Science.gov

Sample records for determine overlapping network

  1. Correlated edge overlaps in multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  2. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications.

  3. Infrared lidar overlap function: an experimental determination.

    PubMed

    Guerrero-Rascado, Juan Luis; Costa, Maria João; Bortoli, Daniele; Silva, Ana Maria; Lyamani, Hassan; Alados-Arboledas, Lucas

    2010-09-13

    The most recent works demonstrate that the lidar overlap function, which describes the overlap between the laser beam and the receiver field of view, can be determined experimentally for the 355 and 532 nm channels using Raman signals. Nevertheless, the Raman channels cannot be used to determine the lidar overlap for the infrared channel (1064 nm) because of their low intensity. In addition, many Raman lidar systems only provide inelastic signals with reasonable signal-to-noise ratio at nighttime. In view of this fact, this work presents a modification of that method, based on the comparison of attenuated backscatter profiles derived from lidar and ceilometer, to retrieve the overlap function for the lidar infrared channel. Similarly to the Raman overlap method, the approach presented here allows to derive the overlap correction without an explicit knowledge of all system parameters. The application of the proposed methodology will improve the potential of Raman lidars to investigate the aerosol microphysical properties in the planetary boundary layer, extending the information of 1064 nm backscatter profiles to the ground and allowing the retrieval of microphysical properties practically close to the surface.

  4. Visualizing fuzzy overlapping communities in networks.

    PubMed

    Vehlow, Corinna; Reinhardt, Thomas; Weiskopf, Daniel

    2013-12-01

    An important feature of networks for many application domains is their community structure. This is because objects within the same community usually have at least one property in common. The investigation of community structure can therefore support the understanding of object attributes from the network topology alone. In real-world systems, objects may belong to several communities at the same time, i.e., communities can overlap. Analyzing fuzzy community memberships is essential to understand to what extent objects contribute to different communities and whether some communities are highly interconnected. We developed a visualization approach that is based on node-link diagrams and supports the investigation of fuzzy communities in weighted undirected graphs at different levels of detail. Starting with the network of communities, the user can continuously drill down to the network of individual nodes and finally analyze the membership distribution of nodes of interest. Our approach uses layout strategies and further visual mappings to graphically encode the fuzzy community memberships. The usefulness of our approach is illustrated by two case studies analyzing networks of different domains: social networking and biological interactions. The case studies showed that our layout and visualization approach helps investigate fuzzy overlapping communities. Fuzzy vertices as well as the different communities to which they belong can be easily identified based on node color and position.

  5. Serial FBG sensor network allowing overlapping spectra

    NASA Astrophysics Data System (ADS)

    Abbenseth, S.; Lochmann, S.; Ahrens, A.; Rehm, B.

    2016-05-01

    For structure or material monitoring low impact serial fiber Bragg grating (FBG) networks have attracted increasing research interest. Common sensor networks using wavelength division multiplexing (WDM) for FBG interrogation are limited in their efficiency by the spectral width of their light source, the FBG tuning range and the spectral guard bands. Overlapping spectra are strictly forbidden in this case. Applying time division multiplexing (TDM) or active resonator schemes may overcome these restrictions. However, they introduce other substantial disadvantages like signal roundtrip dependency or sophisticated control of active resonating structures. Code division multiplexing (CDM) as a means of FBG interrogation by simple autocorrelation of appropriate codes has been shown to be superior in this respect. However, it came at the cost of a second spectrometer introducing additional equalization efforts. We demonstrate a new serial FBG sensor network utilizing CDM signal processing for efficient sensor interrogation without the need of a second spectrometer and additional state of polarization (SOP) controlling components. It allows overlapping spectra even when all sensing FBGs are positioned at the same centre wavelength and it shows a high degree of insensitivity to SOP. Sequence inversed keyed (SIK) serial signal processing utilizing quasi-orthogonal balanced codes ensures simple and quick sensor interrogation with high signal-to-interference/noise ratio.

  6. Plasticity of Sensorimotor Networks: Multiple Overlapping Mechanisms.

    PubMed

    Buch, Ethan R; Liew, Sook-Lei; Cohen, Leonardo G

    2016-03-16

    Redundancy is an important feature of the motor system, as abundant degrees of freedom are prominent at every level of organization across the central and peripheral nervous systems, and musculoskeletal system. This basic feature results in a system that is both flexible and robust, and which can be sustainably adapted through plasticity mechanisms in response to intrinsic organismal changes and dynamic environments. While much early work of motor system organization has focused on synaptic-based plasticity processes that are driven via experience, recent investigations of neuron-glia interactions, epigenetic mechanisms and large-scale network dynamics have revealed a plethora of plasticity mechanisms that support motor system organization across multiple, overlapping spatial and temporal scales. Furthermore, an important role of these mechanisms is the regulation of intrinsic variability. Here, we review several of these mechanisms and discuss their potential role in neurorehabilitation.

  7. Spousal Network Overlap as a Basis for Spousal Support

    ERIC Educational Resources Information Center

    Cornwell, Benjamin

    2012-01-01

    The role social network structure plays in facilitating flows of support between spouses is often overlooked. This study examined whether levels of support between spouses depended on the degree of overlap between spouses' networks. Network overlap may enhance spouses' support capacities by increasing their understanding of each other's support…

  8. Overlapping community detection in weighted networks via a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Xiang, Xin; Tang, Buzhou; Chen, Qingcai; Fan, Shixi; Bu, Junzhao

    2017-02-01

    Complex networks as a powerful way to represent complex systems have been widely studied during the past several years. One of the most important tasks of complex network analysis is to detect communities embedded in networks. In the real world, weighted networks are very common and may contain overlapping communities where a node is allowed to belong to multiple communities. In this paper, we propose a novel Bayesian approach, called the Bayesian mixture network (BMN) model, to detect overlapping communities in weighted networks. The advantages of our method are (i) providing soft-partition solutions in weighted networks; (ii) providing soft memberships, which quantify 'how strongly' a node belongs to a community. Experiments on a large number of real and synthetic networks show that our model has the ability in detecting overlapping communities in weighted networks and is competitive with other state-of-the-art models at shedding light on community partition.

  9. Geometrical constraint experimental determination of Raman lidar overlap profile.

    PubMed

    Li, Jian; Li, Chengcai; Zhao, Yiming; Li, Jing; Chu, Yiqi

    2016-06-20

    A simple experimental method to determine the overlap profile of Raman lidar is presented in this paper. Based on Mie and Raman backscattering signals and a geometrically constrained condition, the overlap profile of a Raman lidar system can be determined. Our approach simultaneously retrieves the lidar ratio of aerosols, which is one of the most important sources of uncertainty in the overlap profile determination. The results indicate that the overlap factor is significantly influenced by the lidar ratio in experimental methods. A representative case study indicates that the correction of the overlap profile obtained by this method is practical and feasible.

  10. Quantifying and identifying the overlapping community structure in networks

    NASA Astrophysics Data System (ADS)

    Shen, Hua-Wei; Cheng, Xue-Qi; Guo, Jia-Feng

    2009-07-01

    It has been shown that the communities of complex networks often overlap with each other. However, there is no effective method to quantify the overlapping community structure. In this paper, we propose a metric to address this problem. Instead of assuming that one node can only belong to one community, our metric assumes that a maximal clique only belongs to one community. In this way, the overlaps between communities are allowed. To identify the overlapping community structure, we construct a maximal clique network from the original network, and prove that the optimization of our metric on the original network is equivalent to the optimization of Newman's modularity on the maximal clique network. Thus the overlapping community structure can be identified through partitioning the maximal clique network using any modularity optimization method. The effectiveness of our metric is demonstrated by extensive tests on both artificial networks and real world networks with a known community structure. The application to the word association network also reproduces excellent results.

  11. Detection of node group membership in networks with group overlap

    NASA Astrophysics Data System (ADS)

    Sawardecker, E. N.; Sales-Pardo, M.; Amaral, L. A. N.

    2009-02-01

    Most networks found in social and biochemical systems have modular structures. An important question prompted by the modularity of these networks is whether nodes can be said to belong to a single group. If they cannot, we would need to consider the role of “overlapping communities.” Despite some efforts in this direction, the problem of detecting overlapping groups remains unsolved because there is neither a formal definition of overlapping community, nor an ensemble of networks with which to test the performance of group detection algorithms when nodes can belong to more than one group. Here, we introduce an ensemble of networks with overlapping groups. We then apply three group identification methods - modularity maximization, k-clique percolation, and modularity-landscape surveying - to these networks. We find that the modularity-landscape surveying method is the only one able to detect heterogeneities in node memberships, and that those heterogeneities are only detectable when the overlap is small. Surprisingly, we find that the k-clique percolation method is unable to detect node membership for the overlapping case.

  12. Efficient discovery of overlapping communities in massive networks

    PubMed Central

    Gopalan, Prem K.; Blei, David M.

    2013-01-01

    Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks. PMID:23950224

  13. Peer Network Overlap in Twin, Sibling, and Friend Dyads

    ERIC Educational Resources Information Center

    McGuire, Shirley; Segal, Nancy L.

    2013-01-01

    Research suggests that sibling–peer connections are important for understanding adolescent problem behaviors. Using a novel behavioral genetic design, the current study investigated peer network overlap in 300 child–child pairs (aged 7-13 years) in 5 dyad types: monozygotic (MZ), dizygotic twins, full siblings (FSs), friend pairs, and virtual…

  14. Uncovering Overlap Community Structure in Complex Networks Using Particle Competition

    NASA Astrophysics Data System (ADS)

    Breve, Fabricio; Zhao, Liang; Quiles, Marcos

    Identification and classification of overlap nodes in communities is an important topic in data mining. In this paper, a new clustering method to uncover overlap nodes in complex networks is proposed. It is based on particles walking and competing with each other, using random-deterministic movement. The new community detection algorithm can output not only hard labels, but also continuous-valued output (soft labels), which corresponds to the levels of membership from the nodes to each of the communities. Computer simulations were performed with synthetic and real data and good results were achieved.

  15. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  16. Niche Overlap and Network Specialization of Flower-Visiting Bees in an Agricultural System.

    PubMed

    Carvalho, D M; Presley, S J; Santos, G M M

    2014-12-01

    Different resource use strategies manifest as differences in the realized niches of species. Niche segregation may involve several dimensions of the niche, such as diet, space, and time. We measured the level of redundancy and complementarity of a bee-plant interaction network in an agricultural system. Because flower resource diversity is high and resource abundance associated with flowering phenology varies throughout the year, we hypothesized that trophic overlap in the community would be low (i.e., high niche complementarity). In contrast, we expected a combination of physiological constraints and exploitation competition to create high temporal overlap, leading to high redundancy in the time of use of floral resources. Dietary overlap was low (NOih = 0.18): niches of 88% of species pairs had less than 30% overlap. In contrast, temporal overlap was intermediate (NOih = 0.49): niches of 65% of species pairs had 30% to 60% overlap. Network analysis showed that bees separated their dietary niches and had intermediate complementary specialization (H2' = 0.46). In terms of their temporal niches (H2' = 0.12), bees were generalists, with high temporal redundancy. Temperature was not a key factor in the determination of niche overlap, suggesting that environmental factors do not likely have a primary role in determining high redundancy in the temporal use of floral resources. Rather, temporal overlap is likely associated with the timing of nectar production by flowers. Our results suggest that bees partition a wide variety of available floral resources, resulting in low dietary overlap and intermediate temporal overlap.

  17. Statistically validated network of portfolio overlaps and systemic risk

    PubMed Central

    Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien

    2016-01-01

    Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007–2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains). PMID:28000764

  18. Statistically validated network of portfolio overlaps and systemic risk.

    PubMed

    Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien

    2016-12-21

    Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007-2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains).

  19. Statistical mechanics of multiplex networks: Entropy and overlap

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2013-06-01

    There is growing interest in multiplex networks where individual nodes take part in several layers of networks simultaneously. This is the case, for example, in social networks where each individual node has different kinds of social ties or transportation systems where each location is connected to another location by different types of transport. Many of these multiplexes are characterized by a significant overlap of the links in different layers. In this paper we introduce a statistical mechanics framework to describe multiplex ensembles. A multiplex is a system formed by N nodes and M layers of interactions where each node belongs to the M layers at the same time. Each layer α is formed by a network Gα. Here we introduce the concept of correlated multiplex ensembles in which the existence of a link in one layer is correlated with the existence of a link in another layer. This implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different layers. Moreover, we characterize microcanonical and canonical multiplex ensembles satisfying respectively hard and soft constraints and we discuss how to construct multiplexes in these ensembles. Finally, we provide the expression for the entropy of these ensembles that can be useful to address different inference problems involving multiplexes.

  20. Non-overlapping Neural Networks in Hydra vulgaris.

    PubMed

    Dupre, Christophe; Yuste, Rafael

    2017-03-24

    To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies.

  1. Growing networks of overlapping communities with internal structure

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Hébert-Dufresne, Laurent; Allard, Antoine; Dubé, Louis J.

    2016-08-01

    We introduce an intuitive model that describes both the emergence of community structure and the evolution of the internal structure of communities in growing social networks. The model comprises two complementary mechanisms: One mechanism accounts for the evolution of the internal link structure of a single community, and the second mechanism coordinates the growth of multiple overlapping communities. The first mechanism is based on the assumption that each node establishes links with its neighbors and introduces new nodes to the community at different rates. We demonstrate that this simple mechanism gives rise to an effective maximal degree within communities. This observation is related to the anthropological theory known as Dunbar's number, i.e., the empirical observation of a maximal number of ties which an average individual can sustain within its social groups. The second mechanism is based on a recently proposed generalization of preferential attachment to community structure, appropriately called structural preferential attachment (SPA). The combination of these two mechanisms into a single model (SPA+) allows us to reproduce a number of the global statistics of real networks: The distribution of community sizes, of node memberships, and of degrees. The SPA+ model also predicts (a) three qualitative regimes for the degree distribution within overlapping communities and (b) strong correlations between the number of communities to which a node belongs and its number of connections within each community. We present empirical evidence that support our findings in real complex networks.

  2. Investigation of Overlap Correction Techniques for Application in the Micro-Pulse Lidar Network (MPLNET)

    NASA Technical Reports Server (NTRS)

    Berkoff, Timothy A.; Welton, Ellsworth J.; Campbell, James R.; Scott, Vibart S.; Spinhirne, James D.

    2003-01-01

    The Micro-Pulse Lidar NETwork (MPLNET) is comprised of micro-pulse lidars (MPL) stationed around the globe to provide measurements of aerosol and cloud vertical distribution on a continuous basis. MPLNET sites are co-located with sunphotometers in the AErosol Robotic NETwork (AERONET) to provide joint measurements of aerosol optical depth, size, and other inherent optical properties. The IPCC 2001 report discusses . the importance of obtaining routine measurements of aerosol vertical structure, especially for absorbing aerosols. MPLNET provides exactly this sort of measurement, including calculation of aerosol extinction profiles, in a near real-time basis for all sites in the network. In order to obtain aerosol profiles, near range signal returns (0-6 km) must be accurately measured by the MPL. This measurement is complicated by the instrument s overlap range: Le., the minimum distance at which returning signals are completely in the instrument s field-of-view (FOV). Typical MPL overlap distances are large, between 5 - 6 km, due to the narrow FOV of the MPL receiver. A function describing the MPL overlap must be determined and used to correct signals in this range. Currently, overlap functions for MPLNET are determined using horizontal MPL measurements along a path with 10-1 5 km clear line-of-sight and a homogenous atmosphere. These conditions limit the location and ease in which successful overlaps can be obtained. Furthermore, the current MPLNET process of correcting for overlap increases the uncertainty and bias error for the near range signals and the resulting aerosol extinction profiles. To address these issues, an alternative overlap correction method using a small-diameter, wide FOV receiver is being considered for potential use in MPLNET. The wide FOV receiver has a much shorter overlap distance and will be used to calculate the overlap function of the MPL receiver. This approach has a significant benefit in that overlap corrections could be obtained

  3. An Overlapping Structured P2P for REIK Overlay Network

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun; Song, Jingjing; Yu, Jiguo

    REIK is based on a ring which embedded an inverse Kautz digraph, to enable multi-path P2P routing. It has the constant degree and the logarithmic diameter DHT scheme with constant congestion and Byzantine fault tolerance. However, REIK did not consider the interconnection of many independent smaller networks. In this paper, we propose a new approach to build overlay network, OLS-REIK which is an overlapping structured P2P for REIK overlay network. It is a more flexible interconnecting different REIK network. Peers can belong to several rings, allowing this interconnection. By connecting smaller structured overlay networks in an unstructured way, it provides a cost effective alternative to hierarchical structured P2P systems requiring costly merging. Routing of lookup messages is performed as in REIK within one ring, but a peer belonging to several rings forwards the request to the different rings it belongs to. Furthermore a small number of across point is enough to ensure a high exhaustiveness level.

  4. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.

  5. Dynamic-overlapped-grid simulation of aerodynamically determined relative motion

    NASA Technical Reports Server (NTRS)

    Yen, Guan-Wei; Baysal, Oktay

    1993-01-01

    Currently, there is a need to develop a means of analyzing and studying unsteady flowfields which involve multiple component configurations with at least one of the components in relative motion with respect to the others. Two of the important phenomena that such analyses can help to understand are the unsteady aerodynamic interference and the boundary-induced component of the flowfield. With this motivation, a computational method is developed which couples the governing equations of the unsteady flowfield and the rigid-body dynamics in six degrees-of-freedom. These equations are solved on composite meshes of overlapped subdomain grids which can move with respect to each other. Initially, several measures that reduce the numerical error are studied and compared with the exact solution of a moving normal shock in a tube. It is concluded that a second-order accurate method, for spatial and temporal discretizations as well as for the moving subdomain interpolations, is needed as a minimum measure. Furthermore, the CFL numbers should be restricted to unity. Then, the method is used to simulate the flowfield history and predict the aerodynamically determined trajectory of a store dropped from its initial position under a wing.

  6. Investigation of Overlap Correction Techniques for the Micro-Pulse Lidar NETwork (MPLNET)

    NASA Technical Reports Server (NTRS)

    Berkoff, T. A.; Welton, E. J.; Campbell, J. R.; Scott, V. S.; Spinhirne, J. D.

    2003-01-01

    The Micro-Pulse Lidar NETwork (MPLNET) uses elastic-scattering lidars stationed at sites around the globe to produce aerosol and cloud vertical profiles on a continuous year-round basis. Processing of MPLNET data requires a correction for the lidar overlap function in the 0-6 km range, to take into account the loss in near-field receiver efficiency. This correction is normally determined from recording horizontal profiles that require a approximately 10 km clear line-of-sight and homogenous atmospheric conditions, limiting the practicality in which successful corrections can be obtained. An alternative overlap correction method using a secondary receiver is considered that eliminates the need for horizontal measurements. A review of both methods is presented, including a discussion of signal uncertainties.

  7. Uncovering the overlapping community structure of complex networks by maximal cliques

    NASA Astrophysics Data System (ADS)

    Li, Junqiu; Wang, Xingyuan; Cui, Yaozu

    2014-12-01

    In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.

  8. Identifying overlapping and hierarchical thematic structures in networks of scholarly papers: a comparison of three approaches.

    PubMed

    Havemann, Frank; Gläser, Jochen; Heinz, Michael; Struck, Alexander

    2012-01-01

    The aim of this paper is to introduce and assess three algorithms for the identification of overlapping thematic structures in networks of papers. We implemented three recently proposed approaches to the identification of overlapping and hierarchical substructures in graphs and applied the corresponding algorithms to a network of 492 information-science papers coupled via their cited sources. The thematic substructures obtained and overlaps produced by the three hierarchical cluster algorithms were compared to a content-based categorisation, which we based on the interpretation of titles, abstracts, and keywords. We defined sets of papers dealing with three topics located on different levels of aggregation: h-index, webometrics, and bibliometrics. We identified these topics with branches in the dendrograms produced by the three cluster algorithms and compared the overlapping topics they detected with one another and with the three predefined paper sets. We discuss the advantages and drawbacks of applying the three approaches to paper networks in research fields.

  9. Correlations between weights and overlap in ensembles of weighted multiplex networks

    NASA Astrophysics Data System (ADS)

    Menichetti, Giulia; Remondini, Daniel; Bianconi, Ginestra

    2014-12-01

    Multiplex networks describe a large number of systems ranging from social networks to the brain. These multilayer structure encode information in their structure. This information can be extracted by measuring the correlations present in the multiplex networks structure, such as the overlap of the links in different layers. Many multiplex networks are also weighted, and the weights of the links can be strongly correlated with the structural properties of the multiplex network. For example, in multiplex network formed by the citation and collaboration networks between PRE scientists it was found that the statistical properties of citations to coauthors differ from the one of citations to noncoauthors, i.e., the weights depend on the overlap of the links. Here we present a theoretical framework for modeling multiplex weighted networks with different types of correlations between weights and overlap. To this end, we use the framework of canonical network ensembles, and the recently introduced concept of multilinks, showing that null models of a large variety of network structures can be constructed in this way. In order to provide a concrete example of how this framework apply to real data we consider a multiplex constructed from gene expression data of healthy and cancer tissues.

  10. Critical effects of overlapping of connectivity and dependence links on percolation of networks

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Run-Ran; Jia, Chun-Xiao; Wang, Bing-Hong

    2013-09-01

    In a recent work Parshani et al (2011 Proc. Natl Acad. Sci. USA 108 1007), dependence links have been introduced to the percolation model and used to study the robustness of the networks with such links, which shows that the networks are more vulnerable than the classical networks with only connectivity links. This model usually demonstrates a first order transition, rather than the second order transition found in classical network percolation. In this paper, considering the real situation that the interdependent nodes are usually connected, we study the cascading dynamics of networks when dependence links partially overlap with connectivity links. We find that the percolation transitions are not always sharpened by making nodes interdependent. For a high fraction of overlapping, the network is robust for random failures, and the percolation transition is second order, while for a low fraction of overlapping, the percolation process shows a first order transition. This work demonstrates that the crossover between two types of transitions does not only depend on the density of dependence links but also on the overlapping fraction of connectivity and dependence links. Using generating function techniques, we present exact solutions for the size of the giant component and the critical point, which are in good agreement with the simulations.

  11. Overlapping networks engaged during spoken language production and its cognitive control.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert

    2014-06-25

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production.

  12. Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio; Lancichinetti, Andrea; Arenas, Alex; Rosvall, Martin

    2015-01-01

    To comprehend interconnected systems across the social and natural sciences, researchers have developed many powerful methods to identify functional modules. For example, with interaction data aggregated into a single network layer, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow processes. However, many interconnected systems consist of agents or components that exhibit multiple layers of interactions, possibly from several different processes. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here, we propose a method based on a compression of network flows that can identify modular flows both within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic multilayer networks, with some layers originating from the same interaction process, show that the analysis fails in aggregated networks or when treating the layers separately, whereas the multilayer method can accurately identify modules across layers that originate from the same interaction process. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks with topics as layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected topics and reveals smaller modules with more overlap that better capture the actual organization.

  13. Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks

    PubMed Central

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  14. Community structure detection for overlapping modules through mathematical programming in protein interaction networks.

    PubMed

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply 'hubs', i.e. proteins with many interaction partners but with a more specific biochemical role.

  15. GENERAL: Mean-field Theory for Some Bus Transport Networks with Random Overlapping Clique Structure

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Sun, Bao; Wang, Bo; Sun, You-Xian

    2010-04-01

    Transport networks, such as railway networks and airport networks, are a kind of random network with complex topology. Recently, more and more scholars paid attention to various kinds of transport networks and try to explore their inherent characteristics. Here we study the exponential properties of a recently introduced Bus Transport Networks (BTNs) evolution model with random overlapping clique structure, which gives a possible explanation for the observed exponential distribution of the connectivities of some BTNs of three major cities in China. Applying mean-field theory, we analyze the BTNs model and prove that this model has the character of exponential distribution of the connectivities, and develop a method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the exponents. By comparing mean-field based theoretic results with the statistical data of real BTNs, we observe that, as a whole, both of their data show similar character of exponential distribution of the connectivities, and their exponents have same order of magnitude, which show the availability of the analytical result of this paper.

  16. Oscillatory neural networks with self-organized segmentation of overlapping patterns.

    PubMed

    Burwick, Thomas

    2007-08-01

    Temporal coding is considered with an oscillatory network model that generalizes the Cohen-Grossberg-Hopfield model. It is assumed that the frequency of oscillating units increases with stronger and more coherent input. We refer to this mechanism as acceleration. In the context of Hebbian memory, synchronization and acceleration take complementary roles, and their combined effect on the storage of patterns is profound. Acceleration implies the desynchronization that is needed for self-organized segmention of two overlapping patterns. The superposition problem is thereby solved even without including competition couplings. With respect to brain dynamics, we point to analogies with oscillation spindles in the gamma range and responses to perceptual rivalries.

  17. Detecting hierarchical and overlapping network communities using locally optimal modularity changes

    NASA Astrophysics Data System (ADS)

    Barber, Michael J.

    2013-09-01

    Agglomerative clustering is a well established strategy for identifying communities in networks. Communities are successively merged into larger communities, coarsening a network of actors into a more manageable network of communities. The order in which merges should occur is not in general clear, necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering algorithm based on a local optimality property. For each edge in the network, we associate the modularity change for merging the communities it links. For each community vertex, we call the preferred edge that edge for which the modularity change is maximal. When an edge is preferred by both vertices that it links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal edges that would increase the modularity, redetermining the locally optimal edges after each step and continuing so long as the modularity can be further increased. We apply the algorithm to model and empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We relate the performance and implementation details to the structure of the resulting community hierarchies. We additionally consider a complementary local clustering algorithm, describing how to identify overlapping communities based on the local optimality condition.

  18. The (un)supervised NMF methods for discovering overlapping communities as well as hubs and outliers in networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Cao, Xiaochun; Jin, Di; Cao, Yixin; He, Dongxiao

    2016-03-01

    For its crucial importance in the study of large-scale networks, many researchers devote to the detection of communities in various networks. It is now widely agreed that the communities usually overlap with each other. In some communities, there exist members that play a special role as hubs (also known as leaders), whose importance merits special attention. Moreover, it is also observed that some members of the network do not belong to any communities in a convincing way, and hence recognized as outliers. Failure to detect and exclude outliers will distort, sometimes significantly, the outcome of the detected communities. In short, it is preferable for a community detection method to detect all three structures altogether. This becomes even more interesting and also more challenging when we take the unsupervised assumption, that is, we do not assume the prior knowledge of the number K of communities. Our approach here is to define a novel generative model and formalize the detection of overlapping communities as well as hubs and outliers as an optimization problem on it. When K is given, we propose a normalized symmetric nonnegative matrix factorization algorithm based on Kullback-Leibler (KL) divergence to learn the parameters of the model. Otherwise, by combining KL divergence and prior model on parameters, we introduce another parameter learning method based on Bayesian symmetric nonnegative matrix factorization to learn the parameters of the model, while determining K. Therefore, we present a community detection method arguably in the most general sense, which detects all three structures altogether without prior knowledge of the number of communities. Finally, we test the proposed method on various real-world networks. The experimental results, in contrast to several state-of-art algorithms, indicate its superior performance over other ones in terms of both clustering accuracy and community quality.

  19. Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry.

    PubMed

    Bright, Nicholas J; Webb, Roger P; Bleay, Stephen; Hinder, Steven; Ward, Neil I; Watts, John F; Kirkby, Karen J; Bailey, Melanie J

    2012-05-01

    A new protocol using time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been developed to identify the deposition order of a fingerprint overlapping an ink line on paper. By taking line scans of fragment ions characteristic of the ink molecules (m/z 358.2 and 372.2) where the fingerprint and ink overlap and by calculating the normalized standard deviation of the intensity variation across the line scan, it is possible to determine whether or not a fingerprint is above ink on a paper substrate. The protocol adopted works for a selection of fingerprints from four donors tested here and for a fingerprint that was aged for six months; for one donor, the very faint fingerprints could not be visualized using either standard procedures (ninhydrin development) or SIMS, and therefore the protocol correctly gives an inconclusive result.

  20. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions.

    PubMed

    Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D; Uddin, Lucina Q

    2016-05-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770-1787, 2016. © 2016 Wiley Periodicals, Inc.

  1. Extrinsic calibration of a non-overlapping camera network based on close-range photogrammetry.

    PubMed

    Dong, Shuai; Shao, Xinxing; Kang, Xin; Yang, Fujun; He, Xiaoyuan

    2016-08-10

    In this paper, an extrinsic calibration method for a non-overlapping camera network is presented based on close-range photogrammetry. The method does not require calibration targets or the cameras to be moved. The visual sensors are relatively motionless and do not see the same area at the same time. The proposed method combines the multiple cameras using some arbitrarily distributed encoded targets. The calibration procedure consists of three steps: reconstructing the three-dimensional (3D) coordinates of the encoded targets using a hand-held digital camera, performing the intrinsic calibration of the camera network, and calibrating the extrinsic parameters of each camera with only one image. A series of experiments, including 3D reconstruction, rotation, and translation, are employed to validate the proposed approach. The results show that the relative error for the 3D reconstruction is smaller than 0.003%, the relative errors of both rotation and translation are less than 0.066%, and the re-projection error is only 0.09 pixels.

  2. Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation.

    PubMed

    Hall, Megan P; Nagel, Roland J; Fagg, W Samuel; Shiue, Lily; Cline, Melissa S; Perriman, Rhonda J; Donohue, John Paul; Ares, Manuel

    2013-05-01

    Alternative splicing contributes to muscle development, but a complete set of muscle-splicing factors and their combinatorial interactions are unknown. Previous work identified ACUAA ("STAR" motif) as an enriched intron sequence near muscle-specific alternative exons such as Capzb exon 9. Mass spectrometry of myoblast proteins selected by the Capzb exon 9 intron via RNA affinity chromatography identifies Quaking (QK), a protein known to regulate mRNA function through ACUAA motifs in 3' UTRs. We find that QK promotes inclusion of Capzb exon 9 in opposition to repression by polypyrimidine tract-binding protein (PTB). QK depletion alters inclusion of 406 cassette exons whose adjacent intron sequences are also enriched in ACUAA motifs. During differentiation of myoblasts to myotubes, QK levels increase two- to threefold, suggesting a mechanism for QK-responsive exon regulation. Combined analysis of the PTB- and QK-splicing regulatory networks during myogenesis suggests that 39% of regulated exons are under the control of one or both of these splicing factors. This work provides the first evidence that QK is a global regulator of splicing during muscle development in vertebrates and shows how overlapping splicing regulatory networks contribute to gene expression programs during differentiation.

  3. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks

    PubMed Central

    Karahanoğlu, Fikret Işik; Van De Ville, Dimitri

    2015-01-01

    Dynamics of resting-state functional magnetic resonance imaging (fMRI) provide a new window onto the organizational principles of brain function. Using state-of-the-art signal processing techniques, we extract innovation-driven co-activation patterns (iCAPs) from resting-state fMRI. The iCAPs' maps are spatially overlapping and their sustained-activity signals temporally overlapping. Decomposing resting-state fMRI using iCAPs reveals the rich spatiotemporal structure of functional components that dynamically assemble known resting-state networks. The temporal overlap between iCAPs is substantial; typically, three to four iCAPs occur simultaneously in combinations that are consistent with their behaviour profiles. In contrast to conventional connectivity analysis, which suggests a negative correlation between fluctuations in the default-mode network (DMN) and task-positive networks, we instead find evidence for two DMN-related iCAPs consisting the posterior cingulate cortex that differentially interact with the attention network. These findings demonstrate how the fMRI resting state can be functionally decomposed into spatially and temporally overlapping building blocks using iCAPs. PMID:26178017

  4. Sex differences in the structure and stability of children's playground social networks and their overlap with friendship relations.

    PubMed

    Baines, Ed; Blatchford, Peter

    2009-09-01

    Gender segregated peer networks during middle childhood have been highlighted as important for explaining later sex differences in behaviour, yet few studies have examined the structural composition of these networks and their implications. This short-term longitudinal study of 119 children (7-8 years) examined the size and internal structure of boys' and girls' social networks, their overlap with friendship relations, and their stability over time. Data collection at the start and end of the year involved systematic playground observations of pupils' play networks during team and non-team activities and measures of friendship from peer nomination interviews. Social networks were identified by aggregating play network data at each time point. Findings showed that the size of boy's play networks on the playground, but not their social networks, varied according to activity type. Social network cores consisted mainly of friends. Girl's social networks were more likely to be composed of friends and boys' networks contained friends and non-friends. Girls had more friends outside of the social network than boys. Stability of social network membership and internal network relations were higher for boys than girls. These patterns have implications for the nature of social experiences within these network contexts.

  5. Overlapping ontologies and Indigenous knowledge. From integration to ontological self-determination.

    PubMed

    Ludwig, David

    2016-10-01

    Current controversies about knowledge integration reflect conflicting ideas of what it means to "take Indigenous knowledge seriously". While there is increased interest in integrating Indigenous and Western scientific knowledge in various disciplines such as anthropology and ethnobiology, integration projects are often accused of recognizing Indigenous knowledge only insofar as it is useful for Western scientists. The aim of this article is to use tools from philosophy of science to develop a model of both successful integration and integration failures. On the one hand, I argue that cross-cultural recognition of property clusters leads to an ontological overlap that makes knowledge integration often epistemically productive and socially useful. On the other hand, I argue that knowledge integration is limited by ontological divergence. Adequate models of Indigenous knowledge will therefore have to take integration failures seriously and I argue that integration efforts need to be complemented by a political notion of ontological self-determination.

  6. Selective spectrophotometric methods for determination of ternary mixture with overlapping spectra: a comparative study.

    PubMed

    Abdelrahman, Maha M

    2014-04-24

    Comparable double divisor ratio spectra derivative, area under curve of derivative ratio and mean centering of ratio spectra spectrophotometric methods were introduced for determination of orphenadrine citrate (ORPH), caffeine (CAF) and aspirin (ASP); a combination for symptomatic relief of mild to moderate pain of acute musculoskeletal disorders; with evident accuracy and precision. The suggested methods have the advantage over the previously published spectrophotometric method for determination of the same combination in that they did not require a preliminary separation step and able to resolve the ternary mixture, with severe overlapping spectra, with competent sensitivity and selectivity. The recommended methods allow the determination of ORPH, CAF and ASP in the range of 2-32, 2-28 and 3-28 μg mL(-1), respectively. The validity of the proposed methods was examined by analysis of different laboratory prepared mixtures of ORPH, CAF and ASP and assay of their tablet formulation where reliable results were obtained. Statistical analysis between the suggested spectrophotometric methods and the reported HPLC method using student's-t and F-ratio tests reveals that the suggested methods are as accurate and precise as the reported one.

  7. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods.

    PubMed

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-05

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor (1)DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291nm, 380nm and 274.5nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  8. Resolution of overlapped spectra for the determination of ternary mixture using different and modified spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Moussa, Bahia Abbas; El-Zaher, Asmaa Ahmed; Mahrouse, Marianne Alphonse; Ahmed, Maha Said

    2016-08-01

    Four new spectrophotometric methods were developed, applied to resolve the overlapped spectra of a ternary mixture of [aliskiren hemifumarate (ALS)-amlodipine besylate (AM)-hydrochlorothiazide (HCT)] and to determine the three drugs in pure form and in combined dosage form. Method A depends on simultaneous determination of ALS, AM and HCT using principal component regression and partial least squares chemometric methods. In Method B, a modified isosbestic spectrophotometric method was applied for the determination of the total concentration of ALS and HCT by measuring the absorbance at 274.5 nm (isosbestic point, Aiso). On the other hand, the concentration of HCT in ternary mixture with ALS and AM could be calculated without interference using first derivative spectrophotometric method by measuring the amplitude at 279 nm (zero crossing of ALS and zero value of AM). Thus, the content of ALS was calculated by subtraction. Method C, double divisor first derivative ratio spectrophotometry (double divisor 1DD method), was based on that for the determination of one drug, the ratio spectra were obtained by dividing the absorption spectra of its different concentrations by the sum of the absorption spectra of the other two drugs as a double divisor. The first derivative of the obtained ratio spectra were then recorded using the appropriate smoothing factor. The amplitudes at 291 nm, 380 nm and 274.5 nm were selected for the determination of ALS, AM and HCT in their ternary mixture, respectively. Method D was based on mean centering of ratio spectra. The mean centered values at 287, 295.5 and 269 nm were recorded and used for the determination of ALS, AM and HCT, respectively. The developed methods were validated according to ICH guidelines and proved to be accurate, precise and selective. Satisfactory results were obtained by applying the proposed methods to the analysis of pharmaceutical dosage form.

  9. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  10. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra.

    PubMed

    Lotfy, Hayam M; Saleh, Sarah S; Hassan, Nagiba Y; Salem, Hesham

    2015-02-05

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  11. Novel two wavelength spectrophotometric methods for simultaneous determination of binary mixtures with severely overlapping spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Saleh, Sarah S.; Hassan, Nagiba Y.; Salem, Hesham

    2015-02-01

    This work presents the application of different spectrophotometric techniques based on two wavelengths for the determination of severely overlapped spectral components in a binary mixture without prior separation. Four novel spectrophotometric methods were developed namely: induced dual wavelength method (IDW), dual wavelength resolution technique (DWRT), advanced amplitude modulation method (AAM) and induced amplitude modulation method (IAM). The results of the novel methods were compared to that of three well-established methods which were: dual wavelength method (DW), Vierordt's method (VD) and bivariate method (BV). The developed methods were applied for the analysis of the binary mixture of hydrocortisone acetate (HCA) and fusidic acid (FSA) formulated as topical cream accompanied by the determination of methyl paraben and propyl paraben present as preservatives. The specificity of the novel methods was investigated by analyzing laboratory prepared mixtures and the combined dosage form. The methods were validated as per ICH guidelines where accuracy, repeatability, inter-day precision and robustness were found to be within the acceptable limits. The results obtained from the proposed methods were statistically compared with official ones where no significant difference was observed. No difference was observed between the obtained results when compared to the reported HPLC method, which proved that the developed methods could be alternative to HPLC techniques in quality control laboratories.

  12. Efficient, sparse biological network determination

    PubMed Central

    August, Elias; Papachristodoulou, Antonis

    2009-01-01

    Background Determining the interaction topology of biological systems is a topic that currently attracts significant research interest. Typical models for such systems take the form of differential equations that involve polynomial and rational functions. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data much harder. The use of linear dynamics and linearization techniques that have been proposed in the past can circumvent this, but the general problem of developing efficient algorithms for models that provide more accurate system descriptions remains open. Results We present a network determination algorithm that can treat model descriptions with polynomial and rational functions and which does not make use of linearization. For this purpose, we make use of the observation that biochemical networks are in general 'sparse' and minimize the 1-norm of the decision variables (sum of weighted network connections) while constraints keep the error between data and the network dynamics small. The emphasis of our methodology is on determining the interconnection topology rather than the specific reaction constants and it takes into account the necessary properties that a chemical reaction network should have – something that techniques based on linearization can not. The problem can be formulated as a Linear Program, a convex optimization problem, for which efficient algorithms are available that can treat large data sets efficiently and uncertainties in data or model parameters. Conclusion The presented methodology is able to predict with accuracy and efficiency the connectivity structure of a chemical reaction network with mass action kinetics and of a gene regulatory network from simulation data even if the dynamics of these systems are non-polynomial (rational) and uncertainties in the data are taken into account. It also produces a network structure that can explain the real experimental

  13. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    NASA Astrophysics Data System (ADS)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  14. Sequence determination from overlapping fragments: a simple model of whole-genome shotgun sequencing.

    PubMed

    Derrida, Bernard; Fink, Thomas M A

    2002-02-11

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  15. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  16. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  17. Social network determinants of depression

    PubMed Central

    Rosenquist, JN; Fowler, JH; Christakis, NA

    2013-01-01

    The etiology of depression has long been thought to include social environmental factors. To quantitatively explore the novel possibility of person-to-person spread and network-level determination of depressive symptoms, analyses were performed on a densely interconnected social network of 12 067 people assessed repeatedly over 32 years as part of the Framingham Heart Study. Longitudinal statistical models were used to examine whether depressive symptoms in one person were associated with similar scores in friends, co-workers, siblings, spouses and neighbors. Depressive symptoms were assessed using CES-D scores that were available for subjects in three waves measured between 1983 and 2001. Results showed both low and high CES-D scores (and classification as being depressed) in a given period were strongly correlated with such scores in one's friends and neighbors. This association extended up to three degrees of separation (to one's friends’ friends’ friends). Female friends appear to be especially influential in the spread of depression from one person to another. The results are robust to multiple network simulation and estimation methods, suggesting that network phenomena appear relevant to the epidemiology of depression and would benefit from further study. PMID:20231839

  18. Friending, IMing, and hanging out face-to-face: overlap in adolescents' online and offline social networks.

    PubMed

    Reich, Stephanie M; Subrahmanyam, Kaveri; Espinoza, Guadalupe

    2012-03-01

    Many new and important developmental issues are encountered during adolescence, which is also a time when Internet use becomes increasingly popular. Studies have shown that adolescents are using these online spaces to address developmental issues, especially needs for intimacy and connection to others. Online communication with its potential for interacting with unknown others, may put teens at increased risk. Two hundred and fifty-one high school students completed an in-person survey, and 126 of these completed an additional online questionnaire about how and why they use the Internet, their activities on social networking sites (e.g., Facebook, MySpace) and their reasons for participation, and how they perceive these online spaces to impact their friendships. To examine the extent of overlap between online and offline friends, participants were asked to list the names of their top interaction partners offline and online (Facebook and instant messaging). Results reveal that adolescents mainly use social networking sites to connect with others, in particular with people known from offline contexts. While adolescents report little monitoring by their parents, there was no evidence that teens are putting themselves at risk by interacting with unknown others. Instead, adolescents seem to use the Internet, especially social networking sites, to connect with known others. While the study found moderate overlap between teens' closest online and offline friends, the patterns suggest that adolescents use online contexts to strengthen offline relationships.

  19. Genome-Wide Analysis of PDZ Domain Binding Reveals Inherent Functional Overlap within the PDZ Interaction Network

    PubMed Central

    te Velthuis, Aartjan J. W.; Sakalis, Philippe A.; Fowler, Donald A.; Bagowski, Christoph P.

    2011-01-01

    Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity. PMID:21283644

  20. Overlap of phonetic features as a determinant of the between-stream phonological similarity effect.

    PubMed

    Eagan, Danielle E; Chein, Jason M

    2012-03-01

    Serial recall from working memory is known to be impaired by the presence of irrelevant background speech, but several prior studies have concluded that the magnitude of the impairment is independent of the phonological relationship between to-be-remembered (TBR) and to-be-ignored (TBI) sources of information. In the present study, we examined the influence of between-stream phonological similarity in serial recall while attending to a heretofore uncontrolled variable, the phonetic feature. We found that TBI items sharing many phonetic features with TBR items produced significantly stronger working-memory impairments than TBI items with minimal phonetic feature overlap. In addition, participants were more likely to report remembering incorrect items that incorporated phonological characteristics of the TBI stream in the high-overlap condition. These findings provide evidence for subphonemic between-stream interactions and suggest that multiple parallel processes contribute to the irrelevant speech effect. We propose that a 2-component model, which combines the assumptions of process- and content-based accounts for the irrelevant speech effect, offers the best explanation for these findings.

  1. Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles.

    PubMed

    Padró, Juan M; Osorio-Grisales, Jaiver; Arancibia, Juan A; Olivieri, Alejandro C; Castells, Cecilia B

    2015-07-01

    Valuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e., when one of the enantiomers is present in the sample in very low concentrations. In this report, we explore the scope of a multivariate chemometric technique based on unfolded partial least-squares regression, as a mathematical tool to solve this quite frequent difficulty. This technique was applied to obtain quantitative results from partially overlapped chromatographic profiles of R- and S-ketoprofen, with different values of enantioresolution factors (from 0.81 down to less than 0.2 resolution units), and also at several different S:R enantiomeric ratios. Enantiomeric purity below 1% was determined with excellent precision even from almost completely overlapped signals. All these assays were tested on the most demanding condition, i.e., when the minor peak elutes immediately after the main peak. The results were validated using univariate calibration of completely resolved profiles and the method applied to the determination of enantiomeric purity of commercial pharmaceuticals.

  2. Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks.

    PubMed

    Alho, Kimmo; Salmi, Juha; Koistinen, Sonja; Salonen, Oili; Rinne, Teemu

    2015-11-11

    A number of previous studies have suggested segregated networks of brain areas for top-down controlled and bottom-up triggered orienting of visual attention. However, the corresponding networks involved in auditory attention remain less studied. Our participants attended selectively to a tone stream with either a lower pitch or higher pitch in order to respond to infrequent changes in duration of attended tones. The participants were also required to shift their attention from one stream to the other when guided by a visual arrow cue. In addition to these top-down controlled cued attention shifts, infrequent task-irrelevant louder tones occurred in both streams to trigger attention in a bottom-up manner. Both cued shifts and louder tones were associated with enhanced activity in the superior temporal gyrus and sulcus, temporo-parietal junction, superior parietal lobule, inferior and middle frontal gyri, frontal eye field, supplementary motor area, and anterior cingulate gyrus. Thus, the present findings suggest that in the auditory modality, unlike in vision, top-down controlled and bottom-up triggered attention activate largely the same cortical networks. Comparison of the present results with our previous results from a similar experiment on spatial auditory attention suggests that fronto-parietal networks of attention to location or pitch overlap substantially. However, the auditory areas in the anterior superior temporal cortex might have a more important role in attention to the pitch than location of sounds. This article is part of a Special Issue entitled SI: Prediction and Attention.

  3. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.

    PubMed

    Garrido, Jesús A; Luque, Niceto R; Tolu, Silvia; D'Angelo, Egidio

    2016-08-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.

  4. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks

    PubMed Central

    Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner’s bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  5. A Coordinate-Based Meta-Analysis of Overlaps in Regional Specialization and Functional Connectivity across Subjective Value and Default Mode Networks

    PubMed Central

    Acikalin, M. Yavuz; Gorgolewski, Krzysztof J.; Poldrack, Russell A.

    2017-01-01

    Previous research has provided qualitative evidence for overlap in a number of brain regions across the subjective value network (SVN) and the default mode network (DMN). In order to quantitatively assess this overlap, we conducted a series of coordinate-based meta-analyses (CBMA) of results from 466 functional magnetic resonance imaging experiments on task-negative or subjective value-related activations in the human brain. In these analyses, we first identified significant overlaps and dissociations across activation foci related to SVN and DMN. Second, we investigated whether these overlapping subregions also showed similar patterns of functional connectivity, suggesting a shared functional subnetwork. We find considerable overlap between SVN and DMN in subregions of central ventromedial prefrontal cortex (cVMPFC) and dorsal posterior cingulate cortex (dPCC). Further, our findings show that similar patterns of bidirectional functional connectivity between cVMPFC and dPCC are present in both networks. We discuss ways in which our understanding of how subjective value (SV) is computed and represented in the brain can be synthesized with what we know about the DMN, mind-wandering, and self-referential processing in light of our findings. PMID:28154520

  6. Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration.

    PubMed

    Rojas, Cinthia Carola; Wahlund, Karl-Gustav; Bergenståhl, Björn; Nilsson, Lars

    2008-06-01

    In this paper we aim to understand the size/conformation relationship in waxy barley starch, a polydisperse and ultrahigh molar mass biomacromolecule. Characterizations are performed with asymmetrical flow field-flow fractionation (AsFlFFF). Furthermore, we study the effect of homogenization on the molar mass, rms radius (r rms) and hydrodynamic radius (r h). For the untreated sample, the macromolecules are elongated objects with low apparent density. As a result of homogenization, molar mass, and r rms decrease, while r h remains unaffected. The process also induces an increase, and scaling with size, of apparent density as well as changes in conformation, represented qualitatively by r rms/ r h. Finally, results from AsFlFFF are compared with viscosimetry and discussed in terms of concentration and close-packing in relation to macromolecular shape and conformation. Hence, the results show that AsFlFFF and our novel methodology enable the determination of several physical properties with high relevance for the solution behavior of polydisperse macromolecules.

  7. Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network?

