Kovács, István A.; Palotai, Robin; Szalay, Máté S.; Csermely, Peter
2010-01-01
Background Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction. PMID:20824084
Compression of Flow Can Reveal Overlapping-Module Organization in Networks
NASA Astrophysics Data System (ADS)
Viamontes Esquivel, Alcides; Rosvall, Martin
2011-10-01
To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.
Architecture and dynamics of overlapped RNA regulatory networks.
Lapointe, Christopher P; Preston, Melanie A; Wilinski, Daniel; Saunders, Harriet A J; Campbell, Zachary T; Wickens, Marvin
2017-11-01
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution. © 2017 Lapointe et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Combined node and link partitions method for finding overlapping communities in complex networks
Jin, Di; Gabrys, Bogdan; Dang, Jianwu
2015-01-01
Community detection in complex networks is a fundamental data analysis task in various domains, and how to effectively find overlapping communities in real applications is still a challenge. In this work, we propose a new unified model and method for finding the best overlapping communities on the basis of the associated node and link partitions derived from the same framework. Specifically, we first describe a unified model that accommodates node and link communities (partitions) together, and then present a nonnegative matrix factorization method to learn the parameters of the model. Thereafter, we infer the overlapping communities based on the derived node and link communities, i.e., determine each overlapped community between the corresponding node and link community with a greedy optimization of a local community function conductance. Finally, we introduce a model selection method based on consensus clustering to determine the number of communities. We have evaluated our method on both synthetic and real-world networks with ground-truths, and compared it with seven state-of-the-art methods. The experimental results demonstrate the superior performance of our method over the competing ones in detecting overlapping communities for all analysed data sets. Improved performance is particularly pronounced in cases of more complicated networked community structures. PMID:25715829
NASA Technical Reports Server (NTRS)
Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.
2003-01-01
The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained without the need for horizontal measurements. A review of both overlap methods is presented, including a discussion of the impact on reducing the uncertainty and bias error in MPLNET aerosol profiles.
NASA Astrophysics Data System (ADS)
Juher, David; Saldaña, Joan
2018-03-01
We study the properties of the potential overlap between two networks A ,B sharing the same set of N nodes (a two-layer network) whose respective degree distributions pA(k ) ,pB(k ) are given. Defining the overlap coefficient α as the Jaccard index, we prove that α is very close to 0 when A and B are random and independently generated. We derive an upper bound αM for the maximum overlap coefficient permitted in terms of pA(k ) , pB(k ) , and N . Then we present an algorithm based on cross rewiring of links to obtain a two-layer network with any prescribed α inside the range (0 ,αM) . A refined version of the algorithm allows us to minimize the cross-layer correlations that unavoidably appear for values of α beyond a critical overlap αc<αM . Finally, we present a very simple example of a susceptible-infectious-recovered epidemic model with information dissemination and use the algorithms to determine the impact of the overlap on the final outbreak size predicted by the model.
Network neighborhood analysis with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2007-01-15
The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).
Determinants of public cooperation in multiplex networks
NASA Astrophysics Data System (ADS)
Battiston, Federico; Perc, Matjaž; Latora, Vito
2017-07-01
Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.
A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure
Cao, Xiaochun; Wang, Xiao; Jin, Di; Guo, Xiaojie; Tang, Xianchao
2015-01-01
Community detection is a fundamental problem in the analysis of complex networks. Recently, many researchers have concentrated on the detection of overlapping communities, where a vertex may belong to more than one community. However, most current methods require the number (or the size) of the communities as a priori information, which is usually unavailable in real-world networks. Thus, a practical algorithm should not only find the overlapping community structure, but also automatically determine the number of communities. Furthermore, it is preferable if this method is able to reveal the hierarchical structure of networks as well. In this work, we firstly propose a generative model that employs a nonnegative matrix factorization (NMF) formulization with a l2,1 norm regularization term, balanced by a resolution parameter. The NMF has the nature that provides overlapping community structure by assigning soft membership variables to each vertex; the l2,1 regularization term is a technique of group sparsity which can automatically determine the number of communities by penalizing too many nonempty communities; and hence the resolution parameter enables us to explore the hierarchical structure of networks. Thereafter, we derive the multiplicative update rule to learn the model parameters, and offer the proof of its correctness. Finally, we test our approach on a variety of synthetic and real-world networks, and compare it with some state-of-the-art algorithms. The results validate the superior performance of our new method. PMID:25822148
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
Leveraging disjoint communities for detecting overlapping community structure
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy
2015-05-01
Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.
Research on Some Bus Transport Networks with Random Overlapping Clique Structure
NASA Astrophysics Data System (ADS)
Yang, Xu-Hua; Wang, Bo; Wang, Wan-Liang; Sun, You-Xian
2008-11-01
On the basis of investigating the statistical data of bus transport networks of three big cities in China, we propose that each bus route is a clique (maximal complete subgraph) and a bus transport network (BTN) consists of a lot of cliques, which intensively connect and overlap with each other. We study the network properties, which include the degree distribution, multiple edges' overlapping time distribution, distribution of the overlap size between any two overlapping cliques, distribution of the number of cliques that a node belongs to. Naturally, the cliques also constitute a network, with the overlapping nodes being their multiple links. We also research its network properties such as degree distribution, clustering, average path length, and so on. We propose that a BTN has the properties of random clique increment and random overlapping clique, at the same time, a BTN is a small-world network with highly clique-clustered and highly clique-overlapped. Finally, we introduce a BTN evolution model, whose simulation results agree well with the statistical laws that emerge in real BTNs.
Interference Cognizant Network Scheduling
NASA Technical Reports Server (NTRS)
Hall, Brendan (Inventor); Bonk, Ted (Inventor); DeLay, Benjamin F. (Inventor); Varadarajan, Srivatsan (Inventor); Smithgall, William Todd (Inventor)
2017-01-01
Systems and methods for interference cognizant network scheduling are provided. In certain embodiments, a method of scheduling communications in a network comprises identifying a bin of a global timeline for scheduling an unscheduled virtual link, wherein a bin is a segment of the timeline; identifying a pre-scheduled virtual link in the bin; and determining if the pre-scheduled and unscheduled virtual links share a port. In certain embodiments, if the unscheduled and pre-scheduled virtual links don't share a port, scheduling transmission of the unscheduled virtual link to overlap with the scheduled transmission of the pre-scheduled virtual link; and if the unscheduled and pre-scheduled virtual links share a port: determining a start time delay for the unscheduled virtual link based on the port; and scheduling transmission of the unscheduled virtual link in the bin based on the start time delay to overlap part of the scheduled transmission of the pre-scheduled virtual link.
Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.
2010-03-02
Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.
Top-down network analysis characterizes hidden termite-termite interactions.
Campbell, Colin; Russo, Laura; Marins, Alessandra; DeSouza, Og; Schönrogge, Karsten; Mortensen, David; Tooker, John; Albert, Réka; Shea, Katriona
2016-09-01
The analysis of ecological networks is generally bottom-up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host-parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail-rich reference communities with known modes of interaction can inform our understanding of detail-sparse focal communities. With this top-down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant-pollinator and antagonistic host-parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant-pollinator communities than the antagonistic host-parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite-termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well-characterized communities.
NASA Astrophysics Data System (ADS)
Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás
2007-06-01
A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.
Overlapping community detection in weighted networks via a Bayesian approach
NASA Astrophysics Data System (ADS)
Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao
2017-02-01
Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.
An ant colony based algorithm for overlapping community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Yanheng; Zhang, Jindong; Liu, Tuming; Zhang, Di
2015-06-01
Community detection is of great importance to understand the structures and functions of networks. Overlap is a significant feature of networks and overlapping community detection has attracted an increasing attention. Many algorithms have been presented to detect overlapping communities. In this paper, we present an ant colony based overlapping community detection algorithm which mainly includes ants' location initialization, ants' movement and post processing phases. An ants' location initialization strategy is designed to identify initial location of ants and initialize label list stored in each node. During the ants' movement phase, the entire ants move according to the transition probability matrix, and a new heuristic information computation approach is redefined to measure similarity between two nodes. Every node keeps a label list through the cooperation made by ants until a termination criterion is reached. A post processing phase is executed on the label list to get final overlapping community structure naturally. We illustrate the capability of our algorithm by making experiments on both synthetic networks and real world networks. The results demonstrate that our algorithm will have better performance in finding overlapping communities and overlapping nodes in synthetic datasets and real world datasets comparing with state-of-the-art algorithms.
Locating hardware faults in a parallel computer
Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.
2010-04-13
Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Finding overlapping communities in multilayer networks
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. PMID:29694387
Finding overlapping communities in multilayer networks.
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.
Overlapping Community Detection based on Network Decomposition
NASA Astrophysics Data System (ADS)
Ding, Zhuanlian; Zhang, Xingyi; Sun, Dengdi; Luo, Bin
2016-04-01
Community detection in complex network has become a vital step to understand the structure and dynamics of networks in various fields. However, traditional node clustering and relatively new proposed link clustering methods have inherent drawbacks to discover overlapping communities. Node clustering is inadequate to capture the pervasive overlaps, while link clustering is often criticized due to the high computational cost and ambiguous definition of communities. So, overlapping community detection is still a formidable challenge. In this work, we propose a new overlapping community detection algorithm based on network decomposition, called NDOCD. Specifically, NDOCD iteratively splits the network by removing all links in derived link communities, which are identified by utilizing node clustering technique. The network decomposition contributes to reducing the computation time and noise link elimination conduces to improving the quality of obtained communities. Besides, we employ node clustering technique rather than link similarity measure to discover link communities, thus NDOCD avoids an ambiguous definition of community and becomes less time-consuming. We test our approach on both synthetic and real-world networks. Results demonstrate the superior performance of our approach both in computation time and accuracy compared to state-of-the-art algorithms.
NASA Technical Reports Server (NTRS)
McDowell, Mark
2004-01-01
An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.
An improved game-theoretic approach to uncover overlapping communities
NASA Astrophysics Data System (ADS)
Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
Uncovering the overlapping community structure of complex networks by maximal cliques
NASA Astrophysics Data System (ADS)
Li, Junqiu; Wang, Xingyuan; Cui, Yaozu
2014-12-01
In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.
Overlapping communities detection based on spectral analysis of line graphs
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Hu, Rongjing; Huang, Guoming; Wei, Jiaxuan
2018-05-01
Community in networks are often overlapping where one vertex belongs to several clusters. Meanwhile, many networks show hierarchical structure such that community is recursively grouped into hierarchical organization. In order to obtain overlapping communities from a global hierarchy of vertices, a new algorithm (named SAoLG) is proposed to build the hierarchical organization along with detecting the overlap of community structure. SAoLG applies the spectral analysis into line graphs to unify the overlap and hierarchical structure of the communities. In order to avoid the limitation of absolute distance such as Euclidean distance, SAoLG employs Angular distance to compute the similarity between vertices. Furthermore, we make a micro-improvement partition density to evaluate the quality of community structure and use it to obtain the more reasonable and sensible community numbers. The proposed SAoLG algorithm achieves a balance between overlap and hierarchy by applying spectral analysis to edge community detection. The experimental results on one standard network and six real-world networks show that the SAoLG algorithm achieves higher modularity and reasonable community number values than those generated by Ahn's algorithm, the classical CPM and GN ones.
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Gene network interconnectedness and the generalized topological overlap measure
Yip, Andy M; Horvath, Steve
2007-01-01
Background Network methods are increasingly used to represent the interactions of genes and/or proteins. Genes or proteins that are directly linked may have a similar biological function or may be part of the same biological pathway. Since the information on the connection (adjacency) between 2 nodes may be noisy or incomplete, it can be desirable to consider alternative measures of pairwise interconnectedness. Here we study a class of measures that are proportional to the number of neighbors that a pair of nodes share in common. For example, the topological overlap measure by Ravasz et al. [1] can be interpreted as a measure of agreement between the m = 1 step neighborhoods of 2 nodes. Several studies have shown that two proteins having a higher topological overlap are more likely to belong to the same functional class than proteins having a lower topological overlap. Here we address the question whether a measure of topological overlap based on higher-order neighborhoods could give rise to a more robust and sensitive measure of interconnectedness. Results We generalize the topological overlap measure from m = 1 step neighborhoods to m ≥ 2 step neighborhoods. This allows us to define the m-th order generalized topological overlap measure (GTOM) by (i) counting the number of m-step neighbors that a pair of nodes share and (ii) normalizing it to take a value between 0 and 1. Using theoretical arguments, a yeast co-expression network application, and a fly protein network application, we illustrate the usefulness of the proposed measure for module detection and gene neighborhood analysis. Conclusion Topological overlap can serve as an important filter to counter the effects of spurious or missing connections between network nodes. The m-th order topological overlap measure allows one to trade-off sensitivity versus specificity when it comes to defining pairwise interconnectedness and network modules. PMID:17250769
Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control
Wise, Richard J.S.; Mehta, Amrish; Leech, Robert
2014-01-01
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373
Overlapping networks engaged during spoken language production and its cognitive control.
Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert
2014-06-25
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.
Efficient discovery of overlapping communities in massive networks
Gopalan, Prem K.; Blei, David M.
2013-01-01
Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224
Precise orbit determination of BeiDou constellation based on BETS and MGEX network.
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-04-15
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.
Global and regional kinematics with VLBI
NASA Technical Reports Server (NTRS)
Ma, Chopo
1994-01-01
Since a VLBI station cannot operate in isolation and since simultaneous operation of the entire VLBI network is impractical, it is necessary to design observing programs with periodic observing sessions using networks of 3-7 stations that, when treated together, will have the necessary interstation data and network overlaps to determine the desired rates of change. Thus, there has been a mix of global, intercontinental, transcontinental, and regional networks to make measurements ranging from plate motions to deformation over a few hundred km. Over time, even networks focusing on regional deformation using mobile VLBI included large stations removed by several thousand km to increase sensitivity, determine EOP more accurately, and provide better ties to the terrestrial reference frame (TRF). Analysis products have also evolved, beginning with baseline components, and then to full three-dimensional site velocities in a global TRF.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.
Li, Min; Li, Dongyan; Tang, Yu; Wu, Fangxiang; Wang, Jianxin
2017-08-31
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks
Li, Min; Li, Dongyan; Tang, Yu; Wang, Jianxin
2017-01-01
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster. PMID:28858211
Acikalin, M Yavuz; Gorgolewski, Krzysztof J; Poldrack, Russell A
2017-01-01
Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings.
Percolation in multiplex networks with overlap.
Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra
2013-11-01
From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.
Saban, Marcia R; O'Donnell, Michael A; Hurst, Robert E; Wu, Xue-Ru; Simpson, Cindy; Dozmorov, Igor; Davis, Carole; Saban, Ricardo
2008-01-01
Background Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression in the bladder target organ beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following chronic intravesical BCG therapy and to compare the results to non-specific pro inflammatory stimuli (LPS and TNF-α). For this purpose, C57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Seven days after the last instillation, the urothelium along with the submucosa was removed from detrusor muscle and the RNA was extracted from both layers for cDNA array experiments. Microarray results were normalized by a robust regression analysis and only genes with an expression above a conditional threshold of 0.001 (3SD above background) were selected for analysis. Next, genes presenting a 3-fold ratio in regard to the control group were entered in Ingenuity Pathway Analysis (IPA) for a comparative analysis in order to determine genes specifically regulated by BCG, TNF-α, and LPS. In addition, the transcriptome was precipitated with an antibody against RNA polymerase II and real-time polymerase chain reaction assay (Q-PCR) was used to confirm some of the BCG-specific transcripts. Results Molecular networks of treatment-specific genes generated several hypotheses regarding the mode of action of BCG. BCG-specific genes involved small GTPases and BCG-specific networks overlapped with the following canonical signaling pathways: axonal guidance, B cell receptor, aryl hydrocarbon receptor, IL-6, PPAR, Wnt/β-catenin, and cAMP. In addition, a specific detrusor network expressed a high degree of overlap with the development of the lymphatic system. Interestingly, TNF-α-specific networks overlapped with the following canonical signaling pathways: PPAR, death receptor, and apoptosis. Finally, LPS-specific networks overlapped with the LPS/IL-1 mediated inhibition of RXR. Because NF-kappaB occupied a central position in several networks, we further determined whether this transcription factor was part of the responses to BCG. Electrophoretic mobility shift assays confirmed the participation of NF-kappaB in the mouse bladder responses to BCG. In addition, BCG treatment of a human urothelial cancer cell line (J82) also increased the binding activity of NF-kappaB, as determined by precipitation of the chromatin by a NF-kappaB-p65 antibody and Q-PCR of genes bearing a NF-kappaB consensus sequence. Next, we tested the hypothesis of whether small GTPases such as LRG-47 are involved in the uptake of BCG by the bladder urothelium. Conclusion As expected, BCG treatment induces the transcription of genes belonging to common pro-inflammatory networks. However, BCG also induces unique genes belonging to molecular networks involved in axonal guidance and lymphatic system development within the bladder target organ. In addition, NF-kappaB seems to play a predominant role in the bladder responses to BCG therapy. Finally, in intact urothelium, BCG-GFP internalizes in LRG-47-positive vesicles. These results provide a molecular framework for the further study of the involvement of immune and nervous systems in the bladder responses to BCG therapy. PMID:18267009
Automated isotope identification algorithm using artificial neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Automated isotope identification algorithm using artificial neural networks
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
2017-04-12
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Exploring the networking behaviors of hospital organizations.
Di Vincenzo, Fausto
2018-05-08
Despite an extensive body of knowledge exists on network outcomes and on how hospital network structures may contribute to the creation of outcomes at different levels of analysis, less attention has been paid to understanding how and why hospital organizational networks evolve and change. The aim of this paper is to study the dynamics of networking behaviors of hospital organizations. Stochastic actor-based model for network dynamics was used to quantitatively examine data covering six-years of patient transfer relations among 35 hospital organizations. Specifically, the study investigated about determinants of patient transfer evolution modeling partner selection choice as a combination of multiple organizational attributes and endogenous network-based processes. The results indicate that having overlapping specialties and treating patients with the same case-mix decrease the likelihood of observing network ties between hospitals. Also, results revealed as geographical proximity and membership of the same LHA have a positive impact on the networking behavior of hospitals organizations, there is a propensity in the network to choose larger hospitals as partners, and to transfer patients between hospitals facing similar levels of operational uncertainty. Organizational attributes (overlapping specialties and case-mix), institutional factors (LHA), and geographical proximity matter in the formation and shaping of hospital networks over time. Managers can benefit from the use of these findings by clearly identifying the role and strategic positioning of their hospital with respect to the entire network. Social network analysis can yield novel information and also aid policy makers in the formation of interventions, encouraging alliances among providers as well as planning health system restructuring.
A cooperative game framework for detecting overlapping communities in social networks
NASA Astrophysics Data System (ADS)
Jonnalagadda, Annapurna; Kuppusamy, Lakshmanan
2018-02-01
Community detection in social networks is a challenging and complex task, which received much attention from researchers of multiple domains in recent years. The evolution of communities in social networks happens merely due to the self-interest of the nodes. The interesting feature of community structure in social networks is the multi membership of the nodes resulting in overlapping communities. Assuming the nodes of the social network as self-interested players, the dynamics of community formation can be captured in the form of a game. In this paper, we propose a greedy algorithm, namely, Weighted Graph Community Game (WGCG), in order to model the interactions among the self-interested nodes of the social network. The proposed algorithm employs the Shapley value mechanism to discover the inherent communities of the underlying social network. The experimental evaluation on the real-world and synthetic benchmark networks demonstrates that the performance of the proposed algorithm is superior to the state-of-the-art overlapping community detection algorithms.
The neural encoding of guesses in the human brain.
Bode, Stefan; Bogler, Carsten; Soon, Chun Siong; Haynes, John-Dylan
2012-01-16
Human perception depends heavily on the quality of sensory information. When objects are hard to see we often believe ourselves to be purely guessing. Here we investigated whether such guesses use brain networks involved in perceptual decision making or independent networks. We used a combination of fMRI and pattern classification to test how visibility affects the signals, which determine choices. We found that decisions regarding clearly visible objects are predicted by signals in sensory brain regions, whereas different regions in parietal cortex became predictive when subjects were shown invisible objects and believed themselves to be purely guessing. This parietal network was highly overlapping with regions, which have previously been shown to encode free decisions. Thus, the brain might use a dedicated network for determining choices when insufficient sensory information is available. Copyright © 2011 Elsevier Inc. All rights reserved.
Identifying and characterizing key nodes among communities based on electrical-circuit networks.
Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying
2014-01-01
Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.
Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís
2017-08-09
System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.
Precise orbit determination of BeiDou constellation based on BETS and MGEX network
Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu
2014-01-01
Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025
NASA Astrophysics Data System (ADS)
Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas
2006-03-01
Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.
Simonyan, Kristina; Fuertinger, Stefan
2015-04-01
Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network. Copyright © 2015 the American Physiological Society.
Scalable Multicast Protocols for Overlapped Groups in Broker-Based Sensor Networks
NASA Astrophysics Data System (ADS)
Kim, Chayoung; Ahn, Jinho
In sensor networks, there are lots of overlapped multicast groups because of many subscribers, associated with their potentially varying specific interests, querying every event to sensors/publishers. And gossip based communication protocols are promising as one of potential solutions providing scalability in P(Publish)/ S(Subscribe) paradigm in sensor networks. Moreover, despite the importance of both guaranteeing message delivery order and supporting overlapped multicast groups in sensor or P2P networks, there exist little research works on development of gossip-based protocols to satisfy all these requirements. In this paper, we present two versions of causally ordered delivery guaranteeing protocols for overlapped multicast groups. The one is based on sensor-broker as delegates and the other is based on local views and delegates representing subscriber subgroups. In the sensor-broker based protocol, sensor-broker might lead to make overlapped multicast networks organized by subscriber's interests. The message delivery order has been guaranteed consistently and all multicast messages are delivered to overlapped subscribers using gossip based protocols by sensor-broker. Therefore, these features of the sensor-broker based protocol might be significantly scalable rather than those of the protocols by hierarchical membership list of dedicated groups like traditional committee protocols. And the subscriber-delegate based protocol is much stronger rather than fully decentralized protocols guaranteeing causally ordered delivery based on only local views because the message delivery order has been guaranteed consistently by all corresponding members of the groups including delegates. Therefore, this feature of the subscriber-delegate protocol is a hybrid approach improving the inherent scalability of multicast nature by gossip-based technique in all communications.
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
A local immunization strategy for networks with overlapping community structure
NASA Astrophysics Data System (ADS)
Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi
2017-02-01
Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.
Overlapping Modularity at the Critical Point of k-Clique Percolation
NASA Astrophysics Data System (ADS)
Tóth, Bálint; Vicsek, Tamás; Palla, Gergely
2013-05-01
One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.
Implications of Network Topology on Stability
Kinkhabwala, Ali
2015-01-01
In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219
Peer Network Overlap in Twin, Sibling, and Friend Dyads
ERIC Educational Resources Information Center
McGuire, Shirley; Segal, Nancy L.
2013-01-01
Research suggests that sibling–peer connections are important for understanding adolescent problem behaviors. Using a novel behavioral genetic design, the current study investigated peer network overlap in 300 child–child pairs (aged 7-13 years) in 5 dyad types: monozygotic (MZ), dizygotic twins, full siblings (FSs), friend pairs, and virtual…
Overlapping community detection based on link graph using distance dynamics
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Jing; Cai, Li-Jun
2018-01-01
The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.
Seeding for pervasively overlapping communities
NASA Astrophysics Data System (ADS)
Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil
2011-06-01
In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.
Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds
NASA Astrophysics Data System (ADS)
Shah, Fahad; Sukthankar, Gita
Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.
Network module detection: Affinity search technique with the multi-node topological overlap measure
Li, Ai; Horvath, Steve
2009-01-01
Background Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. Findings We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Conclusion Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: PMID:19619323
Network module detection: Affinity search technique with the multi-node topological overlap measure.
Li, Ai; Horvath, Steve
2009-07-20
Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/
Entropic forces drive contraction of cytoskeletal networks.
Braun, Marcus; Lansky, Zdenek; Hilitski, Feodor; Dogic, Zvonimir; Diez, Stefan
2016-05-01
The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells. © 2016 WILEY Periodicals, Inc.
Afzali, Mohammad H; Sunderland, Matthew; Teesson, Maree; Carragher, Natacha; Mills, Katherine; Slade, Tim
2017-01-15
The role of symptom overlap between major depressive disorder and posttraumatic stress disorder in comorbidity between two disorders is unclear. The current study applied network analysis to map the structure of symptom associations between these disorders. Data comes from a sample of 909 Australian adults with a lifetime history of trauma and depressive symptoms. Data analysis consisted of the construction of two comorbidity networks of PTSD/MDD with and without overlapping symptoms, identification of the bridging symptoms, and computation of the centrality measures. The prominent bridging role of four overlapping symptoms (i.e., sleep problems, irritability, concentration problems, and loss of interest) and five non-overlapping symptoms (i.e., feeling sad, feelings of guilt, psychomotor retardation, foreshortened future, and experiencing flashbacks) is highlighted. The current study uses DSM-IV criteria for PTSD and does not take into consideration significant changes made to PTSD criteria in DSM-5. Moreover, due to cross-sectional nature of the data, network estimates do not provide information on whether a symptom actively triggers other symptoms or whether a symptom mostly is triggered by other symptoms. The results support the role of dysphoria-related symptoms in PTSD/MDD comorbidity. Moreover, Identification of central symptoms and bridge symptoms will provide useful targets for interventions that seek to intervene early in the development of comorbidity. Copyright © 2016 Elsevier B.V. All rights reserved.
Reserve networks based on richness hotspots and representation vary with scale.
Shriner, Susan A; Wilson, Kenneth R; Flather, Curtis H
2006-10-01
While the importance of spatial scale in ecology is well established, few studies have investigated the impact of data grain on conservation planning outcomes. In this study, we compared species richness hotspot and representation networks developed at five grain sizes. We used species distribution maps for mammals and birds developed by the Arizona and New Mexico Gap Analysis Programs (GAP) to produce 1-km2, 100-kmn2, 625-km2, 2500-km2, and 10,000-km2 grid cell resolution distribution maps. We used these distribution maps to generate species richness and hotspot (95th quantile) maps for each taxon in each state. Species composition information at each grain size was used to develop two types of representation networks using the reserve selection software MARXAN. Reserve selection analyses were restricted to Arizona birds due to considerable computation requirements. We used MARXAN to create best reserve networks based on the minimum area required to represent each species at least once and equal area networks based on irreplaceability values. We also measured the median area of each species' distribution included in hotspot (mammals and birds of Arizona and New Mexico) and irreplaceability (Arizona birds) networks across all species. Mean area overlap between richness hotspot reserves identified at the five grain sizes was 29% (grand mean for four within-taxon/state comparisons), mean overlap for irreplaceability reserve networks was 32%, and mean overlap for best reserve networks was 53%. Hotspots for mammals and birds showed low overlap with a mean of 30%. Comparison of hotspots and irreplaceability networks showed very low overlap with a mean of 13%. For hotspots, median species distribution area protected within reserves declined monotonically from a high of 11% for 1-km2 networks down to 6% for 10,000-km2 networks. Irreplaceability networks showed a similar, but more variable, pattern of decline. This work clearly shows that map resolution has a profound effect on conservation planning outcomes and that hotspot and representation outcomes may be strikingly dissimilar. Thus, conservation planning is scale dependent, such that reserves developed using coarse-grained data do not subsume fine-grained reserves. Moreover, preserving both full species representation and species rich areas may require combined reserve design strategies.
A model for evolution of overlapping community networks
NASA Astrophysics Data System (ADS)
Karan, Rituraj; Biswal, Bibhu
2017-05-01
A model is proposed for the evolution of network topology in social networks with overlapping community structure. Starting from an initial community structure that is defined in terms of group affiliations, the model postulates that the subsequent growth and loss of connections is similar to the Hebbian learning and unlearning in the brain and is governed by two dominant factors: the strength and frequency of interaction between the members, and the degree of overlap between different communities. The temporal evolution from an initial community structure to the current network topology can be described based on these two parameters. It is possible to quantify the growth occurred so far and predict the final stationary state to which the network is likely to evolve. Applications in epidemiology or the spread of email virus in a computer network as well as finding specific target nodes to control it are envisaged. While facing the challenge of collecting and analyzing large-scale time-resolved data on social groups and communities one faces the most basic questions: how do communities evolve in time? This work aims to address this issue by developing a mathematical model for the evolution of community networks and studying it through computer simulation.
NASA Astrophysics Data System (ADS)
Guo, Guodong; Hackney, Drew; Pankow, Mark; Peters, Kara
2017-04-01
A spectral profile division multiplexed fiber Bragg grating (FBG) sensor network is described in this paper. The unique spectral profile of each sensor in the network is identified as a distinct feature to be interrogated. Spectrum overlap is allowed under working conditions. Thus, a specific wavelength window does not need to be allocated to each sensor as in a wavelength division multiplexed (WDM) network. When the sensors are serially connected in the network, the spectrum output is expressed through a truncated series. To track the wavelength shift of each sensor, the identification problem is transformed to a nonlinear optimization problem, which is then solved by a modified dynamic multi-swarm particle swarm optimizer (DMS-PSO). To demonstrate the application of the developed network, a network consisting of four FBGs was integrated into a Kevlar woven fabric, which was under a quasi-static load imposed by an impactor head. Due to the substantial radial strain in the fabric, the spectrums of different FBGs were found to overlap during the loading process. With the developed interrogating method, the overlapped spectrum would be distinguished thus the wavelength shift of each sensor can be monitored.
Network localization of neurological symptoms from focal brain lesions
Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.
2015-01-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514
A novel method for overlapping community detection using Multi-objective optimization
NASA Astrophysics Data System (ADS)
Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa
2018-09-01
The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.
Maeng, Daniel D; Scanlon, Dennis P; Chernew, Michael E; Gronniger, Tim; Wodchis, Walter P; McLaughlin, Catherine G
2010-01-01
Objective To examine the extent to which health plan quality measures capture physician practice patterns rather than plan characteristics. Data Source We gathered and merged secondary data from the following four sources: a private firm that collected information on individual physicians and their health plan affiliations, The National Committee for Quality Assurance, InterStudy, and the Dartmouth Atlas. Study Design We constructed two measures of physician network overlap for all health plans in our sample and linked them to selected measures of plan performance. Two linear regression models were estimated to assess the relationship between the measures of physician network overlap and the plan performance measures. Principal Findings The results indicate that in the presence of a higher degree of provider network overlap, plan performance measures tend to converge to a lower level of quality. Conclusions Standard health plan performance measures reflect physician practice patterns rather than plans' effort to improve quality. This implies that more provider-oriented measurement, such as would be possible with accountable care organizations or medical homes, may facilitate patient decision making and provide further incentives to improve performance. PMID:20403064
Assessing the Linguistic Productivity of Unsupervised Deep Neural Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Lawrence A.; Hodas, Nathan O.
Increasingly, cognitive scientists have demonstrated interest in applying tools from deep learning. One use for deep learning is in language acquisition where it is useful to know if a linguistic phenomenon can be learned through domain-general means. To assess whether unsupervised deep learning is appropriate, we first pose a smaller question: Can unsupervised neural networks apply linguistic rules productively, using them in novel situations. We draw from the literature on determiner/noun productivity by training an unsupervised, autoencoder network measuring its ability to combine nouns with determiners. Our simple autoencoder creates combinations it has not previously encountered, displaying a degree ofmore » overlap similar to actual children. While this preliminary work does not provide conclusive evidence for productivity, it warrants further investigation with more complex models. Further, this work helps lay the foundations for future collaboration between the deep learning and cognitive science communities.« less
Understanding network concepts in modules
2007-01-01
Background Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Results Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Conclusion Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our results are implemented in freely available R software code, which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/ModuleConformity/ModuleNetworks PMID:17547772
Kim, Hongkeun
2016-01-08
It remains unclear whether and to what extent the default network subregions involved in episodic memory (EM) and semantic memory (SM) processes overlap or are separated from one another. This study addresses this issue through a controlled meta-analysis of functional neuroimaging studies involving healthy participants. Various EM and SM task paradigms differ widely in the extent of default network involvement. Therefore, the issue at hand cannot be properly addressed without some control for this factor. In this regard, this study employs a two-stage analysis: a preliminary meta-analysis to select EM and SM task paradigms that recruit relatively extensive default network regions and a main analysis to compare the selected task paradigms. Based on a within-EM comparison, the default network contributed more to recollection/familiarity effects than to old/new effects, and based on a within-SM comparison, it contributed more to word/pseudoword effects than to semantic/phonological effects. According to a direct comparison of recollection/familiarity and word/pseudoword effects, each involving a range of default network regions, there were more overlaps than separations in default network subregions involved in these two effects. More specifically, overlaps included the bilateral posterior cingulate/retrosplenial cortex, left inferior parietal lobule, and left anteromedial prefrontal regions, whereas separations included only the hippocampal formation and the parahippocampal cortex region, which was unique to recollection/familiarity effects. These results indicate that EM and SM retrieval processes involving strong memory signals recruit extensive and largely overlapping default network regions and differ mainly in distinct contributions of hippocampus and parahippocampal regions to EM retrieval. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Model Comparison for Characterizing Protein Motions from Structure
NASA Astrophysics Data System (ADS)
David, Charles; Jacobs, Donald
2011-10-01
A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.
Partially Overlapping Brain Networks for Singing and Cello Playing.
Segado, Melanie; Hollinger, Avrum; Thibodeau, Joseph; Penhune, Virginia; Zatorre, Robert J
2018-01-01
This research uses an MR-Compatible cello to compare functional brain activation during singing and cello playing within the same individuals to determine the extent to which arbitrary auditory-motor associations, like those required to play the cello, co-opt functional brain networks that evolved for singing. Musical instrument playing and singing both require highly specific associations between sounds and movements. Because these are both used to produce musical sounds, it is often assumed in the literature that their neural underpinnings are highly similar. However, singing is an evolutionarily old human trait, and the auditory-motor associations used for singing are also used for speech and non-speech vocalizations. This sets it apart from the arbitrary auditory-motor associations required to play musical instruments. The pitch range of the cello is similar to that of the human voice, but cello playing is completely independent of the vocal apparatus, and can therefore be used to dissociate the auditory-vocal network from that of the auditory-motor network. While in the MR-Scanner, 11 expert cellists listened to and subsequently produced individual tones either by singing or cello playing. All participants were able to sing and play the target tones in tune (<50C deviation from target). We found that brain activity during cello playing directly overlaps with brain activity during singing in many areas within the auditory-vocal network. These include primary motor, dorsal pre-motor, and supplementary motor cortices (M1, dPMC, SMA),the primary and periprimary auditory cortices within the superior temporal gyrus (STG) including Heschl's gyrus, anterior insula (aINS), anterior cingulate cortex (ACC), and intraparietal sulcus (IPS), and Cerebellum but, notably, exclude the periaqueductal gray (PAG) and basal ganglia (Putamen). Second, we found that activity within the overlapping areas is positively correlated with, and therefore likely contributing to, both singing and playing in tune determined with performance measures. Third, we found that activity in auditory areas is functionally connected with activity in dorsal motor and pre-motor areas, and that the connectivity between them is positively correlated with good performance on this task. This functional connectivity suggests that the brain areas are working together to contribute to task performance and not just coincidently active. Last, our findings showed that cello playing may directly co-opt vocal areas (including larynx area of motor cortex), especially if musical training begins before age 7.
Partially Overlapping Brain Networks for Singing and Cello Playing
Segado, Melanie; Hollinger, Avrum; Thibodeau, Joseph; Penhune, Virginia; Zatorre, Robert J.
2018-01-01
This research uses an MR-Compatible cello to compare functional brain activation during singing and cello playing within the same individuals to determine the extent to which arbitrary auditory-motor associations, like those required to play the cello, co-opt functional brain networks that evolved for singing. Musical instrument playing and singing both require highly specific associations between sounds and movements. Because these are both used to produce musical sounds, it is often assumed in the literature that their neural underpinnings are highly similar. However, singing is an evolutionarily old human trait, and the auditory-motor associations used for singing are also used for speech and non-speech vocalizations. This sets it apart from the arbitrary auditory-motor associations required to play musical instruments. The pitch range of the cello is similar to that of the human voice, but cello playing is completely independent of the vocal apparatus, and can therefore be used to dissociate the auditory-vocal network from that of the auditory-motor network. While in the MR-Scanner, 11 expert cellists listened to and subsequently produced individual tones either by singing or cello playing. All participants were able to sing and play the target tones in tune (<50C deviation from target). We found that brain activity during cello playing directly overlaps with brain activity during singing in many areas within the auditory-vocal network. These include primary motor, dorsal pre-motor, and supplementary motor cortices (M1, dPMC, SMA),the primary and periprimary auditory cortices within the superior temporal gyrus (STG) including Heschl's gyrus, anterior insula (aINS), anterior cingulate cortex (ACC), and intraparietal sulcus (IPS), and Cerebellum but, notably, exclude the periaqueductal gray (PAG) and basal ganglia (Putamen). Second, we found that activity within the overlapping areas is positively correlated with, and therefore likely contributing to, both singing and playing in tune determined with performance measures. Third, we found that activity in auditory areas is functionally connected with activity in dorsal motor and pre-motor areas, and that the connectivity between them is positively correlated with good performance on this task. This functional connectivity suggests that the brain areas are working together to contribute to task performance and not just coincidently active. Last, our findings showed that cello playing may directly co-opt vocal areas (including larynx area of motor cortex), especially if musical training begins before age 7. PMID:29892211
Competitive epidemic spreading over arbitrary multilayer networks.
