Fal, T. J.
2014-09-28
The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Ourmore » results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garderen, Noemie van; Clemens, Frank J.; Scharf, Dagobert
2010-05-30
Highly porous diatomite based granulates with a diameter of 500 mum have been produced by an extrusion method. In order to investigate the relation between microstructure, phase composition and attrition resistance of the final product, the granulates were sintered between 800 and 1300 deg. C. Mean pore size of the granulates was evaluated by Hg-porosimetry. An increase of the pore size is observed in the range of 3.6 nm to 40 mum with increasing sintering temperature. Higher mean pore radii of 1.6 mum and 5.7 mum obtained by sintering at 800 and 1300 deg. C respectively. X-ray diffraction shows thatmore » mullite phase appears at 1100 deg. C due to the presence of clay. At 1100 deg. C diatomite (amorphous silicate) started to transform into alpha-cristobalite. Attrition resistance was determined by evaluating the amount of ground material passed through a sieve with a predefined mesh size. It was observed that a material sintered at high temperature leads to an increase of attrition resistance due to the decrease of total porosities and phase transformation. Due to the reason that attrition resistance significantly increased by sintering the granulates at higher temperature, a so called attrition resistance index was determined in order to compare all the different attrition resistance values. This attrition resistance index was determined by using the exponential component of the equation obtained from attrition resistance curves. It permits comparison of the attrition behaviour without a time influence.« less
Neigel, Joseph E.
2017-01-01
Infectious diseases threaten marine populations, and the extent of their impacts is often assessed by prevalence of infection (the proportion of infected individuals). Changes in prevalence are often attributed to altered rates of transmission, although the rates of birth, recovery, and mortality also determine prevalence. The parasitic dinoflagellate Hematodinium perezi causes a severe, often fatal disease in blue crabs. It has been speculated that decreases in prevalence associated with high temperatures result from lower rates of infection. We used field collections, environmental sensor data, and high-temperature exposure experiments to investigate the factors that change prevalence of infections in blue crab megalopae (post-larvae). These megalopae migrate from offshore waters, where temperatures are moderate, to marshes where temperatures may be extremely high. Within a few days of arriving in the marsh, the megalopae metamorphose into juvenile crabs. We found a strong negative association between prevalence of Hematodinium infection in megalopae and the cumulative time water temperatures in the marsh exceeded 34°C over the preceding two days. Temperatures this high are known to be lethal for blue crabs, suggesting that higher mortality of infected megalopae could be the cause of reduced prevalence. Experimental exposure of megalopae from the marsh to a temperature of 34°C resulted in higher mortality for infected than uninfected individuals, and decreased the prevalence of infection among survivors from 18% to 3%. PMID:29084257
Ozbek, Nil; Akman, Suleyman
2016-11-15
This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from
Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring
NASA Technical Reports Server (NTRS)
Wang, A.
2002-01-01
The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
High Resolution Spectroscopy to Support Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Venkataraman, Malathy Devi
2003-01-01
Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.
NASA Astrophysics Data System (ADS)
Ruiu, Tiziana; Dreizler, Andreas M.; Mitzel, Jens; Gülzow, Erich
2016-01-01
Nowadays, the operating temperature of polymer electrolyte membrane fuel cell stacks is typically limited to 80 °C due to water management issues of membrane materials. In the present work, short-term operation at elevated temperatures up to 120 °C and long-term steady-state operation under automotive relevant conditions at 80 °C are examined using a 30-cell stack developed at DLR. The high temperature behavior is investigated by using temperature cycles between 90 and 120 °C without adjustment of the gases dew points, to simulate a short-period temperature increase, possibly caused by an extended power demand and/or limited heat removal. This galvanostatic test demonstrates a fully reversible performance decrease of 21 ± 1% during each thermal cycle. The irreversible degradation rate is about a factor of 6 higher compared to the one determined by the long-term test. The 1200-h test at 80 °C demonstrates linear stack voltage decay with acceptable degradation rate, apart from a malfunction of the air compressor, which results in increased catalyst degradation effects on individual cells. This interpretation is based on an end-of-life characterization, aimed to investigate catalyst, electrode and membrane degradation, by determining hydrogen crossover rates, high frequency resistances, electrochemically active surface areas and catalyst particle sizes.
Emerging applications of high temperature superconductors for space communications
NASA Technical Reports Server (NTRS)
Heinen, Vernon O.; Bhasin, Kul B.; Long, Kenwyn J.
