Sample records for determine parameter values

  1. Utility usage forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosking, Jonathan R. M.; Natarajan, Ramesh

    The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.

  2. System and method for motor parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less

  3. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  4. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  5. Determining "small parameters" for quasi-steady state

    NASA Astrophysics Data System (ADS)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2015-08-01

    For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.

  6. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  7. Normal Values for Heart Electrophysiology Parameters of Healthy Swine Determined on Electrophysiology Study.

    PubMed

    Noszczyk-Nowak, Agnieszka; Cepiel, Alicja; Janiszewski, Adrian; Pasławski, Robert; Gajek, Jacek; Pasławska, Urszula; Nicpoń, Józef

    2016-01-01

    Swine are a well-recognized animal model for human cardiovascular diseases. Despite the widespread use of porcine model in experimental electrophysiology, still no reference values for intracardiac electrical activity and conduction parameters determined during an invasive electrophysiology study (EPS) have been developed in this species thus far. The aim of the study was to develop a set of normal values for intracardiac electrical activity and conduction parameters determined during an invasive EPS of swine. The study included 36 healthy domestic swine (24-40 kg body weight). EPS was performed under a general anesthesia with midazolam, propofol and isoflurane. The reference values for intracardiac electrical activity and conduction parameters were calculated as arithmetic means ± 2 standard deviations. The reference values were determined for AH, HV and PA intervals, interatrial conduction time at its own and imposed rhythm, sinus node recovery time (SNRT), corrected sinus node recovery time (CSNRT), anterograde and retrograde Wenckebach points, atrial, atrioventricular node and ventricular refractory periods. No significant correlations were found between body weight and heart rate of the examined pigs and their electrophysiological parameters. The hereby presented reference values can be helpful in comparing the results of various studies, as well as in more accurately estimating the values of electrophysiological parameters that can be expected in a given experiment.

  8. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initialmore » value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.« less

  9. Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.

    1994-01-01

    This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.

  10. Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects.

    PubMed

    Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet

    2010-10-24

    Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.

  11. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    NASA Astrophysics Data System (ADS)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  12. Acceptable Tolerances for Matching Icing Similarity Parameters in Scaling Applications

    NASA Technical Reports Server (NTRS)

    Anderson, David N.

    2003-01-01

    This paper reviews past work and presents new data to evaluate how changes in similarity parameters affect ice shapes and how closely scale values of the parameters should match reference values. Experimental ice shapes presented are from tests by various researchers in the NASA Glenn Icing Research Tunnel. The parameters reviewed are the modified inertia parameter (which determines the stagnation collection efficiency), accumulation parameter, freezing fraction, Reynolds number, and Weber number. It was demonstrated that a good match of scale and reference ice shapes could sometimes be achieved even when values of the modified inertia parameter did not match precisely. Consequently, there can be some flexibility in setting scale droplet size, which is the test condition determined from the modified inertia parameter. A recommended guideline is that the modified inertia parameter be chosen so that the scale stagnation collection efficiency is within 10 percent of the reference value. The scale accumulation parameter and freezing fraction should also be within 10 percent of their reference values. The Weber number based on droplet size and water properties appears to be a more important scaling parameter than one based on model size and air properties. Scale values of both the Reynolds and Weber numbers need to be in the range of 60 to 160 percent of the corresponding reference values. The effects of variations in other similarity parameters have yet to be established.

  13. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  14. Method and system for monitoring and displaying engine performance parameters

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S. (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.

  15. Theoretical and experimental determination of K - and L -shell x-ray relaxation parameters in Ni

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Sampaio, J. M.; Parente, F.; Indelicato, P.; Hönicke, P.; Müller, M.; Beckhoff, B.; Marques, J. P.; Santos, J. P.

    2018-04-01

    Fluorescence yields (FY) for the Ni K and L shells were determined by a theoretical and an experimental group within the framework of the International Initiative on X-ray Fundamental Parameters (FPs) collaboration. Coster-Kronig (CK) parameters were also measured for the L shell of Ni. Theoretical calculations of the same parameters were performed using the Dirac-Fock method, including relativistic and QED corrections. The experimental values for the FY and CK were determined at the PTB laboratory in the synchrotron radiation facility BESSY II, Berlin, Germany, and are compared to the corresponding calculated values.

  16. Theoretical Analysis of Spacing Parameters of Anisotropic 3D Surface Roughness

    NASA Astrophysics Data System (ADS)

    Rudzitis, J.; Bulaha, N.; Lungevics, J.; Linins, O.; Berzins, K.

    2017-04-01

    The authors of the research have analysed spacing parameters of anisotropic 3D surface roughness crosswise to machining (friction) traces RSm1 and lengthwise to machining (friction) traces RSm2. The main issue arises from the RSm2 values being limited by values of sampling length l in the measuring devices; however, on many occasions RSm2 values can exceed l values. Therefore, the mean spacing values of profile irregularities in the longitudinal direction in many cases are not reliable and they should be determined by another method. Theoretically, it is proved that anisotropic surface roughness anisotropy coefficient c=RSm1/RSm2 equals texture aspect ratio Str, which is determined by surface texture standard EN ISO 25178-2. This allows using parameter Str to determine mean spacing of profile irregularities and estimate roughness anisotropy.

  17. Automatic detection of malaria parasite in blood images using two parameters.

    PubMed

    Kim, Jong-Dae; Nam, Kyeong-Min; Park, Chan-Young; Kim, Yu-Seop; Song, Hye-Jeong

    2015-01-01

    Malaria must be diagnosed quickly and accurately at the initial infection stage and treated early to cure it properly. The malaria diagnosis method using a microscope requires much labor and time of a skilled expert and the diagnosis results vary greatly between individual diagnosticians. Therefore, to be able to measure the malaria parasite infection quickly and accurately, studies have been conducted for automated classification techniques using various parameters. In this study, by measuring classification technique performance according to changes of two parameters, the parameter values were determined that best distinguish normal from plasmodium-infected red blood cells. To reduce the stain deviation of the acquired images, a principal component analysis (PCA) grayscale conversion method was used, and as parameters, we used a malaria infected area and a threshold value used in binarization. The parameter values with the best classification performance were determined by selecting the value (72) corresponding to the lowest error rate on the basis of cell threshold value 128 for the malaria threshold value for detecting plasmodium-infected red blood cells.

  18. Application of an automatic approach to calibrate the NEMURO nutrient-phytoplankton-zooplankton food web model in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi

    2010-10-01

    The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.

  19. Fuel supply control method for internal combustion engines, with adaptability to various engines and controls therefor having different operating characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otobe, Y.; Chikamatsu, M.

    1988-03-08

    A method of controlling the fuel supply to an internal combustion engine is described, wherein a quantity of fuel for supply to the engine is determined by correcting a basic value of the quantity of fuel determined as a function of at least one operating parameter of the engine by correction values dependent upon operating conditions of the engine and the determined quantity of fuel is supplied to the engine. The method comprises the steps of: (1) detecting a value of at least one predetermined operating parameter of the engine; (2) manually adjusting a single voltage creating means to setmore » an output voltage therefrom to such a desired value as to compensate for deviation of the air/fuel ratio of a mixture supplied to the engine due to variations in operating characteristics of engines between different production lots or aging changes; (3) determining a value of the predetermined one correction value corresponding to the set desired value of output voltage of the single voltage creating means, and then modifying the thus determined value in response to the detected value of the predetermined at least one operating parameter of the engine during engine operation; and (4) correcting the basic value of the quantity of fuel by the value of the predetermined one correction value having the thus modified value, and the other correction values.« less

  20. Method and system for assigning a confidence metric for automated determination of optic disc location

    DOEpatents

    Karnowski, Thomas P [Knoxville, TN; Tobin, Jr., Kenneth W.; Muthusamy Govindasamy, Vijaya Priya [Knoxville, TN; Chaum, Edward [Memphis, TN

    2012-07-10

    A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.

  1. Inverse gas chromatographic determination of solubility parameters of excipients.

    PubMed

    Adamska, Katarzyna; Voelkel, Adam

    2005-11-04

    The principle aim of this work was an application of inverse gas chromatography (IGC) for the estimation of solubility parameter for pharmaceutical excipients. The retention data of number of test solutes were used to calculate Flory-Huggins interaction parameter (chi1,2infinity) and than solubility parameter (delta2), corrected solubility parameter (deltaT) and its components (deltad, deltap, deltah) by using different procedures. The influence of different values of test solutes solubility parameter (delta1) over calculated values was estimated. The solubility parameter values obtained for all excipients from the slope, from Guillet and co-workers' procedure are higher than that obtained from components according Voelkel and Janas procedure. It was found that solubility parameter's value of the test solutes influences, but not significantly, values of solubility parameter of excipients.

  2. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  3. Summary of longitudinal stability and control parameters as determined from Space Shuttle Challenger flight test data

    NASA Technical Reports Server (NTRS)

    Suit, William T.