Darabi Sahneh, Faryad; Scoglio, Caterina
2014-06-01
This study extends the Susceptible-Infected-Susceptible (SIS) epidemic model for single-virus propagation over an arbitrary graph to an Susceptible-Infected by virus 1-Susceptible-Infected by virus 2-Susceptible (SI_{1}SI_{2}S) epidemic model of two exclusive, competitive viruses over a two-layer network with generic structure, where network layers represent the distinct transmission routes of the viruses. We find analytical expressions determining extinction, coexistence, and absolute dominance of the viruses after we introduce the concepts of survival threshold and absolute-dominance threshold. The main outcome of our analysis is the discovery and proof of a region for long-term coexistence of competitive viruses in nontrivial multilayer networks. We show coexistence is impossible if network layers are identical yet possible if network layers are distinct. Not only do we rigorously prove a region of coexistence, but we can quantitate it via interrelation of central nodes across the network layers. Little to no overlapping of the layers' central nodes is the key determinant of coexistence. For example, we show both analytically and numerically that positive correlation of network layers makes it difficult for a virus to survive, while in a network with negatively correlated layers, survival is easier, but total removal of the other virus is more difficult.
A Brain Centred View of Psychiatric Comorbidity in Tinnitus: From Otology to Hodology
Minichino, Amedeo; Panico, Roberta; Testugini, Valeria; Altissimi, Giancarlo; Cianfrone, Giancarlo
2014-01-01
Introduction. Comorbid psychiatric disorders are frequent among patients affected by tinnitus. There are mutual clinical influences between tinnitus and psychiatric disorders, as well as neurobiological relations based on partially overlapping hodological and neuroplastic phenomena. The aim of the present paper is to review the evidence of alterations in brain networks underlying tinnitus physiopathology and to discuss them in light of the current knowledge of the neurobiology of psychiatric disorders. Methods. Relevant literature was identified through a search on Medline and PubMed; search terms included tinnitus, brain, plasticity, cortex, network, and pathways. Results. Tinnitus phenomenon results from systemic-neurootological triggers followed by neuronal remapping within several auditory and nonauditory pathways. Plastic reorganization and white matter alterations within limbic system, arcuate fasciculus, insula, salience network, dorsolateral prefrontal cortex, auditory pathways, ffrontocortical, and thalamocortical networks are discussed. Discussion. Several overlapping brain network alterations do exist between tinnitus and psychiatric disorders. Tinnitus, initially related to a clinicoanatomical approach based on a cortical localizationism, could be better explained by an holistic or associationist approach considering psychic functions and tinnitus as emergent properties of partially overlapping large-scale neural networks. PMID:25018882
Neuronal network disintegration: common pathways linking neurodegenerative diseases.
Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C
2016-11-01
Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.
Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer
2018-06-26
Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.
Generalised power graph compression reveals dominant relationship patterns in complex networks
Ahnert, Sebastian E.
2014-01-01
We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099
Ren, Jun; Zhou, Wei; Wang, Jianxin
2014-01-01
Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945
Network localization of neurological symptoms from focal brain lesions.
Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D
2015-10-01
A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Developmental time windows for axon growth influence neuronal network topology.
Lim, Sol; Kaiser, Marcus
2015-04-01
Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.
NASA Astrophysics Data System (ADS)
Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang
2009-07-01
We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.
NASA Astrophysics Data System (ADS)
Franke, R.
2016-11-01
In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.
Nim, Hieu T; Furtado, Milena B; Costa, Mauro W; Rosenthal, Nadia A; Kitano, Hiroaki; Boyd, Sarah E
2015-05-01
Existing de novo software platforms have largely overlooked a valuable resource, the expertise of the intended biologist users. Typical data representations such as long gene lists, or highly dense and overlapping transcription factor networks often hinder biologists from relating these results to their expertise. VISIONET, a streamlined visualisation tool built from experimental needs, enables biologists to transform large and dense overlapping transcription factor networks into sparse human-readable graphs via numerically filtering. The VISIONET interface allows users without a computing background to interactively explore and filter their data, and empowers them to apply their specialist knowledge on far more complex and substantial data sets than is currently possible. Applying VISIONET to the Tbx20-Gata4 transcription factor network led to the discovery and validation of Aldh1a2, an essential developmental gene associated with various important cardiac disorders, as a healthy adult cardiac fibroblast gene co-regulated by cardiogenic transcription factors Gata4 and Tbx20. We demonstrate with experimental validations the utility of VISIONET for expertise-driven gene discovery that opens new experimental directions that would not otherwise have been identified.
Statistically validated network of portfolio overlaps and systemic risk.
Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien
2016-12-21
Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007-2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains).
Statistically validated network of portfolio overlaps and systemic risk
Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien
2016-01-01
Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007–2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains). PMID:28000764
Disease networks. Uncovering disease-disease relationships through the incomplete interactome.
Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László
2015-02-20
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.
An access alternative for mobile satellite networks
NASA Technical Reports Server (NTRS)
Wu, W. W.
1988-01-01
Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals.
Graph theoretical analysis of functional network for comprehension of sign language.
Liu, Lanfang; Yan, Xin; Liu, Jin; Xia, Mingrui; Lu, Chunming; Emmorey, Karen; Chu, Mingyuan; Ding, Guosheng
2017-09-15
Signed languages are natural human languages using the visual-motor modality. Previous neuroimaging studies based on univariate activation analysis show that a widely overlapped cortical network is recruited regardless whether the sign language is comprehended (for signers) or not (for non-signers). Here we move beyond previous studies by examining whether the functional connectivity profiles and the underlying organizational structure of the overlapped neural network may differ between signers and non-signers when watching sign language. Using graph theoretical analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing signers with non-signers during the observation of sentences in Chinese Sign Language. We found that signed sentences elicited highly similar cortical activations in the two groups of participants, with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-signers. Crucially, further GTA revealed substantial group differences in the topologies of this activation network. Globally, the network engaged by signers showed higher local efficiency (t (24) =2.379, p=0.026), small-worldness (t (24) =2.604, p=0.016) and modularity (t (24) =3.513, p=0.002), and exhibited different modular structures, compared to the network engaged by non-signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the neural substrates underlying sign language comprehension are distinguishable at the network level from those for the processing of gestural action. Copyright © 2017 Elsevier B.V. All rights reserved.
Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri
2014-09-01
One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
NASA Astrophysics Data System (ADS)
Bodeker, G. E.; Thorne, P.; Braathen, G.; De Maziere, M.; Thompson, A. M.; Kurylo, M. J., III
2016-12-01
There are a number of ground-based global observing networks that collectively aim to make key measurements of atmospheric state variables and atmospheric chemical composition. These networks include, but are not limited to:NDACC: Network for the Detection of Atmospheric Composition Change GUAN: GCOS Upper Air Network GRUAN: GCOS Reference Upper Air Network EARLINET: the European Aerosol Research Lidar Network GAW: Global Atmosphere Watch SHADOZ: Southern Hemisphere ADditional OZonesondes TCCON: Total Carbon Column Observing Network BSRN: Baseline Surface Radiation Network While each network brings unique capabilities to the global observing system, there are many instances where the activities and capabilities of the networks overlap. These commonalities across multiple networks can confound funding agencies when allocating scarce financial resources. Overlaps between networks may also result in some duplication of effort and a resultant sub-optimal use of funding resource for the global observing system. While some degree of overlap is useful for quality assurance, it is essential to identify the degree to which one network can take on a specific responsibility on behalf of all other networks to avoid unnecessary duplication, to identify where expertise in any one network may serve other networks, and to develop a long-term strategy for the evolution of these networks that clarifies to funding agencies where new investment is required. This presentation will briefly summarise the key characteristics of each network listed above, adopt a matrix approach to identify commonalities and, in particular, where there may be a danger of duplication of effort, and where gaps between the networks may be compromising the services that these networks are expected to collectively deliver to the global atmospheric and climate science research communities. The presentation will also examine where sharing of data and tools between networks may result in a more efficient delivery of records of essential climate variables to the global research community. There are aspects of underpinning research that are needed across all of these networks, such as laboratory spectroscopy, that often do not receive the attention they deserve. The presentation will also seek to identify where that underpinning research is lacking.
Semantic integration to identify overlapping functional modules in protein interaction networks
Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong
2007-01-01
Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343
Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim
2016-01-01
The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.
Overload-based cascades on multiplex networks and effects of inter-similarity
Zhou, Dong
2017-01-01
Although cascading failures caused by overload on interdependent/interconnected networks have been studied in the recent years, the effect of overlapping links (inter-similarity) on robustness to such cascades in coupled networks is not well understood. This is an important issue since shared links exist in many real-world coupled networks. In this paper, we propose a new model for load-based cascading failures in multiplex networks. We leverage it to compare different network structures, coupling schemes, and overload rules. More importantly, we systematically investigate the impact of inter-similarity on the robustness of the whole system under an initial intentional attack. Surprisingly, we find that inter-similarity can have a negative impact on robustness to overload cascades. To the best of our knowledge, we are the first to report the competition between the positive and the negative impacts of overlapping links on the robustness of coupled networks. These results provide useful suggestions for designing robust coupled traffic systems. PMID:29252988
2013-01-01
Background In recent years, various types of cellular networks have penetrated biology and are nowadays used omnipresently for studying eukaryote and prokaryote organisms. Still, the relation and the biological overlap among phenomenological and inferential gene networks, e.g., between the protein interaction network and the gene regulatory network inferred from large-scale transcriptomic data, is largely unexplored. Results We provide in this study an in-depth analysis of the structural, functional and chromosomal relationship between a protein-protein network, a transcriptional regulatory network and an inferred gene regulatory network, for S. cerevisiae and E. coli. Further, we study global and local aspects of these networks and their biological information overlap by comparing, e.g., the functional co-occurrence of Gene Ontology terms by exploiting the available interaction structure among the genes. Conclusions Although the individual networks represent different levels of cellular interactions with global structural and functional dissimilarities, we observe crucial functions of their network interfaces for the assembly of protein complexes, proteolysis, transcription, translation, metabolic and regulatory interactions. Overall, our results shed light on the integrability of these networks and their interfacing biological processes. PMID:23663484
A game theoretic algorithm to detect overlapping community structure in networks
NASA Astrophysics Data System (ADS)
Zhou, Xu; Zhao, Xiaohui; Liu, Yanheng; Sun, Geng
2018-04-01
Community detection can be used as an important technique for product and personalized service recommendation. A game theory based approach to detect overlapping community structure is introduced in this paper. The process of the community formation is converted into a game, when all agents (nodes) cannot improve their own utility, the game process will be terminated. The utility function is composed of a gain and a loss function and we present a new gain function in this paper. In addition, different from choosing action randomly among join, quit and switch for each agent to get new label, two new strategies for each agent to update its label are designed during the game, and the strategies are also evaluated and compared for each agent in order to find its best result. The overlapping community structure is naturally presented when the stop criterion is satisfied. The experimental results demonstrate that the proposed algorithm outperforms other similar algorithms for detecting overlapping communities in networks.
ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains
Canova, Carlos; Denker, Michael; Gerstein, George; Helias, Moritz
2016-01-01
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity. PMID:27420734
Model Information Exchange System (MIXS).
DOT National Transportation Integrated Search
2013-08-01
Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...
Competitive STDP Learning of Overlapping Spatial Patterns.
Krunglevicius, Dalius
2015-08-01
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.
Definition and characterization of an extended social-affective default network.
Amft, Maren; Bzdok, Danilo; Laird, Angela R; Fox, Peter T; Schilbach, Leonhard; Eickhoff, Simon B
2015-03-01
Recent evidence suggests considerable overlap between the default mode network (DMN) and regions involved in social, affective and introspective processes. We considered these overlapping regions as the social-affective part of the DMN. In this study, we established a robust mapping of the underlying brain network formed by these regions and those strongly connected to them (the extended social-affective default network). We first seeded meta-analytic connectivity modeling and resting-state analyses in the meta-analytically defined DMN regions that showed statistical overlap with regions associated with social and affective processing. Consensus connectivity of each seed was subsequently delineated by a conjunction across both connectivity analyses. We then functionally characterized the ensuing regions and performed several cluster analyses. Among the identified regions, the amygdala/hippocampus formed a cluster associated with emotional processes and memory functions. The ventral striatum, anterior cingulum, subgenual cingulum and ventromedial prefrontal cortex formed a heterogeneous subgroup associated with motivation, reward and cognitive modulation of affect. Posterior cingulum/precuneus and dorsomedial prefrontal cortex were associated with mentalizing, self-reference and autobiographic information. The cluster formed by the temporo-parietal junction and anterior middle temporal sulcus/gyrus was associated with language and social cognition. Taken together, the current work highlights a robustly interconnected network that may be central to introspective, socio-affective, that is, self- and other-related mental processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Guangsheng; Chen, Lei; Wang, Jiangxin
2014-11-03
Although recognized as a promising microbial cell factory for producing biofuels, current productivity in cyanobacterial systems is low. To make the processes economically feasible, one of the hurdles, which need to be overcome is the low tolerance of hosts to toxic biofuels. Meanwhile, little information is available regarding the cellular responses to biofuels stress in cyanobacteria, which makes it challenging for tolerance engineering. Using large proteomic datasets of Synechocystis under various biofuels stress and environmental perturbation, a protein co-expression network was first constructed and then combined with the experimentally determined protein–protein interaction network. Proteins with statistically higher topological overlap inmore » the integrated network were identified as common responsive proteins to both biofuels stress and environmental perturbations. In addition, a weighted gene co-expression network analysis was performed to distinguish unique responses to biofuels from those to environmental perturbations and to uncover metabolic modules and proteins uniquely associated with biofuels stress. The results showed that biofuel-specific proteins and modules were enriched in several functional categories, including photosynthesis, carbon fixation, and amino acid metabolism, which may represent potential key signatures for biofuels stress responses in Synechocystis. Network-based analysis allowed determination of the responses specifically related to biofuels stress, and the results constituted an important knowledge foundation for tolerance engineering against biofuels in Synechocystis.« less
How to Compress Sequential Memory Patterns into Periodic Oscillations: General Reduction Rules
Zhang, Kechen
2017-01-01
A neural network with symmetric reciprocal connections always admits a Lyapunov function, whose minima correspond to the memory states stored in the network. Networks with suitable asymmetric connections can store and retrieve a sequence of memory patterns, but the dynamics of these networks cannot be characterized as readily as that of the symmetric networks due to the lack of established general methods. Here, a reduction method is developed for a class of asymmetric attractor networks that store sequences of activity patterns as associative memories, as in a Hopfield network. The method projects the original activity pattern of the network to a low-dimensional space such that sequential memory retrievals in the original network correspond to periodic oscillations in the reduced system. The reduced system is self-contained and provides quantitative information about the stability and speed of sequential memory retrievals in the original network. The time evolution of the overlaps between the network state and the stored memory patterns can also be determined from extended reduced systems. The reduction procedure can be summarized by a few reduction rules, which are applied to several network models, including coupled networks and networks with time-delayed connections, and the analytical solutions of the reduced systems are confirmed by numerical simulations of the original networks. Finally, a local learning rule that provides an approximation to the connection weights involving the pseudoinverse is also presented. PMID:24877729
Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M
2017-05-01
Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.
Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim
2015-03-01
Epilepsy is increasingly recognized as a network disorder, but the spatial relationship between ictal and interictal networks is still largely unexplored. In this work, we compared hemodynamic changes related to seizures and interictal spikes on a whole brain scale. Twenty-eight patients with refractory focal epilepsy (14 temporal and 14 extratemporal lobe) underwent both subtraction ictal single photon emission computed tomography (SPECT) coregistered to magnetic resonance imaging (MRI) (SISCOM) and spike-related electroencephalography (EEG-functional MRI (fMRI). SISCOM visualized relative perfusion changes during seizures, whereas EEG-fMRI mapped blood oxygen level-dependent (BOLD) changes related to spikes. Similarity between statistical maps of both modalities was analyzed per patient using the following two measures: (1) correlation between unthresholded statistical maps (Pearson's correlation coefficient) and (2) overlap between thresholded images (Dice coefficient). Overlap was evaluated at a regional level, for hyperperfusions and activations and for hypoperfusions and deactivations separately, using different thresholds. Nonparametric permutation tests were applied to assess statistical significance (p ≤ 0.05). We found significant and positive correlations between hemodynamic changes related to seizures and spikes in 27 (96%) of 28 cases (median correlation coefficient 0.29 [range -0.12 to 0.62]). In 20 (71%) of 28 cases, spatial overlap between hyperperfusion on SISCOM and activation on EEG-fMRI was significantly larger than expected by chance. Congruent changes were not restricted to the territory of the presumed epileptogenic zone, but could be seen at distant sites (e.g., cerebellum and basal ganglia). Overlap between ictal hypoperfusion and interictal deactivation was statistically significant in 22 (79%) of 28 patients. Despite the high rate of congruence, discrepancies were observed for both modalities. We conclude that hemodynamic changes related to seizures and spikes varied spatially with the same sign and within a common network. Overlap was present in regions nearby and distant from discharge origin. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Modeling of chromosome intermingling by partially overlapping uniform random polygons.
Blackstone, T; Scharein, R; Borgo, B; Varela, R; Diao, Y; Arsuaga, J
2011-03-01
During the early phase of the cell cycle the eukaryotic genome is organized into chromosome territories. The geometry of the interface between any two chromosomes remains a matter of debate and may have important functional consequences. The Interchromosomal Network model (introduced by Branco and Pombo) proposes that territories intermingle along their periphery. In order to partially quantify this concept we here investigate the probability that two chromosomes form an unsplittable link. We use the uniform random polygon as a crude model for chromosome territories and we model the interchromosomal network as the common spatial region of two overlapping uniform random polygons. This simple model allows us to derive some rigorous mathematical results as well as to perform computer simulations easily. We find that the probability that one uniform random polygon of length n that partially overlaps a fixed polygon is bounded below by 1 − O(1/√n). We use numerical simulations to estimate the dependence of the linking probability of two uniform random polygons (of lengths n and m, respectively) on the amount of overlapping. The degree of overlapping is parametrized by a parameter [Formula: see text] such that [Formula: see text] indicates no overlapping and [Formula: see text] indicates total overlapping. We propose that this dependence relation may be modeled as f (ε, m, n) = [Formula: see text]. Numerical evidence shows that this model works well when [Formula: see text] is relatively large (ε ≥ 0.5). We then use these results to model the data published by Branco and Pombo and observe that for the amount of overlapping observed experimentally the URPs have a non-zero probability of forming an unsplittable link.
Species interactions in occurrence data for a community of tick-transmitted pathogens
Estrada-Peña, Agustín; de la Fuente, José
2016-01-01
Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970–2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213
Guo, Wenbin; Cui, Xilong; Liu, Feng; Chen, Jindong; Xie, Guangrong; Wu, Renrong; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping
2018-01-01
Abnormal default-mode network (DMN) homogeneity has been involved in the neurophysiology of major depressive disorder (MDD) with inconsistent findings. The inconsistency may be due to clinical and methodological variability, and the reproducibility of the findings is limited. The present study aimed to examine alterations of the DMN homogeneity in two independent samples of patients with first-episode, drug-naive MDD. The samples included 59 patients with MDD and 31 comparison subjects from Sample 1 and 29 patients with MDD and 24 comparison subjects from Sample 2. Network homogeneity (NH) was computed with an overlapping technique, which was employed to define brain regions with abnormal NH common to the MDD samples. Compared with comparison subjects, patients with MDD exhibited increased NH in an overlapped brain region of the left superior medial prefrontal cortex (MPFC). No correlations were found between abnormal NH and HAMD total/subscale scores in the patients of each sample and in the combined patients from both samples. This study is the first to examine alterations of DMN homogeneity in first-episode, drug-naive patients with MDD in two independent samples by using an overlapping technique. Patients with MDD exhibit increased NH in an overlapped region in the anterior DMN. The present study thus highlights the importance of the DMN in the neurophysiology of MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Non-overlapping Neural Networks in Hydra vulgaris.
Dupre, Christophe; Yuste, Rafael
2017-04-24
To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies. Published by Elsevier Ltd.
Benefits of Sharing Detections for Networked Track Initiation in Anti-Submarine Warfare
2008-01-01
34 since, for the arrangement of circles adopted herein (Fig. 6, p. 328H ), each additional circle from the third to the sixth adds two lenticular ...seventh adds two lenses and a circular triangle, which is the region of overlap of lenses. Hence, for every overlapping pair of lenticular areas
Epidemic spreading and immunization strategy in multiplex networks
NASA Astrophysics Data System (ADS)
Alvarez Zuzek, Lucila G.; Buono, Camila; Braunstein, Lidia A.
2015-09-01
A more connected world has brought major consequences such as facilitate the spread of diseases all over the world to quickly become epidemics, reason why researchers are concentrated in modeling the propagation of epidemics and outbreaks in multilayer networks. In this networks all nodes interact in different layers with different type of links. However, in many scenarios such as in the society, a multiplex network framework is not completely suitable since not all individuals participate in all layers. In this paper, we use a partially overlapped, multiplex network where only a fraction of the individuals are shared by the layers. We develop a mitigation strategy for stopping a disease propagation, considering the Susceptible-Infected- Recover model, in a system consisted by two layers. We consider a random immunization in one of the layers and study the effect of the overlapping fraction in both, the propagation of the disease and the immunization strategy. Using branching theory, we study this scenario theoretically and via simulations and find a lower epidemic threshold than in the case without strategy.
Evolving Digital Ecological Networks
Wagner, Aaron P.; Ofria, Charles
2013-01-01
“It is hard to realize that the living world as we know it is just one among many possibilities” [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved). PMID:23533370
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Geng, Haijiang; Li, Zhihui; Li, Jiabing; Lu, Tao; Yan, Fangrong
2015-01-01
BACKGROUND Personalized cancer treatments depend on the determination of a patient's genetic status according to known genetic profiles for which targeted treatments exist. Such genetic profiles must be scientifically validated before they is applied to general patient population. Reproducibility of findings that support such genetic profiles is a fundamental challenge in validation studies. The percentage of overlapping genes (POG) criterion and derivative methods produce unstable and misleading results. Furthermore, in a complex disease, comparisons between different tumor subtypes can produce high POG scores that do not capture the consistencies in the functions. RESULTS We focused on the quality rather than the quantity of the overlapping genes. We defined the rank value of each gene according to importance or quality by PageRank on basis of a particular topological structure. Then, we used the p-value of the rank-sum of the overlapping genes (PRSOG) to evaluate the quality of reproducibility. Though the POG scores were low in different studies of the same disease, the PRSOG was statistically significant, which suggests that sets of differentially expressed genes might be highly reproducible. CONCLUSIONS Evaluations of eight datasets from breast cancer, lung cancer and four other disorders indicate that quality-based PRSOG method performs better than a quantity-based method. Our analysis of the components of the sets of overlapping genes supports the utility of the PRSOG method. PMID:26556852
Face Patch Resting State Networks Link Face Processing to Social Cognition
Schwiedrzik, Caspar M.; Zarco, Wilbert; Everling, Stefan; Freiwald, Winrich A.
2015-01-01
Faces transmit a wealth of social information. How this information is exchanged between face-processing centers and brain areas supporting social cognition remains largely unclear. Here we identify these routes using resting state functional magnetic resonance imaging in macaque monkeys. We find that face areas functionally connect to specific regions within frontal, temporal, and parietal cortices, as well as subcortical structures supporting emotive, mnemonic, and cognitive functions. This establishes the existence of an extended face-recognition system in the macaque. Furthermore, the face patch resting state networks and the default mode network in monkeys show a pattern of overlap akin to that between the social brain and the default mode network in humans: this overlap specifically includes the posterior superior temporal sulcus, medial parietal, and dorsomedial prefrontal cortex, areas supporting high-level social cognition in humans. Together, these results reveal the embedding of face areas into larger brain networks and suggest that the resting state networks of the face patch system offer a new, easily accessible venue into the functional organization of the social brain and into the evolution of possibly uniquely human social skills. PMID:26348613
Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network
Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.
2013-01-01
A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832
Human tracking over camera networks: a review
NASA Astrophysics Data System (ADS)
Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang
2017-12-01
In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.
Overlapping communities from dense disjoint and high total degree clusters
NASA Astrophysics Data System (ADS)
Zhang, Hongli; Gao, Yang; Zhang, Yue
2018-04-01
Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.
Ras trafficking, localization and compartmentalized signalling
Prior, Ian A.; Hancock, John F.
2012-01-01
Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes. PMID:21924373
Algebraic Approach for Recovering Topology in Distributed Camera Networks
2009-01-14
not valid for camera networks. Spatial sam- pling of plenoptic function [2] from a network of cameras is rarely i.i.d. (independent and identi- cally...coverage can be used to track and compare paths in a wireless camera network without any metric calibration information. In particular, these results can...edition edition, 2000. [14] A. Rahimi, B. Dunagan, and T. Darrell. Si- multaneous calibration and tracking with a network of non-overlapping sensors. In
Stringer, Clive; Beeknoo, Neeraj
2017-01-01
The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King’s College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A ‘core’ subnetwork containing only 13–17% of all edges channelled 83–90% of the patient flow, while an ‘ephemeral’ network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing. PMID:28968472
Mones, Enys; Stopczynski, Arkadiusz; Pentland, Alex 'Sandy'; Hupert, Nathaniel; Lehmann, Sune
2018-01-01
Targeted vaccination, whether to minimize the forward transmission of infectious diseases or their clinical impact, is one of the 'holy grails' of modern infectious disease outbreak response, yet it is difficult to achieve in practice due to the challenge of identifying optimal targets in real time. If interruption of disease transmission is the goal, targeting requires knowledge of underlying person-to-person contact networks. Digital communication networks may reflect not only virtual but also physical interactions that could result in disease transmission, but the precise overlap between these cyber and physical networks has never been empirically explored in real-life settings. Here, we study the digital communication activity of more than 500 individuals along with their person-to-person contacts at a 5-min temporal resolution. We then simulate different disease transmission scenarios on the person-to-person physical contact network to determine whether cyber communication networks can be harnessed to advance the goal of targeted vaccination for a disease spreading on the network of physical proximity. We show that individuals selected on the basis of their closeness centrality within cyber networks (what we call 'cyber-directed vaccination') can enhance vaccination campaigns against diseases with short-range (but not full-range) modes of transmission. © 2018 The Author(s).
Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.
Butakka, C M M; Ragonha, F H; Takeda, A M
2014-05-01
The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.
Communities and classes in symmetric fractals
NASA Astrophysics Data System (ADS)
Krawczyk, Małgorzata J.
2015-07-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-01-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly’s halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support. PMID:20396612
Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann
2009-06-01
Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.
Detection of communities with Naming Game-based methods
Ribeiro, Carlos Henrique Costa
2017-01-01
Complex networks are often organized in groups or communities of agents that share the same features and/or functions, and this structural organization is built naturally with the formation of the system. In social networks, we argue that the dynamic of linguistic interactions of agreement among people can be a crucial factor in generating this community structure, given that sharing opinions with another person bounds them together, and disagreeing constantly would probably weaken the relationship. We present here a computational model of opinion exchange that uncovers the community structure of a network. Our aim is not to present a new community detection method proper, but to show how a model of social communication dynamics can reveal the (simple and overlapping) community structure in an emergent way. Our model is based on a standard Naming Game, but takes into consideration three social features: trust, uncertainty and opinion preference, that are built over time as agents communicate among themselves. We show that the separate addition of each social feature in the Naming Game results in gradual improvements with respect to community detection. In addition, the resulting uncertainty and trust values classify nodes and edges according to role and position in the network. Also, our model has shown a degree of accuracy both for non-overlapping and overlapping communities that are comparable with most algorithms specifically designed for topological community detection. PMID:28797097
Scalable Management of Enterprise and Data-Center Networks
2011-09-01
To the best of our knowledge , there is no systematic and efficient solution for handling overlapping wildcard rules in network-wide flow- management ...and D. Maltz, “Unraveling the complexity of network management ,” in NSDI, 2009. [4] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan , “A...Scalable Management of Enterprise and Data-Center Networks Minlan Yu A Dissertation Presented to the Faculty of Princeton University in Candidacy for
Efficient large-scale graph data optimization for intelligent video surveillance
NASA Astrophysics Data System (ADS)
Shang, Quanhong; Zhang, Shujun; Wang, Yanbo; Sun, Chen; Wang, Zepeng; Zhang, Luming
2017-08-01
Society is rapidly accepting the use of a wide variety of cameras Location and applications: site traffic monitoring, parking Lot surveillance, car and smart space. These ones here the camera provides data every day in an analysis Effective way. Recent advances in sensor technology Manufacturing, communications and computing are stimulating.The development of new applications that can change the traditional Vision system incorporating universal smart camera network. This Analysis of visual cues in multi camera networks makes wide Applications ranging from smart home and office automation to large area surveillance and traffic surveillance. In addition, dense Camera networks, most of which have large overlapping areas of cameras. In the view of good research, we focus on sparse camera networks. One Sparse camera network using large area surveillance. As few cameras as possible, most cameras do not overlap Each other’s field of vision. This task is challenging Lack of knowledge of topology Network, the specific changes in appearance and movement Track different opinions of the target, as well as difficulties Understanding complex events in a network. In this review in this paper, we present a comprehensive survey of recent studies Results to solve the problem of topology learning, Object appearance modeling and global activity understanding sparse camera network. In addition, some of the current open Research issues are discussed.
Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.
Patel, Aniruddh D
2011-01-01
Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.
Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.
Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G
2011-07-23
The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P < 0.01, according to the ANOVA models, and a log(2)-fold change >2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P < 10(-8)) and regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P < 0.01 and log(2)-fold change >2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.
SGM-based seamline determination for urban orthophoto mosaicking
NASA Astrophysics Data System (ADS)
Pang, Shiyan; Sun, Mingwei; Hu, Xiangyun; Zhang, Zuxun
2016-02-01
Mosaicking is a key step in the production of digital orthophoto maps (DOMs), especially for large-scale urban orthophotos. During this step, manual intervention is commonly involved to avoid the case where the seamline crosses obvious objects (e.g., buildings), which causes geometric discontinuities on the DOMs. How to guide the seamline to avoid crossing obvious objects has become a popular topic in the field of photogrammetry and remote sensing. Thus, a new semi-global matching (SGM)-based method to guide seamline determination is proposed for urban orthophoto mosaicking in this study, which can greatly eliminate geometric discontinuities. The approximate epipolar geometry of the orthophoto pairs is first derived and proven, and the approximate epipolar image pair is then generated by rotating the two orthorectified images according to the parallax direction. A SGM algorithm is applied to their overlaps to obtain the corresponding pixel-wise disparity. According to a predefined disparity threshold, the overlap area is identified as the obstacle and non-obstacle areas. For the non-obstacle regions, Hilditch thinning algorithm is used to obtain the skeleton line, followed by Dijkstra's algorithm to search for the optimal path on the skeleton network as the seamline between two orthophotos. A whole seamline network is constructed based on the strip information recorded in flight. In the experimental section, the approximate epipolar geometric theory of the orthophoto is first analyzed and verified, and the effectiveness of the proposed method is then validated by comparing its results with the results of the geometry-based, OrthoVista, and orthoimage elevation synchronous model (OESM)-based methods.
Xu, Song; Liu, Renwang; Da, Yurong
2018-06-05
This study compared tumor-related signaling pathways with known compounds to determine potential agents for lung adenocarcinoma (LUAD) treatment. Kyoto Encyclopedia of Genes and Genomes signaling pathway analyses were performed based on LUAD differentially expressed genes from The Cancer Genome Atlas (TCGA) project and genotype-tissue expression controls. These results were compared to various known compounds using the Connectivity Mapping dataset. The clinical significance of the hub genes identified by overlapping pathway enrichment analysis was further investigated using data mining from multiple sources. A drug-pathway network for LUAD was constructed, and molecular docking was carried out. After the integration of 57 LUAD-related pathways and 35 pathways affected by small molecules, five overlapping pathways were revealed. Among these five pathways, the p53 signaling pathway was the most significant, with CCNB1, CCNB2, CDK1, CDKN2A, and CHEK1 being identified as hub genes. The p53 signaling pathway is implicated as a risk factor for LUAD tumorigenesis and survival. A total of 88 molecules significantly inhibiting the five LUAD-related oncogenic pathways were involved in the LUAD drug-pathway network. Daunorubicin, mycophenolic acid, and pyrvinium could potentially target the hub gene CHEK1 directly. Our study highlights the critical pathways that should be targeted in the search for potential LUAD treatments, most importantly, the p53 signaling pathway. Some compounds, such as ciclopirox and AG-028671, may have potential roles for LUAD treatment but require further experimental verification. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis
Wilmanns, Matthias; Gräter, Frauke
2009-01-01
The role of mechanical force in cellular processes is increasingly revealed by single molecule experiments and simulations of force-induced transitions in proteins. How the applied force propagates within proteins determines their mechanical behavior yet remains largely unknown. We present a new method based on molecular dynamics simulations to disclose the distribution of strain in protein structures, here for the newly determined high-resolution crystal structure of I27, a titin immunoglobulin (IG) domain. We obtain a sparse, spatially connected, and highly anisotropic mechanical network. This allows us to detect load-bearing motifs composed of interstrand hydrogen bonds and hydrophobic core interactions, including parts distal to the site to which force was applied. The role of the force distribution pattern for mechanical stability is tested by in silico unfolding of I27 mutants. We then compare the observed force pattern to the sparse network of coevolved residues found in this family. We find a remarkable overlap, suggesting the force distribution to reflect constraints for the evolutionary design of mechanical resistance in the IG family. The force distribution analysis provides a molecular interpretation of coevolution and opens the road to the study of the mechanism of signal propagation in proteins in general. PMID:19282960
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A; Case, James T; Hripcsak, George
2012-02-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. "Complex" concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher's exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. Copyright © 2011 Elsevier Inc. All rights reserved.
Auditing Complex Concepts of SNOMED using a Refined Hierarchical Abstraction Network
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A.; Case, James T.; Hripcsak, George
2012-01-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. “Complex” concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. PMID:21907827
Park, Min Tae M; Raznahan, Armin; Shaw, Philip; Gogtay, Nitin; Lerch, Jason P; Chakravarty, M Mallar
2018-05-01
There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.
Egg production forecasting: Determining efficient modeling approaches.
Ahmad, H A
2011-12-01
Several mathematical or statistical and artificial intelligence models were developed to compare egg production forecasts in commercial layers. Initial data for these models were collected from a comparative layer trial on commercial strains conducted at the Poultry Research Farms, Auburn University. Simulated data were produced to represent new scenarios by using means and SD of egg production of the 22 commercial strains. From the simulated data, random examples were generated for neural network training and testing for the weekly egg production prediction from wk 22 to 36. Three neural network architectures-back-propagation-3, Ward-5, and the general regression neural network-were compared for their efficiency to forecast egg production, along with other traditional models. The general regression neural network gave the best-fitting line, which almost overlapped with the commercial egg production data, with an R(2) of 0.71. The general regression neural network-predicted curve was compared with original egg production data, the average curves of white-shelled and brown-shelled strains, linear regression predictions, and the Gompertz nonlinear model. The general regression neural network was superior in all these comparisons and may be the model of choice if the initial overprediction is managed efficiently. In general, neural network models are efficient, are easy to use, require fewer data, and are practical under farm management conditions to forecast egg production.
Park, Min Tae M; Raznahan, Armin; Shaw, Philip; Gogtay, Nitin; Lerch, Jason P; Chakravarty, M Mallar
2018-02-05
There is evidence suggesting neuropsychiatric disorders share genomic, cognitive and clinical features. Here, we ask if autism-spectrum disorders (ASD), attention-deficit/hyperactivity disorder (ADHD) and schizophrenia share neuroanatomical variations. First, we used measures of cortical anatomy to estimate spatial overlap of neuroanatomical variation using univariate methods. Next, we developed a novel methodology to determine whether cortical deficits specifically target or are "enriched" within functional resting-state networks. We found cortical anomalies were preferentially enriched across functional networks rather than clustering spatially. Specifically, cortical thickness showed significant enrichment between patients with ASD and those with ADHD in the default mode network, between patients with ASD and those with schizophrenia in the frontoparietal and limbic networks, and between patients with ADHD and those with schizophrenia in the ventral attention network. Networks enriched in cortical thickness anomalies were also strongly represented in functional MRI results (Neurosynth; r = 0.64, p = 0.032). We did not account for variable symptom dimensions and severity in patient populations, and our cross-sectional design prevented longitudinal analyses of developmental trajectories. These findings suggest that common deficits across neuropsychiatric disorders cannot simply be characterized as arising out of local changes in cortical grey matter, but rather as entities of both local and systemic alterations targeting brain networks.
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
Ter Wal, Anne L.J.; Alexy, Oliver; Block, Jörn; Sandner, Philipp G.
2016-01-01
Open networks give actors non-redundant information that is diverse, while closed networks offer redundant information that is easier to interpret. Integrating arguments about network structure and the similarity of actors’ knowledge, we propose two types of network configurations that combine diversity and ease of interpretation. Closed-diverse networks offer diversity in actors’ knowledge domains and shared third-party ties to help in interpreting that knowledge. In open-specialized networks, structural holes offer diversity, while shared interpretive schema and overlap between received information and actors’ prior knowledge help in interpreting new information without the help of third parties. In contrast, actors in open-diverse networks suffer from information overload due to the lack of shared schema or overlapping prior knowledge for the interpretation of diverse information, and actors in closed-specialized networks suffer from overembeddedness because they cannot access diverse information. Using CrunchBase data on early-stage venture capital investments in the U.S. information technology sector, we test the effect of investors’ social capital on the success of their portfolio ventures. We find that ventures have the highest chances of success if their syndicating investors have either open-specialized or closed-diverse networks. These effects are manifested beyond the direct effects of ventures’ or investors’ quality and are robust to controlling for the possibility that certain investors could have chosen more promising ventures at the time of first funding. PMID:27499546
Net Venn - An integrated network analysis web platform for gene lists
USDA-ARS?s Scientific Manuscript database
Many lists containing biological identifiers such as gene lists have been generated in various genomics projects. Identifying the overlap among gene lists can enable us to understand the similarities and differences between the datasets. Here, we present an interactome network-based web application...
The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders.
Boschloo, Lynn; van Borkulo, Claudia D; Rhemtulla, Mijke; Keyes, Katherine M; Borsboom, Denny; Schoevers, Robert A
2015-01-01
Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from the causal interplay between psychiatric symptoms and focuses specifically on these symptoms and their complex associations. By using a sophisticated network analysis technique, this study constructed an empirically based network structure of 120 psychiatric symptoms of twelve major DSM-IV diagnoses using cross-sectional data of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, second wave; N = 34,653). The resulting network demonstrated that symptoms within the same diagnosis showed differential associations and indicated that the strategy of summing symptoms, as in current classification systems, leads to loss of information. In addition, some symptoms showed strong connections with symptoms of other diagnoses, and these specific symptom pairs, which both concerned overlapping and non-overlapping symptoms, may help to explain the comorbidity across diagnoses. Taken together, our findings indicated that psychopathology is very complex and can be more adequately captured by sophisticated network models than current classification systems. The network approach is, therefore, promising in improving our understanding of psychopathology and moving our field forward.