1990-01-01
Proposed space missions require longevity of communications system components, high input power levels, and high speed digital logic devices. The complexity of these missions calls for a high data bandwidth capacity. Incorporation of high temperature superconducting (HTS) thin films into some of these communications system components may provide a means of meeting these requirements. Space applications of superconducting technology has previously been limited by the requirement of cooling to near liquid helium temperatures. Development of HTS materials with transition temperatures above 77 K along with the natural cooling ability of space suggest that space applications may lead the way in the applications of high temperature superconductivity. In order for HTS materials to be incorporated into microwave and millimeter wave devices, the material properties such as electrical conductivity, current density, surface resistivity and others as a function of temperature and frequency must be well characterized and understood. The millimeter wave conductivity and surface resistivity were well characterized, and at 77 K are better than copper. Basic microwave circuits such as ring resonators were used to determine transmission line losses. Higher Q values than those of gold resonator circuits were observed below the transition temperature. Several key HTS circuits including filters, oscillators, phase shifters and phased array antenna feeds are feasible in the near future. For technology to improve further, good quality, large area films must be reproducibly grown on low dielectric constant, low loss microwave substrates.
Greffeuille, Valérie; Marsset-Baglieri, Agnès; Molinari, Nicolas; Cassan, Denis; Sutra, Thibault; Avignon, Antoine; Micard, Valérie
2015-09-01
Enrichment of durum wheat pasta with legume flour enhances their protein and essential amino acid content, especially lysine content. However, despite its nutritional potential, the addition of a legume alters the rheological properties of pasta. High temperature drying of pasta reduces this negative effect by strengthening its protein network. The aim of our study was to determine if these changes in the pasta structure alter its in vitro carbohydrate digestibility, in vivo glycemic, insulin and satiety responses. We also investigated if high temperature drying of pasta can reduce the well-known digestive discomfort associated with the consumption of legume grains. Fifteen healthy volunteers consumed three test meals: durum wheat pasta dried at a low temperature (control), and pasta enriched with 35% faba bean dried at a low and at a very high temperature. When enriched with 35% legume flour, pasta maintained its nutritionally valuable low glycemic and insulin index, despite its weaker protein network. Drying 35% faba bean pasta at a high temperature strengthened its protein network, and decreased its in vitro carbohydrate digestion with no further decrease in its in vivo glycemic or insulin index. Drying pasta at a very high temperature reduced digestive discomfort and enhanced self-reported satiety, and was not associated with a modification of energy intake in the following meal.
Problems encountered in fluctuating flame temperature measurements by thermocouple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, A. Burl; Lucero, Ralph E.; Gill, Walter
2008-11-01
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature couldmore » be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.« less
Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple
Yilmaz, Nadir; Gill, Walt; Donaldson, A. Burl; Lucero, Ralph E.
2008-01-01
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results. PMID:27873964
Problems Encountered in Fluctuating Flame Temperature Measurements by Thermocouple.
Yilmaz, Nadir; Gill, Walt; Donaldson, A Burl; Lucero, Ralph E
2008-12-04
Some thermocouple experiments were carried out in order to obtain sensitivity of thermocouple readings to fluctuations in flames and to determine if the average thermocouple reading was representative of the local volume temperature for fluctuating flames. The thermocouples considered were an exposed junction thermocouple and a fully sheathed thermocouple with comparable time constants. Either the voltage signal or indicated temperature for each test was recorded at sampling rates between 300-4,096 Hz. The trace was then plotted with respect to time or sample number so that time variation in voltage or temperature could be visualized and the average indicated temperature could be determined. For experiments where high sampling rates were used, the signal was analyzed using Fast Fourier Transforms (FFT) to determine the frequencies present in the thermocouple signal. This provided a basic observable as to whether or not the probe was able to follow flame oscillations. To enhance oscillations, for some experiments, the flame was forced. An analysis based on thermocouple time constant, coupled with the transfer function for a sinusoidal input was tested against the experimental results.
NASA Astrophysics Data System (ADS)
Arita, Yuji; Suzuki, Keisuke; Matsui, Tsuneo
2005-02-01
The temperature limit for heat capacity measurements with the direct heating pulse calorimeter has been increased up to 2000 K by means of the combination of an optical pyrometer to detect the relative temperature change with tungsten rhenium thermocouples to determine absolute temperatures. With this improved calorimeter the heat capacities were measured up to 1950 K, for SiC and B4C, and 2000 K for graphite. The heat capacity values obtained in this study were in good agreement, within the error of ±5%, with those previous values calculated from the enthalpy data by drop method. The electrical conductivities of SiC, B4C and graphite were also simultaneously determined from the inducted voltage and the current for heat capacity measurement.