    PubMed

    Hayama, Hiroki R; Vilberg, Kaia L; Rugg, Michael D

    2012-05-01

    Recall of a studied item and retrieval of its encoding context (source memory) both depend on recollection of qualitative information about the study episode. This study investigated whether recall and source memory engage overlapping neural regions. Participants (n = 18) studied a series of words, which were presented either to the left or right of fixation. fMRI data were collected during a subsequent test phase in which three-letter word-stems were presented, two thirds of which could be completed by a study item. Instructions were to use each stem as a cue to recall a studied word and, when recall was successful, to indicate the word's study location. When recall failed, the stem was to be completed with the first word to come to mind. Relative to stems for which recall failed, word-stems eliciting successful recall were associated with enhanced activity in a variety of cortical regions, including bilateral parietal, posterior midline, and parahippocampal cortex. Activity in these regions was enhanced when recall was accompanied by successful rather than unsuccessful source retrieval. It is proposed that the regions form part of a "recollection network" in which activity is graded according to the amount of information retrieved about a study episode.

  8. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network.

    PubMed

    Santos, Márcia C T; Tegge, Allison N; Correa, Bruna R; Mahesula, Swetha; Kohnke, Luana Q; Qiao, Mei; Ferreira, Marco A R; Kokovay, Erzsebet; Penalva, Luiz O F

    2016-01-01

    The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect.

  9. Determination of the overlapping pK(a) values of chrysin using UV-vis spectroscopy and ab initio methods.

    PubMed

    Castro, G T; Ferretti, F H; Blanco, S E

    2005-11-01

    The overlapping pK(a) values of 5,7-dihydroxyflavone (chrysin) in EtOH-water solutions were determined by means of a UV-vis spectroscopic method that uses absorbance diagrams, at constant ionic strength (0.050 M) and temperature (25.0+/-0.1 degrees C). It was observed that the pK(a) values increase when the polarity-polarizability and solvation abilities of the reaction medium decrease. In order to calculate the pK(a1) and pK(a2) of chrysin in pure water, various relationships between the determined pK(a) and properties of solvents (relative permittivity, alpha-parameter of Taft and parameter Acity), are proposed. Moreover, with the aim of explaining the first pK(a1) value obtained, the molecular conformations and solute-solvent interactions of the 7(O(-))chrysinate monoanion were also investigated, using ab initio methods. Several ionization reactions and equilibria in water, which possesses a high hydrogen-bond-donor ability, are proposed. These reactions and equilibria constituted the necessary theoretical basis to calculate the first acidity constant of chrysin. The HF/6-31G(d) and HF/6-31+G(d) methods were used for calculations. Tomasi's method was used to analyze the formation of intermolecular hydrogen bonds between the 7(O(-))chrysinate monoanion and water molecules. It was proposed that in alkaline aqueous solutions the monoanion of chrysin is solvated with one water molecule. The agreement between the experimental and theoretical pK(a1) values provides good support for the acid-base reactions proposed in this paper.

  10. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Information Feedback Strategies in a Signal Controlled Network with Overlapped Routes

    NASA Astrophysics Data System (ADS)

    Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang

    2009-07-01

    We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.

  11. PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation.

    PubMed

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Ding, Pingjian

    2016-10-01

    Identifying overlapping protein complexes in protein-protein interaction (PPI) networks can provide insight into cellular functional organization and thus elucidate underlying cellular mechanisms. Recently, various algorithms for protein complexes detection have been developed for PPI networks. However, majority of algorithms primarily depend on network topological feature and/or gene expression profile, failing to consider the inherent biological meanings between protein pairs. In this paper, we propose a novel method to detect protein complexes using pseudo-clique extension based on fuzzy relation (PCE-FR). Our algorithm operates in three stages: it first forms the nonoverlapping protein substructure based on fuzzy relation and then expands each substructure by adding neighbor proteins to maximize the cohesive score. Finally, highly overlapped candidate protein complexes are merged to form the final protein complex set. Particularly, our algorithm employs the biological significance hidden in protein pairs to construct edge weight for protein interaction networks. The experiment results show that our method can not only outperform classical algorithms such as CFinder, ClusterONE, CMC, RRW, HC-PIN, and ProRank +, but also achieve ideal overall performance in most of the yeast PPI datasets in terms of composite score consisting of precision, accuracy, and separation. We further apply our method to a human PPI network from the HPRD dataset and demonstrate it is very effective in detecting protein complexes compared to other algorithms.

  12. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.

    PubMed

    Koneru, Suvarna Vani; Bhavani, Durga S

    2015-01-01

    A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.

  13. Determining Application Runtimes Using Queueing Network Modeling

    SciTech Connect

    Elliott, Michael L.

    2006-12-14

    Determination of application times-to-solution for large-scale clustered computers continues to be a difficult problem in high-end computing, which will only become more challenging as multi-core consumer machines become more prevalent in the market. Both researchers and consumers of these multi-core systems desire reasonable estimates of how long their programs will take to run (time-to-solution, or TTS), and how many resources will be consumed in the execution. Currently there are few methods of determining these values, and those that do exist are either overly simplistic in their assumptions or require great amounts of effort to parameterize and understand. One previously untried method is queuing network modeling (QNM), which is easy to parameterize and solve, and produces results that typically fall within 10 to 30% of the actual TTS for our test cases. Using characteristics of the computer network (bandwidth, latency) and communication patterns (number of messages, message length, time spent in communication), the QNM model of the NAS-PB CG application was applied to MCR and ALC, supercomputers at LLNL, and the Keck Cluster at USF, with average errors of 2.41%, 3.61%, and -10.73%, respectively, compared to the actual TTS observed. While additional work is necessary to improve the predictive capabilities of QNM, current results show that QNM has a great deal of promise for determining application TTS for multi-processor computer systems.

  14. Partially overlapping sensorimotor networks underlie speech praxis and verbal short-term memory: evidence from apraxia of speech following acute stroke.

    PubMed

    Hickok, Gregory; Rogalsky, Corianne; Chen, Rong; Herskovits, Edward H; Townsley, Sarah; Hillis, Argye E

    2014-01-01

    We tested the hypothesis that motor planning and programming of speech articulation and verbal short-term memory (vSTM) depend on partially overlapping networks of neural regions. We evaluated this proposal by testing 76 individuals with acute ischemic stroke for impairment in motor planning of speech articulation (apraxia of speech, AOS) and vSTM in the first day of stroke, before the opportunity for recovery or reorganization of structure-function relationships. We also evaluated areas of both infarct and low blood flow that might have contributed to AOS or impaired vSTM in each person. We found that AOS was associated with tissue dysfunction in motor-related areas (posterior primary motor cortex, pars opercularis; premotor cortex, insula) and sensory-related areas (primary somatosensory cortex, secondary somatosensory cortex, parietal operculum/auditory cortex); while impaired vSTM was associated with primarily motor-related areas (pars opercularis and pars triangularis, premotor cortex, and primary motor cortex). These results are consistent with the hypothesis, also supported by functional imaging data, that both speech praxis and vSTM rely on partially overlapping networks of brain regions.

  15. Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1

    PubMed Central

    Villandre, Luc; Günthard, Huldrych F.; Kouyos, Roger; Stadler, Tanja

    2016-01-01

    Background Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters. Methods The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects’ island membership indices and transmission cluster membership indices with the adjusted Rand index. Results and Conclusion Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network

  16. Overlapping clusters for distributed computation.

    SciTech Connect

    Mirrokni, Vahab; Andersen, Reid; Gleich, David F.

    2010-11-01

    Scalable, distributed algorithms must address communication problems. We investigate overlapping clusters, or vertex partitions that intersect, for graph computations. This setup stores more of the graph than required but then affords the ease of implementation of vertex partitioned algorithms. Our hope is that this technique allows us to reduce communication in a computation on a distributed graph. The motivation above draws on recent work in communication avoiding algorithms. Mohiyuddin et al. (SC09) design a matrix-powers kernel that gives rise to an overlapping partition. Fritzsche et al. (CSC2009) develop an overlapping clustering for a Schwarz method. Both techniques extend an initial partitioning with overlap. Our procedure generates overlap directly. Indeed, Schwarz methods are commonly used to capitalize on overlap. Elsewhere, overlapping communities (Ahn et al, Nature 2009; Mishra et al. WAW2007) are now a popular model of structure in social networks. These have long been studied in statistics (Cole and Wishart, CompJ 1970). We present two types of results: (i) an estimated swapping probability {rho}{infinity}; and (ii) the communication volume of a parallel PageRank solution (link-following {alpha} = 0.85) using an additive Schwarz method. The volume ratio is the amount of extra storage for the overlap (2 means we store the graph twice). Below, as the ratio increases, the swapping probability and PageRank communication volume decreases.

  17. Apathy and impaired emotional facial recognition networks overlap in Parkinson's disease: a PET study with conjunction analyses.

    PubMed

    Robert, Gabriel; Le Jeune, Florence; Dondaine, Thibault; Drapier, Sophie; Péron, Julie; Lozachmeur, Clément; Sauleau, Paul; Houvenaghel, Jean-François; Travers, David; Millet, Bruno; Vérin, Marc; Drapier, Dominique

    2014-10-01

    Apathy is a disabling non-motor symptom that is frequently observed in Parkinson's disease (PD). Its description and physiopathology suggest that it is partially mediated by emotional impairment, but this research issue has never been addressed at a clinical and metabolic level. We therefore conducted a metabolic study using (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in 36 PD patients without depression and dementia. Apathy was assessed on the Apathy Evaluation Scale (AES), and emotional facial recognition (EFR) performances (ie, percentage of correct responses) were calculated for each patient. Confounding factors such as age, antiparkinsonian and antidepressant medication, global cognitive functions and depressive symptoms were controlled for. We found a significant negative correlation between AES scores and performances on the EFR task. The apathy network was characterised by increased metabolism within the left posterior cingulate (PC) cortex (Brodmann area (BA) 31). The impaired EFR network was characterised by decreased metabolism within the bilateral PC gyrus (BA 31), right superior frontal gyrus (BAs 10, 9 and 6) and left superior frontal gyrus (BA 10 and 11). By applying conjunction analyses to both networks, we identified the right premotor cortex (BA 6), right orbitofrontal cortex (BA 10), left middle frontal gyrus (BA 8) and left posterior cingulate gyrus (BA 31) as the structures supporting the association between apathy and impaired EFR. These results confirm that apathy in PD is partially mediated by impaired EFR, opening up new prospects for alleviating apathy in PD, such as emotional rehabilitation.

  18. Finding overlapping communities using seed set

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Xuan; Zhang, Xiao-Dong

    2017-02-01

    The local optimization algorithm using seed set to find overlapping communities has become more and more a significant method, but it is a great challenge how to choose a good seed set. In this paper, a new method is proposed to achieve the choice of candidate seed sets, and yields a new algorithm to find overlapping communities in complex networks. By testing in real world networks and synthetic networks, this method can successfully detect overlapping communities and outperform other state-of-the-art overlapping community detection methods.

  19. Pathway Network Analyses for Autism Reveal Multisystem Involvement, Major Overlaps with Other Diseases and Convergence upon MAPK and Calcium Signaling

    PubMed Central

    Wen, Ya; Alshikho, Mohamad J.; Herbert, Martha R.

    2016-01-01

    We used established databases in standard ways to systematically characterize gene ontologies, pathways and functional linkages in the large set of genes now associated with autism spectrum disorders (ASDs). These conditions are particularly challenging—they lack clear pathognomonic biological markers, they involve great heterogeneity across multiple levels (genes, systemic biological and brain characteristics, and nuances of behavioral manifestations)—and yet everyone with this diagnosis meets the same defining behavioral criteria. Using the human gene list from Simons Foundation Autism Research Initiative (SFARI) we performed gene set enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database, and then derived a pathway network from pathway-pathway functional interactions again in reference to KEGG. Through identifying the GO (Gene Ontology) groups in which SFARI genes were enriched, mapping the coherence between pathways and GO groups, and ranking the relative strengths of representation of pathway network components, we 1) identified 10 disease-associated and 30 function-associated pathways 2) revealed calcium signaling pathway and neuroactive ligand-receptor interaction as the most enriched, statistically significant pathways from the enrichment analysis, 3) showed calcium signaling pathways and MAPK signaling pathway to be interactive hubs with other pathways and also to be involved with pervasively present biological processes, 4) found convergent indications that the process “calcium-PRC (protein kinase C)-Ras-Raf-MAPK/ERK” is likely a major contributor to ASD pathophysiology, and 5) noted that perturbations associated with KEGG’s category of environmental information processing were common. These findings support the idea that ASD-associated genes may contribute not only to core features of ASD themselves but also to vulnerability to other chronic and systemic problems potentially including cancer, metabolic

  20. Determination of optimum structure of backpropagation networks

    NASA Astrophysics Data System (ADS)

    Phien, Huynh N.; Sureerattanan, Songyot

    2000-10-01

    The paper proposes the use of the Baysian Information Criterion (BIC), along with an algorithm to systematically select the appropriate structure of the backpropagation (BP) network for a given set of data. Simulation results with hydrological and economic data show that the algorithm performs very satisfactorily. Moreover, it compares with the method of Daqi and Shouyi for one hidden layer network and it is also used for the networks with more than one hidden layer.

  1. How Structure Determines Correlations in Neuronal Networks

    PubMed Central

    Pernice, Volker; Staude, Benjamin; Cardanobile, Stefano; Rotter, Stefan

    2011-01-01

    Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks. PMID:21625580

  2. Label free checkerboard assay to determine overlapping epitopes of Ebola virus VP-40 antibodies using surface plasmon resonance.

    PubMed

    Anderson, George P; Liu, Jinny L; Zabetakis, Dan; Legler, Patricia M; Goldman, Ellen R

    2017-03-01

    Immunoassay formats, in which antibodies provide sensitivity and specificity, are often utilized to provide rapid and simple diagnostic tests. Surface plasmon resonance is frequently used to evaluate the suitability of antibodies by determining binding kinetics to agents or surrogate antigens. We used SPR to evaluate a number of commercial monoclonal antibodies as well as single domain antibodies produced in-house. All the antibodies targeted the Ebola virus viral protein 40 (VP40). We determined the ability of each antibody to bind to immobilized VP40, and ensured they did not bind Ebola glycoprotein or the nucleoprotein. A subset of the monoclonal antibodies was immobilized to characterize antigen capture in solution. It can be advantageous to utilize antibodies that recognize distinct epitopes when choosing reagents for detection and diagnostic assays. We determined the uniqueness of the epitope recognized by the anti-VP40 antibodies using a checkerboard format that exploits the 6×6 array of interactions monitored by the Bio-Rad ProteOn XPR36 SPR instrument. The results demonstrate the utility of surface plasmon resonance to characterize monoclonal and recombinant antibodies. Additionally, the analysis presented here enabled the identification of pairs of anti-VP40 antibodies which could potentially be utilized in sandwich type immunoassays for the detection of Ebola virus.

  3. Seeding for pervasively overlapping communities

    NASA Astrophysics Data System (ADS)

    Lee, Conrad; Reid, Fergal; McDaid, Aaron; Hurley, Neil

    2011-06-01

    In some social and biological networks, the majority of nodes belong to multiple communities. It has recently been shown that a number of the algorithms specifically designed to detect overlapping communities do not perform well in such highly overlapping settings. Here, we consider one class of these algorithms, those which optimize a local fitness measure, typically by using a greedy heuristic to expand a seed into a community. We perform synthetic benchmarks which indicate that an appropriate seeding strategy becomes more important as the extent of community overlap increases. We find that distinct cliques provide the best seeds. We find further support for this seeding strategy with benchmarks on a Facebook network and the yeast interactome.

  4. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  5. Enantiomeric analysis of overlapped chromatographic profiles in the presence of interferences. Determination of ibuprofen in a pharmaceutical formulation containing homatropine.

    PubMed

    Padró, J M; Osorio-Grisales, J; Arancibia, J A; Olivieri, A C; Castells, C B

    2016-10-07

    In this work, we studied the combination of chemometric methods with chromatographic separations as a strategy applied to the analysis of enantiomers when complete enantioseparation is difficult or requires long analysis times and, in addition, the target signals have interference from the matrix. We present the determination of ibuprofen enantiomers in pharmaceutical formulations containing homatropine as interference by chiral HPLC-DAD detection in combination with partial least-squares algorithms. The method has been applied to samples containing enantiomeric ratios from 95:5 to 99.5:0.5 and coelution of interferents. The results were validated using univariate calibration and without homatropine. Relative error of the method was less than 4.0%, for both enantiomers. Limits of detection (LOD) and quantification (LOQ) for (S)-(+)-ibuprofen were 4.96×10(-10) and 1.50×10(-9)mol, respectively. LOD and LOQ for the R-(-)-ibuprofen were LOD=1.60×10(-11)mol and LOQ=4.85×10(-11)mol, respectively. Finally, the chemometric method was applied to the determination of enantiomeric purity of commercial pharmaceuticals. The ultimate goal of this research was the development of rapid, reliable, and robust methods for assessing enantiomeric purity by conventional diode array detector assisted by chemometric tools.

  6. Factors determining nestedness in complex networks.

    PubMed

    Jonhson, Samuel; Domínguez-García, Virginia; Muñoz, Miguel A

    2013-01-01

    Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted - as a second factor - we find that nestedness is strongly correlated with disassortativity and hence - as random networks have been recently found to be naturally disassortative - they also tend to be naturally nested just as the result of chance.

  7. Factors Determining Nestedness in Complex Networks

    PubMed Central

    Jonhson, Samuel; Domínguez-García, Virginia; Muñoz, Miguel A.

    2013-01-01

    Understanding the causes and effects of network structural features is a key task in deciphering complex systems. In this context, the property of network nestedness has aroused a fair amount of interest as regards ecological networks. Indeed, Bastolla et al. introduced a simple measure of network nestedness which opened the door to analytical understanding, allowing them to conclude that biodiversity is strongly enhanced in highly nested mutualistic networks. Here, we suggest a slightly refined version of such a measure of nestedness and study how it is influenced by the most basic structural properties of networks, such as degree distribution and degree-degree correlations (i.e. assortativity). We find that most of the empirically found nestedness stems from heterogeneity in the degree distribution. Once such an influence has been discounted – as a second factor – we find that nestedness is strongly correlated with disassortativity and hence – as random networks have been recently found to be naturally disassortative – they also tend to be naturally nested just as the result of chance. PMID:24069264

  8. DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES

    PubMed Central

    YSA, TAMYKO; SIERRA, VICENTA; ESTEVE, MARC

    2014-01-01

    The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized. PMID:25520529

  9. Approach of Complex Networks for the Determination of Brain Death

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Gang; Cao, Jian-Ting; Wang, Ru-Bin

    2011-06-01

    In clinical practice, brain death is the irreversible end of all brain activity. Compared to current statistical methods for the determination of brain death, we focus on the approach of complex networks for real-world electroencephalography in its determination. Brain functional networks constructed by correlation analysis are derived, and statistical network quantities used for distinguishing the patients in coma or brain death state, such as average strength, clustering coefficient and average path length, are calculated. Numerical results show that the values of network quantities of patients in coma state are larger than those of patients in brain death state. Our findings might provide valuable insights on the determination of brain death.

  10. Spectrophotometric methods manipulating ratio spectra for simultaneous determination of binary mixtures with sever overlapping spectra: a comparative study.

    PubMed

    Moustafa, H; Fayez, Y

    2014-12-10

    Three simple, specific and accurate spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of Rabeprazole sodium (RB) and Domperidone (DP) in their binary mixture without prior separation. Method A, is constant center spectrophotometric method (CC). Method B is a ratio difference spectrophotometric one (RD), while method C is a combined ratio isoabsorptive point-ratio difference method (RIRD). Linear correlations were obtained in range of 4-44μg/mL for both Rabeprazole sodium and Domperidone. The mean percentage recoveries of RB were 99.69±0.504 for method A, 99.83±0.483 for (B) and 100.31±0.499 for (C), respectively, and that of DP were 99.52±0.474 for method A, 100.12±0.505 for (B) and 100.16±0.498 for (C), respectively. Specificity was investigated by analysis of laboratory prepared mixtures containing the cited drugs and their combined tablet dosage form. The obtained results were statistically compared with those obtained by the reported methods, showing no significant difference with respect to accuracy and precision. The three methods were validated as per ICH guidelines and can be applied for routine analysis in quality control laboratories.

  11. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    PubMed

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility.

  12. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish

    NASA Astrophysics Data System (ADS)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-01

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility.

  13. Structural determinants of criticality in biological networks

    PubMed Central

    Valverde, Sergi; Ohse, Sebastian; Turalska, Malgorzata; West, Bruce J.; Garcia-Ojalvo, Jordi

    2015-01-01

    Many adaptive evolutionary systems display spatial and temporal features, such as long-range correlations, typically associated with the critical point of a phase transition in statistical physics. Empirical and theoretical studies suggest that operating near criticality enhances the functionality of biological networks, such as brain and gene networks, in terms for instance of information processing, robustness, and evolvability. While previous studies have explained criticality with specific system features, we still lack a general theory of critical behavior in biological systems. Here we look at this problem from the complex systems perspective, since in principle all critical biological circuits have in common the fact that their internal organization can be described as a complex network. An important question is how self-similar structure influences self-similar dynamics. Modularity and heterogeneity, for instance, affect the location of critical points and can be used to tune the system toward criticality. We review and discuss recent studies on the criticality of neuronal and genetic networks, and discuss the implications of network theory when assessing the evolutionary features of criticality. PMID:26005422

  14. Harmonic analysis of Boolean networks: determinative power and perturbations

    PubMed Central

    2013-01-01

    Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the network is needed. We argue that the mutual information (MI) between a given subset of the inputs X={X1,...,Xn} of some node i and its associated function fi(X) quantifies the determinative power of this set of inputs over node i. We compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that, maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct relation between MI and sensitivity to perturbations. As an application of our results, we analyze the large-scale regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be tolerant to perturbations of its inputs. PMID:23642003

  15. Clique graphs and overlapping communities

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2010-12-01

    It is shown how to construct a clique graph in which properties of cliques of a fixed order in a given graph are represented by vertices in a weighted graph. Various definitions and motivations for these weights are given. The detection of communities or clusters is used to illustrate how a clique graph may be exploited. In particular a benchmark network is shown where clique graphs find the overlapping communities accurately while vertex partition methods fail.

  16. Determining ecoregions for environmental and GMO monitoring networks.

    PubMed

    Graef, F; Schmidt, G; Schröder, W; Stachow, U

    2005-09-01

    A representative environmental monitoring network at the regional scale cannot use raster-based or random sampling designs, but requires a stratified sampling procedure integrating different information layers, and it has to occur in ecologically differing homogeneous regions (ecoregions). These we have determined using a set of spatial strata with ecological variables which we analysed with classification and regression trees (CART). We present a framework for environmental monitoring, that covers different scales, and we transfer the framework to a potential GMO (genetically modified organisms) monitoring network. We use ecoregion and other environmental strata together with existing environmental monitoring networks to determine GMO monitoring sites more precisely.

  17. Overlapping structures in sensory-motor mappings.

    PubMed

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots.

  18. Overlapping Structures in Sensory-Motor Mappings

    PubMed Central

    Earland, Kevin; Lee, Mark; Shaw, Patricia; Law, James

    2014-01-01

    This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots. PMID:24392118

  19. Investigating the overlap function of a ceilometer with different methods

    NASA Astrophysics Data System (ADS)

    Wagner, Frank; Mattis, Ina; Geiss, Alexander; Wiegner, Matthias

    2015-04-01

    The DWD ceilometer network was created in 2008. In the following years more and more ceilometers of type CHM15k (manufacturer Jenoptik) were installed with the aim of observing atmospheric aerosol particles. Now, 58 ceilometers are in continuous operation. The overlap function of a ceilometer is important for the correction of the measurements in the near field of the instrument. In this work the overlap function for a ceilometer CHM15k Nimbus was determined with different methods and the results are compared taking into accounts the respective errors and error propagation. The first method is based on the comparison of measurements with another CHM15k Nimbus device which has a known overlap function. For this type of instrument the overlap is complete at about 1.5km distance. Co-located measurements of the 2 devices were done at Hohenpeissenberg Meteorological Observatory during several months in summer 2013. The second method resembles the first one but the comparison is done with a CHM15k near field instrument. For this type of instrument the overlap is complete at about 500m distance. Co-located measurements of the 2 devices were done at the Meteorological Institute of the University of Munich during one week in July 2013.The third method is based on horizontal measurements under the assumption that the aerosol particles are horizontally homogenously spread. This is assured by measurements in different (horizontal) directions, i.e. different azimuth angles, under suitable meteorological conditions. The measurements were acquired during one night at Hohenpeissenberg Meteorological Observatory. All three methods were used to determine the overlap function of a CHM15k ceilometer. The results were similar although the final error of the obtained overlap function differs due to different assumptions and measurement errors.

  20. Functional network overlap as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, balanced excitation and inhibition, and sparseness of neuron activity.

    PubMed

    Xu, Jiansong; Calhoun, Vince D; Worhunsky, Patrick D; Xiang, Hui; Li, Jian; Wall, John T; Pearlson, Godfrey D; Potenza, Marc N

    2015-01-01

    Functional magnetic resonance imaging (fMRI) studies traditionally use general linear model-based analysis (GLM-BA) and regularly report task-related activation, deactivation, or no change in activation in separate brain regions. However, several recent fMRI studies using spatial independent component analysis (sICA) find extensive overlap of functional networks (FNs), each exhibiting different task-related modulation (e.g., activation vs. deactivation), different from the dominant findings of GLM-BA. This study used sICA to assess overlap of FNs extracted from four datasets, each related to a different cognitive task. FNs extracted from each dataset overlapped with each other extensively across most or all brain regions and showed task-related concurrent increases, decreases, or no changes in activity. These findings indicate that neural substrates showing task-related concurrent but different modulations in activity intermix with each other and distribute across most of the brain. Furthermore, spatial correlation analyses found that most FNs were highly consistent in spatial patterns across different datasets. This finding indicates that these FNs probably reflect large-scale patterns of task-related brain activity. We hypothesize that FN overlaps as revealed by sICA might relate to functional heterogeneity, balanced excitation and inhibition, and population sparseness of neuron activity, three fundamental properties of the brain. These possibilities deserve further investigation.

  1. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  2. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-15

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  3. Determining hierarchical functional networks from auditory stimuli fMRI.

    PubMed

    Patel, Rajan S; Bowman, F Dubois; Rilling, James K

    2006-05-01

    We determined connectivity of the human brain using functional magnetic resonance imaging (fMRI) while subjects experienced auditory stimuli in a 2-by-2 factorial design. The two factors in this study were "speaker" (same or different speaker) and "sentence" (same or different sentences). Connectivity studies allow us to ask how spatially remote brain regions are neurophysiologically related given these stimuli. In the context of this study, we examined how the "speaker" effect and "sentence" effect influenced these relationships. We applied a Bayesian connectivity method that determines hierarchical functional networks of functionally connected brain regions. Hierarchy in these functional networks is determined by conditional probabilities of elevated activity. For example, a brain region that becomes active a superset of the time of another region is considered ascendant to that brain region in the hierarchical network. For each factor level, we found a baseline functional network connecting the primary auditory cortex (Brodmann's Area [BA] 41) with the BA 42 and BA 22 of the superior temporal gyrus (STG). We also found a baseline functional network that includes Wernicke's Area (BA 22 posterior), STG, and BA 44 for each factor level. However, we additionally observed a strong ascendant connection from BA 41 to the posterior cingulate (BA 30) and Broca's Area and a stronger connection from Wernicke's Area to STG and the posterior cingulate while passively listening to different sentences rather than the same sentence repeatedly. Finally, our results revealed no significant "speaker" effect or interaction between "speaker" and "sentence."

  4. Logical Reduction of Biological Networks to Their Most Determinative Components.

    PubMed

    Matache, Mihaela T; Matache, Valentin

    2016-07-01

    Boolean networks have been widely used as models for gene regulatory networks, signal transduction networks, or neural networks, among many others. One of the main difficulties in analyzing the dynamics of a Boolean network and its sensitivity to perturbations or mutations is the fact that it grows exponentially with the number of nodes. Therefore, various approaches for simplifying the computations and reducing the network to a subset of relevant nodes have been proposed in the past few years. We consider a recently introduced method for reducing a Boolean network to its most determinative nodes that yield the highest information gain. The determinative power of a node is obtained by a summation of all mutual information quantities over all nodes having the chosen node as a common input, thus representing a measure of information gain obtained by the knowledge of the node under consideration. The determinative power of nodes has been considered in the literature under the assumption that the inputs are independent in which case one can use the Bahadur orthonormal basis. In this article, we relax that assumption and use a standard orthonormal basis instead. We use techniques of Hilbert space operators and harmonic analysis to generate formulas for the sensitivity to perturbations of nodes, quantified by the notions of influence, average sensitivity, and strength. Since we work on finite-dimensional spaces, our formulas and estimates can be and are formulated in plain matrix algebra terminology. We analyze the determinative power of nodes for a Boolean model of a signal transduction network of a generic fibroblast cell. We also show the similarities and differences induced by the alternative complete orthonormal basis used. Among the similarities, we mention the fact that the knowledge of the states of the most determinative nodes reduces the entropy or uncertainty of the overall network significantly. In a special case, we obtain a stronger result than in previous

  5. Leveraging disjoint communities for detecting overlapping community structure

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy

    2015-05-01

    Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.

  6. Heterogeneity in ecological mutualistic networks dominantly determines community stability

    PubMed Central

    Feng, Wenfeng; Takemoto, Kazuhiro

    2014-01-01

    Although the hypothesis that nestedness determines mutualistic ecosystem dynamics is accepted in general, results of some recent data analyses and theoretical studies have begun to cast doubt on the impact of nestedness on ecosystem stability. However, definite conclusions have not yet been reached because previous studies are mainly based on numerical simulations. Therefore, we reveal a mathematical architecture in the relationship between ecological mutualistic networks and local stability based on spectral graph analysis. In particular, we propose a theoretical method for estimating the dominant eigenvalue (i.e., spectral radius) of quantitative (or weighted) bipartite networks by extending spectral graph theory, and provide a theoretical prediction that the heterogeneity of node degrees and link weights primarily determines the local stability; on the other hand, nestedness additionally affects it. Numerical simulations demonstrate the validity of our theory and prediction. This study emphasizes the importance of ecological network heterogeneity in ecosystem dynamics, and it enhances our understanding of structure–stability relationships. PMID:25081499

  7. Heterogeneity in ecological mutualistic networks dominantly determines community stability.

    PubMed

    Feng, Wenfeng; Takemoto, Kazuhiro

    2014-08-01

    Although the hypothesis that nestedness determines mutualistic ecosystem dynamics is accepted in general, results of some recent data analyses and theoretical studies have begun to cast doubt on the impact of nestedness on ecosystem stability. However, definite conclusions have not yet been reached because previous studies are mainly based on numerical simulations. Therefore, we reveal a mathematical architecture in the relationship between ecological mutualistic networks and local stability based on spectral graph analysis. In particular, we propose a theoretical method for estimating the dominant eigenvalue (i.e., spectral radius) of quantitative (or weighted) bipartite networks by extending spectral graph theory, and provide a theoretical prediction that the heterogeneity of node degrees and link weights primarily determines the local stability; on the other hand, nestedness additionally affects it. Numerical simulations demonstrate the validity of our theory and prediction. This study emphasizes the importance of ecological network heterogeneity in ecosystem dynamics, and it enhances our understanding of structure-stability relationships.

  8. Steganalysis of overlapping images

    NASA Astrophysics Data System (ADS)

    Whitaker, James M.; Ker, Andrew D.

    2015-03-01

    We examine whether steganographic images can be detected more reliably when there exist other images, taken with the same camera under the same conditions, of the same scene. We argue that such a circumstance is realistic and likely in practice. In `laboratory conditions' mimicking circumstances favourable to the analyst, and with a custom set of digital images which capture the same scenes with controlled amounts of overlap, we use an overlapping reference image to calibrate steganographic features of the image under analysis. Experimental results show that the analysed image can be classified as cover or stego with much greater reliability than traditional steganalysis not exploiting overlapping content, and the improvement in reliability depends on the amount of overlap. These results are curious because two different photographs of exactly the same scene, taken only a few seconds apart with a fixed camera and settings, typically have steganographic features that differ by considerably more than a cover and stego image.

  9. The interaction of intrinsic dynamics and network topology in determining network burst synchrony.

    PubMed

    Gaiteri, Chris; Rubin, Jonathan E

    2011-01-01

    The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active, rhythmically bursting, or quiescent. Despite this intrinsic heterogeneity, coupled networks of pre-BötC neurons en bloc engage in synchronized bursting that can drive inspiratory motor neuron activation. The region's connection topology has been recently characterized and features dense clusters of cells with occasional connections between clusters. We investigate how the dynamics of individual neurons (quiescent/bursting/tonic) and the betweenness centrality of neurons' positions within the network connectivity graph interact to govern network burst synchrony, by simulating heterogeneous networks of computational model pre-BötC neurons. Furthermore, we compare the prevalence and synchrony of bursting across networks constructed with a variety of connection topologies, analyzing the same collection of heterogeneous neurons in small-world, scale-free, random, and regularly structured networks. We find that several measures of network burst synchronization are determined by interactions of network topology with the intrinsic dynamics of neurons at central network positions and by the strengths of synaptic connections between neurons. Surprisingly, despite the functional role of synchronized bursting within the pre-BötC, we find that synchronized network bursting is generally weakest when we use its specific connection topology, which leads to synchrony within clusters but poor coordination across clusters. Overall, our results highlight the relevance of interactions between topology and intrinsic dynamics in shaping the activity of networks and the concerted effects of connectivity patterns and dynamic heterogeneities.

  10. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions

    SciTech Connect

    MacArthur, Stewart; Li, Xiao-Yong; Li, Jingyi; Brown, James B.; Chu, Hou Cheng; Zeng, Lucy; Grondona, Brandi P.; Hechmer, Aaron; Simirenko, Lisa; Keranen, Soile V.E.; Knowles, David W.; Stapleton, Mark; Bickel, Peter; Biggin, Mark D.; Eisen, Michael B.

    2009-05-15

    BACKGROUND: We previously established that six sequence-specific transcription factors that initiate anterior/posterior patterning in Drosophila bind to overlapping sets of thousands of genomic regions in blastoderm embryos. While regions bound at high levels include known and probable functional targets, more poorly bound regions are preferentially associated with housekeeping genes and/or genes not transcribed in the blastoderm, and are frequently found in protein coding sequences or in less conserved non-coding DNA, suggesting that many are likely non-functional. RESULTS: Here we show that an additional 15 transcription factors that regulate other aspects of embryo patterning show a similar quantitative continuum of function and binding to thousands of genomic regions in vivo. Collectively, the 21 regulators show a surprisingly high overlap in the regions they bind given that they belong to 11 DNA binding domain families, specify distinct developmental fates, and can act via different cis-regulatory modules. We demonstrate, however, that quantitative differences in relative levels of binding to shared targets correlate with the known biological and transcriptional regulatory specificities of these factors. CONCLUSIONS: It is likely that the overlap in binding of biochemically and functionally unrelated transcription factors arises from the high concentrations of these proteins in nuclei, which, coupled with their broad DNA binding specificities, directs them to regions of open chromatin. We suggest that most animal transcription factors will be found to show a similar broad overlapping pattern of binding in vivo, with specificity achieved by modulating the amount, rather than the identity, of bound factor.

  11. Laser tracker error determination using a network measurement

    NASA Astrophysics Data System (ADS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-04-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies.

  12. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  13. Clustering determines the dynamics of complex contagions in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zhuang, Yong; Arenas, Alex; Yaǧan, Osman

    2017-01-01

    We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.

  14. Distal tibiofibular radiological overlap

    PubMed Central

    Sowman, B.; Radic, R.; Kuster, M.; Yates, P.; Breidiel, B.; Karamfilef, S.

    2012-01-01

    Objectives Overlap between the distal tibia and fibula has always been quoted to be positive. If the value is not positive then an injury to the syndesmosis is thought to exist. Our null hypothesis is that it is a normal variant in the adult population. Methods We looked at axial CT scans of the ankle in 325 patients for the presence of overlap between the distal tibia and fibula. Where we thought this was possible we reconstructed the images to represent a plain film radiograph which we were able to rotate and view in multiple planes to confirm the assessment. Results The scans were taken for reasons other than pathology of the ankle. We found there was no overlap in four patients. These patients were then questioned about previous injury, trauma, surgery or pain, in order to exclude underlying pathology. Conclusion We concluded that no overlap between the tibia and fibula may exist in the population, albeit in a very small proportion. PMID:23610666

  15. Overlap among Environmental Databases.

    ERIC Educational Resources Information Center

    Miller, Betty

    1981-01-01

    Describes the methodology and results of a study comparing the overlap of Enviroline, Pollution, and the Environmental Periodicals Bibliography files through searches on acid rain, asbestos and water, diesel, glass recycling, Lake Erie, Concorde, reverse osmosis wastewater treatment cost, and Calspan. Nine tables are provided. (RBF)

  16. An Integrated Centroid Finding and Particle Overlap Decomposition Algorithm for Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    An integrated algorithm for decomposing overlapping particle images (multi-particle objects) along with determining each object s constituent particle centroid(s) has been developed using image analysis techniques. The centroid finding algorithm uses a modified eight-direction search method for finding the perimeter of any enclosed object. The centroid is calculated using the intensity-weighted center of mass of the object. The overlap decomposition algorithm further analyzes the object data and breaks it down into its constituent particle centroid(s). This is accomplished with an artificial neural network, feature based technique and provides an efficient way of decomposing overlapping particles. Combining the centroid finding and overlap decomposition routines into a single algorithm allows us to accurately predict the error associated with finding the centroid(s) of particles in our experiments. This algorithm has been tested using real, simulated, and synthetic data and the results are presented and discussed.

  17. Probing genetic overlap among complex human phenotypes.

    PubMed

    Rzhetsky, Andrey; Wajngurt, David; Park, Naeun; Zheng, Tian

    2007-07-10

    Geneticists and epidemiologists often observe that certain hereditary disorders cooccur in individual patients significantly more (or significantly less) frequently than expected, suggesting there is a genetic variation that predisposes its bearer to multiple disorders, or that protects against some disorders while predisposing to others. We suggest that, by using a large number of phenotypic observations about multiple disorders and an appropriate statistical model, we can infer genetic overlaps between phenotypes. Our proof-of-concept analysis of 1.5 million patient records and 161 disorders indicates that disease phenotypes form a highly connected network of strong pairwise correlations. Our modeling approach, under appropriate assumptions, allows us to estimate from these correlations the size of putative genetic overlaps. For example, we suggest that autism, bipolar disorder, and schizophrenia share significant genetic overlaps. Our disease network hypothesis can be immediately exploited in the design of genetic mapping approaches that involve joint linkage or association analyses of multiple seemingly disparate phenotypes.

  18. The Plate Overlap Technique.

    DTIC Science & Technology

    1978-07-31

    INTRODUCTION 1 II. NOTATION 2 III. THE GNOMONIC PROJECTION 4 IV . THE PLATE OVERLAP TECHNIQUE 6 A. MOTIVATION 6 B. FORNULATION 9 C. ON STATISTICAL RIGOR 14 D...and new hardware. Since this aim was clearly recognized long ago, wherever possible in earlier documents or software development flexibility was...reader should see 1, 2, and 3. The procedures one should use to update stellar positions are discussed in 4 with applica- tions to the SAOC in 5. Non

  19. Optical neural network system for pose determination of spinning satellites

    NASA Technical Reports Server (NTRS)

    Lee, Andrew; Casasent, David

    1990-01-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.

  20. Optical neural network system for pose determination of spinning satellites

    NASA Astrophysics Data System (ADS)

    Lee, Andrew J.; Casasent, David P.

    1990-09-01

    An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning sateffites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time and hence the paths of object (sateffite) parts. The path traced out by a given part or region is approximately elliptical in image space and the position shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite and the effiptical path of a part in image space the 3-D pose of the satellite is determined. Digital simulation results using this algorithm are presented for various sateffite poses and lighting conditions. 1

  1. Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers.

    PubMed

    Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter

    2016-05-01

    When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.

  2. Determining Locations by Use of Networks of Passive Beacons

    NASA Technical Reports Server (NTRS)

    Okino, Clayton; Gray, Andrew; Jennings, Esther

    2009-01-01

    Networks of passive radio beacons spanning moderate-sized terrain areas have been proposed to aid navigation of small robotic aircraft that would be used to explore Saturn s moon Titan. Such networks could also be used on Earth to aid navigation of robotic aircraft, land vehicles, or vessels engaged in exploration or reconnaissance in situations or locations (e.g., underwater locations) in which Global Positioning System (GPS) signals are unreliable or unavailable. Prior to use, it would be necessary to pre-position the beacons at known locations that would be determined by use of one or more precise independent global navigation system(s). Thereafter, while navigating over the area spanned by a given network of passive beacons, an exploratory robot would use the beacons to determine its position precisely relative to the known beacon positions (see figure). If it were necessary for the robot to explore multiple, separated terrain areas spanned by different networks of beacons, the robot could use a long-haul, relatively coarse global navigation system for the lower-precision position determination needed during transit between such areas. The proposed method of precise determination of position of an exploratory robot relative to the positions of passive radio beacons is based partly on the principles of radar and partly on the principles of radio-frequency identification (RFID) tags. The robot would transmit radar-like signals that would be modified and reflected by the passive beacons. The distance to each beacon would be determined from the roundtrip propagation time and/or round-trip phase shift of the signal returning from that beacon. Signals returned from different beacons could be distinguished by means of their RFID characteristics. Alternatively or in addition, the antenna of each beacon could be designed to radiate in a unique pattern that could be identified by the navigation system. Also, alternatively or in addition, sets of identical beacons could

  3. High-Throughput Chiral LC-MS/MS Method Using Overlapping Injection Mode for the Determination of Pantoprazole Enantiomers in Human Plasma with Application to Pharmacokinetic Study.

    PubMed

    Li, Shengni; Jiang, Huafang; Wang, Yiya; Liu, Yinli; Shen, Xiaohang; Liang, Wenzhong; Hong, Zhanying

    2016-07-01

    A sensitive and high-throughput chiral liquid chromatography-tandem mass spectrometry method was developed and validated for the quantification of R-pantoprazole and S-pantoprazole in human plasma. Sample extraction was carried out by using ethyl acetate liquid-liquid extraction in 96-well plate format. The separation of pantoprazole enantiomers was performed on a CHIRALCEL OJ-RH column and an overlapping injection mode was used to achieve a run time of 5.0 min/sample. The mobile phase consisted of 1) 10 mM ammonium acetate in methanol: acetonitrile (1:1, v/v) and 2) 20 mM ammonium acetate in water. Isocratic elution was used with flow rate at 500 μL/min. The enantiomers were quantified on a triple-quadrupole mass spectrometer under multiple reaction monitoring (MRM) mode with m/z 382.1/230.0 for pantoprazole and m/z 388.4/230.1 for pantoprazole-d7. Linearity from 20.0 to 5000 ng/mL was established for each enantiomer (r(2)  > 0.99). Extraction recovery ranged from 91.7% to 96.4% for R-pantoprazole and from 92.5% to 96.5% for S-pantoprazole and the IS-normalized matrix factor was 0.98 to 1.07 for R-pantoprazole and S-pantoprazole, respectively. The method was demonstrated with acceptable accuracy, precision, selectivity, and stability and the method was applied to support a pharmacokinetic study of a phase I clinical trial of racemic pantoprazole in healthy Chinese subjects. Chirality 28:569-575, 2016. © 2016 Wiley Periodicals, Inc.

  4. Genetically determined phenotype covariation networks control bone strength.

    PubMed

    Jepsen, Karl J; Courtland, Hayden-William; Nadeau, Joseph H

    2010-07-01

    To identify genes affecting bone strength, we studied how genetic variants regulate components of a phenotypic covariation network that was previously shown to accurately characterize the compensatory trait interactions involved in functional adaptation during growth. Quantitative trait loci (QTLs) regulating femoral robustness, morphologic compensation, and mineralization (tissue quality) were mapped at three ages during growth using AXB/BXA Recombinant Inbred (RI) mouse strains and adult B6-i(A) Chromosome Substitution Strains (CSS). QTLs for robustness were identified on chromosomes 8, 12, 18, and 19 and confirmed at all three ages, indicating that genetic variants established robustness postnatally without further modification. A QTL for morphologic compensation, which was measured as the relationship between cortical area and body weight, was identified on chromosome 8. This QTL limited the amount of bone formed during growth and thus acted as a setpoint for diaphyseal bone mass. Additional QTLs were identified from the CSS analysis. QTLs for robustness and morphologic compensation regulated bone structure independently (ie, in a nonpleiotropic manner), indicating that each trait may be targeted separately to individualize treatments aiming to improve strength. Multiple regression analyses showed that variation in morphologic compensation and tissue quality, not bone size, determined femoral strength relative to body weight. Thus an individual inheriting slender bones will not necessarily inherit weak bones unless the individual also inherits a gene that impairs compensation. This systems genetic analysis showed that genetically determined phenotype covariation networks control bone strength, suggesting that incorporating functional adaptation into genetic analyses will advance our understanding of the genetic basis of bone strength.

  5. Securely measuring the overlap between private datasets with cryptosets.

    PubMed

    Swamidass, S Joshua; Matlock, Matthew; Rozenblit, Leon

    2015-01-01

    Many scientific questions are best approached by sharing data--collected by different groups or across large collaborative networks--into a combined analysis. Unfortunately, some of the most interesting and powerful datasets--like health records, genetic data, and drug discovery data--cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset's contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach "information-theoretic" security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure.

  6. Optimal Parameter Determination for Tritiated Water Storage in Polyacrylic Networks

    SciTech Connect

    Postolache, C.; Matei, Lidia; Georgescu, Rodica; Ionita, Gh.

    2005-07-15

    Due to the remarkable capacity of water retaining, croslinked polyacrylic acids (PAA) represent an interesting alternative for tritiated water trapping. The study was developed on radiolytical processes in PAA:HTO systems derivated from irradiation of polymeric network by disintegration of tritium atoms from HTO. The aim of these studies is the identification of polymeric structures and optimal storage conditions.Sol and gel fractions were determinated by radiometrical methods using PAA labeled with 14-C at carboxylic groups and T at main chains of the polymer. Simulation of radiolytical processes was realized using {gamma} radiation field emitted by a irradiation source of 60-Co which ensures a maximum of absorbed dose rate of 3 kGy/h. Self-radiolytical effects were investigated using labeled PAA in HTO with great radioactive concentration (37-185 GBq/mL). The experiment suggests as optimum for HTO storage as tritium liquid wastes a 1:30 PAA:HTO swelling degree at 18.5-37 MBqL. HTO radioactive concentration.RES studies of radiolytical processes were also realized on dry polyacrylic acid (PAA) and polyacrylic based hydrogels irradiated and determined at 77 K. In the study we observed the effect of swelling capacity of hydrogel o the formation of free radicals.

  7. Determinants of Communication Network Involvement: Connectedness and Integration.

    ERIC Educational Resources Information Center

    Monge, Peter R.; And Others

    1983-01-01

    Developed structural equation models of involvement in communication networks in organizations for communication network connectedness and for network integration. A questionnaire was administered to members of a naval training facility (N=125). Models showed acceptable goodness-of-fit for the connectedness model and excellent goodness-of-fit for…

  8. Segmentation of fault networks determined from spatial clustering of earthquakes

    NASA Astrophysics Data System (ADS)

    Ouillon, G.; Sornette, D.

    2011-02-01

    We present a new method of data clustering applied to earthquake catalogs, with the goal of reconstructing the seismically active part of fault networks. We first use an original method to separate clustered events from uncorrelated seismicity using the distribution of volumes of tetrahedra defined by closest neighbor events in the original and randomized seismic catalogs. The spatial disorder of the complex geometry of fault networks is then taken into account by defining faults as probabilistic anisotropic kernels. The structure of those kernels is motivated by properties of discontinuous tectonic deformation and by previous empirical observations of the geometry of faults and of earthquake clusters at many spatial and temporal scales. Combining this a priori knowledge with information theoretical arguments, we propose the Gaussian mixture approach implemented in an expectation maximization (EM) procedure. A cross-validation scheme is then used that allows the determination of the number of kernels which provides an optimal data clustering of the catalog. This three-step approach is applied to a high-quality catalog of relocated seismicity following the 1986 Mount Lewis (Ml = 5.7) event in California. It reveals that events cluster along planar patches of about 2 km2, i.e., comparable to the size of the main event. The finite thickness of those clusters (about 290 m) suggests that events do not occur on well-defined and smooth Euclidean fault core surfaces but rather that there exist a deforming area and a damage zone surrounding faults which may be seismically active at depth. Finally, we propose a connection between our methodology and multiscale spatial analysis, based on the derivation of a spatial fractal dimension of about 1.8 for the set of hypocenters in the Mount Lewis area, consistent with recent observations on relocated catalogs.