    1989-01-01

    Estimates of longitudinal stability and control parameters for the space shuttle were determined by applying a maximum likelihood parameter estimation technique to Challenger flight test data. The parameters for pitching moment coefficient, C(m sub alpha), (at different angles of attack), pitching moment coefficient, C(m sub delta e), (at different elevator deflections) and the normal force coefficient, C(z sub alpha), (at different angles of attack) describe 90 percent of the response to longitudinal inputs during Space Shuttle Challenger flights with C(m sub delta e) being the dominant parameter. The values of C(z sub alpha) were found to be input dependent for these tests. However, when C(z sub alpha) was set at preflight predictions, the values determined for C(m sub delta e) changed less than 10 percent from the values obtained when C(z sub alpha) was estimated as well. The preflight predictions for C(z sub alpha) and C(m sub alpha) are acceptable values, while the values of C(z sub delta e) should be about 30 percent less negative than the preflight predictions near Mach 1, and 10 percent less negative, otherwise.

  4. Maximum entropy approach to statistical inference for an ocean acoustic waveguide.

    PubMed

    Knobles, D P; Sagers, J D; Koch, R A

    2012-02-01

    A conditional probability distribution suitable for estimating the statistical properties of ocean seabed parameter values inferred from acoustic measurements is derived from a maximum entropy principle. The specification of the expectation value for an error function constrains the maximization of an entropy functional. This constraint determines the sensitivity factor (β) to the error function of the resulting probability distribution, which is a canonical form that provides a conservative estimate of the uncertainty of the parameter values. From the conditional distribution, marginal distributions for individual parameters can be determined from integration over the other parameters. The approach is an alternative to obtaining the posterior probability distribution without an intermediary determination of the likelihood function followed by an application of Bayes' rule. In this paper the expectation value that specifies the constraint is determined from the values of the error function for the model solutions obtained from a sparse number of data samples. The method is applied to ocean acoustic measurements taken on the New Jersey continental shelf. The marginal probability distribution for the values of the sound speed ratio at the surface of the seabed and the source levels of a towed source are examined for different geoacoustic model representations. © 2012 Acoustical Society of America

  5. Determination techniques of Archie’s parameters: a, m and n in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Mohamad, A. M.; Hamada, G. M.

    2017-12-01

    The determination of water saturation in a heterogeneous reservoir is becoming more challenging, as Archie’s equation is only suitable for clean homogeneous formation and Archie’s parameters are highly dependent on the properties of the rock. This study focuses on the measurement of Archie’s parameters in carbonate and sandstone core samples around Malaysian heterogeneous carbonate and sandstone reservoirs. Three techniques for the determination of Archie’s parameters a, m and n will be implemented: the conventional technique, core Archie parameter estimation (CAPE) and the three-dimensional regression technique (3D). By using the results obtained by the three different techniques, water saturation graphs were produced to observe the symbolic difference of Archie’s parameter and its relevant impact on water saturation values. The difference in water saturation values can be primarily attributed to showing the uncertainty level of Archie’s parameters, mainly in carbonate and sandstone rock samples. It is obvious that the accuracy of Archie’s parameters has a profound impact on the calculated water saturation values in carbonate sandstone reservoirs due to regions of high stress reducing electrical conduction resulting from the raised electrical heterogeneity of the heterogeneous carbonate core samples. Due to the unrealistic assumptions involved in the conventional method, it is better to use either the CAPE or 3D method to accurately determine Archie’s parameters in heterogeneous as well as homogeneous reservoirs.

  6. 7 CFR 42.132 - Determining cumulative sum values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the previous subgroup. (2) Subtract the subgroup tolerance (“T”). (3) The CuSum value is reset in the... 7 Agriculture 2 2010-01-01 2010-01-01 false Determining cumulative sum values. 42.132 Section 42... Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's...

  7. Optical analysis of suspended particles in the cerebrospinal fluid obtained by puncture from patients diagnosed with the disorders of cerebrospinal fluid (CSF) circulation

    NASA Astrophysics Data System (ADS)

    Staroń, Waldemar; Herbowski, Leszek; Gurgul, Henryk

    2007-04-01

    The goal of the work was to determine the values of cumulative parameters of the cerebrospinal fluid. Values of the parameters characterise statistical cerebrospinal fluid obtained by puncture from the patients diagnosed due to suspicion of normotensive hydrocephalus. The cerebrospinal fluid taken by puncture for the routine examinations carried out at the patients suspected of normotensive hydrocephalus was analysed. In the paper there are presented results of examinations of several dozens of puncture samples of the cerebrospinal fluid coming from various patients. Each sample was examined under the microscope and photographed in 20 randomly chosen places. On the basis of analysis of the pictures showing the area of 100 x 100μm, the selected cumulative parameters such as count, numerical density, field area and field perimeter were determined for each sample. Then the average value of the parameters was determined as well.

  8. Calibration of infiltration parameters on hydrological tank model using runoff coefficient of rational method

    NASA Astrophysics Data System (ADS)

    Suryoputro, Nugroho; Suhardjono, Soetopo, Widandi; Suhartanto, Ery

    2017-09-01

    In calibrating hydrological models, there are generally two stages of activity: 1) determining realistic model initial parameters in representing natural component physical processes, 2) entering initial parameter values which are then processed by trial error or automatically to obtain optimal values. To determine a realistic initial value, it takes experience and user knowledge of the model. This is a problem for beginner model users. This paper will present another approach to estimate the infiltration parameters in the tank model. The parameters will be approximated by the runoff coefficient of rational method. The value approach of infiltration parameter is simply described as the result of the difference in the percentage of total rainfall minus the percentage of runoff. It is expected that the results of this research will accelerate the calibration process of tank model parameters. The research was conducted on the sub-watershed Kali Bango in Malang Regency with an area of 239,71 km2. Infiltration measurements were carried out in January 2017 to March 2017. Analysis of soil samples at Soil Physics Laboratory, Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya. Rainfall and discharge data were obtained from UPT PSAWS Bango Gedangan in Malang. Temperature, evaporation, relative humidity, wind speed data was obtained from BMKG station of Karang Ploso, Malang. The results showed that the infiltration coefficient at the top tank outlet can be determined its initial value by using the approach of the coefficient of runoff rational method with good result.

  9. Oxidation of edible animal fats. Comparison of the performance of different quantification methods and of a proposed new semi-objective colour scale-based method.

    PubMed

    Méndez-Cid, Francisco J; Lorenzo, José M; Martínez, Sidonia; Carballo, Javier

    2017-02-15

    The agreement among the results determined for the main parameters used in the evaluation of the fat auto-oxidation was investigated in animal fats (butter fat, subcutaneous pig back-fat and subcutaneous ham fat). Also, graduated colour scales representing the colour change during storage/ripening were developed for the three types of fat, and the values read in these scales were correlated with the values observed for the different parameters indicating fat oxidation. In general good correlation among the values of the different parameters was observed (e.g. TBA value correlated with the peroxide value: r=0.466 for butter and r=0.898 for back-fat). A reasonable correlation was observed between the values read in the developed colour scales and the values for the other parameters determined (e.g. values of r=0.320 and r=0.793 with peroxide value for butter and back-fat, respectively, and of r=0.767 and r=0.498 with TBA value for back-fat and ham fat, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. PLS-NIR determination of five parameters in different types of Chinese rice wine

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Ying, Yibin; Fu, Xiaping; Lu, Huishan

    2005-11-01

    To evaluate the applicability of near infrared spectroscopy for determination of the five enological parameters (alcoholic degree, pH value, total acid and amino acid nitrogen, °Brix) of Chinese rice wine, transmission spectra were collected in the spectral range from 12500 to 3800 cm-1 in a 1 mm path length rectangular quartz cuvette with air as reference at room temperature. Five calibration equations for the five parameters were established between the reference data and spectra by partial least squares (PLS) regression, separately. The best calibration results were achieved for the determination of alcoholic degree and °Brix. The RPD (ration of the standard deviation of the samples to the SECV) values of the calibration for both alcoholic degree and °Brix were higher than 3 (4.30 and 7.94, respectively), which demonstrated the robustness and power of the calibration models. The determination coefficients (R2) for alcoholic degree and °Brix were 0.987 and 0.991, respectively. The performance of pH, total acid and amino acid nitrogen was not as good as that of alcoholic degree and °Brix. The RPD values for the three parameters were 1.48, 1.85 and 1.82, respectively, and R2 values were 0.964, 0.970 and 0.971, respectively. In validation step, R2 value of the five parameters are all higher than 0.7, especially for alcoholic degree and °Brix (0.968 and 0.956, respectively). The results demonstrated that NIR spectroscopy could be used to predict the concentration of the five enological parameters in Chinese rice wine.

  11. 7 CFR 42.132 - Determining cumulative sum values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Determining cumulative sum values. 42.132 Section 42... REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS On-Line Sampling and Inspection Procedures § 42.132 Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's...

  12. The values of the parameters of some multilayer distributed RC null networks

    NASA Technical Reports Server (NTRS)

    Huelsman, L. P.; Raghunath, S.

    1974-01-01

    In this correspondence, the values of the parameters of some multilayer distributed RC notch networks are determined, and the usually accepted values are shown to be in error. The magnitude of the error is illustrated by graphs of the frequency response of the networks.