Quinlan, Devin S.; Raman, Rahul; Tharakaraman, Kannan; Subramanian, Vidya; del Hierro, Gabriella; Sasisekharan, Ram
2017-01-01
Recently, progress has been made in the development of vaccines and monoclonal antibody cocktails that target the Ebola coat glycoprotein (GP). Based on the mutation rates for Ebola virus given its natural sequence evolution, these treatment strategies are likely to impose additional selection pressure to drive acquisition of mutations in GP that escape neutralization. Given the high degree of sequence conservation among GP of Ebola viruses, it would be challenging to determine the propensity of acquiring mutations in response to vaccine or treatment with one or a cocktail of monoclonal antibodies. In this study, we analyzed the mutability of each residue using an approach that captures the structural constraints on mutability based on the extent of its inter-residue interaction network within the three-dimensional structure of the trimeric GP. This analysis showed two distinct clusters of highly networked residues along the GP1-GP2 interface, part of which overlapped with epitope surfaces of known neutralizing antibodies. This network approach also permitted us to identify additional residues in the network of the known hotspot residues of different anti-Ebola antibodies that would impact antibody-epitope interactions. PMID:28397835
NASA Astrophysics Data System (ADS)
Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen
2011-01-01
We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.
Improvement of the Hopfield Neural Network by MC-Adaptation Rule
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Zhao, Hong
2006-06-01
We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.
Automatic Camera Calibration Using Multiple Sets of Pairwise Correspondences.
Vasconcelos, Francisco; Barreto, Joao P; Boyer, Edmond
2018-04-01
We propose a new method to add an uncalibrated node into a network of calibrated cameras using only pairwise point correspondences. While previous methods perform this task using triple correspondences, these are often difficult to establish when there is limited overlap between different views. In such challenging cases we must rely on pairwise correspondences and our solution becomes more advantageous. Our method includes an 11-point minimal solution for the intrinsic and extrinsic calibration of a camera from pairwise correspondences with other two calibrated cameras, and a new inlier selection framework that extends the traditional RANSAC family of algorithms to sampling across multiple datasets. Our method is validated on different application scenarios where a lack of triple correspondences might occur: addition of a new node to a camera network; calibration and motion estimation of a moving camera inside a camera network; and addition of views with limited overlap to a Structure-from-Motion model.
Information-based self-organization of sensor nodes of a sensor network
Ko, Teresa H [Castro Valley, CA; Berry, Nina M [Tracy, CA
2011-09-20
A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.
Designing Networked Improvement in a Small-College Context
ERIC Educational Resources Information Center
Rachford, Jennifer L.; Brown, Travis M.; Sambolin, Hector L., Jr.; Seligman, Lenny
2017-01-01
This chapter demonstrates the complexity of pedagogical and curricular change as it unfolds through several overlapping phases of increasingly coordinated reflection and action around STEM initiatives at Pomona College. It argues for a networked model of research and practice, drawing on theory and lessons from improvement science and highlighting…
Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2018-06-01
Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.
Reich, Stephanie M; Subrahmanyam, Kaveri; Espinoza, Guadalupe
2012-03-01
Many new and important developmental issues are encountered during adolescence, which is also a time when Internet use becomes increasingly popular. Studies have shown that adolescents are using these online spaces to address developmental issues, especially needs for intimacy and connection to others. Online communication with its potential for interacting with unknown others, may put teens at increased risk. Two hundred and fifty-one high school students completed an in-person survey, and 126 of these completed an additional online questionnaire about how and why they use the Internet, their activities on social networking sites (e.g., Facebook, MySpace) and their reasons for participation, and how they perceive these online spaces to impact their friendships. To examine the extent of overlap between online and offline friends, participants were asked to list the names of their top interaction partners offline and online (Facebook and instant messaging). Results reveal that adolescents mainly use social networking sites to connect with others, in particular with people known from offline contexts. While adolescents report little monitoring by their parents, there was no evidence that teens are putting themselves at risk by interacting with unknown others. Instead, adolescents seem to use the Internet, especially social networking sites, to connect with known others. While the study found moderate overlap between teens' closest online and offline friends, the patterns suggest that adolescents use online contexts to strengthen offline relationships. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Ter Wal, Anne L J; Alexy, Oliver; Block, Jörn; Sandner, Philipp G
2016-09-01
Open networks give actors non-redundant information that is diverse, while closed networks offer redundant information that is easier to interpret. Integrating arguments about network structure and the similarity of actors' knowledge, we propose two types of network configurations that combine diversity and ease of interpretation. Closed-diverse networks offer diversity in actors' knowledge domains and shared third-party ties to help in interpreting that knowledge. In open-specialized networks, structural holes offer diversity, while shared interpretive schema and overlap between received information and actors' prior knowledge help in interpreting new information without the help of third parties. In contrast, actors in open-diverse networks suffer from information overload due to the lack of shared schema or overlapping prior knowledge for the interpretation of diverse information, and actors in closed-specialized networks suffer from overembeddedness because they cannot access diverse information. Using CrunchBase data on early-stage venture capital investments in the U.S. information technology sector, we test the effect of investors' social capital on the success of their portfolio ventures. We find that ventures have the highest chances of success if their syndicating investors have either open-specialized or closed-diverse networks. These effects are manifested beyond the direct effects of ventures' or investors' quality and are robust to controlling for the possibility that certain investors could have chosen more promising ventures at the time of first funding.
Hu, Chao; Wang, Qianxin; Wang, Zhongyuan; Hernández Moraleda, Alberto
2018-01-01
Currently, five new-generation BeiDou (BDS-3) experimental satellites are working in orbit and broadcast B1I, B3I, and other new signals. Precise satellite orbit determination of the BDS-3 is essential for the future global services of the BeiDou system. However, BDS-3 experimental satellites are mainly tracked by the international GNSS Monitoring and Assessment Service (iGMAS) network. Under the current constraints of the limited data sources and poor data quality of iGMAS, this study proposes an improved cycle-slip detection and repair algorithm, which is based on a polynomial prediction of ionospheric delays. The improved algorithm takes the correlation of ionospheric delays into consideration to accurately estimate and repair cycle slips in the iGMAS data. Moreover, two methods of BDS-3 experimental satellite orbit determination, namely, normal equation stacking (NES) and step-by-step (SS), are designed to strengthen orbit estimations and to make full use of the BeiDou observations in different tracking networks. In addition, a method to improve computational efficiency based on a matrix eigenvalue decomposition algorithm is derived in the NES. Then, one-year of BDS-3 experimental satellite precise orbit determinations were conducted based on iGMAS and Multi-GNSS Experiment (MGEX) networks. Furthermore, the orbit accuracies were analyzed from the discrepancy of overlapping arcs and satellite laser range (SLR) residuals. The results showed that the average three-dimensional root-mean-square error (3D RMS) of one-day overlapping arcs for BDS-3 experimental satellites (C31, C32, C33, and C34) acquired by NES and SS are 31.0, 36.0, 40.3, and 50.1 cm, and 34.6, 39.4, 43.4, and 55.5 cm, respectively; the RMS of SLR residuals are 55.1, 49.6, 61.5, and 70.9 cm and 60.5, 53.6, 65.8, and 73.9 cm, respectively. Finally, one month of observations were used in four schemes of BDS-3 experimental satellite orbit determination to further investigate the reliability and advantages of the improved methods. It was suggested that the scheme with improved cycle-slip detection and repair algorithm based on NES was optimal, which improved the accuracy of BDS-3 experimental satellite orbits by 34.07%, 41.05%, 72.29%, and 74.33%, respectively, compared with the widely-used strategy. Therefore, improved methods for the BDS-3 experimental satellites proposed in this study are very beneficial for the determination of new-generation BeiDou satellite precise orbits. PMID:29724062
NASA Astrophysics Data System (ADS)
Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.
2012-03-01
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. Electronic supplementary information (ESI) available: Includes methods and transmission spectra of nanowire films. See DOI: 10.1039/c2nr30126a
Measuring the extent of overlaps in protected area designations
Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi
2017-01-01
Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world’s protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county’s protected area extent that is under more than one designation. Our findings show that almost a quarter of the world’s protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation. PMID:29176888
Measuring the extent of overlaps in protected area designations.
Deguignet, Marine; Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi
2017-01-01
Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world's protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county's protected area extent that is under more than one designation. Our findings show that almost a quarter of the world's protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation.
Adaptations in a hierarchical food web of southeastern Lake Michigan
Krause, Ann E.; Frank, Ken A.; Jones, Michael L.; Nalepa, Thomas F.; Barbiero, Richard P.; Madenjian, Charles P.; Agy, Megan; Evans, Marlene S.; Taylor, William W.; Mason, Doran M.; Léonard, Nancy J.
2009-01-01
Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts from one time point to a second time point in response to multiple perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second one was that a system's properties change at a slower rate than its subsystems’ properties. We used Shannon's equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density). We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account. We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystem with more non-overlapping distributions in food web properties was the subsystem that contained primarily benthic taxa, contrary to expectations that the identified major perturbations (lower phosphorous inputs and invasive species) would more greatly affect the subsystem containing primarily pelagic taxa. Future food-web research should employ rigorous statistical analysis and incorporate uncertainty in food web properties for a better understanding of how ecological networks adapt.
Common and distinct networks for self-referential and social stimulus processing in the human brain.
Herold, Dorrit; Spengler, Stephanie; Sajonz, Bastian; Usnich, Tatiana; Bermpohl, Felix
2016-09-01
Self-referential processing is a complex cognitive function, involving a set of implicit and explicit processes, complicating investigation of its distinct neural signature. The present study explores the functional overlap and dissociability of self-referential and social stimulus processing. We combined an established paradigm for explicit self-referential processing with an implicit social stimulus processing paradigm in one fMRI experiment to determine the neural effects of self-relatedness and social processing within one study. Overlapping activations were found in the orbitofrontal cortex and in the intermediate part of the precuneus. Stimuli judged as self-referential specifically activated the posterior cingulate cortex, the ventral medial prefrontal cortex, extending into anterior cingulate cortex and orbitofrontal cortex, the dorsal medial prefrontal cortex, the ventral and dorsal lateral prefrontal cortex, the left inferior temporal gyrus, and occipital cortex. Social processing specifically involved the posterior precuneus and bilateral temporo-parietal junction. Taken together, our data show, not only, first, common networks for both processes in the medial prefrontal and the medial parietal cortex, but also, second, functional differentiations for self-referential processing versus social processing: an anterior-posterior gradient for social processing and self-referential processing within the medial parietal cortex and specific activations for self-referential processing in the medial and lateral prefrontal cortex and for social processing in the temporo-parietal junction.
Spontaneous activity in default-mode network predicts ascription of self-relatedness to stimuli.
Qin, Pengmin; Grimm, Simone; Duncan, Niall W; Fan, Yan; Huang, Zirui; Lane, Timothy; Weng, Xuchu; Bajbouj, Malek; Northoff, Georg
2016-04-01
Spontaneous activity levels prior to stimulus presentation can determine how that stimulus will be perceived. It has also been proposed that such spontaneous activity, particularly in the default-mode network (DMN), is involved in self-related processing. We therefore hypothesised that pre-stimulus activity levels in the DMN predict whether a stimulus is judged as self-related or not. Participants were presented in the MRI scanner with a white noise stimulus that they were instructed contained their name or another. They then had to respond with which name they thought they heard. Regions where there was an activity level difference between self and other response trials 2 s prior to the stimulus being presented were identified. Pre-stimulus activity levels were higher in the right temporoparietal junction, the right temporal pole and the left superior temporal gyrus in trials where the participant responded that they heard their own name than trials where they responded that they heard another. Pre-stimulus spontaneous activity levels in particular brain regions, largely overlapping with the DMN, predict the subsequent judgement of stimuli as self-related. This extends our current knowledge of self-related processing and its apparent relationship with intrinsic brain activity in what can be termed a rest-self overlap. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Overlap and distinction between measures of insight and self-stigma.
Hasson-Ohayon, Ilanit
2018-05-24
Multiple studies on insight into one's illness and self-stigma among patients with serious mental illness and their relatives have shown that these constructs are related to one another and that they affect outcome. However, a critical exploration of the items used to assess both constructs raises questions with regard to the possible overlapping and centrality of items. The current study used five different samples to explore the possible overlap and distinction between insight and self-stigma, and to identify central items, via network analyses and principal component factor analysis. Findings from the network analyses showed overlap between insight and self-stigma exist with a relatively clearer observational distinction between the constructs among the two parent samples in comparison to the patient samples. Principal component factor analysis constrained to two factors showed that a relatively high percentage of items were not loaded on either factor, and in a few datasets, several insight items were loaded on the self-stigma scale and vice versa. The author discusses implications for research and calls for rethinking the way insight is assessed. Clinical implications are also discussed in reference to central items of social isolation, future worries and stereotype endorsement among the different study groups. Copyright © 2018 Elsevier B.V. All rights reserved.
Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe
2016-07-01
Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI. Copyright © 2016 Elsevier Inc. All rights reserved.
The Device Centric Communication System for 5G Networks
NASA Astrophysics Data System (ADS)
Biswash, S. K.; Jayakody, D. N. K.
2017-01-01
The Fifth Generation Communication (5G) networks have several functional features such as: Massive Multiple Input and Multiple Output (MIMO), Device centric data and voice support, Smarter-device communications, etc. The objective for 5G networks is to gain the 1000x more throughput, 10x spectral efficiency, 100 x more energy efficiency than existing technologies. The 5G system will provide the balance between the Quality of Experience (QoE) and the Quality of Service (QoS), without compromising the user benefit. The data rate has been the key metric for wireless QoS; QoE deals with the delay and throughput. In order to realize a balance between the QoS and QoE, we propose a cellular Device centric communication methodology for the overlapping network coverage area in the 5G communication system. The multiple beacon signals mobile tower refers to an overlapping network area, and a user must be forwarded to the next location area. To resolve this issue, we suggest the user centric methodology (without Base Station interface) to handover the device in the next area, until the users finalize the communication. The proposed method will reduce the signalling cost and overheads for the communication.
Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.
Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki
2015-05-01
Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
Quantifying the propagation of distress and mental disorders in social networks.
Scatà, Marialisa; Di Stefano, Alessandro; La Corte, Aurelio; Liò, Pietro
2018-03-22
Heterogeneity of human beings leads to think and react differently to social phenomena. Awareness and homophily drive people to weigh interactions in social multiplex networks, influencing a potential contagion effect. To quantify the impact of heterogeneity on spreading dynamics, we propose a model of coevolution of social contagion and awareness, through the introduction of statistical estimators, in a weighted multiplex network. Multiplexity of networked individuals may trigger propagation enough to produce effects among vulnerable subjects experiencing distress, mental disorder, which represent some of the strongest predictors of suicidal behaviours. The exposure to suicide is emotionally harmful, since talking about it may give support or inadvertently promote it. To disclose the complex effect of the overlapping awareness on suicidal ideation spreading among disordered people, we also introduce a data-driven approach by integrating different types of data. Our modelling approach unveils the relationship between distress and mental disorders propagation and suicidal ideation spreading, shedding light on the role of awareness in a social network for suicide prevention. The proposed model is able to quantify the impact of overlapping awareness on suicidal ideation spreading and our findings demonstrate that it plays a dual role on contagion, either reinforcing or delaying the contagion outbreak.
Detection thresholds for gaps, overlaps, and no-gap-no-overlaps.
Heldner, Mattias
2011-07-01
Detection thresholds for gaps and overlaps, that is acoustic and perceived silences and stretches of overlapping speech in speaker changes, were determined. Subliminal gaps and overlaps were categorized as no-gap-no-overlaps. The established gap and overlap detection thresholds both corresponded to the duration of a long vowel, or about 120 ms. These detection thresholds are valuable for mapping the perceptual speaker change categories gaps, overlaps, and no-gap-no-overlaps into the acoustic domain. Furthermore, the detection thresholds allow generation and understanding of gaps, overlaps, and no-gap-no-overlaps in human-like spoken dialogue systems. © 2011 Acoustical Society of America
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Statistical physics of interacting neural networks
NASA Astrophysics Data System (ADS)
Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido
2001-12-01
Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-03-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states-socializing, travelling and foraging-and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns.
Gazda, Stefanie; Iyer, Swami; Killingback, Timothy; Connor, Richard; Brault, Solange
2015-01-01
Network analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in. Here we report on a network-based analysis of the behavioural associations in a population of bottlenose dolphins (Tursiops truncatus) in Cedar Key, Florida. We consider three distinct behavioural states—socializing, travelling and foraging—and analyse the association networks corresponding to each activity. Moreover, in constructing the different activity networks we do not simply record a spatial association between two individuals as being either present or absent, but rather quantify the degree of any association, thus allowing us to construct weighted networks describing each activity. The results of these weighted activity networks indicate that networks can reveal detailed patterns of bottlenose dolphins at the population level; dolphins socialize in large groups with preferential associations; travel in small groups with preferential associates; and spread out to forage in very small, weakly connected groups. There is some overlap in the socialize and travel networks but little overlap between the forage and other networks. This indicates that the social bonds maintained in other activities are less important as they forage on dispersed, solitary prey. The overall network, not sorted by activity, does not accurately represent any of these patterns. PMID:26064611
Etzion, Y; Linker, R; Cogan, U; Shmulevich, I
2004-09-01
This study investigates the potential use of attenuated total reflectance spectroscopy in the mid-infrared range for determining protein concentration in raw cow milk. The determination of protein concentration is based on the characteristic absorbance of milk proteins, which includes 2 absorbance bands in the 1500 to 1700 cm(-1) range, known as the amide I and amide II bands, and absorbance in the 1060 to 1100 cm(-1) range, which is associated with phosphate groups covalently bound to casein proteins. To minimize the influence of the strong water band (centered around 1640 cm(-1)) that overlaps with the amide I and amide II bands, an optimized automatic procedure for accurate water subtraction was applied. Following water subtraction, the spectra were analyzed by 3 methods, namely simple band integration, partial least squares (PLS) and neural networks. For the neural network models, the spectra were first decomposed by principal component analysis (PCA), and the neural network inputs were the spectra principal components scores. In addition, the concentrations of 2 constituents expected to interact with the protein (i.e., fat and lactose) were also used as inputs. These approaches were tested with 235 spectra of standardized raw milk samples, corresponding to 26 protein concentrations in the 2.47 to 3.90% (weight per volume) range. The simple integration method led to very poor results, whereas PLS resulted in prediction errors of about 0.22% protein. The neural network approach led to prediction errors of 0.20% protein when based on PCA scores only, and 0.08% protein when lactose and fat concentrations were also included in the model. These results indicate the potential usefulness of Fourier transform infrared/attenuated total reflectance spectroscopy for rapid, possibly online, determination of protein concentration in raw milk.
Tucker, Thomas R; Katz, Lawrence C
2003-01-01
To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
A computational system for lattice QCD with overlap Dirac quarks
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
2003-05-01
We outline the essential features of a Linux PC cluster which is now being developed at National Taiwan University, and discuss how to optimize its hardware and software for lattice QCD with overlap Dirac quarks. At present, the cluster constitutes of 30 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0 GHz), one Gbyte of PC800 RDRAM, one 40/80 Gbyte hard disk, and a network card. The speed of this system is estimated to be 30 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched lattice QCD with overlap Dirac quarks.
Zhang, Xiaoyu; Ju, Han; Penney, Trevor B; VanDongen, Antonius M J
2017-01-01
Humans instantly recognize a previously seen face as "familiar." To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher's discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits.
2017-01-01
Abstract Humans instantly recognize a previously seen face as “familiar.” To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher’s discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits. PMID:28534043
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.
Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.
Multirelational organization of large-scale social networks in an online world
Szell, Michael; Lambiotte, Renaud; Thurner, Stefan
2010-01-01
The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations. PMID:20643965
Multirelational organization of large-scale social networks in an online world.
Szell, Michael; Lambiotte, Renaud; Thurner, Stefan
2010-08-03
The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a nonlinear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multidimensional nature of these interactions has largely been ignored, mostly because of lack of data. Here, for the first time, we analyze a complete, multirelational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering, and fatter-tail degree distribution. We then explore how the interdependence of different network types determines the organization of the social system. In particular, we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach, we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.
Evidence of community structure in biomedical research grant collaborations.
Nagarajan, Radhakrishnan; Kalinka, Alex T; Hogan, William R
2013-02-01
Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation. Copyright © 2012. Published by Elsevier Inc.
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Overlapping clusters for distributed computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirrokni, Vahab; Andersen, Reid; Gleich, David F.
2010-11-01
Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initialmore » partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.« less
McKeon, Sascha Naomi; Moreno, Marta; Sallum, Maria Anise; Povoa, Marinete Marins; Conn, Jan Evelyn
2013-01-01
To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus. PMID:23903977
Community Size Effects on Epidemic Spreading in Multiplex Social Networks.
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2011-01-01
Recent neuroimaging studies have suggested that brain regions activated during retrieval of autobiographical memory (ABM) overlap with the default mode network (DMN), which shows greater activation during rest than cognitively demanding tasks and is considered to be involved in self-referential processing. However, detailed overlap and segregation between ABM and DMN remain unclear. This fMRI study focuses first on revealing components of the DMN which are related to ABM and those which are unrelated to ABM, and second on extracting the neural bases which are specifically devoted to ABM. Brain activities relative to rest during three tasks matched in task difficulty assessed by reaction time were investigated by fMRI; category cued recall from ABM, category cued recall from semantic memory, and number counting task. We delineated the overlap between the regions that showed less activation during semantic memory and number counting relative to rest, which correspond to the DMN, and the areas that showed greater or less activation during ABM relative to rest. ABM-specific activation was defined as the overlap between the contrast of ABM versus rest and the contrast of ABM versus semantic memory. The fMRI results showed that greater activation as well as less activation during ABM relative to rest overlapped considerably with the DMN, indicating that the DMN is segregated to the regions which are functionally related to ABM and the regions which are unrelated to ABM. ABM-specific activation was observed in the left-lateralized brain regions and most of them fell within the DMN. PMID:21643504
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove
2016-01-01
The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...
Characterization of the Network of Protected Areas in Puerto Rico
J. Castro-Prieto; Maya Quinones; William Gould
2016-01-01
Our goal was to describe the biodiversity and associated landscape diversity and forest cover characteristics within the network of terrestrial protected areas in Puerto Rico. We conducted spatial analysis to quantify different indicators of diversity at these sites. We found that protected areas in Puerto Rico overlap the most species-rich regions on the island,...
Neural attractor network for application in visual field data classification.
Fink, Wolfgang
2004-07-07
The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a 'counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available.
Analysis of a large-scale weighted network of one-to-one human communication
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János
2007-06-01
We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.
Kubera, Katharina M; Hirjak, Dusan; Wolf, Nadine D; Sambataro, Fabio; Thomann, Philipp A; Wolf, R Christian
2018-05-01
Impulsiveness is a central human personality trait and of high relevance for the development of several mental disorders. Impulsiveness is a multidimensional construct, yet little is known about dimension-specific neural correlates. Here, we address the question whether motor, attentional and non-planning components, as measured by the Barratt Impulsiveness Scale (BIS-11), are associated with distinct or overlapping neural network activity. In this study, we investigated brain activity at rest and its relationship to distinct dimensions of impulsiveness in 30 healthy young adults (m/f = 13/17; age mean/SD = 26.4/2.6 years) using resting-state functional magnetic resonance imaging at 3T. A spatial independent component analysis and a multivariate model selection strategy were used to identify systems loading on distinct impulsivity domains. We first identified eight networks for which we had a-priori hypotheses. These networks included basal ganglia, cortical motor, cingulate and lateral prefrontal systems. From the eight networks, three were associated with impulsiveness measures (p < 0.05, FDR corrected). There were significant relationships between right frontoparietal network function and all three BIS domains. Striatal and midcingulate network activity was associated with motor impulsiveness only. Within the networks regionally confined effects of age and gender were found. These data suggest distinct and overlapping patterns of neural activity underlying specific dimensions of impulsiveness. Motor impulsiveness appears to be specifically related to striatal and midcingulate network activity, in contrast to a domain-unspecific right frontoparietal system. Effects of age and gender have to be considered in young healthy samples.
2010-01-01
Background Information exchange networks for chronic illness care may influence the uptake of innovations in patient care. Valid and feasible methods are needed to document and analyse information exchange networks in healthcare settings. This observational study aimed to examine the usefulness of methods to study information exchange networks in primary care practices, related to chronic heart failure, diabetes and chronic obstructive pulmonary disease. Methods The study was linked to a quality improvement project in the Netherlands. All health professionals in the practices were asked to complete a short questionnaire that documented their information exchange relations. Feasibility was determined in terms of response rates and reliability in terms of reciprocity of reports of receiving and providing information. For each practice, a number of network characteristics were derived for each of the chronic conditions. Results Ten of the 21 practices in the quality improvement project agreed to participate in this network study. The response rates were high in all but one of the participating practices. For the analysis, we used data from 67 health professionals from eight practices. The agreement between receiving and providing information was, on average, 65.6%. The values for density, centralization, hierarchy, and overlap of the information exchange networks showed substantial variation between the practices as well as between the chronic conditions. The most central individual in the information exchange network could be a nurse or a physician. Conclusions Further research is needed to refine the measure of information networks and to test the impact of network characteristics on the uptake of innovations. PMID:20205758
Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics.
Ni, Yongnian; Wang, Lin; Kokot, Serge
2011-01-01
A novel differential pulse voltammetry method (DPV) was researched and developed for the simultaneous determination of Pendimethalin, Dinoseb and sodium 5-nitroguaiacolate (5NG) with the aid of chemometrics. The voltammograms of these three compounds overlapped significantly, and to facilitate the simultaneous determination of the three analytes, chemometrics methods were applied. These included classical least squares (CLS), principal component regression (PCR), partial least squares (PLS) and radial basis function-artificial neural networks (RBF-ANN). A separately prepared verification data set was used to confirm the calibrations, which were built from the original and first derivative data matrices of the voltammograms. On the basis relative prediction errors and recoveries of the analytes, the RBF-ANN and the DPLS (D - first derivative spectra) models performed best and are particularly recommended for application. The DPLS calibration model was applied satisfactorily for the prediction of the three analytes from market vegetables and lake water samples.
Schmithorst, Vincent J
2005-04-01
Music perception is a quite complex cognitive task, involving the perception and integration of various elements including melody, harmony, pitch, rhythm, and timbre. A preliminary functional MRI investigation of music perception was performed, using a simplified passive listening task. Group independent component analysis (ICA) was used to separate out various components involved in music processing, as the hemodynamic responses are not known a priori. Various components consistent with auditory processing, expressive language, syntactic processing, and visual association were found. The results are discussed in light of various hypotheses regarding modularity of music processing and its overlap with language processing. The results suggest that, while some networks overlap with ones used for language processing, music processing may involve its own domain-specific processing subsystems.
Network clustering and community detection using modulus of families of loops.
Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina
2017-01-01
We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
NASA Astrophysics Data System (ADS)
Lee, Yongwoo; Yoon, Jinsu; Choi, Bongsik; Lee, Heesung; Park, Jinhee; Jeon, Minsu; Han, Jungmin; Lee, Jieun; Kim, Yeamin; Kim, Dae Hwan; Kim, Dong Myong; Choi, Sung-Jin
2017-10-01
Carbon nanotubes (CNTs) are emerging materials for semiconducting channels in high-performance thin-film transistor (TFT) technology. However, there are concerns regarding the contact resistance (Rcontact) in CNT-TFTs, which limits the ultimate performance, especially the CNT-TFTs with the inkjet-printed source/drain (S/D) electrodes. Thus, the contact interfaces comprising the overlap between CNTs and metal S/D electrodes play a particularly dominant role in determining the performances and degree of variability in the CNT-TFTs with inkjet-printed S/D electrodes. In this work, the CNT-TFTs with improved device performance are demonstrated to enhance contact interfaces by controlling the CNT density at the network channel and underneath the inkjet-printed S/D electrodes during the formation of a CNT network channel. The origin of the improved device performance was systematically investigated by extracting Rcontact in the CNT-TFTs with the enhanced contact interfaces by depositing a high density of CNTs underneath the S/D electrodes, resulting in a 59% reduction in Rcontact; hence, the key performance metrics were correspondingly improved without sacrificing any other device metrics.
Benoit, Roland G.; Schacter, Daniel L.
2015-01-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of core network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the lateral temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network’s nodes as wells as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions’ specialized contributions and interactions. PMID:26142352
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis
Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo
2017-01-01
Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233
Recent Greenland Thinning from Operation IceBridge ATM and LVIS Data
NASA Astrophysics Data System (ADS)
Sutterley, T. C.; Velicogna, I.
2015-12-01
We investigate regional thinning rates in Greenland using two Operation IceBridge lidar instruments, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). IceBridge and Pre-IceBridge ATM data are available from 1993 to present and IceBridge and Pre-Icebridge LVIS data are available from 2007 to present. We compare different techniques for combining the two datasets: overlapping footprints, triangulated irregular network meshing and radial basis functions. We validate the combination for periods with near term overlap of the two instruments. By combining the two lidar datasets, we are able to investigate intra-annual, annual, interannual surface elevation change. We investigate both the high melt season of 2012 and the low melt season of 2013. In addition, the major 2015 IceBridge Arctic campaign provides new crucial data for determining seasonal ice sheet thinning rates. We compare our LVIS/ATM results with surface mass balance outputs from two regional climate models: the Regional Atmospheric Climate Model (RACMO) and the Modèle Atmosphérique Régional (MAR). We also investigate the thinning rates of major outlet glaciers.
Multilayer network of language: A unified framework for structural analysis of linguistic subsystems
NASA Astrophysics Data System (ADS)
Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana
2016-09-01
Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.
NASA Astrophysics Data System (ADS)
Chen, Ming; Guo, Jiming; Li, Zhicai; Zhang, Peng; Wu, Junli; Song, Weiwei
2017-04-01
BDS precision orbit determination is a key content of the BDS application, but the inadequate ground stations and the poor distribution of the network are the main reasons for the low accuracy of BDS precise orbit determination. In this paper, the BDS precise orbit determination results are obtained by using the IGS MGEX stations and the Chinese national reference stations,the accuracy of orbit determination of GEO, IGSO and MEO is 10.3cm, 2.8cm and 3.2cm, and the radial accuracy is 1.6cm,1.9cm and 1.5cm.The influence of ground reference stations distribution on BDS precise orbit determination is studied. The results show that the Chinese national reference stations contribute significantly to the BDS orbit determination, the overlap precision of GEO/IGSO/MEO satellites were improved by 15.5%, 57.5% and 5.3% respectively after adding the Chinese stations.Finally, the results of ODOP(orbit distribution of precision) and SLR are verified. Key words: BDS precise orbit determination; accuracy assessment;Chinese national reference stations;reference stations distribution;orbit distribution of precision
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
7 CFR 1735.12 - Nonduplication.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) The LEC's network is capable of accommodating Internet access at speeds of at least 28,800 bits per... competing wireless carriers to upgrade their E911 capabilities in overlapping geographic territories to be...
Abbasi Tarighat, Maryam
2016-02-01
Simultaneous spectrophotometric determination of a mixture of overlapped complexes of Fe(3+), Mn(2+), Cu(2+), and Zn(2+) ions with 2-(3-hydroxy-1-phenyl-but-2-enylideneamino) pyridine-3-ol(HPEP) by orthogonal projection approach-feed forward neural network (OPA-FFNN) and continuous wavelet transform-feed forward neural network (CWT-FFNN) is discussed. Ionic complexes HPEP were formulated with varying reagent concentration, pH and time of color formation for completion of complexation reactions. It was found that, at 5.0 × 10(-4) mol L(-1) of HPEP, pH 9.5 and 10 min after mixing the complexation reactions were completed. The spectral data were analyzed using partial response plots, and identified non-linearity modeled using FFNN. Reducing the number of OPA-FFNN and CWT-FFNN inputs were simplified using dissimilarity pure spectra of OPA and selected wavelet coefficients. Once the pure dissimilarity plots ad optimal wavelet coefficients are selected, different ANN models were employed for the calculation of the final calibration models. The performance of these two approaches were tested with regard to root mean square errors of prediction (RMSE %) values, using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of metal ions in different vegetable and foodstuff samples. The results show that, OPA-FFNN and CWT-FFNN were effective in simultaneously determining Fe(3+), Mn(2+), Cu(2+), and Zn(2+) concentration. Also, concentrations of metal ions in the samples were determined by flame atomic absorption spectrometry (FAAS). The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Haihong; Kaneko, Yoshio; Ouyang, Xuan; Li, Li; Hao, Yihui; Chen, Eric Y H; Jiang, Tianzi; Zhou, Yuan; Liu, Zhening
2012-03-01
Abnormal connectivity of the anticorrelated intrinsic networks, the task-negative network (TNN), and the task-positive network (TPN) is implicated in schizophrenia. Comparisons between schizophrenic patients and their unaffected siblings enable further understanding of illness susceptibility and pathophysiology. We examined the resting-state connectivity differences in the intrinsic networks between schizophrenic patients, their unaffected siblings, and healthy controls. Resting-state functional magnetic resonance images were obtained from 25 individuals in each subject group. The posterior cingulate cortex/precuneus and right dorsolateral prefrontal cortex were used as seed regions to identify the TNN and TPN through functional connectivity analysis. Interregional connectivity strengths were analyzed using overlapped intrinsic networks composed of regions common to all subject groups. Schizophrenic patients and their unaffected siblings showed increased connectivity in the TNN between the bilateral inferior temporal gyri. By contrast, schizophrenic patients alone demonstrated increased connectivity between the posterior cingulate cortex/precuneus and left inferior temporal gyrus and between the ventral medial prefrontal cortex and right lateral parietal cortex in the TNN. Schizophrenic patients exhibited increased connectivity between the left dorsolateral prefrontal cortex and right inferior frontal gyrus in the TPN relative to their unaffected siblings, though this trend only approached statistical significance in comparison to healthy controls. Resting-state hyperconnectivity of the intrinsic networks may disrupt network coordination and thereby contribute to the pathophysiology of schizophrenia. Similar, though milder, hyperconnectivity of the TNN in unaffected siblings of schizophrenic patients may contribute to the identification of schizophrenia endophenotypes and ultimately to the determination of schizophrenia risk genes.
Shao, Xueguang; Yu, Zhengliang; Ma, Chaoxiong
2004-06-01
An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.
GOES-16 Geostationary Lightning Mapper Comparison with the Earth Networks Total Lightning Network
NASA Astrophysics Data System (ADS)
Lapierre, J. L.; Stock, M.; Zhu, Y.
2017-12-01
Lightning location systems have shown to be an integral part of weather research and forecasting. The launch of the GOES-16 Geostationary Lightning Mapper (GLM) will provide a new tool to help improve lightning detection throughout the Americas and ocean regions. However, before this data can be effectively used, there must be a thorough analysis of its performance to validate the data it produces. Here, we compare GLM data to data from the Earth Networks Total Lightning Network (ENTLN). We analyze data during the months of May and June of 2017 to determine the detection efficiency of each system. A successful match occurs when two flashes overlap in time and are less than 0.2 degrees apart. Of the flashes detected by ENTLN, GLM detects about 50% overall. The highest DEs for GLM are over the ocean and South America, and lowest are in Central America and the Northeastern and Western parts of the U.S. Of the flashes detected by GLM, ENTLN detected over 80% in the Central and Eastern parts of the U.S. and 10-20% in Central and South America. Finally, we determined all the unique flashes detected by both systems and determined the DE of both systems from this unique flash dataset. We find that GLM does very well in South America, over the tropical islands in the Caribbean Sea as well as Northern U.S. It detects above 50% of the unique flashes over Central and off the Eastern Coast of the U.S. as well as in Mexico. GLM detects less than 50% of the unique flashes over Florida, the Mid-Atlantic, Mid-West, and Southwestern U.S., areas where ENTLN is expected to perform well.
Liu, Qiong; Liu, Jun; Wang, Pengqian; Zhang, Yingying; Li, Bing; Yu, Yanan; Dang, Haixia; Li, Haixia; Zhang, Xiaoxu; Wang, Zhong
2017-07-01
This study aimed to investigate the pure pharmacological mechanisms of baicalin/baicalein (BA) in the targeted network of mouse cerebral ischemia using a poly-dimensional network comparative analysis. Eighty mice with induced focal cerebral ischemia were randomly divided into four groups: BA, Concha Margaritifera (CM), vehicle and sham group. A poly-dimensional comparative analysis of the expression levels of 374 stroke-related genes in each of the four groups was performed using MetaCore. BA significantly reduced the ischemic infarct volume (P<0.05), whereas CM was ineffective. Two processes and 10 network nodes were shared between "BA vs CM" and vehicle, but there were no overlapping pathways. Two pathways, three processes and 12 network nodes overlapped in "BA vs CM" and BA. The pure pharmacological mechanism of BA resulted in targeting of pathways related to development, G-protein signaling, apoptosis, signal transduction and immunity. The biological processes affected by BA were primarily found to correlate with apoptotic, anti-apoptotic and neurophysiological processes. Three network nodes changed from up-regulation to down-regulation, while mitogen-activated protein kinase kinase 6 (MAP2K6, also known as MEK6) changed from down-regulation to up-regulation in "BA vs CM" and vehicle. The changed nodes were all related to cell death and development. The pure pharmacological mechanism of BA is related to immunity, apoptosis, development, cytoskeletal remodeling, transduction and neurophysiology, as ascertained using a poly-dimensional network comparative analysis. Copyright © 2017. Published by Elsevier B.V.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P
2016-09-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.
Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.