  9. Generating Composite Overlapping Grids on CAD Geometries

    SciTech Connect

    Henshaw, W.D.

    2002-02-07

    We describe some algorithms and tools that have been developed to generate composite overlapping grids on geometries that have been defined with computer aided design (CAD) programs. This process consists of five main steps. Starting from a description of the surfaces defining the computational domain we (1) correct errors in the CAD representation, (2) determine topology of the patched-surface, (3) build a global triangulation of the surface, (4) construct structured surface and volume grids using hyperbolic grid generation, and (5) generate the overlapping grid by determining the holes and the interpolation points. The overlapping grid generator which is used for the final step also supports the rapid generation of grids for block-structured adaptive mesh refinement and for moving grids. These algorithms have been implemented as part of the Overture object-oriented framework.

  10. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  11. Development and validation of different methods manipulating zero order and first order spectra for determination of the partially overlapped mixture benazepril and amlodipine: A comparative study

    NASA Astrophysics Data System (ADS)

    Hemdan, A.

    2016-07-01

    Three simple, selective, and accurate spectrophotometric methods have been developed and then validated for the analysis of Benazepril (BENZ) and Amlodipine (AML) in bulk powder and pharmaceutical dosage form. The first method is the absorption factor (AF) for zero order and amplitude factor (P-F) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 238 nm or from their first order spectra at 253 nm. The second method is the constant multiplication coupled with constant subtraction (CM-CS) for zero order and successive derivative subtraction-constant multiplication (SDS-CM) for first order spectrum, where both BENZ and AML can be measured from their resolved zero order spectra at 240 nm and 238 nm, respectively, or from their first order spectra at 214 nm and 253 nm for Benazepril and Amlodipine respectively. The third method is the novel constant multiplication coupled with derivative zero crossing (CM-DZC) which is a stability indicating assay method for determination of Benazepril and Amlodipine in presence of the main degradation product of Benazepril which is Benazeprilate (BENZT). The three methods were validated as per the ICH guidelines and the standard curves were found to be linear in the range of 5-60 μg/mL for Benazepril and 5-30 for Amlodipine, with well accepted mean correlation coefficient for each analyte. The intra-day and inter-day precision and accuracy results were well within the acceptable limits.

  12. 77 FR 7229 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... and Culture of Kazakhstan'' SUMMARY: Notice is hereby given of the following determinations: Pursuant... Networks: The Ancient Art and Culture of Kazakhstan,'' imported from abroad for temporary exhibition...

  13. 77 FR 37730 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... and Culture of Kazakhstan'' SUMMARY: Notice is hereby given of the following determinations: Pursuant... Networks: The Ancient Art and Culture of Kazakhstan,'' imported from abroad for temporary exhibition...

  14. Autism and ADHD: Overlapping and Discriminating Symptoms

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Mayes, Rebecca D.; Molitoris, Sarah

    2012-01-01

    Children with ADHD and autism have some similar features, complicating a differential diagnosis. The purpose of our study was to determine the degree to which core ADHD and autistic symptoms overlap in and discriminate between children 2-16 years of age with autism and ADHD. Our study demonstrated that 847 children with autism were easily…

  15. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-09-24

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities.

  16. 78 FR 1264 - CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... Employment and Training Administration CalAmp Wireless Networks Corporation, Waseca, MN; Notice of Negative... workers of the subject firm (TA-W-80,399A; CalAmp Wireless Networks Corporation, Waseca, Minnesota... Wireless Networks Corporation, Waseca, Minnesota to apply for TAA, the Department determines that...

  17. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    reaches to another boundary or tracing route. For overlapping chromosomes, the searching algorithm fails. We proposed a topology information based method for analyzing overlapping and touching chromosomes. Mihail Popescu adopts Cross Section Sequence Graph (CSSG) method for shape analyzing. Gady Agam proposed Discrete Curvature Function for splitting touching and overlapping chromosomes. But due to the non-rigid property of chromosomes, it is hard to determine the actual topology structure of chromosomes. In this paper we proposed a new method to produce topology information of chromosomes and had got good results in chromosome segmentation.

  18. Optimal Space Station solar array gimbal angle determination via radial basis function neural networks

    NASA Technical Reports Server (NTRS)

    Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.

    1994-01-01

    The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.

  19. Clustering algorithm for determining community structure in large networks

    NASA Astrophysics Data System (ADS)

    Pujol, Josep M.; Béjar, Javier; Delgado, Jordi

    2006-07-01

    We propose an algorithm to find the community structure in complex networks based on the combination of spectral analysis and modularity optimization. The clustering produced by our algorithm is as accurate as the best algorithms on the literature of modularity optimization; however, the main asset of the algorithm is its efficiency. The best match for our algorithm is Newman’s fast algorithm, which is the reference algorithm for clustering in large networks due to its efficiency. When both algorithms are compared, our algorithm outperforms the fast algorithm both in efficiency and accuracy of the clustering, in terms of modularity. Thus, the results suggest that the proposed algorithm is a good choice to analyze the community structure of medium and large networks in the range of tens and hundreds of thousand vertices.

  20. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  1. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    PubMed

    Pawelzyk, Paul; Mücke, Norbert; Herrmann, Harald; Willenbacher, Norbert

    2014-01-01

    Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1)) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2) in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.

  2. An Exposition of Fischer's Model of Overlapping Contracts.

    ERIC Educational Resources Information Center

    Fields, T. Windsor; Hart, William R.

    1992-01-01

    Suggests how the classic model of overlapping contracts can be incorporated into the contract wage model of aggregate supply. Illustrates dynamics of macroeconomic adjustment following a shock to aggregate demand. Concludes that overlapping contracts do not prolong the adjustment process; rather, the longest remaining contract determines the time…

  3. Finding Hierarchical and Overlapping Dense Subgraphs using Nucleus Decompositions

    SciTech Connect

    Seshadhri, Comandur; Pinar, Ali; Sariyuce, Ahmet Erdem; Catalyurek, Umit

    2014-11-01

    Finding dense substructures in a graph is a fundamental graph mining operation, with applications in bioinformatics, social networks, and visualization to name a few. Yet most standard formulations of this problem (like clique, quasiclique, k-densest subgraph) are NP-hard. Furthermore, the goal is rarely to nd the \\true optimum", but to identify many (if not all) dense substructures, understand their distribution in the graph, and ideally determine a hierarchical structure among them. Current dense subgraph nding algorithms usually optimize some objective, and only nd a few such subgraphs without providing any hierarchy. It is also not clear how to account for overlaps in dense substructures. We de ne the nucleus decomposition of a graph, which represents the graph as a forest of nuclei. Each nucleus is a subgraph where smaller cliques are present in many larger cliques. The forest of nuclei is a hierarchy by containment, where the edge density increases as we proceed towards leaf nuclei. Sibling nuclei can have limited intersections, which allows for discovery of overlapping dense subgraphs. With the right parameters, the nuclear decomposition generalizes the classic notions of k-cores and k-trusses. We give provable e cient algorithms for nuclear decompositions, and empirically evaluate their behavior in a variety of real graphs. The tree of nuclei consistently gives a global, hierarchical snapshot of dense substructures, and outputs dense subgraphs of higher quality than other state-of-theart solutions. Our algorithm can process graphs with tens of millions of edges in less than an hour.

  4. Determining a bisection bandwidth for a multi-node data communications network

    DOEpatents

    Faraj, Ahmad A.

    2010-01-26

    Methods, systems, and products are disclosed for determining a bisection bandwidth for a multi-node data communications network that include: partitioning nodes in the network into a first sub-network and a second sub-network in dependence upon a topology of the network; sending, by each node in the first sub-network to a destination node in the second sub-network, a first message having a predetermined message size; receiving, by each node in the first sub-network from a source node in the second sub-network, a second message; measuring, by each node in the first sub-network, the elapsed communications time between the sending of the first message and the receiving of the second message; selecting the longest elapsed communications time; and calculating the bisection bandwidth for the network in dependence upon the number of the nodes in the first sub-network, the predetermined message size of the first test message, and the longest elapsed communications time.

  5. Security management based on trust determination in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Li, Jianwu; Feng, Zebing; Wei, Zhiqing; Feng, Zhiyong; Zhang, Ping

    2014-12-01

    Security has played a major role in cognitive radio networks. Numerous researches have mainly focused on attacking detection based on source localization and detection probability. However, few of them took the penalty of attackers into consideration and neglected how to implement effective punitive measures against attackers. To address this issue, this article proposes a novel penalty mechanism based on cognitive trust value. The main feature of this mechanism has been realized by six functions: authentication, interactive, configuration, trust value collection, storage and update, and punishment. Data fusion center (FC) and cluster heads (CHs) have been put forward as a hierarchical architecture to manage trust value of cognitive users. Misbehaving users would be punished by FC by declining their trust value; thus, guaranteeing network security via distinguishing attack users is of great necessity. Simulation results verify the rationality and effectiveness of our proposed mechanism.

  6. Vulnerability and Cosusceptibility Determine the Size of Network Cascades

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-01-01

    In a network, a local disturbance can propagate and eventually cause a substantial part of the system to fail in cascade events that are easy to conceptualize but extraordinarily difficult to predict. Here, we develop a statistical framework that can predict cascade size distributions by incorporating two ingredients only: the vulnerability of individual components and the cosusceptibility of groups of components (i.e., their tendency to fail together). Using cascades in power grids as a representative example, we show that correlations between component failures define structured and often surprisingly large groups of cosusceptible components. Aside from their implications for blackout studies, these results provide insights and a new modeling framework for understanding cascades in financial systems, food webs, and complex networks in general.

  7. Automated iterative reclustering framework for determining hierarchical functional networks in resting state fMRI.

    PubMed

    Shams, Seyed-Mohammad; Afshin-Pour, Babak; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali; Strother, Stephen C

    2015-09-01

    To spatially cluster resting state-functional magnetic resonance imaging (rs-fMRI) data into potential networks, there are only a few general approaches that determine the number of networks/clusters, despite a wide variety of techniques proposed for clustering. For individual subjects, extraction of a large number of spatially disjoint clusters results in multiple small networks that are spatio-temporally homogeneous but irreproducible across subjects. Alternatively, extraction of a small number of clusters creates spatially large networks that are temporally heterogeneous but spatially reproducible across subjects. We propose a fully automatic, iterative reclustering framework in which a small number of spatially large, heterogeneous networks are initially extracted to maximize spatial reproducibility. Subsequently, the large networks are iteratively subdivided to create spatially reproducible subnetworks until the overall within-network homogeneity does not increase substantially. The proposed approach discovers a rich network hierarchy in the brain while simultaneously optimizing spatial reproducibility of networks across subjects and individual network homogeneity. We also propose a novel metric to measure the connectivity of brain regions, and in a simulation study show that our connectivity metric and framework perform well in the face of low signal to noise and initial segmentation errors. Experimental results generated using real fMRI data show that the proposed metric improves stability of network clusters across subjects, and generates a meaningful pattern for spatially hierarchical structure of the brain.

  8. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  9. Magnesium degradation as determined by artificial neural networks.

    PubMed

    Willumeit, Regine; Feyerabend, Frank; Huber, Norbert

    2013-11-01

    Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role.

  10. Method and apparatus for determining and utilizing a time-expanded decision network

    NASA Technical Reports Server (NTRS)

    Silver, Matthew (Inventor); de Weck, Olivier (Inventor)

    2012-01-01

    A method, apparatus and computer program for determining and utilizing a time-expanded decision network is presented. A set of potential system configurations is defined. Next, switching costs are quantified to create a "static network" that captures the difficulty of switching among these configurations. A time-expanded decision network is provided by expanding the static network in time, including chance and decision nodes. Minimum cost paths through the network are evaluated under plausible operating scenarios. The set of initial design configurations are iteratively modified to exploit high-leverage switches and the process is repeated to convergence. Time-expanded decision networks are applicable, but not limited to, the design of systems, products, services and contracts.

  11. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  12. International Network of Passive Correlation Ranging for Orbit Determination of a Geostationary Satellite

    NASA Astrophysics Data System (ADS)

    Kaliuzhnyi, Mykola; Bushuev, Felix; Shulga, Oleksandr; Sybiryakova, Yevgeniya; Shakun, Leonid; Bezrukovs, Vladislavs; Moskalenko, Sergiy; Kulishenko, Vladislav; Malynovskyi, Yevgen

    2016-12-01

    An international network of passive correlation ranging of a geostationary telecommunication satellite is considered in the article. The network is developed by the RI "MAO". The network consists of five spatially separated stations of synchronized reception of DVB-S signals of digital satellite TV. The stations are located in Ukraine and Latvia. The time difference of arrival (TDOA) on the network stations of the DVB-S signals, radiated by the satellite, is a measured parameter. The results of TDOA estimation obtained by the network in May-August 2016 are presented in the article. Orbital parameters of the tracked satellite are determined using measured values of the TDOA and two models of satellite motion: the analytical model SGP4/SDP4 and the model of numerical integration of the equations of satellite motion. Both models are realized using the free low-level space dynamics library OREKIT (ORbit Extrapolation KIT).

  13. Laser ranging network performance and routine orbit determination at D-PAF

    NASA Technical Reports Server (NTRS)

    Massmann, Franz-Heinrich; Reigber, C.; Li, H.; Koenig, Rolf; Raimondo, J. C.; Rajasenan, C.; Vei, M.

    1993-01-01

    ERS-1 is now about 8 months in orbit and has been tracked by the global laser network from the very beginning of the mission. The German processing and archiving facility for ERS-1 (D-PAF) is coordinating and supporting the network and performing the different routine orbit determination tasks. This paper presents details about the global network status, the communication to D-PAF and the tracking data and orbit processing system at D-PAF. The quality of the preliminary and precise orbits are shown and some problem areas are identified.

  14. A neural network approach to fault detection in spacecraft attitude determination and control systems

    NASA Astrophysics Data System (ADS)

    Schreiner, John N.

    This thesis proposes a method of performing fault detection and isolation in spacecraft attitude determination and control systems. The proposed method works by deploying a trained neural network to analyze a set of residuals that are defined such that they encompass the attitude control, guidance, and attitude determination subsystems. Eight neural networks were trained using either the resilient backpropagation, Levenberg-Marquardt, or Levenberg-Marquardt with Bayesian regularization training algorithms. The results of each of the neural networks were analyzed to determine the accuracy of the networks with respect to isolating the faulty component or faulty subsystem within the ADCS. The performance of the proposed neural network-based fault detection and isolation method was compared and contrasted with other ADCS FDI methods. The results obtained via simulation showed that the best neural networks employing this method successfully detected the presence of a fault 79% of the time. The faulty subsystem was successfully isolated 75% of the time and the faulty components within the faulty subsystem were isolated 37% of the time.

  15. Differential Selection within the Drosophila Retinal Determination Network and Evidence for Functional Divergence between Paralog Pairs

    PubMed Central

    Datta, Rhea R.; Cruickshank, Tami; Kumar, Justin P.

    2011-01-01

    The retinal determination (RD) network in Drosophila comprises fourteen known nuclear proteins that include DNA binding proteins, transcriptional co-activators, kinases and phosphatases. The composition of the network varies considerably throughout the animal kingdom, with the network in several basal insects having fewer members and with vertebrates having potentially significantly higher numbers of retinal determination genes. One important contributing factor for the variation in gene number within the network is gene duplication. For example, ten members of the RD network in Drosophila are derived from duplication events. Here we present an analysis of the coding regions of the five pairs of duplicate genes from within the retinal determination network of several different Drosophila species. We demonstrate that there is differential selection across the coding regions of all RD genes. Additionally, some of the most significant differences in ratios of non-silent to silent site substitutions (dN/dS) between paralog pairs are found within regions that have no ascribed function. Previous structure/function analyses of several duplicate genes have identified areas within one gene that contain novel activities when compared to its paralog. The evolutionary analysis presented here identifies these same areas in the paralogs as being under high levels of relaxed selection. We suggest that sequence divergence between paralogs and selection signatures can be used as a reasonable predictor of functional changes in rapidly evolving motifs. PMID:21210943

  16. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  17. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality

    PubMed Central

    Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard

    2016-01-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420

  18. Topological Small-World Organization of the Fibroblastic Reticular Cell Network Determines Lymph Node Functionality.

    PubMed

    Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard

    2016-07-01

    Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.

  19. Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases.

    PubMed

    Mariani, Simona; Dell'Orco, Daniele; Felline, Angelo; Raimondi, Francesco; Fanelli, Francesca

    2013-01-01

    A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations. The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect. Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions.

  20. Regulatory Network Structure as a Dominant Determinant of Transcription Factor Evolutionary Rate

    PubMed Central

    Coulombe-Huntington, Jasmin; Xia, Yu

    2012-01-01

    The evolution of transcriptional regulatory networks has thus far mostly been studied at the level of cis-regulatory elements. To gain a complete understanding of regulatory network evolution we must also study the evolutionary role of trans-factors, such as transcription factors (TFs). Here, we systematically assess genomic and network-level determinants of TF evolutionary rate in yeast, and how they compare to those of generic proteins, while carefully controlling for differences of the TF protein set, such as expression level. We found significantly distinct trends relating TF evolutionary rate to mRNA expression level, codon adaptation index, the evolutionary rate of physical interaction partners, and, confirming previous reports, to protein-protein interaction degree and regulatory in-degree. We discovered that for TFs, the dominant determinants of evolutionary rate lie in the structure of the regulatory network, such as the median evolutionary rate of target genes and the fraction of species-specific target genes. Decomposing the regulatory network by edge sign, we found that this modular evolution of TFs and their targets is limited to activating regulatory relationships. We show that fast evolving TFs tend to regulate other TFs and niche-specific processes and that their targets show larger evolutionary expression changes than targets of other TFs. We also show that the positive trend relating TF regulatory in-degree and evolutionary rate is likely related to the species-specificity of the transcriptional regulation modules. Finally, we discuss likely causes for TFs' different evolutionary relationship to the physical interaction network, such as the prevalence of transient interactions in the TF subnetwork. This work suggests that positive and negative regulatory networks follow very different evolutionary rules, and that transcription factor evolution is best understood at a network- or systems-level. PMID:23093926

  1. Overlap in Facebook Profiles Reflects Relationship Closeness.

    PubMed

    Castañeda, Araceli M; Wendel, Markie L; Crockett, Erin E

    2015-01-01

    We assessed the association between self-reported Inclusion of Other in the Self (IOS) and Facebook overlap. Ninety-two participants completed online measures of IOS and investment model constructs. Researchers then recorded Facebook data from participants' profile pages. Results from multilevel models revealed that IOS predicted Facebook overlap. Furthermore, Facebook overlap was associated with commitment and investment in ways comparable to self-reported IOS. These findings suggest that overlap in Facebook profiles can be used to measure relationship closeness.

  2. An evolutionary game approach for determination of the structural conflicts in signed networks

    NASA Astrophysics Data System (ADS)

    Tan, Shaolin; Lü, Jinhu

    2016-02-01

    Social or biochemical networks can often divide into two opposite alliances in response to structural conflicts between positive (friendly, activating) and negative (hostile, inhibiting) interactions. Yet, the underlying dynamics on how the opposite alliances are spontaneously formed to minimize the structural conflicts is still unclear. Here, we demonstrate that evolutionary game dynamics provides a felicitous possible tool to characterize the evolution and formation of alliances in signed networks. Indeed, an evolutionary game dynamics on signed networks is proposed such that each node can adaptively adjust its choice of alliances to maximize its own fitness, which yet leads to a minimization of the structural conflicts in the entire network. Numerical experiments show that the evolutionary game approach is universally efficient in quality and speed to find optimal solutions for all undirected or directed, unweighted or weighted signed networks. Moreover, the evolutionary game approach is inherently distributed. These characteristics thus suggest the evolutionary game dynamic approach as a feasible and effective tool for determining the structural conflicts in large-scale on-line signed networks.

  3. Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks.

    PubMed

    Davis, Trevor L; Rebay, Ilaria

    2017-01-15

    Among the mechanisms that steer cells to their correct fate during development, master regulatory networks are unique in their sufficiency to trigger a developmental program outside of its normal context. In this review we discuss the key features that underlie master regulatory potency during normal and ectopic development, focusing on two examples, the retinal determination gene network (RDGN) that directs eye development in the fruit fly and the pluripotency gene network (PGN) that maintains cell fate competency in the early mammalian embryo. In addition to the hierarchical transcriptional activation, extensive positive transcriptional feedback, and cooperative protein-protein interactions that enable master regulators to override competing cellular programs, recent evidence suggests that network topology must also be dynamic, with extensive rewiring of the interactions and feedback loops required to navigate the correct sequence of developmental transitions to reach a final fate. By synthesizing the in vivo evidence provided by the RDGN with the extensive mechanistic insight gleaned from the PGN, we highlight the unique regulatory capabilities that continual reorganization into new hierarchies confers on master control networks. We suggest that deeper understanding of such dynamics should be a priority, as accurate spatiotemporal remodeling of network topology will undoubtedly be essential for successful stem cell based therapeutic efforts.

  4. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network

    PubMed Central

    Essam, John W.; Izmailyan, Nikolay Sh.; Kenna, Ralph; Tan, Zhi-Zhong

    2015-01-01

    Considerable progress has recently been made in the development of techniques to exactly determine two-point resistances in networks of various topologies. In particular, two types of method have emerged. One is based on potentials and the evaluation of eigenvalues and eigenvectors of the Laplacian matrix associated with the network or its minors. The second method is based on a recurrence relation associated with the distribution of currents in the network. Here, these methods are compared and used to determine the resistance distances between any two nodes of a network with topology of a hammock. PMID:26064635

  5. Social externalities, overlap and the poverty trap

    PubMed Central

    Kim, Young-Chul; Loury, Glenn C.

    2014-01-01

    Previous studies find that some social groups are stuck in poverty traps because of network effects. However, these studies do not carefully analyze how these groups overcome low human capital investment activities. Unlike previous studies, the model in this paper includes network externalities in both the human capital investment stage and the subsequent career stages. This implies that not only the current network quality, but also the expectations about future network quality affect the current investment decision. Consequently, the coordinated expectation among the group members can play a crucial role in the determination of the final state. We define “overlap” for some initial skill ranges, whereby the economic performance of a group can be improved simply by increasing expectations of a brighter future. We also define “poverty trap” for some ranges, wherein a disadvantaged group is constrained by its history, and we explore the egalitarian policies to mobilize the group out of the trap. PMID:25484637

  6. What determines social capital in a social-ecological system? Insights from a network perspective.

    PubMed

    Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun

    2015-02-01

    Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable.

  7. What Determines Social Capital in a Social-Ecological System? Insights from a Network Perspective

    NASA Astrophysics Data System (ADS)

    Barnes-Mauthe, Michele; Gray, Steven Allen; Arita, Shawn; Lynham, John; Leung, PingSun

    2015-02-01

    Social capital is an important resource that can be mobilized for purposive action or competitive gain. The distribution of social capital in social-ecological systems can determine who is more productive at extracting ecological resources and who emerges as influential in guiding their management, thereby empowering some while disempowering others. Despite its importance, the factors that contribute to variation in social capital among individuals have not been widely studied. We adopt a network perspective to examine what determines social capital among individuals in social-ecological systems. We begin by identifying network measures of social capital relevant for individuals in this context, and review existing evidence concerning their determinants. Using a complete social network dataset from Hawaii's longline fishery, we employ social network analysis and other statistical methods to empirically estimate these measures and determine the extent to which individual stakeholder attributes explain variation within them. We find that ethnicity is the strongest predictor of social capital. Measures of human capital (i.e., education, experience), years living in the community, and information-sharing attitudes are also important. Surprisingly, we find that when controlling for other factors, industry leaders and formal fishery representatives are generally not well connected. Our results offer new quantitative insights on the relationship between stakeholder diversity, social networks, and social capital in a coupled social-ecological system, which can aid in identifying barriers and opportunities for action to overcome resource management problems. Our results also have implications for achieving resource governance that is not only ecologically and economically sustainable, but also equitable.

  8. Social acceleration and the network effect: a defence of social 'science fiction' and network determinism.

    PubMed

    Hassan, Robert

    2010-06-01

    This essay is a response to Judy Wajcman's essay 'Life in the fast lane? Towards a sociology of technology and time' (2008: 59-77). In that article Wajcman argued that recent developments in the sociology of temporal change had been marked by a tendency in social theory towards a form of 'science fiction'--a sociological theorizing, she maintains, that bears no real relation to actual, empirically provable developments in the field and should therefore be viewed as not contributing to 'a richer analysis of the relationship between technology and time' (2008: 61). This reply argues that as Wajcman suggests in her essay, there is indeed an 'urgent need for increased dialogue to connect social theory with detailed empirical studies' (2008: 59) but that the most fruitful way to proceed would not be through a constraining of 'science fiction' social theorizing but, rather, through its expansion--and more, that 'science fiction' should take the lead in the process. This essay suggests that the connection between social theory and empirical studies would be strengthened by a wider understanding of the function of knowledge and research in the context of what is termed 'true originality' and 'routine originality'. The former is the domain of social theory and the latter resides within traditional sociological disciplines. It is argued that both need each other to advance our understanding of society, especially in the context of the fast-changing processes of technological development. The example of 'technological determinism' is discussed as illustrative of how 'routine originality' can harden into dogma without the application of 'true originality' to continually question (sometimes through ideas that may appear to border on 'science fiction') comfortable assumptions that may have become 'routine' and shorn of their initial 'originality'.

  9. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap.

  10. A Boolean Model of the Cardiac Gene Regulatory Network Determining First and Second Heart Field Identity

    PubMed Central

    Zhou, Dao; Kestler, Hans A.; Kühl, Michael

    2012-01-01

    Two types of distinct cardiac progenitor cell populations can be identified during early heart development: the first heart field (FHF) and second heart field (SHF) lineage that later form the mature heart. They can be characterized by differential expression of transcription and signaling factors. These regulatory factors influence each other forming a gene regulatory network. Here, we present a core gene regulatory network for early cardiac development based on published temporal and spatial expression data of genes and their interactions. This gene regulatory network was implemented in a Boolean computational model. Simulations reveal stable states within the network model, which correspond to the regulatory states of the FHF and the SHF lineages. Furthermore, we are able to reproduce the expected temporal expression patterns of early cardiac factors mimicking developmental progression. Additionally, simulations of knock-down experiments within our model resemble published phenotypes of mutant mice. Consequently, this gene regulatory network retraces the early steps and requirements of cardiogenic mesoderm determination in a way appropriate to enhance the understanding of heart development. PMID:23056457

  11. Epidemic threshold determined by the first moments of network with alternating degree distributions

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Zhang, Haifeng; Fu, Xinchu; Ding, Yong; Small, Michael

    2015-02-01

    During the alternating day-night cycle, people have differing behavior and hence different connection patterns-such as going to work or home, shopping and so on. Hence, the true topological structure of human contact networks are not only time-varying but also exhibit certain distribution regularity. In this paper, we will investigate epidemic spreading on time-varying human contact networks, which follow one degree distribution during daytime, but another at night. Based on SIS (susceptible/infected/susceptible) propagation mechanism, we study the epidemic threshold of this network with alternating distributions. A surprising result is that for the discrete-time case the epidemic threshold is determined only by the first moments of the two alternating degree distributions, if the degree of each node is constant for all nights. A similar result is valid for the continuous-time case if the duration is sufficiently small. This work shows that the spreading dynamics of time-varying networks with alternating distributions is completely different from the widely studied case of static spreading networks.

  12. Void percolation and conduction of overlapping ellipsoids.

    PubMed

    Yi, Y B

    2006-09-01

    The void percolation and conduction problems for equisized overlapping ellipsoids of revolution are investigated using the discretization method. The method is validated by comparing the estimated percolation threshold of spheres with the precise result found in literature. The technique is then extended to determine the threshold of void percolation as a function of the geometric aspect ratio of ellipsoidal particles. The finite element method is also applied to evaluate the equivalent conductivity of the void phase in the system. The results confirm that there are no universalities for void percolation threshold and conductivity in particulate systems, and these properties are clearly dependent on the geometrical shape of particles. As a consequence, void percolation and conduction associated with ellipsoidal particles of large aspect ratio should be treated differently from spheres.

  13. Determination of the dissipative loss of a two-port network from noise temperature measurements

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1992-01-01

    When radiometric equipment is available, noise temperature measurement techniques provide a convenient and accurate means for determining the dissipative component of the insertion loss of a two-port network. It is increasingly becoming the practice to ignore mismatch errors caused by multiple reflections between the source, the receiver, and the component whose dissipative loss is being measured. Mismatch errors are difficult to determine in practice because of the requirements of having full knowledge of the magnitudes of reflection coefficients and S-parameters. This article shows it is permissible to neglect the effects of mismatch errors if special conditions are met. These special conditions only require that the reflection coefficients of the source and load be made negligibly small and that the two-port network being evaluated has reciprocal and symmetrical properties.

  14. Determination of DPPH free radical scavenging activity: application of artificial neural networks.

    PubMed

    Musa, Khalid Hamid; Abdullah, Aminah; Al-Haiqi, Ahmed

    2016-03-01

    A new computational approach for the determination of 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH-RSA) in food is reported, based on the concept of machine learning. Trolox standard was mix with DPPH at different concentrations to produce different colors from purple to yellow. Artificial neural network (ANN) was trained on a typical set of images of the DPPH radical reacting with different levels of Trolox. This allowed the neural network to classify future images of any sample into the correct class of RSA level. The ANN was then able to determine the DPPH-RSA of cinnamon, clove, mung bean, red bean, red rice, brown rice, black rice and tea extract and the results were compared with data obtained using a spectrophotometer. The application of ANN correlated well to the spectrophotometric classical procedure and thus do not require the use of spectrophotometer, and it could be used to obtain semi-quantitative results of DPPH-RSA.

  15. Heuristic overlap-exchange model of noble gas chemical shifts

    NASA Astrophysics Data System (ADS)

    Adrian, Frank J.

    2004-05-01

    It is now generally recognized that overlap-exchange interactions are the primary cause of the medium-dependent magnetic shielding (chemical shift) in all noble gases except helium, although the attractive electrostatic-dispersion (van der Waals) interactions play an indirect role in determining the penetration of the interacting species into the repulsive overlap-exchange region. The short-range nature of these overlap-exchange interactions, combined with the fact that they often can be approximated by simple functions of the overlap of the wave functions of the interacting species, suggests a useful semiempirical model of these chemical shifts. In it the total shielding is the sum of shieldings due to pairwise interactions of the noble gas atom with the individual atoms of the medium, with the "atomic" shielding terms either estimated by simple functions of the atomic overlap integrals averaged over their Boltzmann-weighted separations, or determined by fits to experimental data in systems whose complexity makes the former procedure impractical. Results for 129Xe chemical shifts in the noble gases and in a variety of molecular and condensed systems, including families of n-alkanes, straight-chain alcohols, and the endohedral compounds Xe@C60 and Xe@C70 are encouraging for the applicability of the model to systems of technical and biomedical interest.

  16. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

    DTIC Science & Technology

    2015-12-01

    Tumorigenes PRINCIPAL INVESTIGATOR: Xiaoming Ju, MD CONTRACTING ORGANIZATION: Thomas Jefferson University Philadelphia, PA 19107 REPORT DATE: December 2015...COVERED (From - To) 30Sep2011 - 29Sep2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Role of Retinal Determination Gene Network (RDGN) in...by DACH1 in vitro and in vivo and showed using ChIP analysis the binding of DACH1 to key target genes. We used genetic deletion studies to identify

  17. Intrinsic Disorder in Male Sex Determination: Disorderedness of Proteins from the Sry Transcriptional Network.

    PubMed

    Merone, Jean; Nwogu, Onyekahi; Redington, Jennifer M; Uversky, Vladimir N

    2016-10-28

    Sex differentiation is a complex process where sexually indifferent embryo progressively acquires male or female characteristics via tightly controlled, perfectly timed, and sophisticatedly intertwined chain of events. This process is controlled and regulated by a set of specific proteins, with one of the first steps in sex differentiation being the activation of the Y-chromosomal Sry gene (sex-determining region Y) in males that acts as a switch from undifferentiated gonad somatic cells to testis development. There are several key players in this process, which constitute the Sry transcriptional network, and collective action of which governs testis determination. Although it is accepted now that many proteins engaged in signal transduction as well as regulation and control of various biological processes are intrinsically disordered (i.e., do not have unique structure and remain unstructured, or incompletely structured, under physiological conditions), the roles and profusion of intrinsic disorder in proteins involved in the male sex determination have not been accessed as of yet. The goal of this study is to cover this gap by analyzing some key players of the Sry transcriptional network. To this end, we employed a broad set of computational tools for intrinsic disorder analysis and conducted intensive literature search in order to gain information on the structural peculiarities of the Sry network-related proteins, their intrinsic disorder predispositions, and the roles of intrinsic disorder in their functions.

  18. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  19. Tree-average distances on certain phylogenetic networks have their weights uniquely determined.

    PubMed

    Willson, Stephen J

    2012-01-01

    A phylogenetic network N has vertices corresponding to species and arcs corresponding to direct genetic inheritance from the species at the tail to the species at the head. Measurements of DNA are often made on species in the leaf set, and one seeks to infer properties of the network, possibly including the graph itself. In the case of phylogenetic trees, distances between extant species are frequently used to infer the phylogenetic trees by methods such as neighbor-joining. This paper proposes a tree-average distance for networks more general than trees. The notion requires a weight on each arc measuring the genetic change along the arc. For each displayed tree the distance between two leaves is the sum of the weights along the path joining them. At a hybrid vertex, each character is inherited from one of its parents. We will assume that for each hybrid there is a probability that the inheritance of a character is from a specified parent. Assume that the inheritance events at different hybrids are independent. Then for each displayed tree there will be a probability that the inheritance of a given character follows the tree; this probability may be interpreted as the probability of the tree. The tree-average distance between the leaves is defined to be the expected value of their distance in the displayed trees. For a class of rooted networks that includes rooted trees, it is shown that the weights and the probabilities at each hybrid vertex can be calculated given the network and the tree-average distances between the leaves. Hence these weights and probabilities are uniquely determined. The hypotheses on the networks include that hybrid vertices have indegree exactly 2 and that vertices that are not leaves have a tree-child.

  20. Overlap syndromes among autoimmune liver diseases.

    PubMed

    Rust, Christian; Beuers, Ulrich

    2008-06-07

    The three major immune disorders of the liver are autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Variant forms of these diseases are generally called overlap syndromes, although there has been no standardised definition. Patients with overlap syndromes present with both hepatitic and cholestatic serum liver tests and have histological features of AIH and PBC or PSC. The AIH-PBC overlap syndrome is the most common form, affecting almost 10% of adults with AIH or PBC. Single cases of AIH and autoimmune cholangitis (AMA-negative PBC) overlap syndrome have also been reported. The AIH-PSC overlap syndrome is predominantly found in children, adolescents and young adults with AIH or PSC. Interestingly, transitions from one autoimmune to another have also been reported in a minority of patients, especially transitions from PBC to AIH-PBC overlap syndrome. Overlap syndromes show a progressive course towards liver cirrhosis and liver failure without treatment. Therapy for overlap syndromes is empiric, since controlled trials are not available in these rare disorders. Anticholestatic therapy with ursodeoxycholic acid is usually combined with immunosuppressive therapy with corticosteroids and/or azathioprine in both AIH-PBC and AIH-PSC overlap syndromes. In end-stage disease, liver transplantation is the treatment of choice.

  1. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    PubMed Central

    Puig-Oliveras, Anna; Ballester, Maria; Corominas, Jordi; Revilla, Manuel; Estellé, Jordi; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Folch, Josep M.

    2014-01-01

    Background Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. Results The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. Conclusions This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production. PMID:25503799

  2. Sarcomeric thick and thin filament overlap influences postmortem proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between sarcomere length (SL) and proteolysis on meat tenderness is not clear. Indeed, the extent of thick and thin filament overlap alters actomyosin binding and may alter substrate availability during aging. The objective of this study was to determine the influence of sarcomere le...

  3. Lithology determination from well logs with fuzzy associative memory neural network

    SciTech Connect

    Chang, H.C.; Chen, H.C.; Fang, J.H.

    1997-05-01

    An artificial intelligence technique of fuzzy associative memory is used to determine rock types from well-log signatures. Fuzzy associative memory (FAM) is a hybrid of neutral network and fuzzy expert system. This new approach combines the learning ability of neural network and the strengths of fuzzy linguistic modeling to adaptively infer lithologies from well-log signatures based on (1) the relationships between the lithology and log signature that the neural network have learned during the training and/or (2) geologist`s knowledge about the rocks. The method is applied to a sequence of the Ordovician rock units in northern Kansas. This paper also compares the performances of two different methods, using the same data set for meaningful comparison. The advantages of FAM are (1) expert knowledge acquired by geologists is fully utilized; (2) this knowledge is augmented by the neural network learning from the data, when available; and (3) FAM is transparent in that the knowledge is explicitly stated in the fuzzy rules.

  4. Pathway structure determination in complex stochastic networks with non-exponential dwell times

    SciTech Connect

    Li, Xin; Kolomeisky, Anatoly B.; Valleriani, Angelo

    2014-05-14

    Analysis of complex networks has been widely used as a powerful tool for investigating various physical, chemical, and biological processes. To understand the emergent properties of these complex systems, one of the most basic issues is to determine the structure and topology of the underlying networks. Recently, a new theoretical approach based on first-passage analysis has been developed for investigating the relationship between structure and dynamic properties for network systems with exponential dwell time distributions. However, many real phenomena involve transitions with non-exponential waiting times. We extend the first-passage method to uncover the structure of distinct pathways in complex networks with non-exponential dwell time distributions. It is found that the analysis of early time dynamics provides explicit information on the length of the pathways associated to their dynamic properties. It reveals a universal relationship that we have condensed in one general equation, which relates the number of intermediate states on the shortest path to the early time behavior of the first-passage distributions. Our theoretical predictions are confirmed by extensive Monte Carlo simulations.

  5. How events determine spreading patterns: information transmission via internal and external influences on social networks

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Zhan, Xiu-Xiu; Zhang, Zi-Ke; Sun, Gui-Quan; Hui, Pak Ming

    2015-11-01

    Recently, information transmission models motivated by the classical epidemic propagation, have been applied to a wide-range of social systems, generally assume that information mainly transmits among individuals via peer-to-peer interactions on social networks. In this paper, we consider one more approach for users to get information: the out-of-social-network influence. Empirical analyzes of eight typical events’ diffusion on a very large micro-blogging system, Sina Weibo, show that the external influence has significant impact on information spreading along with social activities. In addition, we propose a theoretical model to interpret the spreading process via both internal and external channels, considering three essential properties: (i) memory effect; (ii) role of spreaders; and (iii) non-redundancy of contacts. Experimental and mathematical results indicate that the information indeed spreads much quicker and broader with mutual effects of the internal and external influences. More importantly, the present model reveals that the event characteristic would highly determine the essential spreading patterns once the network structure is established. The results may shed some light on the in-depth understanding of the underlying dynamics of information transmission on real social networks.

  6. Determination of relaxation modulus of time-dependent materials using neural networks

    NASA Astrophysics Data System (ADS)

    Aulova, Alexandra; Govekar, Edvard; Emri, Igor

    2016-10-01

    Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.

  7. Using Sub-Network Combinations to Scale Up an Enumeration Method for Determining the Network Structures of Biological Functions

    PubMed Central

    Ouyang, Q.

    2016-01-01

    Deduction of biological regulatory networks from their functions is one of the focus areas of systems biology. Among the different techniques used in this reverse-engineering task, one powerful method is to enumerate all candidate network structures to find suitable ones. However, this method is severely limited by calculation capability: due to the brute-force approach, it is infeasible for networks with large number of nodes to be studied using traditional enumeration method because of the combinatorial explosion. In this study, we propose a new reverse-engineering technique based on the enumerating method: sub-network combinations. First, a complex biological function is divided into several sub-functions. Next, the three-node-network enumerating method is applied to search for sub-networks that are able to realize each of the sub-functions. Finally, complex whole networks are constructed by enumerating all possible combinations of sub-networks. The optimal ones are selected and analyzed. To demonstrate the effectiveness of this new method, we used it to deduct the network structures of a Pavlovian-like function. The whole Pavlovian-like network was successfully constructed by combining robust sub-networks, and the results were analyzed. With sub-network combination, the complexity has been largely reduced. Our method also provides a functional modular view of biological systems. PMID:27992476

  8. Analysis of a distributed algorithm to determine multiple routes with path diversity in ad hoc networks.

    SciTech Connect

    Ghosal, Dipak; Mueller, Stephen Ng

    2005-04-01

    With multipath routing in mobile ad hoc networks (MANETs), a source can establish multiple routes to a destination for routing data. In MANETs, mulitpath routing can be used to provide route resilience, smaller end-to-end delay, and better load balancing. However, when the multiple paths are close together, transmissions of different paths may interfere with each other, causing degradation in performance. Besides interference, the physical diversity of paths also improves fault tolerance. We present a purely distributed multipath protocol based on the AODV-Multipath (AODVM) protocol called AODVM with Path Diversity (AODVM/PD) that finds multiple paths with a desired degree of correlation between paths specified as an input parameter to the algorithm. We demonstrate through detailed simulation analysis that multiple paths with low degree of correlation determined by AODVM/PD provides both smaller end-to-end delay than AODVM in networks with low mobility and better route resilience in the presence of correlated node failures.

  9. Spatio-temporal filtering for determination of common mode error in regional GNSS networks

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Gruszczynski, Maciej; Figurski, Mariusz; Klos, Anna

    2015-04-01

    The spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually estimated with the regional spatial filtering, such as the "stacking". In this paper, we show the stacking approach for the set of ASG-EUPOS permanent stations, assuming that spatial distribution of the CME is uniform over the whole region of Poland (more than 600 km extent). The ASG-EUPOS is a multifunctional precise positioning system based on the reference network designed for Poland. We used a 5- year span time series (2008-2012) of daily solutions in the ITRF2008 from Bernese 5.0 processed by the Military University of Technology EPN Local Analysis Centre (MUT LAC). At the beginning of our analyses concerning spatial dependencies, the correlation coefficients between each pair of the stations in the GNSS network were calculated. This analysis shows that spatio-temporal behaviour of the GPS-derived time series is not purely random, but there is the evident uniform spatial response. In order to quantify the influence of filtering using CME, the norms L1 and L2 were determined. The values of these norms were calculated for the North, East and Up components twice: before performing the filtration and after stacking. The observed reduction of the L1 and L2 norms was up to 30% depending on the dimension of the network. However, the question how to define an optimal size of CME-analysed subnetwork remains unanswered in this research, due to the fact that our network is not extended enough.

  10. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  11. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  12. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operation would involve overlap of signal strength contours with any other station licensed by the... separation Contour of proposed station Contour of other station Co-channel 0.1mV/m (40 dBu)1 mV/m (60 dBu) 1... if the proposed operation would involve overlap of signal strength contours with any other station...

  13. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  14. Content patterns in topic-based overlapping communities.

    PubMed

    Ríos, Sebastián A; Muñoz, Ricardo

    2014-01-01

    Understanding the underlying community structure is an important challenge in social network analysis. Most state-of-the-art algorithms only consider structural properties to detect disjoint subcommunities and do not include the fact that people can belong to more than one community and also ignore the information contained in posts that users have made. To tackle this problem, we developed a novel methodology to detect overlapping subcommunities in online social networks and a method to analyze the content patterns for each subcommunities using topic models. This paper presents our main contribution, a hybrid algorithm which combines two different overlapping sub-community detection approaches: the first one considers the graph structure of the network (topology-based subcommunities detection approach) and the second one takes the textual information of the network nodes into consideration (topic-based subcommunities detection approach). Additionally we provide a method to analyze and compare the content generated. Tests on real-world virtual communities show that our algorithm outperforms other methods.

  15. Neural overlap in processing music and speech.

    PubMed

    Peretz, Isabelle; Vuvan, Dominique; Lagrois, Marie-Élaine; Armony, Jorge L

    2015-03-19

    Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing.

  16. Potential spatial overlap of heritage sites and protected areas in a boreal region of northern Canada.

    PubMed

    Leroux, Shawn J; Schmiegelow, Fiona K A; Nagy, John A

    2007-04-01

    Under article 8-J of the Convention on Biological Diversity, governments must engage indigenous and local communities in the designation and management of protected areas. A better understanding of the relationship between community heritage sites and sites identified to protect conventional conservation features could inform conservation-planning exercises on indigenous lands. We examined the potential overlap between Gwich'in First Nations' (Northwest Territories, Canada) heritage sites and areas independently identified for the protection of conventional conservation targets. We designed nine hypothetical protected-area networks with different targets for woodland caribou (Rangifer tarandus caribou) habitat, high-quality wetland areas, representative vegetation types, water bodies, environmentally significant area, territorial parks, and network aggregation. We compared the spatial overlap of heritage sites to these nine protected-area networks. The degree of spatial overlap (Jaccard similarity) between heritage sites and the protected-area networks with moderate or high aggregation was significantly higher (p < 0.001) than random spatial overlap, whereas the overlap between heritage sites and the protected-area networks with no aggregation was not significant or significantly lower (p < 0.001) than random spatial overlap. Our results suggest that protected-area networks designed to capture conventional conservation features may protect key heritage sites but only if the underlying characteristics of these sites are considered. The Gwich'in heritage sites are highly aggregated and only protected-area networks that had moderate and high aggregation had significant overlap with the heritage sites. We suggest that conventional conservation plans incorporate heritage sites into their design criteria to complement conventional conservation targets and effectively protect indigenous heritage sites.

  17. Comparing discriminant analysis and neural network for the determination of sex using femur head measurements.

    PubMed

    Alunni, Véronique; Jardin, Philippe du; Nogueira, Luisa; Buchet, Luc; Quatrehomme, Gérald

    2015-08-01

    The measurement of the femoral head is usually considered an interesting variable for the sex determination of skeletal remains. To date, there are few published reference measurements of the femoral head in a modern European population for the purpose of sex determination. In this study, 116 femurs from 58 individuals of the South of France (Nice Bone Collection, Nice, France) were studied. Three measurements of the femoral head were taken: the vertical head diameter (VHD), the transversal head diameter (THD) and the head circumference (HC). The results show that: (i) there is no statistical difference between the right and left femurs for each of the three measurements (VHD, THD and HC). Therefore we arbitrarily chose to use the measures from the right femurs (N=58) to pursue our experiments; (ii) the measurements of the femoral head are similar to those of contemporary American populations; (iii) the dimensions of the femoral head place the measurements of the French population somewhere between Germany or Croatia, and Spain; (iv) there is no significant secular trend (in contrast with the femoral neck diameter); (v) the femoral head measurement as a single variable is useful for sex determination: a 96.5% rate of accuracy was obtained using THD and HC measurements with the artificial neural network; and a 94.8% rate of accuracy using VHD, both with the discriminant analysis and the neural network.

  18. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks

    PubMed Central

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-01-01

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady. PMID:26694394

  19. Event Coverage Detection and Event Source Determination in Underwater Wireless Sensor Networks.

    PubMed

    Zhou, Zhangbing; Xing, Riliang; Duan, Yucong; Zhu, Yueqin; Xiang, Jianming

    2015-12-15

    With the advent of the Internet of Underwater Things, smart things are deployed in the ocean space and establish underwater wireless sensor networks for the monitoring of vast and dynamic underwater environments. When events are found to have possibly occurred, accurate event coverage should be detected, and potential event sources should be determined for the enactment of prompt and proper responses. To address this challenge, a technique that detects event coverage and determines event sources is developed in this article. Specifically, the occurrence of possible events corresponds to a set of neighboring sensor nodes whose sensory data may deviate from a normal sensing range in a collective fashion. An appropriate sensor node is selected as the relay node for gathering and routing sensory data to sink node(s). When sensory data are collected at sink node(s), the event coverage is detected and represented as a weighted graph, where the vertices in this graph correspond to sensor nodes and the weight specified upon the edges reflects the extent of sensory data deviating from a normal sensing range. Event sources are determined, which correspond to the barycenters in this graph. The results of the experiments show that our technique is more energy efficient, especially when the network topology is relatively steady.

  20. A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYS

    EPA Science Inventory

    AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...

  1. From gene networks underlying sex determination and gonadal differentiation to the development of neural networks regulating sociosexual behavior.