  13. Applications of Monte Carlo method to nonlinear regression of rheological data

    NASA Astrophysics Data System (ADS)

    Kim, Sangmo; Lee, Junghaeng; Kim, Sihyun; Cho, Kwang Soo

    2018-02-01

    In rheological study, it is often to determine the parameters of rheological models from experimental data. Since both rheological data and values of the parameters vary in logarithmic scale and the number of the parameters is quite large, conventional method of nonlinear regression such as Levenberg-Marquardt (LM) method is usually ineffective. The gradient-based method such as LM is apt to be caught in local minima which give unphysical values of the parameters whenever the initial guess of the parameters is far from the global optimum. Although this problem could be solved by simulated annealing (SA), the Monte Carlo (MC) method needs adjustable parameter which could be determined in ad hoc manner. We suggest a simplified version of SA, a kind of MC methods which results in effective values of the parameters of most complicated rheological models such as the Carreau-Yasuda model of steady shear viscosity, discrete relaxation spectrum and zero-shear viscosity as a function of concentration and molecular weight.

  14. 15N CSA tensors and 15N-1H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR

    NASA Astrophysics Data System (ADS)

    Vugmeyster, Liliya; Ostrovsky, Dmitry; Fu, Riqiang

    2015-10-01

    In this work, we assess the usefulness of static 15N NMR techniques for the determination of the 15N chemical shift anisotropy (CSA) tensor parameters and 15N-1H dipolar splittings in powder protein samples. By using five single labeled samples of the villin headpiece subdomain protein in a hydrated lyophilized powder state, we determine the backbone 15N CSA tensors at two temperatures, 22 and -35 °C, in order to get a snapshot of the variability across the residues and as a function of temperature. All sites probed belonged to the hydrophobic core and most of them were part of α-helical regions. The values of the anisotropy (which include the effect of the dynamics) varied between 130 and 156 ppm at 22 °C, while the values of the asymmetry were in the 0.32-0.082 range. The Leu-75 and Leu-61 backbone sites exhibited high mobility based on the values of their temperature-dependent anisotropy parameters. Under the assumption that most differences stem from dynamics, we obtained the values of the motional order parameters for the 15N backbone sites. While a simple one-dimensional line shape experiment was used for the determination of the 15N CSA parameters, a more advanced approach based on the ;magic sandwich; SAMMY pulse sequence (Nevzorov and Opella, 2003) was employed for the determination of the 15N-1H dipolar patterns, which yielded estimates of the dipolar couplings. Accordingly, the motional order parameters for the dipolar interaction were obtained. It was found that the order parameters from the CSA and dipolar measurements are highly correlated, validating that the variability between the residues is governed by the differences in dynamics. The values of the parameters obtained in this work can serve as reference values for developing more advanced magic-angle spinning recoupling techniques for multiple labeled samples.

  15. The estimation of parameter compaction values for pavement subgrade stabilized with lime

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Simbolon, C. A.

    2018-02-01

    The type of soil material, field control, maintenance and availability of funds are several factors that must be considered in compaction of the pavement subgrade. In determining the compaction parameters in laboratory desperately requires considerable materials, time and funds, and reliable laboratory operators. If the result of soil classification values can be used to estimate the compaction parameters of a subgrade material, so it would save time, energy, materials and cost on the execution of this work. This is also a clarification (cross check) of the work that has been done by technicians in the laboratory. The study aims to estimate the compaction parameter values ie. maximum dry unit weight (γdmax) and optimum water content (Wopt) of the soil subgrade that stabilized with lime. The tests that conducted in the laboratory of soil mechanics were to determine the index properties (Fines and Liquid Limit/LL) and Standard Compaction Test. Soil samples that have Plasticity Index (PI) > 10% were made with additional 3% lime for 30 samples. By using the Goswami equation, the compaction parameter values can be estimated by equation γd max # = -0,1686 Log G + 1,8434 and Wopt # = 2,9178 log G + 17,086. From the validation calculation, there was a significant positive correlation between the compaction parameter values laboratory and the compaction parameter values estimated, with a 95% confidence interval as a strong relationship.

  16. Asymmetry of short-term control of spatio-temporal gait parameters during treadmill walking

    NASA Astrophysics Data System (ADS)

    Kozlowska, Klaudia; Latka, Miroslaw; West, Bruce J.

    2017-03-01

    Optimization of energy cost determines average values of spatio-temporal gait parameters such as step duration, step length or step speed. However, during walking, humans need to adapt these parameters at every step to respond to exogenous and/or endogenic perturbations. While some neurological mechanisms that trigger these responses are known, our understanding of the fundamental principles governing step-by-step adaptation remains elusive. We determined the gait parameters of 20 healthy subjects with right-foot preference during treadmill walking at speeds of 1.1, 1.4 and 1.7 m/s. We found that when the value of the gait parameter was conspicuously greater (smaller) than the mean value, it was either followed immediately by a smaller (greater) value of the contralateral leg (interleg control), or the deviation from the mean value decreased during the next movement of ipsilateral leg (intraleg control). The selection of step duration and the selection of step length during such transient control events were performed in unique ways. We quantified the symmetry of short-term control of gait parameters and observed the significant dominance of the right leg in short-term control of all three parameters at higher speeds (1.4 and 1.7 m/s).

  17. Stromgren photometry of A-stars - A test of physical parameter determination

    NASA Astrophysics Data System (ADS)

    Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.

    1990-08-01

    By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.

  18. Classification of materials using nuclear magnetic resonance dispersion and/or x-ray absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.; Matlashov, Andrei N.; Schultz, Larry J.

    Methods for determining the identity of a substance are provided. A classification parameter set is defined to allow identification of substances that previously could not be identified or to allow identification of substances with a higher degree of confidence. The classification parameter set may include at least one of relative nuclear susceptibility (RNS) or an x-ray linear attenuation coefficient (LAC). RNS represents the density of hydrogen nuclei present in a substance relative to the density of hydrogen nuclei present in water. The extended classification parameter set may include T.sub.1, T.sub.2, and/or T.sub.1.rho. as well as at least one additional classificationmore » parameter comprising one of RNS or LAC. Values obtained for additional classification parameters as well as values obtained for T.sub.1, T.sub.2, and T.sub.1.rho. can be compared to known classification parameter values to determine whether a particular substance is a known material.« less

  19. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, Raymond D.; Migliori, Albert; Visscher, William M.

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  20. Sphericity determination using resonant ultrasound spectroscopy

    DOEpatents

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  1. A Model Parameter Extraction Method for Dielectric Barrier Discharge Ozone Chamber using Differential Evolution

    NASA Astrophysics Data System (ADS)

    Amjad, M.; Salam, Z.; Ishaque, K.

    2014-04-01

    In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.

  2. Probability Distribution Estimated From the Minimum, Maximum, and Most Likely Values: Applied to Turbine Inlet Temperature Uncertainty

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.

    2004-01-01

    Modern engineering design practices are tending more toward the treatment of design parameters as random variables as opposed to fixed, or deterministic, values. The probabilistic design approach attempts to account for the uncertainty in design parameters by representing them as a distribution of values rather than as a single value. The motivations for this effort include preventing excessive overdesign as well as assessing and assuring reliability, both of which are important for aerospace applications. However, the determination of the probability distribution is a fundamental problem in reliability analysis. A random variable is often defined by the parameters of the theoretical distribution function that gives the best fit to experimental data. In many cases the distribution must be assumed from very limited information or data. Often the types of information that are available or reasonably estimated are the minimum, maximum, and most likely values of the design parameter. For these situations the beta distribution model is very convenient because the parameters that define the distribution can be easily determined from these three pieces of information. Widely used in the field of operations research, the beta model is very flexible and is also useful for estimating the mean and standard deviation of a random variable given only the aforementioned three values. However, an assumption is required to determine the four parameters of the beta distribution from only these three pieces of information (some of the more common distributions, like the normal, lognormal, gamma, and Weibull distributions, have two or three parameters). The conventional method assumes that the standard deviation is a certain fraction of the range. The beta parameters are then determined by solving a set of equations simultaneously. A new method developed in-house at the NASA Glenn Research Center assumes a value for one of the beta shape parameters based on an analogy with the normal distribution (ref.1). This new approach allows for a very simple and direct algebraic solution without restricting the standard deviation. The beta parameters obtained by the new method are comparable to the conventional method (and identical when the distribution is symmetrical). However, the proposed method generally produces a less peaked distribution with a slightly larger standard deviation (up to 7 percent) than the conventional method in cases where the distribution is asymmetric or skewed. The beta distribution model has now been implemented into the Fast Probability Integration (FPI) module used in the NESSUS computer code for probabilistic analyses of structures (ref. 2).

  3. Assessing endothelial function and providing calibrated UFMD data using a blood pressure cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan S.