2015-01-01
The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206
Benoit, Roland G; Schacter, Daniel L
2015-08-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network's nodes as well as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions' specialized contributions and interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robinson, Amanda K; Plaut, David C; Behrmann, Marlene
2017-07-01
Words and faces have vastly different visual properties, but increasing evidence suggests that word and face processing engage overlapping distributed networks. For instance, fMRI studies have shown overlapping activity for face and word processing in the fusiform gyrus despite well-characterized lateralization of these objects to the left and right hemispheres, respectively. To investigate whether face and word perception influences perception of the other stimulus class and elucidate the mechanisms underlying such interactions, we presented images using rapid serial visual presentations. Across 3 experiments, participants discriminated 2 face, word, and glasses targets (T1 and T2) embedded in a stream of images. As expected, T2 discrimination was impaired when it followed T1 by 200 to 300 ms relative to longer intertarget lags, the so-called attentional blink. Interestingly, T2 discrimination accuracy was significantly reduced at short intertarget lags when a face was followed by a word (face-word) compared with glasses-word and word-word combinations, indicating that face processing interfered with word perception. The reverse effect was not observed; that is, word-face performance was no different than the other object combinations. EEG results indicated the left N170 to T1 was correlated with the word decrement for face-word trials, but not for other object combinations. Taken together, the results suggest face processing interferes with word processing, providing evidence for overlapping neural mechanisms of these 2 object types. Furthermore, asymmetrical face-word interference points to greater overlap of face and word representations in the left than the right hemisphere. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps
Huang, Hailiang; Jedynak, Bruno M; Bader, Joel S
2007-01-01
Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture–recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erdös-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in Datasets S1 and S2, Figures S1–S5, and Tables S1−S6, and are also available from our Web site, http://www.baderzone.org. PMID:18039026
Correcting Evaluation Bias of Relational Classifiers with Network Cross Validation
2010-01-01
classi- fication algorithms: simple random resampling (RRS), equal-instance random resampling (ERS), and network cross-validation ( NCV ). The first two... NCV procedure that eliminates overlap between test sets altogether. The procedure samples for k disjoint test sets that will be used for evaluation...propLabeled ∗ S) nodes from train Pool in f erenceSet =network − trainSet F = F ∪ < trainSet, test Set, in f erenceSet > end for output: F NCV addresses
Comparison of co-expression measures: mutual information, correlation, and model based indices.
Song, Lin; Langfelder, Peter; Horvath, Steve
2012-12-09
Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.
Sparse dictionary learning of resting state fMRI networks.
Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C
2012-07-02
Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.
Romero, Gustavo Quevedo; Linhares, Arício Xavier; Vizentin-Bugoni, Jeferson; Porto, Erica Aline Correa; Setz, Eleonore Zulnara Freire
2017-01-01
Species co-existence depends on how organisms utilize their environment and resources. When two sympatric species are similar in some ecological requirements, their coexistence may arise from differences in resource use over time and/or space. Interactions among coexisting marsupials remain poorly understood, especially in the Neotropics. Here we combine spatial niche measurements, individual-resource networks, and isotopic niche approaches, to investigate the ecological strategies used by the Neotropical marsupials Didelphis aurita and Metachirus nudicaudatus to co-occur in an area of Serra do Mar State Park (southeast of Brazil). Both individual-resource networks and isotopic niche approaches indicate similar patterns of omnivory for both species. Isotopic analysis showed the species’ trophic niche to be similar, with 52% of overlap, and no differences between proportional contributions of each resource to their diets. Moreover, individual-resource network analysis found no evidence of diet nestedness or segregation. The trophic niche overlap observed was associated with spatial segregation between species. Despite using the same area over the year, D. aurita and M. nudicaudatus exhibited spatial segregation among seasons. These results illustrate that the detection of spatial segregation is scale-dependent and must be carefully considered. In conclusion, our findings provide a new perspective on the ecology of these two Neotropical marsupials by illustrating how the association of distinct but complementary methods can be applied to reach a more complete understanding of resource partitioning and species coexistence. PMID:28704561
NASA Astrophysics Data System (ADS)
Wijeratne, Sitara; Subramanian, Radhika
The relative sliding of microtubules by motor proteins is important for the organization of specialized cellular microtubule networks. In cells, sliding filaments are likely to encounter crowded regions of microtubules, such as the plus-ends, which are densely occupied by motor and non-motor proteins. How molecular crowding impacts microtubule sliding is not well understood. Here, we reconstitute the collective activities of the non-motor protein PRC1 and the motor protein Kif4A on anti-parallel microtubules to address this question. We find that the accumulation of PRC1 and Kif4A at microtubule-plus ends (`end-tags') can act as a physical barrier to Kif4A-mediated microtubule sliding. This enables the formation of stable microtubule overlaps that persist even after the deactivation of the motor protein. Our data suggest that while end-tags stabilize anti-parallel overlaps by inhibiting relative sliding, they permit the remodeling of the microtubule bundles by external forces, as may be required for the reorganization of microtubule networks during dynamic cellular processes.
NASA Astrophysics Data System (ADS)
Saitoh, Kuniyasu; Magnanimo, Vanessa; Luding, Stefan
2017-10-01
Employing two-dimensional molecular dynamics (MD) simulations of soft particles, we study their non-affine responses to quasi-static isotropic compression where the effects of microscopic friction between the particles in contact and particle size distributions are examined. To quantify complicated restructuring of force-chain networks under isotropic compression, we introduce the conditional probability distributions (CPDs) of particle overlaps such that a master equation for distribution of overlaps in the soft particle packings can be constructed. From our MD simulations, we observe that the CPDs are well described by q-Gaussian distributions, where we find that the correlation for the evolution of particle overlaps is suppressed by microscopic friction, while it significantly increases with the increase of poly-dispersity.
Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo R; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez
2011-09-01
In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 ± 0.09, C = 0.30 ± 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 ± 0.07, C = 0.22 ± 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 ± 0.13) than in bat-fruit networks (R = 0.54 ± 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists.
ERIC Educational Resources Information Center
Electronic Frontier Foundation, 2006
2006-01-01
This paper is intended to help institutions of higher education critically evaluate the principal technological tools and policies being used to enforce copyright on campus networks. It first explores where the goals of copyright holders and universities overlap and where they conflict. It then discusses the pros and cons of the major solutions…
Spatial overlap links seemingly unconnected genotype-matched TB cases in rural Uganda
Kato-Maeda, Midori; Emperador, Devy M.; Wandera, Bonnie; Mugagga, Olive; Crandall, John; Janes, Michael; Marquez, Carina; Kamya, Moses R.; Charlebois, Edwin D.; Havlir, Diane V.
2018-01-01
Introduction Incomplete understanding of TB transmission dynamics in high HIV prevalence settings remains an obstacle for prevention. Understanding where transmission occurs could provide a platform for case finding and interrupting transmission. Methods From 2012–2015, we sought to recruit all adults starting TB treatment in a Ugandan community. Participants underwent household (HH) contact investigation, and provided names of social contacts, sites of work, healthcare and socializing, and two sputum samples. Mycobacterium tuberculosis culture-positive specimens underwent 24-loci MIRU-VNTR and spoligotyping. We sought to identify epidemiologic links between genotype-matched cases by analyzing social networks and mapping locations where cases reported spending ≥12 hours over the one-month pre-treatment. Sites of spatial overlap (≤100m) between genotype-matched cases were considered potential transmission sites. We analyzed social networks stratified by genotype clustering status, with cases linked by shared locations, and compared network density by location type between clustered vs. non-clustered cases. Results Of 173 adults with TB, 131 (76%) were enrolled, 108 provided sputum, and 84/131 (78%) were MTB culture-positive: 52% (66/131) tested HIV-positive. Of 118 adult HH contacts, 105 (89%) were screened and 3 (2.5%) diagnosed with active TB. Overall, 33 TB cases (39%) belonged to 15 distinct MTB genotype-matched clusters. Within each cluster, no cases shared a HH or reported shared non-HH contacts. In 6/15 (40%) clusters, potential epidemiologic links were identified by spatial overlap at specific locations: 5/6 involved health care settings. Genotype-clustered TB social networks had significantly greater network density based on shared clinics (p<0.001) and decreased density based on shared marketplaces (p<0.001), compared to non-clustered networks. Conclusions In this molecular epidemiologic study, links between MTB genotype-matched cases were only identifiable via shared locations, healthcare locations in particular, rather than named contacts. This suggests most transmission is occurring between casual contacts, and emphasizes the need for improved infection control in healthcare settings in rural Africa. PMID:29438413
Fast detection of the fuzzy communities based on leader-driven algorithm
NASA Astrophysics Data System (ADS)
Fang, Changjian; Mu, Dejun; Deng, Zhenghong; Hu, Jun; Yi, Chen-He
2018-03-01
In this paper, we present the leader-driven algorithm (LDA) for learning community structure in networks. The algorithm allows one to find overlapping clusters in a network, an important aspect of real networks, especially social networks. The algorithm requires no input parameters and learns the number of clusters naturally from the network. It accomplishes this using leadership centrality in a clever manner. It identifies local minima of leadership centrality as followers which belong only to one cluster, and the remaining nodes are leaders which connect clusters. In this way, the number of clusters can be learned using only the network structure. The LDA is also an extremely fast algorithm, having runtime linear in the network size. Thus, this algorithm can be used to efficiently cluster extremely large networks.
Ficklin, Stephen P; Feltus, Frank Alex
2013-01-01
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance.
Ficklin, Stephen P.; Feltus, Frank Alex
2013-01-01
Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value < = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs. An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease resistance. PMID:23874666
Determination of seasonals using wavelets in terms of noise parameters changeability
NASA Astrophysics Data System (ADS)
Klos, Anna; Bogusz, Janusz; Figurski, Mariusz
2015-04-01
The reliable velocities of GNSS-derived observations are becoming of high importance nowadays. The fact on how we determine and subtract the seasonals may all cause the time series autocorrelation and affect uncertainties of linear parameters. The periodic changes in GNSS time series are commonly assumed as the sum of annual and semi-annual changes with amplitudes and phases being constant in time and the Least-Squares Estimation (LSE) is used in general to model these sine waves. However, not only seasonals' time-changeability, but also their higher harmonics should be considered. In this research, we focused on more than 230 globally distributed IGS stations that were processed at the Military University of Technology EPN Local Analysis Centre (MUT LAC) in Bernese 5.0 software. The network was divided into 7 different sub-networks with few of overlapping stations and processed separately with newest models. Here, we propose a wavelet-based trend and seasonals determination and removal of whole frequency spectrum between Chandler and quarter-annual periods from North, East and Up components and compare it with LSE-determined values. We used a Meyer symmetric, orthogonal wavelet and assumed nine levels of decomposition. The details from 6 up to 9 were analyzed here as periodic components with frequencies between 0.3-2.5 cpy. The characteristic oscillations for each of frequency band were pointed out. The details lower than 6 summed together with detrended approximation were considered as residua. The power spectral densities (PSDs) of original and decomposed data were stacked for North, East and Up components for each of sub-networks so as to show what power was removed with each of decomposition levels. Moreover, the noises that the certain frequency band follows (in terms of spectral indices of power-law dependencies) were estimated here using a spectral method and compared for all processed sub-networks. It seems, that lowest frequencies up to 0.7 cpy are characterized by lower spectral indices in comparison to higher ones being close to white noise. Basing on the fact, that decomposition levels overlap each other, the frequency-window choice becomes a main point in spectral index estimation. Our results were compared with those obtained by Maximum Likelihood Estimation (MLE) and possible differences as well as their impact on velocity uncertainties pointed out. The results show that the spectral indices estimated in time and frequency domains differ of 0.15 in maximum. Moreover, we compared the removed power basing on wavelet decomposition levels with the one subtracted with LSE, assuming the same periodicities. In comparison to LSE, the wavelet-based approach leaves the residua being closer to white noise with lower power-law amplitudes of them, what strictly reduces velocity uncertainties. The last approximation was analyzed here as long-term trend, being the non-linear and compared with LSE-determined linear one. It seems that these two trends differ at the level of 0.3 mm/yr in the most extreme case, what makes wavelet decomposition being useful for velocity determination.
Name-Based Address Mapping for Virtual Private Networks
NASA Astrophysics Data System (ADS)
Surányi, Péter; Shinjo, Yasushi; Kato, Kazuhiko
IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2ms for each name resolution.
Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian
2015-11-01
Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components
NASA Astrophysics Data System (ADS)
Zhao, Yudi; Wei, Ruyi; Liu, Xuebin
2017-10-01
Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state
Hermans, Erno J.; Fernández, Guillén
2017-01-01
Abstract Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain–behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. PMID:28402480
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
Sojoudi, Alireza; Goodyear, Bradley G
2016-12-01
Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Branco, Paulo; Seixas, Daniela; Castro, São Luís
2018-03-01
Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Comparison of large-scale human brain functional and anatomical networks in schizophrenia.
Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O
2017-01-01
Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.
NASA Technical Reports Server (NTRS)
DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.
2014-01-01
NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.
Jamadar, Sharna D; Egan, Gary F; Calhoun, Vince D; Johnson, Beth; Fielding, Joanne
2016-07-01
Intrinsic brain activity provides the functional framework for the brain's full repertoire of behavioral responses; that is, a common mechanism underlies intrinsic and extrinsic neural activity, with extrinsic activity building upon the underlying baseline intrinsic activity. The generation of a motor movement in response to sensory stimulation is one of the most fundamental functions of the central nervous system. Since saccadic eye movements are among our most stereotyped motor responses, we hypothesized that individual variability in the ability to inhibit a prepotent saccade and make a voluntary antisaccade would be related to individual variability in intrinsic connectivity. Twenty-three individuals completed the antisaccade task and resting-state functional magnetic resonance imaging (fMRI). A multivariate analysis of covariance identified relationships between fMRI oscillations (0.01-0.2 Hz) of resting-state networks determined using high-dimensional independent component analysis and antisaccade performance (latency, error rate). Significant multivariate relationships between antisaccade latency and directional error rate were obtained in independent components across the entire brain. Some of the relationships were obtained in components that overlapped substantially with the task; however, many were obtained in components that showed little overlap with the task. The current results demonstrate that even in the absence of a task, spectral power in regions showing little overlap with task activity predicts an individual's performance on a saccade task.
A REST-ful interpretation for embedded modular systems based on open architecture
NASA Astrophysics Data System (ADS)
Lyke, James
2016-05-01
The much-anticipated revolution of the "Internet of things" (IoT) is expected to generate one trillion internet devices within the next 15 years, mostly in the form of simple wireless sensor devices. While this revolution promises to transform silicon markets and drive a number of disruptive changes in society, it is also the case that the protocols, complexity, and security issues of extremely large dynamic, co-mingled networks is still poorly understood. Furthermore, embedded system developers, to include military and aerospace users, have largely ignored the potential (good and bound) of the cloudlike, possibly intermingling networks having variable structure to how future systems might be engineered. In this paper, we consider a new interpretation of IoT inspired modular architecture strategies involving the representational state transfer (REST) model, in which dynamic networks with variable structure employ stateless application programming interface (API) concepts. The power of the method, which extends concepts originally developed for space plug-and-play avionics, is that it allows for the fluid co-mingling of hardware and software in networks whose structure can overlap and evolve. Paradoxically, these systems may have the most stringent determinism and fault-tolerant needs. In this paper we review how RESTful APIs can potentially be used to design, create, test, and deploy systems rapidly while addressing security and referential integrity even when the nodes of many systems might physically co-mingle. We will also explore ways to take advantage of the RESTful paradigm for fault tolerance and what extensions might be necessary to deal with high-performance and determinism.
Methods for extracting social network data from chatroom logs
NASA Astrophysics Data System (ADS)
Osesina, O. Isaac; McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.; Bartley, Cecilia; Tudoreanu, M. Eduard
2012-06-01
Identifying social network (SN) links within computer-mediated communication platforms without explicit relations among users poses challenges to researchers. Our research aims to extract SN links in internet chat with multiple users engaging in synchronous overlapping conversations all displayed in a single stream. We approached this problem using three methods which build on previous research. Response-time analysis builds on temporal proximity of chat messages; word context usage builds on keywords analysis and direct addressing which infers links by identifying the intended message recipient from the screen name (nickname) referenced in the message [1]. Our analysis of word usage within the chat stream also provides contexts for the extracted SN links. To test the capability of our methods, we used publicly available data from Internet Relay Chat (IRC), a real-time computer-mediated communication (CMC) tool used by millions of people around the world. The extraction performances of individual methods and their hybrids were assessed relative to a ground truth (determined a priori via manual scoring).
Cámara, María S; Ferroni, Félix M; De Zan, Mercedes; Goicoechea, Héctor C
2003-07-01
An improvement is presented on the simultaneous determination of two active ingredients present in unequal concentrations in injections. The analysis was carried out with spectrophotometric data and non-linear multivariate calibration methods, in particular artificial neural networks (ANNs). The presence of non-linearities caused by the major analyte concentrations which deviate from Beer's law was confirmed by plotting actual vs. predicted concentrations, and observing curvatures in the residuals for the estimated concentrations with linear methods. Mixtures of dextropropoxyphene and dipyrone have been analysed by using linear and non-linear partial least-squares (PLS and NPLSs) and ANNs. Notwithstanding the high degree of spectral overlap and the occurrence of non-linearities, rapid and simultaneous analysis has been achieved, with reasonably good accuracy and precision. A commercial sample was analysed by using the present methodology, and the obtained results show reasonably good agreement with those obtained by using high-performance liquid chromatography (HPLC) and a UV-spectrophotometric comparative methods.
The Human Immunodeficiency Virus Endemic: Maintaining Disease Transmission in At-Risk Urban Areas.
Rothenberg, Richard B; Dai, Dajun; Adams, Mary Anne; Heath, John Wesley
2017-02-01
A study of network relationships, geographic contiguity, and risk behavior was designed to test the hypothesis that all 3 are required to maintain endemicity of human immunodeficiency virus (HIV) in at-risk urban communities. Specifically, a highly interactive network, close geographic proximity, and compound risk (multiple high-risk activities with multiple partners) would be required. We enrolled 927 participants from two contiguous geographic areas in Atlanta, GA: a higher-risk area and lower-risk area, as measured by history of HIV reporting. We began by enrolling 30 "seeds" (15 in each area) who were comparable in their demographic and behavioral characteristics, and constructed 30 networks using a chain-link design. We assessed each individual's geographic range; measured the network characteristics of those in the higher and lower-risk areas; and measured compound risk as the presence of two or more (of 6) major risks for HIV. Among participants in the higher-risk area, the frequency of compound risk was 15%, compared with 5% in the lower-risk area. Geographic cohesion in the higher-risk group was substantially higher than that in the lower-risk group, based on comparison of geographic distance and social distance, and on the extent of overlap of personal geographic range. The networks in the 2 areas were similar: both areas show highly interactive networks with similar degree distributions, and most measures of network attributes were virtually the same. Our original hypothesis was supported in part. The higher and lower-risk groups differed appreciably with regard to risk and geographic cohesion, but were substantially the same with regard to network properties. These results suggest that a "minimum" network configuration may be required for maintenance of endemic transmission, but a particular prevalence level may be determined by factors related to risk, geography, and possibly other factors.
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning
Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan
2015-01-01
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. Here we show that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) are dynamically reformatted in the network at the timescale of a single breath, giving rise to separated patterns of activity in ensemble of output neurons (mitral/tufted cells; M/T). Strikingly, the extent of pattern separation in M/T assemblies predicts behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimuli distinction, a process that is sculpted by synaptic inhibition. PMID:26301325
Game changer: the topology of creativity.
de Vaan, Mathijs; Stark, David; Vedres, Balazs
2015-01-01
This article examines the sociological factors that explain why some creative teams are able to produce game changers--cultural products that stand out as distinctive while also being critically recognized as outstanding. The authors build on work pointing to structural folding--the network property of a cohesive group whose membership overlaps with that of another cohesive group. They hypothesize that the effects of structural folding on game changing success are especially strong when overlapping groups are cognitively distant. Measuring social distance separately from cognitive distance and distinctiveness independently from critical acclaim, the authors test their hypothesis about structural folding and cognitive diversity by analyzing team reassembly for 12,422 video games and the career histories of 139,727 video game developers. When combined with cognitive distance, structural folding channels and mobilizes a productive tension of rules, roles, and codes that promotes successful innovation. In addition to serving as pipes and prisms, network ties are also the source of tools and tensions.
Neuronal pattern separation in the olfactory bulb improves odor discrimination learning.
Gschwend, Olivier; Abraham, Nixon M; Lagier, Samuel; Begnaud, Frédéric; Rodriguez, Ivan; Carleton, Alan
2015-10-01
Neuronal pattern separation is thought to enable the brain to disambiguate sensory stimuli with overlapping features, thereby extracting valuable information. In the olfactory system, it remains unknown whether pattern separation acts as a driving force for sensory discrimination and the learning thereof. We found that overlapping odor-evoked input patterns to the mouse olfactory bulb (OB) were dynamically reformatted in the network on the timescale of a single breath, giving rise to separated patterns of activity in an ensemble of output neurons, mitral/tufted (M/T) cells. Notably, the extent of pattern separation in M/T assemblies predicted behavioral discrimination performance during the learning phase. Furthermore, exciting or inhibiting GABAergic OB interneurons, using optogenetics or pharmacogenetics, altered pattern separation and thereby odor discrimination learning in a bidirectional way. In conclusion, we propose that the OB network can act as a pattern separator facilitating olfactory stimulus distinction, a process that is sculpted by synaptic inhibition.
Uncertainty and Cognitive Control
Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre
2011-01-01
A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181
The emergence of overlapping scale-free genetic architecture in digital organisms.
Gerlee, P; Lundh, T
2008-01-01
We have studied the evolution of genetic architecture in digital organisms and found that the gene overlap follows a scale-free distribution, which is commonly found in metabolic networks of many organisms. Our results show that the slope of the scale-free distribution depends on the mutation rate and that the gene development is driven by expansion of already existing genes, which is in direct correspondence to the preferential growth algorithm that gives rise to scale-free networks. To further validate our results we have constructed a simple model of gene development, which recapitulates the results from the evolutionary process and shows that the mutation rate affects the tendency of genes to cluster. In addition we could relate the slope of the scale-free distribution to the genetic complexity of the organisms and show that a high mutation rate gives rise to a more complex genetic architecture.
Discovering Social Circles in Ego Networks (Author’s Manuscript)
2013-01-10
ego-network. We expect that circles are formed by densely-connected sets of alters ( Newman , 2006). However, different circles overlap heavily, i.e...umbrella of community detection (Lancichinetti and Fortunato, 2009a; Schaeffer, 2007; Leskovec et al., 2010; Porter et al., 2009; Newman , 2004). While...MCMC) sampler ( Newman and Barkema, 1999) which efficiently updates node-community memberships by ‘collapsing’ nodes that have common features and
Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks
NASA Astrophysics Data System (ADS)
Li, Xingxing; Yuan, Yongqiang; Zhu, Yiting; Huang, Jiande; Wu, Jiaqi; Xiong, Yun; Zhang, Xiaohong; Li, Xin
2018-04-01
In this contribution, we focus on the precise orbit determination (POD) for BDS3 experimental satellites with the international GNSS Monitoring and Assessment System (iGMAS) and Multi-GNSS Experiment (MGEX) tracking networks. The datasets of DOY (day of year) 001-230 in 2017 are analyzed with different processing strategies. By comparing receiver clock biases and receiver B1I-B3I DCBs, it is confirmed that there is no obvious systematic bias between experimental BDS3 and BDS2 in the common B1I and B3I signals, which indicates that experimental BDS3 and BDS2 can be treated as one system when performing combined POD. With iGMAS-only BDS3 stations, the 24-h overlap RMS of BDS3 + BDS2 + GPS combined POD is 24.3, 16.1 and 8.4 cm in along-track, cross-track and radial components, which is better than BDS3-only POD by 80-90% and better than BDS3+BDS2 combined POD by about 10%. With more stations (totally 20 stations from both iGMAS and MGEX) and the proper ambiguity resolution strategy (GEO ambiguities are float and BDS3 ambiguities are fixed), the performance of BDS3 POD can be further improved to 14.6, 7.9 and 3.7 cm, respectively, in along-track, cross-track and radial components, which is comparable to the performance of BDS2 POD. The 230-day SLR validations of C32, C33 and C34 show that the mean differences of - 3.48 , 7.81 and 8.19 cm can be achieved, while the STD is 13.35, 13.46 and 13.11 cm, respectively. Furthermore, the 230-day overlap comparisons reveal that C31 most likely still uses an orbit-normal mode and exhibits similar orbit modeling problems in orbit-normal periods as found in most of the BDS2 satellites.
Characteristic and intermingled neocortical circuits encode different visual object discriminations.
Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I
2017-07-28
Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.
Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.
2010-01-01
Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification. PMID:20167415
An Exposition of Fischer's Model of Overlapping Contracts.
ERIC Educational Resources Information Center
Fields, T. Windsor; Hart, William R.
1992-01-01
Suggests how the classic model of overlapping contracts can be incorporated into the contract wage model of aggregate supply. Illustrates dynamics of macroeconomic adjustment following a shock to aggregate demand. Concludes that overlapping contracts do not prolong the adjustment process; rather, the longest remaining contract determines the time…
Telonis-Scott, Marina; Sgrò, Carla M.; Hoffmann, Ary A.; Griffin, Philippa C.
2016-01-01
Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experiment in flies collected from the same region in southeastern Australia in different years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. Our approach provides insight into the genomic basis of a complex and ecologically important trait and predicts candidate genetic pathways to explore in multiple genetic backgrounds and related species within a functional framework. PMID:26733490
Climate change alters stability and species potential interactions in a large marine ecosystem.
Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M
2018-01-01
We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. © 2017 John Wiley & Sons Ltd.
Yin, Henry H.
2008-01-01
Recent work on the role of overlapping cerebral networks in action selection and habit formation has important implications for alcohol addiction research. As reviewed below, (1) these networks, which all involve a group of deep-brain structures called the basal ganglia, are associated with distinct behavioral control processes, such as reward-guided Pavlovian conditional responses, goal-directed instrumental actions, and stimulus-driven habits; (2) different stages of action learning are associated with different networks, which have the ability to change (i.e., plasticity); and (3) exposure to alcohol and other addictive drugs can have profound effects on these networks by influencing the mechanisms underlying neural plasticity. PMID:23584008
The Sociospatial Network: Risk and the Role of Place in the Transmission of Infectious Diseases.
Logan, James J; Jolly, Ann M; Blanford, Justine I
2016-01-01
Control of sexually transmitted infections and blood-borne pathogens is challenging due to their presence in groups exhibiting complex social interactions. In particular, sharing injection drug use equipment and selling sex (prostitution) puts people at high risk. Previous work examining the involvement of risk behaviours in social networks has suggested that social and geographic distance of persons within a group contributes to these pathogens' endemicity. In this study, we examine the role of place in the connectedness of street people, selected by respondent driven sampling, in the transmission of blood-borne and sexually transmitted pathogens. A sample of 600 injection drug users, men who have sex with men, street youth and homeless people were recruited in Winnipeg, Canada from January to December, 2009. The residences of participants and those of their social connections were linked to each other and to locations where they engaged in risk activity. Survey responses identified 101 unique sites where respondents participated in injection drug use or sex transactions. Risk sites and respondents' residences were geocoded, with residence representing the individuals. The sociospatial network and estimations of geographic areas most likely to be frequented were mapped with network graphs and spatially using a Geographic Information System (GIS). The network with the most nodes connected 7.7% of respondents; consideration of the sociospatial network increased this to 49.7%. The mean distance between any two locations in the network was within 3.5 kilometres. Kernel density estimation revealed key activity spaces where the five largest networks overlapped. Here, the combination of spatial and social entities in network analysis defines the overlap of vulnerable populations in risk space, over and above the person to person links. Implications of this work are far reaching, not just for understanding transmission dynamics of sexually transmitted infections by identifying activity "hotspots" and their intersection with each social network, but also for the spread of other diseases (e.g. tuberculosis) and targeting prevention services.
NASA Astrophysics Data System (ADS)
Hao, Yufang; Xie, Shaodong
2018-03-01
Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting-California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.
Modified empirical Solar Radiation Pressure model for IRNSS constellation
NASA Astrophysics Data System (ADS)
Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.
2017-11-01
Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.
Unsupervised Learning of Overlapping Image Components Using Divisive Input Modulation
Spratling, M. W.; De Meyer, K.; Kompass, R.
2009-01-01
This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance. PMID:19424442
Global priorities for conservation across multiple dimensions of mammalian diversity
Graham, Catherine H.; Costa, Gabriel C.; Hedges, S. Blair; Penone, Caterina; Radeloff, Volker C.; Rondinini, Carlo; Davidson, Ana D.
2017-01-01
Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to (i) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity—taxonomic, phylogenetic, and traits—and (ii) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts. PMID:28674013
Global priorities for conservation across multiple dimensions of mammalian diversity.
Brum, Fernanda T; Graham, Catherine H; Costa, Gabriel C; Hedges, S Blair; Penone, Caterina; Radeloff, Volker C; Rondinini, Carlo; Loyola, Rafael; Davidson, Ana D
2017-07-18
Conservation priorities that are based on species distribution, endemism, and vulnerability may underrepresent biologically unique species as well as their functional roles and evolutionary histories. To ensure that priorities are biologically comprehensive, multiple dimensions of diversity must be considered. Further, understanding how the different dimensions relate to one another spatially is important for conservation prioritization, but the relationship remains poorly understood. Here, we use spatial conservation planning to ( i ) identify and compare priority regions for global mammal conservation across three key dimensions of biodiversity-taxonomic, phylogenetic, and traits-and ( ii ) determine the overlap of these regions with the locations of threatened species and existing protected areas. We show that priority areas for mammal conservation exhibit low overlap across the three dimensions, highlighting the need for an integrative approach for biodiversity conservation. Additionally, currently protected areas poorly represent the three dimensions of mammalian biodiversity. We identify areas of high conservation priority among and across the dimensions that should receive special attention for expanding the global protected area network. These high-priority areas, combined with areas of high priority for other taxonomic groups and with social, economic, and political considerations, provide a biological foundation for future conservation planning efforts.
Can specific transcriptional regulators assemble a universal cancer signature?
NASA Astrophysics Data System (ADS)
Roy, Janine; Isik, Zerrin; Pilarsky, Christian; Schroeder, Michael
2013-10-01
Recently, there is a lot of interest in using biomarker signatures derived from gene expression data to predict cancer progression. We assembled signatures of 25 published datasets covering 13 types of cancers. How do these signatures compare with each other? On one hand signatures answering the same biological question should overlap, whereas signatures predicting different cancer types should differ. On the other hand, there could also be a Universal Cancer Signature that is predictive independently of the cancer type. Initially, we generate signatures for all datasets using classical approaches such as t-test and fold change and then, we explore signatures resulting from a network-based method, that applies the random surfer model of Google's PageRank algorithm. We show that the signatures as published by the authors and the signatures generated with classical methods do not overlap - not even for the same cancer type - whereas the network-based signatures strongly overlap. Selecting 10 out of 37 universal cancer genes gives the optimal prediction for all cancers thus taking a first step towards a Universal Cancer Signature. We furthermore analyze and discuss the involved genes in terms of the Hallmarks of cancer and in particular single out SP1, JUN/FOS and NFKB1 and examine their specific role in cancer progression.
Structural principles within the human-virus protein-protein interaction network
Franzosa, Eric A.; Xia, Yu
2011-01-01
General properties of the antagonistic biomolecular interactions between viruses and their hosts (exogenous interactions) remain poorly understood, and may differ significantly from known principles governing the cooperative interactions within the host (endogenous interactions). Systems biology approaches have been applied to study the combined interaction networks of virus and human proteins, but such efforts have so far revealed only low-resolution patterns of host-virus interaction. Here, we layer curated and predicted 3D structural models of human-virus and human-human protein complexes on top of traditional interaction networks to reconstruct the human-virus structural interaction network. This approach reveals atomic resolution, mechanistic patterns of host-virus interaction, and facilitates systematic comparison with the host’s endogenous interactions. We find that exogenous interfaces tend to overlap with and mimic endogenous interfaces, thereby competing with endogenous binding partners. The endogenous interfaces mimicked by viral proteins tend to participate in multiple endogenous interactions which are transient and regulatory in nature. While interface overlap in the endogenous network results largely from gene duplication followed by divergent evolution, viral proteins frequently achieve interface mimicry without any sequence or structural similarity to an endogenous binding partner. Finally, while endogenous interfaces tend to evolve more slowly than the rest of the protein surface, exogenous interfaces—including many sites of endogenous-exogenous overlap—tend to evolve faster, consistent with an evolutionary “arms race” between host and pathogen. These significant biophysical, functional, and evolutionary differences between host-pathogen and within-host protein-protein interactions highlight the distinct consequences of antagonism versus cooperation in biological networks. PMID:21680884
Colaprico, Antonio; Bontempi, Gianluca; Castiglioni, Isabella
2018-01-01
Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC. PMID:29562723
D'Antò, Vincenzo; Cantile, Monica; D'Armiento, Maria; Schiavo, Giulia; Spagnuolo, Gianrico; Terracciano, Luigi; Vecchione, Raffaela; Cillo, Clemente
2006-03-01
Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells. 2005 Wiley-Liss, Inc.
Mello, Marco A. R.; Bronstein, Judith L.; Guerra, Tadeu J.; Muylaert, Renata L.; Leite, Alice C.; Neves, Frederico S.
2016-01-01
Ant-plant associations are an outstanding model to study the entangled ecological interactions that structure communities. However, most studies of plant-animal networks focus on only one type of resource that mediates these interactions (e.g, nectar or fruits), leading to a biased understanding of community structure. New approaches, however, have made possible to study several interaction types simultaneously through multilayer networks models. Here, we use this approach to ask whether the structural patterns described to date for ant-plant networks hold when multiple interactions with plant-derived food rewards are considered. We tested whether networks characterized by different resource types differ in specialization and resource partitioning among ants, and whether the identity of the core ant species is similar among resource types. We monitored ant interactions with extrafloral nectaries, flowers, and fruits, as well as trophobiont hemipterans feeding on plants, for one year, in seven rupestrian grassland (campo rupestre) sites in southeastern Brazil. We found a highly tangled ant-plant network in which plants offering different resource types are connected by a few central ant species. The multilayer network had low modularity and specialization, but ant specialization and niche overlap differed according to the type of resource used. Beyond detecting structural differences across networks, our study demonstrates empirically that the core of most central ant species is similar across them. We suggest that foraging strategies of ant species, such as massive recruitment, may determine specialization and resource partitioning in ant-plant interactions. As this core of ant species is involved in multiple ecosystem functions, it may drive the diversity and evolution of the entire campo rupestre community. PMID:27911919
On the Effect of Sphere-Overlap on Super Coarse-Grained Models of Protein Assemblies
NASA Astrophysics Data System (ADS)
Degiacomi, Matteo T.
2018-05-01
Ion mobility mass spectrometry (IM/MS) can provide structural information on intact protein complexes. Such data, including connectivity and collision cross sections (CCS) of assemblies' subunits, can in turn be used as a guide to produce representative super coarse-grained models. These models are constituted by ensembles of overlapping spheres, each representing a protein subunit. A model is considered plausible if the CCS and sphere-overlap levels of its subunits fall within predetermined confidence intervals. While the first is determined by experimental error, the latter is based on a statistical analysis on a range of protein dimers. Here, we first propose a new expression to describe the overlap between two spheres. Then we analyze the effect of specific overlap cutoff choices on the precision and accuracy of super coarse-grained models. Finally, we propose a method to determine overlap cutoff levels on a per-case scenario, based on collected CCS data, and show that it can be applied to the characterization of the assembly topology of symmetrical homo-multimers. [Figure not available: see fulltext.
Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B
2012-01-01
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jacobs, Julia; Menzel, Antonia; Ramantani, Georgia; Körbl, Katharina; Assländer, Jakob; Schulze-Bonhage, Andreas; Hennig, Jürgen; LeVan, Pierre
2014-01-01
Introduction: EEG-fMRI detects BOLD changes associated with epileptic interictal discharges (IED) and can identify epileptogenic networks in epilepsy patients. Besides positive BOLD changes, negative BOLD changes have sometimes been observed in the default-mode network, particularly using group analysis. A new fast fMRI sequence called MREG (Magnetic Resonance Encephalography) shows increased sensitivity to detect IED-related BOLD changes compared to the conventional EPI sequence, including frequent occurrence of negative BOLD responses in the DMN. The present study quantifies the concordance between the DMN and negative BOLD related to IEDs of temporal and extra-temporal origin. Methods: Focal epilepsy patients underwent simultaneous EEG-MREG. Areas of overlap were calculated between DMN regions, defined as precuneus, posterior cingulate, bilateral inferior parietal and mesial prefrontal cortices according to a standardized atlas, and significant negative BOLD changes revealed by an event-related analysis based on the timings of IED seen on EEG. Correlation between IED number/lobe of origin and the overlap were calculated. Results: 15 patients were analyzed, some showing IED over more than one location resulting in 30 different IED types. The average overlap between negative BOLD and DMN was significantly larger in temporal (23.7 ± 19.6 cm3) than extra-temporal IEDs (7.4 ± 5.1 cm3, p = 0.008). There was no significant correlation between the number of IEDs and the overlap between DMN structures and negative BOLD areas. Discussion: MREG results in an increased sensitivity to detect negative BOLD responses related to focal IED in single patients, with responses often occurring in DMN regions. In patients with high overlap with the DMN, this suggests that epileptic IEDs may be associated with a brief decrease in attention and cognitive ability. Interestingly this observation was not dependent on the frequency of IED but more common in IED of temporal origin. PMID:25477775
Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael
2009-06-27
A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN.