    PubMed

    Crews, David; Lou, Wendy; Fleming, Alison; Ogawa, Sonoko

    2006-12-18

    Genes are not expressed in isolation any more than social behavior has meaning outside of society. Both are in dynamic flux with the immediate environment that the gene/individual finds itself, which in turn establishes the timing, pattern, and conditions of expression. This means that complex behaviors and their genetic underpinnings should be viewed as a cumulative process, or as the result of experiences up to that point in time and, at the same time, as setting the stage for what will follow. The evidence indicates that as experiences accumulate throughout life, early experiences shape how genes/individuals will respond to later experiences, whereas later experiences modify the effects of these earlier experiences. A method of graphically representing and analyzing change in gene and neural networks is presented. Results from several animal model systems will be described to illustrate these methods. First, we will consider the phenomenon of temperature-dependent sex determination in reptiles. We will illustrate how the experience of a particular temperature during a sensitive period of embryogenesis sculpts not only the patterns of expression of genes involved in sex determination and gonadal differentiation but also the morphological, physiological, neuroendocrine, and behavioral traits of the adult phenotype. The second model system concerns the effects of the sex ratio in the litter in rats, and the genotype ratio in the litter of transgenic mice, on the nature and frequency of maternal care and how this in turn influences the patterns of activation of identified neural circuits subserving the offspring's sociosexual behavior when it is an adult.

  2. From gene networks underlying sex determination and gonadal differentiation to the development of neural networks regulating sociosexual behavior

    PubMed Central

    Crews, David; Lou, Wendy; Fleming, Alison; Ogawa, Sonoko

    2008-01-01

    Genes are not expressed in isolation any more than social behavior has meaning outside of society. Both are in dynamic flux with the immediate environment that the gene/individual finds itself, which in turn establishes the timing, pattern, and conditions of expression. This means that complex behaviors and their genetic underpinnings should be viewed as a cumulative process, or as the result of experiences up to that point in time and, at the same time, as setting the stage for what will follow. The evidence indicates that as experiences accumulate throughout life, early experiences shape how genes/individuals will respond to later experiences, whereas later experiences modify the effects of these earlier experiences. A method of graphically representing and analyzing change in gene and neural networks is presented. Results from several animal model systems will be described to illustrate these methods. First, we will consider the phenomenon of temperature-dependent sex determination in reptiles. We will illustrate how the experience of a particular temperature during a sensitive period of embryogenesis sculpts not only the patterns of expression of genes involved in sex determination and gonadal differentiation but also the morphological, physiological, neuroendocrine, and behavioral traits of the adult phenotype. The second model system concerns the effects of the sex ratio in the litter in rats, and the genotype ratio in the litter of transgenic mice, on the nature and frequency of maternal care and how this in turn influences the patterns of activation of identified neural circuits subserving the offspring's sociosexual behavior when it is an adult. PMID:16905124

  3. Overlaps among phenological phases in flood plain forest ecosystem

    NASA Astrophysics Data System (ADS)

    Bartošová, Lenka; Bauer, Zdeněk; Trnka, Miroslav; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2015-04-01

    There is a growing concern that climate change has significant impacts on species phenology, seasonal population dynamics, and thus interaction (a)synchrony between species. Species that have historically undergone life history events on the same seasonal calendar may lose synchrony and therefore lose the ability to interact as they have in the past. In view of the match/mismatch hypothesis, the different extents or directions of the phenological shifts among interacting species may have significant implications for community structure and dynamics. That's why our principal goal of the study is to determine the phenological responses within the ecosystem of flood plain forest and analyzed the phenological overlapping among each phenological periods of given species. The phenological observations were done at flood-plain forest experimental site during the period 1961-2012. The whole ecosystem in this study create 17 species (15 plants and 2 bird species) and each species is composed of 2 phenological phases. Phenological periods of all species of ecosystem overlap each other and 43 of these overlapping were chosen and the length, trend and correlation with temperature were elaborated. The analysis of phenophases overlapping of chosen species showed that the length of overlay is getting significantly shorter in 1 case. On the other hand the situation when the length of overlaps is getting significantly longer arose in 4 cases. Remaining overlaps (38) of all phenological periods among various species is getting shorter or longer but with no significance or have not changed anyhow. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248. and of projects no. LD13030 supporting participation of the Czech Republic in the COST action ES1106.

  4. [Asthma and chronic obstructive pulmonary disease overlap].

    PubMed

    Müller, Veronika; Gálffy, Gabriella; Tamási, Lilla

    2011-01-16

    Asthma bronchiale and chronic obstructive pulmonary disease are the most prevalent lung diseases characterized by inflammation of the airways. International and Hungarian guidelines provide proper definitions for clinical symptoms, diagnostics and therapy of both diseases. However, in everyday clinical practice, overlap of asthma and chronic obstructive pulmonary disease has become more frequent. As guidelines are mainly based on large, multicenter, randomized, controlled trials that exclude overlap patients, there is a lack of diagnostic and especially therapeutic strategies for these patients. This review summarizes clinical characteristics of asthma and chronic obstructive pulmonary disease overlap, and provides daily practical examples for its management.

  5. Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, X. M.; Wang, Z. G.; Cui, X. D.; Yan, X. W.; Jiang, X. Y.; Zheng, J. G.; Wang, W.; Li, Mingzhong

    2017-01-01

    Serious pulse temporal overlap in amplifiers would result in the decrease of energy extraction efficiency and the increase of pulse-shape distortion (PSD). Precisely predicting pulse temporal overlap is of significance to an effective amplifier design. In this work, the analytical expressions with complete pulse overlap are derived and a numerical method is proposed to solve the case with partial temporal overlap for a double-pass Nd:YAG amplifier. Our studies, in which pulse temporal overlap is taken into account, can precisely predict the output energy and temporal shape, compared to the results from Hirano and other experiments. In addition, our numerical routes could provide the applicable range of analytical solutions to conventional Frantz-Nodvik equations in the case of pulse overlap, further extending the applicability and reducing computational costs. For given conditions, energy reduction and PSD are mainly determined by the overlap degree. For step-shaped pulse, we demonstrate that avoiding overlap in the peak pulse and allowing overlap in the foot pulse have small impacts on the energy extraction and PSD, which extends the range of duration of the pulse for a designed amplifier. Our investigations might provide an efficient way to carefully design a pulsed amplifier with controllable temporal overlap.

  6. Ex vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Karam, L. Z.; Pegorini, V.; Pitta, C. S. R.; Assmann, T. S.; Cardoso, R.; Kalinowski, H. J.; Silva, J. C. C.

    2014-05-01

    This paper reports the experimental procedures performed in a bovine head for the determination of chewing patterns during the mastication process. Mandible movements during the chewing have been simulated either by using two plasticine materials with different textures or without material. Fibre Bragg grating sensors were fixed in the jaw to monitor the biomechanical forces involved in the chewing process. The acquired signals from the sensors fed the input of an artificial neural network aiming at the classification of the measured chewing patterns for each material used in the experiment. The results obtained from the simulation of the chewing process presented different patterns for the different textures of plasticine, resulting on the determination of three chewing patterns with a classification error of 5%.

  7. Base drive and overlap protection circuit

    DOEpatents

    Gritter, David J.

    1983-01-01

    An inverter (34) which provides power to an A. C. machine (28) is controlled by a circuit (36) employing PWM control strategy whereby A. C. power is supplied to the machine at a preselectable frequency and preselectable voltage. This is accomplished by the technique of waveform notching in which the shapes of the notches are varied to determine the average energy content of the overall waveform. Through this arrangement, the operational efficiency of the A. C. machine is optimized. The control circuit includes a microcomputer and memory element which receive various parametric inputs and calculate optimized machine control data signals therefrom. The control data is asynchronously loaded into the inverter through an intermediate buffer (38). A base drive and overlap protection circuit is included to insure that both transistors of a complimentary pair are not conducting at the same time. In its preferred embodiment, the present invention is incorporated within an electric vehicle (10) employing a 144 VDC battery pack (32) and a three-phase induction motor (18).

  8. Continuum percolation of congruent overlapping spherocylinders

    NASA Astrophysics Data System (ADS)

    Xu, Wenxiang; Su, Xianglong; Jiao, Yang

    2016-09-01

    Continuum percolation of randomly orientated congruent overlapping spherocylinders (composed of cylinder of height H with semispheres of diameter D at the ends) with aspect ratio α =H /D in [0 ,∞ ) is studied. The percolation threshold ϕc, percolation transition width Δ, and correlation-length critical exponent ν for spherocylinders with α in [0, 200] are determined with a high degree of accuracy via extensive finite-size scaling analysis. A generalized excluded-volume approximation for percolation threshold with an exponent explicitly depending on both aspect ratio and excluded volume for arbitrary α values in [0 ,∞ ) is proposed and shown to yield accurate predictions of ϕc for an extremely wide range of α in [0, 2000] based on available numerical and experimental data. We find ϕc is a universal monotonic decreasing function of α and is independent of the effective particle size. Our study has implications in percolation theory for nonspherical particles and composite material design.

  9. Overlapping Antisense Transcription in the Human Genome

    PubMed Central

    Fahey, M. E.; Moore, T. F.

    2002-01-01

    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose. PMID:18628857

  10. [Impact of the Overlap Region Between Acoustic and Electric Stimulation].

    PubMed

    Baumann, Uwe; Mocka, Moritz

    2017-02-08

    Patients with residual hearing in the low frequencies and ski-slope hearing loss with partial deafness at medium and high frequencies receive a cochlear implant treatment with electric-acoustic stimulation (EAS, "hybrid" stimulation). In the border region between electric and acoustic stimulation a superposition of the 2 types of stimulation is expected. The area of overlap is determined by the insertion depth of the stimulating electrode and the lower starting point of signal transmission provided by the CI speech processor. The study examined the influence of the variation of the electric-acoustic overlap area on speech perception in noise, whereby the width of the "transmission gap" between the 2 different stimulus modalities was varied by 2 different methods. The results derived from 9 experienced users of the MED-EL Duet 2 speech processor show that the electric-acoustic overlapping area and with it the crossover frequency between the acoustic part and the CI should be adjusted individually. Overall, speech reception thresholds (SRT) showed a wide variation of results in between subjects. Further studies shall investigate whether generalized procedures about the setting of the overlap between electric and acoustic stimulation are reasonable, whereby an increased number of subjects and a longer period of acclimatization prior to the conduction of hearing tests deemed necessary.

  11. Sarcoidosis Blood Transcriptome Reflects Lung Inflammation and Overlaps with Tuberculosis

    PubMed Central

    Solberg, Owen D.; Peng, Jeffrey C.; Bhakta, Nirav R.; Nguyen, Christine P.; Woodruff, Prescott G.

    2011-01-01

    Rationale: Sarcoidosis is a granulomatous disease of unknown etiology, although M. tuberculosis may play a role in the pathogenesis. The traditional view holds that inflammation in sarcoidosis is compartmentalized to involved organs. Objectives: To determine whether whole blood gene expression signatures reflect inflammatory pathways in the lung in sarcoidosis and whether these signatures overlap with tuberculosis. Methods: We analyzed transcriptomic data from blood and lung biopsies in sarcoidosis and compared these profiles with blood transcriptomic data from tuberculosis and other diseases. Measurements and Main Results: Applying machine learning algorithms to blood gene expression data, we built a classifier that distinguished sarcoidosis from health in derivation and validation cohorts (92% sensitivity, 92% specificity). The most discriminative genes were confirmed by quantitative PCR and correlated with disease severity. Transcript profiles significantly induced in blood overlapped with those in lung biopsies and identified shared dominant inflammatory pathways (e.g., Type-I/II interferons). Sarcoidosis and tuberculosis shared more overlap in blood gene expression compared with other diseases using the 86-gene signature reported to be specific for tuberculosis and the sarcoidosis signature presented herein, although reapplication of machine learning algorithms could identify genes specific for sarcoidosis. Conclusions: These data indicate that blood transcriptome analysis provides a noninvasive method for identifying inflammatory pathways in sarcoidosis, that these pathways may be leveraged to complement more invasive procedures for diagnosis or assessment of disease severity, and that sarcoidosis and tuberculosis share overlap in gene regulation of specific inflammatory pathways. PMID:21852540

  12. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations--Existence of infinite overlapping networks in a fragile ionic liquid.

    PubMed

    Habasaki, Junko; Ngai, K L

    2015-04-28

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO3), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, TB (or Tc) and the glass transition temperature Tg, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, NB, within the first minimum of the pair correlation function, g(r)min, increases. On crossing TB (>Tg), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at Tg. The glass transition temperature, Tg, is characterized by the saturation of the total number of "bonds," NB and the corresponding decrease in degree of freedom, F = [(3N - 6) - NB], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at Tg, the number of bonds shows a remarkable change at around TB. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, fg, of each coordination polyhedron, which can be defined by fg = [(3NV - 6) - Nb]. Here, 3Nv is the degree of freedom of NV vertices of the polyhedron, and Nb is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion in the cage is found to be correlated with the fluctuation of Nb of cation-cation (or anion-anion) pairs in the polyhedron, although the

  13. Rigidity and soft percolation in the glass transition of an atomistic model of ionic liquid, 1-ethyl-3-methyl imidazolium nitrate, from molecular dynamics simulations—Existence of infinite overlapping networks in a fragile ionic liquid

    SciTech Connect

    Habasaki, Junko; Ngai, K. L.

    2015-04-28

    The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){sub min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion

  14. Overlapping node discovery for improving classification of lung nodules.

    PubMed

    Zhang, Fan; Cai, Weidong; Song, Yang; Lee, Min-Zhao; Shan, Shimin; Dagan, David

    2013-01-01

    Distinguishing malignant lung nodules from benign nodules is an important aspect of lung cancer diagnosis. In this paper, we propose an automatic method to classify lung nodules into four different types, i.e. well-circumscribed, juxta-vascular, juxta-pleural and pleural-tail. Additionally, since the morphology of lung nodules forms a continuum between the different types, our proposed method is superior to previous methods that classify single nodules into a single type. First, a weighted similarity network is constructed based on the SVM with probability estimates, turning the 128-length SIFT descriptor to a 4-length probability vector against the four types. Then, the classification of nodules while identifying those with overlapping types is made using the weighed Clique Percolation Method (CPMw). We evaluate the proposed method on low-dose CT images from ELCAP. Our results show that there is more overlap between well-circumscribed and juxta-vascular, and between juxta-pleural and pleural tail. Also, quantitative comparisons among various methods demonstrate highly effective nodule classification results by identifying the overlapping nodule types.

  15. Vibrational relaxation and internal conversion in the overlapped optically-allowed 1Bu+ and optically-forbidden 1Bu- or 3Ag- vibronic levels of carotenoids: Effects of diabatic mixing as determined by Kerr-gate fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakitani, Yoshinori; Miki, Takeshi; Koyama, Yasushi; Nagae, Hiroyoshi; Nakamura, Ryosuke; Kanematsu, Yasuo

    2009-07-01

    The time constants of the vibrational relaxation, υ = 2 → υ = 1 and υ = 1 → υ = 0, in the 1Bu+ manifold and those of internal conversion from the 1Bu+(0) level, which is isoenergetic (so-called 'diabatic') with the 1Bu- vibronic levels in neurosporene and spheroidene and with the 3Ag- vibronic levels in lycopene and anhydrorhodovibrin, were determined by Kerr-gate fluorescence spectroscopy. The time constants of the vibrational relaxation were in the ˜1:2 ratio, and those of internal conversion agreed with the lifetimes of the diabatic counterparts, i.e., the 1Bu- and 3Ag- electronic states, respectively.

  16. Determination of important topographic factors for landslide mapping analysis using MLP network.

    PubMed

    Alkhasawneh, Mutasem Sh; Ngah, Umi Kalthum; Tay, Lea Tien; Mat Isa, Nor Ashidi; Al-batah, Mohammad Subhi

    2013-01-01

    Landslide is one of the natural disasters that occur in Malaysia. Topographic factors such as elevation, slope angle, slope aspect, general curvature, plan curvature, and profile curvature are considered as the main causes of landslides. In order to determine the dominant topographic factors in landslide mapping analysis, a study was conducted and presented in this paper. There are three main stages involved in this study. The first stage is the extraction of extra topographic factors. Previous landslide studies had identified mainly six topographic factors. Seven new additional factors have been proposed in this study. They are longitude curvature, tangential curvature, cross section curvature, surface area, diagonal line length, surface roughness, and rugosity. The second stage is the specification of the weight of each factor using two methods. The methods are multilayer perceptron (MLP) network classification accuracy and Zhou's algorithm. At the third stage, the factors with higher weights were used to improve the MLP performance. Out of the thirteen factors, eight factors were considered as important factors, which are surface area, longitude curvature, diagonal length, slope angle, elevation, slope aspect, rugosity, and profile curvature. The classification accuracy of multilayer perceptron neural network has increased by 3% after the elimination of five less important factors.

  17. Overlapping genetic codes for overlapping frameshifted genes in Testudines, and Lepidochelys olivacea as special case.

    PubMed

    Seligmann, Hervé

    2012-12-01

    Mitochondrial genes code for additional proteins after +2 frameshifts by reassigning stops to code for amino acids, which defines overlapping genetic codes for overlapping genes. Turtles recode stops UAR → Trp and AGR → Lys (AGR → Gly in the marine Olive Ridley turtle, Lepidochelys olivacea). In Lepidochelys the +2 frameshifted mitochondrial Cytb gene lacks stops, open reading frames from other genes code for unknown proteins, and for regular mitochondrial proteins after frameshifts according to the overlapping genetic code. Lepidochelys' inversion between proteins coded by regular and overlapping genetic codes substantiates the existence of overlap coding. ND4 differs among Lepidochelys mitochondrial genomes: it is regular in DQ486893; in NC_011516, the open reading frame codes for another protein, the regular ND4 protein is coded by the frameshifted sequence reassigning stops as in other turtles. These systematic patterns are incompatible with Genbank/sequencing errors and DNA decay. Random mixing of synonymous codons, conserving main frame coding properties, shows optimization of natural sequences for overlap coding; Ka/Ks analyses show high positive (directional) selection on overlapping genes. Tests based on circular genetic codes confirm programmed frameshifts in ND3 and ND4l genes, and predicted frameshift sites for overlap coding in Lepidochelys. Chelonian mitochondria adapt for overlapping gene expression: cloverleaf formation by antisense tRNAs with predicted anticodons matching stops coevolves with overlap coding; antisense tRNAs with predicted expanded anticodons (frameshift suppressor tRNAs) associate with frameshift-coding in ND3 and ND4l, a potential regulation of frameshifted overlap coding. Anaeroby perhaps switched between regular and overlap coding genes in Lepidochelys.

  18. Efficient construction of robust artificial neural networks for accurate determination of superficial sample optical properties.

    PubMed

    Chen, Yu-Wen; Tseng, Sheng-Hao

    2015-03-01

    In general, diffuse reflectance spectroscopy (DRS) systems work with photon diffusion models to determine the absorption coefficient μa and reduced scattering coefficient μs' of turbid samples. However, in some DRS measurement scenarios, such as using short source-detector separations to investigate superficial tissues with comparable μa and μs', photon diffusion models might be invalid or might not have analytical solutions. In this study, a systematic workflow of constructing a rapid, accurate photon transport model that is valid at short source-detector separations (SDSs) and at a wide range of sample albedo is revealed. To create such a model, we first employed a GPU (Graphic Processing Unit) based Monte Carlo model to calculate the reflectance at various sample optical property combinations and established a database at high speed. The database was then utilized to train an artificial neural network (ANN) for determining the sample absorption and reduced scattering coefficients from the reflectance measured at several SDSs without applying spectral constraints. The robustness of the produced ANN model was rigorously validated. We evaluated the performance of a successfully trained ANN using tissue simulating phantoms. We also determined the 500-1000 nm absorption and reduced scattering spectra of in-vivo skin using our ANN model and found that the values agree well with those reported in several independent studies.

  19. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination.

    PubMed

    Wu, Fuqing; Su, Ri-Qi; Lai, Ying-Cheng; Wang, Xiao

    2017-04-11

    The process of cell fate determination has been depicted intuitively as cells travelling and resting on a rugged landscape, which has been probed by various theoretical studies. However, few studies have experimentally demonstrated how underlying gene regulatory networks shape the landscape and hence orchestrate cellular decision-making in the presence of both signal and noise. Here we tested different topologies and verified a synthetic gene circuit with mutual inhibition and auto-activations to be quadrastable, which enables direct study of quadruple cell fate determination on an engineered landscape. We show that cells indeed gravitate towards local minima and signal inductions dictate cell fates through modulating the shape of the multistable landscape. Experiments, guided by model predictions, reveal that sequential inductions generate distinct cell fates by changing landscape in sequence and hence navigating cells to different final states. This work provides a synthetic biology framework to approach cell fate determination and suggests a landscape-based explanation of fixed induction sequences for targeted differentiation.

  20. Mapping the nomological network of employee self-determined safety motivation: A preliminary measure in China.

    PubMed

    Jiang, Li; Tetrick, Lois E

    2016-09-01

    The present study introduced a preliminary measure of employee safety motivation based on the definition of self-determination theory from Fleming (2012) research and validated the structure of self-determined safety motivation (SDSM) by surveying 375 employees in a Chinese high-risk organization. First, confirmatory factor analysis (CFA) was used to examine the factor structure of SDSM, and indices of five-factor model CFA met the requirements. Second, a nomological network was examined to provide evidence of the construct validity of SDSM. Beyond construct validity, the analysis also produced some interesting results concerning the relationship between leadership antecedents and safety motivation, and between safety motivation and safety behavior. Autonomous motivation was positively related to transformational leadership, negatively related to abusive supervision, and positively related to safety behavior. Controlled motivation with the exception of introjected regulation was negatively related to transformational leadership, positively related to abusive supervision, and negatively related to safety behavior. The unique role of introjected regulation and future research based on self-determination theory were discussed.

  1. Neural networks for real time determination of radiated power in JET

    NASA Astrophysics Data System (ADS)

    Barana, O.; Murari, A.; Franz, P.; Ingesson, L. C.; Manduchi, G.

    2002-05-01

    This article describes the use of neural networks (NNs) for the on-line computation of the radiated power in JET. The NNs have been trained using a database of about 120 discharges, for which the emitted power had been calculated via tomographic inversion of JET bolometric signals. In addition to the bolometric data, elongation and triangularity have been used as input to the NN, since these provide useful complementary information. Dedicated NNs have been designed for the determination of the total radiated power, the power from the bulk, and from the divertor region. All the NNs have been tested with a set of about 30 discharges with positive results. Moreover, the NNs can operate at full sampling speed and are therefore suited to follow edge localized modes and other rapid phenomena. The sensitivity of the NNs to failures in the input signals has also been tested, proving their robustness. Their possible use in feedback applications is finally briefly discussed.

  2. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    PubMed

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  3. Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers

    NASA Technical Reports Server (NTRS)

    Graybeal, Sarah R.; Kranzusch, Kara M.

    2005-01-01

    The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very

  4. Effect of Receiver Choosing on Point Positions Determination in Network RTK

    NASA Astrophysics Data System (ADS)

    Bulbul, Sercan; Inal, Cevat

    2016-04-01

    Nowadays, the developments in GNSS technique allow to determinate point positioning in real time. Initially, point positioning was determined by RTK (Real Time Kinematic) based on a reference station. But, to avoid systematic errors in this method, distance between the reference points and rover receiver must be shorter than10 km. To overcome this restriction in RTK method, the idea of setting more than one reference point had been suggested and, CORS (Continuously Operations Reference Systems) was put into practice. Today, countries like ABD, Germany, Japan etc. have set CORS network. CORS-TR network which has 146 reference points has also been established in 2009 in Turkey. In CORS-TR network, active CORS approach was adopted. In Turkey, CORS-TR reference stations covering whole country are interconnected and, the positions of these stations and atmospheric corrections are continuously calculated. In this study, in a selected point, RTK measurements based on CORS-TR, were made with different receivers (JAVAD TRIUMPH-1, TOPCON Hiper V, MAGELLAN PRoMark 500, PENTAX SMT888-3G, SATLAB SL-600) and with different correction techniques (VRS, FKP, MAC). In the measurements, epoch interval was taken as 5 seconds and measurement time as 1 hour. According to each receiver and each correction technique, means and differences between maximum and minimum values of measured coordinates, root mean squares in the directions of coordinate axis and 2D and 3D positioning precisions were calculated, the results were evaluated by statistical methods and the obtained graphics were interpreted. After evaluation of the measurements and calculations, for each receiver and each correction technique; the coordinate differences between maximum and minimum values were measured to be less than 8 cm, root mean squares in coordinate axis directions less than ±1.5 cm, 2D point positioning precisions less than ±1.5 cm and 3D point positioning precisions less than ±1.5 cm. In the measurement

  5. Experimental and numerical determination of the correlation function of level velocities for microwave networks simulating quantum graphs

    NASA Astrophysics Data System (ADS)

    Ławniczak, Michał; Nicolau-Kuklińska, Agata; Hul, Oleh; Masiak, Paweł; Bauch, Szymon; Sirko, Leszek

    2013-03-01

    The parameter-dependent correlation function \\tilde {c}_{\\delta }(\\omega ,\\mathsf {x}) of level velocities is studied experimentally and numerically. The measurements were made for microwave networks simulating quantum graphs. One- and two-port measurements of the scattering matrix \\hat {S} necessary for determining the correlation function \\tilde {c}_{\\delta }(\\omega ,\\mathsf {x}) were realized for the five vertices networks. For the fully connected six vertices network, one-port measurements were made. The obtained experimental and numerical results are compared with the predictions of random matrix theory.

  6. Determination of multifractal dimensions of complex networks by means of the sandbox algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Long; Yu, Zu-Guo; Anh, Vo

    2015-02-01

    Complex networks have attracted much attention in diverse areas of science and technology. Multifractal analysis (MFA) is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we employ the sandbox (SB) algorithm proposed by Tél et al. (Physica A 159, 155-166 (1989)), for MFA of complex networks. First, we compare the SB algorithm with two existing algorithms of MFA for complex networks: the compact-box-burning algorithm proposed by Furuya and Yakubo (Phys. Rev. E 84, 036118 (2011)), and the improved box-counting algorithm proposed by Li et al. (J. Stat. Mech.: Theor. Exp. 2014, P02020 (2014)) by calculating the mass exponents τ(q) of some deterministic model networks. We make a detailed comparison between the numerical and theoretical results of these model networks. The comparison results show that the SB algorithm is the most effective and feasible algorithm to calculate the mass exponents τ(q) and to explore the multifractal behavior of complex networks. Then, we apply the SB algorithm to study the multifractal property of some classic model networks, such as scale-free networks, small-world networks, and random networks. Our results show that multifractality exists in scale-free networks, that of small-world networks is not obvious, and it almost does not exist in random networks.

  7. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  8. Phonon Overlaps in Molecular Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Chang, Connie; Sethna, James

    2004-03-01

    We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.

  9. Determinants on the quality of social networks among Hong Kong Chinese.

    PubMed

    Rochelle, Tina L; Chan, O F

    2015-01-01

    The aim of the present study is to examine prospectively the quality of social networks of Hong Kong Chinese adults. A randomized household survey was employed. A total of 1170 Hong Kong Chinese respondents were recruited to the study. Participants ranged in age from 18 to 79 years, 43% of respondents were male. Findings revealed a negative association between familial trust and social network size. Network trust, social identification, and structural networks were all found to be positively associated with social network size and perceived respect from social network. The importance of family and the prioritization of the needs of the family over individual needs has implications on social network size and formation for Hong Kong Chinese individuals. More research is needed to further examine the importance of familial relationships and the prioritization of family and the impact this has on social network development and maintenance among Hong Kong Chinese.

  10. Sub-Plate Overlap Code Documentation

    NASA Technical Reports Server (NTRS)

    Taff, L. G.; Bucciarelli, B.; Zarate, N.

    1997-01-01

    An expansion of the plate overlap method of astrometric data reduction to a single plate has been proposed and successfully tested. Each plate is (artificially) divided into sub-plates which can then be overlapped. This reduces the area of a 'plate' over which a plate model needs to accurately represent the relationship between measured coordinates and standard coordinates. Application is made to non-astrographic plates such as Schmidt plates and to wide-field astrographic plates. Indeed, the method is completely general and can be applied to any type of recording media.

  11. Determining electron temperature for small spherical probes from network analyzer measurements of complex impedance

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Fernsler, R. F.; Blackwell, D. D.; Amatucci, W. E.

    2008-12-01

    In earlier work, using a network analyzer, it was shown that collisionless resistance (CR) exists in the sheath of a spherical probe when driven by a small rf signal. The CR is inversely proportional to the plasma density gradient at the location where the applied angular frequency equals the plasma frequency ωpe. Recently, efforts have concentrated on a study of the low-to-intermediate frequency response of the probe to the rf signal. At sufficiently low frequencies, the CR is beyond cutoff, i.e., below the plasma frequency at the surface of the probe. Since the electron density at the probe surface decreases as a function of applied (negative) bias, the CR will extend to lower frequencies as the magnitude of negative bias increases. Therefore to eliminate both CR and ion current contributions, the frequencies presently being considered are much greater than the ion plasma frequency, ωpi, but less than the plasma frequency, ωpe(r0), where r0 is the probe radius. It is shown that, in this frequency regime, the complex impedance measurements made with a network analyzer can be used to determine electron temperature. An overview of the theory is presented along with comparisons to data sets made using three stainless steel spherical probes of different sizes in different experimental environments and different plasma parameter regimes. The temperature measurements made by this method are compared to those made by conventional Langmuir probe sweeps; the method shown here requires no curve fitting as is the usual procedure with Langmuir probes when a Maxwell-Boltzmann electron distribution is assumed. The new method requires, however, a solution of the Poisson equation to determine the approximate sheath dimensions and integrals to determine approximate plasma and sheath inductances. The solution relies on the calculation of impedance for a spherical probe immersed in a collisionless plasma and is based on a simple circuit analogy for the plasma. Finally, the

  12. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    NASA Astrophysics Data System (ADS)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  13. Artificial neural network approach for moiré fringe center determination

    NASA Astrophysics Data System (ADS)

    Woo, Wing Hon; Ratnam, Mani Maran; Yen, Kin Sam

    2015-11-01

    The moiré effect has been used in high-accuracy positioning and alignment systems for decades. Various methods have been proposed to identify and locate moiré fringes in order to relate the pattern information to dimensional and displacement measurement. These methods can be broadly categorized into manual interpretation based on human knowledge and image processing based on computational algorithms. An artificial neural network (ANN) is proposed to locate moiré fringe centers within circular grating moiré patterns. This ANN approach aims to mimic human decision making by eliminating complex mathematical computations or time-consuming image processing algorithms in moiré fringe recognition. A feed-forward backpropagation ANN architecture was adopted in this work. Parametric studies were performed to optimize the ANN architecture. The finalized ANN approach was able to determine the location of the fringe centers with average deviations of 3.167 pixels out of 200 pixels (≈1.6%) and 6.166 pixels out of 200 pixels (≈3.1%) for real moiré patterns that lie within and outside the training intervals, respectively. In addition, a reduction of 43.4% in the computational time was reported using the ANN approach. Finally, the applicability of the ANN approach for moiré fringe center determination was confirmed.

  14. The Quality of Social Networks: Its Determinants and Impacts on Helping and Volunteering in Macao

    ERIC Educational Resources Information Center

    Tong, Kwok Kit; Hung, Eva P. W.; Yuen, Sze Man

    2011-01-01

    Pro-social behaviors serve essential societal functions. This study examines the factors affecting the quality of social networks, in terms of network size and perceived respect. It further explores the role of social networks in enhancing helping intention and helping behaviors. Eight hundred and eighty people were randomly interviewed by phone.…

  15. Registration of partially overlapping laser-radar range images

    NASA Astrophysics Data System (ADS)

    Lv, Dan; Sun, Jian-Feng; Li, Qi; Wang, Qi

    2015-10-01

    To register partially overlapping three-dimensional point sets from different viewpoints, it is necessary to remove spurious corresponding point pairs that are not located in overlapping regions. Most variants of the iterative closest point (ICP) algorithm require users to manually select the rejection parameters for discarding spurious point pairs between the registering views. This requirement often results in unreliable and inaccurate registration. To overcome this problem, we present an improved ICP algorithm that can automatically determine the rejection percentage to reliably and accurately align partially overlapping laser-radar (ladar) range images. The similarity of k neighboring features of each nonplanar point is employed to determine reasonable point pairs in nonplanar regions, and the distance measurement method is used to find reasonable point pairs in planar regions. The rejection percentage can be obtained from these two sets of reasonable pairs. The performance of our algorithm is compared with that of five other algorithms using various models with low and high curvatures. The experimental results show that our algorithm is more accurate and robust than the other algorithms.

  16. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart.

    PubMed

    Braun, Marcus; Lansky, Zdenek; Fink, Gero; Ruhnow, Felix; Diez, Stefan; Janson, Marcel E

    2011-09-04

    Short regions of overlap between ends of antiparallel microtubules are central elements within bipolar microtubule arrays. Although their formation requires motors, recent in vitro studies demonstrated that stable overlaps cannot be generated by molecular motors alone. Motors either slide microtubules along each other until complete separation or, in the presence of opposing motors, generate oscillatory movements. Here, we show that Ase1, a member of the conserved MAP65/PRC1 family of microtubule-bundling proteins, enables the formation of stable antiparallel overlaps through adaptive braking of Kinesin-14-driven microtubule-microtubule sliding. As overlapping microtubules start to slide apart, Ase1 molecules become compacted in the shrinking overlap and the sliding velocity gradually decreases in a dose-dependent manner. Compaction is driven by moving microtubule ends that act as barriers to Ase1 diffusion. Quantitative modelling showed that the molecular off-rate of Ase1 is sufficiently low to enable persistent overlap stabilization over tens of minutes. The finding of adaptive braking demonstrates that sliding can be slowed down locally to stabilize overlaps at the centre of bipolar arrays, whereas sliding proceeds elsewhere to enable network self-organization.

  17. Determination of configuration matrix element and outer synchronization among networks with different topologies

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Liu, Shuo; Li, Gang; Zhao, Guannan; Gu, Jiajia; Tian, Jing; Wang, Zhouyang

    2016-11-01

    In this paper, we research the outer synchronization among discrete networks with different topologies. Based on Lyapunov theorem, a novel synchronization technique is designed. Further, the control inputs of the networks and the adaptive laws of configuration matrix element are obtained. In the end, a numerical example is given to illustrate the effectiveness of the synchronization technique. It is found that the designed control input of the networks ensures the convergence of the errors among the networks to zero. And the designed adaptive law of configuration matrix element can replace effectively configuration matrix element in networks.

  18. An Interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision

    PubMed Central

    Mulvey, Brett B.; Olcese, Ursula; Cabrera, Janel R.; Horabin, Jamila I.

    2014-01-01

    Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200 nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPeand show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and Trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe. PMID:24954180

  19. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  20. Quantitative Determination of Flexible Pharmacological Mechanisms Based On Topological Variation in Mice Anti-Ischemic Modular Networks

    PubMed Central

    Chen, Yin-ying; Yu, Ya-nan; Zhang, Ying-ying; Li, Bing; Liu, Jun; Li, Dong-feng; Wu, Ping; Wang, Jie; Wang, Zhong; Wang, Yong-yan

    2016-01-01

    Targeting modules or signalings may open a new path to understanding the complex pharmacological mechanisms of reversing disease processes. However, determining how to quantify the structural alteration of these signalings or modules in pharmacological networks poses a great challenge towards realizing rational drug use in clinical medicine. Here, we explore a novel approach for dynamic comparative and quantitative analysis of the topological structural variation of modules in molecular networks, proposing the concept of allosteric modules (AMs). Based on the ischemic brain of mice, we optimize module distribution in different compound-dependent modular networks by using the minimum entropy criterion and then calculate the variation in similarity values of AMs under various conditions using a novel method of SimiNEF. The diverse pharmacological dynamic stereo-scrolls of AMs with functional gradient alteration, which consist of five types of AMs, may robustly deconstruct modular networks under the same ischemic conditions. The concept of AMs can not only integrate the responsive mechanisms of different compounds based on topological cascading variation but also obtain valuable structural information about disease and pharmacological networks beyond pathway analysis. We thereby provide a new systemic quantitative strategy for rationally determining pharmacological mechanisms of altered modular networks based on topological variation. PMID:27383195

  1. Australian University Libraries: Collections Overlap Study

    ERIC Educational Resources Information Center

    Missingham, Roxanne; Walls, Robert

    2003-01-01

    In 2002, the Department of Education, Science and Training (DEST), Higher Education Information Infrastructure Advisory Committee commissioned the National Library of Australia to analyse the uniqueness and overlap of Australian university library collections, comparing library collections in each state, using the National Bibliographic Database…

  2. Stochastic Cooling with Schottky Band Overlap

    SciTech Connect

    Lebedev, Valeri

    2006-03-20

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  3. Stochastic Cooling with Schottky Band Overlap

    NASA Astrophysics Data System (ADS)

    Lebedev, Valeri

    2006-03-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Plank equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  4. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station other than a Class D (secondary) station will not be accepted if the...

  5. 47 CFR 73.509 - Prohibited overlap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES Noncommercial Educational FM Broadcast Stations § 73.509 Prohibited overlap. (a) An application for a new or modified NCE-FM station other than a Class D (secondary) station will not be accepted if the...

  6. Random Access in Wireless Networks With Overlapping Cells

    DTIC Science & Technology

    2010-06-01

    Downloaded on May 19,2010 at 21:13:10 UTC from IEEE Xplore . Restrictions apply. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Authorized licensed use limited to: NRL. Downloaded on May 19,2010 at 21:13:10 UTC from IEEE Xplore . Restrictions apply. NGUYEN et al.: RANDOM ACCESS IN...21:13:10 UTC from IEEE Xplore . Restrictions apply. 2890 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010 5) For a single

  7. Radial basis function neural networks in non-destructive determination of compound aspirin tablets on NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dou, Ying; Mi, Hong; Zhao, Lingzhi; Ren, Yuqiu; Ren, Yulin

    2006-09-01

    The application of the second most popular artificial neural networks (ANNs), namely, the radial basis function (RBF) networks, has been developed for quantitative analysis of drugs during the last decade. In this paper, the two components (aspirin and phenacetin) were simultaneously determined in compound aspirin tablets by using near-infrared (NIR) spectroscopy and RBF networks. The total database was randomly divided into a training set (50) and a testing set (17). Different preprocessing methods (standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative and second-derivative) were applied to two sets of NIR spectra of compound aspirin tablets with different concentrations of two active components and compared each other. After that, the performance of RBF learning algorithm adopted the nearest neighbor clustering algorithm (NNCA) and the criterion for selection used a cross-validation technique. Results show that using RBF networks to quantificationally analyze tablets is reliable, and the best RBF model was obtained by first-derivative spectra.

  8. The overlap syndromes of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2013-02-01

    Autoimmune hepatitis has two major variant phenotypes in which the features of classical disease are co-mingled with those of primary biliary cirrhosis or primary sclerosing cholangitis. These overlap syndromes lack codified diagnostic criteria, established pathogenic mechanisms, and confident management strategies. Their clinical importance relates mainly to the identification of patients who respond poorly to conventional corticosteroid treatment. Scoring systems that lack discriminative power have been used in their definition, and a clinical phenotype based on pre-defined laboratory and histological findings has not been promulgated. The frequency of overlap with primary biliary cirrhosis is 7-13 %, and the frequency of overlap with primary sclerosing cholangitis is 8-17 %. Patients with autoimmune hepatitis and features of cholestatic disease must be distinguished from patients with cholestatic disease and features of autoimmune hepatitis. Variants of the overlap syndromes include patients with small duct primary sclerosing cholangitis, antimitochondrial antibody-negative primary biliary cirrhosis, autoimmune sclerosing cholangitis, and immunoglobulin G4-associated disease. Conventional corticosteroid therapy alone or in conjunction with ursodeoxycholic acid (13-15 mg/kg daily) has been variably effective, and cyclosporine, mycophenolate mofetil, and budesonide have been beneficial in selected patients. The key cholestatic features that influence the prognosis of autoimmune hepatitis must be defined and incorporated into the definition of the syndrome rather than rely on designations that imply the co-mingling of different diseases with manifestations of variable clinical relevance. The overlap syndromes in autoimmune hepatitis are imprecise, heterogeneous, and unfounded, but they constitute a clinical reality that must be accepted, diagnosed, refined, treated, and studied.

  9. Displayed Trees Do Not Determine Distinguishability Under the Network Multispecies Coalescent.

    PubMed

    Zhu, Sha; Degnan, James H

    2017-03-01

    Recent work in estimating species relationships from gene trees has included inferring networks assuming that past hybridization has occurred between species. Probabilistic models using the multispecies coalescent can be used in this framework for likelihood-based inference of both network topologies and parameters, including branch lengths and hybridization parameters. A difficulty for such methods is that it is not always clear whether, or to what extent, networks are identifiable-that is whether there could be two distinct networks that lead to the same distribution of gene trees. For cases in which incomplete lineage sorting occurs in addition to hybridization, we demonstrate a new representation of the species network likelihood that expresses the probability distribution of the gene tree topologies as a linear combination of gene tree distributions given a set of species trees. This representation makes it clear that in some cases in which two distinct networks give the same distribution of gene trees when sampling one allele per species, the two networks can be distinguished theoretically when multiple individuals are sampled per species. This result means that network identifiability is not only a function of the trees displayed by the networks but also depends on allele sampling within species. We additionally give an example in which two networks that display exactly the same trees can be distinguished from their gene trees even when there is only one lineage sampled per species. [gene tree, hybridization, identifiability, maximum likelihood, species tree, phylogeny.].

  10. Interplay between excitability type and distributions of neuronal connectivity determines neuronal network synchronization.

    PubMed

    Mofakham, Sima; Fink, Christian G; Booth, Victoria; Zochowski, Michal R

    2016-10-01

    While the interplay between neuronal excitability properties and global properties of network topology is known to affect network propensity for synchronization, it is not clear how detailed characteristics of these properties affect spatiotemporal pattern formation. Here we study mixed networks, composed of neurons having type I and/or type II phase response curves, with varying distributions of local and random connections and show that not only average network properties, but also the connectivity distribution statistics, significantly affect network synchrony. Namely, we study networks with fixed networkwide properties, but vary the number of random connections that nodes project. We show that varying node excitability (type I vs type II) influences network synchrony most dramatically for systems with long-tailed distributions of the number of random connections per node. This indicates that a cluster of even a few highly rewired cells with a high propensity for synchronization can alter the degree of synchrony in the network as a whole. We show this effect generally on a network of coupled Kuramoto oscillators and investigate the impact of this effect more thoroughly in pulse-coupled networks of biophysical neurons.

  11. Interplay between excitability type and distributions of neuronal connectivity determines neuronal network synchronization

    NASA Astrophysics Data System (ADS)

    Mofakham, Sima; Fink, Christian G.; Booth, Victoria; Zochowski, Michal R.

    2016-10-01

    While the interplay between neuronal excitability properties and global properties of network topology is known to affect network propensity for synchronization, it is not clear how detailed characteristics of these properties affect spatiotemporal pattern formation. Here we study mixed networks, composed of neurons having type I and/or type II phase response curves, with varying distributions of local and random connections and show that not only average network properties, but also the connectivity distribution statistics, significantly affect network synchrony. Namely, we study networks with fixed networkwide properties, but vary the number of random connections that nodes project. We show that varying node excitability (type I vs type II) influences network synchrony most dramatically for systems with long-tailed distributions of the number of random connections per node. This indicates that a cluster of even a few highly rewired cells with a high propensity for synchronization can alter the degree of synchrony in the network as a whole. We show this effect generally on a network of coupled Kuramoto oscillators and investigate the impact of this effect more thoroughly in pulse-coupled networks of biophysical neurons.

  12. Bayesian neural network approach for determining the risk of re-intervention after endovascular aortic aneurysm repair.

    PubMed

    Attallah, Omneya; Ma, Xianghong

    2014-09-01

    This article proposes a Bayesian neural network approach to determine the risk of re-intervention after endovascular aortic aneurysm repair surgery. The target of proposed technique is to determine which patients have high chance to re-intervention (high-risk patients) and which are not (low-risk patients) after 5 years of the surgery. Two censored datasets relating to the clinical conditions of aortic aneurysms have been collected from two different vascular centers in the United Kingdom. A Bayesian network was first employed to solve the censoring issue in the datasets. Then, a back propagation neural network model was built using the uncensored data of the first center to predict re-intervention on the second center and classify the patients into high-risk and low-risk groups. Kaplan-Meier curves were plotted for each group of patients separately to show whether there is a significant difference between the two risk groups. Finally, the logrank test was applied to determine whether the neural network model was capable of predicting and distinguishing between the two risk groups. The results show that the Bayesian network used for uncensoring the data has improved the performance of the neural networks that were built for the two centers separately. More importantly, the neural network that was trained with uncensored data of the first center was able to predict and discriminate between groups of low risk and high risk of re-intervention after 5 years of endovascular aortic aneurysm surgery at center 2 (p = 0.0037 in the logrank test).

  13. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis

    PubMed

    Blackburn; Hagstrom; Wikner; Cuadros-Hansson; Bjornsen

    1998-09-01

    Annual bacterial plankton dynamics at several depths and locations in the Baltic Sea were studied by image analysis. Individual bacteria were classified by using an artificial neural network which also effectively identified nonbacterial objects. Cell counts and frequencies of dividing cells were determined, and the data obtained agreed well with visual observations and previously published values. Cell volumes were measured accurately by comparison with bead standards. The survey included 690 images from a total of 138 samples. Each image contained approximately 200 bacteria. The images were analyzed automatically at a rate of 100 images per h. Bacterial abundance exhibited coherent patterns with time and depth, and there were distinct subsurface peaks in the summer months. Four distinct morphological classes were resolved by the image analyzer, and the dynamics of each could be visualized. The bacterial growth rates estimated from frequencies of dividing cells were different from the bacterial growth rates estimated by the thymidine incorporation method. With minor modifications, the image analysis technique described here can be used to analyze other planktonic classes.

  14. Rapid Determination of Bacterial Abundance, Biovolume, Morphology, and Growth by Neural Network-Based Image Analysis

    PubMed Central

    Blackburn, Nicholas; Hagström, Åke; Wikner, Johan; Cuadros-Hansson, Rocio; Bjørnsen, Peter Koefoed

    1998-01-01

    Annual bacterial plankton dynamics at several depths and locations in the Baltic Sea were studied by image analysis. Individual bacteria were classified by using an artificial neural network which also effectively identified nonbacterial objects. Cell counts and frequencies of dividing cells were determined, and the data obtained agreed well with visual observations and previously published values. Cell volumes were measured accurately by comparison with bead standards. The survey included 690 images from a total of 138 samples. Each image contained approximately 200 bacteria. The images were analyzed automatically at a rate of 100 images per h. Bacterial abundance exhibited coherent patterns with time and depth, and there were distinct subsurface peaks in the summer months. Four distinct morphological classes were resolved by the image analyzer, and the dynamics of each could be visualized. The bacterial growth rates estimated from frequencies of dividing cells were different from the bacterial growth rates estimated by the thymidine incorporation method. With minor modifications, the image analysis technique described here can be used to analyze other planktonic classes. PMID:9726867

  15. Determining Protein Complex Connectivity Using a Probabilistic Deletion Network Derived from Quantitative Proteomics

    PubMed Central

    Sardiu, Mihaela E.; Gilmore, Joshua M.; Carrozza, Michael J.; Li, Bing; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.

    2009-01-01

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex. PMID:19806189

  16. Determinants of Low Cloud Properties - An Artificial Neural Network Approach Using Observation Data Sets

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2015-04-01

    This contribution studies the determinants of low cloud properties based on the application of various global observation data sets in machine learning algorithms. Clouds play a crucial role in the climate system as their radiative properties and precipitation patterns significantly impact the Earth's energy balance. Cloud properties are determined by environmental conditions, as cloud formation requires the availability of water vapour ("precipitable water") and condensation nuclei in sufficiently saturated conditions. A main challenge in the research of aerosol-cloud interactions is the separation of aerosol effects from meteorological influence. To gain understanding of the processes that govern low cloud properties in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. In this study, artificial neural networks are used to relate a selection of predictors (meteorological parameters, aerosol loading) to a set of predictands (cloud microphysical and optical properties). As meteorological parameters, wind direction and velocity, sea level pressure, static stability of the lower troposphere, atmospheric water vapour and temperature at the surface are used (re-analysis data by the European Centre for Medium-Range Weather Forecasts). In addition to meteorological conditions, aerosol loading is used as a predictor of cloud properties (MODIS collection 6 aerosol optical depth). The statistical model reveals significant relationships between predictors and predictands and is able to represent the aerosol-cloud-meteorology system better than frequently used bivariate relationships. The most important predictors can be identified by the additional error when excluding one predictor at a time. The sensitivity of each predictand to each of the predictors is analyzed.