    Methods and apparatus are provided for assessing endothelial function in a mammal. In certain embodiments the methods involve using a cuff to apply pressure to an artery in a subject to determine a plurality of baseline values for a parameter related to endothelial function as a function of applied pressure (P.sub.m); b) applying a stimulus to the subject; and applying external pressure P.sub.m to the artery to determine a plurality of stimulus-effected values for the parameter related to endothelial function as a function of applied pressure (P.sub.m); where the baseline values are determined from measurements made when said mammal ismore » not substantially effected by said stimulus and differences in said baseline values and said stimulus-effected values provide a measure of endothelial function in said mammal.« less

  4. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  5. Analysis of uncertainties in Monte Carlo simulated organ dose for chest CT

    NASA Astrophysics Data System (ADS)

    Muryn, John S.; Morgan, Ashraf G.; Segars, W. P.; Liptak, Chris L.; Dong, Frank F.; Primak, Andrew N.; Li, Xiang

    2015-03-01

    In Monte Carlo simulation of organ dose for a chest CT scan, many input parameters are required (e.g., half-value layer of the x-ray energy spectrum, effective beam width, and anatomical coverage of the scan). The input parameter values are provided by the manufacturer, measured experimentally, or determined based on typical clinical practices. The goal of this study was to assess the uncertainties in Monte Carlo simulated organ dose as a result of using input parameter values that deviate from the truth (clinical reality). Organ dose from a chest CT scan was simulated for a standard-size female phantom using a set of reference input parameter values (treated as the truth). To emulate the situation in which the input parameter values used by the researcher may deviate from the truth, additional simulations were performed in which errors were purposefully introduced into the input parameter values, the effects of which on organ dose per CTDIvol were analyzed. Our study showed that when errors in half value layer were within ± 0.5 mm Al, the errors in organ dose per CTDIvol were less than 6%. Errors in effective beam width of up to 3 mm had negligible effect (< 2.5%) on organ dose. In contrast, when the assumed anatomical center of the patient deviated from the true anatomical center by 5 cm, organ dose errors of up to 20% were introduced. Lastly, when the assumed extra scan length was longer by 4 cm than the true value, dose errors of up to 160% were found. The results answer the important question: to what level of accuracy each input parameter needs to be determined in order to obtain accurate organ dose results.

  6. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  7. Line Mixing in Water Vapor and Methane

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Brown, L. R.; Toth, R. A.; Devi, V. Malathy; Benner, Chris

    2006-01-01

    A multispectrum fitting algorithm has been used to identify line mixing and determine mixing parameters for infrared transitions of H2O and CH4 in the 5-9 micrometer region. Line mixing parameters at room temperature were determined for two pairs of transitions in the v2 fundamental band of H2O-16, for self-broadening and for broadening by H2, He, CO2, N2, O2 and air. Line mixing parameters have been determined from air-broadened CH4 spectra, recorded at temperatures between 210 K and 314 K, in selected R-branch manifolds of the v4 band. For both H2O and CH4, the inclusion of line mixing was seen to have a greater effect on the retrieved values of the line shifts than on the retrieved values of other parameters

  8. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  9. The nu sub 2 band CHD3; ground state parameters for CHD3 from combination differences

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Blass, W. E.

    1974-01-01

    The nu sub 2 fundamental band of CHD3, centered near 2143/cm, was recorded at a resolution of 0.015-0.25/cm. Analysis of ground state combination differences yielded well-determined values for the ground state molecular parameters for CHD3. These parameters were used in the determination of the alpha and beta molecular parameters for nu sub 2.

  10. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    PubMed

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  11. Assessment of Characteristic Function Modulus of Vibroacoustic Signal Given a Limit State Parameter of Diagnosed Equipment

    NASA Astrophysics Data System (ADS)

    Kostyukov, V. N.; Naumenko, A. P.; Kudryavtseva, I. S.

    2018-01-01

    Improvement of distinguishing criteria, determining defects of machinery and mechanisms, by vibroacoustic signals is a recent problem for technical diagnostics. The work objective is assessment of instantaneous values by methods of statistical decision making theory and risk of regulatory values of characteristic function modulus. The modulus of the characteristic function is determined given a fixed parameter of the characteristic function. It is possible to determine the limits of the modulus, which correspond to different machine’s condition. The data of the modulus values are used as diagnostic features in the vibration diagnostics and monitoring systems. Using such static decision-making methods as: minimum number of wrong decisions, maximum likelihood, minimax, Neumann-Pearson characteristic function modulus limits are determined, separating conditions of a diagnosed object.

  12. TU-FG-201-09: Predicting Accelerator Dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, C; Nguyen, C; Baydush, A

    Purpose: To develop an integrated statistical process control (SPC) framework using digital performance and component data accumulated within the accelerator system that can detect dysfunction prior to unscheduled downtime. Methods: Seven digital accelerators were monitored for twelve to 18 months. The accelerators were operated in a ‘run to failure mode’ with the individual institutions determining when service would be initiated. Institutions were required to submit detailed service reports. Trajectory and text log files resulting from a robust daily VMAT QA delivery were decoded and evaluated using Individual and Moving Range (I/MR) control charts. The SPC evaluation was presented in amore » customized dashboard interface that allows the user to review 525 monitored parameters (480 MLC parameters). Chart limits were calculated using a hybrid technique that includes the standard SPC 3σ limits and an empirical factor based on the parameter/system specification. The individual (I) grand mean values and control limit ranges of the I/MR charts of all accelerators were compared using statistical (ranked analysis of variance (ANOVA)) and graphical analyses to determine consistency of operating parameters. Results: When an alarm or warning was directly connected to field service, process control charts predicted dysfunction consistently on beam generation related parameters (BGP)– RF Driver Voltage, Gun Grid Voltage, and Forward Power (W); beam uniformity parameters – angle and position steering coil currents; and Gantry position accuracy parameter: cross correlation max-value. Control charts for individual MLC – cross correlation max-value/position detected 50% to 60% of MLCs serviced prior to dysfunction or failure. In general, non-random changes were detected 5 to 80 days prior to a service intervention. The ANOVA comparison of BGP determined that each accelerator parameter operated at a distinct value. Conclusion: The SPC framework shows promise. Long term monitoring coordinated with service will be required to definitively determine the effectiveness of the model. Varian Medical System, Inc. provided funding in support of the research presented.« less

  13. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2003-04-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  14. Color distribution of a shade guide in the value, chroma, and hue scale.

    PubMed

    Ahn, Jin-Soo; Lee, Yong-Keun

    2008-07-01

    Shade tabs in a shade guide are matched to teeth in the order of value, hue, and chroma; therefore, information on the distribution of shade tabs is essential for clinical application of a shade guide. However, there is limited information on the color distribution as sorted by these 3 parameters of a recently introduced shade guide. The purposes of this study were to determine the color distributions of tabs from a shade guide in the value (CIE L*), chroma (C*(ab)), and hue scale, and to determine the distribution of step intervals between adjacent tabs by value and chroma. The color of shade tabs (n=29) from a shade guide (Vitapan 3D-Master) was measured to determine the distribution of shade tabs by the value, chroma, hue angle, and CIE a* and b* values. The distribution of the ratios of the value and the chroma of each tab, when compared with the lowest value tab or the lowest chroma tab, was also determined. The data for each color parameter were analyzed by a 3-way ANOVA with the factors of value, chroma, and hue designations of the tabs (alpha=.05). The value, chroma, hue angle, and CIE a* and b* values were influenced by the value, chroma, and hue designations of shade tabs (P<.001). The distributions of the chroma of the tabs within the same value group were relatively ordered, but the values of different value groups overlapped in several instances. Distributions for the CIE a* and b* values reflected the chroma designations in each value group. In the same value group, L, M, and R hue designations corresponded with the manufacturer's stated hue, such as a yellow hue for the L designation and a red hue for the R designation. The distance in the value and chroma scales between adjacent tabs was not uniform. The color distribution of the Vitapan 3D-Master shade guide was more ordered than previously reported color distributions of other, traditional shade guides. However, the interval in the color parameters between adjacent tabs was not uniform; therefore, shade tabs spaced equally, according to the color parameters, should be studied based on the observer's response data.

  15. Determining Hypocentral Parameters for Local Earthquakes in 1-D Using a Genetic Algorithm and Two-point ray tracing

    NASA Astrophysics Data System (ADS)

    Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.

    2005-12-01

    This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing

  16. Application of maximum entropy to statistical inference for inversion of data from a single track segment.

    PubMed

    Stotts, Steven A; Koch, Robert A

    2017-08-01

    In this paper an approach is presented to estimate the constraint required to apply maximum entropy (ME) for statistical inference with underwater acoustic data from a single track segment. Previous algorithms for estimating the ME constraint require multiple source track segments to determine the constraint. The approach is relevant for addressing model mismatch effects, i.e., inaccuracies in parameter values determined from inversions because the propagation model does not account for all acoustic processes that contribute to the measured data. One effect of model mismatch is that the lowest cost inversion solution may be well outside a relatively well-known parameter value's uncertainty interval (prior), e.g., source speed from track reconstruction or towed source levels. The approach requires, for some particular parameter value, the ME constraint to produce an inferred uncertainty interval that encompasses the prior. Motivating this approach is the hypothesis that the proposed constraint determination procedure would produce a posterior probability density that accounts for the effect of model mismatch on inferred values of other inversion parameters for which the priors might be quite broad. Applications to both measured and simulated data are presented for model mismatch that produces minimum cost solutions either inside or outside some priors.

  17. A trade-off solution between model resolution and covariance in surface-wave inversion

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Miller, R.D.; Zeng, C.