NASA Astrophysics Data System (ADS)
Sakairi, Takanori; Ohtani, Eiji; Kamada, Seiji; Sakai, Takeshi; Sakamaki, Tatsuya; Hirao, Naohisa
2017-12-01
The phase and melting relations in the Fe-S-Si system were determined up to 60 GPa by using a double-sided laser-heated diamond anvil cell combined with X-ray diffraction. On the basis of the X-ray diffraction patterns, we confirmed that hcp/fcc Fe-Si alloys and Fe3S are stable phases under subsolidus conditions in the Fe-S-Si system. Both solidus and liquidus temperatures are significantly lower than the melting temperature of pure Fe and both increase with pressure. The slopes of the Fe-S-Si liquidus and solidus curves determined here are smaller than the adiabatic temperature gradients of the liquid cores of Mercury and Mars. Thus, crystallization of their cores started at the core-mantle boundary region.
Surface temperatures and retention of H2O frost on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1980-01-01
Surface temperatures and ice evaporation rates are calculated for Ganymede and Callisto as functions of latitude, time of day, and albedo, according to a model that uses surface thermal properties determined by eclipse radiometry and albedos determined from photometrically decalibrated Voyager images. The difference in temperature between Ganymede and Callisto is not great enough to account for the lack of bright polar caps on Callisto, which seems instead to reflect a real deficiency in the amount of available water frost relative to Ganymede. The temperature difference between Ganymede's grooved and cratered terrains also cannot account for the high concentration of bright ray craters in the former, suggesting that an internal geologic process has enriched the grooved terrain in ice content relative to the cratered terrain.
Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl
NASA Technical Reports Server (NTRS)
Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.
1995-01-01
The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.
Comparative atmosphere structure experiment
NASA Technical Reports Server (NTRS)
Sommer, S.
1974-01-01
Atmospheric structure of outer planets as determined by pressure, temperature, and accelerometers is reviewed and results obtained from the PAET earth entry are given. In order to describe atmospheric structure, entry is divided into two regimes, high and low speed. Acceleration is then measured: from these measurements density is determined as a function of time. The equations of motion are integrated to determine velocity, flight path angle, and altitude as a function of time. Density is then determined as a function of altitude from the previous determinations of density and altitude as a function of time. Hydrostatic equilibrium was assumed to determine pressure as a function of altitude. Finally the equation of space applied to determine temperature as a function of altitude, if the mean molecular weight is known. The mean molecular weight is obtained independently from either the low speed experiment or from the composition experiments.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Ghorbanpour, Houshang
2014-06-20
In the present study, a rapid, highly efficient, and reliable sample preparation method named "elevated temperature dispersive liquid-liquid microextraction" followed by gas chromatography-nitrogen-phosphorus detection was developed for the extraction, preconcentration, and determination of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, and difenoconazole) in honey samples. In this method the temperature of high-volume aqueous phase was adjusted at an elevated temperature and then a disperser solvent containing an extraction solvent was rapidly injected into the aqueous phase. After cooling to room temperature, the phase separation was accelerated by centrifugation. Various parameters affecting the extraction efficiency such as type and volume of the extraction and disperser solvents, temperature, salt addition, and pH were evaluated. Under the optimum extraction conditions, the method resulted in low limits of detection and quantification within the range 0.05-0.21ngg(-1) in honey (15-70ngL(-1) in solution) and 0.15-1.1ngg(-1) in honey (45-210ngL(-1) in solution), respectively. Enrichment factors and extraction recoveries were in the ranges of 1943-1994 and 97-100%, respectively. The method precision was evaluated at 1.5ngg(-1) of each analyte, and the relative standard deviations were found to be less than 4% for intra-day (n=6) and less than 6% for inter-days. The method was successfully applied to the analysis of honey samples and difenoconazole was determined at ngg(-1) levels. Copyright © 2014 Elsevier B.V. All rights reserved.
Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Myers, Dwight L.
2003-01-01
The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
Baleine, Erwan; Sheldon, Danny M
2014-06-10
Method and system for calibrating a thermal radiance map of a turbine component in a combustion environment. At least one spot (18) of material is disposed on a surface of the component. An infrared (IR) imager (14) is arranged so that the spot is within a field of view of the imager to acquire imaging data of the spot. A processor (30) is configured to process the imaging data to generate a sequence of images as a temperature of the combustion environment is increased. A monitor (42, 44) may be coupled to the processor to monitor the sequence of images of to determine an occurrence of a physical change of the spot as the temperature is increased. A calibration module (46) may be configured to assign a first temperature value to the surface of the turbine component when the occurrence of the physical change of the spot is determined.