  17. Application of neural networks to determine moisture content on humidity-attenuated NIR spectra

    SciTech Connect

    Lopez, T.; Philipp, B.L.; Thompson-Bachmeier, S.

    1995-12-31

    Moisture has been identified as one of the critical tank waste parameters that impacts the safety status of the wastes, particularly tanks containing ferro/ferricyanide materials. Since water content is affected by a number of factors, including gravity, one hypothesis, currently being tested by Westinghouse Hanford`s Waste Tank Safety organization, is that the surface of the waste contains a minimum of water compared to the material deeper in the tank. Assuming this hypothesis is correct, a minimum internal waste water content will be obtained by measuring the surface water content. Near infrared analysis is a nondestructive technique that takes advantage of the tendency of water molecules to absorb specific wavelengths of NIR energy. When a sample containing water is exposed to those wavelengths, a certain portion of the energy will be absorbed by the water, and the remainder will be reflected. By measuring the reflected energy, the concentration of water in the sample can be determined. An initial investigation into the feasibility of remote sensing for hot cell and waste tank applications was performed at the University of Washington`s Center for Process Analytical Chemistry (CPAC) under the direction of Westinghouse Hanford Company. The BY-104 waste tank simulant test data showed that for these samples, ten percent of the incident radiation is scattered. When collected, this signal is available for determining moisture content because the moisture content of the waste affects the scattering. However, atmospheric relative humidity causes a signal attenuation that will impact any in situ measurements being obtained. For simulation, this spectra was used along with software generated atmospheric transmission data from 0-60 meters to produce a modified sample set. These data are analyzed using a backpropagation neural network algorithm to construct a model that would predict surface moisture content.

  18. Columnar interactions determine horizontal propagation of recurrent network activity in neocortex

    PubMed Central

    Wester, Jason C.; Contreras, Diego

    2012-01-01

    The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308

  19. Securely Measuring the Overlap between Private Datasets with Cryptosets

    PubMed Central

    Swamidass, S. Joshua; Matlock, Matthew; Rozenblit, Leon

    2015-01-01

    Many scientific questions are best approached by sharing data—collected by different groups or across large collaborative networks—into a combined analysis. Unfortunately, some of the most interesting and powerful datasets—like health records, genetic data, and drug discovery data—cannot be freely shared because they contain sensitive information. In many situations, knowing if private datasets overlap determines if it is worthwhile to navigate the institutional, ethical, and legal barriers that govern access to sensitive, private data. We report the first method of publicly measuring the overlap between private datasets that is secure under a malicious model without relying on private protocols or message passing. This method uses a publicly shareable summary of a dataset’s contents, its cryptoset, to estimate its overlap with other datasets. Cryptosets approach “information-theoretic” security, the strongest type of security possible in cryptography, which is not even crackable with infinite computing power. We empirically and theoretically assess both the accuracy of these estimates and the security of the approach, demonstrating that cryptosets are informative, with a stable accuracy, and secure. PMID:25714898

  20. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks.

    PubMed

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  1. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

    PubMed Central

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  2. Networking.

    ERIC Educational Resources Information Center

    Duvall, Betty

    Networking is an information giving and receiving system, a support system, and a means whereby women can get ahead in careers--either in new jobs or in current positions. Networking information can create many opportunities: women can talk about how other women handle situations and tasks, and previously established contacts can be used in…

  3. Overlapping Modularity at the Critical Point of k-Clique Percolation

    NASA Astrophysics Data System (ADS)

    Tóth, Bálint; Vicsek, Tamás; Palla, Gergely

    2013-05-01

    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.

  4. PeerShield: determining control and resilience criticality of collaborative cyber assets in networks

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2012-06-01

    As attackers get more coordinated and advanced in cyber attacks, cyber assets are required to have much more resilience, control effectiveness, and collaboration in networks. Such a requirement makes it essential to take a comprehensive and objective approach for measuring the individual and relative performances of cyber security assets in network nodes. To this end, this paper presents four techniques as to how the relative importance of cyber assets can be measured more comprehensively and objectively by considering together the main variables of risk assessment (e.g., threats, vulnerabilities), multiple attributes (e.g., resilience, control, and influence), network connectivity and controllability among collaborative cyber assets in networks. In the first technique, a Bayesian network is used to include the random variables for control, recovery, and resilience attributes of nodes, in addition to the random variables of threats, vulnerabilities, and risk. The second technique shows how graph matching and coloring can be utilized to form collaborative pairs of nodes to shield together against threats and vulnerabilities. The third technique ranks the security assets of nodes by incorporating multiple weights and thresholds of attributes into a decision-making algorithm. In the fourth technique, the hierarchically well-separated tree is enhanced to first identify critical nodes of a network with respect to their attributes and network connectivity, and then selecting some nodes as driver nodes for network controllability.

  5. Imaging of autoimmune hepatitis and overlap syndromes.

    PubMed

    Malik, Neera; Venkatesh, Sudhakar K

    2017-01-01

    Autoimmune hepatitis (AIH) is an uncommon, chronic inflammatory, and relapsing liver disease of unknown origin that may lead to liver cirrhosis, hepatocellular carcinoma, liver transplantation, or death. AIH occurs in all age groups and races but can frequently manifest as acute fulminant hepatitis. Clinical presentation of AIH can have features similar to primary sclerosing cholangitis (PSC) and primary biliary cirrhosis (PBC), and these diseases may coexist leading to overlap syndromes. Although histological diagnosis is necessary, imaging features often can demonstrate characteristics that may be helpful to distinguish these diseases. Imaging features of AIH are those of chronic liver disease, and imaging plays important role in detection of complications and ruling out other possible causes of chronic liver disease. Emerging techniques such as elastography provide non-invasive options for diagnosis of significant fibrosis and cirrhosis during clinical follow-up as well as assessment of response to treatment. In this study, we will describe imaging findings in AIH and overlap syndromes.

  6. "Overlapped" rhinitis: a real trap for rhinoallergologists.

    PubMed

    Gelardi, M

    2014-11-01

    Under the broad heading of "vasomotor" rhinitis two big groups can be distinguished: allergic rhinitis (IgE-mediated), and nonallergic rhinitis. Since they are two separate nosological entities, they can co-exist in the same patient, classifying themselves in the group of "overlapped" rhinitis (OR). Although not absolutely rare (indeed it is estimated a 15-20% incidence among all vasomotor rhinopathies), this condition is not investigated and diagnosed, with significant implications in the clinical-diagnostic and therapeutic field.

  7. Overlap of fibromyalgia with other medical conditions.

    PubMed

    Martínez-Lavín, M

    2001-08-01

    Fibromyalgia is a multisystem illness. One of its defining features, generalized pain, may also be present in other rheumatic entities. The diagnosis of fibromyalgia is not easy by any means, it requires a profound knowledge of internal medicine. This article discusses the different rheumatic and nonrheumatic diseases that overlap or are prone to be confused with fibromyalgia. It emphasizes the key points in the differential diagnosis.

  8. Overlaps between Frailty and Sarcopenia Definitions.

    PubMed

    Cederholm, Tommy

    2015-01-01

    Aging is characterized by the catabolism of muscles leading to sarcopenia and frailty. These are two geriatric syndromes with partly overlapping phenotypes. Primary sarcopenia, i.e. loss of muscle mass and function related to aging alone, usually precedes frailty. Thus, robustness passes from sarcopenia over frailty to disability leading eventually to a mortal outcome. Frailty (defined according to the phenotype model) encompasses states as exhaustion, weakness, and slowness, whereas sarcopenia, combining mass and function, is more strictly focused on muscles. Frailty is age related, whereas sarcopenia is also related to disease, starvation, and disuse. In general, the criteria for the two conditions overlap, but frailty requires weight loss, whereas sarcopenia requires muscle loss. Both gait speed and hand grip strength are suggested to be used as diagnostic measures for the two conditions since muscle function is crucial for any of the two syndromes. It is suggested that frailty screening should be part of the geriatric comprehensive assessment starting with measuring walking capacity and complemented by taking a history of fatigue and low activity. For younger adults (i.e. <70 years), sarcopenia screening could first register gait speed or hand grip strength and then body composition measurements. Simple questionnaires are feasible clinical alternatives. Treatment of frailty and sarcopenia overlaps, i.e. provide adequate protein and vitamin D supplementation, and encourage resistance exercise.

  9. Burnout-depression overlap: a review.

    PubMed

    Bianchi, Renzo; Schonfeld, Irvin Sam; Laurent, Eric

    2015-03-01

    Whether burnout is a form of depression or a distinct phenomenon is an object of controversy. The aim of the present article was to provide an up-to-date review of the literature dedicated to the question of burnout-depression overlap. A systematic literature search was carried out in PubMed, PsycINFO, and IngentaConnect. A total of 92 studies were identified as informing the issue of burnout-depression overlap. The current state of the art suggests that the distinction between burnout and depression is conceptually fragile. It is notably unclear how the state of burnout (i.e., the end stage of the burnout process) is conceived to differ from clinical depression. Empirically, evidence for the distinctiveness of the burnout phenomenon has been inconsistent, with the most recent studies casting doubt on that distinctiveness. The absence of consensual diagnostic criteria for burnout and burnout research's insufficient consideration of the heterogeneity of depressive disorders constitute major obstacles to the resolution of the raised issue. In conclusion, the epistemic status of the seminal, field-dominating definition of burnout is questioned. It is suggested that systematic clinical observation should be given a central place in future research on burnout-depression overlap.

  10. Vertical overlap of probability density functions of cloud and precipitation hydrometeors: CLOUD AND PRECIPITATION PDF OVERLAP

    SciTech Connect

    Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Larson, Vincent E.; Wong, May; Thayer-Calder, Katherine; Ghan, Steven J.

    2016-11-05

    Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continental and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.

  11. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations.

    PubMed

    Peron, Thomas Kauê Dal'maso; Rodrigues, Francisco A

    2012-11-01

    An explosive synchronization can be observed in scale-free networks when Kuramoto oscillators have natural frequencies equal to their number of connections. The present paper reports on mean-field approximations to determine the critical coupling of such explosive synchronization. It has been verified that the equation obtained for the critical coupling has an inverse dependence on the network average degree. This expression differs from those whose frequency distributions are unimodal and even. In this case, the critical coupling depends on the ratio between the first and second statistical moments of the degree distribution. Numerical simulations were also conducted to verify our analytical results.

  12. Experimental model for determining developmental stage of chicken embryo using infrared images and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Jung, Seung Kwon "Paul"; Hsieh, Sheng-Jen "Tony"; Chen, Che-Hao

    2013-05-01

    Development of a chicken embryo is conventionally assumed to follow a set growth pattern over the course of 21 days. However, despite identical incubation settings, many factors may contribute to an egg developing at a different rate from those around it. Being able to determine an embryo's actual development instead of relying on chronological assumptions of normal growth should prove to be a useful tool in the poultry industry for responding early to abnormal development and improving hatch rates. Previous studies have used infrared imaging to enhance candling observation, but relatively little has been done to implement infrared imaging in problem-solving. The purpose of this research is to construct a quantitative model for predicting the development stage and early viability of a chicken embryo during incubation. It may be noted that a similar project was conducted previously using different input parameters. This study seeks to improve upon the results from the earlier project. In this project, infrared images of eggs were processed to calculate air cell volumes and cooling rates, and daily measurements of egg weight and ambient temperature were compiled. Artificial neural networks (ANNs) were "trained" using multiple input parameters to recognize patterns in the data. Various training functions and topologies were evaluated in order to optimize prediction rates and consistency. The prediction rates obtained for the ANNs were around 81% for development stage and around 92% for viability. It is recommended for future research to expand the potential combinations of input parameters used in order to increase this model's versatility in the field.

  13. Photonic crystal fiber sensor array based on modes overlapping.

    PubMed

    Cárdenas-Sevilla, Guillermo A; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio

    2011-04-11

    An alternative method to build point and sensor array based on photonic crystal fibers (PCFs) is presented. A short length (in the 9-12 mm range) of properly selected index-guiding PCF is fusion spliced between conventional single mode fibers. By selective excitation and overlapping of specific modes in the PCF we make the transmission spectra of the sensors to exhibit a single and narrow notch. The notch position changes with external perturbation which allows sensing diverse parameters. The well-defined single notch, the extinction ratio exceeding 30 dB and the low overall insertion loss allow placing the sensors in series. This makes the implementation of sensor networks possible.

  14. Can Network Linkage Effects Determine Return? Evidence from Chinese Stock Market

    PubMed Central

    Qiao, Haishu; Xia, Yue; Li, Ying

    2016-01-01

    This study used the dynamic conditional correlations (DCC) method to identify the linkage effects of Chinese stock market, and further detected the influence of network linkage effects on magnitude of security returns across different industries. Applying two physics-derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the stock interdependence within the network of the China Securities Index (CSI) industry index basket. We observed that that obvious linkage effects existed among stock networks. CII and CCE, CAG and ITH as well as COU, CHA and REI were confirmed as the core nodes in the three different networks respectively. We also investigated the stability of linkage effects by estimating the mean correlations and mean distances, as well as the normalized tree length of these indices. In addition, using the GMM model approach, we found inter-node influence within the stock network had a pronounced effect on stock returns. Our results generally suggested that there appeared to be greater clustering effect among the indexes belonging to related industrial sectors than those of diverse sectors, and network comovement was significantly affected by impactive financial events in the reality. Besides, stocks that were more central within the network of stock market usually had higher returns for compensation because they endured greater exposure to correlation risk. PMID:27257816

  15. Can Network Linkage Effects Determine Return? Evidence from Chinese Stock Market.

    PubMed

    Qiao, Haishu; Xia, Yue; Li, Ying

    2016-01-01

    This study used the dynamic conditional correlations (DCC) method to identify the linkage effects of Chinese stock market, and further detected the influence of network linkage effects on magnitude of security returns across different industries. Applying two physics-derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the stock interdependence within the network of the China Securities Index (CSI) industry index basket. We observed that that obvious linkage effects existed among stock networks. CII and CCE, CAG and ITH as well as COU, CHA and REI were confirmed as the core nodes in the three different networks respectively. We also investigated the stability of linkage effects by estimating the mean correlations and mean distances, as well as the normalized tree length of these indices. In addition, using the GMM model approach, we found inter-node influence within the stock network had a pronounced effect on stock returns. Our results generally suggested that there appeared to be greater clustering effect among the indexes belonging to related industrial sectors than those of diverse sectors, and network comovement was significantly affected by impactive financial events in the reality. Besides, stocks that were more central within the network of stock market usually had higher returns for compensation because they endured greater exposure to correlation risk.

  16. Determinants of Network News Coverage of the Oil Industry during the Late 1970s.

    ERIC Educational Resources Information Center

    Erfle, Stephen; McMillan, Henry

    1989-01-01

    Examines which firms and products best predict media coverage of the oil industry. Reports that price variations in testing oil and gasoline correlate with the extent of news coverage provided by network television. (MM)

  17. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  18. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-06-03

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting.

  19. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    NASA Astrophysics Data System (ADS)

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; D’Onofrio, Alberto

    2016-06-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting.

  20. Influence of slice overlap on positron emission tomography image quality

    NASA Astrophysics Data System (ADS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has

  1. The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes

    PubMed Central

    Baldazzi, Valentina; Ropers, Delphine; Markowicz, Yves; Kahn, Daniel; Geiselmann, Johannes; de Jong, Hidde

    2010-01-01

    Gene regulatory networks consist of direct interactions but also include indirect interactions mediated by metabolites and signaling molecules. We describe how these indirect interactions can be derived from a model of the underlying biochemical reaction network, using weak time-scale assumptions in combination with sensitivity criteria from metabolic control analysis. We apply this approach to a model of the carbon assimilation network in Escherichia coli. Our results show that the derived gene regulatory network is densely connected, contrary to what is usually assumed. Moreover, the network is largely sign-determined, meaning that the signs of the indirect interactions are fixed by the flux directions of biochemical reactions, independently of specific parameter values and rate laws. An inversion of the fluxes following a change in growth conditions may affect the signs of the indirect interactions though. This leads to a feedback structure that is at the same time robust to changes in the kinetic properties of enzymes and that has the flexibility to accommodate radical changes in the environment. PMID:20548959

  2. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    SciTech Connect

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Métaxian, Jean-Philippe; Valencia, Ayunda Aulia

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  3. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    NASA Astrophysics Data System (ADS)

    Ramdhan, Mohamad; Nugraha, Andri Dian; Widiyantoro, Sri; Métaxian, Jean-Philippe; Valencia, Ayunda Aulia

    2015-04-01

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 1800. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  4. Overextended sarcomeres regain filament overlap following stretch.

    PubMed

    Panchangam, Appaji; Herzog, Walter

    2012-09-21

    Sarcomere overextension has been widely implicated in stretch-induced muscle injury. Yet, sarcomere overextensions are typically inferred based on indirect evidence obtained in muscle and fibre preparations, where individual sarcomeres cannot be observed during dynamic contractions. Therefore, it remains unclear whether sarcomere overextensions are permanent following injury-inducing stretch-shortening cycles, and thus, if they can explain stretch-induced force loss. We tested the hypothesis that overextended sarcomeres can regain filament overlap in isolated myofibrils from rabbit psoas muscles. Maximally activated myofibrils (n=13) were stretched from an average sarcomere length of 2.6±0.04μm by 0.9μm sarcomere(-1) at a speed of 0.1μm sarcomere(-1)s(-1) and immediately returned to the starting lengths at the same speed (sarcomere strain=34.1±2.3%). Myofibrils were then allowed to contract isometrically at the starting lengths (2.6μm) for ∼30s before relaxing. Force and individual sarcomere lengths were measured continuously. Out of the 182 sarcomeres, 35 sarcomeres were overextended at the peak of stretch, out of which 26 regained filament overlap in the shortening phase while 9 (∼5%) remained overextended. About 35% of the sarcomeres with initial lengths on the descending limb of the force-length relationship and ∼2% of the sarcomeres with shorter initial lengths were overextended. These findings provide first ever direct evidence that overextended sarcomeres can regain filament overlap in the shortening phase following stretch, and that the likelihood of overextension is higher for sarcomeres residing initially on the descending limb.

  5. Technology initiatives with government/business overlap

    NASA Astrophysics Data System (ADS)

    Knapp, Robert H., Jr.

    2015-03-01

    Three important present-day technology development settings involve significant overlap between government and private sectors. The Advanced Research Project Agency for Energy (ARPA-E) supports a wide range of "high risk, high return" projects carried out in academic, non-profit or private business settings. The Materials Genome Initiative (MGI), based in the White House, aims at radical acceleration of the development process for advanced materials. California public utilities such as Pacific Gas & Electric operate under a structure of financial returns and political program mandates that make them arms of public policy as much as independent businesses.

  6. Computational assessment of the influence of the overlap ratio on the power characteristics of a Classical Savonius wind turbine

    NASA Astrophysics Data System (ADS)

    Kacprzak, Konrad; Sobczak, Krzysztof

    2015-09-01

    An influence of the overlap on the performance of the Classical Savonius wind turbine was investigated. Unsteady two-dimensional numerical simulations were carried out for a wide range of overlap ratios. For selected configurations computation quality was verified by comparison with three-dimensional simulations and the wind tunnel experimental data available in literature. A satisfactory agreement was achieved. Power characteristics were determined for all the investigated overlap ratios for selected tip speed ratios. Obtained results indicate that the maximum device performance is achieved for the buckets overlap ratio close to 0.

  7. Adaptive threshold determination for efficient channel sensing in cognitive radio network using mobile sensors

    NASA Astrophysics Data System (ADS)

    Morshed, M. N.; Khatun, S.; Kamarudin, L. M.; Aljunid, S. A.; Ahmad, R. B.; Zakaria, A.; Fakir, M. M.

    2017-03-01

    Spectrum saturation problem is a major issue in wireless communication systems all over the world. Huge number of users is joining each day to the existing fixed band frequency but the bandwidth is not increasing. These requirements demand for efficient and intelligent use of spectrum. To solve this issue, the Cognitive Radio (CR) is the best choice. Spectrum sensing of a wireless heterogeneous network is a fundamental issue to detect the presence of primary users' signals in CR networks. In order to protect primary users (PUs) from harmful interference, the spectrum sensing scheme is required to perform well even in low signal-to-noise ratio (SNR) environments. Meanwhile, the sensing period is usually required to be short enough so that secondary (unlicensed) users (SUs) can fully utilize the available spectrum. CR networks can be designed to manage the radio spectrum more efficiently by utilizing the spectrum holes in primary user's licensed frequency bands. In this paper, we have proposed an adaptive threshold detection method to detect presence of PU signal using free space path loss (FSPL) model in 2.4 GHz WLAN network. The model is designed for mobile sensors embedded in smartphones. The mobile sensors acts as SU while the existing WLAN network (channels) works as PU. The theoretical results show that the desired threshold range detection of mobile sensors mainly depends on the noise floor level of the location in consideration.

  8. Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination.

    PubMed

    Turco, Gianluca; Donati, Ivan; Grassi, Mario; Marchioli, Giulia; Lapasin, Romano; Paoletti, Sergio

    2011-04-11

    The structure of calcium-saturated alginate hydrogels has been studied by combining rheological determinations and relaxometry measurements. The mechanical spectroscopy analyses performed on alginate gel cylinders at different polysaccharide concentration allowed estimating their main structural features such as the average mesh size. The calculation was based on the introduction of a front factor in the classical rubber elasticity approach which was correlated to the average length of the Guluronic acid blocks along the polysaccharide chain. Transverse relaxation time (T(2)) determinations performed on the cylinders revealed the presence of two relaxation rates of the water entrapped within the hydrogel network. The cross-correlation of the latter data with the rheological measurements allowed estimating the mesh size distribution of the hydrogel network. The results obtained for the hydrogel cylinders were found to be consistent with the relaxometric analysis performed on the alginate microbeads where, however, only one type of water bound into the network structure was detected. A good correlation was found in the average mesh size determined by means of relaxometric measurements on alginate microbeads and by a statistical analysis performed on TEM micrographs. Finally, the addition of a solution containing calcium ions allowed investigating further the different water relaxation modes within alginate hydrogels.

  9. Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks

    PubMed Central

    Cowan, Noah J.; Chastain, Erick J.; Vilhena, Daril A.; Freudenberg, James S.; Bergstrom, Carl T.

    2012-01-01

    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167–173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set, is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations. PMID:22761682

  10. Immigrant and refugee social networks: determinants and consequences of social support among women newcomers to Canada.

    PubMed

    Hynie, Michaela; Crooks, Valorie A; Barragan, Jackeline

    2011-12-01

    Recent immigrants and refugees (newcomers) vary on many dimensions but do share similar challenges. Newcomers must rebuild social networks to obtain needed social support but often face social exclusion because of their race, language, religion, or immigrant status. In addition, most have limited access to personal, social, and community resources. Effects of situational and personal variables on the benefits and limitations associated with the social networks of female newcomers were explored through interviews and focus groups with 87 women from 7 communities. Using thematic analysis, the authors identify 5 sources of informal support across all 7 communities, which were almost exclusively limited to co-ethnic relationships, and the types of support, limitations, and reciprocity within each. Perceived support was strongest from family and close friends and, when support from close relationships was unavailable, from primary care providers. The results suggest that co-ethnic peer support networks may be overwhelmed in newcomer communities because of their limited size and resources.

  11. Activation of words with phonological overlap

    PubMed Central

    Friedrich, Claudia K.; Felder, Verena; Lahiri, Aditi; Eulitz, Carsten

    2013-01-01

    Multiple lexical representations overlapping with the input (cohort neighbors) are temporarily activated in the listener's mental lexicon when speech unfolds in time. Activation for cohort neighbors appears to rapidly decline as soon as there is mismatch with the input. However, it is a matter of debate whether or not they are completely excluded from further processing. We recorded behavioral data and event-related brain potentials (ERPs) in auditory-visual word onset priming during a lexical decision task. As primes we used the first two syllables of spoken German words. In a carrier word condition, the primes were extracted from spoken versions of the target words (ano-ANORAK “anorak”). In a cohort neighbor condition, the primes were taken from words that overlap with the target word up to the second nucleus (ana—taken from ANANAS “pineapple”). Relative to a control condition, where primes and targets were unrelated, lexical decision responses for cohort neighbors were delayed. This reveals that cohort neighbors are disfavored by the decision processes at the behavioral front end. In contrast, left-anterior ERPs reflected long-lasting facilitated processing of cohort neighbors. We interpret these results as evidence for extended parallel processing of cohort neighbors. That is, in parallel to the preparation and elicitation of delayed lexical decision responses to cohort neighbors, aspects of the processing system appear to keep track of those less efficient word candidates. PMID:24009593

  12. The Hippocampus and Disambiguation of Overlapping Sequences

    PubMed Central

    Agster, Kara L.; Fortin, Norbert J.; Eichenbaum, Howard

    2010-01-01

    Recent models of hippocampal function emphasize its potential role in disambiguating sequences of events that compose distinct episodic memories. In this study, rats were trained to distinguish two overlapping sequences of odor choices. The capacity to disambiguate the sequences was measured by the critical odor choice after the overlapping elements of the sequences. When the sequences were presented in rapid alternation, damage to the hippocampus, produced either by infusions of the neurotoxin ibotenic acid or by radiofrequency current, produced a severe deficit, although animals with radiofrequency lesions relearned the task. When the sequences were presented spaced apart and in random order, animals with radiofrequency hippocampal lesions could perform the task. However, they failed when a memory delay was imposed before the critical choice. These findings support the hypothesis that the hippocampus is involved in representing sequences of nonspatial events, particularly when interference between the sequences is high or when animals must remember across a substantial delay preceding items in a current sequence. PMID:12097529

  13. Octave illusion elicited by overlapping narrowband noises.

    PubMed

    Jonas Brännström, K; Nilsson, Patrik

    2011-05-01

    The octave or Deutsch illusion occurs when two tones, separated by about one octave, are presented simultaneously but alternating between ears, such that when the low tone is presented to the left ear the high tone is presented to the right ear and vice versa. Most subjects hear a single tone that alternates both between ears and in pitch; i.e., they hear a low pitched tone in one ear alternating with a high pitched tone in the other ear. The present study examined whether the illusion can be elicited by aperiodic signals consisting of low-frequency band-pass filtered noises with overlapping spectra. The amount of spectral overlap was held constant, but the high- and low-frequency content of the signals was systematically varied. The majority of subjects perceived an auditory illusion in terms of a dominant ear for pitch and lateralization by frequency, as proposed by Deutsch [(1975a) Sci. Am. 233, 92-104]. Furthermore, the salience of the illusion increased as the high frequency of the content in the signal increased. Since no harmonics were present in the stimuli, it is highly unlikely that this illusion is perceived on the basis of binaural diplacusis or harmonic binaural fusion.

  14. Heterogeneity of asthma–COPD overlap syndrome

    PubMed Central

    Joo, Hyonsoo; Han, Deokjae; Lee, Jae Ha; Rhee, Chin Kook

    2017-01-01

    Many patients suffering from asthma or COPD have overlapping features of both diseases. However, a phenotypical approach for evaluating asthma–COPD overlap syndrome (ACOS) has not been established. In this report, we examined the phenotypes in patients with ACOS. Patients diagnosed with ACOS between 2011 and 2015 were identified and classified into four phenotype groups. Group A was composed of patients who smoked <10 pack years and had blood eosinophil counts ≥300. Group B was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Group C was composed of patients who smoked ≥10 pack years and had blood eosinophil counts ≥300. Group D was composed of patients who smoked <10 pack years and had blood eosinophil counts <300. Clinical characteristics were analyzed and compared among groups. Comparisons were made among 103 ACOS patients. Patients in group D were oldest, while patients in group A were youngest. There were relatively more female patients in groups A and B; the majority of patients in groups C and D were male. The degree of airflow obstruction was most severe in group C. The rate of being free of severe exacerbation was significantly lower in group C than in the other groups. In this study, each ACOS phenotype showed different characteristics. The proportion of patients free of severe exacerbation differed significantly among groups. At this time, further studies on the phenotypes of ACOS are required. PMID:28260876

  15. Adaptive overlapped sub-blocks contrast enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Anqiu; Yuan, Fei; Liu, Jing; Liu, Siqi; Li, An; Zheng, Zhenrong

    2016-09-01

    In this paper, an overlapped sub-block gray-level average method for contrast enhancement is presented. The digital image correction of uneven illumination under microscope transmittance is a problem in image processing, also sometimes the image in the dark place need to correct the uneven problem. A new correction method was proposed based on the mask method and sub-blocks gray-level average method because Traditional mask method and background fitting method are restricted due to application scenarios, and the corrected image brightness is low by using background fitting method, so it has some limitations of the application. In this paper, we introduce a new method called AOSCE for image contrast enhancement. The image is divided into many sub-blocks which are overlapped, calculate the average gray-level of the whole image as M and the calculate the average gray-level of each one as mi, next for each block it can get d = mi - m, each block minus d to get a new image, and then get the minimum gray-level of each block into a matrix DD to get the background, and use bilinearity to get the same scale of the image. over fitting the image in matlab in order to get smoother image, then minus the background to get the contrast enhancement image.

  16. New experimental method for lidar overlap factor using a CCD side-scatter technique.

    PubMed

    Wang, Zhenzhu; Tao, Zongming; Liu, Dong; Wu, Decheng; Xie, Chenbo; Wang, Yingjian

    2015-04-15

    In theory, lidar overlap factor can be derived from the difference between the particle backscatter coefficient retrieved from lidar elastic signal without overlap correction and the actual particle backscatter coefficient, which can be obtained by other measured techniques. The side-scatter technique using a CCD camera is testified to be a powerful tool to detect the particle backscatter coefficient in near ground layer during night time. A new experiment approach to determine the overlap factor for vertically pointing lidar is presented in this study, which can be applied to Mie lidars. The effect of overlap factor on Mie lidar is corrected by an iteration algorithm combining the retrieved particle backscatter coefficient using CCD side-scatter method and Fernald method. This method has been successfully applied to Mie lidar measurements during a routine campaign, and the comparison of experimental results in different atmosphere conditions demonstrated that this method is available in practice.

  17. Neural networks for determining protein specificity and multiple alignment of binding sites

    SciTech Connect

    Heumann, J.M.; Lapedes, A.S.; Stormo, G.D.

    1994-12-31

    We use a quantitative definition of specificity to develop a neural network for the identification of common protein binding sites in a collection of unaligned DNA fragments. We demonstrate the equivalence of the method to maximizing Information Content of the aligned sites when simple models of the binding energy and the genome are employed. The network method subsumes those simple models and is capable of working with more complicated ones. This is demonstrated using a Markov model of the E. coli genome and a sampling method to approximate the partition function. A variation of Gibbs sampling aids in avoiding local minima.

  18. Simultaneous determination of some components in detergent washing powder by mid-infrared spectrometry and artificial neural network.

    PubMed

    Khanmohammadi, Mohammadreza; Garmarudi, Amir Bagheri; Rouchi, Mohammad Babaei; Khoddami, Nafiseh

    2011-01-01

    A method has been established for simultaneous determination of sodium sulfate, sodium carbonate, and sodium tripolyphosphate in detergent washing powder samples based on attenuated total reflectance Fourier transform IR spectrometry in the mid-IR spectral region (800-1550 cm(-1)). Genetic algorithm (GA) wavelength selection followed by feed forward back-propagation artificial neural network (BP-ANN) was the chemometric approach. Root mean square error of prediction for BP-ANN and GA-BP-ANN was 0.0051 and 0.0048, respectively. The proposed method is simple, with no tedious pretreatment step, for simultaneous determination of the above-mentioned components in commercial washing powder samples.

  19. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators.

    PubMed

    Herpin, Amaury; Schartl, Manfred

    2015-10-01

    Sexual dimorphism is one of the most pervasive and diverse features of animal morphology, physiology, and behavior. Despite the generality of the phenomenon itself, the mechanisms controlling how sex is determined differ considerably among various organismic groups, have evolved repeatedly and independently, and the underlying molecular pathways can change quickly during evolution. Even within closely related groups of organisms for which the development of gonads on the morphological, histological, and cell biological level is undistinguishable, the molecular control and the regulation of the factors involved in sex determination and gonad differentiation can be substantially different. The biological meaning of the high molecular plasticity of an otherwise common developmental program is unknown. While comparative studies suggest that the downstream effectors of sex-determining pathways tend to be more stable than the triggering mechanisms at the top, it is still unclear how conserved the downstream networks are and how all components work together. After many years of stasis, when the molecular basis of sex determination was amenable only in the few classical model organisms (fly, worm, mouse), recently, sex-determining genes from several animal species have been identified and new studies have elucidated some novel regulatory interactions and biological functions of the downstream network, particularly in vertebrates. These data have considerably changed our classical perception of a simple linear developmental cascade that makes the decision for the embryo to develop as male or female, and how it evolves.

  20. Separation and sequence detection of overlapped fingerprints: experiments and first results

    NASA Astrophysics Data System (ADS)

    Kärgel, Rainer; Giebel, Sascha; Leich, Marcus; Dittmann, Jana

    2011-11-01

    Latent fingerprints provide vital information in modern crime scene investigation. On frequently touched surfaces the fingerprints may overlap which poses a major problem for forensic analysis. In order to make such overlapping fingerprints available for analysis, they have to be separated. An additional evaluation of the sequence in which the fingerprints were brought onto the surface can help to reconstruct the progression of events. Advances in both tasks can considerably aid crime investigation agencies and are the subject of this work. Here, a statistical approach, initially devised for the separation of overlapping text patterns by Tonazzini et al.,1 is employed to separate overlapping fingerprints. The method involves a maximum a posteriori estimation of the single fingerprints and the mixing coefficients, computed by an expectation-maximization algorithm. A fingerprint age determination feature based on corrosion is evaluated for sequence estimation. The approaches are evaluated using 30 samples of overlapping latent fingerprints on two different substrates. The fingerprint images are acquired with a non-destructive chromatic white light surface measurement device, each sample containing exactly two fingerprints that overlap in the center of the image. Since forensic investigations rely on manual assessment of acquired fingerprints by forensics experts, a subjective scale ranging from 0 to 8 is used to rate the separation results. Our results indicate that the chosen method can separate overlapped fingerprints which exhibit strong differences in contrast, since results gradually improve with the growing contrast difference of the overlapping fingerprints. Investigating the effects of corrosion leads to a reliable determination of the fingerprints' sequence as the timespan between their leaving increases.

  1. Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control

    NASA Astrophysics Data System (ADS)

    Kagami, Haruna; Akutsu, Tatsuya; Maegawa, Shingo; Hosokawa, Hiroshi; Nacher, Jose C.

    2015-10-01

    Deciphering the association between life molecules and human diseases is currently an important task in systems biology. Research over the past decade has unveiled that the human genome is almost entirely transcribed, producing a vast number of non-protein-coding RNAs (ncRNAs) with potential regulatory functions. More recent findings suggest that many diseases may not be exclusively linked to mutations in protein-coding genes. The combination of these arguments poses the question of whether ncRNAs that play a critical role in network control are also enriched with disease-associated ncRNAs. To address this question, we mapped the available annotated information of more than 350 human disorders to the largest collection of human ncRNA-protein interactions, which define a bipartite network of almost 93,000 interactions. Using a novel algorithmic-based controllability framework applied to the constructed bipartite network, we found that ncRNAs engaged in critical network control are also statistically linked to human disorders (P-value of P = 9.8 × 10-109). Taken together, these findings suggest that the addition of those genes that encode optimized subsets of ncRNAs engaged in critical control within the pool of candidate genes could aid disease gene prioritization studies.

  2. Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control.

    PubMed

    Kagami, Haruna; Akutsu, Tatsuya; Maegawa, Shingo; Hosokawa, Hiroshi; Nacher, Jose C

    2015-10-13

    Deciphering the association between life molecules and human diseases is currently an important task in systems biology. Research over the past decade has unveiled that the human genome is almost entirely transcribed, producing a vast number of non-protein-coding RNAs (ncRNAs) with potential regulatory functions. More recent findings suggest that many diseases may not be exclusively linked to mutations in protein-coding genes. The combination of these arguments poses the question of whether ncRNAs that play a critical role in network control are also enriched with disease-associated ncRNAs. To address this question, we mapped the available annotated information of more than 350 human disorders to the largest collection of human ncRNA-protein interactions, which define a bipartite network of almost 93,000 interactions. Using a novel algorithmic-based controllability framework applied to the constructed bipartite network, we found that ncRNAs engaged in critical network control are also statistically linked to human disorders (P-value of P = 9.8 × 10(-109)). Taken together, these findings suggest that the addition of those genes that encode optimized subsets of ncRNAs engaged in critical control within the pool of candidate genes could aid disease gene prioritization studies.

  3. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    PubMed

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.

  4. Determine the optimal carrier selection for a logistics network based on multi-commodity reliability criterion

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Kuei; Yeh, Cheng-Ta

    2013-05-01

    From the perspective of supply chain management, the selected carrier plays an important role in freight delivery. This article proposes a new criterion of multi-commodity reliability and optimises the carrier selection based on such a criterion for logistics networks with routes and nodes, over which multiple commodities are delivered. Carrier selection concerns the selection of exactly one carrier to deliver freight on each route. The capacity of each carrier has several available values associated with a probability distribution, since some of a carrier's capacity may be reserved for various orders. Therefore, the logistics network, given any carrier selection, is a multi-commodity multi-state logistics network. Multi-commodity reliability is defined as a probability that the logistics network can satisfy a customer's demand for various commodities, and is a performance indicator for freight delivery. To solve this problem, this study proposes an optimisation algorithm that integrates genetic algorithm, minimal paths and Recursive Sum of Disjoint Products. A practical example in which multi-sized LCD monitors are delivered from China to Germany is considered to illustrate the solution procedure.

  5. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... select agent or toxin to APHIS or CDC. (i) The seizure of any of the following overlap select agents and.... This report must be followed by submission of APHIS/CDC Form 4 within 7 calendar days after seizure of the overlap select agent or toxin. (ii) For all other overlap select agents or toxins, APHIS/CDC...

  6. Phonological and Orthographic Overlap Effects in Fast and Masked Priming

    PubMed Central

    Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  7. Stochasticity versus determinism: consequences for realistic gene regulatory network modelling and evolution.

    PubMed

    Jenkins, Dafyd J; Stekel, Dov J

    2010-02-01

    Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.

  8. Contribution of network connectivity in determining the relationship between gene expression and metabolite concentration changes.

    PubMed

    Zelezniak, Aleksej; Sheridan, Steven; Patil, Kiran Raosaheb

    2014-04-01

    One of the primary mechanisms through which a cell exerts control over its metabolic state is by modulating expression levels of its enzyme-coding genes. However, the changes at the level of enzyme expression allow only indirect control over metabolite levels, for two main reasons. First, at the level of individual reactions, metabolite levels are non-linearly dependent on enzyme abundances as per the reaction kinetics mechanisms. Secondly, specific metabolite pools are tightly interlinked with the rest of the metabolic network through their production and consumption reactions. While the role of reaction kinetics in metabolite concentration control is well studied at the level of individual reactions, the contribution of network connectivity has remained relatively unclear. Here we report a modeling framework that integrates both reaction kinetics and network connectivity constraints for describing the interplay between metabolite concentrations and mRNA levels. We used this framework to investigate correlations between the gene expression and the metabolite concentration changes in Saccharomyces cerevisiae during its metabolic cycle, as well as in response to three fundamentally different biological perturbations, namely gene knockout, nutrient shock and nutrient change. While the kinetic constraints applied at the level of individual reactions were found to be poor descriptors of the mRNA-metabolite relationship, their use in the context of the network enabled us to correlate changes in the expression of enzyme-coding genes to the alterations in metabolite levels. Our results highlight the key contribution of metabolic network connectivity in mediating cellular control over metabolite levels, and have implications towards bridging the gap between genotype and metabolic phenotype.

  9. Time-quefrency analysis of overlapping similar microseismic events

    NASA Astrophysics Data System (ADS)

    Nagano, Koji

    2016-05-01

    In this paper, I describe a new technique to determine the interval between P-waves in similar, overlapping microseismic events. The similar microseismic events that occur with overlapping waveforms are called `proximate microseismic doublets' herein. Proximate microseismic doublets had been discarded in previous studies because we had not noticed their usefulness. Analysis of similar events can show relative locations of sources between them. Analysis of proximate microseismic doublets can provide more precise relative source locations because variation in the velocity structure has little influence on their relative travel times. It is necessary to measure the interval between the P-waves in the proximate microseismic doublets to determine their relative source locations. A `proximate microseismic doublet' is a pair of microseismic events in which the second event arrives before the attenuation of the first event. Cepstrum analysis can provide the interval even though the second event overlaps the first event. However, a cepstrum of a proximate microseismic doublet generally has two peaks, one representing the interval between the arrivals of the two P-waves, and the other representing the interval between the arrivals of the two S-waves. It is therefore difficult to determine the peak that represents the P-wave interval from the cepstrum alone. I used window functions in cepstrum analysis to isolate the first and second P-waves and to suppress the second S-wave. I change the length of the window function and calculate the cepstrum for each window length. The result is represented in a three-dimensional contour plot of length-quefrency-cepstrum data. The contour plot allows me to identify the cepstrum peak that represents the P-wave interval. The precise quefrency can be determined from a two-dimensional quefrency-cepstrum graph, provided that the length of the window is appropriately chosen. I have used both synthetic and field data to demonstrate that this

  10. Earthquake locations determined by the Southern Alaska seismograph network for October 1971 through May 1989

    USGS Publications Warehouse

    Fogleman, Kent A.; Lahr, John C.; Stephens, Christopher D.; Page, Robert A.

    1993-01-01

    This report describes the instrumentation and evolution of the U.S. Geological Survey’s regional seismograph network in southern Alaska, provides phase and hypocenter data for seismic events from October 1971 through May 1989, reviews the location methods used, and discusses the completeness of the catalog and the accuracy of the computed hypocenters. Included are arrival time data for explosions detonated under the Trans-Alaska Crustal Transect (TACT) in 1984 and 1985.The U.S. Geological Survey (USGS) operated a regional network of seismographs in southern Alaska from 1971 to the mid 1990s. The principal purpose of this network was to record seismic data to be used to precisely locate earthquakes in the seismic zones of southern Alaska, delineate seismically active faults, assess seismic risks, document potential premonitory earthquake phenomena, investigate current tectonic deformation, and study the structure and physical properties of the crust and upper mantle. A task fundamental to all of these goals was the routine cataloging of parameters for earthquakes located within and adjacent to the seismograph network.The initial network of 10 stations, 7 around Cook Inlet and 3 near Valdez, was installed in 1971. In subsequent summers additions or modifications to the network were made. By the fall of 1973, 26 stations extended from western Cook Inlet to eastern Prince William Sound, and 4 stations were located to the east between Cordova and Yakutat. A year later 20 additional stations were installed. Thirteen of these were placed along the eastern Gulf of Alaska with support from the National Oceanic and Atmospheric Administration (NOAA) under the Outer Continental Shelf Environmental Assessment Program to investigate the seismicity of the outer continental shelf, a region of interest for oil exploration. Since then the region covered by the network remained relatively fixed while efforts were made to make the stations more reliable through improved electronic

  11. Dimensional overlap between time and space.

    PubMed

    Eikmeier, Verena; Schröter, Hannes; Maienborn, Claudia; Alex-Ruf, Simone; Ulrich, Rolf

    2013-12-01

    Several pieces of evidence suggest that our mental representations of time and space are linked. However, the extent of this linkage between the two domains has not yet been assessed. We present the results of two experiments that draw on the predictions of the dimensional overlap model (Kornblum, Hasbroucq, & Osman, Psychological Review 97:253-270, 1990). The stimulus and response sets in these reaction time experiments were related to either time or space. The obtained stimulus-response congruency effects were of about the same size for identical stimulus-response sets (time-time or space-space) and for different stimulus-response sets (time-space or space-time). These results support the view that our representations of time and space are strongly linked.

  12. Overlapped Fourier coding for optical aberration removal

    PubMed Central

    Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei

    2014-01-01

    We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982

  13. [Syndrome overlap: autoimmune hepatitis and autoimmune cholangitis].

    PubMed

    Guerra Montero, Luis; Ortega Alvarez, Félix; Marquez Teves, Maguin; Asato Higa, Carmen; Sumire Umeres, Julia

    2016-01-01

    Autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune cholangitis are chronic autoimmune liver disease, usually present separate, the cases where characteristics of two of the above is observed liver disease is commonly referred to as Overlap Syndromes (OS). Although there is no consensus on specific criteria for the diagnosis of OS identification of this association is important for initiating appropriate treatment and prevent its progression to cirrhosis or at least the complications of cirrhosis and death. We report the case of awoman aged 22 cirrhotic which debuted are edematous ascites, severe asthenia and jaundice compliant diagnostics SS criteria and initially present any response to treatment with ursodeoxycholic acid and oral corticosteroids, but ultimately finished performing a transplant orthotopic liver.

  14. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  15. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  16. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  17. Recombining overlapping BACs into single large BACs.

    PubMed

    Kotzamanis, George; Kotsinas, Athanassios

    2015-01-01

    BAC clones containing the entire genomic region of a gene including the long-range regulatory elements are very useful for gene functional analysis. However, large genes often span more than the insert of a BAC clone, and single BACs covering the entire region of interest are not available. Here, we describe a general system for linking two or more overlapping BACs into a single clone. Two rounds of homologous recombination are used. In the first, the BAC inserts are subcloned into the pBACLink vectors. In the second, the two BACs are combined together. Multiple BACs in a contig can be combined by alternating use of the pBACLInk vectors, resulting in several BAC clones containing as much of the genomic region of a gene as required. Such BACs can then be used in gene expression studies and/or gene therapy applications.

  18. Trophic overlap between native and invasive stream crayfish

    USGS Publications Warehouse

    Magoulick, Daniel D.; Piercey, Glenn L.

    2016-01-01

    We examined trophic dynamics of a stream food web where invasive Orconectes neglectusappear to be displacing native O. eupunctus in the Spring River drainage of the Ozark Highlands, Missouri and Arkansas, USA. We collected crayfish species and possible food sources seasonally from a site of sympatry on the South Fork Spring River. We determined diet overlap and potential for competition between O. eupunctus and O. neglectus, and investigated seasonal variation using carbon and nitrogen stable isotope analyses and gut content analyses. Gut content analysis showed both species of crayfish consumed mainly detritus during summer and spring, with other prey categories varying by species and season. Stable isotope analysis showed that O. eupunctus and O. neglectus relied on invertebrates as a major energy and nutrient source throughout summer, autumn, and spring, and the two species showed differences in their stable isotope signatures during spring and summer, but not autumn. Given the trophic overlap between O. eupunctus and O. neglectus, there is a potential for the two species to compete for food and to be ecologically redundant. Ecological redundancy can lead to reduced effects on ecosystem function post-invasion, and therefore examining ecological redundancy of potential invaders should be a conservation priority.

  19. Home range overlap as a driver of intelligence in primates.

    PubMed

    Grueter, Cyril C

    2015-04-01

    Various socioecological factors have been suggested to influence cognitive capacity in primates, including challenges associated with foraging and dealing with the complexities of social life. Alexander [Alexander, 1989]. Evolution of the human psyche. In: Mellars P, Stringer C, editors. The human revolution: Behavioural and biological perspectives on the origins of modern humans. Princeton: Princeton University Press. p 455-513] proposed an integrative model for the evolution of human cognitive abilities and complex sociality that incorporates competition among coalitions of conspecifics (inter-group conflict) as a major selective pressure. However, one of the premises of this model, i.e., that when confronted with inter-group conflict selection should favor enhanced cognition, has remained empirically untested. Using a comparative approach on species data, I aimed to test the prediction that primate species (n = 104) that face greater inter-group conflict have higher cognitive abilities (indexed by endocranial volume). The degree of inter-group conflict/complexity was approximated via the variable home range overlap among groups. I found a significant relationship between home range overlap and endocranial volume, even after controlling for other predictor variables and covariates such as group size and body mass. I conclude that brain size evolution cannot be attributed exclusively to social factors such as group size, but likely reflects a variety of social and ecological determinants including inter-group conflict which poses cognitive demands on monitoring both the wider social milieu as well as spatial attributes of the habitat.

  20. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis.