    2010-01-01

    Regularization is necessary for inversion of ill-posed geophysical problems. Appraisal of inverse models is essential for meaningful interpretation of these models. Because uncertainties are associated with regularization parameters, extra conditions are usually required to determine proper parameters for assessing inverse models. Commonly used techniques for assessment of a geophysical inverse model derived (generally iteratively) from a linear system are based on calculating the model resolution and the model covariance matrices. Because the model resolution and the model covariance matrices of the regularized solutions are controlled by the regularization parameter, direct assessment of inverse models using only the covariance matrix may provide incorrect results. To assess an inverted model, we use the concept of a trade-off between model resolution and covariance to find a proper regularization parameter with singular values calculated in the last iteration. We plot the singular values from large to small to form a singular value plot. A proper regularization parameter is normally the first singular value that approaches zero in the plot. With this regularization parameter, we obtain a trade-off solution between model resolution and model covariance in the vicinity of a regularized solution. The unit covariance matrix can then be used to calculate error bars of the inverse model at a resolution level determined by the regularization parameter. We demonstrate this approach with both synthetic and real surface-wave data. ?? 2010 Birkh??user / Springer Basel AG.

  18. Assessment of chronic kidney disease using skin texture as a key parameter: for South Indian population.

    PubMed

    Udhayarasu, Madhanlal; Ramakrishnan, Kalpana; Periasamy, Soundararajan

    2017-12-01

    Periodical monitoring of renal function, specifically for subjects with history of diabetic or hypertension would prevent them from entering into chronic kidney disease (CKD) condition. The recent increase in numbers may be due to food habits or lack of physical exercise, necessitates a rapid kidney function monitoring system. Presently, it is determined by evaluating glomerular filtration rate (GFR) that is mainly dependent on serum creatinine value and demographic parameters and ethnic value. Attempted here is to develop ethnic parameter based on skin texture for every individual. This value when used in GFR computation, the results are much agreeable with GFR obtained through standard modification of diet in renal disease and CKD epidemiology collaboration equations. Once correlation between CKD and skin texture is established, classification tool using artificial neural network is built to categorise CKD level based on demographic values and parameter obtained through skin texture (without using creatinine). This network when tested gives almost at par results with the network that is trained with demographic and creatinine values. The results of this Letter demonstrate the possibility of non-invasively determining kidney function and hence for making a device that would readily assess the kidney function even at home.

  19. Blood gases, biochemistry and haematology of Galápagos marine iguanas (Amblyrhynchus cristatus)

    PubMed Central

    Lewbart, Gregory A.; Hirschfeld, Maximilian; Brothers, J. Roger; Muñoz-Pérez, Juan Pablo; Denkinger, Judith; Vinueza, Luis; García, Juan; Lohmann, Kenneth J.

    2015-01-01

    The marine iguana, Amblyrhynchus cristatus, is an iconic lizard endemic to the Galápagos Islands of Ecuador, but surprisingly little information exists on baseline health parameters for this species. We analysed blood samples drawn from 35 marine iguanas captured at three locations on San Cristóbal Island. A portable blood analyser (iSTAT) was used to obtain near-immediate field results for pH, lactate, partial pressure of O2, partial pressure of CO2, bicarbonate (HCO3−), percentage O2 saturation, haematocrit, haemoglobin, sodium, potassium, ionized calcium and glucose. Parameter values affected by temperature were auto-corrected by the iSTAT. Standard laboratory haematology techniques were employed for differential white blood cell counts and haematocrit determination; resulting values were also compared with the haematocrit values generated by the iSTAT. Body temperature, heart rate, respiratory rate and body measurements were also recorded. Body length was positively correlated with several blood chemistry values (HCO3− and glucose) and two haematology parameters (haemoglobin and manually determined haematocrit). A notable finding was the unusually high blood sodium level; the mean value of 178 mg/dl is among the highest known for any reptile. This value is likely to be a conservative estimate because some samples exceeded the maximal value the iSTAT can detect. For haematocrit determination, the iSTAT blood analyser yielded results significantly lower than those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among marine iguanas affected by natural disturbances or anthropogenic threats. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease. PMID:27293719

  20. Optimizing the Determination of Roughness Parameters for Model Urban Canopies

    NASA Astrophysics Data System (ADS)

    Huq, Pablo; Rahman, Auvi

    2018-05-01

    We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length z_0 , and friction velocity u_* . Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of z_0 and u_* are identified by the peak in the bivariate histogram of z_0 and u_* . The methodology has been verified against laboratory datasets of flow above model urban canopies.

  1. An improved method for predicting the evolution of the characteristic parameters of an information system

    NASA Astrophysics Data System (ADS)

    Dushkin, A. V.; Kasatkina, T. I.; Novoseltsev, V. I.; Ivanov, S. V.

    2018-03-01

    The article proposes a forecasting method that allows, based on the given values of entropy and error level of the first and second kind, to determine the allowable time for forecasting the development of the characteristic parameters of a complex information system. The main feature of the method under consideration is the determination of changes in the characteristic parameters of the development of the information system in the form of the magnitude of the increment in the ratios of its entropy. When a predetermined value of the prediction error ratio is reached, that is, the entropy of the system, the characteristic parameters of the system and the depth of the prediction in time are estimated. The resulting values of the characteristics and will be optimal, since at that moment the system possessed the best ratio of entropy as a measure of the degree of organization and orderliness of the structure of the system. To construct a method for estimating the depth of prediction, it is expedient to use the maximum principle of the value of entropy.

  2. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, T.J.

    1997-05-20

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.

  3. [FINDRISC Test: Relationship between cardiovascular risk parameters and scales in Spanish Mediterranean population].

    PubMed

    López-González, Ángel Arturo; García-Agudo, Sheila; Tomás-Salvá, Matías; Vicente-Herrero, María Teófila; Queimadelos-Carmona, Milagros; Campos-González, Irene

    2017-01-01

    The Finnish Diabetes Risk Score (FINDRISC) questionnaire has been used to assess the risk of type 2 diabetes and metabolic syndrome. The objetive was to assess the relationship between different scales related to cardiovascular risk and FINDRISC questionnaire. Values of different anthropometric and clinical parameters (body mass index, waist circumference, waist to height ratio, blood pressure), analytical parameters (lipid profile, blood glucose) and scales related to cardiovascular risk (atherogenic index, metabolic syndrome, REGICOR, SCORE, heart age and vascular age) were determined on the basis of the value of the FINDRISC questionnaire. All analyzed parameters related to cardiovascular risk were getting worse at the same time that the value of the FINDRISC questionnaire increased. There is a close relationship between FINDRISC questionnaire values and those obtained in the different parameters by which cardiovascular risk was measured directly or indirectly.

  4. An innovative approach for determination of air quality health index.

    PubMed

    Gorai, Amit Kumar; Kanchan; Upadhyay, Abhishek; Tuluri, Francis; Goyal, Pramila; Tchounwou, Paul B

    2015-11-15

    Fuzzy-analytical hierarchical process (F-AHP) can be extended to determine fuzzy air quality health index (FAQHI) for deducing health risk associated with local air pollution levels, and subjective parameters. The present work aims at determining FAQHI by considering five air pollutant parameters (SO2, NO2, O3, CO, and PM10) and three subjective parameters (population sensitivity, population density and location sensitivity). Each of the individual pollutants has varying impacts. Hence the combined health effects associated with the pollutants were estimated by aggregating the pollutants with different weights. Global weights for each evaluation alternatives were determined using fuzzy-AHP method. The developed model was applied to determine FAQHI in Howrah City, India from daily-observed concentrations of air pollutants over the three-year period between 2009 and 2011. The FAQHI values obtained through this method in Howrah City range from 1 to 3. Since the permissible value of FAQHI (as calculated for NAAQS) for residential areas is 1.78, higher index values are of public health concern to the exposed individuals. During the period of study, the observed FAQHI values were found to be higher than 1.78 in most of the day in the months of January to March, and October to December. However, the index values were below the recommended limit during rest of the months. In conclusion, FAQHI in Howrah city was above permissible limit in winter months and within acceptable values in summer and rainy months. Diurnal variations of FAQHI showed a similar trend during the three-year period of assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Simple and Reliable Determination of Intravoxel Incoherent Motion Parameters for the Differential Diagnosis of Head and Neck Tumors

    PubMed Central

    Sasaki, Miho; Sumi, Misa; Eida, Sato; Katayama, Ikuo; Hotokezaka, Yuka; Nakamura, Takashi

    2014-01-01

    Intravoxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of normal and diseased tissues, and IVIM parameters are authentically determined by using cumbersome least-squares method. We evaluated a simple technique for the determination of IVIM parameters using geometric analysis of the multiexponential signal decay curve as an alternative to the least-squares method for the diagnosis of head and neck tumors. Pure diffusion coefficients (D), microvascular volume fraction (f), perfusion-related incoherent microcirculation (D*), and perfusion parameter that is heavily weighted towards extravascular space (P) were determined geometrically (Geo D, Geo f, and Geo P) or by least-squares method (Fit D, Fit f, and Fit D*) in normal structures and 105 head and neck tumors. The IVIM parameters were compared for their levels and diagnostic abilities between the 2 techniques. The IVIM parameters were not able to determine in 14 tumors with the least-squares method alone and in 4 tumors with the geometric and least-squares methods. The geometric IVIM values were significantly different (p<0.001) from Fit values (+2±4% and −7±24% for D and f values, respectively). Geo D and Fit D differentiated between lymphomas and SCCs with similar efficacy (78% and 80% accuracy, respectively). Stepwise approaches using combinations of Geo D and Geo P, Geo D and Geo f, or Fit D and Fit D* differentiated between pleomorphic adenomas, Warthin tumors, and malignant salivary gland tumors with the same efficacy (91% accuracy = 21/23). However, a stepwise differentiation using Fit D and Fit f was less effective (83% accuracy = 19/23). Considering cumbersome procedures with the least squares method compared with the geometric method, we concluded that the geometric determination of IVIM parameters can be an alternative to least-squares method in the diagnosis of head and neck tumors. PMID:25402436