Andreopoulos, Bill; Winter, Christof; Labudde, Dirk; Schroeder, Michael
2009-01-01
Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs) with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs) were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs) representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS). PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that relatively little structural information would be sufficient for finding complexes involving most of the proteins and interactions in a typical PPIN. PMID:19558694
Distributed multiple path routing in complex networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Wang, San-Xiu; Wu, Ling-Wei; Mei, Pan; Yang, Xu-Hua; Wen, Guang-Hui
2016-12-01
Routing in complex transmission networks is an important problem that has garnered extensive research interest in the recent years. In this paper, we propose a novel routing strategy called the distributed multiple path (DMP) routing strategy. For each of the O-D node pairs in a given network, the DMP routing strategy computes and stores multiple short-length paths that overlap less with each other in advance. And during the transmission stage, it rapidly selects an actual routing path which provides low transmission cost from the pre-computed paths for each transmission task, according to the real-time network transmission status information. Computer simulation results obtained for the lattice, ER random, and scale-free networks indicate that the strategy can significantly improve the anti-congestion ability of transmission networks, as well as provide favorable routing robustness against partial network failures.
Skeletal camera network embedded structure-from-motion for 3D scene reconstruction from UAV images
NASA Astrophysics Data System (ADS)
Xu, Zhihua; Wu, Lixin; Gerke, Markus; Wang, Ran; Yang, Huachao
2016-11-01
Structure-from-Motion (SfM) techniques have been widely used for 3D scene reconstruction from multi-view images. However, due to the large computational costs of SfM methods there is a major challenge in processing highly overlapping images, e.g. images from unmanned aerial vehicles (UAV). This paper embeds a novel skeletal camera network (SCN) into SfM to enable efficient 3D scene reconstruction from a large set of UAV images. First, the flight control data are used within a weighted graph to construct a topologically connected camera network (TCN) to determine the spatial connections between UAV images. Second, the TCN is refined using a novel hierarchical degree bounded maximum spanning tree to generate a SCN, which contains a subset of edges from the TCN and ensures that each image is involved in at least a 3-view configuration. Third, the SCN is embedded into the SfM to produce a novel SCN-SfM method, which allows performing tie-point matching only for the actually connected image pairs. The proposed method was applied in three experiments with images from two fixed-wing UAVs and an octocopter UAV, respectively. In addition, the SCN-SfM method was compared to three other methods for image connectivity determination. The comparison shows a significant reduction in the number of matched images if our method is used, which leads to less computational costs. At the same time the achieved scene completeness and geometric accuracy are comparable.
Overlapping memory trace indispensable for linking, but not recalling, individual memories.
Yokose, Jun; Okubo-Suzuki, Reiko; Nomoto, Masanori; Ohkawa, Noriaki; Nishizono, Hirofumi; Suzuki, Akinobu; Matsuo, Mina; Tsujimura, Shuhei; Takahashi, Yukari; Nagase, Masashi; Watabe, Ayako M; Sasahara, Masakiyo; Kato, Fusao; Inokuchi, Kaoru
2017-01-27
Memories are not stored in isolation from other memories but are integrated into associative networks. However, the mechanisms underlying memory association remain elusive. Using two amygdala-dependent behavioral paradigms-conditioned taste aversion (CTA) and auditory-cued fear conditioning (AFC)-in mice, we found that presenting the conditioned stimulus used for the CTA task triggered the conditioned response of the AFC task after natural coreactivation of the memories. This was accompanied through an increase in the overlapping neuronal ensemble in the basolateral amygdala. Silencing of the overlapping ensemble suppressed CTA retrieval-induced freezing. However, retrieval of the original CTA or AFC memory was not affected. A small population of coshared neurons thus mediates the link between memories. They are not necessary for recalling individual memories. Copyright © 2017, American Association for the Advancement of Science.
Auditing Complex Concepts in Overlapping Subsets of SNOMED
Wang, Yue; Wei, Duo; Xu, Junchuan; Elhanan, Gai; Perl, Yehoshua; Halper, Michael; Chen, Yan; Spackman, Kent A.; Hripcsak, George
2008-01-01
Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries. PMID:18998838
Auditing complex concepts in overlapping subsets of SNOMED.
Wang, Yue; Wei, Duo; Xu, Junchuan; Elhanan, Gai; Perl, Yehoshua; Halper, Michael; Chen, Yan; Spackman, Kent A; Hripcsak, George
2008-11-06
Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries.
Benech, P D; Patatian, A
2014-12-01
There is no doubt that the DNA microarray-based technology contributed to increase our knowledge of a wide range of processes. However, integrating genes into functional networks, rather than terms describing generic characteristics, remains an important challenge. The highly context-dependent function of a given gene and feedback mechanisms complexify greatly the interpretation of the data. Moreover, it is difficult to determine whether changes in gene expression are the result or the cause of pathologies or physiological events. In both cases, the difficulty relies on the involvement of processes that, at an early stage, can be protective and later on, deleterious because of their runaway. Each individual cell has its own transcription profile that determines its behaviour and its relationships with its neighbours. This is particularly true when a mechanism such as cell cycle is concerned. Another issue concerns the analyses from samples of different donors. Whereas the statistical tools lead to determine common features among groups, they tend to smooth the overall data and consequently, the selected values represent the 'tip of the iceberg'. There is a significant overlap in the set of genes identified in the different studies on skin ageing processes described in the present review. The reason of this overlap is because most of these genes belong to the basic machinery controlling cell growth and arrest. To get a more full picture of these processes, a hard work has still to be done to determine the precise mechanisms conferring the cell type specificity of ageing. Integrative biology applied to the huge amount of existing microarray data should fulfil gaps, through the characterization of additional actors accounting for the activation of specific signalling pathways at crossing points. Furthermore, computational tools have to be developed taking into account that expression values among similar groups may not vary 'by chance' but may reflect, along with other subtle changes, specific features of one given donor. Through a better stratification, these tools will allow to recover genes from the 'bottom of the iceberg'. Identifying these genes should contribute to understand how skin ages among individuals, thus paving the way for personalized skin care. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Do young children have adult-like syntactic categories? Zipf's law and the case of the determiner.
Pine, Julian M; Freudenthal, Daniel; Krajewski, Grzegorz; Gobet, Fernand
2013-06-01
Generativist models of grammatical development assume that children have adult-like grammatical categories from the earliest observable stages, whereas constructivist models assume that children's early categories are more limited in scope. In the present paper, we test these assumptions with respect to one particular syntactic category, the determiner. This is done by comparing controlled measures of overlap in the set of nouns with which children and their caregivers use different instances of the determiner category in their spontaneous speech. In a series of studies, we show, first, that it is important to control for both sample size and vocabulary range when comparing child and adult overlap measures; second, that, once the appropriate controls have been applied, there is significantly less overlap in the nouns with which young children use the determiners a/an and the in their speech than in the nouns with which their caregivers use these same determiners; and, third, that the level of (controlled) overlap in the nouns that the children use with the determiners a/an and the increases significantly over the course of development. The implication is that children do not have an adult-like determiner category during the earliest observable stages, and that their knowledge of the determiner category only gradually approximates that of adults as a function of their linguistic experience. Copyright © 2013 Elsevier B.V. All rights reserved.
How does the 'rest-self overlap' mediate the qualitative and automatic features of self-reference?
Northoff, Georg
2016-01-01
The target article points out the qualitative and automatic features of self-reference while leaving open the underlying neural mechanisms. Based on empirical evidence about rest-self overlap and rest-stimulus interaction being special for self-related stimuli, I postulate that the resting state shows self-specific organization. The resting state's self-specific organization may be encoded by activity balances between different networks which in turn predispose the qualitative features of subsequent self-related stimulus-induced activity in, for instance, SAN as well as the automatic features of self-reference effects.
Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation
Hall, Megan P.; Nagel, Roland J.; Fagg, W. Samuel; Shiue, Lily; Cline, Melissa S.; Perriman, Rhonda J.; Donohue, John Paul; Ares, Manuel
2013-01-01
Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA (“STAR” motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3′ UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation. PMID:23525800
Gender asymmetry in concurrent partnerships and HIV prevalence.
Leung, Ka Yin; Powers, Kimberly A; Kretzschmar, Mirjam
2017-06-01
The structure of the sexual network of a population plays an essential role in the transmission of HIV. Concurrent partnerships, i.e. partnerships that overlap in time, are important in determining this network structure. Men and women may differ in their concurrent behavior, e.g. in the case of polygyny where women are monogamous while men may have concurrent partnerships. Polygyny has been shown empirically to be negatively associated with HIV prevalence, but the epidemiological impacts of other forms of gender-asymmetric concurrency have not been formally explored. Here we investigate how gender asymmetry in concurrency, including polygyny, can affect the disease dynamics. We use a model for a dynamic network where individuals may have concurrent partners. The maximum possible number of simultaneous partnerships can differ for men and women, e.g. in the case of polygyny. We control for mean partnership duration, mean lifetime number of partners, mean degree, and sexually active lifespan. We assess the effects of gender asymmetry in concurrency on two epidemic phase quantities (R 0 and the contribution of the acute HIV stage to R 0 ) and on the endemic HIV prevalence. We find that gender asymmetry in concurrent partnerships is associated with lower levels of all three epidemiological quantities, especially in the polygynous case. This effect on disease transmission can be attributed to changes in network structure, where increasing asymmetry leads to decreasing network connectivity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Wang, James K. T.; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J.
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene (HTT), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases. PMID:28611571
Wang, James K T; Langfelder, Peter; Horvath, Steve; Palazzolo, Michael J
2017-01-01
Huntington's disease (HD) is a progressive and autosomal dominant neurodegeneration caused by CAG expansion in the huntingtin gene ( HTT ), but the pathophysiological mechanism of mutant HTT (mHTT) remains unclear. To study HD using systems biological methodologies on all published data, we undertook the first comprehensive curation of two key PubMed HD datasets: perturbation genes that impact mHTT-driven endpoints and therefore are putatively linked causally to pathogenic mechanisms, and the protein interactome of HTT that reflects its biology. We perused PubMed articles containing co-citation of gene IDs and MeSH terms of interest to generate mechanistic gene sets for iterative enrichment analyses and rank ordering. The HD Perturbation database of 1,218 genes highly overlaps the HTT Interactome of 1,619 genes, suggesting links between normal HTT biology and mHTT pathology. These two HD datasets are enriched for protein networks of key genes underlying two mechanisms not previously implicated in HD nor in each other: exosome synaptic functions and homeostatic synaptic plasticity. Moreover, proteins, possibly including HTT, and miRNA detected in exosomes from a wide variety of sources also highly overlap the HD datasets, suggesting both mechanistic and biomarker links. Finally, the HTT Interactome highly intersects protein networks of pathogenic genes underlying Parkinson's, Alzheimer's and eight non-HD polyglutamine diseases, ALS, and spinal muscular atrophy. These protein networks in turn highly overlap the exosome and homeostatic synaptic plasticity gene sets. Thus, we hypothesize that HTT and other neurodegeneration pathogenic genes form a large interlocking protein network involved in exosome and homeostatic synaptic functions, particularly where the two mechanisms intersect. Mutant pathogenic proteins cause dysfunctions at distinct points in this network, each altering the two mechanisms in specific fashion that contributes to distinct disease pathologies, depending on the gene mutation and the cellular and biological context. This protein network is rich with drug targets, and exosomes may provide disease biomarkers, thus enabling drug discovery. All the curated datasets are made available for other investigators. Elucidating the roles of pathogenic neurodegeneration genes in exosome and homeostatic synaptic functions may provide a unifying framework for the age-dependent, progressive and tissue selective nature of multiple neurodegenerative diseases.
Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.
2015-01-01
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126
MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.
Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan
2017-06-01
This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoliang; Du, Li; Liu, Bendong; Zhe, Jiang
2016-06-01
We present a method based on an electrochemical sensor array and a back propagation artificial neural network for detection and quantification of four properties of lubrication oil, namely water (0, 500 ppm, 1000 ppm), total acid number (TAN) (13.1, 13.7, 14.4, 15.6 mg KOH g-1), soot (0, 1%, 2%, 3%) and sulfur content (1.3%, 1.37%, 1.44%, 1.51%). The sensor array, consisting of four micromachined electrochemical sensors, detects the four properties with overlapping sensitivities. A total set of 36 oil samples containing mixtures of water, soot, and sulfuric acid with different concentrations were prepared for testing. The sensor array’s responses were then divided to three sets: training sets (80% data), validation sets (10%) and testing sets (10%). Several back propagation artificial neural network architectures were trained with the training and validation sets; one architecture with four input neurons, 50 and 5 neurons in the first and second hidden layer, and four neurons in the output layer was selected. The selected neural network was then tested using the four sets of testing data (10%). Test results demonstrated that the developed artificial neural network is able to quantitatively determine the four lubrication properties (water, TAN, soot, and sulfur content) with a maximum prediction error of 18.8%, 6.0%, 6.7%, and 5.4%, respectively, indicting a good match between the target and predicted values. With the developed network, the sensor array could be potentially used for online lubricant oil condition monitoring.
Desynchronization and Plasticity of Striato-frontal Connectivity in Major Depressive Disorder.
Leaver, Amber M; Espinoza, Randall; Joshi, Shantanu H; Vasavada, Megha; Njau, Stephanie; Woods, Roger P; Narr, Katherine L
2016-10-17
Major depressive disorder (MDD) is associated with dysfunctional corticolimbic networks, making functional connectivity studies integral for understanding the mechanisms underlying MDD pathophysiology and treatment. Resting-state functional connectivity (RSFC) studies analyze patterns of temporally coherent intrinsic brain activity in "resting-state networks" (RSNs). The default-mode network (DMN) has been of particular interest to depression research; however, a single RSN is unlikely to capture MDD pathophysiology in its entirety, and the DMN itself can be characterized by multiple RSNs. This, coupled with conflicting previous results, underscores the need for further research. Here, we measured RSFC in MDD by targeting RSNs overlapping with corticolimbic regions and further determined whether altered patterns of RSFC were restored with electroconvulsive therapy (ECT). MDD patients exhibited hyperconnectivity between ventral striatum (VS) and the ventral default-mode network (vDMN), while simultaneously demonstrating hypoconnectivity with the anterior DMN (aDMN). ECT influenced this pattern: VS-vDMN hyperconnectivity was significantly reduced while VS-aDMN hypoconnectivity only modestly improved. RSFC between the salience RSN and dorsomedial prefrontal cortex was also reduced in MDD, but was not affected by ECT. Taken together, our results support a model of ventral/dorsal imbalance in MDD and further suggest that the VS is a key structure contributing to this desynchronization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Understanding emotion with brain networks.
Pessoa, Luiz
2018-02-01
Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.
1999-09-01
In truth , there may be some overlap between the various events. This could reduce the total amount of time that the function was not available to...in int-serv provides hard bounds on the maximum delay that will be experienced by the packets. It does so by explicitly reserving resources along the ...network is a soft target. This was noted by Bellovin who coined the term " Hard on the outside, soft and chewy on the inside" [Ref. 26] to describe
Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D
2014-03-01
Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks
NASA Astrophysics Data System (ADS)
Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong
2018-02-01
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem
Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account formore » overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.« less
Comparative mRNA analysis of behavioral and genetic mouse models of aggression.
Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip
2016-04-01
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.
Vanhommerig, Joost W; Bezemer, Daniela; Molenkamp, Richard; Van Sighem, Ard I; Smit, Colette; Arends, Joop E; Lauw, Fanny N; Brinkman, Kees; Rijnders, Bart J; Newsum, Astrid M; Bruisten, Sylvia M; Prins, Maria; Van Der Meer, Jan T; Van De Laar, Thijs J; Schinkel, Janke
2017-09-24
MSM are at increased risk for infection with HIV-1 and hepatitis C virus (HCV). Is HIV/HCV coinfection confined to specific HIV transmission networks? A HIV phylogenetic tree was constructed for 5038 HIV-1 subtype B polymerase (pol) sequences obtained from MSM in the AIDS therapy evaluation in the Netherlands cohort. We investigated the existence of HIV clusters with increased HCV prevalence, the HIV phylogenetic density (i.e. the number of potential HIV transmission partners) of HIV/HCV-coinfected MSM compared with HIV-infected MSM without HCV, and the overlap in HIV and HCV phylogenies using HCV nonstructural protein 5B sequences from 183 HIV-infected MSM with acute HCV infection. Five hundred and sixty-three of 5038 (11.2%) HIV-infected MSM tested HCV positive. Phylogenetic analysis revealed 93 large HIV clusters (≥10 MSM), 370 small HIV clusters (2-9 MSM), and 867 singletons with a median HCV prevalence of 11.5, 11.6, and 9.3%, respectively. We identified six large HIV clusters with elevated HCV prevalence (range 23.5-46.2%). Median HIV phylogenetic densities for MSM with HCV (3, interquartile range 1-7) and without HCV (3, interquartile range 1-8) were similar. HCV phylogeny showed 12 MSM-specific HCV clusters (clustersize: 2-39 HCV sequences); 12.7% of HCV infections were part of the same HIV and HCV cluster. We observed few HIV clusters with elevated HCV prevalence, no increase in the HIV phylogenetic density of HIV/HCV-coinfected MSM compared to HIV-infected MSM without HCV, and limited overlap between HIV and HCV phylogenies among HIV/HCV-coinfected MSM. Our data do not support the existence of MSM-specific sexual networks that fuel both the HIV and HCV epidemic.
Separation and sequence detection of overlapped fingerprints: experiments and first results
NASA Astrophysics Data System (ADS)
Kärgel, Rainer; Giebel, Sascha; Leich, Marcus; Dittmann, Jana
2011-11-01
Latent fingerprints provide vital information in modern crime scene investigation. On frequently touched surfaces the fingerprints may overlap which poses a major problem for forensic analysis. In order to make such overlapping fingerprints available for analysis, they have to be separated. An additional evaluation of the sequence in which the fingerprints were brought onto the surface can help to reconstruct the progression of events. Advances in both tasks can considerably aid crime investigation agencies and are the subject of this work. Here, a statistical approach, initially devised for the separation of overlapping text patterns by Tonazzini et al.,1 is employed to separate overlapping fingerprints. The method involves a maximum a posteriori estimation of the single fingerprints and the mixing coefficients, computed by an expectation-maximization algorithm. A fingerprint age determination feature based on corrosion is evaluated for sequence estimation. The approaches are evaluated using 30 samples of overlapping latent fingerprints on two different substrates. The fingerprint images are acquired with a non-destructive chromatic white light surface measurement device, each sample containing exactly two fingerprints that overlap in the center of the image. Since forensic investigations rely on manual assessment of acquired fingerprints by forensics experts, a subjective scale ranging from 0 to 8 is used to rate the separation results. Our results indicate that the chosen method can separate overlapped fingerprints which exhibit strong differences in contrast, since results gradually improve with the growing contrast difference of the overlapping fingerprints. Investigating the effects of corrosion leads to a reliable determination of the fingerprints' sequence as the timespan between their leaving increases.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.
Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E
2017-07-01
Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Carbonari, Dena M; Saine, M Elle; Newcomb, Craig W; Blak, Betina; Roy, Jason A; Haynes, Kevin; Wood, Jennifer; Gallagher, Arlene M; Bhullar, Harshvinder; Cardillo, Serena; Hennessy, Sean; Strom, Brian L; Lo Re, Vincent
2015-09-01
Pharmacoepidemiology researchers often utilize data from two UK electronic medical record databases, the Clinical Practice Research Datalink (CPRD) and The Health Improvement Network (THIN), and may choose to combine the two in an effort to increase sample size. To minimize duplication of data, previous studies examined the practice-level overlap between these databases. However, the proportion of overlapping patients remains unknown. We developed a method using demographic and pharmacy variables to identify patients included in both CPRD and THIN, and applied this method to measure the proportion of overlapping patients who initiated the oral anti-diabetic drug saxagliptin. We conducted a cross-sectional study among patients initiating saxagliptin in CPRD and THIN between October 2009 and September 2012. Within both databases, we identified patients: (i) ≥18 years, (ii) newly prescribed saxagliptin, and (iii) with ≥180 days enrollment prior to saxagliptin initiation. Demographic data (birth year, sex, patient registration date, family number, and marital status) and prescriptions (including dates) for the first two oral anti-diabetic drugs prescribed within the study period were used to identify matching patients. Among 4202 CPRD and 3641 THIN patients initiating saxagliptin, 2574 overlapping patients (61% of CPRD saxagliptin initiators; 71% of THIN saxagliptin initiators) were identified. Among these patients, 2474 patients (96%) perfectly matched on all demographic and prescription data. Within each database, over 60% of patients initiating saxagliptin were included within both CPRD and THIN. Combined demographic and prescription data can be used to identify patients included in both CPRD and THIN. Copyright © 2015 John Wiley & Sons, Ltd.
Zhang, Xin; Ye, Zhi-Hua; Liang, Hai-Wei; Ren, Fang-Hui; Li, Ping; Dang, Yi-Wu; Chen, Gang
2017-04-01
Our previous research has demonstrated that miR-146a-5p is down-regulated in hepatocellular carcinoma (HCC) and might play a tumor-suppressive role. In this study, we sought to validate the decreased expression with a larger cohort and to explore potential molecular mechanisms. GEO and TCGA databases were used to gather miR-146a-5p expression data in HCC, which included 762 HCC and 454 noncancerous liver tissues. A meta-analysis of the GEO-based microarrays, TCGA-based RNA-seq data, and additional qRT-PCR data validated the down-regulation of miR-146a-5p in HCC and no publication bias was observed. Integrated genes were generated by overlapping miR-146a-5p-related genes from predicted and formerly reported HCC-related genes using natural language processing. The overlaps were comprehensively analyzed to discover the potential gene signatures, regulatory pathways, and networks of miR-146a-5p in HCC. A total of 251 miR-146a-5p potential target genes were predicted by bioinformatics platforms and 104 genes were considered as both HCC- and miR-146a-5p-related overlaps. RAC1 was the most connected hub gene for miR-146a-5p and four pathways with high enrichment (VEGF signaling pathway, adherens junction, toll-like receptor signaling pathway, and neurotrophin signaling pathway) were denoted for the overlapped genes. The down-regulation of miR-146a-5p in HCC has been validated with the most complete data possible. The potential gene signatures, regulatory pathways, and networks identified for miR-146a-5p in HCC could prove useful for molecular-targeted diagnostics and therapeutics.
Expected number of quantum channels in quantum networks.
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-07-15
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.
Expected number of quantum channels in quantum networks
Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng
2015-01-01
Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556
The narrow gap between norms and cooperative behaviour in a reindeer herding community
2018-01-01
Cooperation evolves on social networks and is shaped, in part, by norms: beliefs and expectations about the behaviour of others or of oneself. Networks of cooperative social partners and associated norms are vital for pastoralists, such as Saami reindeer herders in northern Norway. However, little is known quantitatively about how norms structure pastoralists' social networks or shape cooperation. Saami herders reported their social networks and participated in field experiments, allowing us to gauge the overlap between reported and emergent cooperation. We show that individuals' perceptions of reciprocal cooperation within their social networks exceeded actual reciprocity, although both occurred frequently and were concentrated within herding groups. Herders with more extensive cooperation networks received more rewards in an economic game. Although herders overestimated reciprocal helping, cooperation in this community was still extensive, suggesting that perceived norms potentially allow network structures promoting cooperation to emerge and be maintained. PMID:29515842
Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus
USDA-ARS?s Scientific Manuscript database
Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...
Mishori, Ranit; Singh, Lisa Oberoi; Levy, Brendan; Newport, Calvin
2014-04-14
Twitter is becoming an important tool in medicine, but there is little information on Twitter metrics. In order to recommend best practices for information dissemination and diffusion, it is important to first study and analyze the networks. This study describes the characteristics of four medical networks, analyzes their theoretical dissemination potential, their actual dissemination, and the propagation and distribution of tweets. Open Twitter data was used to characterize four networks: the American Medical Association (AMA), the American Academy of Family Physicians (AAFP), the American Academy of Pediatrics (AAP), and the American College of Physicians (ACP). Data were collected between July 2012 and September 2012. Visualization was used to understand the follower overlap between the groups. Actual flow of the tweets for each group was assessed. Tweets were examined using Topsy, a Twitter data aggregator. The theoretical information dissemination potential for the groups is large. A collective community is emerging, where large percentages of individuals are following more than one of the groups. The overlap across groups is small, indicating a limited amount of community cohesion and cross-fertilization. The AMA followers' network is not as active as the other networks. The AMA posted the largest number of tweets while the AAP posted the fewest. The number of retweets for each organization was low indicating dissemination that is far below its potential. To increase the dissemination potential, medical groups should develop a more cohesive community of shared followers. Tweet content must be engaging to provide a hook for retweeting and reaching potential audience. Next steps call for content analysis, assessment of the behavior and actions of the messengers and the recipients, and a larger-scale study that considers other medical groups using Twitter.
Using the shared genetics of dystonia and ataxia to unravel their pathogenesis
Nibbeling, Esther A.R.; Delnooz, Cathérine C.S.; de Koning, Tom J.; Sinke, Richard J.; Jinnah, Hyder A.; Tijssen, Marina A.J.; Verbeek, Dineke S.
2018-01-01
In this review we explore the similarities between spinocerebellar ataxias and dystonias, and suggest potentially shared molecular pathways using a gene co-expression network approach. The spinocerebellar ataxias are a group of neurodegenerative disorders characterized by coordination problems caused mainly by atrophy of the cerebellum. The dystonias are another group of neurological movement disorders linked to basal ganglia dysfunction, although evidence is now pointing to cerebellar involvement as well. Our gene co-expression network approach identified 99 shared genes and showed the involvement of two major pathways: synaptic transmission and neurodevelopment. These pathways overlapped in the two disorders, with a large role for GABAergic signaling in both. The overlapping pathways may provide novel targets for disease therapies. We need to prioritize variants obtained by whole exome sequencing in the genes associated with these pathways in the search for new pathogenic variants, which can than be used to help in the genetic counseling of patients and their families. PMID:28143763
Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies
2017-07-01
Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems. © 2017 by the Ecological Society of America.
Abstraction of complex concepts with a refined partial-area taxonomy of SNOMED
Wang, Yue; Halper, Michael; Wei, Duo; Perl, Yehoshua; Geller, James
2012-01-01
An algorithmically-derived abstraction network, called the partial-area taxonomy, for a SNOMED hierarchy has led to the identification of concepts considered complex. The designation “complex” is arrived at automatically on the basis of structural analyses of overlap among the constituent concept groups of the partial-area taxonomy. Such complex concepts, called overlapping concepts, constitute a tangled portion of a hierarchy and can be obstacles to users trying to gain an understanding of the hierarchy’s content. A new methodology for partitioning the entire collection of overlapping concepts into singly-rooted groups, that are more manageable to work with and comprehend, is presented. Different kinds of overlapping concepts with varying degrees of complexity are identified. This leads to an abstract model of the overlapping concepts called the disjoint partial-area taxonomy, which serves as a vehicle for enhanced, high-level display. The methodology is demonstrated with an application to SNOMED’s Specimen hierarchy. Overall, the resulting disjoint partial-area taxonomy offers a refined view of the hierarchy’s structural organization and conceptual content that can aid users, such as maintenance personnel, working with SNOMED. The utility of the disjoint partial-area taxonomy as the basis for a SNOMED auditing regimen is presented in a companion paper. PMID:21878396
Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices
NASA Astrophysics Data System (ADS)
Tyloo, M.; Coletta, T.; Jacquod, Ph.
2018-02-01
In network theory, a question of prime importance is how to assess network vulnerability in a fast and reliable manner. With this issue in mind, we investigate the response to external perturbations of coupled dynamical systems on complex networks. We find that for specific, nonaveraged perturbations, the response of synchronous states depends on the eigenvalues of the stability matrix of the unperturbed dynamics, as well as on its eigenmodes via their overlap with the perturbation vector. Once averaged over properly defined ensembles of perturbations, the response is given by new graph topological indices, which we introduce as generalized Kirchhoff indices. These findings allow for a fast and reliable method for assessing the specific or average vulnerability of a network against changing operational conditions, faults, or external attacks.
Shared neural processes support semantic control and action understanding
Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth
2015-01-01
Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631
Overlaps with arbitrary two-site states in the XXZ spin chain
NASA Astrophysics Data System (ADS)
Pozsgay, B.
2018-05-01
We present a conjectured exact formula for overlaps between the Bethe states of the spin-1/2 XXZ chain and generic two-site states. The result takes the same form as in the previously known cases: it involves the same ratio of two Gaudin-like determinants, and a product of single-particle overlap functions, which can be fixed using a combination of the quench action and quantum transfer matrix methods. Our conjecture is confirmed by numerical data from exact diagonalization. For one-site states, the formula is found to be correct even in chains with odd length. It is also pointed out that the ratio of the Gaudin-like determinants plays a crucial role in the overlap sum rule: it guarantees that in the thermodynamic limit there remains no term in the quench action.
Springer, Andrea; Kappeler, Peter M; Nunn, Charles L
2017-05-01
Social networks provide an established tool to implement heterogeneous contact structures in epidemiological models. Dynamic temporal changes in contact structure and ranging behaviour of wildlife may impact disease dynamics. A consensus has yet to emerge, however, concerning the conditions in which network dynamics impact model outcomes, as compared to static approximations that average contact rates over longer time periods. Furthermore, as many pathogens can be transmitted both environmentally and via close contact, it is important to investigate the relative influence of both transmission routes in real-world populations. Here, we use empirically derived networks from a population of wild primates, Verreaux's sifakas (Propithecus verreauxi), and simulated networks to investigate pathogen spread in dynamic vs. static social networks. First, we constructed a susceptible-exposed-infected-recovered model of Cryptosporidium spread in wild Verreaux's sifakas. We incorporated social and environmental transmission routes and parameterized the model for two different climatic seasons. Second, we used simulated networks and greater variation in epidemiological parameters to investigate the conditions in which dynamic networks produce larger outbreak sizes than static networks. We found that average outbreak size of Cryptosporidium infections in sifakas was larger when the disease was introduced in the dry season than in the wet season, driven by an increase in home range overlap towards the end of the dry season. Regardless of season, dynamic networks always produced larger average outbreak sizes than static networks. Larger outbreaks in dynamic models based on simulated networks occurred especially when the probability of transmission and recovery were low. Variation in tie strength in the dynamic networks also had a major impact on outbreak size, while network modularity had a weaker influence than epidemiological parameters that determine transmission and recovery. Our study adds to emerging evidence that dynamic networks can change predictions of disease dynamics, especially if the disease shows low transmissibility and a long infectious period, and when environmental conditions lead to enhanced between-group contact after an infectious agent has been introduced. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Suppressing epidemic spreading in multiplex networks with social-support
NASA Astrophysics Data System (ADS)
Chen, Xiaolong; Wang, Ruijie; Tang, Ming; Cai, Shimin; Stanley, H. Eugene; Braunstein, Lidia A.
2018-01-01
Although suppressing the spread of a disease is usually achieved by investing in public resources, in the real world only a small percentage of the population have access to government assistance when there is an outbreak, and most must rely on resources from family or friends. We study the dynamics of disease spreading in social-contact multiplex networks when the recovery of infected nodes depends on resources from healthy neighbors in the social layer. We investigate how degree heterogeneity affects the spreading dynamics. Using theoretical analysis and simulations we find that degree heterogeneity promotes disease spreading. The phase transition of the infected density is hybrid and increases smoothly from zero to a finite small value at the first invasion threshold and then suddenly jumps at the second invasion threshold. We also find a hysteresis loop in the transition of the infected density. We further investigate how an overlap in the edges between two layers affects the spreading dynamics. We find that when the amount of overlap is smaller than a critical value the phase transition is hybrid and there is a hysteresis loop, otherwise the phase transition is continuous and the hysteresis loop vanishes. In addition, the edge overlap allows an epidemic outbreak when the transmission rate is below the first invasion threshold, but suppresses any explosive transition when the transmission rate is above the first invasion threshold.
A neural network for the prediction of performance parameters of transformer cores
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Booth, T.; Ilo, A.; Pfützner, H.
1996-07-01
The paper shows that Artificial Neural Networks (ANNs) may offer new possibilities for the prediction of transformer core performance parameters, i.e. no-load power losses and excitation. Basically this technique enables simulations with respect to different construction parameters most notably the characteristics of corner designs, i.e. the overlap length, the air gap length, and the number of steps. However, without additional physical knowledge incorporated into the ANN extrapolation beyond the training data limits restricts the predictive performance.
RNA sequencing reveals significant miRNAs in Atypical endometrial hyperplasia.
Tang, Shiqian; Dai, Yinmei
2018-06-01
In this paper, we aimed to investigate the miRNAs that played a regulatory role in the development of atypical endometrial hyperplasia (AEH). RNA sequencing was performed for endometrial tissues from 3 AEH patients and 3 endometrial normal hyperplasia patients. RNA sequencing data were processed and differentially expressed (DE) miRNAs were identified between AEH and controls. The target genes for DE miRNAs were identified and mapped to the protein-protein interaction (PPI) network. The miRNA related functions were predicted and miRNA-disease gene network was constructed. Total 18 DE miRNAs were overlapped in three sample groups, among which hsa-miR-577, hsa-miR-182-5p and hsa-miR-183-5p were top three miRNAs that targeting largest number of genes. Function analysis showed that the 18 overlapped miRNAs mainly related with cancer and signaling transduction related pathways. PPI network showed that total 12 genes were among top 20 genes based on three network topological features including BCL2, UMPS, MAPK13, PRKCB, CREB1, IGF1, SP1, SMAD3, IGF1R, NOTCH2, WNT5A, TK2. Top 10 miRNAs in miRNA-disease gene network were identified such as hsa-miR-577 (degree = 17), hsa-miR-182-5p (degree = 16) and hsa-miR-3609 (degree = 13). hsa-miR-577 and hsa-miR-182-5p may play regulatory role in AEH through AMPK signal pathway and Wnt signaling pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine
2018-01-01
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. PMID:29561263
Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar
2018-05-15
The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gur, M.; Zomot, E.; Bahar, I.
2013-09-01
The Anton supercomputing technology recently developed for efficient molecular dynamics simulations permits us to examine micro- to milli-second events at full atomic resolution for proteins in explicit water and lipid bilayer. It also permits us to investigate to what extent the collective motions predicted by network models (that have found broad use in molecular biophysics) agree with those exhibited by full-atomic long simulations. The present study focuses on Anton trajectories generated for two systems: the bovine pancreatic trypsin inhibitor, and an archaeal aspartate transporter, GltPh. The former, a thoroughly studied system, helps benchmark the method of comparative analysis, and the latter provides new insights into the mechanism of function of glutamate transporters. The principal modes of motion derived from both simulations closely overlap with those predicted for each system by the anisotropic network model (ANM). Notably, the ANM modes define the collective mechanisms, or the pathways on conformational energy landscape, that underlie the passage between the crystal structure and substates visited in simulations. In particular, the lowest frequency ANM modes facilitate the conversion between the most probable substates, lending support to the view that easy access to functional substates is a robust determinant of evolutionarily selected native contact topology.
Comparison of four approaches to a rock facies classification problem
Dubois, M.K.; Bohling, Geoffrey C.; Chakrabarti, S.
2007-01-01
In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.
Complementary roles of two resilient neotropical mammalian seed dispersers
NASA Astrophysics Data System (ADS)
de Almeida, Adriana; Morris, Rebecca J.; Lewis, Owen T.; Mikich, Sandra B.
2018-04-01
Capuchin monkeys (Cebus spp. and Sapajus spp.) and coatis (Nasua spp.) coexist in most neotropical forests, including small forest remnants. Both capuchins and coatis eat fruit and disperse seeds, but little is known about whether their roles in seed dispersal are redundant or complementary. We compiled 49 studies from the literature on feeding by capuchins and/or coatis, of which 19 were comprehensive enough for our analyses. We determined the relative importance of fruit eating to each species and compared their diets. Additionally, we analysed the structure of three fruit-frugivore networks built with both animal groups and the fruits they eat and evaluated whether fruit traits influenced the network topology. Fruits represented the largest part of capuchin and coati diets, even though coatis have been known for their opportunistic and generalist diets. Capuchins and coatis also exhibited similar general diet parameters (niche breadth and trophic diversity). The three networks exhibited high connectance values and variable niche overlap. A Multiple Correspondence Analysis, failed to detect any trait or trait combination related to food use. In conclusion, capuchins and coatis both have generalist diets; they feed on many different species of fruits and exhibit important complementarity as seed dispersers. Both are likely to be particularly important seed dispersers in disturbed and fragmented forests.
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endele, Max; Etzrodt, Martin; Schroeder, Timm, E-mail: timm.schroeder@bsse.ethz.ch
Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support themore » production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.« less
Neural basis of bilingual language control.
Calabria, Marco; Costa, Albert; Green, David W; Abutalebi, Jubin
2018-06-19
Acquiring and speaking a second language increases demand on the processes of language control for bilingual as compared to monolingual speakers. Language control for bilingual speakers involves the ability to keep the two languages separated to avoid interference and to select one language or the other in a given conversational context. This ability is what we refer with the term "bilingual language control" (BLC). It is now well established that the architecture of this complex system of language control encompasses brain networks involving cortical and subcortical structures, each responsible for different cognitive processes such as goal maintenance, conflict monitoring, interference suppression, and selective response inhibition. Furthermore, advances have been made in determining the overlap between the BLC and the nonlinguistic executive control networks, under the hypothesis that the BLC processes are just an instantiation of a more domain-general control system. Here, we review the current knowledge about the neural basis of these control systems. Results from brain imaging studies of healthy adults and on the performance of bilingual individuals with brain damage are discussed. © 2018 New York Academy of Sciences.
Elhanan, Gai; Ochs, Christopher; Mejino, Jose L V; Liu, Hao; Mungall, Christopher J; Perl, Yehoshua
2017-06-01
To examine whether disjoint partial-area taxonomy, a semantically-based evaluation methodology that has been successfully tested in SNOMED CT, will perform with similar effectiveness on Uberon, an anatomical ontology that belongs to a structurally similar family of ontologies as SNOMED CT. A disjoint partial-area taxonomy was generated for Uberon. One hundred randomly selected test concepts that overlap between partial-areas were matched to a same size control sample of non-overlapping concepts. The samples were blindly inspected for non-critical issues and presumptive errors first by a general domain expert whose results were then confirmed or rejected by a highly experienced anatomical ontology domain expert. Reported issues were subsequently reviewed by Uberon's curators. Overlapping concepts in Uberon's disjoint partial-area taxonomy exhibited a significantly higher rate of all issues. Clear-cut presumptive errors trended similarly but did not reach statistical significance. A sub-analysis of overlapping concepts with three or more relationship types indicated a much higher rate of issues. Overlapping concepts from Uberon's disjoint abstraction network are quite likely (up to 28.9%) to exhibit issues. The results suggest that the methodology can transfer well between same family ontologies. Although Uberon exhibited relatively few overlapping concepts, the methodology can be combined with other semantic indicators to expand the process to other concepts within the ontology that will generate high yields of discovered issues. Copyright © 2017 Elsevier B.V. All rights reserved.