Acoustic testing of high temperature panels
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.
1990-01-01
Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.
Frey, Desta L.; Gagnon, Patrick
2015-01-01
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12–15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity. PMID:25774674
Frey, Desta L; Gagnon, Patrick
2015-01-01
In eastern Canada, the destruction of kelp beds by dense aggregations (fronts) of the omnivorous green sea urchin, Strongylocentrotus droebachiensis, is a key determinant of the structure and dynamics of shallow reef communities. Recent studies suggest that hydrodynamic forces, but not sea temperature, determine the strength of urchin-kelp interactions, which deviates from the tenets of the metabolic theory of ecology (MTE). We tested the hypothesis that water temperature can predict short-term kelp bed destruction by S. droebachiensis in calm hydrodynamic environments. Specifically, we experimentally determined relationships among water temperature, body size, and individual feeding in the absence of waves, as well as among wave velocity, season, and aggregative feeding. We quantified variation in kelp-bed boundary dynamics, sea temperature, and wave height over three months at one subtidal site in Newfoundland to test the validity of thermal tipping ranges and regression equations derived from laboratory results. Consistent with the MTE, individual feeding during early summer (June-July) obeyed a non-linear, size- and temperature-dependent relationship: feeding in large urchins was consistently highest and positively correlated with temperature <12°C and dropped within and above the 12-15°C tipping range. This relationship was more apparent in large than small urchins. Observed and expected rates of kelp loss based on sea temperature and urchin density and size structure at the front were highly correlated and differed by one order of magnitude. The present study speaks to the importance of considering body size and natural variation in sea temperature in studies of urchin-kelp interactions. It provides the first compelling evidence that sea temperature, and not only hydrodynamic forces, can predict kelp bed destruction by urchin fronts in shallow reef communities. Studying urchin-seaweed-predator interactions within the conceptual foundations of the MTE holds high potential for improving capacity to predict and manage shifts in marine food web structure and productivity.
Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian
2011-03-01
The distribution of distillation temperatures of liquid and semi-fluid products, including petroleum fractions and products, is an important process and practical parameter. It provides information on properties of crude oil and content of particular fractions, classified on the basis of their boiling points, as well as the optimum conditions of atmospheric or vacuum distillation. At present, the distribution of distillation temperatures is often investigated by simulated distillation (SIMDIS) using capillary gas chromatography (CGC) with a short capillary column with polydimethylsiloxane as the stationary phase. This paper presents the results of investigations on the possibility of replacing currently used CGC columns for SIMDIS with a deactivated fused silica capillary tube without any stationary phase. The SIMDIS technique making use of such an empty fused silica column allows a considerable lowering of elution temperature of the analytes, which results in a decrease of the final oven temperature while ensuring a complete separation of the mixture. This eliminates the possibility of decomposition of less thermally stable mixture components and bleeding of the stationary phase which would result in an increase of the detector signal. It also improves the stability of the baseline, which is especially important in the determination of the end point of elution, which is the basis for finding the final temperature of distillation. This is the key parameter for the safety process of hydrocracking, where an excessively high final temperature of distillation of a batch can result in serious damage to an expensive catalyst bed. This paper compares the distribution of distillation temperatures of the fraction from vacuum distillation of petroleum obtained using SIMDIS with that obtained by the proposed procedure. A good agreement between the two procedures was observed. In addition, typical values of elution temperatures of n-paraffin standards obtained by the two procedures were compared. Finally, the agreement between boiling points of polar compounds determined from their retention times and actual boiling points was investigated.
Measuring gas temperature during spin-exchange optical pumping process
NASA Astrophysics Data System (ADS)
Normand, E.; Jiang, C. Y.; Brown, D. R.; Robertson, L.; Crow, L.; Tong, X.
2016-04-01
The gas temperature inside a Spin-Exchange Optical Pumping (SEOP) laser-pumping polarized 3He cell has long been a mystery. Different experimental methods were employed to measure this temperature but all were based on either modelling or indirect measurement. To date there has not been any direct experimental measurement of this quantity. Here we present the first direct measurement using neutron transmission to accurately determine the number density of 3He, the temperature is obtained using the ideal gas law. Our result showed a surprisingly high gas temperature of 380°C, compared to the 245°C of the 3He cell wall temperature and 178°C of the optical pumping oven temperature. This experiment result may be used to further investigate the unsolved puzzle of the "X-factor" in the SEOP process which places an upper bound to the 3He polarization that can be achieved. Additional spin relaxation mechanisms might exist due to the high gas temperature, which could explain the origin of the X-factor.