  6. Determination of the Characteristic Values and Variation Ratio for Sensitive Soils

    NASA Astrophysics Data System (ADS)

    Milutinovici, Emilia; Mihailescu, Daniel

    2017-12-01

    In 2008, Romania adopted Eurocode 7, part II, regarding the geotechnical investigations - called SR EN1997-2/2008. However a previous standard already existed in Romania, by using the mathematical statistics in determination of the calculation values, the requirements of Eurocode can be taken into consideration. The setting of characteristics and calculations values of the geotechnical parameters was finally issued in Romania at the end of 2010 at standard NP122-2010 - “Norm regarding determination of the characteristic and calculation values of the geotechnical parameters”. This standard allows using of data already known from analysed area and setting the calculation values of geotechnical parameters. However, this possibility exist, it is not performed easy in Romania, considering that there isn’t any centralized system of information coming from the geotechnical studies performed for various objectives of private or national interests. Every company performing geotechnical studies tries to organize its own data base, but unfortunately none of them use existing centralized data. When determining the values of calculation, an important role is played by the variation ratio of the characteristic values of a geotechnical parameter. There are recommendations in the mentioned Norm, that could be taken into account, regarding the limits of the variation ratio, but these values are mentioned for Quaternary age soils only, normally consolidated, with a content of organic material < 5%. All of the difficult soils are excluded from the Norm even if they exist and affect the construction foundations on more than a half of the Romania’s surface. A type of difficult soil, extremely widespread on the Romania’s territory, is the contractile soil (with high swelling and contractions, very sensitive to the seasonal moisture variations). This type of material covers and influences the construction foundations in one over third of Romania’s territory. This work is proposing to be a step in determination of limits of the variation ratios for the contractile soils category, for the most used geotechnical parameters in the Romanian engineering practice, namely: the index of consistency and the cohesion.

  7. New procedure for the determination of Hansen solubility parameters by means of inverse gas chromatography.

    PubMed

    Adamska, K; Bellinghausen, R; Voelkel, A

    2008-06-27

    The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.

  8. User-customized brain computer interfaces using Bayesian optimization

    NASA Astrophysics Data System (ADS)

    Bashashati, Hossein; Ward, Rabab K.; Bashashati, Ali

    2016-04-01

    Objective. The brain characteristics of different people are not the same. Brain computer interfaces (BCIs) should thus be customized for each individual person. In motor-imagery based synchronous BCIs, a number of parameters (referred to as hyper-parameters) including the EEG frequency bands, the channels and the time intervals from which the features are extracted should be pre-determined based on each subject’s brain characteristics. Approach. To determine the hyper-parameter values, previous work has relied on manual or semi-automatic methods that are not applicable to high-dimensional search spaces. In this paper, we propose a fully automatic, scalable and computationally inexpensive algorithm that uses Bayesian optimization to tune these hyper-parameters. We then build different classifiers trained on the sets of hyper-parameter values proposed by the Bayesian optimization. A final classifier aggregates the results of the different classifiers. Main Results. We have applied our method to 21 subjects from three BCI competition datasets. We have conducted rigorous statistical tests, and have shown the positive impact of hyper-parameter optimization in improving the accuracy of BCIs. Furthermore, We have compared our results to those reported in the literature. Significance. Unlike the best reported results in the literature, which are based on more sophisticated feature extraction and classification methods, and rely on prestudies to determine the hyper-parameter values, our method has the advantage of being fully automated, uses less sophisticated feature extraction and classification methods, and yields similar or superior results compared to the best performing designs in the literature.

  9. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  10. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.

    PubMed

    Goswami, Dayananda; Sarma, Kanak C; Mahanta, Anil

    2016-06-01

    The wireless body area network (WBAN) has gaining tremendous attention among researchers and academicians for its envisioned applications in healthcare service. Ultra wideband (UWB) radio technology is considered as excellent air interface for communication among body area network devices. Characterisation and modelling of channel parameters are utmost prerequisite for the development of reliable communication system. The path loss of on-body UWB channel for each frequency band defined in IEEE 802.15.6 standard is experimentally determined. The parameters of path loss model are statistically determined by analysing measurement data. Both the line-of-sight and non-line-of-sight channel conditions are considered in the measurement. Variations of parameter values with the size of human body are analysed along with the variation of parameter values with the surrounding environments. It is observed that the parameters of the path loss model vary with the frequency band as well as with the body size and surrounding environment. The derived parameter values are specific to the particular frequency bands of IEEE 802.15.6 standard, which will be useful for the development of efficient UWB WBAN system.

  11. Aspen succession in the Intermountain West: A deterministic model

    Treesearch

    Dale L. Bartos; Frederick R. Ward; George S. Innis

    1983-01-01

    A deterministic model of succession in aspen forests was developed using existing data and intuition. The degree of uncertainty, which was determined by allowing the parameter values to vary at random within limits, was larger than desired. This report presents results of an analysis of model sensitivity to changes in parameter values. These results have indicated...

  12. Determination of Stark parameters by cross-calibration in a multi-element laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Truscott, Benjamin S.; Ashfold, Michael N. R.

    2016-05-01

    We illustrate a Stark broadening analysis of the electron density Ne and temperature Te in a laser-induced plasma (LIP), using a model free of assumptions regarding local thermodynamic equilibrium (LTE). The method relies on Stark parameters determined also without assuming LTE, which are often unknown and unavailable in the literature. Here, we demonstrate that the necessary values can be obtained in situ by cross-calibration between the spectral lines of different charge states, and even different elements, given determinations of Ne and Te based on appropriate parameters for at least one observed transition. This approach enables essentially free choice between species on which to base the analysis, extending the range over which these properties can be measured and giving improved access to low-density plasmas out of LTE. Because of the availability of suitable tabulated values for several charge states of both Si and C, the example of a SiC LIP is taken to illustrate the consistency and accuracy of the procedure. The cross-calibrated Stark parameters are at least as reliable as values obtained by other means, offering a straightforward route to extending the literature in this area.

  13. Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    DTIC Science & Technology

    2015-06-01

    only take on values that generate real sigma points; therefore, λ > −n. The additional weighting scheme is outlined in the following equations κ = α2...orbit shapes resulted in a similar model weighting. Additional cases of this orbit type also resulted in heavily weighting smaller η value models. It is...determined using both the symmetric and additional parameters UTs. The best values for the weighting parameters are then compared for each test case

  14. Net thrust calculation sensitivity of an afterburning turbofan engine to variations in input parameters

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Ray, R. J.; Walton, J. T.

    1985-01-01

    The calculated value of net thrust of an aircraft powered by a General Electric F404-GE-400 afterburning turbofan engine was evaluated for its sensitivity to various input parameters. The effects of a 1.0-percent change in each input parameter on the calculated value of net thrust with two calculation methods are compared. This paper presents the results of these comparisons and also gives the estimated accuracy of the overall net thrust calculation as determined from the influence coefficients and estimated parameter measurement accuracies.

  15. Deriving the reference value from the circadian motor active patterns in the "non-dementia" population, compared to the "dementia" population: What is the amount of physical activity conducive to the good circadian rhythm.

    PubMed

    Kodama, Ayuto; Kume, Yu; Tsugaruya, Megumi; Ishikawa, Takashi

    2016-01-01

    The circadian rhythm in older adults is commonly known to change with a decrease in physical activity. However, the association between circadian rhythm metrics and physical activity remains unclear. The objective of this study was to examine circadian activity patterns in older people with and without dementia and to determine the amount of physical activity conducive to a good circadian measurement. Circadian parameters were collected from 117 older community-dwelling people (66 subjects without dementia and 52 subjects with dementia); the parameters were measured continuously using actigraphy for 7 days. A receiver operating characteristic (ROC) curve was applied to determine reference values for the circadian rhythm parameters, consisting of interdaily stability (IS), intradaily variability (IV), and relative amplitude (RA), in older subjects. The ROC curve revealed reference values of 0.55 for IS, 1.10 for IV, and 0.82 for RA. In addition, as a result of the ROC curve in the moderate-to-vigorous physical Activity (MVPA) conducive to the reference value of the Non-parametric Circadian Rhythm Analysis per day, the optimal reference values were 51 minutes for IV and 55 minutes for RA. However, the IS had no classification accuracy. Our results demonstrated the reference values derived from the circadian parameters of older Japanese population with or without dementia. Also, we determined the MVPA conducive to a good circadian rest-active pattern. This reference value for physical activity conducive to a good circadian rhythm might be useful for developing a new index for health promotion in the older community-dwelling population.

  16. Effects of aflatoxin on some haematological parameters and protective effectiveness of esterified glucomannan in Merino rams.