Capturing the Peer Context: The Paradox of Progress
ERIC Educational Resources Information Center
Laursen, Brett
2010-01-01
Adolescents lead enormously complicated social lives. Many youth find it difficult to keep track of their own relationships with friends and romantic interests. For the investigator, the task is exponentially more complex because overlapping and interlocking relationships and networks must be disentangled, dissected, and diagrammed. This special…
Teachers, Arts Practice and Pedagogy
ERIC Educational Resources Information Center
Franks, Anton; Thomson, Pat; Hall, Chris; Jones, Ken
2014-01-01
What are possible overlaps between arts practice and school pedagogy? How is teacher subjectivity and pedagogy affected when teachers engage with arts practice, in particular, theatre practices? We draw on research conducted into the Learning Performance Network (LPN), a project that involved school teachers working with the Royal Shakespeare…
NASA Astrophysics Data System (ADS)
Yehia, Ali M.; Mohamed, Heba M.
2016-01-01
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference.
A cloud-based data network approach for translational cancer research.
Xing, Wei; Tsoumakos, Dimitrios; Ghanem, Moustafa
2015-01-01
We develop a new model and associated technology for constructing and managing self-organizing data to support translational cancer research studies. We employ a semantic content network approach to address the challenges of managing cancer research data. Such data is heterogeneous, large, decentralized, growing and continually being updated. Moreover, the data originates from different information sources that may be partially overlapping, creating redundancies as well as contradictions and inconsistencies. Building on the advantages of elasticity of cloud computing, we deploy the cancer data networks on top of the CELAR Cloud platform to enable more effective processing and analysis of Big cancer data.
Precise Orbit Determination of BeiDou Navigation Satellite System
NASA Astrophysics Data System (ADS)
He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald
2013-04-01
China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit differences are utilized to qualify the estimated orbits and clocks. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. For the current tracking network, deploying tracking stations on the eastern side, for example in New Zealand and/or in Hawaii, will significantly reduce along-track biases of GEOs on the same side. The involvement of MEOs and ambiguity-fixing also make the orbits better but rather moderate. Key words: BeiDou, precise orbit determination (POD), tracking network, ambiguity-fixing
Willems, Janske G. P.; Wadman, Wytse J.; Cappaert, Natalie L. M.
2016-01-01
The perirhinal (PER) and entorhinal cortex (EC) receive input from the agranular insular cortex (AiP) and the subcortical lateral amygdala (LA) and the main output area is the hippocampus. Information transfer through the PER/EC network however, is not always guaranteed. It is hypothesized that this network actively regulates the (sub)cortical activity transfer to the hippocampal network and that the inhibitory system is involved in this function. This study determined the recruitment by the AiP and LA afferents in PER/EC network with the use of voltage sensitive dye (VSD) imaging in horizontal mouse brain slices. Electrical stimulation (500 μA) of the AiP induced activity that gradually propagated predominantly in the rostro-caudal direction: from the PER to the lateral EC (LEC). In the presence of 1 μM of the competitive γ-aminobutyric acid (GABAA) receptor antagonist bicuculline, AiP stimulation recruited the medial EC (MEC) as well. In contrast, LA stimulation (500 μA) only induced activity in the deep layers of the PER. In the presence of bicuculline, the initial population activity in the PER propagated further towards the superficial layers and the EC after a delay. The latency of evoked responses decreased with increasing stimulus intensities (50–500 μA) for both the AiP and LA stimuli. The stimulation threshold for evoking responses in the PER/EC network was higher for the LA than for the AiP. This study showed that the extent of the PER/EC network activation depends on release of inhibition. When GABAA dependent inhibition is reduced, both the AiP and the LA activate spatially overlapping regions, although in a distinct spatiotemporal fashion. It is therefore hypothesized that the inhibitory network regulates excitatory activity from both cortical and subcortical areas that has to be transmitted through the PER/EC network. PMID:27378860
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
A revised limbic system model for memory, emotion and behaviour.
Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel
2013-09-01
Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-04-07
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird-plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought.
Vizentin-Bugoni, Jeferson; Maruyama, Pietro Kiyoshi; Sazima, Marlies
2014-01-01
Understanding the relative importance of multiple processes on structuring species interactions within communities is one of the major challenges in ecology. Here, we evaluated the relative importance of species abundance and forbidden links in structuring a hummingbird–plant interaction network from the Atlantic rainforest in Brazil. Our results show that models incorporating phenological overlapping and morphological matches were more accurate in predicting the observed interactions than models considering species abundance. This means that forbidden links, by imposing constraints on species interactions, play a greater role than species abundance in structuring the ecological network. We also show that using the frequency of interaction as a proxy for species abundance and network metrics to describe the detailed network structure might lead to biased conclusions regarding mechanisms generating network structure. Together, our findings suggest that species abundance can be a less important driver of species interactions in communities than previously thought. PMID:24552835
Neuronal correlates of perception, imagery, and memory for familiar tunes.
Herholz, Sibylle C; Halpern, Andrea R; Zatorre, Robert J
2012-06-01
We used fMRI to investigate the neuronal correlates of encoding and recognizing heard and imagined melodies. Ten participants were shown lyrics of familiar verbal tunes; they either heard the tune along with the lyrics, or they had to imagine it. In a subsequent surprise recognition test, they had to identify the titles of tunes that they had heard or imagined earlier. The functional data showed substantial overlap during melody perception and imagery, including secondary auditory areas. During imagery compared with perception, an extended network including pFC, SMA, intraparietal sulcus, and cerebellum showed increased activity, in line with the increased processing demands of imagery. Functional connectivity of anterior right temporal cortex with frontal areas was increased during imagery compared with perception, indicating that these areas form an imagery-related network. Activity in right superior temporal gyrus and pFC was correlated with the subjective rating of imagery vividness. Similar to the encoding phase, the recognition task recruited overlapping areas, including inferior frontal cortex associated with memory retrieval, as well as left middle temporal gyrus. The results present new evidence for the cortical network underlying goal-directed auditory imagery, with a prominent role of the right pFC both for the subjective impression of imagery vividness and for on-line mental monitoring of imagery-related activity in auditory areas.
Hervás, César; Silva, Manuel; Serrano, Juan Manuel; Orejuela, Eva
2004-01-01
The suitability of an approach for extracting heuristic rules from trained artificial neural networks (ANNs) pruned by a regularization method and with architectures designed by evolutionary computation for quantifying highly overlapping chromatographic peaks is demonstrated. The ANN input data are estimated by the Levenberg-Marquardt method in the form of a four-parameter Weibull curve associated with the profile of the chromatographic band. To test this approach, two N-methylcarbamate pesticides, carbofuran and propoxur, were quantified using a classic peroxyoxalate chemiluminescence reaction as a detection system for chromatographic analysis. Straightforward network topologies (one and two outputs models) allow the analytes to be quantified in concentration ratios ranging from 1:7 to 5:1 with an average standard error of prediction for the generalization test of 2.7 and 2.3% for carbofuran and propoxur, respectively. The reduced dimensions of the selected ANN architectures, especially those obtained after using heuristic rules, allowed simple quantification equations to be developed that transform the input variables into output variables. These equations can be easily interpreted from a chemical point of view to attain quantitative analytical information regarding the effect of both analytes on the characteristics of chromatographic bands, namely profile, dispersion, peak height, and residence time. Copyright 2004 American Chemical Society
Coming out as Fat: Rethinking Stigma
ERIC Educational Resources Information Center
Saguy, Abigail C.; Ward, Anna
2011-01-01
This paper examines the surprising case of women who "come out as fat" to test and refine theories about social change, social mobilization, stigma, and stigma resistance. First, supporting theories about "social movement spillover," we find that overlapping memberships in queer and fat activist groups, as well as networks between these groups,…
Shifting Interests: Changes in the Lexical Semantics of ED-MEDIA
ERIC Educational Resources Information Center
Wild, Fridolin; Valentine, Chris; Scott, Peter
2010-01-01
Large research networks naturally form complex communities with overlapping but not identical expertise. To map the distribution of professional competence in field of "technology-enhanced learning", the lexical semantics expressed in research articles published in a representative, large-scale conference (ED-MEDIA) can be investigated and changes…
Reduced Frontal Activation with Increasing 2nd Language Proficiency
ERIC Educational Resources Information Center
Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Lehmann, Christoph; Wiest, Roland; Strik, Werner; Brandeis, Daniel; Dierks, Thomas
2009-01-01
The factors influencing the degree of separation or overlap in the neuronal networks responsible for the processing of first and second language are still subject to investigation. This longitudinal study investigates how increasing second language proficiency influences activation differences during lexico-semantic processing of first and second…
Samal, Areejit
2008-12-01
Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.
Yokoyama, Jennifer S.; Karch, Celeste M.; Fan, Chun C.; Bonham, Luke W.; Kouri, Naomi; Ross, Owen A.; Rademakers, Rosa; Kim, Jungsu; Wang, Yunpeng; Höglinger, Günter U.; Muller, Ulrich; Ferrari, Raffaele; Hardy, John; Momeni, Parastoo; Sugrue, Leo P.; Hess, Christopher P.; Barkovich, A. James; Boxer, Adam L.; Seeley, William W.; Rabinovici, Gil D.; Rosen, Howard J.; Miller, Bruce L.; Schmansky, Nicholas J.; Fischl, Bruce; Hyman, Bradley T.; Dickson, Dennis W.; Schellenberg, Gerard D.; Andreassen, Ole A.; Dale, Anders M.; Desikan, Rahul S.
2017-01-01
Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p-values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10−16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: i) novel genetic overlap between CBD and PSP beyond the MAPT locus; ii) strong ties between CBD and FTD through the MAPT clade, and; iii) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies. PMID:28271184
Automatic Classification of volcano-seismic events based on Deep Neural Networks.
NASA Astrophysics Data System (ADS)
Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.
2017-12-01
Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.
Cortical networks involved in visual awareness independent of visual attention.
Webb, Taylor W; Igelström, Kajsa M; Schurger, Aaron; Graziano, Michael S A
2016-11-29
It is now well established that visual attention, as measured with standard spatial attention tasks, and visual awareness, as measured by report, can be dissociated. It is possible to attend to a stimulus with no reported awareness of the stimulus. We used a behavioral paradigm in which people were aware of a stimulus in one condition and unaware of it in another condition, but the stimulus drew a similar amount of spatial attention in both conditions. The paradigm allowed us to test for brain regions active in association with awareness independent of level of attention. Participants performed the task in an MRI scanner. We looked for brain regions that were more active in the aware than the unaware trials. The largest cluster of activity was obtained in the temporoparietal junction (TPJ) bilaterally. Local independent component analysis (ICA) revealed that this activity contained three distinct, but overlapping, components: a bilateral, anterior component; a left dorsal component; and a right dorsal component. These components had brain-wide functional connectivity that partially overlapped the ventral attention network and the frontoparietal control network. In contrast, no significant activity in association with awareness was found in the banks of the intraparietal sulcus, a region connected to the dorsal attention network and traditionally associated with attention control. These results show the importance of separating awareness and attention when testing for cortical substrates. They are also consistent with a recent proposal that awareness is associated with ventral attention areas, especially in the TPJ.
Alignment and integration of complex networks by hypergraph-based spectral clustering
NASA Astrophysics Data System (ADS)
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Alignment and integration of complex networks by hypergraph-based spectral clustering.
Michoel, Tom; Nachtergaele, Bruno
2012-11-01
Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.
Patient-Centered Outcomes Research in Practice: The CAPriCORN Infrastructure.
Solomonides, Anthony; Goel, Satyender; Hynes, Denise; Silverstein, Jonathan C; Hota, Bala; Trick, William; Angulo, Francisco; Price, Ron; Sadhu, Eugene; Zelisko, Susan; Fischer, James; Furner, Brian; Hamilton, Andrew; Phua, Jasmin; Brown, Wendy; Hohmann, Samuel F; Meltzer, David; Tarlov, Elizabeth; Weaver, Frances M; Zhang, Helen; Concannon, Thomas; Kho, Abel
2015-01-01
CAPriCORN, the Chicago Area Patient Centered Outcomes Research Network, is one of the eleven PCORI-funded Clinical Data Research Networks. A collaboration of six academic medical centers, a Chicago public hospital, two VA hospitals and a network of federally qualified health centers, CAPriCORN addresses the needs of a diverse community and overlapping populations. To capture complete medical records without compromising patient privacy and confidentiality, the network created policies and mechanisms for patient consultation, central IRB approval, de-identification, de-duplication, and integration of patient data by study cohort, randomization and sampling, re-identification for consent by providers and patients, and communication with patients to elicit patient-reported outcomes through validated instruments. The paper describes these policies and mechanisms and discusses two case studies to prove the feasibility and effectiveness of the network.
Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks
Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.
2015-01-01
Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators. PMID:26356234
van den Brink, R H S; Schutter, N; Hanssen, D J C; Elzinga, B M; Rabeling-Keus, I M; Stek, M L; Comijs, H C; Penninx, B W J H; Oude Voshaar, R C
2018-06-01
Poor recovery from depressive disorder has been shown to be related to low perceived social support and loneliness, but not to social network size or frequency of social interactions. Some studies suggest that the significance of social relationships for depression course may be greater in younger than in older patients, and may differ between men and women. None of the studies examined to what extent the different aspects of social relationships have unique or overlapping predictive values for depression course. It is the aim of the present study to examine the differential predictive values of social network characteristics, social support and loneliness for the course of depressive disorder, and to test whether these predictive associations are modified by gender or age. Two naturalistic cohort studies with the same design and overlapping instruments were combined to obtain a study sample of 1474 patients with a major depressive disorder, of whom 1181 (80.1%) could be studied over a 2-year period. Social relational variables were assessed at baseline. Two aspects of depression course were studied: remission at 2-year follow-up and change in depression severity over the follow-up period. By means of logistic regression and random coefficient analysis, the individual and combined predictive values of the different social relational variables for depression course were studied, controlling for potential confounders and checking for effect modification by age (below 60 v. 60 years or older) and gender. Multiple aspects of the social network, social support and loneliness were related to depression course, independent of potential confounders - including depression severity - but when combined, their predictive values were found to overlap to a large extent. Only the social network characteristic of living in a larger household, the social support characteristic of few negative experiences with the support from a partner or close friend, and limited feelings of loneliness proved to have unique predictive value for a favourable course of depression. Little evidence was found for effect modification by gender or age. If depressed persons experience difficulties in their social relationships, this may impede their recovery. Special attention for interpersonal problems, social isolation and feelings of loneliness seems warranted in depression treatment and relapse prevention. It will be of great interest to test whether social relational interventions can contribute to better recovery and relapse prevention of depressive disorder.
Dobson, Adam J.; Chaston, John M.; Newell, Peter D.; Donahue, Leanne; Hermann, Sara L.; Sannino, David R.; Westmiller, Stephanie; Wong, Adam C.-N.; Clark, Andrew G.; Lazzaro, Brian P.; Douglas, Angela E.
2015-01-01
Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans. PMID:25692519
Tamam, Sofina; Ahmad, Asma Hayati
2017-01-01
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain. PMID:28814928
Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.
Bhinder, Bhavneet; Shum, David; Djaballah, Hakim
2014-02-01
RNAi screening in combination with the genome-sequencing projects would constitute the Holy Grail of modern genetics; enabling discovery and validation towards a better understanding of fundamental biology leading to novel targets to combat disease. Hit discordance at inter-screen level together with the lack of reproducibility is emerging as the technology's main pitfalls. To examine some of the underlining factors leading to such discrepancies, we reasoned that perhaps there is an inherent difference in knockdown efficiency of the various RNAi technologies. For this purpose, we utilized the two most popular ones, chemically synthesized siRNA duplex and plasmid-based shRNA hairpin, in order to perform a head to head comparison. Using a previously developed gain-of-function assay probing modulators of the miRNA biogenesis pathway, we first executed on a siRNA screen against the Silencer Select V4.0 library (AMB) nominating 1,273, followed by an shRNA screen against the TRC1 library (TRC1) nominating 497 gene candidates. We observed a poor overlap of only 29 hits given that there are 15,068 overlapping genes between the two libraries; with DROSHA as the only common hit out of the seven known core miRNA biogenesis genes. Distinct genes interacting with the same biogenesis regulators were observed in both screens, with a dismal cross-network overlap of only 3 genes (DROSHA, TGFBR1, and DIS3). Taken together, our study demonstrates differential knockdown activities between the two technologies, possibly due to the inefficient intracellular processing and potential cell-type specificity determinants in generating intended targeting sequences for the plasmid-based shRNA hairpins; and suggests this observed inefficiency as potential culprit in addressing the lack of reproducibility.
Roost networks of northern myotis (Myotis septentrionalis) in a managed landscape
Johnson, J.B.; Mark, Ford W.; Edwards, J.W.
2012-01-01
Maternity groups of many bat species conform to fission-fusion models and movements among diurnal roost trees and individual bats belonging to these groups use networks of roost trees. Forest disturbances may alter roost networks and characteristics of roost trees. Therefore, at the Fernow Experimental Forest in West Virginia, we examined roost tree networks of northern myotis (Myotis septentrionalis) in forest stands subjected to prescribed fire and in unmanipulated control treatments in 2008 and 2009. Northern myotis formed social groups whose roost areas and roost tree networks overlapped to some extent. Roost tree networks largely resembled scale-free network models, as 61% had a single central node roost tree. In control treatments, central node roost trees were in early stages of decay and surrounded by greater basal area than other trees within the networks. In prescribed fire treatments, central node roost trees were small in diameter, low in the forest canopy, and surrounded by low basal area compared to other trees in networks. Our results indicate that forest disturbances, including prescribed fire, can affect availability and distribution of roosts within roost tree networks. ?? 2011 Elsevier B.V.
NASA Technical Reports Server (NTRS)
Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark;
2017-01-01
Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 %/yr uncertainty (0.00008 W/sq m/nm/yr), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations offer additional challenges due to the complexity of the observations, but Earth observations may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.
NASA Astrophysics Data System (ADS)
Weatherhead, Elizabeth C.; Harder, Jerald; Araujo-Pradere, Eduardo A.; Bodeker, Greg; English, Jason M.; Flynn, Lawrence E.; Frith, Stacey M.; Lazo, Jeffrey K.; Pilewskie, Peter; Weber, Mark; Woods, Thomas N.
2017-12-01
Sensors on satellites provide unprecedented understanding of the Earth's climate system by measuring incoming solar radiation, as well as both passive and active observations of the entire Earth with outstanding spatial and temporal coverage. A common challenge with satellite observations is to quantify their ability to provide well-calibrated, long-term, stable records of the parameters they measure. Ground-based intercomparisons offer some insight, while reference observations and internal calibrations give further assistance for understanding long-term stability. A valuable tool for evaluating and developing long-term records from satellites is the examination of data from overlapping satellite missions. This paper addresses how the length of overlap affects the ability to identify an offset or a drift in the overlap of data between two sensors. Ozone and temperature data sets are used as examples showing that overlap data can differ by latitude and can change over time. New results are presented for the general case of sensor overlap by using Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) solar irradiance data as an example. To achieve a 1 % uncertainty in estimating the offset for these two instruments' measurement of the Mg II core (280 nm) requires approximately 5 months of overlap. For relative drift to be identified within 0.1 % yr-1 uncertainty (0.00008 W m-2 nm-1 yr-1), the overlap for these two satellites would need to be 2.5 years. Additional overlap of satellite measurements is needed if, as is the case for solar monitoring, unexpected jumps occur adding uncertainty to both offsets and drifts; the additional length of time needed to account for a single jump in the overlap data may be as large as 50 % of the original overlap period in order to achieve the same desired confidence in the stability of the merged data set. Results presented here are directly applicable to satellite Earth observations. Approaches for Earth observations offer additional challenges due to the complexity of the observations, but Earth observations may also benefit from ancillary observations taken from ground-based and in situ sources. Difficult choices need to be made when monitoring approaches are considered; we outline some attempts at optimizing networks based on economic principles. The careful evaluation of monitoring overlap is important to the appropriate application of observational resources and to the usefulness of current and future observations.
Ames, Ryan M; Macpherson, Jamie I; Pinney, John W; Lovell, Simon C; Robertson, David L
2013-01-01
Large-scale molecular interaction data sets have the potential to provide a comprehensive, system-wide understanding of biological function. Although individual molecules can be promiscuous in terms of their contribution to function, molecular functions emerge from the specific interactions of molecules giving rise to modular organisation. As functions often derive from a range of mechanisms, we demonstrate that they are best studied using networks derived from different sources. Implementing a graph partitioning algorithm we identify subnetworks in yeast protein-protein interaction (PPI), genetic interaction and gene co-regulation networks. Among these subnetworks we identify cohesive subgraphs that we expect to represent functional modules in the different data types. We demonstrate significant overlap between the subgraphs generated from the different data types and show these overlaps can represent related functions as represented by the Gene Ontology (GO). Next, we investigate the correspondence between our subgraphs and the Gene Ontology. This revealed varying degrees of coverage of the biological process, molecular function and cellular component ontologies, dependent on the data type. For example, subgraphs from the PPI show enrichment for 84%, 58% and 93% of annotated GO terms, respectively. Integrating the interaction data into a combined network increases the coverage of GO. Furthermore, the different annotation types of GO are not predominantly associated with one of the interaction data types. Collectively our results demonstrate that successful capture of functional relationships by network data depends on both the specific biological function being characterised and the type of network data being used. We identify functions that require integrated information to be accurately represented, demonstrating the limitations of individual data types. Combining interaction subnetworks across data types is therefore essential for fully understanding the complex and emergent nature of biological function.
Node Deployment Algorithm Based on Connected Tree for Underwater Sensor Networks
Jiang, Peng; Wang, Xingmin; Jiang, Lurong
2015-01-01
Designing an efficient deployment method to guarantee optimal monitoring quality is one of the key topics in underwater sensor networks. At present, a realistic approach of deployment involves adjusting the depths of nodes in water. One of the typical algorithms used in such process is the self-deployment depth adjustment algorithm (SDDA). This algorithm mainly focuses on maximizing network coverage by constantly adjusting node depths to reduce coverage overlaps between two neighboring nodes, and thus, achieves good performance. However, the connectivity performance of SDDA is irresolute. In this paper, we propose a depth adjustment algorithm based on connected tree (CTDA). In CTDA, the sink node is used as the first root node to start building a connected tree. Finally, the network can be organized as a forest to maintain network connectivity. Coverage overlaps between the parent node and the child node are then reduced within each sub-tree to optimize coverage. The hierarchical strategy is used to adjust the distance between the parent node and the child node to reduce node movement. Furthermore, the silent mode is adopted to reduce communication cost. Simulations show that compared with SDDA, CTDA can achieve high connectivity with various communication ranges and different numbers of nodes. Moreover, it can realize coverage as high as that of SDDA with various sensing ranges and numbers of nodes but with less energy consumption. Simulations under sparse environments show that the connectivity and energy consumption performances of CTDA are considerably better than those of SDDA. Meanwhile, the connectivity and coverage performances of CTDA are close to those depth adjustment algorithms base on connected dominating set (CDA), which is an algorithm similar to CTDA. However, the energy consumption of CTDA is less than that of CDA, particularly in sparse underwater environments. PMID:26184209
Characterizing complex networks through statistics of Möbius transformations
NASA Astrophysics Data System (ADS)
Jaćimović, Vladimir; Crnkić, Aladin
2017-04-01
It is well-known now that dynamics of large populations of globally (all-to-all) coupled oscillators can be reduced to low-dimensional submanifolds (WS transformation and OA ansatz). Marvel et al. (2009) described an intriguing algebraic structure standing behind this reduction: oscillators evolve by the action of the group of Möbius transformations. Of course, dynamics in complex networks of coupled oscillators is highly complex and not reducible. Still, closer look unveils that even in complex networks some (possibly overlapping) groups of oscillators evolve by Möbius transformations. In this paper, we study properties of the network by identifying Möbius transformations in the dynamics of oscillators. This enables us to introduce some new (statistical) concepts that characterize the network. In particular, the notion of coherence of the network (or subnetwork) is proposed. This conceptual approach is meaningful for the broad class of networks, including those with time-delayed, noisy or mixed interactions. In this paper, several simple (random) graphs are studied illustrating the meaning of the concepts introduced in the paper.
The transfer and transformation of collective network information in gene-matched networks.
Kitsukawa, Takashi; Yagi, Takeshi
2015-10-09
Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.
Raz, Gal; Shpigelman, Lavi; Jacob, Yael; Gonen, Tal; Benjamini, Yoav; Hendler, Talma
2016-12-01
We introduce a novel method for delineating context-dependent functional brain networks whose connectivity dynamics are synchronized with the occurrence of a specific psychophysiological process of interest. In this method of context-related network dynamics analysis (CRNDA), a continuous psychophysiological index serves as a reference for clustering the whole-brain into functional networks. We applied CRNDA to fMRI data recorded during the viewing of a sadness-inducing film clip. The method reliably demarcated networks in which temporal patterns of connectivity related to the time series of reported emotional intensity. Our work successfully replicated the link between network connectivity and emotion rating in an independent sample group for seven of the networks. The demarcated networks have clear common functional denominators. Three of these networks overlap with distinct empathy-related networks, previously identified in distinct sets of studies. The other networks are related to sensorimotor processing, language, attention, and working memory. The results indicate that CRNDA, a data-driven method for network clustering that is sensitive to transient connectivity patterns, can productively and reliably demarcate networks that follow psychologically meaningful processes. Hum Brain Mapp 37:4654-4672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kluczniok, Dorothea; Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C; Boedeker, Katja; Bermpohl, Felix
2017-01-01
Maternal sensitive behavior depends on recognizing one's own child's affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one's own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). While viewing their own child's sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one's own child happy and sad expressions was found in the insula and the superior temporal gyrus. Maternal brain activations differed depending on the child's affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior.
Leveraging Statistical Physics to Improve Understanding of Cooperation in Multiplex Networks.
Fu, Feng; Chen, Xingru
2017-07-01
Understanding how public cooperation emerges and is maintained is a topic of broad interest, with increasing contributions coming from a synergistic combination of evolutionary game theory and statistical physics. The comprehensive study by Battiston et al (2017 New J. Phys. , in press) improves our understanding of the role of multiplexity in cooperation, revealing that a significant edge overlap across network layers along with benign conditions for cooperation in at least one of the layers is needed to facilitate the emergence of cooperation in the multiplex.
Tele-counseling and social-skill trainings using JGNII optical network and a mirror-interface system
NASA Astrophysics Data System (ADS)
Hashimoto, Sayuri; Hashimoto, Nobuyuki; Onozawa, Akira; Hosoya, Eiichi; Harada, Ikuo; Okunaka, Junzo
2007-09-01
"Tele-presence" communication using JGNII - an exclusive optical-fiber network system - was applied to social-skills training in the form of child-rearing support. This application focuses on internet counseling and social training skills that require interactive verbal and none-verbal communications. The motivation for this application is supporting local communities by constructing tele-presence education and entertainment systems using recently available, inexpensive IP networks. This latest application of tele-presence communication uses mirror-interface system which provides to users in remote locations a shared quasi-space where they can see themselves as if they were in the same room by overlapping video images from remote locations.
Unveiling causal activity of complex networks
NASA Astrophysics Data System (ADS)
Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo
2017-07-01
We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].
The dynamics of transmission and the dynamics of networks.
Farine, Damien
2017-05-01
A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors, such as seasonality, led to consistent differences in the structure of social networks, using dynamic vs. static representations of networks generated differences in the predicted outbreak size of an emergent disease. These findings highlight some of the challenges associated with studying disease dynamics in animal populations, and the importance of continuing efforts to develop the network tools needed to study disease spread. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.
7 CFR 3201.28 - Stationary equipment hydraulic fluids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...
7 CFR 3201.28 - Stationary equipment hydraulic fluids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...
7 CFR 3201.28 - Stationary equipment hydraulic fluids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... cases, overlap with the EPA-designated recovered content product: Re-refined lubricating oils. USDA is... in determining whether or not a qualifying biobased product overlaps with EPA-designated re-refined... U.S. Environmental Protection Agency designated re-refined lubricating oils containing recovered...
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Liu, Lei; Peng, Wei-Ren; Casellas, Ramon; Tsuritani, Takehiro; Morita, Itsuro; Martínez, Ricardo; Muñoz, Raül; Yoo, S J B
2014-01-13
Optical Orthogonal Frequency Division Multiplexing (O-OFDM), which transmits high speed optical signals using multiple spectrally overlapped lower-speed subcarriers, is a promising candidate for supporting future elastic optical networks. In contrast to previous works which focus on Coherent Optical OFDM (CO-OFDM), in this paper, we consider the direct-detection optical OFDM (DDO-OFDM) as the transport technique, which leads to simpler hardware and software realizations, potentially offering a low-cost solution for elastic optical networks, especially in metro networks, and short or medium distance core networks. Based on this network scenario, we design and deploy a software-defined networking (SDN) control plane enabled by extending OpenFlow, detailing the network architecture, the routing and spectrum assignment algorithm, OpenFlow protocol extensions and the experimental validation. To the best of our knowledge, it is the first time that an OpenFlow-based control plane is reported and its performance is quantitatively measured in an elastic optical network with DDO-OFDM transmission.
USDA-ARS?s Scientific Manuscript database
Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a non-incorporated protein in concert with numerous insect and plant proteins to regulate virus movem...
USDA-ARS?s Scientific Manuscript database
Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo- and eco-dormancy). In this study, the effects of dehydration-stress on vegeta...
Face (and Nose) Priming for Book: The Malleability of Semantic Memory
Coane, Jennifer H.; Balota, David A.
2010-01-01
There are two general classes of models of semantic structure that support semantic priming effects. Feature-overlap models of semantic priming assume that shared features between primes and targets are critical (e.g., cat-DOG). Associative accounts assume that contextual co-occurrence is critical and that the system is organized along associations independent of featural overlap (e.g., leash-DOG). If unrelated concepts can become related as a result of contextual co-occurrence, this would be more supportive of associative accounts and provide insight into the nature of the network underlying “semantic” priming effects. Naturally co-occurring recent associations (e.g., face-BOOK) were tested under conditions that minimize strategic influences (i.e., short stimulus onset asynchrony, low relatedness proportion) in a semantic priming paradigm. Priming for new associations did not differ from the priming found for pre-existing relations (e.g., library-BOOK). Mediated priming (e.g., nose-BOOK) was also found. These results suggest that contextual associations can result in the reorganization of the network that subserves “semantic” priming effects. PMID:20494866
NASA Astrophysics Data System (ADS)
Lotfy, Hayam M.; Tawakkol, Shereen M.; Fahmy, Nesma M.; Shehata, Mostafa A.
2015-02-01
Simultaneous determination of mixtures of lidocaine hydrochloride (LH), flucortolone pivalate (FCP), in presence of chlorquinaldol (CQ) without prior separation steps was applied using either successive or progressive resolution techniques. According to the concentration of CQ the extent of overlapping changed so it can be eliminated from the mixture to get the binary mixture of LH and FCP using ratio subtraction method for partially overlapped spectra or constant value via amplitude difference followed by ratio subtraction or constant center followed by spectrum subtraction spectrum subtraction for severely overlapped spectra. Successive ratio subtraction was coupled with extended ratio subtraction, constant multiplication, derivative subtraction coupled constant multiplication, and spectrum subtraction can be applied for the analysis of partially overlapped spectra. On the other hand severely overlapped spectra can be analyzed by constant center and the novel methods namely differential dual wavelength (D1 DWL) for CQ, ratio difference and differential derivative ratio (D1 DR) for FCP, while LH was determined by applying constant value via amplitude difference followed by successive ratio subtraction, and successive derivative subtraction. The spectra of the cited drugs can be resolved and their concentrations are determined progressively from the same ratio spectrum using amplitude modulation method. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the cited drugs with no interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with those of the official or reported methods; using student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.
Martin, Thomas E.; Auer, Sonya K.
2013-01-01
Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.
Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali
2010-12-01
The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Species traits and network structure predict the success and impacts of pollinator invasions.
Valdovinos, Fernanda S; Berlow, Eric L; Moisset de Espanés, Pablo; Ramos-Jiliberto, Rodrigo; Vázquez, Diego P; Martinez, Neo D
2018-05-31
Species invasions constitute a major and poorly understood threat to plant-pollinator systems. General theory predicting which factors drive species invasion success and subsequent effects on native ecosystems is particularly lacking. We address this problem using a consumer-resource model of adaptive behavior and population dynamics to evaluate the invasion success of alien pollinators into plant-pollinator networks and their impact on native species. We introduce pollinator species with different foraging traits into network models with different levels of species richness, connectance, and nestedness. Among 31 factors tested, including network and alien properties, we find that aliens with high foraging efficiency are the most successful invaders. Networks exhibiting high alien-native diet overlap, fraction of alien-visited plant species, most-generalist plant connectivity, and number of specialist pollinator species are the most impacted by invaders. Our results mimic several disparate observations conducted in the field and potentially elucidate the mechanisms responsible for their variability.
Modeling the dynamical interaction between epidemics on overlay networks
NASA Astrophysics Data System (ADS)
Marceau, Vincent; Noël, Pierre-André; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.
2011-08-01
Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes. By exploiting a correspondence between the propagation dynamics and a dynamical process performing progressive network generation, we develop an analytical approach that accurately captures the dynamical interaction between epidemics on overlay networks. The formalism allows for overlay networks with arbitrary joint degree distribution and overlap. To illustrate the versatility of our approach, we consider a hypothetical delayed intervention scenario in which an immunizing agent is disseminated in a host population to hinder the propagation of an undesirable agent (e.g., the spread of preventive information in the context of an emerging infectious disease).
Multilayer Statistical Intrusion Detection in Wireless Networks
NASA Astrophysics Data System (ADS)
Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine
2008-12-01
The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.
RF Magnetic Field Uniformity of Rectangular Planar Coils for Resonance Imaging
2016-02-04
coil with square -shaped overlapping turns along the 135mm length of the coil. This paper compares these two coils to determine which has a more...in which, the coil arrays consist of a few square or circular coils side-by-side or overlapping. Mobile unilateral NMR/MRI scanners were...magnetic field along the length of a normal rectangular coil (NRC) and a rectangular coil with overlapping square -shaped turns (RCOS). The RCOS coil is
Micro-Pulse Lidar Signals: Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Starr, David OC. (Technical Monitor)
2002-01-01
Micro-pulse lidar (MPL) systems are small, autonomous, eye-safe lidars used for continuous observations of the vertical distribution of cloud and aerosol layers. Since the construction of the first MPL in 1993, procedures have been developed to correct for various instrument effects present in MPL signals. The primary instrument effects include afterpulse, laser-detector cross-talk, and overlap, poor near-range (less than 6 km) focusing. The accurate correction of both afterpulse and overlap effects are required to study both clouds and aerosols. Furthermore, the outgoing energy of the laser pulses and the statistical uncertainty of the MPL detector must also be correctly determined in order to assess the accuracy of MPL observations. The uncertainties associated with the afterpulse, overlap, pulse energy, detector noise, and all remaining quantities affecting measured MPL signals, are determined in this study. The uncertainties are propagated through the entire MPL correction process to give a net uncertainty on the final corrected MPL signal. The results show that in the near range, the overlap uncertainty dominates. At altitudes above the overlap region, the dominant source of uncertainty is caused by uncertainty in the pulse energy. However, if the laser energy is low, then during mid-day, high solar background levels can significantly reduce the signal-to-noise of the detector. In such a case, the statistical uncertainty of the detector count rate becomes dominant at altitudes above the overlap region.
Spatial organization of northern flying squirrels, Glaucomys sabrinus: Territoriality in females?
Smith, J.R.; Vuren, D.H.V.; Kelt, D.A.; Johnson, M.L.
2011-01-01
We determined home-range overlap among northern flying squirrels (Glaucomys sabrinus) to assess their spatial organization. We found extensive home-range overlap among females, and though this overlap could reflect social behavior, we found no evidence of attraction among females, with only one instance of den sharing. Instead, our results suggest that females share foraging areas but may be territorial in portions of the home range, especially around den trees and during young-rearing. Home-range overlap could also result from, the extrinsic effect of forest fragmentation due to timber harvest, which might impede dispersal and force squirrels to cluster on remaining fragments of suitable habitat.
Yehia, Ali M; Mohamed, Heba M
2016-01-05
Three advanced chemmometric-assisted spectrophotometric methods namely; Concentration Residuals Augmented Classical Least Squares (CRACLS), Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Principal Component Analysis-Artificial Neural Networks (PCA-ANN) were developed, validated and benchmarked to PLS calibration; to resolve the severely overlapped spectra and simultaneously determine; Paracetamol (PAR), Guaifenesin (GUA) and Phenylephrine (PHE) in their ternary mixture and in presence of p-aminophenol (AP) the main degradation product and synthesis impurity of Paracetamol. The analytical performance of the proposed methods was described by percentage recoveries, root mean square error of calibration and standard error of prediction. The four multivariate calibration methods could be directly used without any preliminary separation step and successfully applied for pharmaceutical formulation analysis, showing no excipients' interference. Copyright © 2015 Elsevier B.V. All rights reserved.
Scoby, Cheyne M; Li, R K; Musumeci, P
2013-04-01
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John; Lui, Su
2017-12-05
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia. 2017 Joule Inc., or its licensors
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2018-03-01
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su
2017-12-15
Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.
RAMTaB: Robust Alignment of Multi-Tag Bioimages
Raza, Shan-e-Ahmed; Humayun, Ahmad; Abouna, Sylvie; Nattkemper, Tim W.; Epstein, David B. A.; Khan, Michael; Rajpoot, Nasir M.