PS300 Tribomaterials Evaluated at 6500C by Bushing Test Rig
NASA Technical Reports Server (NTRS)
Striebing, Donald R.; DellaCorte, Christopher
2004-01-01
A new facility has been developed to test the tribological behavior (friction and wear) of PS300 solid lubricant bushings at high temperatures. PS300 is a commercially available solid lubricant invented at the NASA Glenn Research Center. It can be prepared as a plasma spray coating or as a free-standing powder metallurgy component, designated PM300. PS300 and PM300 composites are designed to lubricate sliding components at temperatures above the capability of today's best oils, greases, and solid lubricants. One of the primary applications being pursued for PM300 is the development of bushings for use in high-temperature machinery. Examples include inlet guide vane bushings for gas turbines and conveyors, and bearings for industrial furnaces and ovens. Encouraging preliminary field trials indicate that PS300 and PM300 lubricant materials have been commercialized successfully in several industrial applications. However, the lack of laboratory performance data has hindered further commercialization especially for new applications that differ significantly from the established experience base. The purpose of the newly developed bushing test rig will be to determine the performance characteristics of PM300, and other materials, under conditions closely matching intended applications. The data will be used to determine engineering friction and wear rates and to estimate the life expectancy of bushings for new applications. In the new rig, the bushing is loaded against a rotating shaft inside a furnace enclosure (see the preceding photograph). Loads can vary from 5 to 200 N, speeds from 1 to 400 rpm, and temperatures from 25 to 800 C. Furnace temperature, bushing temperature, shaft speed, and torque are monitored during the test, and wear of both the bushing and the shaft is measured after testing is completed. Initially, PM300 bushings will be evaluated and compared with lower temperature, traditional bushing materials like graphite and porous bronze. The baseline PM304 composition is 60 wt% NiCr (a binder), 20 wt% Cr2O3 (a hardener), 10 wt% BaF2/CaF2 (a high-temperature lubricant), and 10 wt% Ag (a low-temperature lubricant). Future research efforts will include determining the effects of load, sliding speed, and temperature on tribological performance and, possibly, tailoring composition for specific applications. We expect that the availability of measured performance data will enhance the market penetration of PM300 technology.
Strüssmann, C A; Conover, D O; Somoza, G M; Miranda, L A
2010-11-01
The New World silversides (family Atherinopsidae) are found in marine, estuarine and inland waters of North, Central and South America, where they are ecologically important as forage fishes and sometimes economically important for commercial and recreational fisheries. This report reviews the knowledge of the reproductive attributes of temperate and subtropical atherinopsids in relation to temperature and discusses the potential effects of climate change on their reproduction and adaptive responses. Their reproductive cycles are primarily entrained by photoperiod with high temperature acting as a limiting factor. They are generally multiple spawners which release successive batches of eggs in spring, but some species can spawn also in autumn and even summer when temperatures do not increase excessively. The decoupling of temperature patterns and photoperiod with further global warming and associated asymmetric thermal fluctuations could lead to spawning at times or temperatures that are unsuitable for larval development and growth. Many members of this family show temperature-dependent sex determination (TSD), where the phenotypic sex of an individual is determined partly or wholly by the temperature experienced during gonadal sex differentiation, and high-temperature induced germ cell degeneration and decreased fertility. The predicted short-term reproductive responses of atherinopsids to climate change therefore include acceleration, shortening or overall disruption of spawning activity, and also more subtle, but nonetheless equally population-threatening, dysfunctions such as highly skewed sex ratios and partial or total loss of fertility. In the case of species with TSD, asymmetric thermal fluctuations could also cause larvae to encounter temperatures lower than normal during early development and be feminized. Such dysfunctions have been documented already in natural populations but are confined so far to landlocked, inland water habitats, perhaps because they impose more severe thermal fluctuations and limitations to migration and dispersal. The severity and recurrence of these dysfunctions with further climate change will depend both on the magnitude, speed and pattern of change and on how much (or how fast) physiological and behavioural traits can evolve to match the new conditions imposed by the climate, which is largely unknown. In this regard, compelling evidence is shown that numerous traits, including the sex determination system, are capable of rapid evolution and could mitigate the negative effects of temperature increases on population viability in atherinopsids. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
The Environment and the Microbial Ecology of Human Skin
McBride, Mollie E.; Duncan, W. Christopher; Knox, J. M.