    PubMed

    Dong, Wentao; Keibler, Mark A; Stephanopoulos, Gregory

    2017-02-10

    Cancer metabolism has emerged as an indispensable part of contemporary cancer research. During the past 10 years, the use of stable isotopic tracers and network analysis have unveiled a number of metabolic pathways activated in cancer cells. Here, we review such pathways along with the particular tracers and labeling observations that led to the discovery of their rewiring in cancer cells. The list of such pathways comprises the reductive metabolism of glutamine, altered glycolysis, serine and glycine metabolism, mutant isocitrate dehydrogenase (IDH) induced reprogramming and the onset of acetate metabolism. Additionally, we demonstrate the critical role of isotopic labeling and network analysis in identifying these pathways. The alterations described in this review do not constitute a complete list, and future research using these powerful tools is likely to discover other cancer-related pathways and new metabolic targets for cancer therapy.

  1. Determining the amount of anesthetic medicine to be applied by using Elman's recurrent neural networks via resilient back propagation.

    PubMed

    Güntürkün, Rüştü

    2010-08-01

    In this study, Elman recurrent neural networks have been defined by using Resilient Back Propagation in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. From 30 patients, 57 distinct EEG recordings have been collected prior to during anaesthesia of different levels. The applied artificial neural network is composed of three layers, namely the input layer, the middle layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. Prediction has been made by means of ANN. Training and testing the ANN have been used previous anaesthesia amount, total power/normal power and total power/previous. The system has been able to correctly purposeful responses in average accuracy of 95% of the cases. This method is also computationally fast and acceptable real-time clinical performance has been obtained.

  2. Non-destructive determination of metronidazole powder by using artificial neural networks on short-wavelength NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Lingzhi; Dou, Ying; Mi, Hong; Ren, Meiyan; Ren, Yulin

    2007-04-01

    The present study aimed at providing a new method in sight into short-wavelength near-infrared (NIR) spectroscopy of in pharmaceutical quantitative analysis. To do that, 124 experimental samples of metronidazole powder were analyzed using artificial neural networks (ANNs) in the 780-1100 nm region of short-wavelength NIR spectra. In this paper, metronidazole was as active component and other two components (magnesium stearate and starch) were as excipients. Different preprocessing spectral data (first-derivative, second-derivative, standard normal variate (SNV) and multiplicative scatter correction (MSC)) were applied to establish the ANNs models of metronidazole powder. The degree of approximation, a new evaluation criterion of the networks was employed to prove the accuracy of the predicted results. The results presented here demonstrate that the short-wavelength NIR region is promising for the fast and reliable determination of major component in pharmaceutical analysis.

  3. What Determines the Assembly of Transcriptional Network Motifs in Escherichia coli?

    PubMed Central

    Camas, Francisco M.; Poyatos, Juan F.

    2008-01-01

    Transcriptional networks are constituted by a collection of building blocks known as network motifs. Why do motifs appear? An adaptive model of motif emergence was recently questioned in favor of neutralist scenarios. Here, we provide a new picture of motif assembly in Escherichia coli which partially clarifies these contrasting explanations. This is based on characterizing the linkage between motifs and sensing or response specificity of their constituent transcriptional factors (TFs). We find that sensing specificity influences the distribution of autoregulation, while the tendency of a TF to establish feed-forward loops (FFLs) depends on response specificity, i.e., regulon size. Analysis of the latter pattern reveals that coregulation between large regulon-size TFs is common under a network neutral model, leading to the assembly of a great number of FFLs and bifans. In addition, neutral exclusive regulation also leads to a collection of single input modules -the fourth basic motif. On the whole, and even under the conservative neutralist scenario considered, a substantial group of regulatory structures revealed adaptive. These structures visibly function as fully-fledged working units. PMID:18987754

  4. Background Mole Fractions of Hydrocarbons in North America Determined from NOAA Global Reference Network Data

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.

  5. Effects due to overlapping large impact basins on Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Reidy, Anne Marie; Roark, James H.; Stockman, Stephanie

    1994-01-01

    Many ancient, highly degraded large impact basins exist on Mars. In many cases these basins overlap or are overlapped by more easily observed, presumably younger, impact basins. While impact basin overlap is becoming more recognized, the effects of such overlap have only occassionally been described. Such effects will depend on a variety of factors including the absolute and relative size of the basins, the degree of overlap, the state of the lithosphere and its thermal gradient at the time of impact, and the time between impacts. There now exists enough evidence for overlapping basins of different sizes that some of these can be discussed. This paper highlights some examples of the obvious effects of basin overlap.

  6. Origin of gene overlap: the case of TCP1 and ACAT2.

    PubMed Central

    Shintani, S; O'hUigin, C; Toyosawa, S; Michalová, V; Klein, J

    1999-01-01

    The human acetyl-CoA acetyltransferase 2 gene, ACAT2, codes for a thiolase, an enzyme involved in lipid metabolism. The human T-complex protein 1 gene, TCP1, encodes a molecular chaperone of the chaperonin family. The two genes overlap by their 3'-untranslated regions, their coding sequences being located on opposite DNA strands in a tail-to-tail orientation. To find out how the overlap might have arisen in evolution, the homologous genes of the zebrafish, the African toad, caiman, platypus, opossum, and wallaby were identified. In each species, standard or long polymerase chain reactions were used to determine whether the ACAT2 and TCP1 homologs are closely linked and, if so, whether they overlap. The results reveal that the overlap apparently arose during the transition from therapsid reptiles to mammals and has been retained for >200 million years. Part of the overlapping untranslated region shows remarkable sequence conservation. The overlap presumably arose during the chromosomal rearrangement that brought the two unrelated and previously separated genes together. One or both of the transposed genes found by chance signals that are necessary for the processing of their transcripts to be present on the noncoding strand of the partner gene. PMID:10353914

  7. The clinical and genetic features of COPD-asthma overlap syndrome.

    PubMed

    Hardin, Megan; Cho, Michael; McDonald, Merry-Lynn; Beaty, Terri; Ramsdell, Joe; Bhatt, Surya; van Beek, Edwin J R; Make, Barry J; Crapo, James D; Silverman, Edwin K; Hersh, Craig P

    2014-08-01

    Individuals with chronic obstructive pulmonary disease (COPD) and asthma are an important but poorly characterised group. The genetic determinants of COPD and asthma overlap have not been studied. The aim of this study was to identify clinical features and genetic risk factors for COPD and asthma overlap. Subjects were current or former smoking non-Hispanic whites or African-Americans with COPD. Overlap subjects reported a history of physician-diagnosed asthma before the age of 40 years. We compared clinical and radiographic features between COPD and overlap subjects. We performed genome-wide association studies (GWAS) in the non-Hispanic whites and African-American populations, and combined these results in a meta-analysis. More females and African-Americans reported a history of asthma. Overlap subjects had more severe and more frequent respiratory exacerbations, less emphysema and greater airway wall thickness compared to subjects with COPD alone. The non-Hispanic white GWAS identified single nucleotide polymorphisms in the genes CSMD1 (rs11779254, p=1.57 × 10(-6)) and SOX5 (rs59569785, p=1.61 × 10(-6)) and the meta-analysis identified single nucleotide polymorphisms in the gene GPR65 (rs6574978, p=1.18 × 10(-7)) associated with COPD and asthma overlap. Overlap subjects have more exacerbations, less emphysema and more airway disease for any degree of lung function impairment compared to COPD alone. We identified novel genetic variants associated with this syndrome. COPD and asthma overlap is an important syndrome and may require distinct clinical management.

  8. FIRST-ORDER RESONANCE OVERLAP AND THE STABILITY OF CLOSE TWO-PLANET SYSTEMS

    SciTech Connect

    Deck, Katherine M.; Payne, Matthew; Holman, Matthew J.

    2013-09-10

    Motivated by the population of observed multi-planet systems with orbital period ratios 1 < P{sub 2}/P{sub 1} {approx}< 2, we study the long-term stability of packed two-planet systems. The Hamiltonian for two massive planets on nearly circular and nearly coplanar orbits near a first-order mean motion resonance can be reduced to a one-degree-of-freedom problem. Using this analytically tractable Hamiltonian, we apply the resonance overlap criterion to predict the onset of large-scale chaotic motion in close two-planet systems. The reduced Hamiltonian has only a weak dependence on the planetary mass ratio m{sub 1}/m{sub 2}, and hence the overlap criterion is independent of the planetary mass ratio at lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the chaotic phase space for close orbits in the low-eccentricity (e {approx}< 0.1) regime. We show numerically that orbits in the chaotic web produced primarily by first-order resonance overlap eventually experience large-scale erratic variation in semimajor axes and are therefore Lagrange unstable. This is also true of the orbits in this overlap region which satisfy the Hill criterion. As a result, we can use the first-order resonance overlap criterion as an effective stability criterion for pairs of observed planets. We show that for low-mass ({approx}< 10 M{sub Circled-Plus }) planetary systems with initially circular orbits the period ratio at which complete overlap occurs and widespread chaos results lies in a region of parameter space which is Hill stable. Our work indicates that a resonance overlap criterion which would apply for initially eccentric orbits likely needs to take into account second-order resonances. Finally, we address the connection found in previous work between the Hill stability criterion and numerically determined Lagrange instability boundaries in the context of resonance overlap.

  9. Identification of overlapping communities and their hierarchy by locally calculating community-changing resolution levels

    NASA Astrophysics Data System (ADS)

    Havemann, Frank; Heinz, Michael; Struck, Alexander; Gläser, Jochen

    2011-01-01

    We propose a new local, deterministic and parameter-free algorithm that detects fuzzy and crisp overlapping communities in a weighted network and simultaneously reveals their hierarchy. Using a local fitness function, the algorithm greedily expands natural communities of seeds until the whole graph is covered. The hierarchy of communities is obtained analytically by calculating resolution levels at which communities grow rather than numerically by testing different resolution levels. This analytic procedure is not only more exact than its numerical alternatives such as LFM and GCE but also much faster. Critical resolution levels can be identified by searching for intervals in which large changes of the resolution do not lead to growth of communities. We tested our algorithm on benchmark graphs and on a network of 492 papers in information science. Combined with a specific post-processing, the algorithm gives much more precise results on LFR benchmarks with high overlap compared to other algorithms and performs very similarly to GCE.

  10. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  11. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images.

    PubMed

    Barrett, T K; Sandler, D G

    1993-04-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 microm rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  12. Depression-Burnout Overlap in Physicians

    PubMed Central

    Wurm, Walter; Vogel, Katrin; Holl, Anna; Ebner, Christoph; Bayer, Dietmar; Mörkl, Sabrina; Szilagyi, Istvan-Szilard; Hotter, Erich; Kapfhammer, Hans-Peter; Hofmann, Peter

    2016-01-01

    Background Whether burnout is a distinct phenomenon rather than a type of depression and whether it is a syndrome, limited to three “core” components (emotional exhaustion, depersonalization and low personal accomplishment) are subjects of current debate. We investigated the depression-burnout overlap, and the pertinence of these three components in a large, representative sample of physicians. Methods In a cross-sectional study, all Austrian physicians were invited to answer a questionnaire that included the Major Depression Inventory (MDI), the Hamburg Burnout Inventory (HBI), as well as demographic and job-related parameters. Of the 40093 physicians who received an invitation, a total of 6351 (15.8%) participated. The data of 5897 participants were suitable for analysis. Results Of the participants, 10.3% were affected by major depression. Our study results suggest that potentially 50.7% of the participants were affected by symptoms of burnout. Compared to physicians unaffected by burnout, the odds ratio of suffering from major depression was 2.99 (95% CI 2.21–4.06) for physicians with mild, 10.14 (95% CI 7.58–13.59) for physicians with moderate, 46.84 (95% CI 35.25–62.24) for physicians with severe burnout and 92.78 (95% CI 62.96–136.74) for the 3% of participants with the highest HBI_sum (sum score of all ten HBI components). The HBI components Emotional Exhaustion, Personal Accomplishment and Detachment (representing depersonalization) tend to correlate more highly with the main symptoms of major depression (sadness, lack of interest and lack of energy) than with each other. A combination of the HBI components Emotional Exhaustion, Helplessness, Inner Void and Tedium (adj.R2 = 0.92) explained more HBI_sum variance than the three “core” components (adj.R2 = 0.85) of burnout combined. Cronbach’s alpha for Emotional Exhaustion, Helplessness, Inner Void and Tedium combined was 0.90 compared to α = 0.54 for the combination of the three

  13. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.

  14. Determination of UT1 and polar motion by the deep space network using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Fanselow, J. L.; Thomas, J. B.; Cohen, E. J.; Macdoran, P. F.; Melbourne, W. G.; Mulhall, B. D.; Purcell, G. H.; Rogstad, D. H.; Skjerve, L. J.; Spitzmesser, D. J.

    1979-01-01

    Measurements of UT1 with a formal accuracy as low as 0.6 msec with only 6 hr of data and construction of a radio astrometric catalog of approximately 45 sources whose positions are known to better than 0.05 arcsec are described which were made possible by very long-baseline interferometry (VLBI) with the Deep Space Network (DSN). The characteristics and anticipated performance of the complete VLBI system being implemented within the DSN are discussed. It is noted that one of the capabilities of this system is the measurement of UT1 and polar motion at weekly intervals and that the determinations should be obtained with decimeter accuracy.

  15. Contrasting Diversity Values: Statistical Inferences Based on Overlapping Confidence Intervals

    PubMed Central

    MacGregor-Fors, Ian; Payton, Mark E.

    2013-01-01

    Ecologists often contrast diversity (species richness and abundances) using tests for comparing means or indices. However, many popular software applications do not support performing standard inferential statistics for estimates of species richness and/or density. In this study we simulated the behavior of asymmetric log-normal confidence intervals and determined an interval level that mimics statistical tests with P(α) = 0.05 when confidence intervals from two distributions do not overlap. Our results show that 84% confidence intervals robustly mimic 0.05 statistical tests for asymmetric confidence intervals, as has been demonstrated for symmetric ones in the past. Finally, we provide detailed user-guides for calculating 84% confidence intervals in two of the most robust and highly-used freeware related to diversity measurements for wildlife (i.e., EstimateS, Distance). PMID:23437239

  16. Contrasting diversity values: statistical inferences based on overlapping confidence intervals.

    PubMed

    MacGregor-Fors, Ian; Payton, Mark E

    2013-01-01

    Ecologists often contrast diversity (species richness and abundances) using tests for comparing means or indices. However, many popular software applications do not support performing standard inferential statistics for estimates of species richness and/or density. In this study we simulated the behavior of asymmetric log-normal confidence intervals and determined an interval level that mimics statistical tests with P(α) = 0.05 when confidence intervals from two distributions do not overlap. Our results show that 84% confidence intervals robustly mimic 0.05 statistical tests for asymmetric confidence intervals, as has been demonstrated for symmetric ones in the past. Finally, we provide detailed user-guides for calculating 84% confidence intervals in two of the most robust and highly-used freeware related to diversity measurements for wildlife (i.e., EstimateS, Distance).

  17. A theory of adhesion at a bimetallic interface - Overlap effects.

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.

    1973-01-01

    A preliminary calculation of the chemical bonding adhesive interaction between metal surfaces is provided. In this first theory the Hohenberg and Kohn formalism is used to give the bimetallic adhesive binding energy versus separation. The close-packed planes of Al, Mg, and Zn are considered. The effect of simple overlap of the metal-vacuum distributions is determined. The importance of registry between contact surfaces is ascertained. A minimum in the binding energy curve is exhibited for all combinations. The theoretical predictions agree with trends in bond strengths taken from available experimental data. An insight into the mechanisms involved in metallic transfer is given. The relationship between adhesive energies, cohesive energies, and surface energies is discussed.

  18. Modeling access network: Maximum node-degree determines the traffic of the internet

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Chen, Lixue; Zhang, Songlin; Zhang, Jie; Li, Ping

    2013-01-01

    It has been demonstrated that both routers and domains in the Internet have a scale-invariant fractal structure. However, nodes in access network (AN) level are found demonstrate a random geographic distribution. In this paper, we investigate the AN by proposing a model in which the nodes are randomly posited at given regions. In particular, we design a new node-attachment strategy that can yield a connectivity pattern more consistent with real configuration. Taking into account of both the geographical distribution of the nodes and specific local connectivity, our model can therefore serve as more accurate description of real-world Internet. We furthermore use this model to study the traffic load of the Internet, and we found that the optimal betweenness centrality variance and average path length, which is associated with an optimal traffic load, can be obtained by setting a suitable maximum degree K max for the AN. Our results indicates that the optimal value of K max increases linearly with the number of nodes, which provide useful guidance to improve throughput and transmission efficiency when designing the access network.

  19. Dendritic and Axonal Propagation Delays Determine Emergent Structures of Neuronal Networks with Plastic Synapses

    PubMed Central

    Madadi Asl, Mojtaba; Valizadeh, Alireza; Tass, Peter A.

    2017-01-01

    Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized by neglecting dendritic and axonal propagation delays, STDP eliminates bidirectional connections between two coupled neurons and turns them into unidirectional connections. In this paper, however, we show that depending on the dendritic and axonal propagation delays, the temporal order of spikes at the synapses can be different from those in the cell bodies and, consequently, qualitatively different connectivity patterns emerge. In particular, we show that for a system of two coupled oscillatory neurons, bidirectional synapses can be preserved and potentiated. Intriguingly, this finding also translates to large networks of type-II phase oscillators and, hence, crucially impacts on the overall hierarchical connectivity patterns of oscillatory neuronal networks. PMID:28045109

  20. Information theoretic approach using neural network for determining radiometer observations from radar and vice versa

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasa Ramanujam; Chandrasekar, V.

    2016-05-01

    Even though both the rain measuring instruments, radar and radiometer onboard the TRMM observe the same rain scenes, they both are fundamentally different instruments. Radar is an active instrument and measures backscatter component from vertical rain structure; whereas radiometer is a passive instrument that obtains integrated observation of full depth of the cloud and rain structure. Further, their spatial resolutions on ground are different. Nevertheless, both the instruments are observing the same rain scene and retrieve three dimensional rainfall products. Hence it is only natural to seek answer to the question, what type of information about radiometric observations can be directly retrieved from radar observations. While there are several ways to answer this question, an informational theoretic approach using neural networks has been described in the present work to find if radiometer observations can be predicted from radar observations. A database of TMI brightness temperature and collocated TRMM vertical attenuation corrected reflectivity factor from the year 2012 was considered. The entire database is further classified according to surface type. Separate neural networks were trained for land and ocean and the results are presented.

  1. The spatial variability of vehicle densities as determinant of urban network capacity.

    PubMed

    Mazloumian, Amin; Geroliminis, Nikolas; Helbing, Dirk

    2010-10-13

    Due to the complexity of the traffic flow dynamics in urban road networks, most quantitative descriptions of city traffic so far have been based on computer simulations. This contribution pursues a macroscopic (fluid-dynamic) simulation approach, which facilitates a simple simulation of congestion spreading in cities. First, we show that a quantization of the macroscopic turning flows into units of single vehicles is necessary to obtain realistic fluctuations in the traffic variables, and how this can be implemented in a fluid-dynamic model. Then, we propose a new method to simulate destination flows without the requirement of individual route assignments. Combining both methods allows us to study a variety of different simulation scenarios. These reveal fundamental relationships between the average flow, the average density and the variability of the vehicle densities. Considering the inhomogeneity of traffic as an independent variable can eliminate the scattering of congested flow measurements. The variability also turns out to be a key variable of urban traffic performance. Our results can be explained through the number of full links of the road network, and approximated by a simple analytical formula.

  2. Dendritic and Axonal Propagation Delays Determine Emergent Structures of Neuronal Networks with Plastic Synapses.

    PubMed

    Madadi Asl, Mojtaba; Valizadeh, Alireza; Tass, Peter A

    2017-01-03

    Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized by neglecting dendritic and axonal propagation delays, STDP eliminates bidirectional connections between two coupled neurons and turns them into unidirectional connections. In this paper, however, we show that depending on the dendritic and axonal propagation delays, the temporal order of spikes at the synapses can be different from those in the cell bodies and, consequently, qualitatively different connectivity patterns emerge. In particular, we show that for a system of two coupled oscillatory neurons, bidirectional synapses can be preserved and potentiated. Intriguingly, this finding also translates to large networks of type-II phase oscillators and, hence, crucially impacts on the overall hierarchical connectivity patterns of oscillatory neuronal networks.

  3. Discrimination Analysis of Earthquakes and Man-Made Events Using ARMA Coefficients Determination by Artificial Neural Networks

    SciTech Connect

    AllamehZadeh, Mostafa

    2011-12-15

    A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.

  4. Two independent transcription initiation codes overlap on vertebrate core promoters.

    PubMed

    Haberle, Vanja; Li, Nan; Hadzhiev, Yavor; Plessy, Charles; Previti, Christopher; Nepal, Chirag; Gehrig, Jochen; Dong, Xianjun; Akalin, Altuna; Suzuki, Ana Maria; van IJcken, Wilfred F J; Armant, Olivier; Ferg, Marco; Strähle, Uwe; Carninci, Piero; Müller, Ferenc; Lenhard, Boris

    2014-03-20

    A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable

  5. Two independent transcription initiation codes overlap on vertebrate core promoters

    NASA Astrophysics Data System (ADS)

    Haberle, Vanja; Li, Nan; Hadzhiev, Yavor; Plessy, Charles; Previti, Christopher; Nepal, Chirag; Gehrig, Jochen; Dong, Xianjun; Akalin, Altuna; Suzuki, Ana Maria; van Ijcken, Wilfred F. J.; Armant, Olivier; Ferg, Marco; Strähle, Uwe; Carninci, Piero; Müller, Ferenc; Lenhard, Boris

    2014-03-01

    A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs and recruits general transcription factors to initiate transcription. The nature and causative relationship of the DNA sequence and chromatin signals that govern the selection of most TSSs by RNA polymerase II remain unresolved. Maternal to zygotic transition represents the most marked change of the transcriptome repertoire in the vertebrate life cycle. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the tenth cell cycle, marking the mid-blastula transition. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression, and determined the positions of H3K4me3-marked promoter-associated nucleosomes. Here we show that the transition from the maternal to zygotic transcriptome is characterized by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveal their DNA-sequence-associated positioning at promoters before zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of the zygotic TSS. The two TSS-defining grammars coexist, often physically overlapping, in core promoters of constitutively expressed genes to enable

  6. Effects of overlapping strings in pp collisions

    DOE PAGES

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  7. Effects of overlapping strings in pp collisions

    SciTech Connect

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; Tarasov, Andrey

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possible effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.

  8. Hybrid lattice Boltzmann method on overlapping grids

    NASA Astrophysics Data System (ADS)

    Di Ilio, G.; Chiappini, D.; Ubertini, S.; Bella, G.; Succi, S.

    2017-01-01

    In this work, a hybrid lattice Boltzmann method (HLBM) is proposed, where the standard lattice Boltzmann implementation based on the Bhatnagar-Gross-Krook (LBGK) approximation is combined together with an unstructured finite-volume lattice Boltzmann model. The method is constructed on an overlapping grid system, which allows the coexistence of a uniform lattice nodes spacing and a coordinate-free lattice structure. The natural adaptivity of the hybrid grid system makes the method particularly suitable to handle problems involving complex geometries. Moreover, the provided scheme ensures a high-accuracy solution near walls, given the capability of the unstructured submodel of achieving the desired level of refinement in a very flexible way. For these reasons, the HLBM represents a prospective tool for solving multiscale problems. The proposed method is here applied to the benchmark problem of a two-dimensional flow past a circular cylinder for a wide range of Reynolds numbers and its numerical performances are measured and compared with the standard LBGK ones.

  9. Precise Determination of Hypocenters and Focal Mechanisms of Volcanic Earthquakes by the Volcano Observation Network of NIED

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Kohno, Y.; Nagai, M.; Miyagi, Y.; Fujita, E.; Kozono, T.; Tanada, T.

    2012-12-01

    Volcanic earthquakes are usually observed by a seismometer network on a volcano before and during eruptions, caused by crustal stress changes due to underground magma movements or an accumulation into a magma chamber. Precise hypocentral locations and focal mechanisms of the earthquakes provide information on the magmatic process and allow us to assess and predict the volcanic activity. However, focal mechanisms of volcanic earthquakes are not monitored except for relatively large earthquakes because of small size of volcanic earthquakes (M<3) and heterogeneity of volcanic structures. The obstacles also prevent automatic determination of hypocentral locations which are needed for short term eruption prediction. National Institute for Earth Science and Disaster Prevention (NIED) has been developing the volcano observation networks near the major active volcanos in Japan since 2009. The observation networks are equipped with short period seismometers and pendulum type tiltmeters at the bottom of borehole 200 m deep, and broad band seismometers and GPS antennas on the ground. We developed a monitoring technique for precise determination of hypocenters and focal mechanisms of volcanic earthquakes by using similarity of seismic wave forms and the high quality short period seismometer data of the volcano observation networks. Firstly, we extract earthquake groups which have similar seismic wave forms including P and S waves with correlation coefficient of more than 0.9 on more than three stations. Secondly, we display the wave forms with the similar phases in a row and stack them to reduce noises, and then precisely pick again the phases and first motion polarities of P waves. Thirdly, we relocate the hypocenters by Double-Difference method (Waldhauser and Ellsworth, 2000, BSSA) and estimate focal mechanisms by using P wave first motion polarity and S/P amplitude ratios (Hardebeck and Shearer, 2003, BSSA). We applied the technique to earthquake catalogs of Mt. Fuji and

  10. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.

    PubMed

    Moisset, P; Vaisman, D; Cintolesi, A; Urrutia, J; Rapaport, I; Andrews, B A; Asenjo, J A

    2012-09-01

    A continuous model of a metabolic network including gene regulation to simulate metabolic fluxes during batch cultivation of yeast Saccharomyces cerevisiae was developed. The metabolic network includes reactions of glycolysis, gluconeogenesis, glycerol and ethanol synthesis and consumption, the tricarboxylic acid cycle, and protein synthesis. Carbon sources considered were glucose and then ethanol synthesized during growth on glucose. The metabolic network has 39 fluxes, which represent the action of 50 enzymes and 64 genes and it is coupled with a gene regulation network which defines enzyme synthesis (activities) and incorporates regulation by glucose (enzyme induction and repression), modeled using ordinary differential equations. The model includes enzyme kinetics, equations that follow both mass-action law and transport as well as inducible, repressible, and constitutive enzymes of metabolism. The model was able to simulate a fermentation of S. cerevisiae during the exponential growth phase on glucose and the exponential growth phase on ethanol using only one set of kinetic parameters. All fluxes in the continuous model followed the behavior shown by the metabolic flux analysis (MFA) obtained from experimental results. The differences obtained between the fluxes given by the model and the fluxes determined by the MFA do not exceed 25% in 75% of the cases during exponential growth on glucose, and 20% in 90% of the cases during exponential growth on ethanol. Furthermore, the adjustment of the fermentation profiles of biomass, glucose, and ethanol were 95%, 95%, and 79%, respectively. With these results the simulation was considered successful. A comparison between the simulation of the continuous model and the experimental data of the diauxic yeast fermentation for glucose, biomass, and ethanol, shows an extremely good match using the parameters found. The small discrepancies between the fluxes obtained through MFA and those predicted by the differential

  11. A neural network approach for determining gait modifications to reduce the contact force in knee joint implant.

    PubMed

    Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin

    2014-10-01

    There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs.

  12. Néel-XXZ state overlaps: odd particle numbers and Lieb-Liniger scaling limit

    NASA Astrophysics Data System (ADS)

    Brockmann, M.; De Nardis, J.; Wouters, B.; Caux, J.-S.

    2014-08-01

    We specialize a recently-proposed determinant formula (Brockmann, De Nardis, Wouters and Caux 2014 J. Phys. A: Math. Theor. 47 145003) for the overlap of the zero-momentum Néel state with Bethe states of the spin-1/2 XXZ chain to the case of an odd number of downturned spins, showing that it is still of ‘Gaudin-like’ form, similar to the case of an even number of down spins. We generalize this result to the overlap of q-raised Néel states with parity-invariant Bethe states lying in a nonzero magnetization sector. The generalized determinant expression can then be used to derive the corresponding determinants and their prefactors in the scaling limit to the Lieb-Liniger (LL) Bose gas. The odd number of down spins directly translates to an odd number of bosons. We furthermore give a proof that the Néel state has no overlap with non-parity-invariant Bethe states. This is based on a determinant expression for overlaps with general Bethe states that was obtained in the context of the XXZ chain with open boundary conditions (Pozsgay 2013 arXiv:1309.4593, Kozlowski and Pozsgay 2012 J. Stat. Mech. P05021, Tsuchiya 1998 J. Math. Phys. 39 5946). The statement that overlaps with non-parity-invariant Bethe states vanish is still valid in the scaling limit to LL which means that the Bose-Einstein condensate state (De Nardis, Wouters, Brockmann and Caux 2014 Phys. Rev. A 89 033601) has zero overlap with non-parity-invariant LL Bethe states.

  13. Geometric Quality Assessment of LIDAR Data Based on Swath Overlap

    NASA Astrophysics Data System (ADS)

    Sampath, A.; Heidemann, H. K.; Stensaas, G. L.

    2016-06-01

    ) It is suggested that 4000-5000 points are uniformly sampled in the overlapping regions of the point cloud, and depending on the surface roughness, to measure the discrepancy between swaths. Care must be taken to sample only areas of single return points only. Point-to-Plane distance based data quality measures are determined for each sample point. These measurements are used to determine the above mentioned parameters. This paper details the measurements and analysis of measurements required to determine these metrics, i.e. Discrepancy Angle, Mean and RMSD of errors in flat regions and horizontal errors obtained using measurements extracted from sloping regions (slope greater than 10 degrees). The research is a result of an ad-hoc joint working group of the US Geological Survey and the American Society for Photogrammetry and Remote Sensing (ASPRS) Airborne Lidar Committee.

  14. Determining concentration depth profiles in fluorinated networks by means of electric force microscopy

    SciTech Connect

    Miccio, Luis A.; Schwartz, Gustavo A.

    2011-08-14

    By means of electric force microscopy, composition depth profiles were measured with nanometric resolution for a series of fluorinated networks. By mapping the dielectric permittivity along a line going from the surface to the bulk, we were able to experimentally access to the fluorine concentration profile. Obtained data show composition gradient lengths ranging from 30 nm to 80 nm in the near surface area for samples containing from 0.5 to 5 wt. % F, respectively. In contrast, no gradients of concentration were detected in bulk. This method has several advantages over other techniques because it allows profiling directly on a sectional cut of the sample. By combining the obtained results with x-ray photoelectron spectroscopy measurements, we were also able to quantify F/C ratio as a function of depth with nanoscale resolution.

  15. Crustal deformation measurements in central Japan determined by a Global Positioning System fixed-point network

    NASA Technical Reports Server (NTRS)

    Shimada, Seiichi; Bock, Yehuda

    1992-01-01

    Results are presented from temporally dense measurements of crustal deformation associated with the convergence of the Eurasian (EUR), Pacific, North American, and Philippine Sea (PHS) plates, carried out in April 1988 by a 10-station GPS fixed-point network established in central Japan. Using regional orbit relaxation methods, the analysis of the first 17-month data revealed significant horizontal deformation across the Suruga trough. Namely, it was found that a site in the northern tip of PHS plate moved nearly westward with a velocity of 28 +/-5 mm per year, and a site at the southeastern tip of EUR plate moved south-southwestward with a velocity of 18 +/-5 mm per year. A significant vertical uplift with a velocity of 20 mm/yr was detected at a site inland of the Tokai district located in the Akaishi uplift zone and at a site on the Hatsushima Island in Sagami Bay.

  16. Artificial neural network study of whole-cell bacterial bioreporter response determined using fluorescence flow cytometry.

    PubMed

    Busam, Sirisha; McNabb, Maia; Wackwitz, Anke; Senevirathna, Wasana; Beggah, Siham; Meer, Jan Roelof van der; Wells, Mona; Breuer, Uta; Harms, Hauke

    2007-12-01

    Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.

  17. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  18. Determination of first-order degradation rate constants from monitoring networks.

    PubMed

    Beyer, Christof; Chen, Cui; Gronewold, Jan; Kolditz, Olaf; Bauer, Sebastian

    2007-01-01

    In this article, different strategies for estimating first-order degradation rate constants from measured field data are compared by application to multiple, synthetic, contaminant plumes. The plumes were generated by numerical simulation of contaminant transport and degradation in virtual heterogeneous aquifers. These sites were then individually and independently investigated on the computer by installation of extensive networks of observation wells. From the data measured at the wells, that is, contaminant concentrations, hydraulic conductivities, and heads, first-order degradation rates were estimated by three 1D centerline methods, which use only measurements located on the plume axis, and a two-dimensional method, which uses all concentration measurements available downgradient from the contaminant source. Results for both strategies show that the true rate constant used for the numerical simulation of the plumes in general tends to be overestimated. Overestimation is stronger for narrow plumes from small source zones, with an average overestimation factor of about 5 and single values ranging from 0.5 to 20, decreasing for wider plumes, with an average overestimation factor of about 2 and similar spread. Reasons for this overestimation are identified in the velocity calculation, the dispersivity parameterization, and off-centerline measurements. For narrow plumes, the one- and the two-dimensional strategies show approximately the same amount of overestimation. For wider plumes, however, incorporation of all measurements in the two-dimensional approach reduces the estimation error. No significant relation between the number of observation wells in the monitoring network and the quality of the estimated rate constant is found for the two-dimensional approach.

  19. A Lower Bound for Quantifying Overlap Effects: An Empirical Approach

    SciTech Connect

    Bassetti, Federico

    1997-12-31

    Among the many features that are implemented in today`s microprocessors there are some that have the capability of reducing the execution time via overlapping of different operations. Overlapping of instructions with other instructions, and overlapping of computation with memory activities are the main way in which execution time is reduced. In this paper we will introduce a notion of overlap and its definition, and a few different ways to capture its effects. We will characterize some of the DOE Accelerated Strategic Computing Initiative (ASCI) benchmarks using the overlap and some other quantities related to it. Also, we will present a characterization of the overlap effects using a lower bound derived empirically from measured data. We will conclude by using the lower bound to estimate other components of the overall execution time.

  20. Overlapping neural correlates of reading emotionally positive and negative adjectives.

    PubMed

    Demirakca, Traute; Herbert, Cornelia; Kissler, Johanna; Ruf, Matthias; Wokrina, Tim; Ende, Gabriele

    2009-07-03

    Comparison of positive and negative naturally read adjectives to neutral adjectives yielded an overlapping higher BOLD response in the occipital and the orbitofrontal cortex (gyrus rectus). Superior medial frontal gyrus and posterior cingulate gyrus showed higher BOLD response to negative adjectives and inferior frontal gyrus to positive adjectives. The overlap of activated regions and lack of pronounced distinct regions supports the assumption that the processing of negative and positive words mainly takes place in overlapping brain regions.

  1. Dynamics of and on complex networks

    NASA Astrophysics Data System (ADS)

    Halu, Arda

    Complex networks are dynamic, evolving structures that can host a great number of dynamical processes. In this thesis, we address current challenges regarding the dynamics of and dynamical processes on complex networks. First, we study complex network dynamics from the standpoint of network growth. As a quantitative measure of the complexity and information content of networks generated by growing network models, we define and evaluate their entropy rate. We propose stochastic growth models inspired by the duplication-divergence mechanism to generate epistatic interaction networks and find that they exhibit the property of monochromaticity as a result of their dynamical evolution. Second, we explore the dynamics of quantum mechanical processes on complex networks. We investigate the Bose-Hubbard model on annealed and quenched scale-free networks as well as Apollonian networks and show that their phase diagram changes significantly in the presence of complex topologies, depending on the second degree of the degree distribution and the maximal eigenvalue of the adjacency matrix. We then study the Jaynes-Cummings-Hubbard model on various complex topologies and demonstrate the importance of the maximal eigenvalue of the hopping matrix in determining the phase diagram of the model. Third, we investigate dynamical processes on interacting and multiplex networks. We study opinion dynamics in a simulated setting of two antagonistically interacting networks and recover the importance of connectivity and committed agents. We propose a multiplex centrality measure that takes into account the connectivity patterns within and across different layers and find that the dynamics of biased random walks on multiplex networks gives rise to a centrality ranking that is different from univariate centrality measures. Finally, we study the statistical mechanics of multilayered spatial networks and demonstrate the emergence of significant link overlap and improved navigability in

  2. Evidence for Overlapping Genetic Influences on Autistic and ADHD Behaviours in a Community Twin Sample

    ERIC Educational Resources Information Center

    Ronald, Angelica; Simonoff, Emily; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert

    2008-01-01

    Background: High levels of clinical comorbidity have been reported between autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). This study takes an individual differences approach to determine the degree of phenotypic and aetiological overlap between autistic traits and ADHD behaviours in the general population.…

  3. Overlapping Coverage of "Bibliography of Agriculture" By 15 Other Secondary Services.

    ERIC Educational Resources Information Center

    Bourne, Charles P.

    This report presents the results of a study of the nature and extent of overlap in coverage by the "Bibliography of Agriculture" (B of A) and 15 other abstracting and indexing services. Using a sample of over 5000 citations from 1967 issues of B of A, literature searches were made in 15 other related services to determine the extent and…

  4. FAB overlapping: a strategy for sequencing homologous proteins

    NASA Astrophysics Data System (ADS)

    Ferranti, P.; Malorni, A.; Marino, G.; Pucci, P.; di Luccia, A.; Ferrara, L.

    1991-12-01

    Extensive similarity has been shown to exist between the primary structures of closely related proteins from different species, the only differences being restricted to a few amino acid variations. A new mass spectrometric procedure, which has been called FAB-overlapping, has been developed for sequencing highly homologous proteins based on the detection of these small differences as compared with a known protein used as a reference. Several complementary peptide maps are constructed using fast atom bombardment mass spectrometry (FAB-MS) analysis of different proteolytic digests of the unknown protein and the mass values are related to those expected on the basis of the sequence of the reference protein. The mass signals exhibiting unusual mass values identify those regions where variations have taken place; fine location of the mutations can be obtained by coupling simple protein chemistry methodologies with FAB-MS. Using the FAB-overlapping procedure, it was possible to determine the sequence of [alpha]1, [alpha]3 and [beta] globins from water buffalo (Bubalus bubalis hemoglobins (phenotype AA). Two amino acid substitutions were detected in the buffalo [beta] chain (Lys16 --> His and Asn118 --> His) whereas the [alpha]1 chains were found the [alpha]1 and [alpha]3 chains were found to contain four amino acid replacements, three of which were identical (Glu23 --> Asp, Glu71 --> Gly, Phe117 --> Cys), and the insertion of an alanine residue in position 124. The only differences between [alpha]1 and [alpha]3 globins were identified in the C -terminal region; [alpha]1 contains a Phe residue at position 130 whereas [alpha]3 shows serine at position 132.

  5. Network dynamics determine the autocrine and paracrine signaling functions of TNF

    PubMed Central

    Caldwell, Andrew B.; Cheng, Zhang; Vargas, Jesse D.; Birnbaum, Harry A.

    2014-01-01

    A hallmark of the inflammatory response to pathogen exposure is the production of tumor necrosis factor (TNF) that coordinates innate and adaptive immune responses by functioning in an autocrine or paracrine manner. Numerous molecular mechanisms contributing to TNF production have been identified, but how they function together in macrophages remains unclear. Here, we pursued an iterative systems biology approach to develop a quantitative understanding of the regulatory modules that control TNF mRNA synthesis and processing, mRNA half-life and translation, and protein processing and secretion. By linking the resulting model of TNF production to models of the TLR-, the TNFR-, and the NFκB signaling modules, we were able to study TNF’s functions during the inflammatory response to diverse TLR agonists. Contrary to expectation, we predicted and then experimentally confirmed that in response to lipopolysaccaride, TNF does not have an autocrine function in amplifying the NFκB response, although it plays a potent paracrine role in neighboring cells. However, in response to CpG DNA, autocrine TNF extends the duration of NFκB activity and shapes CpG-induced gene expression programs. Our systems biology approach revealed that network dynamics of MyD88 and TRIF signaling and of cytokine production and response govern the stimulus-specific autocrine and paracrine functions of TNF. PMID:25274725

  6. Connectional parameters determine multisensory processing in a spiking network model of multisensory convergence.

    PubMed

    Lim, H K; Keniston, L P; Shin, J H; Allman, B L; Meredith, M A; Cios, K J

    2011-09-01

    For the brain to synthesize information from different sensory modalities, connections from different sensory systems must converge onto individual neurons. However, despite being the definitive, first step in the multisensory process, little is known about multisensory convergence at the neuronal level. This lack of knowledge may be due to the difficulty for biological experiments to manipulate and test the connectional parameters that define convergence. Therefore, the present study used a computational network of spiking neurons to measure the influence of convergence from two separate projection areas on the responses of neurons in a convergent area. Systematic changes in the proportion of extrinsic projections, the proportion of intrinsic connections, or the amount of local inhibitory contacts affected the multisensory properties of neurons in the convergent area by influencing (1) the proportion of multisensory neurons generated, (2) the proportion of neurons that generate integrated multisensory responses, and (3) the magnitude of multisensory integration. These simulations provide insight into the connectional parameters of convergence that contribute to the generation of populations of multisensory neurons in different neural regions as well as indicate that the simple effect of multisensory convergence is sufficient to generate multisensory properties like those of biological multisensory neurons.

  7. Using neural networks as an aid in the determination of disease status: comparison of clinical diagnosis to neural-network predictions in a pedigree with autosomal dominant limb-girdle muscular dystrophy.

    PubMed

    Falk, C T; Gilchrist, J M; Pericak-Vance, M A; Speer, M C

    1998-04-01

    Studies of the genetics of certain inherited diseases require expertise in the determination of disease status even for single-locus traits. For example, in the diagnosis of autosomal dominant limb-girdle muscular dystrophy (LGMD1A), it is not always possible to make a clear-cut determination of disease, because of variability in the diagnostic criteria, age at onset, and differential presentation of disease. Mapping such diseases is greatly simplified if the data present a homogeneous genetic trait and if disease status can be reliably determined. Here, we present an approach to determination of disease status, using methods of artificial neural-network analysis. The method entails "training" an artificial neural network, with input facts (based on diagnostic criteria) and related results (based on disease diagnosis). The network contains weight factors connecting input "neurons" to output "neurons," and these connections are adjusted until the network can reliably produce the appropriate outputs for the given input facts. The trained network can be "tested" with a second set of facts, in which the outcomes are known but not provided to the network, to see how well the training has worked. The method was applied to members of a pedigree with LGMD1A, now mapped to chromosome 5q. We used diagnostic criteria and disease status to train a neural network to classify individuals as "affected" or "not affected." The trained network reproduced the disease diagnosis of all individuals of known phenotype, with 98% reliability. This approach defined an appropriate choice of clinical factors for determination of disease status. Additionally, it provided insight into disease classification of those considered to have an "unknown" phenotype on the basis of standard clinical diagnostic methods.

  8. Novel uninterruptible self-determinate hybrid high-speed multimedia fiber optic wireless secure digital network

    NASA Astrophysics Data System (ADS)

    Lindsey, Lonnie

    2000-08-01

    One key to successful digital battlespace management is communications management. HF, UHF, VHF, CDMA, and SATCOM assets are difficult and complex to manage, and the modern digital battlespace adds new dimensions by including high volume multimedia transmissions, high-speed broadband data, and hyper-spectral sensor data. This environment requires more than the traditional voice transport-based communications system. The future sanctuary-based communication hub model will benefit from a novel uninterruptible self-determinate high bandwidth fiber optic system.

  9. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    DTIC Science & Technology

    2012-10-01

    PCR product size is 400bp for Flox allele and 300 bp for wilt type. After several round crossing, we now have 13 males with PB-cre positive and...Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM. Treatment-Dependent Androgen Receptor Mutations in Prostate Cancer Exploit Multiple... VB , Lokeshwar BL. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 2007; 67(14

  10. The Antsy Social Network: Determinants of Nest Structure and Arrangement in Asian Weaver Ants

    PubMed Central

    Devarajan, Kadambari

    2016-01-01

    Asian weaver ants (Oecophylla smaragdina) are arboreal ants that are known to form mutualistic complexes with their host trees. They are eusocial ants that build elaborate nests in the canopy in tropical areas. A colony comprises of multiple nests, usually on multiple trees, and the boundaries of the colony may be difficult to identify. However, they provide the ideal model for studying group living in invertebrates since there are a definite number of nests for a given substrate, the tree. Here, we briefly examine the structure of the nests and the processes involved in the construction and maintenance of these nests. We have described the spatial arrangement of weaver ant nests on trees in two distinct tropical clusters, a few hundred kilometres apart in India. Measurements were made for 13 trees with a total of 71 nests in the two field sites. We have considered a host of biotic and abiotic factors that may be crucial in determining the location of the nesting site by Asian weaver ants. Our results indicate that tree characteristics and architecture followed by leaf features help determine nest location in Asian weaver ants. While environmental factors may not be as influential to nest arrangement, they seem to be important determinants of nest structure. The parameters that may be considered in establishing the nests could be crucial in picking the evolutionary drivers for colonial living in social organisms. PMID:27271037

  11. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    PubMed

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  12. Determination of source, path, and site parameters from Yokohama High-concentration Seismograph Network

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Archuleta, R.

    2003-12-01

    The data from the Yokohama high-density accelerometer array have been used to try to separate path, source and site effects. The Yokohama array has 150 surface accelerometers and 9 borehole accelerometers located in a 20 km x 20 km region. The main objective of this study is to measure the variance of site effects for closely spaced sites on similar surficial geology. Since 1998, the array has recorded more than 30 earthquakes, 13 of these events were recorded at all borehole stations, and selected for our analysis (9 deep events and 4 shallow events). Using the data from these 13 events we estimate the seismic moment and corner frequency for each event, Qo, frequency dependence of Q, and the frequency dependent site effect. We use Boatwright's (1978) representation of the omega-squared spectrum for the source. The quality factor is assumed to be constant for frequencies less than 1.0 Hz while having a power law relation for frequencies greater than 1.0 Hz. Using a Heat Bath algorithm, we estimate the parameters for the source and path using only the borehole stations. Initially the borehole response is assumed to be unity and path attenuation fixed while Mo is determined by inverting the data for f… 1Hz. The difference between the observed and predicted spectrum at each borehole is then used as the site response of the borehole records and Qo, Q(f) and fc are determined by inverting the borehole data from the 9 deep events, keeping Mo fixed to the previously determined values. We iterate until changes in the residuals between observed and predicted spectra are negligible. Once stable values of Mo, fc and Q(f) are obtained, we invert only the source parameters (Mo and fc) using the 9 borehole stations for each of the 9 events individually. The same procedure is applied for 4 shallow events. Knowing Mo, fc, and Q(f), we can then determine the site response for the 150 surface stations by averaging the ratio between predicted and observed amplitude spectra. The Q

  13. Overlaps and Accumulation in the Use of Rehabilitation Services

    ERIC Educational Resources Information Center

    Pulkki, Jutta M.; Rissanen, Pekka; Raitanen, Jani A.; Viitanen, Elina A.

    2011-01-01

    The Finnish rehabilitation system is considered fragmented and multisectoral, and thus it may produce "multiclients" receiving inefficient and overlapping services. This paper addresses the overlaps and accumulation in the delivery of rehabilitation services in Finnish rehabilitation subsystems. Data were drawn from several…

  14. Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies

    ERIC Educational Resources Information Center

    Dicks, Andrew P.

    2011-01-01

    An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…

  15. A New Method for the Determination of Potassium Sorbate Combining Fluorescence Spectra Method with PSO-BP Neural Network.

    PubMed

    Wang, Shu-tao; Chen, Dong-ying; Wang, Xing-long; Wei, Meng; Wang, Zhi-fang

    2015-12-01

    In this paper, fluorescence spectra properties of potassium sorbate in aqueous solution and orange juice are studied, and the result.shows that in two solution there are many difference in fluorescence spectra of potassium sorbate, but the fluorescence characteristic peak exists in λ(ex)/λ(em) = 375/490 nm. It can be seen from the two dimensional fluorescence spectra that the relationship between the fluorescence intensity and the concentration of potassium sorbate is very complex, so there is no linear relationship between them. To determine the concentration of potassium sorbate in orange juice, a new method combining Particle Swarm Optimization (PSO) algorithm with Back Propagation (BP) neural network is proposed. The relative error of two predicted concentrations is 1.83% and 1.53% respectively, which indicate that the method is feasible. The PSO-BP neural network can accurately measure the concentration of potassium sorbate in orange juice in the range of 0.1-2.0 g · L⁻¹.

  16. Determining Methane Leak Locations and Rates with a Wireless Network Composed of Low-Cost, Printed Sensors

    NASA Astrophysics Data System (ADS)

    Smith, C. J.; Kim, B.; Zhang, Y.; Ng, T. N.; Beck, V.; Ganguli, A.; Saha, B.; Daniel, G.; Lee, J.; Whiting, G.; Meyyappan, M.; Schwartz, D. E.