2012-01-01
Background In recent years, new microscopic imaging techniques have evolved to allow us to visualize several different proteins (or other biomolecules) in a visual field. Analysis of protein co-localization becomes viable because molecules can interact only when they are located close to each other. We present a novel approach to align images in a multi-tag fluorescence image stack. The proposed approach is applicable to multi-tag bioimaging systems which (a) acquire fluorescence images by sequential staining and (b) simultaneously capture a phase contrast image corresponding to each of the fluorescence images. To the best of our knowledge, there is no existing method in the literature, which addresses simultaneous registration of multi-tag bioimages and selection of the reference image in order to maximize the overall overlap between the images. Methodology/Principal Findings We employ a block-based method for registration, which yields a confidence measure to indicate the accuracy of our registration results. We derive a shift metric in order to select the Reference Image with Maximal Overlap (RIMO), in turn minimizing the total amount of non-overlapping signal for a given number of tags. Experimental results show that the Robust Alignment of Multi-Tag Bioimages (RAMTaB) framework is robust to variations in contrast and illumination, yields sub-pixel accuracy, and successfully selects the reference image resulting in maximum overlap. The registration results are also shown to significantly improve any follow-up protein co-localization studies. Conclusions For the discovery of protein complexes and of functional protein networks within a cell, alignment of the tag images in a multi-tag fluorescence image stack is a key pre-processing step. The proposed framework is shown to produce accurate alignment results on both real and synthetic data. Our future work will use the aligned multi-channel fluorescence image data for normal and diseased tissue specimens to analyze molecular co-expression patterns and functional protein networks. PMID:22363510
NASA Technical Reports Server (NTRS)
Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.
2011-01-01
The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.
Patel, Rupa R; Luke, Douglas A; Proctor, Enola K; Powderly, William G; Chan, Philip A; Mayer, Kenneth H; Harrison, Laura C; Dhand, Amar
2018-01-01
The aim of this study was to identify sex venue-based networks among men who have sex with men (MSM) to inform HIV preexposure prophylaxis (PrEP) dissemination efforts. Using a cross-sectional design, we interviewed MSM about the venues where their recent sexual partners were found. Venues were organized into network matrices grouped by condom use and race. We examined network structure, central venues, and network subgroups. Among 49 participants, the median age was 27 years, 49% were Black and 86% reported condomless anal sex (ncAS). Analysis revealed a map of 54 virtual and physical venues with an overlap in the ncAS and with condom anal sex (cAS) venues. In the ncAS network, virtual and physical locations were more interconnected. The ncAS venues reported by Blacks were more diffusely organized than those reported by Whites. The network structures of sex venues for at-risk MSM differed by race. Network information can enhance HIV prevention dissemination efforts among subpopulations, including PrEP implementation.
Competition between Homophily and Information Entropy Maximization in Social Networks
Zhao, Jichang; Liang, Xiao; Xu, Ke
2015-01-01
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective. PMID:26334994
Luke, Douglas A.; Proctor, Enola K.; Powderly, William G.; Chan, Philip A.; Mayer, Kenneth H.; Harrison, Laura C.; Dhand, Amar
2018-01-01
Abstract Purpose: The aim of this study was to identify sex venue-based networks among men who have sex with men (MSM) to inform HIV preexposure prophylaxis (PrEP) dissemination efforts. Methods: Using a cross-sectional design, we interviewed MSM about the venues where their recent sexual partners were found. Venues were organized into network matrices grouped by condom use and race. We examined network structure, central venues, and network subgroups. Results: Among 49 participants, the median age was 27 years, 49% were Black and 86% reported condomless anal sex (ncAS). Analysis revealed a map of 54 virtual and physical venues with an overlap in the ncAS and with condom anal sex (cAS) venues. In the ncAS network, virtual and physical locations were more interconnected. The ncAS venues reported by Blacks were more diffusely organized than those reported by Whites. Conclusion: The network structures of sex venues for at-risk MSM differed by race. Network information can enhance HIV prevention dissemination efforts among subpopulations, including PrEP implementation. PMID:29324178
Development of Novel p16INK4a Mimetics as Anticancer Therapy
2015-10-01
peptide (or substituted peptide) or the crystal structure of the relevant sequence from p16INK4 ( PDB 1BI7) was used as the starting structure . Model...small peptides that interact with CDK4/6. The specific aims are as follows. (1) Determine structure -function relationships of overlapping peptides...Determine structure -function relationships of overlapping peptides derived from p16 INK4a that inhibit the activity of CDK4/6 and identify stabilized
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
Tucker, C.; Arandi, C. Galindo; Bolaños, J. Herbert; Paz-Bailey, G.; Barrington, C.
2015-01-01
Sexual minority men and transgender women are disproportionately affected by HIV in Guatemala. Innovative prevention strategies are urgently needed to address these disparities. While social network approaches are frequently used to reach sexual minorities, little is known about the unique network characteristics among sub-groups. We conducted in-depth qualitative interviews with 13 gay-identifying men, eight non-gay-identifying men who have sex with men (MSM) and eight transgender women in Guatemala City. Using narrative and thematic coding procedures, we identified distinct patterns in the size, composition, and overlap between social and sexual networks across groups. Gay-identifying men had the largest, most supportive social networks, predominantly comprising family. For both non-gay-identifying MSM and transgender women, friends and sex clients provided more support. Transgender women reported the smallest social networks, least social support, and the most discrimination. HIV prevention efforts should be tailored to the specific sexual minority population and engage with strong ties. PMID:25418236
Tucker, C; Arandi, C Galindo; Bolaños, J Herbert; Paz-Bailey, G; Barrington, C
2014-11-01
Sexual minority men and transgender women are disproportionately affected by HIV in Guatemala. Innovative prevention strategies are urgently needed to address these disparities. While social network approaches are frequently used to reach sexual minorities, little is known about the unique network characteristics among sub-groups. We conducted in-depth qualitative interviews with 13 gay-identifying men, eight non-gay-identifying men who have sex with men (MSM) and eight transgender women in Guatemala City. Using narrative and thematic coding procedures, we identified distinct patterns in the size, composition, and overlap between social and sexual networks across groups. Gay-identifying men had the largest, most supportive social networks, predominantly comprising family. For both non-gay-identifying MSM and transgender women, friends and sex clients provided more support. Transgender women reported the smallest social networks, least social support, and the most discrimination. HIV prevention efforts should be tailored to the specific sexual minority population and engage with strong ties.
NASA Astrophysics Data System (ADS)
Song, Zhichao; Ge, Yuanzheng; Luo, Lei; Duan, Hong; Qiu, Xiaogang
2015-12-01
Social contact between individuals is the chief factor for airborne epidemic transmission among the crowd. Social contact networks, which describe the contact relationships among individuals, always exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated. We find that traditional global targeted immunization strategy would lose its superiority in controlling the epidemic propagation in the social contact networks with modular and hierarchical structure. Therefore, we propose a hierarchical targeted immunization strategy to settle this problem. In this novel strategy, importance of the hierarchical structure is considered. Transmission control experiments of influenza H1N1 are carried out based on a modular and hierarchical network model. Results obtained indicate that hierarchical structure of the network is more critical than the degrees of the immunized targets and the modular network layer is the most important for the epidemic propagation control. Finally, the efficacy and stability of this novel immunization strategy have been validated as well.
Automatic Seismic-Event Classification with Convolutional Neural Networks.
NASA Astrophysics Data System (ADS)
Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.
2017-12-01
Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and location of seismic events.
Li, Wen-Chang; Cooke, Tom; Sautois, Bart; Soffe, Stephen R; Borisyuk, Roman; Roberts, Alan
2007-09-10
How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that detailed cellular recognition between spinal neuron types may not be necessary for the reliable formation of functional networks to generate early behaviour like swimming.
A prior-based integrative framework for functional transcriptional regulatory network inference
Siahpirani, Alireza F.
2017-01-01
Abstract Transcriptional regulatory networks specify regulatory proteins controlling the context-specific expression levels of genes. Inference of genome-wide regulatory networks is central to understanding gene regulation, but remains an open challenge. Expression-based network inference is among the most popular methods to infer regulatory networks, however, networks inferred from such methods have low overlap with experimentally derived (e.g. ChIP-chip and transcription factor (TF) knockouts) networks. Currently we have a limited understanding of this discrepancy. To address this gap, we first develop a regulatory network inference algorithm, based on probabilistic graphical models, to integrate expression with auxiliary datasets supporting a regulatory edge. Second, we comprehensively analyze our and other state-of-the-art methods on different expression perturbation datasets. Networks inferred by integrating sequence-specific motifs with expression have substantially greater agreement with experimentally derived networks, while remaining more predictive of expression than motif-based networks. Our analysis suggests natural genetic variation as the most informative perturbation for network inference, and, identifies core TFs whose targets are predictable from expression. Multiple reasons make the identification of targets of other TFs difficult, including network architecture and insufficient variation of TF mRNA level. Finally, we demonstrate the utility of our inference algorithm to infer stress-specific regulatory networks and for regulator prioritization. PMID:27794550
Networks and plant disease management: concepts and applications.
Shaw, M W; Pautasso, M
2014-01-01
A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, and by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce the flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading diseases, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.
NASA Astrophysics Data System (ADS)
Ni, Yongnian; Wang, Yong; Kokot, Serge
2008-10-01
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0-11.5 mg L -1 at 526 and 608 nm for pefloxacin, and 0.15-1.8 mg L -1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPE T ˜ 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L -1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
3D TOCSY-HSQC NMR for metabolic flux analysis using non-uniform sampling
Reardon, Patrick N.; Marean-Reardon, Carrie L.; Bukovec, Melanie A.; ...
2016-02-05
13C-Metabolic Flux Analysis ( 13C-MFA) is rapidly being recognized as the authoritative method for determining fluxes through metabolic networks. Site-specific 13C enrichment information obtained using NMR spectroscopy is a valuable input for 13C-MFA experiments. Chemical shift overlaps in the 1D or 2D NMR experiments typically used for 13C-MFA frequently hinder assignment and quantitation of site-specific 13C enrichment. Here we propose the use of a 3D TOCSY-HSQC experiment for 13C-MFA. We employ Non-Uniform Sampling (NUS) to reduce the acquisition time of the experiment to a few hours, making it practical for use in 13C-MFA experiments. Our data show that the NUSmore » experiment is linear and quantitative. Identification of metabolites in complex mixtures, such as a biomass hydrolysate, is simplified by virtue of the 13C chemical shift obtained in the experiment. In addition, the experiment reports 13C-labeling information that reveals the position specific labeling of subsets of isotopomers. As a result, the information provided by this technique will enable more accurate estimation of metabolic fluxes in larger metabolic networks.« less
ERIC Educational Resources Information Center
Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.
2016-01-01
Skilled reading depends on recognizing words efficiently in isolation ("word-level processing"; "WL") and extracting meaning from text ("discourse-level processing"; "DL"); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as…
ERIC Educational Resources Information Center
Reich, Stephanie M.; Subrahmanyam, Kaveri; Espinoza, Guadalupe
2012-01-01
Many new and important developmental issues are encountered during adolescence, which is also a time when Internet use becomes increasingly popular. Studies have shown that adolescents are using these online spaces to address developmental issues, especially needs for intimacy and connection to others. Online communication with its potential for…
ERIC Educational Resources Information Center
Granados, Nadia Regina
2015-01-01
Through a Communities of Practice Network Analysis, this research illustrates the ways in which dual language graduates participate in multiple, varied, and overlapping communities of practice across time. Findings highlight that the dual language school as a shared community of practice represents a critical and formative part of participants'…
Study of a Flexible Low Profile Tunable Dipole Antenna Using Barium Strontium Titanate Varactors
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas; Miranda, Felix A.
2014-01-01
In this paper a flexible low profile dipole antenna using a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells is presented. The varactor chips were placed only along one dimension of the FSS to avoid the use of vias and simplify the DC bias network. The antenna uses overlapping metallic plates that resemble fish scales as a ground plane to improve the flexibility of the multi-material stack structure. The measured data of the antenna demonstrate tunability from 2.42 GHz to 2.66 GHz and 1.3 dB gain drop when using overlapping metallic plates instead of continuous ground plane. The total antenna thickness is approximately lambda/24.
Pituitary gland development: an update.
Bancalari, Rodrigo E; Gregory, Louise C; McCabe, Mark J; Dattani, Mehul T
2012-01-01
The embryonic development of the pituitary gland involves a complex and highly spatio-temporally regulated network of integrating signalling molecules and transcription factors. Genetic mutations in any of these factors can lead to congenital hypopituitarism in association with a wide spectrum of craniofacial/midline defects ranging from incompatibility with life to holoprosencephaly (HPE) and cleft palate and septo-optic dysplasia (SOD). Increasing evidence supports a genotypic overlap with hypogonadotrophic hypogonadal disorders such as Kallmann syndrome, which is consistent with the known overlap in phenotypes between these disorders. This chapter reviews the cascade of events leading up to the successful development of the pituitary gland and to highlight key areas where genetic variations can occur thus leading to congenital hypopituitarism and associated defects. Copyright © 2012 S. Karger AG, Basel.
Maturation trajectories of cortical resting-state networks depend on the mediating frequency band.
Khan, Sheraz; Hashmi, Javeria A; Mamashli, Fahimeh; Michmizos, Konstantinos; Kitzbichler, Manfred G; Bharadwaj, Hari; Bekhti, Yousra; Ganesan, Santosh; Garel, Keri-Lee A; Whitfield-Gabrieli, Susan; Gollub, Randy L; Kong, Jian; Vaina, Lucia M; Rana, Kunjan D; Stufflebeam, Steven M; Hämäläinen, Matti S; Kenet, Tal
2018-07-01
The functional significance of resting state networks and their abnormal manifestations in psychiatric disorders are firmly established, as is the importance of the cortical rhythms in mediating these networks. Resting state networks are known to undergo substantial reorganization from childhood to adulthood, but whether distinct cortical rhythms, which are generated by separable neural mechanisms and are often manifested abnormally in psychiatric conditions, mediate maturation differentially, remains unknown. Using magnetoencephalography (MEG) to map frequency band specific maturation of resting state networks from age 7 to 29 in 162 participants (31 independent), we found significant changes with age in networks mediated by the beta (13-30 Hz) and gamma (31-80 Hz) bands. More specifically, gamma band mediated networks followed an expected asymptotic trajectory, but beta band mediated networks followed a linear trajectory. Network integration increased with age in gamma band mediated networks, while local segregation increased with age in beta band mediated networks. Spatially, the hubs that changed in importance with age in the beta band mediated networks had relatively little overlap with those that showed the greatest changes in the gamma band mediated networks. These findings are relevant for our understanding of the neural mechanisms of cortical maturation, in both typical and atypical development. Copyright © 2018. Published by Elsevier Inc.
Next generation communications satellites: multiple access and network studies
NASA Technical Reports Server (NTRS)
Meadows, H. E.; Schwartz, M.; Stern, T. E.; Ganguly, S.; Kraimeche, B.; Matsuo, K.; Gopal, I.
1982-01-01
Efficient resource allocation and network design for satellite systems serving heterogeneous user populations with large numbers of small direct-to-user Earth stations are discussed. Focus is on TDMA systems involving a high degree of frequency reuse by means of satellite-switched multiple beams (SSMB) with varying degrees of onboard processing. Algorithms for the efficient utilization of the satellite resources were developed. The effect of skewed traffic, overlapping beams and batched arrivals in packet-switched SSMB systems, integration of stream and bursty traffic, and optimal circuit scheduling in SSMB systems: performance bounds and computational complexity are discussed.
Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification.
Wang, Qiangchang; Zheng, Yuanjie; Yang, Gongping; Jin, Weidong; Chen, Xinjian; Yin, Yilong
2018-01-01
We propose a new multiscale rotation-invariant convolutional neural network (MRCNN) model for classifying various lung tissue types on high-resolution computed tomography. MRCNN employs Gabor-local binary pattern that introduces a good property in image analysis-invariance to image scales and rotations. In addition, we offer an approach to deal with the problems caused by imbalanced number of samples between different classes in most of the existing works, accomplished by changing the overlapping size between the adjacent patches. Experimental results on a public interstitial lung disease database show a superior performance of the proposed method to state of the art.
NASA Astrophysics Data System (ADS)
Furetta, C.
The paper describes a method, based on fading experiment, for determining the presence of a complex structure in the thermoluminescent glow curve emission from herbs, e.g. oregano and nopal. Because of the polymineral content of the inorganic part of these herbs, the emitted glow curve is the result of several overlapping glow peaks, each one corresponding to another mineral. The initial rise method is also used for determining the activation energy of each component.
Hindi Attar, Catherine; Stein, Jenny; Poppinga, Sina; Fydrich, Thomas; Jaite, Charlotte; Kappel, Viola; Brunner, Romuald; Herpertz, Sabine C.; Boedeker, Katja; Bermpohl, Felix
2017-01-01
Background Maternal sensitive behavior depends on recognizing one’s own child’s affective states. The present study investigated distinct and overlapping neural responses of mothers to sad and happy facial expressions of their own child (in comparison to facial expressions of an unfamiliar child). Methods We used functional MRI to measure dissociable and overlapping activation patterns in 27 healthy mothers in response to happy, neutral and sad facial expressions of their own school-aged child and a gender- and age-matched unfamiliar child. To investigate differential activation to sad compared to happy faces of one’s own child, we used interaction contrasts. During the scan, mothers had to indicate the affect of the presented face. After scanning, they were asked to rate the perceived emotional arousal and valence levels for each face using a 7-point Likert-scale (adapted SAM version). Results While viewing their own child’s sad faces, mothers showed activation in the amygdala and anterior cingulate cortex whereas happy facial expressions of the own child elicited activation in the hippocampus. Conjoint activation in response to one’s own child happy and sad expressions was found in the insula and the superior temporal gyrus. Conclusions Maternal brain activations differed depending on the child’s affective state. Sad faces of the own child activated areas commonly associated with a threat detection network, whereas happy faces activated reward related brain areas. Overlapping activation was found in empathy related networks. These distinct neural activation patterns might facilitate sensitive maternal behavior. PMID:28806742
Self, D Mitchell; Ilyas, Adeel; Stetler, William R
2018-04-27
Overlapping surgery, a long-standing practice within academic neurosurgery centers nationwide, has recently come under scrutiny from the government and media as potentially harmful to patients. Therefore, the objective of this systematic review and meta-analysis is to determine the safety of overlapping neurosurgical procedures. The authors performed a systematic review and meta-analysis in accordance with PRISMA guidelines. A review of PubMed and Medline databases was undertaken with the search phrase "overlapping surgery AND neurosurgery AND outcomes." Data regarding patient demographics, type of neurosurgical procedure, and outcomes and complications were extracted from each study. The principle summary measure was odds ratio (OR) of the association of overlapping versus non-overlapping surgery with outcomes. The literature search yielded a total of 36 studies, of which 5 studies met inclusion criteria and were included in this study. These studies included a total of 25,764 patients undergoing neurosurgical procedures. Overlapping surgery was associated with an increased likelihood of being discharged home (OR = 1.32; 95% CI 1.20 to 1.44; P < 0.001) and a reduced 30-day unexpected return to the operating room (OR = 0.79; 95% CI 0.72 to 0.87; P < 0.001). Overlapping surgery did not significantly affect OR of length of surgery, 30-day mortality, or 30-day readmission. Overlapping neurosurgical procedures were not associated with worse patient outcomes. Additional, prospective studies are needed to further assess the safety overlapping procedures. Copyright © 2018. Published by Elsevier Inc.
Edwards, Trent; Friesen, Craig; Schurman, Jennifer V
2018-03-17
The primary purpose of this study was to compare Rome III and IV evaluation criteria for irritable bowel syndrome (IBS), functional dyspepsia (FD), and an overlap syndrome consisting of both IBS and FD by assessing the frequency of each diagnosis in a population of children with chronic abdominal pain. Frequencies of Rome IV FD subtypes of postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS) were determined and FD/IBS overlap symptom associations were also assessed. We conducted a cross-sectional retrospective chart review of 106 pediatric patients who had completed standardized medical histories as part of their evaluation for chronic abdominal pain. The patients ranged from eight to 17 years of age and reported having abdominal pain at least weekly for 8 weeks. Patients whose evaluation revealed gastrointestinal disease were excluded. The patients' diagnoses were determined by a single pediatric gastroenterologist utilizing the specific criteria for Rome III and IV, respectively. Patients were significantly more likely to be diagnosed with FD (84.9% vs. 52.8%), IBS (69.8% vs. 34%), and FD/IBS overlap (58.5% vs. 17.9%) by Rome IV criteria, as compared to Rome III criteria. With regard to Rome IV FD subtypes, 81.1% fulfilled criteria for PDS, 11.1% fulfilled criteria for EPS, 6.7% fulfilled criteria for both, and 1.1% did not fulfill criteria for either. Finally, we found an increased frequency of diarrhea and pain with eating in the overlap group compared to the non-overlap group of Rome III, while only an increased frequency of diarrhea was found in the overlap group compared to the non-overlap group of Rome IV. Our data demonstrate that utilizing Rome IV criteria, as compared to Rome III, results in an increase in the diagnosis of FD, a two-fold increase in the diagnosis of IBS, and a three-fold increase in the diagnosis of FD/IBS overlap. Rome IV criteria appears to result in greater heterogeneity within diagnostic categories. It is important to determine whether Rome IV diagnoses are predictive of treatment response, and if so, whether assessing symptom variability within a diagnosis will enhance the ability to select patients for a particular treatment.
Bhavnani, Suresh K.; Chen, Tianlong; Ayyaswamy, Archana; Visweswaran, Shyam; Bellala, Gowtham; Rohit, Divekar; Kevin E., Bassler
2017-01-01
A primary goal of precision medicine is to identify patient subgroups based on their characteristics (e.g., comorbidities or genes) with the goal of designing more targeted interventions. While network visualization methods such as Fruchterman-Reingold have been used to successfully identify such patient subgroups in small to medium sized data sets, they often fail to reveal comprehensible visual patterns in large and dense networks despite having significant clustering. We therefore developed an algorithm called ExplodeLayout, which exploits the existence of significant clusters in bipartite networks to automatically “explode” a traditional network layout with the goal of separating overlapping clusters, while at the same time preserving key network topological properties that are critical for the comprehension of patient subgroups. We demonstrate the utility of ExplodeLayout by visualizing a large dataset extracted from Medicare consisting of readmitted hip-fracture patients and their comorbidities, demonstrate its statistically significant improvement over a traditional layout algorithm, and discuss how the resulting network visualization enabled clinicians to infer mechanisms precipitating hospital readmission in specific patient subgroups. PMID:28815099
NASA Astrophysics Data System (ADS)
Amiri, N.; Bertiger, W. I.; Lu, W.; Miller, M. A.; David, M. W.; Ries, P.; Romans, L.; Sibois, A. E.; Sibthorpe, A.; Sakumura, C.
2017-12-01
Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions Authors: Nikta Amiri, Willy Bertiger, Wenwen Lu, Mark Miller, David Murphy, Paul Ries, Larry Romans, Carly Sakumura, Aurore Sibois, Anthony Sibthorpe All at the Jet Propulsion Laboratory, California Institute of Technology Multiple Global Navigation Satellite Systems (GNSS) are now in various stages of completion. The four current constellations (GPS, GLONASS, BeiDou, Galileo) comprise more than 80 satellites as of July 2017, with 120 satellites expected to be available when all four constellations become fully operational. We investigate the impact of simultaneous observations to these four constellations on global network precise orbit determination (POD) solutions, and compare them to available sets of orbit and clock products submitted to the Multi-GNSS Experiment (MGEX). Using JPL's GipsyX software, we generate orbit and clock products for the four constellations. The resulting solutions are evaluated based on a number of metrics including day-to-day internal and external orbit and/or clock overlaps and estimated constellation biases. Additionally, we examine estimated station positions obtained from precise point positioning (PPP) solutions by comparing results generated from multi-GNSS and GPS-only orbit and clock products.
Source discrimination between Mining blasts and Earthquakes in Tianshan orogenic belt, NW China
NASA Astrophysics Data System (ADS)
Tang, L.; Zhang, M.; Wen, L.
2017-12-01
In recent years, a large number of quarry blasts have been detonated in Tianshan Mountains of China. It is necessary to discriminate those non-earthquake records from the earthquake catalogs in order to determine the real seismicity of the region. In this study, we have investigated spectral ratios and amplitude ratios as discriminants for regional seismic-event identification using explosions and earthquakes recorded at Xinjiang Seismic Network (XJSN) of China. We used a data set that includes 1071 earthquakes and 2881 non-earthquakes as training data recorded by the XJSN between years of 2009 and 2016, with both types of events in a comparable local magnitude range (1.5 to 2.9). The non-earthquake and earthquake groups were well separated by amplitude ratios of Pg/Sg, with the separation increasing with frequency when averaged over three stations. The 8- to 15-Hz Pg/Sg ratio was proved to be the most precise and accurate discriminant, which works for more than 90% of the events. In contrast, the P spectral ratio performed considerably worse with a significant overlap (about 60% overlap) between the earthquake and explosion populations. The comparison results show amplitude ratios between compressional and shear waves discriminate better than low-frequency to high-frequency spectral ratios for individual phases. In discriminating between explosions and earthquakes, none of two discriminants were able to completely separate the two populations of events. However, a joint discrimination scheme employing simple majority voting reduces misclassifications to 10%. In the region of the study, 44% of the examined seismic events were determined to be non-earthquakes and 55% to be earthquakes. The earthquakes occurring on land are related to small faults, while the blasts are concentrated in large quarries.
Kim, Daniel Seung; Kim, Jerry H; Burt, Amber A; Crosslin, David R; Burnham, Nancy; Kim, Cecilia E; McDonald-McGinn, Donna M; Zackai, Elaine H; Nicolson, Susan C; Spray, Thomas L; Stanaway, Ian B; Nickerson, Deborah A; Heagerty, Patrick J; Hakonarson, Hakon; Gaynor, J William; Jarvik, Gail P
2016-04-01
Copy number variants (CNVs) are duplications or deletions of genomic regions. Large CNVs are potentially pathogenic and are overrepresented in children with congenital heart disease (CHD). We sought to determine the frequency of large CNVs in children with isolated CHD, and to evaluate the relationship of these potentially pathogenic CNVs with transplant-free survival. These cases are derived from a prospective cohort of patients with nonsyndromic CHD (n = 422) identified before first surgery. Healthy pediatric controls (n = 500) were obtained from the electronic Medical Records and Genetic Epidemiology Network, and CNV frequency was contrasted for CHD cases and controls. CNVs were determined algorithmically; subsequently screened for >95% overlap between 2 methods, size (>300 kb), quality score, overlap with a gene, and novelty (absent from databases of known, benign CNVs); and separately validated by quantitative polymerase chain reaction. Survival likelihoods for cases were calculated using Cox proportional hazards modeling to evaluate the joint effect of CNV burden and known confounders on transplant-free survival. Children with nonsyndromic CHD had a higher burden of potentially pathogenic CNVs compared with pediatric controls (12.1% vs 5.0%; P = .00016). Presence of a CNV was associated with significantly decreased transplant-free survival after surgery (hazard ratio, 3.42; 95% confidence interval, 1.66-7.09; P = .00090) with confounder adjustment. We confirm that children with isolated CHD have a greater burden of rare/large CNVs. We report a novel finding that these CNVs are associated with an adjusted 2.55-fold increased risk of death or transplant. These data suggest that CNV burden is an important modifier of survival after surgery for CHD. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-07-14
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.
Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le
2016-01-01
Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability. PMID:27428970
Influence of the Time Scale on the Construction of Financial Networks
Emmert-Streib, Frank; Dehmer, Matthias
2010-01-01
Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124
ERIC Educational Resources Information Center
Ronald, Angelica; Simonoff, Emily; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert
2008-01-01
Background: High levels of clinical comorbidity have been reported between autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). This study takes an individual differences approach to determine the degree of phenotypic and aetiological overlap between autistic traits and ADHD behaviours in the general population.…
Autism and ADHD: Overlapping and Discriminating Symptoms
ERIC Educational Resources Information Center
Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah
2012-01-01
Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…
Kodavasal, Janardhan; Lavoie, George A.; Assanis, Dennis N.; ...
2015-10-26
Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel–oxygen equivalence ratio (Φ FO), oxygen molar fraction (χ O2) and temperature (T) was determined for threemore » parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the Φ FO and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Furthermore, relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel–air mixing.« less
Dynamic multifactor clustering of financial networks
NASA Astrophysics Data System (ADS)
Ross, Gordon J.
2014-02-01
We investigate the tendency for financial instruments to form clusters when there are multiple factors influencing the correlation structure. Specifically, we consider a stock portfolio which contains companies from different industrial sectors, located in several different countries. Both sector membership and geography combine to create a complex clustering structure where companies seem to first be divided based on sector, with geographical subclusters emerging within each industrial sector. We argue that standard techniques for detecting overlapping clusters and communities are not able to capture this type of structure and show how robust regression techniques can instead be used to remove the influence of both sector and geography from the correlation matrix separately. Our analysis reveals that prior to the 2008 financial crisis, companies did not tend to form clusters based on geography. This changed immediately following the crisis, with geography becoming a more important determinant of clustering structure.
Desmond, Jill M; Collins, Leslie M; Throckmorton, Chandra S
2014-06-01
Many cochlear implant (CI) listeners experience decreased speech recognition in reverberant environments [Kokkinakis et al., J. Acoust. Soc. Am. 129(5), 3221-3232 (2011)], which may be caused by a combination of self- and overlap-masking [Bolt and MacDonald, J. Acoust. Soc. Am. 21(6), 577-580 (1949)]. Determining the extent to which these effects decrease speech recognition for CI listeners may influence reverberation mitigation algorithms. This study compared speech recognition with ideal self-masking mitigation, with ideal overlap-masking mitigation, and with no mitigation. Under these conditions, mitigating either self- or overlap-masking resulted in significant improvements in speech recognition for both normal hearing subjects utilizing an acoustic model and for CI listeners using their own devices.
Network pharmacology of JAK inhibitors
Moodley, Devapregasan; Yoshida, Hideyuki; Mostafavi, Sara; Asinovski, Natasha; Ortiz-Lopez, Adriana; Symanowicz, Peter; Telliez, Jean-Baptiste; Hegen, Martin; Clark, James D.; Mathis, Diane; Benoist, Christophe
2016-01-01
Small-molecule inhibitors of the Janus kinase family (JAKis) are clinically efficacious in multiple autoimmune diseases, albeit with increased risk of certain infections. Their precise mechanism of action is unclear, with JAKs being signaling hubs for several cytokines. We assessed the in vivo impact of pan- and isoform-specific JAKi in mice by immunologic and genomic profiling. Effects were broad across the immunogenomic network, with overlap between inhibitors. Natural killer (NK) cell and macrophage homeostasis were most immediately perturbed, with network-level analysis revealing a rewiring of coregulated modules of NK cell transcripts. The repression of IFN signature genes after repeated JAKi treatment continued even after drug clearance, with persistent changes in chromatin accessibility and phospho-STAT responsiveness to IFN. Thus, clinical use and future development of JAKi might need to balance effects on immunological networks, rather than expect that JAKis affect a particular cytokine response and be cued to long-lasting epigenomic modifications rather than by short-term pharmacokinetics. PMID:27516546
Redrawing the map of Great Britain from a network of human interactions.
Ratti, Carlo; Sobolevsky, Stanislav; Calabrese, Francesco; Andris, Clio; Reades, Jonathan; Martino, Mauro; Claxton, Rob; Strogatz, Steven H
2010-12-08
Do regional boundaries defined by governments respect the more natural ways that people interact across space? This paper proposes a novel, fine-grained approach to regional delineation, based on analyzing networks of billions of individual human transactions. Given a geographical area and some measure of the strength of links between its inhabitants, we show how to partition the area into smaller, non-overlapping regions while minimizing the disruption to each person's links. We tested our method on the largest non-Internet human network, inferred from a large telecommunications database in Great Britain. Our partitioning algorithm yields geographically cohesive regions that correspond remarkably well with administrative regions, while unveiling unexpected spatial structures that had previously only been hypothesized in the literature. We also quantify the effects of partitioning, showing for instance that the effects of a possible secession of Wales from Great Britain would be twice as disruptive for the human network than that of Scotland.
Multilayer Network Analysis of Nuclear Reactions
NASA Astrophysics Data System (ADS)
Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding
2016-08-01
The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.
ERIC Educational Resources Information Center
Huang, Tony Cheng-Kui; Huang, Chih-Hong
2010-01-01
With advances in information and network technologies, lots of data have been digitized to reveal information for users by the construction of Web sites. Unfortunately, they are both overloading and overlapping in Internet so that users cannot distinguish their quality. To address this issue in education, Hwang, Huang, and Tseng proposed a group…
A differential memristive synapse circuit for on-line learning in neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo
2017-12-01
Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Tjahjono, Elissa; Kirienko, Natalia V
2017-06-01
All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.
Lusk, Ryan; Saba, Laura M; Vanderlinden, Lauren A; Zidek, Vaclav; Silhavy, Jan; Pravenec, Michal; Hoffman, Paula L; Tabakoff, Boris
2018-04-24
A statistical pipeline was developed and used for determining candidate genes and candidate gene co-expression networks involved in two alcohol (i.e., ethanol) metabolism phenotypes, namely alcohol clearance and acetate area under the curve (AUC) in a recombinant inbred (HXB/BXH) rat panel. The approach was also used to provide an indication of how ethanol metabolism can impact the normal function of the identified networks. RNA was extracted from alcohol-naïve liver tissue of 30 strains of HXB/BXH recombinant inbred rats. The reconstructed transcripts were quantitated and data was used to construct gene co-expression modules and networks. A separate group of rats, comprising the same 30 strains, were injected with ethanol (2 gm/kg) for measurement of blood ethanol and acetate levels. These data were used for QTL analysis of the rate of ethanol disappearance and circulating acetate levels. The analysis pipeline required calculation of the module eigengene values, the correction of these values with ethanol metabolism rates and acetate levels across the rat strains and the determination of the eigengene QTLs. For a module to be considered a candidate for determining phenotype, the module eigengene values had to have significant correlation with the strain phenotypic values and the module eigengene QTLs had to overlap the phenotypic QTLs. Of the 658 transcript co-expression modules generated from liver RNA sequencing data, a single module satisfied all criteria for being a candidate for determining the alcohol clearance trait. This module contained two alcohol dehydrogenase genes, including the gene whose product was previously shown to be responsible for the majority of alcohol elimination in the rat. This module was also the only module identified as a candidate for influencing circulating acetate levels. This module was also linked to the process of generation and utilization of retinoic acid as related to the autonomous immune response. We propose that our analytical pipeline can successfully identify genetic regions and transcripts which predispose a particular phenotype and our analysis provides functional context for co-expression module components. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
A Code Division Design Strategy for Multiplexing Fiber Bragg Grating Sensing Networks
Varón, Margarita
2017-01-01
In this paper, an encoding strategy is used to design specialized fiber Bragg grating (FBG) sensors. The encoding of each sensor requires two binary codewords to define the amplitude and phase patterns of each sensor. The combined pattern (amplitude and phase) makes each sensor unique and therefore two or more sensors can be identified under spectral overlapping. In this way, we add another dimension to the multiplexing of FBG sensors, obtaining an increase factor ‘n’ to enhance the number of sensors that the system can handle. A proof-of-concept scenario with three sensors was performed, including the manufacturing of the encoded sensors. Furthermore, an interrogation setup to detect the sensors central wavelength was proposed and its working principle was theoretically developed. Results show that total identification of the central wavelength is performed under spectral overlapping between the manufactured sensors, achieving a three-time improvement of the system capacity. Finally, the error due to overlapping between the sensors was assessed obtaining approximately 3 pm, which makes the approach suitable for use in real measurement systems. PMID:29104231
Auer, Sonya K; Martin, Thomas E
2013-02-01
Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant-herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant-herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant-herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community. © 2012 Blackwell Publishing Ltd.
Knefel, Matthias; Tran, Ulrich S; Lueger-Schuster, Brigitte
2016-10-01
Posttraumatic Stress Disorder (PTSD), Complex PTSD, and Borderline Personality Disorder (BPD) share etiological risk factors and an overlapping set of associated symptoms. Since the ICD-11 proposal for trauma-related disorders, the relationship of these disorders has to be clarified. A novel approach to psychopathology, network analysis, allows for a detailed analysis of comorbidity on symptom level. Symptoms were assessed in adult survivors of childhood abuse (N=219) using the newly developed ICD-11 Trauma-Questionnaire and the SCID-II. The psychopathological network was analyzed using the network approach. PTSD and Complex PTSD symptoms were strongly connected within disorders and to a lesser degree between disorders. Symptoms of BPD were weakly connected to others. Re-experiencing and dissociation were the most central symptoms. Mental disorders are no discrete entities, clear boundaries are unlikely to be found. The psychopathological network revealed central symptoms that might be important targets for specific first interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Agnati, L F; Guidolin, D; Fuxe, K
2007-01-01
A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.
Wilder, Jenny; Granlund, Mats
2015-03-01
Children with profound intellectual and multiple disabilities (PIMD) demand intense family accommodations from birth and onwards. This study used an exploratory and qualitative study design to investigate stability and change in sustainability of daily routines and social networks of Swedish families of children with PIMD. Eight families participated over two years in eco-cultural family interviews and social networks interviews collected at home visits. Data were analyzed descriptively and by manifest contents analysis. Results showed variations in sustainability of daily routines over time across families. The sustainability was linked to fathers' involvement, couples' connectedness and emotional support. Stability and change of social networks were characterized by low overlap between the child and family networks, the children's communicative dependency and low density of able communication partners. The results indicate that patterns of stability and change were linked both to family resources and child characteristics. © 2014 John Wiley & Sons Ltd.
Mnemonic convergence in social networks: The emergent properties of cognition at a collective level.