1977-01-01
Microbial flora of the skin of three human population groups representing different natural environments was examined quantitatively and qualitatively to determine whether environmental differences in temperature and humidity can influence the microbial flora of normal skin. Five anatomical skin sites - hands, back, axillae, groin, and feet - were sampled from 10 subjects working in a high-humidity, high-temperature environment, 10 subjects from a low-temperature, high-humidity environment, and 10 subjects working in a moderate-temperature and low-humidity environment. Bacterial populations were significantly larger from the back, axillae, and feet in individuals from the high-temperature and high-humidity environment as compared to the moderate-temperature, low-humidity environment. High humidity and low temperature had no significant effect on total populations, but this group showed a higher frequency of isolation of fungi, and gram-negative bacteria from the back and feet. Although there was an indication that increase in the environmental humidity could result in an increased frequency of isolation of gram-negative bacteria, there was no evidence that an increase in either temperature or humidity altered the relative proportions of gram-negative bacteria in the predominantly gram-positive microbial flora found on normal skin. It was concluded that, although climatic changes may cause fluctation in microbial populations from certain sites, they are not a major influence on the ecology of the microbial flora of normal skin in the natural environment. The variables introduced by studying individuals in their natural environment and the influence of these on the results are discussed. PMID:16345214
Ba(1-x)Sr(x)Zn2Si2O7--A new family of materials with negative and very high thermal expansion.
Thieme, Christian; Görls, Helmar; Rüssel, Christian
2015-12-15
The compound BaZn2Si2O7 shows a high coefficient of thermal expansion up to a temperature of 280 °C, then a transition to a high temperature phase is observed. This high temperature phase exhibits negative thermal expansion. If Ba(2+) is successively replaced by Sr(2+), a new phase with a structure, similar to that of the high temperature phase of BaZn2Si2O7, forms. At the composition Ba0.8Sr0.2Zn2Si2O7, this new phase is completely stabilized. The crystal structure was determined with single crystal X-ray diffraction using the composition Ba0.6Sr0.4Zn2Si2O7, which crystallizes in the orthorhombic space group Cmcm. The negative thermal expansion is a result of motions and distortions inside the crystal lattice, especially inside the chains of ZnO4 tetrahedra. Dilatometry and high temperature X-ray powder diffraction were used to verify the negative thermal expansion. Coefficients of thermal expansion partially smaller than -10·10(-6) K(-1) were measured.
Lattice distortion and stripelike antiferromagnetic order in Ca10(Pt3As8)(Fe2As2)5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, Aashish; Tucker, Gregory S; Ramazanoglu, Mehmet
2014-09-01
Ca10(Pt3As8)(Fe2As2)5 is the parent compound for a class of Fe-based high-temperature superconductors where superconductivity with transition temperatures up to 30 K can be introduced by partial element substitution. We present a combined high-resolution high-energy x-ray diffraction and elastic neutron scattering study on a Ca10(Pt3As8)(Fe2As2)5 single crystal. This study reveals the microscopic nature of two distinct and continuous phase transitions to be very similar to other Fe-based high-temperature superconductors: an orthorhombic distortion of the high-temperature tetragonal Fe-As lattice below TS=110(2) K followed by stripelike antiferromagnetic ordering of the Fe moments below TN=96(2) K. These findings demonstrate that major features of themore » Fe-based high-temperature superconductors are very robust against variations in chemical constitution as well as structural imperfection of the layers separating the Fe-As layers from each other and confirms that the Fe-As layers primarily determine the physics in this class of material.« less
The nature of temper brittleness of high-chromium ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.
The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separationmore » into layers of high-chromium ferrite and decomposition of the interstitial solid solution.« less
Hay, Daniel N T; Messerle, Louis
2002-09-01
Reduction of TaBr(5) with Ga in the presence of KBr in a sealed borosilicate ampule at 400 degrees, followed by aqueous Soxhlet extraction and addition of stannous bromide and hydrobromic acid to the extract, yielded Ta(6)Br(14).8H(2)O in 80-84% yield. The new procedure provides a convenient, low temperature, high yield route to the synthesis of the title compound from inexpensive precursors.
Q factor of megahertz LC circuits based on thin films of YBaCuO high-temperature superconductor
NASA Astrophysics Data System (ADS)
Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.
2008-05-01
High-frequency properties of resonant structures based on thin films of YBa2Cu3O7 δ high-temperature superconductor are studied experimentally in the frequency range 30 100 MHz. The structures planar induction coils with a self-capacitance fabricated on neodymium gallate and lanthanum aluminate substrates. The unloaded Q factor of the circuits exceeds 2 × 105 at 77 K and 40 MHz. Possible loss mechanisms that determine the Q factor of the superconducting resonant structures in the megahertz range are considered.
Henry`s law constant for selected volatile organic compounds in high-boiling oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poddar, T.K.; Sirkar, K.K.
Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2009-12-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.
Temperature- and field-dependent characterization of a conductor on round core cable
NASA Astrophysics Data System (ADS)
Barth, C.; van der Laan, D. C.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.
2015-06-01
The conductor on round core (CORC) cable is one of the major high temperature superconductor cable concepts combining scalability, flexibility, mechanical strength, ease of fabrication and high current density; making it a possible candidate as conductor for large, high field magnets. To simulate the boundary conditions of such magnets as well as the temperature dependence of CORC cables a 1.16 m long sample consisting of 15, 4 mm wide SuperPower REBCO tapes was characterized using the ‘FBI’ (force—field—current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a five step investigation, the CORC cable’s performance was determined at different transverse mechanical loads, magnetic background fields and temperatures as well as its response to swift current changes. In the first step, the sample’s 77 K, self-field current was measured in a liquid nitrogen bath. In the second step, the temperature dependence was measured at self-field condition and compared with extrapolated single tape data. In the third step, the magnetic background field was repeatedly cycled while measuring the current carrying capabilities to determine the impact of transverse Lorentz forces on the CORC cable sample’s performance. In the fourth step, the sample’s current carrying capabilities were measured at different background fields (2-12 T) and surface temperatures (4.2-51.5 K). Through finite element method simulations, the surface temperatures are converted into average sample temperatures and the gained field- and temperature dependence is compared with extrapolated single tape data. In the fifth step, the response of the CORC cable sample to rapid current changes (8.3 kA s-1) was observed with a fast data acquisition system. During these tests, the sample performance remains constant, no degradation is observed. The sample’s measured current carrying capabilities correlate to those of single tapes assuming field- and temperature dependence as published by the manufacturer.
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-11-07
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less
Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R
2016-07-22
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang
2001-01-01
Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less
Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel
NASA Astrophysics Data System (ADS)
Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid
2014-04-01
High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.
High temperature experimental characterization of microscale thermoelectric effects
NASA Astrophysics Data System (ADS)
Favaloro, Tela
Thermoelectric devices have been employed for many years as a reliable energy conversion technology for applications ranging from the cooling of sensors or charge coupled devices to the direct conversion of heat into electricity for remote power generation. However, its relatively low conversion efficiency has limited the implementation of thermoelectric materials for large scale cooling and waste heat recovery applications. Recent advances in semiconductor growth technology have enabled the precise and selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of thermoelectric devices. Accurate characterization at the intended operational temperature of novel thermoelectric materials is a crucial component of the optimization process in order to fundamentally understand material behavior and evaluate performance. The objective of this work is to provide the tools necessary to characterize high efficiency bulk and thin-film materials for thermoelectric energy conversion. The techniques developed here are not bound to specific material or devices, but can be generalized to any material system. Thermoreflectance imaging microscopy has proven to be invaluable for device thermometry owing to its high spatial and temporal resolutions. It has been utilized in this work to create two-dimensional temperature profiles of thermoelectric devices during operation used for performance analysis of novel materials, identification of defects, and visualization of high speed transients in a high-temperature imaging thermostat. We report the development of a high temperature imaging thermostat capable of high speed transient thermoelectric characterization. In addition, we present a noninvasive method for thermoreflectance coefficient calibration ideally suited for vacuum and thus high temperature employment. This is the first analysis of the thermoreflectance coefficient of commonly used metals at high-temperatures. High temperature vacuum thermostats are designed and fabricated with optical imaging capability and interchangeable measurement stages for various electrical and thermoelectric characterizations. We demonstrate the simultaneous measurement of in-plane electrical conductivity and Seebeck coefficient of thin-film or bulk thermoelectric materials. Furthermore, we utilize high-speed circuitry to implement the transient Harman technique and directly determine the cross-plane figure of merit of thin film thermoelectric materials at high temperatures. Transient measurements on thin film devices are subject to complications from the growth substrate, non-ideal contacts and other detrimental thermal and electrical effects. A strategy is presented for optimizing device geometry to mitigate the impact of these parasitics. This design enabled us to determine the cross-plane thermoelectric material properties in a single high temperature measurement of a 25mum InGaAs thin film with embedded ErAs (0.2%) nanoparticles using the bipolar transient Harman technique in conjunction with thermoreflectance thermal imaging. This approach eliminates discrepancies and potential device degradation from the multiple measurements necessary to obtain individual material parameters. Finite element method simulations are used to analyze non-uniform current and temperature distributions over the device area and determine the three dimensional current path for accurate extraction of material properties from the thermal images. Results match with independent measurements of thermoelectric material properties for the same material composition, validating this approach. We apply high magnification thermoreflectance imaging to create temperature maps of vanadium dioxide nanobeams and examine electro-thermal energy conversion along the nanobeam length. The metal to insulator transition of strongly correlated materials is subject to strong lattice coupling which brings about the unique one-dimensional alignment of metal-insulator domains along nanobeams. Many studies have investigated the effects of stress on the metal to insulator transition and hence the phase boundary, but few have directly examined the temperature profile across the metal-insulating interface. Here, thermoreflectance microscopy reveals the underlying behavior of single-crystalline VO2 nanobeams in the phase coexisting regime. We directly observe highly localized alternating Peltier heating and cooling as well as Joule heating concentrated at the domain interfaces, indicating the significance of the domain walls and band offsets. Moreover, we are able to elucidate strain accumulation along the nanobeam and distinguish between two insulating phases of VO 2 through detection of the opposite polarity of their respective thermoreflectance coefficients.