    PubMed

    Dönmez, Nurcan; Dönmez, H H; Keskin, E; Kısadere, İ

    2012-01-01

    The objective of the present study was to evaluate the toxic effects of aflatoxin on some hematological parameters and to determine the preventive effectiveness of added glucomannan. In the study, 32 Merino rams were used, and the rams were separated equally to four groups as control (C), glucomannan (G), glucomannan + aflatoxin (AG), and aflatoxin (A). Erythrocyte, leukocyte count, hemoglobin, and hematocrit levels were decreased in A group compared with the other groups, and there was a reduction in similar parameters in AG group compared to control values. On the other hand, these parameters were tended to increase in AG group compared to A group values. Aflatoxicosis caused the lymphocytopenia and monocytopenia but increased percentage of neutrophil counts. In conclusion, the results determined in the study might be important to demonstrate the effects of aflatoxicosis and glucomannan on some haematological parameters before the clinical symptoms appear.

  17. Application of Artificial Neural Network to Optical Fluid Analyzer

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Nishida, Katsuhiko

    1994-04-01

    A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).

  18. Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination

    NASA Technical Reports Server (NTRS)

    Ryne, Mark S.; Wang, Tseng-Chan

    1991-01-01

    An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.

  19. Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution

    NASA Astrophysics Data System (ADS)

    Kazei, Vladimir; Alkhalifah, Tariq

    2018-05-01

    Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.

  20. Validation and upgrading of physically based mathematical models

    NASA Technical Reports Server (NTRS)

    Duval, Ronald

    1992-01-01

    The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.

  1. Determining the pH of Mars from the Viking labelled release reabsorption effect

    NASA Technical Reports Server (NTRS)

    Plumb, Robert C.

    1992-01-01

    The acid-base properties and redox potentials of solids are two of the more fundamental chemical parameters characterizing a material. Knowledge of these parameters for martian regolith fines would be of considerable value in determining what specific compounds are present and making judgements on what reactions are possible.

  2. Development of model for prediction of Leachate Pollution Index (LPI) in absence of leachate parameters.

    PubMed

    Lothe, Anjali G; Sinha, Alok

    2017-05-01

    Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The relationship between grain hardness, dough mixing parameters and bread-making quality in winter wheat.

    PubMed

    Salmanowicz, Bolesław P; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Lugowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index-PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index.

  4. The Relationship Between Grain Hardness, Dough Mixing Parameters and Bread-Making Quality in Winter Wheat

    PubMed Central

    Salmanowicz, Bolesław P.; Adamski, Tadeusz; Surma, Maria; Kaczmarek, Zygmunt; Karolina, Krystkowiak; Kuczyńska, Anetta; Banaszak, Zofia; Ługowska, Bogusława; Majcher, Małgorzata; Obuchowski, Wiktor

    2012-01-01

    The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index—PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index. PMID:22605973

  5. Derivation of WECC Distributed PV System Model Parameters from Quasi-Static Time-Series Distribution System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Boemer, Jens C.; Vittal, Eknath

    The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less

  6. Study of parameters of the nearest neighbour shared algorithm on clustering documents

    NASA Astrophysics Data System (ADS)

    Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni

    2018-03-01

    Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.

  7. A contribution for the definition of serum chemistry values in captive adults Antillean manatees (Trichechus manatus manatus Linnaeus, 1758).

    PubMed

    Silva, F M O; Vergara-Parente, J E; Gomes, J K N; Teixeira, M N; Lima, R P

    2007-04-01

    Serum chemistry analyses represents a fundamental tool for the diagnosis and understanding of diseases in marine mammals. Although several studies are being conducted within the field of clinical pathology, haematological and serum chemistry data for Antillean manatees are deficient. The purpose of this study was to determine serum chemistry values for captive Antillean manatees within the CMA/Ibama facility in Brazil. Serum samples were obtained from five captive adult Antillean manatees fed with seagrass and analysed for aspartate aminotransferase, alanine aminotransferase, bilirubin, alkaline phosphatase, urea, creatinine, glucose, triglycerides, cholesterol, total protein, albumin, globulin, phosphate, chloride, calcium and uric acid. Blood chemistry parameters were determined using a semi-automatic analyzer. Maximum, minimum, mean and standard deviations were calculated for each serum chemistry parameter. Differences on the values of males and females were verified using an unpaired Student's t-test. All the parameters analysed were similar between sexes, with exception of AP, which was higher in females (191.43 +/- 31.86 U/l). Alanine aminotransferase and uric acid values for Trichechus manatus manatus are reported for the first time in this paper. This study is the first to report serum chemistry parameter values for long-term captive male and female Antillean manatees. Therefore, the lower values of albumin, phosphate, chloride, cholesterol and triglycerides obtained here highlight the importance of clinical pathology during health monitoring of captive marine mammals.

  8. On the behavior of certain ink aging curves.

    PubMed

    Cantú, Antonio A

    2017-09-01

    This work treats writing inks, particularly ballpoint pen inks. It reviews those ink aging methods that are based on the analysis (measurement) of ink solvents (e.g., 2-phenoxyethanol, which is the most common among ballpoint pen inks). Each method involves measurements that are components of an ink aging parameter associated with the method. Only mass independent parameters are considered. An ink solvent from an ink that is on an air-exposed substrate will evaporate at a decreasing rate and is never constant as the ink ages. An ink aging parameter should reflect this behavior. That is, the graph of a parameter's experimentally-determined values plotted against ink age (which yields the ink aging curve) should show this behavior. However, some experimentally-determined aging curves contain outlying points that are below or above where they should be or points corresponding to different ages that have the same ordinate (parameter value). Such curves, unfortunately, are useless since such curves show that an ink can appear older or younger than what it should be in one or more of its points or have the same age in two or more of its points. This work explains that one cause of this unexpected behavior is that the parameter values were improperly determined such as when a measurement is made of an ink solvent that is not completely extracted (removed) from an ink sample with a chosen extractor such as dry heat or a solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The scatter of mechanical values of carbon fiber composites and its causes. [statistical values of strength

    NASA Technical Reports Server (NTRS)

    Roth, S.

    1979-01-01

    The scatter of experimental data obtained in an investigation of the parameters of structural components was investigated. Strength parameters which are determined by the resin or the adhesion between fiber and resin were included. The statistical characteristics of the mechanical parameters of carbon fiber composites, and the possibilities which exist to reduce this scatter were emphasized. It is found that quality control tests of fiber and resin are important for such a reduction.

  11. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  12. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  13. A simplified method for determining reactive rate parameters for reaction ignition and growth in explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A simplified method for determining the reactive rate parameters for the ignition and growth model is presented. This simplified ignition and growth (SIG) method consists of only two adjustable parameters, the ignition (I) and growth (G) rate constants. The parameters are determined by iterating these variables in DYNA2D hydrocode simulations of the failure diameter and the gap test sensitivity until the experimental values are reproduced. Examples of four widely different explosives were evaluated using the SIG model. The observed embedded gauge stress-time profiles for these explosives are compared to those calculated by the SIG equation and the results are described.

  14. Development of a Screening Model for Design and Costing of an Innovative Tailored Granular Activated Carbon Technology to Treat Perchlorate-Contaminated Water

    DTIC Science & Technology

    2007-03-01

    column experiments were used to obtain model parameters . Cost data used in the model were based on conventional GAC installations, as modified to...43 Calculation of Parameters ...66 Determination of Parameter Values

  15. Investigations of the possibility of determination of thermal parameters of Si and SiGe samples based on the Photo Thermal Radiometry technique

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.

    2018-03-01

    This paper presents results of investigations of the possibility of determination of thermal parameters (thermal conductivity, thermal diffusivity) of silicon and silicon germanium crystals from the frequency characteristics of the Photo Thermal Radiometry (PTR) signal. The theoretical analysis of the influence of the mentioned parameters on the PTR signal has been presented and discussed. The values of the thermal and recombination parameters have been extracted from the fittings of the theoretical to experimental data. The presented approach uses the reference Si sample whose thermal and recombination parameters are known.

  16. Bayesian Parameter Estimation for Heavy-Duty Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Eric; Konan, Arnaud; Duran, Adam

    2017-03-28

    Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the currentmore » state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.« less

  17. Evaluation of 18F-FDG PET/CT Parameters for Detection of Lymph Node Metastasis in Cutaneous Melanoma.

    PubMed

    Cha, Jongtae; Kim, Soyoung; Wang, Jiyoung; Yun, Mijin; Cho, Arthur

    2018-02-01

    The purpose of this study was to investigate the value of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) parameters in the detection of regional lymph node (LN) metastasis in patients with cutaneous melanoma. We evaluated patients with cutaneous melanoma who underwent FDG PET/CT for initial staging or recurrence evaluation. A total of 103 patients were enrolled, and 165 LNs were evaluated. LNs that were confirmed pathologically or by follow-up imaging were included in this study. PET parameters, including maximum standardized uptake value (SUVmax), total lesion glycolysis and tumour-to-liver ratio, were used to determine the presence of metastases, and the results were compared with CT-determined LN metastasis. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal cut-off values of the FDG PET parameters. A total of 93 LNs were malignant, and 84 LNs were smaller than 10 mm. In all 165 LNs, an SUVmax of >2.51 showed a sensitivity of 73.1%, a specificity of 88.9%, and an accuracy of 80.0% in detecting metastatic LNs. CT showed a higher specificity (87.3%) and lower accuracy (65.5%). For non-enlarged regional LNs (<10 mm), an SUVmax cut-off value of 1.4 showed the highest negative predictive value (81.3%). For enlarged LNs (≥10 mm), an SUVmax cut-off value of 2.4 showed the highest sensitivity (90.7%) and accuracy (88.9%) in detecting metastatic LNs. In patients with cutaneous melanoma, an SUVmax of >2.4 showed a high sensitivity (91%) and accuracy (89%) in detecting metastasis in LNs ≥1 cm, and LNs <1 cm with an SUVmax <1.4 were likely to be benign.