    2015-12-01

    We will present our progress on the development of a wireless sensor network that will determine the source and rate of detected methane leaks. The targeted leak detection threshold is 2 g/min with a rate estimation error of 20% and localization error of 1 m within an outdoor area of 100 m2. The network itself is composed of low-cost, high-performance sensor nodes based on printed nanomaterials with expected sensitivity below 1 ppmv methane. High sensitivity to methane is achieved by modifying high surface-area-to-volume-ratio single-walled carbon nanotubes (SWNTs) with materials that adsorb methane molecules. Because the modified SWNTs are not perfectly selective to methane, the sensor nodes contain arrays of variously-modified SWNTs to build diversity of response towards gases with adsorption affinity. Methane selectivity is achieved through advanced pattern-matching algorithms of the array's ensemble response. The system is low power and designed to operate for a year on a single small battery. The SWNT sensing elements consume only microwatts. The largest power consumer is the wireless communication, which provides robust, real-time measurement data. Methane leak localization and rate estimation will be performed by machine-learning algorithms built with the aid of computational fluid dynamics simulations of gas plume formation. This sensor system can be broadly applied at gas wells, distribution systems, refineries, and other downstream facilities. It also can be utilized for industrial and residential safety applications, and adapted to other gases and gas combinations.

  17. A New Method Based on Artificial Neural Network Techniques for Determining the Fraction of Binaries in Star Clusters

    NASA Astrophysics Data System (ADS)

    Serra-Ricart, Miquel; Aparicio, Antonio; Garrido, Lluis; Gaitan, Vicens

    1996-05-01

    We present a new method based on artificial neural networks techniques aimed at determining the fraction of binary systems populating star clusters. We address the problem from a statistical point of view, avoiding the important biases induced by individual binary identification. The idea is to evaluate the percentage of binaries by comparing the distribution of main-sequence stars along the cluster's H-R diagram with the corresponding distribution in a set of synthetic H-R diagrams, in which the percentage of binaries has been changed, and applying the χ2 minimization method. The χ2 test is performed using a novel artificial neural network technique published by Garrido, Gaitan, & Serra-Ricart in 1994, which transforms a complicated test in the multidimensional input space to a simple test in a one-dimensional space without losing sensitivity. In this paper, the reliability of the method is analyzed. To this end, observational data were substituted by a sample of synthetic data for which the correct values of model parameters are known in advance. The good behavior of the results presented here suggests that the frequency of binary stars in clusters can be calculated to a precision of about 10% for a typical cluster of a few hundred stars with a relatively large percentage of binaries (around 40%). Therefore, the application of this method to the analysis of real clusters promises to yield accurate information on their global binary star content.

  18. CO2 Laser Microchanneling Process: Effects of Compound Parameters and Pulse Overlapping

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2016-09-01

    PMMA (Polymethyl methacrylate) is commonly used in many microfluidic devices like Lab-on-a-chip devices, bioanalytical devices etc. CO2 lasers provide easy and cost effective solution for micromachining needs on PMMA. Microchannels are an integral part of most of these microfluidic devices. CO2 laser beams have been successfully applied by many authors to fabricate microchannels on PMMA substrates. Laser beam power and scanning speed are the most important laser input parameters affecting the output parameters like microchannel depth, width and heat affected zone (HAZ). The effect of these individual parameters on output parameters are well known and already elaborated by many authors. However, these output parameters can more significantly be described by some compound parameters (combination of direct input laser parameters) like laser fluence, specific point energy, interaction time and P/U (power/scanning speed) ratio. The explanation of effect of these compound parameters was not found in earlier researches. In this work, several experiments were carried out to determine the effects of these compound parameters on output parameters i.e. microchannel width, depth and heat affected zone. The effect of pulse overlapping was also determined by performing experiments at different pulse overlaps and with two different energy deposition settings. The concept of actual pulse overlapping has been introduced by considering actual beam spot diameter instead of using theoretical beam diameter. Minimum pulse overlapping was determined experimentally in order to ensure smooth microchannel edges.

  19. Overlapped optics induced perfect coherent effects

    NASA Astrophysics Data System (ADS)

    Li, Jian Jie; Zang, Xiao Fei; Mao, Jun Fa; Tang, Min; Zhu, Yi Ming; Zhuang, Song Lin

    2013-12-01

    For traditional coherent effects, two separated identical point sources can be interfered with each other only when the optical path difference is integer number of wavelengths, leading to alternate dark and bright fringes for different optical path difference. For hundreds of years, such a perfect coherent condition seems insurmountable. However, in this paper, based on transformation optics, two separated in-phase identical point sources can induce perfect interference with each other without satisfying the traditional coherent condition. This shifting illusion media is realized by inductor-capacitor transmission line network. Theoretical analysis, numerical simulations and experimental results are performed to confirm such a kind of perfect coherent effect and it is found that the total radiation power of multiple elements system can be greatly enhanced. Our investigation may be applicable to National Ignition Facility (NIF), Inertial Confined Fusion (ICF) of China, LED lighting technology, terahertz communication, and so on.

  20. Prevention of overlapping prescriptions of psychotropic drugs by community pharmacists.

    PubMed

    Shimane, Takuya; Matsumoto, Toshihiko; Wada, Kiyoshi

    2012-10-01

    The nonmedical use or abuse of prescription drugs, including psychotropic medicines, is a growing health problem in Japan. Patient access to psychotropic drugs, specifically from the oversupply of medications due to overlapping prescriptions, may increase the risk of drug abuse and dependence. However, very little is known about such overlapping prescriptions. Today, the dispensing of prescriptions is generally moving from inside to outside of hospitals, with psychotropic drugs mainly dispensed at community pharmacies. In this study, we used health insurance claims (i.e., receipts) for dispensing as the main source of information in an investigation of overlapping prescriptions of psychotropic drugs. A total of 119 patients were found to have received overlapping prescriptions, as identified by community pharmacists who were members of the Saitama Pharmaceutical Association, using patient medication records, followed by medication counseling and prescription notes for the patient. According to our findings, the most frequently overlapping medication was etizolam. Etizolam can be prescribed for more than 30 days since it is not regulated under Japanese law as a "psychotropic drug." Generally, when a drug can be prescribed for a greater number of days, it increases the likelihood of an overlapping prescription during the same period. As a result, the long-term prescription of etizolam increases the risk of overlapping prescriptions. We also found that the patients who received overlapping prescriptions of etizolam were mostly elderly and the most common pattern was prescription from both internal medicine and orthopedics physicians. Etizolam has wide range of indications that are covered by health insurance. Our results suggest that patients who received overlapping prescriptions of etizolam may receive prescriptions from different prescribers for different purposes. Therefore, it may be appropriate to regulate etizolam as a "psychotropic drug" under Japanese law

  1. The ER proteostasis network in ALS: Determining the differential motoneuron vulnerability.

    PubMed

    Rozas, Pablo; Bargsted, Leslie; Martínez, Francisca; Hetz, Claudio; Medinas, Danilo B

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease characterized by the selective loss of motoneurons. The mechanisms underlying neuronal degeneration in ALS are starting to be elucidated, highlighting abnormal protein aggregation and altered mRNA metabolism as common phenomena. ALS involves the selective vulnerablility of a subpopulation of motoneurons, suggesting that intrinsic factors may determine ALS pathogenesis. Accumulating evidence indicates that alterations to endoplasmic reticulum (ER) proteostasis play a critical role on disease progression, representing one of the earliests pathological signatures of the disease. Here we discuss recent studies uncovering a fundamental role of ER stress as the driver of selective neuronal vulnerability in ALS and discuss the potential of targeting the unfolded protein response (UPR) as a therapeutic strategy to treat ALS.

  2. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  3. Changes in gonadal gene network by exogenous ligands in temperature-dependent sex determination.

    PubMed

    Matsumoto, Yuiko; Yatsu, Ryohei; Taylor, Caitlin; Crews, David

    2013-06-01

    We examined the expression of candidate sex-determining genes in the red-eared slider turtle (Trachemys scripta) during the temperature-sensitive period (TSP). Aromatase and Rspo1 were used as markers of ovarian differentiation and Sox9 was used as a marker of testicular differentiation. Eggs were incubated at a male-producing temperature (26 °C or MPT) and a female-producing temperature (31 °C or FPT). First, eggs at the beginning of the TSP (stage 16) were topically treated with the steroid hormones 17β-estradiol (E2), testosterone in combination with aromatase inhibitor (AI+T), the E2 antagonist (ICI 182 780), and the androgen antagonist (flutamide). Secondly, gonads were removed at stage 16 and treated in vitro with E2, AI+T, or hormone antagonists. At the FPT, AI+T in ovo suppressed aromatase and Rspo1, while activating Sox9. At the MPT, E2 treatment rapidly increased aromatase and Rspo1, while suppressing Sox9. Treatment with the E2 antagonist in ovo decreased aromatase at the FPT. Treatment with the androgen antagonist in ovo increased aromatase and Rspo1 at early time points at MPT and decreased Sox9 at MPT at later developmental stages. Treatment of isolated gonads cultured in vitro with AI+T at FPT decreased aromatase and Rspo1 and E2 increased the expression of these genes at MPT. In vitro treatment with E2 antagonist suppressed aromatase and Rspo1 expression at FPT. Overall, our results suggest that exogenous ligands dictate gonadal development by redirecting the expression of candidate sex-determining genes within the genetic cascades induced by temperature.

  4. Determination of temperate bird-flower interactions as entangled mutualistic and antagonistic sub-networks: characterization at the network and species levels.

    PubMed

    Yoshikawa, Tetsuro; Isagi, Yuji

    2014-05-01

    Most network studies on biological interactions consider only a single interaction type. However, individual species are simultaneously positioned in various types of interactions. The ways in which different network types are merged and entangled, and the variations in network structures between different sympatric networks, require full elucidation. Incorporating interaction types and disentangling complex networks is crucial, because the integration of various network architectures has the potential to alter the stability and co-evolutionary dynamics of the whole network. To reveal how different types of interaction networks are entangled, we focused on the interaction between birds and flowers of temperate plants in Japan, where flower-feeding birds are mainly generalist passerines, acting as pollinators and predators of flowers. Using long-term monitoring data, we investigated the flower-feeding episodes of birds. We constructed the whole network (WN) between birds and plants, separating the network into mutualistic and antagonistic sub-networks (MS and AS, respectively). We investigated structural properties of the three quantified networks and species-level characteristics of the main bird species. For bird species, we evaluated dietary similarity, dietary specialization and shifts of feeding behaviour relative to plant traits. Our results indicate that WN comprises entangled MS and AS, sharing considerable proportions of bird and plant assemblages. We observed distinctive differences in the network structural properties between the two sub-networks. In comparison with AS, MS had lower numbers of bird and plant species, showed lower specialization and modularity and exhibited higher nestedness. At the species level, the Japanese white-eye acted as pollinator, while the brown-eared bulbul acted as both pollinator and predator for large numbers of flowers, based on its behavioural plasticity. Overall, the pattern of avian feeding behaviour was influenced by

  5. An extension to artifact-free projection overlaps

    SciTech Connect

    Lin, Jianyu

    2015-05-15

    Purpose: In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extension is to design a baffle window multipinhole system with artifact-free projection overlaps. Methods: First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. Results: Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the

  6. Intercomparison of Methods for the Determination of Mixing-Layer Heights Using a New Network of Advanced Ceilometers in Germany

    NASA Astrophysics Data System (ADS)

    Engelbart, D. A. M.; Reichardt, J.; Teschke, G.

    2009-09-01

    The mixing layer height (MLH) is one of the most relevant parameters for modeling and assessing the atmospheric spreading conditions for all kinds of constituents in the boundary layer. For this reason, it has become more and more important to operationally detect and determine MLH with networks of sophisticated observing systems. Such networks can either be used for validation of the output from NWP models, or for the direct assessment of the atmospheric conditions (if the measurements are cost-effective and the results can be proven to be reliable). Typically, MLH is determined from vertical profiles measured with radiosondes, lidar, sodar/RASS, or WPR/RASS. While time resolution of radiosondes is strongly restricted, remote-sensing systems are mostly facing deficits with respect to height coverage or range. Apart from combinations of systems, ceilometers show considerable advantages for monitoring the full daily cycle of the MLH from the surface layer up to more than three kilometers. In 2007, the German Meteorological Service started to install a network of new ceilometers which are being used among other objectives also for MLH detection. In contrast to the previous systems, the new type of ceilometer (JENOPTIK CHM-15K) is based on a diode-pumped Nd:YAG laser and a single-photon-counting detector with considerably higher sensitivity than standard analog-detection systems. Apart from a description of the new type of ceilometers, this contribution focuses on the presentation of a new mathematics-based method for the determination of MLH. In principle, MLH detection is a pattern recognition problem. The basic assumption which is usually made is that the vertical distribution of aerosol can be used as a tracer for finding boundaries. The absolute value of the backscatter is typically not needed since the relevant information seems to be completely coded in the gradient (but possibly of different orders) of the backscatter profile. Currently, two major types of

  7. Radio interferometric determination of source positions utilizing deep space network antennas - 1971 to 1980

    NASA Technical Reports Server (NTRS)

    Fanselow, J. L.; Sovers, O. J.; Thomas, J. B.; Purcell, G. H., Jr.; Cohen, E. J.; Rogstad, D. H.; Skjerve, L. J.; Spitzmesser, D. J.

    1984-01-01

    Approximately 2400 observations of extragalactic radio sources were made between August 1971 and February 1980 during 48 separate sessions. These consisted of 259 delay rate observations at 2.3 GHz (S-band), 796 delay and delay rate observations at either S-band of 8.3 GHz (X-band) and 1325 delay and delay rate observations recorded simultaneously at both S- and X-band. A single multiparameter fit has been applied to the observed values of delay and delay rate to extract astrometric and geophysical parameters from this decade-long sequence. The fit produced estimates of 784 parameters, including station locations, radio source positions, polar motion, Universal Time, the precession constant, and solid earth tides. The a priori model included gravitational bending, the 1980 IAU nutation series, the 1976 IAU expressions for Greenwich mean sidereal time and precession, BIH estimates of Universal Time and polar motion, and monthly mean values for zenith troposphere delay. The rms residuals were 0.52 nsec for delay and 0.30 psec/sec for delay rate. Intercontinental baseline lengths were determined with formal uncertainties of 5 to 10 cm. Universal Time and polar motion were measured at 49 epochs, with formal uncertainties (for the more recent data) of 0.5 msec for UT1 and 6 and 2 mas, respectively, for the X and Y components of polar motion. Previously announced in STAR as N83-28038

  8. Geophysical logging to determine construction, contributing zones, and appropriate use of water levels measured in confined-aquifer network wells, San Luis Valley, Colorado, 1998-2000

    USGS Publications Warehouse

    Brendle, D.L.

    2002-01-01

    Geophysical logs were recorded in 32 wells in the confined-aquifer monitoring well network maintained by the Rio Grande Water Conservation District. Logging results were used to determine well construction, zones contributing water to the wells, and the purposes for which the ground-water levels measured in the wells can be used. The confined-aquifer well network consists of 42 flowing and nonflowing wells. This network consists of wells used to supply water for irrigation, household use, wildlife refuge supply, and stock use, and wells for water-level monitoring. Geophysical logs recorded in the wells included video, caliper, water specific conductance, water temperature, and water flow. Most wells in the confined-aquifer well network yield a composite water level representing water levels in multiple permeable zones in the confined-aquifer system of the San Luis Valley. A potentiometric-surface map constructed using November 2000 water levels indicates that water levels from most wells in the network are correlated with water levels from nearby network wells. Potentiometric-surface maps that are constructed from water levels measured in most of the wells in the network can be used to understand long-term local and regional changes in water levels in the confined-aquifer system. Water levels measured in 8 of the 42 wells in the confined-aquifer network are not representative of water levels in the confined-aquifer system.

  9. An Artificial Neural Network Embedded Position and Orientation Determination Algorithm for Low Cost MEMS INS/GPS Integrated Sensors

    PubMed Central

    Chiang, Kai-Wei; Chang, Hsiu-Wen; Li, Chia-Yuan; Huang, Yun-Wen

    2009-01-01

    Digital mobile mapping, which integrates digital imaging with direct geo-referencing, has developed rapidly over the past fifteen years. Direct geo-referencing is the determination of the time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using Global Positioning System (GPS) and Inertial Navigation System (INS) using an Inertial Measurement Unit (IMU). They are usually integrated in such a way that the GPS receiver is the main position sensor, while the IMU is the main orientation sensor. The Kalman Filter (KF) is considered as the optimal estimation tool for real-time INS/GPS integrated kinematic position and orientation determination. An intelligent hybrid scheme consisting of an Artificial Neural Network (ANN) and KF has been proposed to overcome the limitations of KF and to improve the performance of the INS/GPS integrated system in previous studies. However, the accuracy requirements of general mobile mapping applications can’t be achieved easily, even by the use of the ANN-KF scheme. Therefore, this study proposes an intelligent position and orientation determination scheme that embeds ANN with conventional Rauch-Tung-Striebel (RTS) smoother to improve the overall accuracy of a MEMS INS/GPS integrated system in post-mission mode. By combining the Micro Electro Mechanical Systems (MEMS) INS/GPS integrated system and the intelligent ANN-RTS smoother scheme proposed in this study, a cheaper but still reasonably accurate position and orientation determination scheme can be anticipated. PMID:22574034

  10. Phase Shifting Capacity of the Circadian Pacemaker Determined by the SCN Neuronal Network Organization

    PubMed Central

    vanderLeest, Henk Tjebbe; Rohling, Jos H. T.; Michel, Stephan; Meijer, Johanna H.

    2009-01-01

    Background In mammals, a major circadian pacemaker that drives daily rhythms is located in the suprachiasmatic nuclei (SCN), at the base of the hypothalamus. The SCN receive direct light input via the retino-hypothalamic tract. Light during the early night induces phase delays of circadian rhythms while during the late night it leads to phase advances. The effects of light on the circadian system are strongly dependent on the photoperiod to which animals are exposed. An explanation for this phenomenon is currently lacking. Methodology and Principal Findings We recorded running wheel activity in C57 mice and observed large amplitude phase shifts in short photoperiods and small shifts in long photoperiods. We investigated whether these different light responses under short and long days are expressed within the SCN by electrophysiological recordings of electrical impulse frequency in SCN slices. Application of N-methyl-D-aspartate (NMDA) induced sustained increments in electrical activity that were not significantly different in the slices from long and short photoperiods. These responses led to large phase shifts in slices from short days and small phase shifts in slices from long days. An analysis of neuronal subpopulation activity revealed that in short days the amplitude of the rhythm was larger than in long days. Conclusions The data indicate that the photoperiodic dependent phase responses are intrinsic to the SCN. In contrast to earlier predictions from limit cycle theory, we observed large phase shifting responses in high amplitude rhythms in slices from short days, and small shifts in low amplitude rhythms in slices from long days. We conclude that the photoperiodic dependent phase responses are determined by the SCN and propose that synchronization among SCN neurons enhances the phase shifting capacity of the circadian system. PMID:19305510

  11. Evolutionary link community structure discovery in dynamic weighted networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Caihong; Wang, Jiajia; Wang, Xiang; Zhou, Bin; Zou, Peng

    2017-01-01

    Traditional community detection methods are often restricted in static network analysis. In fact, most of networks in real world obviously show dynamic characteristics with time passing. In this paper, we design a link community structure discovery algorithm in dynamic weighted networks, which can not only reveal the evolutionary link community structure, but also detect overlapping communities by mapping link communities to node communities. Meanwhile, our algorithm can also get the hierarchical structure of link communities by tuning a parameter. The proposed algorithm is based on weighted edge fitness and weighted partition density so as to determine whether to add a link to a community and whether to merge two communities to form a new link community. Experiments on both synthetic and real world networks demonstrate the proposed algorithm can detect evolutionary link community structure in dynamic weighted networks effectively.

  12. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    NASA Astrophysics Data System (ADS)

    Rösel, A.; Kaleschke, L.; Birnbaum, G.

    2012-04-01

    Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS) using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs. Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC) for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N. Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave algorithms.

  13. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  14. Recombination in adenovirus: analysis of crossover sites in intertypic overlap recombinants.

    PubMed

    Mautner, V; Mackay, N

    1984-11-01

    Overlap recombination has been used as a means of generating intertypic recombinants with crossover sites located within a defined region of the adenovirus genome. Using terminal DNA fragments of adenovirus type 2 and type 5 that overlap within the vicinity of the hexon coding region (51.6-59.7 map units), two different crosses could be studied; in one the overlap entirely encompasses the hexon and there are homologous regions at either side of the overlap where recombination is expected, and in the other only one side of the overlap is capable of sustaining recombination. The overall distribution of crossover sites within the overlap has been determined by restriction endonuclease mapping, and analysed in terms of the extent of homology between Ad2 and Ad5 in this region as defined by the DNA sequences (R. Kinloch, N. Mackay, and V. Mautner (1984). J. Biol. Chem., 259, 6431-6436; G. Akusjärvi, P. Aleström, M. Pettersson, M. Lager, H. Jörnvall, and U. Pettersson (1984). Submitted). Crossovers are found only in regions of relatively high DNA homology, as previously shown for intertypic recombination between temperature-sensitive viruses (M. E. G. Boursnell and V. Mautner (1981). Virology 112, 198-209). The presence of a free DNA end within the heterologous zone is insufficient to overcome the barrier to recombination. In crosses where recombination is confined to a relatively small homologous zone (45.9-53.0 mu) there is no special distribution of crossovers within the interval; no "hot spot" is discernible at the free DNA end, suggesting that a free DNA end is not especially recombinogenic, nor at the junction between the homologous and heterologous zones, suggesting that branch migration up to the heterology does not always occur. A cross designed to furnish evidence for gene conversion gave rise to a "conventional" recombinant with a crossover located within a 21-nucleotide tract of homology.

  15. Characterizing the interplay betwen mulitple levels of organization within bacterial sigma factor regulatory networks

    SciTech Connect

    Yu, Qiu; Nagarajan, Harish; Embree, Mallory; Shieu, Wendy; Abate, Elisa; Juarez, Katy; Cho, Byung-Kwan; Elkins, James G; Nevin, Kelly P.; Barrett, Christian; Lovley, Derek; Palsson, Bernhard O.; Zengler, Karsten

    2013-01-01

    Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with sN being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

  16. Automatic correction scheme for the temperature dependent overlap function of CHM15k ceilometers

    NASA Astrophysics Data System (ADS)

    Haefele, Alexander; Poltera, Yann; Hervo, Maxime

    2016-04-01

    Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap corrected lidar signals. These artefacts can erroneously be interpreted as aerosol gradient or, in extreme cases, as cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial to use automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or low clouds. In this study an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality check scheme which allows to reliably identify favorable atmospheric conditions. The algorithm has been applied to 2 years of data from a CHM15k ceilometer from Lufft. Backscatter signals corrected for background, range and overlap have been compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reach up to 45% in the first 300m above ground. The amplitude of the correction turned out to be temperature dependent being larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature has been derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable to correct overlap artefacts with high quality, in particular such due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly high benefit can be

  17. Computation of overlap integrals over STOs with mathematica

    NASA Astrophysics Data System (ADS)

    Yükçü, S. A.; Yükçü, N.

    2017-02-01

    Overlap integrals which encountered in molecular structure calculations are the most basic of molecular integrals. Also, other molecular integrals can be expressed in terms of these integrals. Overlap integrals can be calculated by using Slater Type Orbitals (STOs). In this work, we develop algorithms for two-center overlap integrals which are calculated over the STOs in ellipsoidal coordinates and some auxiliary functions by S. M. Mekelleche's group. During the computation of this paper, Mathematica programming language has been used to produce algorithms. Numerical results for some quantum numbers are presented in the tables. Finally, our numerical results and others are compared, then some details of evaluation method are discussed.

  18. A Guide to Using STITCHER for Overlapping Assembly PCR Applications.

    PubMed

    O'Halloran, Damien M

    2017-01-01

    Overlapping PCR is commonly used in many molecular applications that include stitching PCR fragments together, generating fluorescent transcriptional and translational fusions, inserting mutations, making deletions, and PCR cloning. Overlapping PCR is also used for genotyping and in detection experiments using techniques such as loop-mediated isothermal amplification (LAMP). STITCHER is a web tool providing a central resource for researchers conducting all types of overlapping assembly PCR experiments with an intuitive interface for automated primer design that's fast, easy to use, and freely available online.

  19. Nonperturbative Renormalization of Composite Operators with Overlap Fermions

    SciTech Connect

    J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams

    2005-12-01

    We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.

  20. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  1. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have been genetically modified. (d) Overlap select agents or toxins that meet any of the following... Elements, Recombinant and/or Synthetic Nucleic Acids, and Recombinant and/or Synthetic Organisms:...

  2. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... genetically modified. (d) Overlap select agents or toxins that meet any of the following criteria are excluded... Equine Encephalitis virus (c) Genetic Elements, Recombinant Nucleic Acids, and Recombinant Organisms:...

  3. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safety, to animal health, or to animal products. (b) Overlap select agents and toxins: Bacillus anthracis... toxins must be reported within 24 hours by telephone, facsimile, or e-mail: Bacillus anthracis,...

  4. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... animal health, or to animal products. (b) Overlap select agents and toxins: Bacillus anthracis Brucella... CDC or APHIS. (i) The seizure of Bacillus anthracis, Brucella melitensis, Hendra virus, Nipah...

  5. Determination of Spatio-Temporal Characteristics of D-region Electron Density during Annular Solar Eclipse from VLF Network Observations

    NASA Astrophysics Data System (ADS)

    Basak, T.; Hobara, Y.

    2015-12-01

    A major part of the path of the annular solar eclipse of May 20, 2012 (magnitude 0.9439) was over southern Japan. The D-region ionospheric changes associated with that eclipse, led to several degree of observable perturbations of sub-ionospheric very low frequency (VLF) radio signal. The University of Electro-Communications (UEC) operates VLF observation network over Japan. The solar eclipse associated signal changes were recorded in several receiving stations (Rx) simultaneously for the VLF signals coming from NWC/19.8kHz, JJI/22.2kHz, JJY/40.0kHz, NLK/24.8kHz and other VLF transmitters (Tx). These temporal dependences of VLF signal perturbation have been analyzed and the spatio-temporal characteristics of respective sub-ionospheric perturbations has already been studied by earlier workers using 2D-Finite Difference Time Domain method of simulation. In this work, we determine the spatial scale, depth and temporal dependence of lower ionospheric perturbation in consistence with umbral and penumbral motion. We considered the 2-parameter D-region ionospheric model with exponential electron density profile. To model the solar obscuration effect over it, we assumed a generalized space-time dependent 2-dimensional elliptical Gaussian distribution for ionospheric parameters, such as, effective reflection height (h') and sharpness factor (β). The depth (△hmax, △βmax), center of shadow (lato(t), lono(t)) and spatial scale (σlat,lon) of that Gaussian distribution are used as model parameters. In the vicinity of the eclipse zone, we compute the VLF signal perturbations using Long Wave Propagation Capability (LWPC) code for several signal propagation paths. The propagation path characteristics, such as, ground and water conductivity and geomagnetic effect on ionosphere are considered from standard LWPC prescriptions. The model parameters are tuned to set an optimum agreement between our computation and observed positive and negative type of VLF perturbations. Thus

  6. Characterizing Computation-Communication Overlap in Message-Passing Systems

    SciTech Connect

    David E. Bernholdt; Jarek Nieplocha; P. Sadayappan; Aniruddha G. Shet; Vinod Tipparaju

    2008-01-31

    Effective overlap of computation and communication is a well understood technique for latency hiding and can yield significant performance gains for applications on high-end computers. In this report, we describe an instrumentation framework developed for message-passing systems to characterize the degree of overlap of communication with computation in the execution of parallel applications. The inability to obtain precise time-stamps for pertinent communication events is a significant problem, and is addressed by generation of minimum and maximum bounds on achieved overlap. The overlap measures can aid application developers and system designers in investigating scalability issues. The approach has been used to instrument two MPI implementations as well as the ARMCI system. The implementation resides entirely within the communication library and thus integrates well with existing approaches that operate outside the library. The utility of the framework is demonstrated by analyzing communication-computation overlap for micro-benchmarks and the NAS benchmarks, and the insights obtained are used to modify the NAS SP benchmark, resulting in improved overlap.

  7. Characterizing Computation-Communication Overlap in Message-Passing Systems

    SciTech Connect

    David E. Bernholdt; Jarek Nieplocha; P. Sadayappan; Aniruddha G. Shet; Vinod Tipparaju

    2008-01-31

    Effective overlap of computation and communication is a well understood technique for latency hiding and can yield significant performance gains for applications on high-end computers. In this report, we describe an instrumentation framework developed for messagepassing systems to characterize the degree of overlap of communication with computation in the execution of parallel applications. The inability to obtain precise time-stamps for pertinent communication events is a significant problem, and is addressed by generation of minimum and maximum bounds on achieved overlap. The overlap measures can aid application developers and system designers in investigating scalability issues. The approach has been used to instrument two MPI implementations as well as the ARMCI system. The implementation resides entirely within the communication library and thus integrates well with existing approaches that operate outside the library. The utility of the framework is demonstrated by analyzing communication-computation overlap for micro-benchmarks and the NAS benchmarks, and the insights obtained are used to modify the NAS SP benchmark, resulting in improved overlap.

  8. Radial sets: interactive visual analysis of large overlapping sets.

    PubMed

    Alsallakh, Bilal; Aigner, Wolfgang; Miksch, Silvia; Hauser, Helwig

    2013-12-01

    In many applications, data tables contain multi-valued attributes that often store the memberships of the table entities to multiple sets such as which languages a person masters, which skills an applicant documents, or which features a product comes with. With a growing number of entities, the resulting element-set membership matrix becomes very rich of information about how these sets overlap. Many analysis tasks targeted at set-typed data are concerned with these overlaps as salient features of such data. This paper presents Radial Sets, a novel visual technique to analyze set memberships for a large number of elements. Our technique uses frequency-based representations to enable quickly finding and analyzing different kinds of overlaps between the sets, and relating these overlaps to other attributes of the table entities. Furthermore, it enables various interactions to select elements of interest, find out if they are over-represented in specific sets or overlaps, and if they exhibit a different distribution for a specific attribute compared to the rest of the elements. These interactions allow formulating highly-expressive visual queries on the elements in terms of their set memberships and attribute values. As we demonstrate via two usage scenarios, Radial Sets enable revealing and analyzing a multitude of overlapping patterns between large sets, beyond the limits of state-of-the-art techniques.

  9. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data.

  10. Remember the Future II: Meta-analyses and Functional Overlap of Working Memory and Delay Discounting

    PubMed Central

    Wesley, Michael J.; Bickel, Warren K.

    2013-01-01

    Background Previously we showed that working memory training decreased the discounting of future rewards in stimulant addicts without affecting a Go/NoGo task. While a relationship between delay discounting and working memory is consistent with other studies, the unique brain regions of plausible causality between these two abilities have yet to be determined. Methods Activation likelihood estimation (ALE) meta-analyses were performed on foci from studies of delay discounting (DD = 449), working memory (WM = 452), finger tapping (FT = 450), and response inhibition (RI = 450). Activity maps from relatively less (FT) and more (RI) demanding executive tasks were contrasted with maps of DD and WM. Overlap analysis identified unique functional coincidence between DD and WM. Results The anterior cingulate cortex was engaged by all tasks. FT largely engaged motor-related brain areas. In addition to motor-related areas, RI engaged frontal brain regions. The right lateral prefrontal cortex was engaged by RI, DD and WM and was contrasted out of overlap maps. A functional cluster in the posterior portion of the left lateral prefrontal cortex emerged as the largest location of unique overlap between DD and WM. Conclusions A portion of the left lateral prefrontal cortex is a unique location where delay discounting and working memory processes overlap in the brain. This area, therefore, represents a therapeutic target for improving behaviors that rely on the integration of the recent past with the foreseeable future. PMID:24041504

  11. Application of Neural Networks for Real Time Determination of High-β Disruption Boundary and Current Profile Parameters

    NASA Astrophysics Data System (ADS)

    Wroblewski, D.; Jahns, G. L.; Leuer, J. A.; Ferron, J. R.; Kellman, A. G.

    1996-11-01

    Neural networks are adept at reproducing multidemensional non-linear mappings and, due to the simplicity of computation of network outputs, are particularly suitable for real time applications. A neural network empirical model of the high-β disruption boundary was constructed and its real-time performance demonstrated on the DIII--D tokamak. Neural network using multiple diagnostic signals provides much better evaluation of the disruption boundary than the Troyon limit, and can predict the β-limit tens of milliseconds before the disruption occurs, which makes this approach applicable in a disruption avoidance scheme. In another study, a neural network was successfully used to provide a mapping from internal and external magnetic measurements to selected parameters of the safety factor profile. The neural network approach circumvents the speed limitations of the MHD equilibrium codes that are presently used to reconstruct the plasma current profile, and may be used in feedback control.

  12. A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network.

    PubMed

    Ni, Yongnian; Xia, Zhenzhen; Kokot, Serge

    2011-08-30

    A novel kinetic spectrophotometric method was developed for determination of pyrocatechol, resorcin, hydroquinone and phenol based on their inhibitory effect on the oxidation of Rhodamine B (RhB) in acid medium at pH=3.0. A linear relationship was observed between the inhibitory effect and the concentrations of the compounds. The absorbance associated with the kinetic reactions was monitored at the maximum wavelength of 557nm. The effects of different parameters such as pH, concentration of RhB and KBrO(3), and temperature of the reaction were investigated and optimum conditions were established. The linear ranges were 0.22-3.30, 0.108-0.828, 0.36-3.96 and 1.52-19.76μg mL(-1) for pyrocatechol, resorcin, hydroquinone and phenol, respectively, and their corresponding detection limits were 0.15, 0.044, 0.16 and 0.60μg mL(-1). The measured data were processed by several chemometrics methods, such as principal component regression (PCR), partial least squares (PLS) and artificial neural network (ANN), and a set of synthetic mixtures of these compounds was used to verify the established models. It was found that the prediction ability of PLS, PCR and RBF-ANN was similar, however, the RBF-ANN model did perform somewhat better than the other methods. The proposed method was also applied satisfactorily for the simultaneous determination of pyrocatechol, resorcin, hydroquinone and phenol in real water samples.

  13. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas.

    PubMed

    Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu

    2016-01-01

    Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.

  14. Comparative Transcriptome Analysis between Gynoecious and Monoecious Plants Identifies Regulatory Networks Controlling Sex Determination in Jatropha curcas

    PubMed Central

    Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu

    2017-01-01

    Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system. PMID:28144243

  15. Full-Length Isoform Sequencing Reveals Novel Transcripts and Substantial Transcriptional Overlaps in a Herpesvirus

    PubMed Central

    Tombácz, Dóra; Csabai, Zsolt; Oláh, Péter; Balázs, Zsolt; Likó, István; Zsigmond, Laura; Sharon, Donald; Snyder, Michael; Boldogkői, Zsolt

    2016-01-01

    Whole transcriptome studies have become essential for understanding the complexity of genetic regulation. However, the conventionally applied short-read sequencing platforms cannot be used to reliably distinguish between many transcript isoforms. The Pacific Biosciences (PacBio) RS II platform is capable of reading long nucleic acid stretches in a single sequencing run. The pseudorabies virus (PRV) is an excellent system to study herpesvirus gene expression and potential interactions between the transcriptional units. In this work, non-amplified and amplified isoform sequencing protocols were used to characterize the poly(A+) fraction of the lytic transcriptome of PRV, with the aim of a complete transcriptional annotation of the viral genes. The analyses revealed a previously unrecognized complexity of the PRV transcriptome including the discovery of novel protein-coding and non-coding genes, novel mono- and polycistronic transcription units, as well as extensive transcriptional overlaps between neighboring and distal genes. This study identified non-coding transcripts overlapping all three replication origins of the PRV, which might play a role in the control of DNA synthesis. We additionally established the relative expression levels of gene products. Our investigations revealed that the whole PRV genome is utilized for transcription, including both DNA strands in all coding and intergenic regions. The genome-wide occurrence of transcript overlaps suggests a crosstalk between genes through a network formed by interacting transcriptional machineries with a potential function in the control of gene expression. PMID:27685795

  16. Presentation of dynamically overlapping auditory messages in user interfaces

    SciTech Connect

    Papp, III, Albert Louis

    1997-09-01

    This dissertation describes a methodology and example implementation for the dynamic regulation of temporally overlapping auditory messages in computer-user interfaces. The regulation mechanism exists to schedule numerous overlapping auditory messages in such a way that each individual message remains perceptually distinct from all others. The method is based on the research conducted in the area of auditory scene analysis. While numerous applications have been engineered to present the user with temporally overlapped auditory output, they have generally been designed without any structured method of controlling the perceptual aspects of the sound. The method of scheduling temporally overlapping sounds has been extended to function in an environment where numerous applications can present sound independently of each other. The Centralized Audio Presentation System is a global regulation mechanism that controls all audio output requests made from all currently running applications. The notion of multimodal objects is explored in this system as well. Each audio request that represents a particular message can include numerous auditory representations, such as musical motives and voice. The Presentation System scheduling algorithm selects the best representation according to the current global auditory system state, and presents it to the user within the request constraints of priority and maximum acceptable latency. The perceptual conflicts between temporally overlapping audio messages are examined in depth through the Computational Auditory Scene Synthesizer. At the heart of this system is a heuristic-based auditory scene synthesis scheduling method. Different schedules of overlapped sounds are evaluated and assigned penalty scores. High scores represent presentations that include perceptual conflicts between over-lapping sounds. Low scores indicate fewer and less serious conflicts. A user study was conducted to validate that the perceptual difficulties predicted by

  17. Determination of 3D surface displacement rates in the Upper Rhine Graben based on GURN (GNSS Upper Rhine Graben Network)

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Knöpfler, A.; Masson, F.; Ulrich, P.; Heck, B.

    2012-04-01

    regional network GURN actually consists of approx. 80 permanently operating GNSS sites of different data providers in Germany, France and Switzerland. The first work steps in the context of GURN were dominated by a detailed analysis of the GNSS data base (e.g., instrumental change artefacts). This analysis included a comparison of the working group related results (EOST, GIK), where different software packages and data handling strategies were used to derive 3D coordinate time series as basis for the determination of a 3D surface displacement field. Due to very small expected velocities in the URG region, the recent GURN focus is on the reliable derivation of site velocities, therefore effects of datum realisation have to be handled with care. The presentation gives an insight into the joint venture GURN focussing on recent results (e.g., 3D surface velocity field).

  18. Cell Detection from Redundant Candidate Regions under Non-Overlapping Constraints.

    PubMed

    Bise, Ryoma; Sato, Yoichi

    2015-01-12

    Cell detection and segmentation in microscopy images are essential for automated cell behavior analysis including cell shape analysis and cell tracking. Robust cell detection in high-density and low-contrast images is still challenging since cells often touch and partially overlap, forming a cell cluster with blurry intercellular boundaries. In such cases, current methods tend to detect multiple cells as a cluster. If the control parameters are adjusted to separate the touching cells, other problems often occur: a single cell may be segmented into several regions, and cells in low-intensity regions may not be detected. To solve these problems, we first detect redundant candidate regions, which include many false positives but in turn very few false negatives, by allowing candidate regions to overlap with each other. Next, the score for how likely the candidate region contains the main part of a single cell is computed for each cell candidate using supervised learning. Then we select an optimal set of cell regions from the redundant regions under non-overlapping constraints, where each selected region looks like a single cell and the selected regions do not overlap. We formulate this problem of optimal region selection as a binary linear programming problem under non-overlapping constraints. This binary linear programming maximizes the sum of the weighted scores of the selected regions, where a region's score represents how likely it is that the region corresponds to a single cell as determined by using cell appearance features.We demonstrated the effectiveness of our method for several types of cells in microscopy images. Our method performed better than five representative methods, achieving an F-measure of over 0.9 for all data sets. Experimental application of the proposed method to 3D images demonstrated that also works well for 3D cell detection.

  19. Habitat selection and overlap of Atlantic salmon and smallmouth bass juveniles in nursery streams

    USGS Publications Warehouse

    Wathen, G.; Coghlan, S.M.; Zydlewski, J.; Trial, J.G.

    2011-01-01

    Introduced smallmouth bass Micropterus dolomieu have invaded much of the historic freshwater habitat ofAtlantic salmon Salmo salar in North America, yet little is known about the ecological interactions between the two species.We investigated the possibility of competition for habitat between age-0 Atlantic salmon and age-0 and age-1 smallmouth bass by means of in situ observations and a mesocosm experiment.We used snorkel observation to identify the degree and timing of overlap in habitat use in our in situ observations and to describe habitat shifts by Atlantic salmon in the presence of smallmouth bass in our mesocosm experiments. In late July 2008, we observed substantial overlap in the depths and mean water column velocities used by both species in sympatric in situ conditions and an apparent shift by age-0 Atlantic salmon to shallower water that coincided with the period of high overlap. In the mesocosm experiments, we detected no overlap or habitat shifts by age-0 Atlantic salmon in the presence age-1 smallmouth bass and low overlap and no habitat shifts of Atlantic salmon and age-0 smallmouth bass in fall 2009. In 2009, summer floods with sustained high flows and low temperatures resulted in the nearly complete reproductive failure of the smallmouth bass in our study streams, and we did not observe a midsummer habitat shift by Atlantic salmon similar to that seen in 2008. Although this prevented us from replicating our 2008 experiments under similar conditions, the virtual year-class failure of smallmouth bass itself is enlightening. We suggest that future studies incorporate the effects of varying temperature and discharge to determine how abiotic factors affect the interactions between these species and thus mediate the outcomes of potential competition. ?? American Fisheries Society 2011.

  20. Increasing efficiency in intermediate band solar cells with overlapping absorptions

    NASA Astrophysics Data System (ADS)

    Krishna, Akshay; Krich, Jacob J.

    2016-07-01

    Intermediate band (IB) materials are promising candidates for realizing high efficiency solar cells. In IB photovoltaics, photons are absorbed in one of three possible electronic transitions—valence to conduction band, valence to intermediate band, or intermediate to conduction band. With fully concentrated sunlight, when the band gaps have been chosen appropriately, the highest efficiency IB solar cells require that these three absorptions be non-overlapping, so absorbed photons of fixed energy contribute to only one transition. The realistic case of overlapping absorptions, where the transitions compete for photons, is generally considered to be a source of loss. We show that overlapping absorptions can in fact lead to significant improvements in IB solar cell efficiencies, especially for IB that are near the middle of the band gap. At low to moderate concentration, the highest efficiency requires overlapping absorptions. We use the detailed-balance method and indicate how much overlap of the absorptions is required to achieve efficiency improvements, comparing with some known cases. These results substantially broaden the set of materials that can be suitable for high-efficiency IB solar cells.

  1. Cloud Overlapping Detection Algorithm Using Solar and IR Wavelengths with GOES Data Over ARM/SGP Site

    NASA Technical Reports Server (NTRS)

    Kawamoto, K.; Minnis, P.; Smith, W. L., Jr.

    2001-01-01

    One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a one layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum et al used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. used a combination infrared (IR), visible (VIS), and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne proposed a 1.6 and 11 micron bispectral threshold method. While all of these methods have made progress in solving this stubborn problem none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the Atmospheric Radiation Measurement (ARM) domains and hence should be identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the National Oceanic Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) used over the

  2. Cloud Overlapping Detection Algorithm Using Solar and IR Wavelengths With GOSE Data Over ARM/SGP Site

    NASA Technical Reports Server (NTRS)

    Kawamoto, Kazuaki; Minnis, Patrick; Smith, William L., Jr.

    2001-01-01

    One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a 1-layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum el al. (1995) used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow (1997) also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. (1999) used a combination infrared, visible, and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne (2000) proposed 1.6 and 11 microns. bispectral threshold method. While all of these methods have made progress in solving this stubborn problem, none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the ARM domains (e.g., Minnis et al 1998) and hence should identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the NOAA Advanced Very High Resolution Radiometer (AVHRR) used over the ARM SGP and NSA sites to study the

  3. Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC)

    NASA Astrophysics Data System (ADS)

    Reisin, E. R.; Scheer, J.; Dyrland, M. E.; Sigernes, F.; Deehr, C. S.; Schmidt, C.; Höppner, K.; Bittner, M.; Ammosov, P. P.; Gavrilyeva, G. A.; Stegman, J.; Perminov, V. I.; Semenov, A. I.; Knieling, P.; Koppmann, R.; Shiokawa, K.; Lowe, R. P.; López-González, M. J.; Rodríguez, E.; Zhao, Y.; Taylor, M. J.; Buriti, R. A.; Espy, P. J.; French, W. J. R.; Eichmann, K.-U.; Burrows, J. P.; von Savigny, C.

    2014-11-01

    The global distribution of traveling planetary wave (PW) activity in the mesopause region is estimated for the first time from ground-based airglow measurements. Monthly and total mean climatologies of PW power are determined from rotational temperatures measured at 19 sites from 78° N to 76° S which contribute to the Network for the Detection of Mesospheric Change (NDMC). Wave power is expressed as the standard deviation of nocturnal mean temperature around the seasonal temperature variation. The results from 20° N confirm the SABER traveling PW proxy by Offermann et al. (2009, J. Geophys. Res. 114, D06110) at two altitudes. Most sites between 69° S and 69° N show total mean traveling PW activity of about 6 K, and only some high latitude sites have considerably higher activity levels. At the two tropical sites, there is practically no seasonal variation of PW activity. At 70% of the midlatitude sites, the seasonal variation is moderate for most of the year, but it is quite appreciable at all high latitude sites. Results about traveling PW activity at 87 km and 95 km available from several sites signal similar behavior at both altitudes. The total mean climatological results here obtained have further been used to separate the traveling PW contribution from the superposition of wave types contained in OH rotational temperature fluctuations measured by the SCIAMACHY instrument on Envisat. A narrow equatorial wave activity maximum is probably caused by gravity waves, while a tendency towards greater activity at higher northern latitudes may be due to stationary planetary waves.

  4. The "eyes absent" (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network.

    PubMed

    Graziussi, Daria Federica; Suga, Hiroshi; Schmid, Volker; Gehring, Walter Jakob

    2012-06-01

    Eyes absent (Eya) is a member of the Retinal Determination Gene Network (RDGN), a set of genes responsible for eye specification in Drosophila. Eya is a dual function protein, working as a transcription factor in the nucleus and as a tyrosine phosphatase in the cytoplasm. It had been shown that Pax and Six family genes, main components of the RDGN, are present in the hydrozoan Cladonema radiatum and that they are expressed in the eye. However, nothing had been known about the Eya family in hydrozoan jellyfish. Here we report the presence of an Eya homologue (CrEya) in Cladonema. Real-time PCR analysis and in situ hybridization showed that CrEya is expressed in the eye. Furthermore, the comprehensive survey of eukaryote genomes revealed that the acquisition of the N-terminal transactivation domain, including the EYA Domain 2 and its adjacent sequence shared by all eumetazoans, happened early in evolution, before the separation of Cnidaria and Bilateria. Our results uncover the evolution of the two domains and show a conservation of the expression pattern of the Eya gene between Cnidaria and Bilateria, which, together with previous data, supports the hypothesis of the monophyletic origin of metazoans eyes. We additionally show that CrEya is also expressed in the oocytes, where two other members of the RDGN, CrPaxB, and Six4/5-Cr, are known to be expressed. These data suggest that several members of the RDGN have begun to be localized also into the different context of egg development early in the course of metazoan evolution.

  5. How synaptic weights determine stability of synchrony in networks of pulse-coupled excitatory and inhibitory oscillators

    NASA Astrophysics Data System (ADS)

    Kriener, Birgit

    2012-09-01

    Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases ("mono-interaction network"). Yet, many real-world networks—for example neuronal circuits—are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.

  6. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity.

    PubMed

    Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin

    2014-01-01

    A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.

  7. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity

    PubMed Central

    Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin

    2014-01-01

    A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network. PMID:25278869

  8. Speckle Statistics of Multiple Overlapping Beams Propagating in Inhomogeneous Plasmas

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros B.; Schmitt, A. J.; Lehmberg, R. H.