Ficetola, Gentile Francesco; Maiorano, Luigi
2016-07-01
Climate change is determining a generalized phenological advancement, and amphibians are among the taxa showing the strongest phenological responsiveness to warming temperatures. Amphibians are strongly influenced by climate change, but we do not have a clear picture of how climate influences important parameters of amphibian populations, such as abundance, survival, breeding success and morphology. Furthermore, the relative impact of temperature and precipitation change remains underappreciated. We used Bayesian meta-analysis and meta-regression to quantify the impact of temperature and precipitation change on amphibian phenology, abundance, individual features and performance. We obtained effect sizes from studies performed in five continents. Temperature increase was the major driver of phenological advancement, while the impact of precipitation on phenology was weak. Conversely, population dynamics was mostly determined by precipitation: negative trends were associated with drying regimes. The impact of precipitation on abundance was particularly strong in tropical areas, while the importance of temperature was feeble. Both temperature and precipitation influenced parameters representing breeding performance, morphology, developmental rate and survival, but the response was highly heterogeneous among species. For instance, warming temperature increased body size in some species, and decreased size in others. Similarly, rainy periods increased survival of some species and reduced the survival of others. Our study showed contrasting impacts of temperature and precipitation changes on amphibian populations. Both climatic parameters strongly influenced amphibian performance, but temperature was the major determinant of the phenological changes, while precipitation had the major role on population dynamics, with alarming declines associated with drying trends.
Sample weight and digestion temperature as critical factors in mercury determination in fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadiq, M.; Zaidi, T.H.; Al-Mohana, H.
The concern about mercury (Hg) pollution of the marine environment started with the well publicized case of Minimata (Japan) where in the 1950s several persons died or became seriously ill after consuming fish or shellfish containing high levels of methylmercury. It is now accepted that Hg contaminated seafoods constitute a hazard to human health. To safeguard humans, accurate determination of Hg in marine biota is, therefore, very important. Two steps are involved in the determination of total Hg in biological materials: (a) decomposition of organic matrix (sample preparation), and (b) determination of Hg in aliquot samples. Although the procedures formore » determining Hg using the cold vapor technique are well established, sample preparation procedures have not been standardized. In general, samples of marine biota have been prepared by digesting different weights at different temperatures, by using mixtures of different chemicals and of varying quantities, and by digesting for variable durations. The objectives of the present paper were to evaluate the effects of sample weights and digestion temperatures on Hg determination in fish.« less
A novel theoretical model for the temperature dependence of band gap energy in semiconductors
NASA Astrophysics Data System (ADS)
Geng, Peiji; Li, Weiguo; Zhang, Xianhe; Zhang, Xuyao; Deng, Yong; Kou, Haibo
2017-10-01
We report a novel theoretical model without any fitting parameters for the temperature dependence of band gap energy in semiconductors. This model relates the band gap energy at the elevated temperature to that at the arbitrary reference temperature. As examples, the band gap energies of Si, Ge, AlN, GaN, InP, InAs, ZnO, ZnS, ZnSe and GaAs at temperatures below 400 K are calculated and are in good agreement with the experimental results. Meanwhile, the band gap energies at high temperatures (T > 400 K) are predicted, which are greater than the experimental results, and the reasonable analysis is carried out as well. Under low temperatures, the effect of lattice expansion on the band gap energy is very small, but it has much influence on the band gap energy at high temperatures. Therefore, it is necessary to consider the effect of lattice expansion at high temperatures, and the method considering the effect of lattice expansion has also been given. The model has distinct advantages compared with the widely quoted Varshni’s semi-empirical equation from the aspect of modeling, physical meaning and application. The study provides a convenient method to determine the band gap energy under different temperatures.