Coman, Alin; Momennejad, Ida; Drach, Rae D; Geana, Andra
2016-07-19
The development of shared memories, beliefs, and norms is a fundamental characteristic of human communities. These emergent outcomes are thought to occur owing to a dynamic system of information sharing and memory updating, which fundamentally depends on communication. Here we report results on the formation of collective memories in laboratory-created communities. We manipulated conversational network structure in a series of real-time, computer-mediated interactions in fourteen 10-member communities. The results show that mnemonic convergence, measured as the degree of overlap among community members' memories, is influenced by both individual-level information-processing phenomena and by the conversational social network structure created during conversational recall. By studying laboratory-created social networks, we show how large-scale social phenomena (i.e., collective memory) can emerge out of microlevel local dynamics (i.e., mnemonic reinforcement and suppression effects). The social-interactionist approach proposed herein points to optimal strategies for spreading information in social networks and provides a framework for measuring and forging collective memories in communities of individuals.
The Community Structure of the European Network of Interlocking Directorates 2005–2010
Heemskerk, Eelke M.; Daolio, Fabio; Tomassini, Marco
2013-01-01
The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer. PMID:23894318
The community structure of the European network of interlocking directorates 2005-2010.
Heemskerk, Eelke M; Daolio, Fabio; Tomassini, Marco
2013-01-01
The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer.
Computational models of location-invariant orthographic processing
NASA Astrophysics Data System (ADS)
Dandurand, Frédéric; Hannagan, Thomas; Grainger, Jonathan
2013-03-01
We trained three topologies of backpropagation neural networks to discriminate 2000 words (lexical representations) presented at different positions of a horizontal letter array. The first topology (zero-deck) contains no hidden layer, the second (one-deck) has a single hidden layer, and for the last topology (two-deck), the task is divided in two subtasks implemented as two stacked neural networks, with explicit word-centred letters as intermediate representations. All topologies successfully simulated two key benchmark phenomena observed in skilled human reading: transposed-letter priming and relative-position priming. However, the two-deck topology most accurately simulated the ability to discriminate words from nonwords, while containing the fewest connection weights. We analysed the internal representations after training. Zero-deck networks implement a letter-based scheme with a position bias to differentiate anagrams. One-deck networks implement a holographic overlap coding in which representations are essentially letter-based and words are linear combinations of letters. Two-deck networks also implement holographic-coding.
Neural correlates of cognitive intervention in persons at risk of developing Alzheimer’s disease
Hosseini, S. M. Hadi; Kramer, Joel H.; Kesler, Shelli R.
2014-01-01
Cognitive training is an emergent approach that has begun to receive increased attention in recent years as a non-pharmacological, cost-effective intervention for Alzheimer’s disease (AD). There has been increasing behavioral evidence regarding training-related improvement in cognitive performance in early stages of AD. Although these studies provide important insight about the efficacy of cognitive training, neuroimaging studies are crucial to pinpoint changes in brain structure and function associated with training and to examine their overlap with pathology in AD. In this study, we reviewed the existing neuroimaging studies on cognitive training in persons at risk of developing AD to provide an overview of the overlap between neural networks rehabilitated by the current training methods and those affected in AD. The data suggest a consistent training-related increase in brain activity in medial temporal, prefrontal, and posterior default mode networks, as well as increase in gray matter structure in frontoparietal and entorhinal regions. This pattern differs from the observed pattern in healthy older adults that shows a combination of increased and decreased activity in response to training. Detailed investigation of the data suggests that training in persons at risk of developing AD mainly improves compensatory mechanisms and partly restores the affected functions. While current neuroimaging studies are quite helpful in identifying the mechanisms underlying cognitive training, the data calls for future multi-modal neuroimaging studies with focus on multi-domain cognitive training, network level connectivity, and individual differences in response to training. PMID:25206335
Kelling, Craig J.; Isermann, Daniel A.; Sloss, Brian L.; Turnquist, Keith N.
2016-01-01
Over the last decade, the abundance of Largemouth Bass Micropterus salmoides has increased in many northern Wisconsin lakes, causing concern among anglers and biologists regarding the potential for Largemouth Bass to negatively affect populations of Walleye Sander vitreus through predation or competition for prey. Our objectives were to determine whether (1) diet overlap and predation occurred between adult Walleyes and Largemouth Bass in four northern Wisconsin lakes and (2) the use of DNA barcoding to reduce unidentifiable fish in diet samples affected conclusions regarding diet overlap. A single occurrence of Walleye predation was observed in the diets of 945 Largemouth Bass. Moderate to high diet overlap was observed between Largemouth Bass and Walleyes throughout much of the study period. The use of DNA barcoding reduced the amount of unidentified fish in diets to <1% and showed that failure to identify fish or fish parts can affect conclusions regarding diet overlap. Largemouth Bass predation is probably not a primary factor affecting Walleye abundance in the lakes we selected, but observed diet overlap suggests the potential for competition between the two species.
Critical assessment of human metabolic pathway databases: a stepping stone for future integration
2011-01-01
Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison provides a stepping stone for such an endeavor. PMID:21999653
Tosa, Marie I; Schauber, Eric M; Nielsen, Clayton K
2015-01-01
Social interactions can influence infectious disease dynamics, particularly for directly transmitted pathogens. Therefore, reliable information on contact frequency within and among groups can better inform disease modeling and management. We compared three methods of assessing contact patterns: (1) space-use overlap (volume of interaction [VI]), (2) direct contact rates measured by simultaneous global positioning system (GPS) locations (<10 m apart), and (3) direct contact rates measured by proximity loggers (PLs; 1-m detection) among female white-tailed deer (Odocoileus virginianus). We calculated the PL∶GPS contact ratios to see whether both devices reveal similar contact patterns and thus predict similar pathogen transmission patterns. Contact rates measured by GPS and PLs were similarly high for two within-group dyads (pairs of deer in the same social groups). Dyads representing separate but neighboring groups (high VI) had PL∶GPS contact ratios near zero, whereas dyads further apart (intermediate VI) had higher PL∶GPS contact ratios. Social networks based on PL contacts showed the fewest connected individuals and lowest mean centrality measures; network metrics were intermediate when based on GPS contacts and greatest when based on VI. Thus, the VI network portrayed animals to be more uniformly and strongly connected than did the PL network. We conclude that simultaneous GPS locations, compared with PLs, substantially underestimate the impact of group membership on direct contact rates of female deer and make networks appear more connected. We also present evidence that deer coming within the general vicinity of each other are less likely to come in close contact if they are in neighboring social groups than deer whose home ranges overlap little if at all. Combined, these results provide evidence that direct transmission of disease agents among female and juvenile white-tailed deer is likely to be constrained both spatially and by social structure, more so than GPS data alone would suggest.
Network analysis of the Íslendinga sögur - the Sagas of Icelanders
NASA Astrophysics Data System (ADS)
Mac Carron, P.; Kenna, R.
2013-10-01
The Íslendinga sögur - or Sagas of Icelanders - constitute a collection of medieval literature set in Iceland around the late 9th to early 11th centuries, the so-called Saga Age. They purport to describe events during the period around the settlement of Iceland and the generations immediately following and constitute an important element of world literature thanks to their unique narrative style. Although their historicity is a matter of scholarly debate, the narratives contain interwoven and overlapping plots involving thousands of characters and interactions between them. Here we perform a network analysis of the Íslendinga sögur in an attempt to gather quantitative information on interrelationships between characters and to compare saga society to other social networks.
On the relationship between the “default mode network” and the “social brain”
Mars, Rogier B.; Neubert, Franz-Xaver; Noonan, MaryAnn P.; Sallet, Jerome; Toni, Ivan; Rushworth, Matthew F. S.
2012-01-01
The default mode network (DMN) of the brain consists of areas that are typically more active during rest than during active task performance. Recently however, this network has been shown to be activated by certain types of tasks. Social cognition, particularly higher-order tasks such as attributing mental states to others, has been suggested to activate a network of areas at least partly overlapping with the DMN. Here, we explore this claim, drawing on evidence from meta-analyses of functional MRI data and recent studies investigating the structural and functional connectivity of the social brain. In addition, we discuss recent evidence for the existence of a DMN in non-human primates. We conclude by discussing some of the implications of these observations. PMID:22737119
a Linux PC Cluster for Lattice QCD with Exact Chiral Symmetry
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai; Hsieh, Tung-Han; Huang, Chao-Hsi; Huang, Tsung-Ren
A computational system for lattice QCD with overlap Dirac quarks is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present the system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of our system is estimated to be 70 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing propagators of overlap Dirac quarks.
Parallel-aware, dedicated job co-scheduling within/across symmetric multiprocessing nodes
Jones, Terry R.; Watson, Pythagoras C.; Tuel, William; Brenner, Larry; ,Caffrey, Patrick; Fier, Jeffrey
2010-10-05
In a parallel computing environment comprising a network of SMP nodes each having at least one processor, a parallel-aware co-scheduling method and system for improving the performance and scalability of a dedicated parallel job having synchronizing collective operations. The method and system uses a global co-scheduler and an operating system kernel dispatcher adapted to coordinate interfering system and daemon activities on a node and across nodes to promote intra-node and inter-node overlap of said interfering system and daemon activities as well as intra-node and inter-node overlap of said synchronizing collective operations. In this manner, the impact of random short-lived interruptions, such as timer-decrement processing and periodic daemon activity, on synchronizing collective operations is minimized on large processor-count SPMD bulk-synchronous programming styles.
Corrected Mean-Field Model for Random Sequential Adsorption on Random Geometric Graphs
NASA Astrophysics Data System (ADS)
Dhara, Souvik; van Leeuwaarden, Johan S. H.; Mukherjee, Debankur
2018-03-01
A notorious problem in mathematics and physics is to create a solvable model for random sequential adsorption of non-overlapping congruent spheres in the d-dimensional Euclidean space with d≥ 2 . Spheres arrive sequentially at uniformly chosen locations in space and are accepted only when there is no overlap with previously deposited spheres. Due to spatial correlations, characterizing the fraction of accepted spheres remains largely intractable. We study this fraction by taking a novel approach that compares random sequential adsorption in Euclidean space to the nearest-neighbor blocking on a sequence of clustered random graphs. This random network model can be thought of as a corrected mean-field model for the interaction graph between the attempted spheres. Using functional limit theorems, we characterize the fraction of accepted spheres and its fluctuations.
DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.
Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I
2013-01-01
Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).
ERIC Educational Resources Information Center
Gottlieb, Lauren J.; Rugg, Michael D.
2011-01-01
Prior research has demonstrated that the neural correlates of successful encoding ("subsequent memory effects") partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting…
Deconvolution method for accurate determination of overlapping peak areas in chromatograms.
Nelson, T J
1991-12-20
A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by conventional methods.
Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.
Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks
Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong
2011-01-01
The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
Gap analysis of the European Earth Observation Networks
NASA Astrophysics Data System (ADS)
Closa, Guillem; Serral, Ivette; Maso, Joan
2016-04-01
Earth Observations (EO) are fundamental to enhance the scientific understanding of the current status of the Earth. Nowadays, there are a lot of EO services that provide large volume of data, and the number of datasets available for different geosciences areas is increasing by the day. Despite this coverage, a glance of the European EO networks reveals that there are still some issues that are not being met; some gaps in specific themes or some thematic overlaps between different networks. This situation requires a clarification process of the actual status of the EO European networks in order to set priorities and propose future actions that will improve the European EO networks. The aim of this work is to detect the existing gaps and overlapping problems among the European EO networks. The analytical process has been done by studying the availability and the completeness of the Essential Variables (EV) data captured by the European EO networks. The concept of EVs considers that there are a number of parameters that are essential to characterize the state and trends of a system without losing significant information. This work generated a database of the existing gaps in the European EO network based on the initial GAIA-CLIM project data structure. For each theme the missing or incomplete data about each EV was indentified. Then, if incomplete, the gap was described by adding its type (geographical extent, vertical extent, temporal extent, spatial resolution, etc), the cost, the remedy, the feasibility, the impact and the priority, among others. Gaps in EO are identified following the ConnectinGEO methodology structured in 5 threads; identification of observation requirements, incorporation of international research programs material, consultation process within the current EO actors, GEOSS Discovery and Access Broker analysis, and industry-driven challenges implementation. Concretely, the presented work focuses on the second thread, which is based on International research programs screening, conclusions of research papers extraction, research in collective roadmaps that contain valuable information about problems due to lack of data, and EU research calls considering to move forward in known uncovered areas. This provides a set of results that will be later validated by an iterative process that will enhance the database content until an agreement in the community is reached and a list of priorities is ready to be delivered. This work is done thanks to the EU ConnectinGEO H2020 (Project Nr: 641538).
Neural networks supporting autobiographical memory retrieval in post-traumatic stress disorder
Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2013-01-01
Post-traumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contribution of large-scale neural networks supporting cognition in PTSD is unknown. In the current functional MRI (fMRI) study we employ independent component analysis to examine the influence the engagement of neural networks during the recall of personal memories in PTSD (15 participants) compared to non-trauma exposed, healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to controls during AM recall, including default network subsystems and control networks, but there were group differences in the spatial and temporal characteristics of these networks. First, there were spatial differences in the contribution of the anterior and posterior midline across the networks, and with the amygdala in particular for the medial temporal subsystem of the default network. Second, there were temporal differences in the relationship of the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that spatial and temporal characteristics of the default and control networks potentially differ in PTSD versus healthy controls, and contribute to altered recall of personal memory. PMID:23483523
Computational Study of Axial Fatigue for Peripheral Nitinol Stents
NASA Astrophysics Data System (ADS)
Meoli, Alessio; Dordoni, Elena; Petrini, Lorenza; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo
2014-07-01
Despite their success as primary treatment for vascular diseases, Nitinol peripheral stents are still affected by complications related to fatigue failure. Hip and knee movements during daily activities produce large and cyclic deformations of the superficial femoral artery, that concomitant to the effects of pulsatile blood pressure, may cause fatigue failure in the stent. Fatigue failure typically occurs in cases of very extended lesions, which often require the use of two or more overlapping stents. In this study, finite element models were used to study the fatigue behavior of Nitinol stents when subjected to cyclic axial compression in different conditions. A specific commercial Nitinol stent was chosen for the analysis and subjected to cyclic axial compression typical of the femoral vascular region. Three different configurations were investigated: stent alone, stent deployed in a tube, and two overlapping stents deployed in a tube. Results confirm that stent oversizing has an influence in determining both the mean and amplitude strains induced in the stent and plays an important role in determining the fatigue response of Nitinol stents. In case of overlapping stents, numerical results suggest higher amplitude strains concentrate in the region close to the overlapping portion where the abrupt change in stiffness causes higher cyclic compression. These findings help to explain the high incidence of stent fractures observed in various clinical trials located close to the overlapping portion.
NASA Astrophysics Data System (ADS)
Peshnina, I.; Sinitsina, O.
2017-11-01
The study relevance is determined by the increasing interest in reconstruction of city historical centers and located in the area of industrial buildings the functional profile of which needs to be changed. The problem of obtaining extra usable spaces in the historical centers of cities is solved by raising the number of storeys in the buildings which can be achieved by the construction of additional built-in inter-floor overlaps. The article is dedicated to the analysis of the recent years’ experience in reconstruction design involving this method in our country and abroad, in the Netherlands, in particular. The article presents the results of the analysis of the experience in reconstruction of the objects by constructing additional inter-floor overlaps and aims to define the optimum construction solution for built-in inter-floor overlapping and to develop non-existing solutions for wide application of this method in the reconstruction of a building with non-unified and unmodulated parameters. It was determined as expedient to apply a monolith reinforced concrete slab with the use of steel profiled flooring as a formwork and reinforcement and steel beams designed as “Built-in Beams” for the construction of built-in inter-floor overlaps in reconstruction. The article will be useful for specialists doing research in the sphere of reconstruction of the buildings and for the practical activity of design engineers.
Community Structure of a Bank-Firm Credit Network in Japan
NASA Astrophysics Data System (ADS)
Iyetomi, Hiroshi; Matsuura, Yuki
2014-03-01
We study temporal change of community structure in a Japanese credit network formed by banks and listed firms through their financial relations over the last 30 years. The credit connectedness is regarded as a potenital source of systemic risk. Our network is a bipartite graph consisting of two species of nodes connected with bidirectional links. The direction of links is identified with that of risk flows and their weights are relative credit/loan with respect to the targets. In a partial credit network obtained only with the links pointing from firms toward banks, the city banks forms one major community in most of the time period to share risk when firms go wrong. On the other hand, a partial network only with the links from banks toward firms is decomposed into communities of similar size each of which has its own city bank, reflecting the main-bank system in Japan. Finally we take overlapping parts of the two community sets to find cores of the risk concentration in the credit network. This work was supported by JSPS KAKENHI Grant Number 22300080.
RACOON: a multiuser QoS design for mobile wireless body area networks.
Cheng, Shihheng; Huang, Chingyao; Tu, Chun Chen
2011-10-01
In this study, Random Contention-based Resource Allocation (RACOON) medium access control (MAC) protocol is proposed to support the quality of service (QoS) for multi-user mobile wireless body area networks (WBANs). Different from existing QoS designs that focus on a single WBAN, a multiuser WBAN QoS should further consider both inter-WBAN interference and inter-WBAN priorities. Similar problems have been studied in both overlapped wireless local area networks (WLANs) and Bluetooth piconets that need QoS supports. However, these solutions are designed for non-medical transmissions that do not consider any priority scheme for medical applications. Most importantly, these studies focus on only static or low mobility networks. Network mobility of WBANs will introduce unnecessary inter-network collisions and energy waste, which are not considered by these solutions. The proposed multiuser-QoS protocol, RACOON, simultaneously satisfies the inter WBAN QoS requirements and overcomes the performance degradation caused by WBAN mobility. Simulation results verify that RACOON provides better latency and energy control, as compared with WBAN QoS protocols without considering the inter-WBAN requirements.
On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks
Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun
2011-01-01
This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809
Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving
Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.
2009-01-01
Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354
Padró, Juan M; Osorio-Grisales, Jaiver; Arancibia, Juan A; Olivieri, Alejandro C; Castells, Cecilia B
2015-07-01
Valuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e., when one of the enantiomers is present in the sample in very low concentrations. In this report, we explore the scope of a multivariate chemometric technique based on unfolded partial least-squares regression, as a mathematical tool to solve this quite frequent difficulty. This technique was applied to obtain quantitative results from partially overlapped chromatographic profiles of R- and S-ketoprofen, with different values of enantioresolution factors (from 0.81 down to less than 0.2 resolution units), and also at several different S:R enantiomeric ratios. Enantiomeric purity below 1% was determined with excellent precision even from almost completely overlapped signals. All these assays were tested on the most demanding condition, i.e., when the minor peak elutes immediately after the main peak. The results were validated using univariate calibration of completely resolved profiles and the method applied to the determination of enantiomeric purity of commercial pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of a cis-Golgi matrix protein, GM130
1995-01-01
Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER- Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure. PMID:8557739
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164
Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad
2013-01-01
We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.
Multilayer neural networks with extensively many hidden units.
Rosen-Zvi, M; Engel, A; Kanter, I
2001-08-13
The information processing abilities of a multilayer neural network with a number of hidden units scaling as the input dimension are studied using statistical mechanics methods. The mapping from the input layer to the hidden units is performed by general symmetric Boolean functions, whereas the hidden layer is connected to the output by either discrete or continuous couplings. Introducing an overlap in the space of Boolean functions as order parameter, the storage capacity is found to scale with the logarithm of the number of implementable Boolean functions. The generalization behavior is smooth for continuous couplings and shows a discontinuous transition to perfect generalization for discrete ones.
Determination of sustainable values for the parameters of the construction of residential buildings
NASA Astrophysics Data System (ADS)
Grigoreva, Larisa; Grigoryev, Vladimir
2018-03-01
For the formation of programs for housing construction and planning of capital investments, when developing the strategic planning companies by construction companies, the norms or calculated indicators of the duration of the construction of high-rise residential buildings and multifunctional complexes are mandatory. Determination of stable values of the parameters for the high-rise construction residential buildings provides an opportunity to establish a reasonable duration of construction at the planning and design stages of residential complexes, taking into account the influence of market conditions factors. The concept of the formation of enlarged models for the high-rise construction residential buildings is based on a real mapping in time and space of the most significant redistribution with their organizational and technological interconnection - the preparatory period, the underground part, the above-ground part, external engineering networks, landscaping. The total duration of the construction of a residential building, depending on the duration of each redistribution and the degree of their overlapping, can be determined by one of the proposed four options. At the same time, a unified approach to determining the overall duration of construction on the basis of the provisions of a streamlined construction organization with the testing of results on the example of high-rise residential buildings of the typical I-155B series was developed, and the coefficients for combining the work and the main redevelopment of the building were determined.
ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.
Özgür Cingiz, M; Biricik, G; Diri, B
2017-03-31
miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.
Wood, Daniel K; Chouinard, Philippe A; Major, Alex J; Goodale, Melvyn A
2017-12-01
Most object-directed limb movements can be carried out with a comfortable grasp posture. However, the orientation of an object relative to our bodies can sometimes lead us to select an uncomfortable or awkward grasp posture due to limitations imposed by the biomechanics of the arm. In a series of experiments, we identified a network of cortical areas that are engaged during the selection of movement strategies. Neurologically intact participants and two brain-damaged patients with overlapping lesions in the right posterior superior parietal lobule (pSPL) performed a grasp posture selection task in which biomechanical constraints were the primary consideration for selecting an action. The task induced states of bistable actions whereby the same stimulus gave rise to categorically different grasp postures. In a behavioral experiment, the two patients displayed a large range of manual bistability with the contralesional hand, resulting in a higher incidence of awkward grasping postures. In neurologically intact participants, a separate functional magnetic resonance imaging (fMRI) experiment revealed activation of a parieto-frontal network, which included the posterior intraparietal sulcus (pIPS) along the banks of the pSPL that was parametrically modulated by the degree of bistability in grasp posture selection. Superimposing this activation over the patients' structural MRIs revealed that the pIPS/pSPL activation in the neurologically intact participants overlapped with lesioned cortical tissue in both patients; all other areas of activation overlapped with intact cortical tissue in the patients. These results provide converging evidence that the posterior parietal cortex plays a critical role in selecting biomechanically appropriate postures during reach-to-grasp behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Umoh, Mfon E; Dammer, Eric B; Dai, Jingting; Duong, Duc M; Lah, James J; Levey, Allan I; Gearing, Marla; Glass, Jonathan D; Seyfried, Nicholas T
2018-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlap in clinical presentation, neuropathology, and genetic underpinnings. The molecular basis for the overlap of these disorders is not well established. We performed a comparative unbiased mass spectrometry-based proteomic analysis of frontal cortical tissues from postmortem cases clinically defined as ALS, FTD, ALS and FTD (ALS/FTD), and controls. We also included a subset of patients with the C9orf72 expansion mutation, the most common genetic cause of both ALS and FTD Our systems-level analysis of the brain proteome integrated both differential expression and co-expression approaches to assess the relationship of these differences to clinical and pathological phenotypes. Weighted co-expression network analysis revealed 15 modules of co-expressed proteins, eight of which were significantly different across the ALS-FTD disease spectrum. These included modules associated with RNA binding proteins, synaptic transmission, and inflammation with cell-type specificity that showed correlation with TDP-43 pathology and cognitive dysfunction. Modules were also examined for their overlap with TDP-43 protein-protein interactions, revealing one module enriched with RNA-binding proteins and other causal ALS genes that increased in FTD/ALS and FTD cases. A module enriched with astrocyte and microglia proteins was significantly increased in ALS cases carrying the C9orf72 mutation compared to sporadic ALS cases, suggesting that the genetic expansion is associated with inflammation in the brain even without clinical evidence of dementia. Together, these findings highlight the utility of integrative systems-level proteomic approaches to resolve clinical phenotypes and genetic mechanisms underlying the ALS-FTD disease spectrum in human brain. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping
2017-03-01
Abnormal regional activity and functional connectivity of the default-mode network (DMN) have been reported in schizophrenia. However, previous studies may have been biased by unmatched case-control design. To limit such bias, the present study used both the family-based case-control design and the traditional case-control design to investigate abnormal regional activity of the DMN in patients with schizophrenia at rest.Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 age-, sex-matched unaffected siblings of the patients (family-based controls, FBC), and 40 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (fMRI) scans. The group-independent component analysis and fractional amplitude of low-frequency fluctuation (fALFF) methods were used to analyze the data.Patients with schizophrenia show increased fALFF in an overlapped region of the right superior medial prefrontal cortex (MPFC) relative to the FBC and the HC. Compared with the HC, the patients and the FBC exhibit increased fALFF in an overlapped region of the left posterior cingulate cortex/precuneus (PCC/PCu). Furthermore, the z values of the 2 overlapped regions can separate the patients from the FBC/HC, and separate the patients/FBC from the HC with relatively high sensitivity and specificity.Both the family-based case-control and traditional case-control designs reveal hyperactivity of the DMN in first-episode, drug-naive patients with paranoid schizophrenia, which highlights the importance of the DMN in the neurobiology of schizophrenia. Family-based case-control design can limit the confounding effects of environmental factors in schizophrenia. Combination of the family-based case-control and traditional case-control designs may be a viable option for the neuroimaging studies.
NASA Astrophysics Data System (ADS)
Grunloh, Timothy P.
The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
INTRODUCTION 1 3 METHODS , ASUMPTIONS, AND PROCEDURES 2 Software Abstractions for Graph Analytic Applications 2 High performance Platforms for Graph Processing...data is stored in a distributed file system. 3 METHODS , ASUMPTIONS, AND PROCEDURES Software Abstractions for Graph Analytic Applications To...implementations of novel methods for networks analysis: several methods for detection of overlapping communities, personalized PageRank, node embeddings into a d
Challenges in the Development of a Self-Calibrating Network of Ceilometers.
NASA Astrophysics Data System (ADS)
Hervo, Maxime; Wagner, Frank; Mattis, Ina; Baars, Holger; Haefele, Alexander
2015-04-01
There are more than 700 Automatic Lidars and Ceilometers (ALCs) currently operating in Europe. Modern ceilometers can do more than simply measure the cloud base height. They can also measure aerosol layers like volcanic ash, Saharan dust or aerosols within the planetary boundary layer. In the frame of E-PROFILE, which is part of EUMETNET, a European network of automatic lidars and ceilometers will be set up exploiting this new capability. To be able to monitor the evolution of aerosol layers over a large spatial scale, the measurements need to be consistent from one site to another. Currently, most of the instruments do not provide calibrated, only relative measurements. Thus, it is necessary to calibrate the instruments to develop a consistent product for all the instruments from various network and to combine them in an European Network like E-PROFILE. As it is not possible to use an external reference (like a sun photometer or a Raman Lidar) to calibrate all the ALCs in the E-PROFILE network, it is necessary to use a self-calibration algorithm. Two calibration methods have been identified which are suited for automated use in a network: the Rayleigh and the liquid cloud calibration methods In the Rayleigh method, backscatter signals from molecules (this is the Rayleigh signal) can be measured and used to calculate the lidar constant (Wiegner et al. 2012). At the wavelength used for most ceilometers, this signal is weak and can be easily measured only during cloud-free nights. However, with the new algorithm implemented in the frame of the TOPROF COST Action, the Rayleigh calibration was successfully performed on a CHM15k for more than 50% of the nights from October 2013 to September 2014. This method was validated against two reference instruments, the collocated EARLINET PollyXT lidar and the CALIPSO space-borne lidar. The lidar constant was on average within 5.5% compare to the lidar constant determined by the EARLINET lidar. It confirms the validity of the self-calibration method. For 3 CALIPSO overpasses the agreement was on average 20.0%. It is less accurate due to the large uncertainties of CALIPSO data close to the surface. In opposition to the Rayleigh method, Cloud calibration method uses the complete attenuation of the transmitter beam by a liquid water cloud to calculate the lidar constant (O'Connor 2004). The main challenge is the selection of accurately measured water clouds. These clouds should not contain any ice crystals and the detector should not get into saturation. The first problem is especially important during winter time and the second problem is especially important for low clouds. Furthermore the overlap function should be known accurately, especially when the water cloud is located at a distance where the overlap between laser beam and telescope field-of-view is still incomplete. In the E-PROFILE pilot network, the Rayleigh calibration is already performed automatically. This demonstration network maked available, in real time, calibrated ALC measurements from 8 instruments of 4 different types in 6 countries. In collaboration with TOPROF and 20 national weathers services, E-PROFILE will provide, in 2017, near real time ALC measurements in most of Europe.
Kutschar, Patrick; Bauer, Zsuzsa; Gnass, Irmela; Osterbrink, Jürgen
2017-07-01
Several studies suggest that pain is a trigger for challenging behaviour in older adults with cognitive impairment. However, such measured relationships might be confounded due to item overlap as instruments share similar or identical items. The purpose of this study was to examine whether the frequently observed association between pain and challenging behaviour might be traced back to item overlap. This multicentre cross-sectional study was conducted in 13 nursing homes and examined pain (measure: Pain Assessment in Advanced Dementia Scale) and challenging behaviour (measure: Cohen-Mansfield Agitation Inventory) in 150 residents with severe cognitive impairment. The extent of item overlap was determined by juxtaposition of both measures' original items. As expected, comparison between these instruments revealed an extensive item overlap. The statistical relationship between the two phenomena can be traced back mainly to the contribution of the overlapping items, which renders the frequently stated relationship between pain and challenging behaviour trivial. The status quo of measuring such associations must be contested: constructs' discrimination and instruments' discrimination have to be discussed critically as item overlap may lead to biased conclusions and assumptions in research as well as to inadequate care measures in nursing practice. © 2017 John Wiley & Sons Ltd.
Analysis of coined quantum walks with renormalization
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Li, Shanshan
2018-01-01
We introduce a framework to analyze quantum algorithms with the renormalization group (RG). To this end, we present a detailed analysis of the real-space RG for discrete-time quantum walks on fractal networks and show how deep insights into the analytic structure as well as generic results about the long-time behavior can be extracted. The RG flow for such a walk on a dual Sierpinski gasket and a Migdal-Kadanoff hierarchical network is obtained explicitly from elementary algebraic manipulations, after transforming the unitary evolution equation into Laplace space. Unlike for classical random walks, we find that the long-time asymptotics for the quantum walk requires consideration of a diverging number of Laplace poles, which we demonstrate exactly for the closed-form solution available for the walk on a one-dimensional loop. In particular, we calculate the probability of the walk to overlap with its starting position, which oscillates with a period that scales as NdwQ/df with system size N . While the largest Jacobian eigenvalue λ1 of the RG flow merely reproduces the fractal dimension, df=log2λ1 , the asymptotic analysis shows that the second Jacobian eigenvalue λ2 becomes essential to determine the dimension of the quantum walk via dwQ=log2√{λ1λ2 } . We trace this fact to delicate cancellations caused by unitarity. We obtain identical relations for other networks, although the details of the RG analysis may exhibit surprisingly distinct features. Thus, our conclusions—which trivially reproduce those for regular lattices with translational invariance with df=d and dwQ=1 —appear to be quite general and likely apply to networks beyond those studied here.
Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data
NASA Astrophysics Data System (ADS)
Wang, Jie; Shen, Yuzhong
2011-03-01
3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.
NASA Astrophysics Data System (ADS)
Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang
2017-11-01
China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.
Interacting epidemics on overlay networks
NASA Astrophysics Data System (ADS)
Funk, Sebastian; Jansen, Vincent A. A.
2010-03-01
The interaction between multiple pathogens spreading on networks connecting a given set of nodes presents an ongoing theoretical challenge. Here, we aim to understand such interactions by studying bond percolation of two different processes on overlay networks of arbitrary joint degree distribution. We find that an outbreak of a first pathogen providing immunity to another one spreading subsequently on a second network connecting the same set of nodes does so most effectively if the degrees on the two networks are positively correlated. In that case, the protection is stronger the more heterogeneous the degree distributions of the two networks are. If, on the other hand, the degrees are uncorrelated or negatively correlated, increasing heterogeneity reduces the potential of the first process to prevent the second one from reaching epidemic proportions. We generalize these results to cases where the edges of the two networks overlap to arbitrary amount, or where the immunity granted is only partial. If both processes grant immunity to each other, we find a wide range of possible situations of coexistence or mutual exclusion, depending on the joint degree distribution of the underlying networks and the amount of immunity granted mutually. These results generalize the concept of a coexistence threshold and illustrate the impact of large-scale network structure on the interaction between multiple spreading agents.
Wagner, Anne C; Girard, Todd; McShane, Kelly E; Margolese, Shari; Hart, Trevor A
2017-08-01
HIV continues to be a stigmatized disease, despite significant advances in care and concerted effort to reduce discrimination, stereotypes, and prejudice. Living with HIV is often associated with a multitude of overlapping and intersecting experiences which can, in and of themselves, also be stigmatized, and which may exacerbate HIV-related stigma. The consequences of these stigmatizing experiences are particularly impactful when the stigmatizing individual is a health care provider, as this can influence access to and quality of care. The current study empirically investigates a model of overlapping stigmas (homophobia, racism, sexism, stigma against injection drug use and stigma against sex work) potentially held by health care provider trainees in Canada to determine how these constructs overlap and intersect, and to assess whether HIV-related stigma may have unique attributes. Understanding overlapping stigmas can help inform targeted, stigma-informed training for health care trainees in order to provide effective, compassionate care for people living with HIV.
Roffler, Gretchen H.; Adams, Layne G.; Talbot, Sandra L.; Sage, George K.; Dale, Bruce W.
2012-01-01
North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FSTM = 0.041, P
Johnston, R E; Bhorade, A
1998-09-01
Hamsters preferentially remember or value the top scent of a scent over-mark. What cues do they use to do this? Using habituation-discrimination techniques, we exposed male golden hamsters (Mesocricetus auratus) on 3 to 4 trials to genital over-marks from 2 females and then tested subjects for their familiarity with these 2 scents compared with that of a novel female's secretion. Preferential memory for 1 of the 2 individuals' scents did not occur if the 2 marks did not overlap or did not overlap but differed in age, but it did occur if a region of overlap existed or 1 mark apparently occluded another (but did not overlap it). Thus, hamsters use regions of overlap and the spatial configuration of scents to evaluate over-marks. These phenomena constitute evidence for previously unsuspected perceptual abilities, including olfactory scene analysis, which is analogous to visual and auditory scene analysis.
Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A
2013-03-01
Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.
Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy
Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.
2014-01-01
Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We find that the features in the 2D COS maps that derive from overlapping bands are determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identify the conditions required to resolve overlapping bands. In particular, 2D COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands. PMID:23452492
Landsat-4 (TDRSS-user) orbit determination using batch least-squares and sequential methods
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1992-01-01
TDRSS user orbit determination is analyzed using a batch least-squares method and a sequential estimation method. It was found that in the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was heavily tracked by TDRSS during January 1991, was about 4 meters in the rms overlap comparisons and about 6 meters in the maximum position differences in overlap comparisons. The consistency was about 10 to 30 meters in the 3 sigma state error covariance function in the sequential method analysis. As a measure of consistency, the first residual of each pass was within the 3 sigma bound in the residual space.
Chromatogram simulation by area reproduction.
Boe, Bjarne
2007-01-12
A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.
Schlegel, Alexander; Konuthula, Dedeepya; Alexander, Prescott; Blackwood, Ethan; Tse, Peter U
2016-08-01
The manipulation of mental representations in the human brain appears to share similarities with the physical manipulation of real-world objects. In particular, some neuroimaging studies have found increased activity in motor regions during mental rotation, suggesting that mental and physical operations may involve overlapping neural populations. Does the motor network contribute information processing to mental rotation? If so, does it play a similar computational role in both mental and manual rotation, and how does it communicate with the wider network of areas involved in the mental workspace? Here we used multivariate methods and fMRI to study 24 participants as they mentally rotated 3-D objects or manually rotated their hands in one of four directions. We find that information processing related to mental rotations is distributed widely among many cortical and subcortical regions, that the motor network becomes tightly integrated into a wider mental workspace network during mental rotation, and that motor network activity during mental rotation only partially resembles that involved in manual rotation. Additionally, these findings provide evidence that the mental workspace is organized as a distributed core network that dynamically recruits specialized subnetworks for specific tasks as needed.
Diversity Performance Analysis on Multiple HAP Networks.
Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue
2015-06-30
One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.
MacLaren, Julie-Ann
2018-01-01
Supervised practice as a mentor is currently an integral component of nurse mentor education. However, workplace education literature tends to focus on dyadic mentor-student relationships rather than developmental relationships between colleagues. This paper explores the supportive relationships of nurses undertaking a mentorship qualification, using the novel technique of constellation development to determine the nature of workplace support for this group. Semi-structured interviews were conducted with three recently qualified nurse mentors. All participants developed a mentorship constellation identifying colleagues significant to their own learning in practice. These significant others were also interviewed alongside practice education, and nurse education leads. Constellations were analysed in relation to network size, breadth, strength of relationships, and attributes of individuals. Findings suggest that dyadic forms of supervisory mentorship may not offer the range of skills and attributes that developing mentors require. Redundancy of mentorship attributes within the constellation (overlapping attributes between members) may counteract problems caused when one mentor attempts to fulfil all mentorship roles. Wider nursing teams are well placed to provide the support and supervision required by mentors in training. Where wider and stronger networks were not available to mentorship students, mentorship learning was at risk. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
Coordinated and uncoordinated optimization of networks
NASA Astrophysics Data System (ADS)
Brede, Markus
2010-06-01
In this paper, we consider spatial networks that realize a balance between an infrastructure cost (the cost of wire needed to connect the network in space) and communication efficiency, measured by average shortest path length. A global optimization procedure yields network topologies in which this balance is optimized. These are compared with network topologies generated by a competitive process in which each node strives to optimize its own cost-communication balance. Three phases are observed in globally optimal configurations for different cost-communication trade offs: (i) regular small worlds, (ii) starlike networks, and (iii) trees with a center of interconnected hubs. In the latter regime, i.e., for very expensive wire, power laws in the link length distributions P(w)∝w-α are found, which can be explained by a hierarchical organization of the networks. In contrast, in the local optimization process the presence of sharp transitions between different network regimes depends on the dimension of the underlying space. Whereas for d=∞ sharp transitions between fully connected networks, regular small worlds, and highly cliquish periphery-core networks are found, for d=1 sharp transitions are absent and the power law behavior in the link length distribution persists over a much wider range of link cost parameters. The measured power law exponents are in agreement with the hypothesis that the locally optimized networks consist of multiple overlapping suboptimal hierarchical trees.