    1999-11-01

    We have calculated the electric field of RPP, SSD and ISI beams propagating in inhomogeneous plasmas. We have studied the intensity statistics of these beams as well as those generated when a number of such beams overlap. Changes in the geometry and statistical properties of the resulting hot spots will be presented as a function of angles of incidence, spot sizes and density scale length. Analytic, semi-analytic (quadrature using Green's functions) and numerical simulation results will be shown. The degree to which vacuum electrodynamics is inappropriate to model multiple overlapping beams in inhomogeneous plasmas will be demonstrated. These results are crucial to the study of plasma phenomena in the coronas of direct drive targets including laser imprinting and parametric instabilities. Parametric instabilities at the LEH of indirect drive targets must also take into account overlapping beam physics issues discussed here.

  9. Climate-induced range overlap among closely related species

    NASA Astrophysics Data System (ADS)

    Krosby, Meade; Wilsey, Chad B.; McGuire, Jenny L.; Duggan, Jennifer M.; Nogeire, Theresa M.; Heinrichs, Julie A.; Tewksbury, Joshua J.; Lawler, Joshua J.

    2015-09-01

    Contemporary climate change is causing large shifts in biotic distributions, which has the potential to bring previously isolated, closely related species into contact. This has led to concern that hybridization and competition could threaten species persistence. Here, we use bioclimatic models to show that future range overlap by the end of the century is predicted for only 6.4% of isolated, congeneric species pairs of New World birds, mammals and amphibians. Projected rates of climate-induced overlap are higher for birds (11.6%) than for mammals (4.4%) or amphibians (3.6%). As many species will have difficulty tracking shifting climates, actual rates of future overlap are likely to be far lower, suggesting that hybridization and competition impacts may be relatively modest.

  10. Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis

    PubMed Central

    Chong, Nikson Fatt-Ming

    2016-01-01

    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40–45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment. PMID:27995143

  11. Efficient algorithm for discrimination of overlapping ultrasonic echoes.

    PubMed

    Fortineau, Julien P; Vander Meulen, François; Fortineau, Jérôme; Feuillard, Guy

    2017-01-01

    We propose a method to identify the different echoes of an overlapped ultrasonic signal. This method is based on an iterative algorithm that compares the experimental signal to a realistic dictionary of trial functions and allows identification of one overlapped echo at each iteration. Adding physical parameters to the dictionary such as sample attenuation and ultrasound beam diffraction allows the method to be applied to various materials and sample geometries. Measurements at 500kHz and 5MHz on a ABS material and a copper plate are reported. The effectiveness and the robustness of the method are studied as a function of time delay between the different echoes. We show that taking into account the experimental set-up and material properties in the development of the dictionary are critical to identifying a round-trip signal when overlapping occurs.

  12. Overlap syndromes of autoimmune hepatitis: an open question.

    PubMed

    Durazzo, Marilena; Premoli, Alberto; Paschetta, Elena; Belci, Paola; Spandre, Maurizio; Bo, Simona

    2013-02-01

    The headword "overlap syndromes" of liver diseases includes the coexistence of autoimmune hepatitis, primary biliary cirrhosis, and primary sclerosing cholangitis. These syndromes often represent a diagnostic and therapeutic challenge for hepatologists; it remains unclear whether these overlap syndromes form distinct entities or they are only variants of the major autoimmune liver diseases. The most frequent reported association occurs between autoimmune hepatitis and primary biliary cirrhosis, whereas the overlap between autoimmune hepatitis and primary sclerosing cholangitis is less frequent, typically at young age and often attendant with an inflammatory bowel disease. The choice therapy is based on ursodeoxycholic acid and immunosuppressive drugs, used at the same time or consecutively, according to the course of disease. The diagnostic scores for autoimmune hepatitis can help for diagnosis, even though their definitive soundness is lacking.

  13. Toxic epidermal necrolysis, DRESS, AGEP: Do overlap cases exist?

    PubMed Central

    2012-01-01

    Background Severe cutaneous adverse reactions to drugs (SCARs) include acute generalized exanthematous pustulosis (AGEP), drug reaction with eosinophilia and systemic symptoms (DRESS) and epidermal necrolysis (Stevens-Johnson syndrome–toxic epidermal necrolysis [SJS-TEN]). Because of the varied initial presentation of such adverse drug reactions, diagnosis may be difficult and suggests overlap among SCARs. Overlapping SCARs are defined as cases fulfilling the criteria for definite or probable diagnosis of at least 2 ADRs according to scoring systems for AGEP, DRESS and SJS-TEN. We aimed to evaluate the prevalence of overlap among SCARs among cases in the referral hospital in France. Methods We retrospectively analyzed data for 216 patients hospitalized in the referral centre over 7 years with a discharge diagnosis of AGEP (n = 45), DRESS (n = 47), SJS-TEN (n = 80) or “drug rash” (n = 44). Each case with detailed clinical data and a skin biopsy specimen was scored for AGEP, DRESS and SJS-TEN by use of diagnostic scores elaborated by the RegiSCAR group. Results In total, 45 of 216 cases (21%) had at least 2 possible diagnoses: 35 had a single predominant diagnosis (definite or probable), 7 had several possible diagnoses and 3 (2.1% of 145 confirmed SCARs) were overlap SCARs. Conclusions Despite ambiguities among SCARs, confirmed overlap cases are rare. This study did not avoid pitfalls linked to its retrospective nature and selection bias. In the acute stage of disease, early identification of severe ADRs can be difficult because of clinical or biologic overlapping features and missing data on histology, biology and evolution. Retrospectively analyzing cases by use of diagnostic algorithms can lead to reliable discrimination among AGEP, DRESS and SJS-TEN. PMID:23009177

  14. Diagnosing Depression in MS in the Face of Overlapping Symptoms.

    PubMed

    Patten, Sb

    2010-01-01

    Depression is an important problem in multiple sclerosis (MS), but the diagnosis is challenging since symptoms of depression overlap with those of MS. In the past, the main strategy has been to remove physical symptoms from scales assessing depressive symptoms in MS, but these attempts have not been successful. Depression and overlapping MS symptoms may actually share pathophysiological mechanisms, so the strategy of attempting to exclude such symptoms may be fundamentally flawed. Current diagnostic criteria provide a pragmatic solution, but it may be possible to develop improved definitions.

  15. Overlapping illusions by transformation optics without any negative refraction material

    NASA Astrophysics Data System (ADS)

    Sun, Fei; He, Sailing

    2016-01-01

    A novel method to achieve an overlapping illusion without any negative refraction index material is introduced with the help of the optic-null medium (ONM) designed by an extremely stretching spatial transformation. Unlike the previous methods to achieve such an optical illusion by transformation optics (TO), our method can achieve a power combination and reshape the radiation pattern at the same time. Unlike the overlapping illusion with some negative refraction index material, our method is not sensitive to the loss of the materials. Other advantages over existing methods are discussed. Numerical simulations are given to verify the performance of the proposed devices.

  16. Neurofibromatosis type 1 with overlap Turner syndrome and Klinefelter syndrome.

    PubMed

    Hatipoglu, Nihal; Kurtoglu, Selim; Kendirci, Mustafa; Keskin, Mehmet; Per, Hüseyin

    2010-02-01

    Turner's syndrome is a sex chromosome disorder. Klinefelter's syndrome is one of the most severe genetic diseases. Neurofibromatosis is an autosomal dominant disorder characterized by cafe-au-lait spots and fibromatous tumors of the skin. In this article, we report the overlap of neurofibromatosis-1 with Turner and Klinefelter syndromes. Thus, these disorders might overlap within the same patient. Due to these cases, we suggest that each patient with Turner-like symptoms or Klinefelter's-like syndrome, be carefully examined for café au lait macules before the initiation of hormone replacement treatment.

  17. Examining potential overlap of DSM-5 PTSD criteria D and E.

    PubMed

    Franklin, C Laurel; Walton, Jessica L; Cuccurullo, Lisa-Ann; Raines, Amanda; Ball, Jaqueline; Vaught, Amanda; Chambliss, Jessica L; Maieritsch, Kelly P

    2016-12-30

    The Diagnostic and Statistical Manual, Fifth Edition-5 (DSM-5) has adopted a four-factor symptom model for Posttraumatic Stress Disorder (PTSD) that includes new symptom additions in criterion D (D2, D3, D4), negative alterations in cognition and mood. This article examines potential overlapping endorsement of these symptoms amongst one another and with the behavioral symptoms within PTSD criterion E (E1 and E3; alterations in arousal and reactivity), through the lenses of cognitive-behavioral theory. Responses of veteran participants (N=320) completing the PTSD Checklist-5 were used to determine overlap in symptom reporting. We conducted a series of direct logistic regressions to determine the predictive ability of meeting the criterion D or E symptoms based on endorsement of the target D symptoms (D2, D3, D4). Results suggest that the new cognitive and emotional symptoms of criterion D have significant overlapping content, and that thought-related symptoms are often endorsed in conjunction with their behavioral counterpoint (D2/E3; D4/E1). Our results suggest that DSM-5 criterion D symptoms may not be central to the diagnostic structure of PTSD. These symptoms add complexity and difficulty to diagnosing PTSD without adding much unique content.

  18. A Gene Regulatory Network Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development That Is Robust and Recovers Experimental Gene Expression ProfilesW⃞

    PubMed Central

    Espinosa-Soto, Carlos; Padilla-Longoria, Pablo; Alvarez-Buylla, Elena R.

    2004-01-01

    Flowers are icons in developmental studies of complex structures. The vast majority of 250,000 angiosperm plant species have flowers with a conserved organ plan bearing sepals, petals, stamens, and carpels in the center. The combinatorial model for the activity of the so-called ABC homeotic floral genes has guided extensive experimental studies in Arabidopsis thaliana and many other plant species. However, a mechanistic and dynamical explanation for the ABC model and prevalence among flowering plants is lacking. Here, we put forward a simple discrete model that postulates logical rules that formally summarize published ABC and non-ABC gene interaction data for Arabidopsis floral organ cell fate determination and integrates this data into a dynamic network model. This model shows that all possible initial conditions converge to few steady gene activity states that match gene expression profiles observed experimentally in primordial floral organ cells of wild-type and mutant plants. Therefore, the network proposed here provides a dynamical explanation for the ABC model and shows that precise signaling pathways are not required to restrain cell types to those found in Arabidopsis, but these are rather determined by the overall gene network dynamics. Furthermore, we performed robustness analyses that clearly show that the cell types recovered depend on the network architecture rather than on specific values of the model's gene interaction parameters. These results support the hypothesis that such a network constitutes a developmental module, and hence provide a possible explanation for the overall conservation of the ABC model and overall floral plan among angiosperms. In addition, we have been able to predict the effects of differences in network architecture between Arabidopsis and Petunia hybrida. PMID:15486106

  19. Automatic scene reconstruction from partially overlapping images using online filter design

    NASA Astrophysics Data System (ADS)

    Chimitt, William J., Jr.; Hassebrook, Laurence G.

    1998-03-01

    In many image processing applications, the field of view is not large enough to display the required scene. We present a method for reconstructing an entire scene from multiple, partially overlapping fields of view where the lateral position, orientation and the amount of overlap of the camera views are unknown. Rotation-invariant, correlation based filters are used to determine if two image segments (fields of view) register. The filter output provides the relative position and rotation between matching segments. All filters are created on-line. An automated supervisor selects image segments for correlation and then uses these results to register the image segments and assemble the entire scene without human intervention. Also presented are the results of software controlled automatic assembly of a multiple image scene.

  20. Determination of transport parameters for multiphase flow in porous gas diffusion electrodes using a capillary network model

    NASA Astrophysics Data System (ADS)

    Markicevic, B.; Bazylak, A.; Djilali, N.

    The changes of relative permeability and capillary pressure as a function of liquid water phase saturation, two key parameters in two-phase PEMFC models, are investigated using a capillary network model incorporating an invasion percolation algorithm with trapping. The two-dimensional capillary network accounts for capillary dominated drainage and cluster formation. It is shown that relative permeability is constant for low saturation, but follows a power law of saturation for high saturations, with an exponent of about 2.4 that is independent of network size or heterogeneity. An increase of the network size and reduction in heterogeneity tend to reduce the relative permeability, and relative permeabilities of much less then unity are obtained even for saturations as large as 0.8. Capillary pressure on the other hand does not vary with saturation and network size, but is influenced by heterogeneity only. This suggests that regardless of the interface shape and size, the capillaries at the interface maintain a constant average radius causing the capillary pressure to remain constant. It is finally shown that with appropriate scaling and for a given network heterogeneity, the normalized capillary pressure, single-phase permeability and relative permeability can be deduced for other choices of porous medium physical scales without requiring a new set of simulations.

  1. Using Elman recurrent neural networks with conjugate gradient algorithm in determining the anesthetic the amount of anesthetic medicine to be applied.

    PubMed

    Güntürkün, Rüştü

    2010-08-01

    In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.

  2. Two Efficient Techniques to Find Approximate Overlaps between Sequences

    PubMed Central

    2017-01-01

    The next-generation sequencing (NGS) technology outputs a huge number of sequences (reads) that require further processing. After applying prefiltering techniques in order to eliminate redundancy and to correct erroneous reads, an overlap-based assembler typically finds the longest exact suffix-prefix match between each ordered pair of the input reads. However, another trend has been evolving for the purpose of solving an approximate version of the overlap problem. The main benefit of this direction is the ability to skip time-consuming error-detecting techniques which are applied in the prefiltering stage. In this work, we present and compare two techniques to solve the approximate overlap problem. The first adapts a compact prefix tree to efficiently solve the approximate all-pairs suffix-prefix problem, while the other utilizes a well-known principle, namely, the pigeonhole principle, to identify a potential overlap match in order to ultimately solve the same problem. Our results show that our solution using the pigeonhole principle has better space and time consumption over an FM-based solution, while our solution based on prefix tree has the best space consumption between all three solutions. The number of mismatches (hamming distance) is used to define the approximate matching between strings in our work. PMID:28293632

  3. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in paragraph (b) of this section that have been genetically modified. (d) Overlap select agents or... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE... elements, recombinant nucleic acids, and recombinant organisms: (1) Nucleic acids that can...

  4. 42 CFR 73.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have been genetically modified. (d) Overlap select agents or toxins that meet any of the following... Elements, Recombinant and/or Synthetic Nucleic Acids, and Recombinant and/or Synthetic Organisms: (1... within the exclusion category. (e) An attenuated strain of a select agent, or a select toxin modified...

  5. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section that have been genetically modified. (d) Overlap select agents or toxins that meet any of... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS POSSESSION, USE...) Genetic elements, recombinant and/or synthetic nucleic acids, and recombinant and/or synthetic...

  6. 9 CFR 121.4 - Overlap select agents and toxins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Federal law enforcement agency reports the seizure of the overlap select agent or toxin to APHIS or CDC... pseudomallei. This report must be followed by submission of APHIS/CDC Form 4 within 7 calendar days after.../CDC Form 4 must be submitted within 7 calendar days after seizure of the agent or toxin. (iii) A...

  7. 14 CFR 71.9 - Overlapping airspace designations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Overlapping airspace designations. 71.9 Section 71.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE DESIGNATION OF CLASS A, B, C, D, AND E AIRSPACE AREAS; AIR TRAFFIC SERVICE ROUTES;...

  8. A Longitudinal Assessment of the Victim-Offender Overlap

    ERIC Educational Resources Information Center

    Jennings, Wesley G.; Higgins, George E.; Tewksbury, Richard; Gover, Angela R.; Piquero, Alex R.

    2010-01-01

    Although research has established an offending/victimization overlap and that offenders and victims share similar characteristics, much less work has examined the longitudinal sequencing of victimization and offending in the same developmental period and whether key risk/protective factors significantly distinguish both offenders and victims. This…

  9. Track with overlapping links for dry coal extrusion pumps

    DOEpatents

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  10. Australia's National Research Collection: Overlap, Uniqueness, and Distribution

    ERIC Educational Resources Information Center

    Genoni, Paul; Wright, Janette

    2011-01-01

    This paper reports on the results of an overlap study of Australian research library collections. The study used OCLC's WorldCat Collection Analysis software to mine data recording Australian holdings on the WorldCat database. The data is analysed according to the results obtained for six "groups" which represent various coalitions of…

  11. Role extraction in complex networks and its application in control of networks

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyang; He, Xingsheng; Fu, Zhongqian; Zhuo, Zhao

    2016-01-01

    Given a large network, dynamics of the network are determined by both nodes' features and network connections. Some features could be extracted from node labels and other kinds of priori knowledge. But how to perform the feature classification without priori knowledge is a challenge. This paper addresses the key problem: how do we conduct role extraction in networks with only edge connections known? On the basis of behavior differences in dynamics, nodes are classified into three role groups: Leaders(L), Communicators(C) and Members(M). Unlike traditional community detections, we detect overlapping communities by link clustering first and then classify nodes according to the community entropy, which describes the disorder of how many different communities a node connects to. We propose a time saving and unsupervised learning approach for automatically discovering nodes' roles based solely on network topology. The effectiveness of this method is demonstrated on six real-world networks through pinning control. By controlling communicator nodes, the controllability is enhanced and the cost for control is reduced obviously in networks with strong community structure.

  12. What Determines the Temporal Changes of Species Degree and Strength in an Oceanic Island Plant-Disperser Network?

    PubMed Central

    González-Castro, Aarón; Yang, Suann; Nogales, Manuel; Carlo, Tomás A.

    2012-01-01

    Network models of frugivory and seed dispersal are usually static. To date, most studies on mutualistic networks assert that interaction properties such as species' degree (k) and strength (s) are strongly influenced by species abundances. We evaluated how species' degree and strength change as a function of temporal variation not only in species abundance, but also in species persistence (i.e., phenology length). In a two-year study, we collected community-wide data on seed dispersal by birds and examined the seasonal dynamics of the above-mentioned interaction properties. Our analyses revealed that species abundance is an important predictor for plant strength within a given sub-network. However, our analyses also reveal that species' degree can often be best explained by the length of fruiting phenology (for plants degree) or by the number of fruiting species (for dispersers degree), which are factors that can be decoupled from the relative abundance of the species participating in the network. Moreover, our results suggest that generalist dispersers (when total study period is considered) act as temporal generalists, with degree constrained by the number of plant species displaying fruits in each span. Along with species identity, our findings underscore the need for a temporal perspective, given that seasonality is an inherent property of many mutualistic networks. PMID:22844470

  13. Resonance Overlap Is Responsible for Ejecting Planets in Binary Systems

    NASA Astrophysics Data System (ADS)

    Mudryk, Lawrence R.; Wu, Yanqin

    2006-03-01

    A planet orbiting around a star in a binary system experiences both secular and resonant perturbations from the companion star. It may be dislodged from its host star if it is simultaneously affected by two or more resonances. We find that overlap between subresonances lying within mean-motion resonances (mostly of the j:1 type) can account for the boundary of orbital stability within binary systems first observed in numerical studies (e.g., Holman & Wiegert). Strong secular forcing from the companion displaces the centroids of different subresonances, producing large regions of resonance overlap. Planets lying within these overlapping regions experience chaotic diffusion, which in most cases leads to their eventual ejection. The overlap region extends to shorter period orbits as either the companion's mass or its eccentricity increase, with boundaries largely agreeing with those obtained by Holman & Wiegert. Furthermore, we find the following two results: First, at a given binary mass ratio, the instability boundary as a function of eccentricity appears jagged, with jutting peninsulas and deep inlets corresponding to islands of instability and stability, respectively; as a result, the largest stable orbit could be reduced from the Holman & Wiegert values by as much as 20%. Second, very high-order resonances (e.g., 50:3) do not significantly modify the instability boundary; these weak resonances, while producing slow chaotic diffusion that may be missed by finite-duration numerical integrations, do not contribute markedly to planet instability. We present some numerical evidence for the first result. More extensive experiments are called for to confirm these conclusions. For the special case of circular binaries, we are intrigued to find that the Hill criterion (based on the critical Jacobi integral) yields an instability boundary that is very similar to that obtained by resonance overlap arguments, making the former both a necessary and a sufficient condition for

  14. Individual foraging strategies reveal niche overlap between endangered galapagos pinnipeds.

    PubMed

    Villegas-Amtmann, Stella; Jeglinski, Jana W E; Costa, Daniel P; Robinson, Patrick W; Trillmich, Fritz

    2013-01-01

    Most competition studies between species are conducted from a population-level approach. Few studies have examined inter-specific competition in conjunction with intra-specific competition, with an individual-based approach. To our knowledge, none has been conducted on marine top predators. Sympatric Galapagos fur seals (Arctocephalus galapagoensis) and sea lions (Zalophus wollebaeki) share similar geographic habitats and potentially compete. We studied their foraging niche overlap at Cabo Douglas, Fernandina Island from simultaneously collected dive and movement data to examine spatial and temporal inter- and intra-specific competition. Sea lions exhibited 3 foraging strategies (shallow, intermediate and deep) indicating intra-specific competition. Fur seals exhibited one foraging strategy, diving predominantly at night, between 0-80 m depth and mostly at 19-22 h. Most sea lion dives also occurred at night (63%), between 0-40 m, within fur seals' diving depth range. 34% of sea lions night dives occurred at 19-22 h, when fur seals dived the most, but most of them occurred at dawn and dusk, when fur seals exhibited the least amount of dives. Fur seals and sea lions foraging behavior overlapped at 19 and 21 h between 0-30 m depths. Sea lions from the deep diving strategy exhibited the greatest foraging overlap with fur seals, in time (19 h), depth during overlapping time (21-24 m), and foraging range (37.7%). Fur seals foraging range was larger. Cabo Douglas northwest coastal area, region of highest diving density, is a foraging "hot spot" for both species. Fur seals and sea lions foraging niche overlap occurred, but segregation also occurred; fur seals primarily dived at night, while sea lions exhibited night and day diving. Both species exploited depths and areas exclusive to their species. Niche breadth generally increases with environmental uncertainty and decreased productivity. Potential competition between these species could be greater during warmer periods

  15. High-Order Moving Overlapping Grid Methodology in a Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Merrill, Brandon E.

    A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies

  16. Phase-space overlap measures. I. Fail-safe bias detection in free energies calculated by molecular simulation

    NASA Astrophysics Data System (ADS)

    Wu, Di; Kofke, David A.

    2005-08-01

    We consider ways to quantify the overlap of the parts of phase space important to two systems, labeled A and B. Of interest is how much of the A-important phase space lies in that important to B, and how much of B lies in A. Two measures are proposed. The first considers four total-energy distributions, formed from all combinations made by tabulating either the A-system or the B-system energy when sampling either the A or B system. Measures for A in B and B in A are given by two overlap integrals defined on pairs of these distributions. The second measure is based on information theory, and defines two relative entropies which are conveniently expressed in terms of the dissipated work for free-energy perturbation (FEP) calculations in the A →B and B →A directions, respectively. Phase-space overlap is an important consideration in the performance of free-energy calculations. To demonstrate this connection, we examine bias in FEP calculations applied to a system of independent particles in a harmonic potential. Systems are selected to represent a range of overlap situations, including extreme subset, subset, partial overlap, and nonoverlap. The magnitude and symmetry of the bias (A →B vs B →A) are shown to correlate well with the overlap, and consequently with the overlap measures. The relative entropies are used to scale the amount of sampling to obtain a universal bias curve. This result leads to develop a simple heuristic that can be applied to determine whether a work-based free-energy measurement is free of bias. The heuristic is based in part on the measured free energy, but we argue that it is fail-safe inasmuch as any bias in the measurement will not promote a false indication of accuracy.

  17. Stereo transparency in ambiguous stereograms generated by overlapping two identical dot patterns.

    PubMed

    Watanabe, Osamu

    2009-11-30

    In binocular vision, observers can perceive transparent surfaces by fusing a stereogram composed of two overlapping patterns with different disparities. When dot patterns of two surfaces are identical, the stereogram has potential matches leading to both transparency and non-transparency (or unitary surface) perceptions. However, these two matching candidates are exclusive if the uniqueness assumption holds. This stereogram can be regarded as a random-dot version of the double-nail illusion and a stereo version of the locally paired-dot stimulus that was used to investigate the neural mechanism for motion transparency. Which surface is perceived in this ambiguous stereogram would reflect the property of the transparency detection mechanism in human stereopsis. Here we perform a parametric study to examine the perceptual property in this ambiguous stereogram. The result showed that the ability in transparency detection from this stereogram is determined by the contrast reversal ratio between overlapping patterns within small regions the width of which was about 0.4 deg. The width was similar to the receptive field sizes of neurons in striate cortex. The result suggests that the contrast reversal between two identical patterns would modulate activities of binocular neurons, and this modification gives a crucial effect on the neural representation for overlapping disparities.

  18. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms

    PubMed Central

    Hunting, Ellard R.; Vijver, Martina G.; van der Geest, Harm G.; Mulder, Christian; Kraak, Michiel H. S.; Breure, Anton M.; Admiraal, Wim

    2015-01-01

    Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism. PMID:25759686

  19. Towards the integration and development of a cross-European research network and infrastructure: the DEterminants of DIet and Physical ACtivity (DEDIPAC) Knowledge Hub.

    PubMed

    Lakerveld, Jeroen; van der Ploeg, Hidde P; Kroeze, Willemieke; Ahrens, Wolfgang; Allais, Oliver; Andersen, Lene Frost; Cardon, Greet; Capranica, Laura; Chastin, Sebastien; Donnelly, Alan; Ekelund, Ulf; Finglas, Paul; Flechtner-Mors, Marion; Hebestreit, Antje; Hendriksen, Ingrid; Kubiak, Thomas; Lanza, Massimo; Loyen, Anne; MacDonncha, Ciaran; Mazzocchi, Mario; Monsivais, Pablo; Murphy, Marie; Nöthlings, Ute; O'Gorman, Donal J; Renner, Britta; Roos, Gun; Schuit, Abertine J; Schulze, Matthias; Steinacker, Jürgen; Stronks, Karien; Volkert, Dorothee; Van't Veer, Pieter; Lien, Nanna; De Bourdeaudhuij, Ilse; Brug, Johannes

    2014-11-22

    To address major societal challenges and enhance cooperation in research across Europe, the European Commission has initiated and facilitated 'joint programming'. Joint programming is a process by which Member States engage in defining, developing and implementing a common strategic research agenda, based on a shared vision of how to address major societal challenges that no Member State is capable of resolving independently. Setting up a Joint Programming Initiative (JPI) should also contribute to avoiding unnecessary overlap and repetition of research, and enable and enhance the development and use of standardised research methods, procedures and data management. The Determinants of Diet and Physical Activity (DEDIPAC) Knowledge Hub (KH) is the first act of the European JPI 'A Healthy Diet for a Healthy Life'. The objective of DEDIPAC is to contribute to improving understanding of the determinants of dietary, physical activity and sedentary behaviours. DEDIPAC KH is a multi-disciplinary consortium of 46 consortia and organisations supported by joint programming grants from 12 countries across Europe. The work is divided into three thematic areas: (I) assessment and harmonisation of methods for future research, surveillance and monitoring, and for evaluation of interventions and policies; (II) determinants of dietary, physical activity and sedentary behaviours across the life course and in vulnerable groups; and (III) evaluation and benchmarking of public health and policy interventions aimed at improving dietary, physical activity and sedentary behaviours. In the first three years, DEDIPAC KH will organise, develop, share and harmonise expertise, methods, measures, data and other infrastructure. This should further European research and improve the broad multi-disciplinary approach needed to study the interactions between multilevel determinants in influencing dietary, physical activity and sedentary behaviours. Insights will be translated into more effective

  20. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.

    PubMed

    Manikandan, P; Ramyachitra, D; Banupriya, D

    2016-04-15

    Proteins show their functional activity by interacting with other proteins and forms protein complexes since it is playing an important role in cellular organization and function. To understand the higher order protein organization, overlapping is an important step towards unveiling functional and evolutionary mechanisms behind biological networks. Most of the clustering algorithms do not consider the weighted as well as overlapping complexes. In this research, Prorank based Fuzzy algorithm has been proposed to find the overlapping protein complexes. The Fuzzy detection algorithm is incorporated in the Prorank algorithm after ranking step to find the overlapping community. The proposed algorithm executes in an iterative manner to compute the probability of robust clusters. The proposed and the existing algorithms were tested on different datasets such as PPI-D1, PPI-D2, Collins, DIP, Krogan Core and Krogan-Extended, gene expression such as GSE7645, GSE22269, GSE26923, pathways such as Meiosis, MAPK, Cell Cycle, phenotypes such as Yeast Heterogeneous and Yeast Homogeneous datasets. The experimental results show that the proposed algorithm predicts protein complexes with better accuracy compared to other state of art algorithms.

  1. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    PubMed

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force.

  2. Determinants of hospital choice of rural hospital patients: the impact of networks, service scopes, and market competition.

    PubMed

    Roh, Chul-Young; Lee, Keon-Hyung; Fottler, Myron D

    2008-08-01

    Among 10,384 rural Colorado female patients who received MDC 14 (obstetric services) from 2000 to 2003, 6,615 (63.7%) were admitted to their local rural hospitals; 1,654 (15.9%) were admitted to other rural hospitals; and 2,115 (20.4%) traveled to urban hospitals for inpatient services. This study is to examine how network participation, service scopes, and market competition influences rural women's choice of hospital for their obstetric care. A conditional logistic regression analysis was used. The network participation (p < 0.01), the number of services offered (p < 0.05), and the hospital market competition had a positive and significant relationship with patients' choice to receive obstetric care. That is, rural patients prefer to receive care from a hospital that participates in a network, that provides more number of services, and that has a greater market share (i.e., a lower level of market competition) in their locality. Rural hospitals could actively increase their competitiveness and market share by increasing the number of health care services provided and seeking to network with other hospitals.

  3. Method for determining the elevation of a point on a work site represented in a triangular irregular network

    NASA Technical Reports Server (NTRS)

    Koehrsen, Craig L. (Inventor)

    2000-01-01

    A site database structure for storing elevation data for access by an application program being executed on a control system on a work machine. The data is stored in a Triangular Irregular Network (TIN). The elevation of a point on the work site based on the three points forming the triangle containing the point.

  4. The control network of Iapetus

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Katayama, F. Y.

    1984-01-01

    A control network of the Saturnian satellite Iapetus has been established photogrammetrically from pictures taken by the two Voyager spacecraft. Coordinates of 62 control points have been computed and listed; pixel measurements of these points were made on 14 Voyager 1 and 66 Voyager 2 pictures. Some of these points are identified on the preliminary U.S. Geological Survey map of Iapetus and many are identified by name. The Voyager 1 and Voyager 2 pictures covered limited regions of the satellite's surface and contained no overlapping areas. The longitude system on Iapetus is defined by the crater Almeric; the 276 deg meridian passes through the center of this crater. The obliquity of Iapetus has been measured as 0.4 deg + or - 1.6 deg. The mean radius of Iapetus has been determined at 718 + or - 8 km.

  5. An analysis of methods for gravity determination and their utilization for the calculation of geopotential numbers in the Slovak national levelling network

    NASA Astrophysics Data System (ADS)

    Majkráková, Miroslava; Papčo, Juraj; Zahorec, Pavol; Droščák, Branislav; Mikuška, Ján; Marušiak, Ivan

    2016-09-01

    The vertical reference system in the Slovak Republic is realized by the National Levelling Network (NLN). The normal heights according to Molodensky have been introduced as reference heights in the NLN in 1957. Since then, the gravity correction, which is necessary to determine the reference heights in the NLN, has been obtained by an interpolation either from the simple or complete Bouguer anomalies. We refer to this method as the "original". Currently, the method based on geopotential numbers is the preferred way to unify the European levelling networks. The core of this article is an analysis of different ways to the gravity determination and their application for the calculation of geopotential numbers at the points of the NLN. The first method is based on the calculation of gravity at levelling points from the interpolated values of the complete Bouguer anomaly using the CBA2G_SK software. The second method is based on the global geopotential model EGM2008 improved by the Residual Terrain Model (RTM) approach. The calculated gravity is used to determine the normal heights according to Molodensky along parts of the levelling lines around the EVRF2007 datum point EH-V. Pitelová (UELN-1905325) and the levelling line of the 2nd order NLN to Kráľova hoľa Mountain (the highest point measured by levelling). The results from our analysis illustrate that the method based on the interpolated value of gravity is a better method for gravity determination when we do not know the measured gravity. It was shown that this method is suitable for the determination of geopotential numbers and reference heights in the Slovak national levelling network at the points in which the gravity is not observed directly. We also demonstrated the necessity of using the precise RTM for the refinement of the results derived solely from the EGM2008.

  6. Experiments to Determine Whether Recursive Partitioning (CART) or an Artificial Neural Network Overcomes Theoretical Limitations of Cox Proportional Hazards Regression

    NASA Technical Reports Server (NTRS)

    Kattan, Michael W.; Hess, Kenneth R.; Kattan, Michael W.

    1998-01-01

    New computationally intensive tools for medical survival analyses include recursive partitioning (also called CART) and artificial neural networks. A challenge that remains is to better understand the behavior of these techniques in effort to know when they will be effective tools. Theoretically they may overcome limitations of the traditional multivariable survival technique, the Cox proportional hazards regression model. Experiments were designed to test whether the new tools would, in practice, overcome these limitations. Two datasets in which theory suggests CART and the neural network should outperform the Cox model were selected. The first was a published leukemia dataset manipulated to have a strong interaction that CART should detect. The second was a published cirrhosis dataset with pronounced nonlinear effects that a neural network should fit. Repeated sampling of 50 training and testing subsets was applied to each technique. The concordance index C was calculated as a measure of predictive accuracy by each technique on the testing dataset. In the interaction dataset, CART outperformed Cox (P less than 0.05) with a C improvement of 0.1 (95% Cl, 0.08 to 0.12). In the nonlinear dataset, the neural network outperformed the Cox model (P less than 0.05), but by a very slight amount (0.015). As predicted by theory, CART and the neural network were able to overcome limitations of the Cox model. Experiments like these are important to increase our understanding of when one of these new techniques will outperform the standard Cox model. Further research is necessary to predict which technique will do best a priori and to assess the magnitude of superiority.

  7. Why do medical tourists travel to where they do? The role of networks in determining medical travel.

    PubMed

    Hanefeld, J; Lunt, N; Smith, R; Horsfall, D

    2015-01-01

    Evidence on medical tourism, including patient motivation, is increasing. Existing studies have focused on identifying push and pull factors across different types of treatment, for example cosmetic or bariatric surgery, or on groups, such as diaspora patients returning 'home' for treatment. Less attention has been on why individuals travel to specific locations or providers and on how this decision is made. The paper focused on the role of networks, defined as linkages - formal and informal - between individual providers, patients and facilitators to explain why and where patients travel. Findings are based on a recently completed, two year research project, which examined the effects of medical tourism on the UK NHS. Research included in-depth interviews with 77 returning medical tourists and over sixty managers, medical travel facilitators, clinicians and providers of medical tourism in recipient countries to understand the medical tourism industry. Interviews were conducted between 2011 and 2012, recorded and transcribed, or documented through note taking. Authors undertook a thematic analysis of interviews to identify treatment pathways by patients, and professional linkages between clinicians and facilitators to understand choice of treatment destination. The results highlight that across a large sample of patients travelling for a variety of conditions from dental treatment, cosmetic and bariatric surgery, through to specialist care the role of networks is critical to understand choice of treatment, provider and destination. While distance, costs, expertise and availability of treatment all were factors influencing patients' decision to travel, choice of destination and provider was largely the result of informal networks, including web fora, personal recommendations and support groups. Where patients were referred by UK clinicians or facilitators these followed informal networks. In conclusion, investigating medical travel through focus on networks of

  8. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    PubMed

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  9. Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial-temporal resource overlap with the Uruguayan fisheries

    NASA Astrophysics Data System (ADS)

    Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.

    2013-04-01

    Resource competition between fisheries and marine mammal continue to raise concern worldwide. Understanding this complex conflict requires data on spatial and dietary overlap of marine mammal and fisheries. In Uruguay the South American sea lions population has been dramatically declining over the past decade. The reasons for this population decline are unknown but may include the following: (1) direct harvesting; (2) reduced prey availability and distribution as a consequence of environmental change; or (3) biological interaction with fisheries. This study aims to determine resource overlap and competition between South American sea lions (SASL, Otaria flavescens, n=10) and the artisanal fisheries (AF), and the coastal bottom trawl fisheries (CBTF). We integrated data on sea lions diet (scat analysis), spatial and annual consumption estimates; and foraging behavior-satellite-tracking data from lactating SASL with data on fishing effort areas and fisheries landings. We found that lactating SASL are benthic divers and forage in shallow water within the continental shelf. SASL's foraging areas overlapped with CBTF and AF fisheries operational areas. Dietary analysis indicated a high degree of overlap between the diet of SASL and the AF and CBTF fisheries catch. The results of our work show differing degrees of spatial resource overlap with AF and CBTF, highlighting that there are differences in potential impact from each fishery; and that different management/conservation approaches may need to be taken to solve the fisheries-SASL conflict.

  10. Curriculum-based measurement of oral reading: A preliminary investigation of confidence interval overlap to detect reliable growth.

    PubMed

    Van Norman, Ethan R

    2016-09-01

    Curriculum-based measurement of oral reading (CBM-R) progress monitoring data is used to measure student response to instruction. Federal legislation permits educators to use CBM-R progress monitoring data as a basis for determining the presence of specific learning disabilities. However, decision making frameworks originally developed for CBM-R progress monitoring data were not intended for such high stakes assessments. Numerous documented issues with trend line estimation undermine the validity of using slope estimates to infer progress. One proposed recommendation is to use confidence interval overlap as a means of judging reliable growth. This project explored the degree to which confidence interval overlap was related to true growth magnitude using simulation methodology. True and observed CBM-R scores were generated across 7 durations of data collection (range 6-18 weeks), 3 levels of dataset quality or residual variance (5, 10, and 15 words read correct per minute) and 2 types of data collection schedules. Descriptive and inferential analyses were conducted to explore interactions between overlap status, progress monitoring scenarios, and true growth magnitude. A small but statistically significant interaction was observed between overlap status, duration, and dataset quality, b = -0.004, t(20992) =-7.96, p < .001. In general, confidence interval overlap does not appear to meaningfully account for variance in true growth across many progress monitoring conditions. Implications for research and practice are discussed. Limitations and directions for future research are addressed. (PsycINFO Database Record

  11. DISENTANGLING OVERLAPPING ASTRONOMICAL SOURCES USING SPATIAL AND SPECTRAL INFORMATION

    SciTech Connect

    Jones, David E.; Kashyap, Vinay L.; Van Dyk, David A.

    2015-08-01

    We present a powerful new algorithm that combines both spatial information (event locations and the point-spread function) and spectral information (photon energies) to separate photons from overlapping sources. We use Bayesian statistical methods to simultaneously infer the number of overlapping sources, to probabilistically separate the photons among the sources, and to fit the parameters describing the individual sources. Using the Bayesian joint posterior distribution, we are able to coherently quantify the uncertainties associated with all these parameters. The advantages of combining spatial and spectral information are demonstrated through a simulation study. The utility of the approach is then illustrated by analysis of observations of FK Aqr and FL Aqr with the XMM-Newton Observatory and the central region of the Orion Nebula Cluster with the Chandra X-ray Observatory.

  12. Diffusion amid random overlapping obstacles: Similarities, invariants, approximations

    PubMed Central

    Novak, Igor L.; Gao, Fei; Kraikivski, Pavel; Slepchenko, Boris M.

    2011-01-01

    Efficient and accurate numerical techniques are used to examine similarities of effective diffusion in a void between random overlapping obstacles: essential invariance of effective diffusion coefficients (Deff) with respect to obstacle shapes and applicability of a two-parameter power law over nearly entire range of excluded volume fractions (ϕ), except for a small vicinity of a percolation threshold. It is shown that while neither of the properties is exact, deviations from them are remarkably small. This allows for quick estimation of void percolation thresholds and approximate reconstruction of Deff (ϕ) for obstacles of any given shape. In 3D, the similarities of effective diffusion yield a simple multiplication “rule” that provides a fast means of estimating Deff for a mixture of overlapping obstacles of different shapes with comparable sizes. PMID:21513372

  13. Severe Cutaneous Drug Reactions: Do Overlapping Forms Exist?

    PubMed

    Horcajada-Reales, C; Pulido-Pérez, A; Suárez-Fernández, R

    2016-01-01

    Acute generalized exanthematous pustulosis, Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms are all severe hypersensitivity reactions to medications. While each of these reactions is a well-established entity with specific diagnostic criteria, clinicians see cases that fulfill criteria for more than one form, prompting discussion on the possibility of combined forms. Such overlapping clinical pictures meeting the criteria for 2 conditions have thus become a topic of debate in dermatology in recent years. We describe 2 patients with cutaneous drug reactions having the characteristics of both acute generalized exanthematous pustulosis and Stevens-Johnson syndrome -toxic epidermal necrolysis. We also review previously published cases and current thinking on such overlapping conditions.

  14. Clinical Overlap of Multiple Sclerosis and Autoimmune Hepatitis: Three Cases.

    PubMed

    Sayin, Refah; Gokgul, Alper; Ebinc, Senar; Dulger, Ahmet Cumhur; Tombul, Temel

    2016-06-01

    Multiple sclerosis (MS) is an autoimmune, inflammatory disease characterized by demyelination and axonal degeneration in the central nervous system. MS is the second major cause of disability following trauma, and is mostly seen between the ages of 20 - 40 years and in women. Autoimmune hepatitis (AH) is a chronic disease characterized by hypergammaglobulinemia, high levels of transaminases, presence of antibodies, and histologically by the necroinflammatory process with interface hepatitis. In AH, the etiological agent of the disease and the cause of liver injury remain unknown. MS may be associated with AH, autoimmune thyroiditis, and type 1 diabetes mellitus (DM). In literature, 8 cases with overlap of MS and AH have been reported. In this report, we present 3 cases which were detected with overlap of MS and AH, and are very rare condition in literature.

  15. Shrinking lung syndrome in systemic lupus erythematosus-scleroderma overlap.

    PubMed

    Guleria, Vivek S; Singh, Pradeep K; Saxena, Puneet; Subramanian, Shankar

    2014-10-01

    Shrinking lung syndrome (SLS) is a infrequently reported manifestation of systemic lupus erythematosus (SLE). Reported prevalence of SLS is about 0.5% in SLE patients. Pathogenesis is not fully understood and different therapeutic modalities have been employed with variable results, as only 77 cases of SLS have been documented in literature. SLS in SLE-Scleroderma overlap has not been reported yet. We report a patient of SLE - scleroderma overlap presenting with dyspnea, intermittent orthopnea and pleuritic chest pain. Evaluation revealed elevated hemidiaphragms and severe restrictive defect. She was eventually diagnosed as a case of SLS. This case report is a reminder to the medical fraternity that SLS although a rare complication must be thought of in the special subset of patients of SLE having respiratory symptoms.

  16. Discriminating crop and other canopies by overlapping binary image layers

    NASA Astrophysics Data System (ADS)

    Doi, Ryoichi

    2013-02-01

    For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.

  17. Micropattern-Guided Assembly of Overlapping Pairs of Dynamic Microtubules

    PubMed Central

    Fourniol, Franck J.; Li, Tai-De; Bieling, Peter; Mullins, R. Dyche; Fletcher, Daniel A.; Surrey, Thomas

    2014-01-01

    Interactions between antiparallel microtubules are essential for the organization of spindles in dividing cells. The ability to form immobilized antiparallel microtubule pairs in vitro, combined with the ability to image them via TIRF microscopy, permits detailed biochemical characterization of microtubule cross-linking proteins and their effects on microtubule dynamics. Here, we describe methods for chemical micropatterning of microtubule seeds on glass surfaces in configurations that specifically promote the formation of antiparallel microtubule overlaps in vitro. We demonstrate that this assay is especially well suited for reconstitution of minimal midzone overlaps stabilized by the antiparallel microtubule cross-linking protein PRC1 and its binding partners. The micropatterning method is suitable for use with a broad range of proteins, and the assay is generally applicable to any microtubule cross-linking protein. PMID:24630116

  18. Overture: An Object-Oriented Framework for Overlapping Grid Applications

    SciTech Connect

    Henshaw, W.D.

    2002-04-04

    The Overture framework is an object-oriented environment for solving partial differential equations on over-lapping grids. We describe some of the tools in Overture that can be used to generate grids and solve partial differential equations (PDEs). Overture contains a collection of C++ classes that can be used to write PDE solvers either at a high level or at a lower level for efficiency. There are also a number of tools provided with Overture that can be used with no programming effort. These tools include capabilities to: repair computer-aided-design (CAD) geometries and build global surface triangulations; generate surface and volume grids with hyperbolic grid generation; generate composite overlapping grids; generate hybrid (unstructured) grids; and solve particular PDEs such as the incompressible and compressible Navier-Stokes equations.

  19. Functional overlap of the Arabidopsis leaf and root microbiota.

    PubMed

    Bai, Yang; Müller, Daniel B; Srinivas, Girish; Garrido-Oter, Ruben; Potthoff, Eva; Rott, Matthias; Dombrowski, Nina; Münch, Philipp C; Spaepen, Stijn; Remus-Emsermann, Mitja; Hüttel, Bruno; McHardy, Alice C; Vorholt, Julia A; Schulze-Lefert, Paul

    2015-12-17

    Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.

  20. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  1. [Networks in cognitive research].

    PubMed

    Pléh, Csaba

    2012-01-01

    This review paper starts from discussing two models of network research: one starting from general networks, the other starting from the Ego. Ego based researches are characterized starting form the model of Dunbar as presenting networks of different size and intimacy, both in real and virtual networks. Researches into the personality determinants of networks mainly shows the effects of extroversion. The future of network research indicates a trend towards relating personal, conceptual, and neural networks.

  2. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  3. Managing overlapping federal FMLA and state leave regulations.

    PubMed

    Grebowski, Lucinda S

    2002-03-01

    The overlap between the Family and Medical Leave Act and state leave laws can create complications. Employers, particularly those with multistate operations, may wish to consider an outsourced absence management system, which can remove the burden of day-to-day administration and the need to stay abreast of changing state regulations. However, employers cannot outsource the responsibility to set broad policy toward absence management.

  4. Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.

    PubMed

    Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M

    2014-11-01

    In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural

  5. Short superstrings and the structure of overlapping strings.

    PubMed

    Armen, C; Stein, C

    1995-01-01

    Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.

  6. Bilateral coxitis in scleroderma-polymyositis overlap syndrome

    PubMed Central

    Berrada, Khadija; Abourazzak, Fatima Ezzahra; Houssaini, Ghita Sqalli; Kadi, Nadira; Tahiri, Latifa; Amrani, Kawthar; Khammar, Zineb; Lahlou, Meriam; Berrady, Rhizlane; Rabhi, Samira; Tizniti, Siham; Bono, Wafaa; Harzy, Taoufik

    2014-01-01

    Joint manifestations in scleroderma (Scl) and polymyositis (PM) are dominated by inflammatory arthralgia. Arthritis is less common and preferentially affects the hands, wrists, knees, and ankles. Involvement of the hip has been rarely reported in the literature. We report a case of coxitis diagnosed in a patient suffering from scleroderma-polymyositis overlap syndrome successfully treated by ultrasound-guided infiltration of triamcinolone hexacetonide PMID:27708891

  7. Artificial neural network assisted kinetic spectrophotometric technique for simultaneous determination of paracetamol and p-aminophenol in pharmaceutical samples using localized surface plasmon resonance band of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Khodaveisi, Javad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Rohani Moghadam, Masoud; Hormozi-Nezhad, Mohammad Reza

    2015-03-01

    Spectrophotometric analysis method based on the combination of the principal component analysis (PCA) with the feed-forward neural network (FFNN) and the radial basis function network (RBFN) was proposed for the simultaneous determination of paracetamol (PAC) and p-aminophenol (PAP). This technique relies on the difference between the kinetic rates of the reactions between analytes and silver nitrate as the oxidizing agent in the presence of polyvinylpyrrolidone (PVP) which is the stabilizer. The reactions are monitored at the analytical wavelength of 420 nm of the localized surface plasmon resonance (LSPR) band of the formed silver nanoparticles (Ag-NPs). Under the optimized conditions, the linear calibration graphs were obtained in the concentration range of 0.122-2.425 μg mL-1 for PAC and 0.021-5.245 μg mL-1 for PAP. The limit of detection in terms of standard approach (LODSA) and upper limit approach (LODULA) were calculated to be 0.027 and 0.032 μg mL-1 for PAC and 0.006 and 0.009 μg mL-1 for PAP. The important parameters were optimized for the artificial neural network (ANN) models. Statistical parameters indicated that the ability of the both methods is comparable. The proposed method was successfully applied to the simultaneous determination of PAC and PAP in pharmaceutical preparations.

  8. Overlapping and nonoverlapping cortical projections to cortex of the superior temporal sulcus in the rhesus monkey: double anterograde tracer studies.