  18. Image parameters for maturity determination of a composted material containing sewage sludge

    NASA Astrophysics Data System (ADS)

    Kujawa, S.; Nowakowski, K.; Tomczak, R. J.; Boniecki, P.; Dach, J.

    2013-07-01

    Composting is one of the best methods for management of sewage sludge. In a reasonably conducted composting process it is important to early identify the moment in which a material reaches the young compost stage. The objective of this study was to determine parameters contained in images of composted material's samples that can be used for evaluation of the degree of compost maturity. The study focused on two types of compost: containing sewage sludge with corn straw and sewage sludge with rapeseed straw. The photographing of the samples was carried out on a prepared stand for the image acquisition using VIS, UV-A and mixed (VIS + UV-A) light. In the case of UV-A light, three values of the exposure time were assumed. The values of 46 parameters were estimated for each of the images extracted from the photographs of the composted material's samples. Exemplary averaged values of selected parameters obtained from the images of the composted material in the following sampling days were presented. All of the parameters obtained from the composted material's images are the basis for preparation of training, validation and test data sets necessary in development of neural models for classification of the young compost stage.

  19. Effect of UV light on different structural and transport parameters of cellophane membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavente, J.; Vazquez, M.I.; De Abajo, J.

    1996-01-01

    A comparative study of UV light influence on structural and transport parameters of cellophane membranes was made. Changes in the chemical structure and electrical behavior of cellophane membranes were considered by determining the hydraulic permeability, salt diffusion coefficient, and resistance values, as well as some geometrical parameters, for an untreated membrane and two differently UV-treated cellophane membranes. Differences in the characteristic parameters for the three samples showed that radiation mainly affected the membrane structure, while only small changes in membrane electrical behavior were determined.

  20. The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.

    1992-05-01

    Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.

  1. Impact and Penetration Problems.

    DTIC Science & Technology

    1981-03-16

    constant is now determined theoretically. iii) By utilizing the formal similarity between the two criteria (1) and (3), we can predict the theoretical...cohesive strengths of various crystals. Once the experimental value for y is given, the calculations can be carried 4 out easily to determine the...analytical solution to the mixed boundary value problem yields the nonlocal displacement and stress fields. The nonlocal parameter c is determined by

  2. Attitude determination and parameter estimation using vector observations - Theory

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1989-01-01

    Procedures for attitude determination based on Wahba's loss function are generalized to include the estimation of parameters other than the attitude, such as sensor biases. Optimization with respect to the attitude is carried out using the q-method, which does not require an a priori estimate of the attitude. Optimization with respect to the other parameters employs an iterative approach, which does require an a priori estimate of these parameters. Conventional state estimation methods require a priori estimates of both the parameters and the attitude, while the algorithm presented in this paper always computes the exact optimal attitude for given values of the parameters. Expressions for the covariance of the attitude and parameter estimates are derived.

  3. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    PubMed

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.

  4. Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.

  5. Lateral and longitudinal stability and control parameters for the space shuttle discovery as determined from flight test data

    NASA Technical Reports Server (NTRS)

    Suit, William T.; Schiess, James R.

    1988-01-01

    The Discovery vehicle was found to have longitudinal and lateral aerodynamic characteristics similar to those of the Columbia and Challenger vehicles. The values of the lateral and longitudinal parameters are compared with the preflight data book. The lateral parameters showed the same trends as the data book. With the exception of C sub l sub Beta for Mach numbers greater than 15, C sub n sub delta r for Mach numbers greater than 2 and for Mach numbers less than 1.5, where the variation boundaries were not well defined, ninety percent of the extracted values of the lateral parameters fell within the predicted variations. The longitudinal parameters showed more scatter, but scattered about the preflight predictions. With the exception of the Mach 1.5 to .5 region of the flight envelope, the preflight predictions seem a reasonable representation of the Shuttle aerodynamics. The models determined accounted for ninety percent of the actual flight time histories.

  6. Characterization and geographical discrimination of commercial Citrus spp. honeys produced in different Mediterranean countries based on minerals, volatile compounds and physicochemical parameters, using chemometrics.

    PubMed

    Karabagias, Ioannis K; Louppis, Artemis P; Karabournioti, Sofia; Kontakos, Stavros; Papastephanou, Chara; Kontominas, Michael G

    2017-02-15

    The objective of the present study was: i) to characterize Mediterranean citrus honeys based on conventional physicochemical parameter values, volatile compounds, and mineral content ii) to investigate the potential of above parameters to differentiate citrus honeys according to geographical origin using chemometrics. Thus, 37 citrus honey samples were collected during harvesting periods 2013 and 2014 from Greece, Egypt, Morocco, and Spain. Conventional physicochemical and CIELAB colour parameters were determined using official methods of analysis and the Commission Internationale de l' Eclairage recommendations, respectively. Minerals were determined using ICP-OES and volatiles using SPME-GC/MS. Results showed that honey samples analyzed, met the standard quality criteria set by the EU and were successfully classified according to geographical origin. Correct classification rates were 97.3% using 8 physicochemical parameter values, 86.5% using 15 volatile compound data and 83.8% using 13 minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  8. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  9. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  10. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    PubMed

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  11. Development of genetic algorithm-based optimization module in WHAT system for hydrograph analysis and model application

    NASA Astrophysics Data System (ADS)

    Lim, Kyoung Jae; Park, Youn Shik; Kim, Jonggun; Shin, Yong-Chul; Kim, Nam Won; Kim, Seong Joon; Jeon, Ji-Hong; Engel, Bernard A.

    2010-07-01

    Many hydrologic and water quality computer models have been developed and applied to assess hydrologic and water quality impacts of land use changes. These models are typically calibrated and validated prior to their application. The Long-Term Hydrologic Impact Assessment (L-THIA) model was applied to the Little Eagle Creek (LEC) watershed and compared with the filtered direct runoff using BFLOW and the Eckhardt digital filter (with a default BFI max value of 0.80 and filter parameter value of 0.98), both available in the Web GIS-based Hydrograph Analysis Tool, called WHAT. The R2 value and the Nash-Sutcliffe coefficient values were 0.68 and 0.64 with BFLOW, and 0.66 and 0.63 with the Eckhardt digital filter. Although these results indicate that the L-THIA model estimates direct runoff reasonably well, the filtered direct runoff values using BFLOW and Eckhardt digital filter with the default BFI max and filter parameter values do not reflect hydrological and hydrogeological situations in the LEC watershed. Thus, a BFI max GA-Analyzer module (BFI max Genetic Algorithm-Analyzer module) was developed and integrated into the WHAT system for determination of the optimum BFI max parameter and filter parameter of the Eckhardt digital filter. With the automated recession curve analysis method and BFI max GA-Analyzer module of the WHAT system, the optimum BFI max value of 0.491 and filter parameter value of 0.987 were determined for the LEC watershed. The comparison of L-THIA estimates with filtered direct runoff using an optimized BFI max and filter parameter resulted in an R2 value of 0.66 and the Nash-Sutcliffe coefficient value of 0.63. However, L-THIA estimates calibrated with the optimized BFI max and filter parameter increased by 33% and estimated NPS pollutant loadings increased by more than 20%. This indicates L-THIA model direct runoff estimates can be incorrect by 33% and NPS pollutant loading estimation by more than 20%, if the accuracy of the baseflow separation method is not validated for the study watershed prior to model comparison. This study shows the importance of baseflow separation in hydrologic and water quality modeling using the L-THIA model.

  12. A graphical approach to optimizing variable-kernel smoothing parameters for improved deformable registration of CT and cone beam CT images

    NASA Astrophysics Data System (ADS)

    Hart, Vern; Burrow, Damon; Li, X. Allen

    2017-08-01

    A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases  >0.6% from the regression line.

  13. Relationships and redundancies of selected hemodynamic and structural parameters for characterizing virtual treatment of cerebral aneurysms with flow diverter devices.

    PubMed

    Karmonik, C; Anderson, J R; Beilner, J; Ge, J J; Partovi, S; Klucznik, R P; Diaz, O; Zhang, Y J; Britz, G W; Grossman, R G; Lv, N; Huang, Q

    2016-07-26

    To quantify the relationship and to demonstrate redundancies between hemodynamic and structural parameters before and after virtual treatment with a flow diverter device (FDD) in cerebral aneurysms. Steady computational fluid dynamics (CFD) simulations were performed for 10 cerebral aneurysms where FDD treatment with the SILK device was simulated by virtually reducing the porosity at the aneurysm ostium. Velocity and pressure values proximal and distal to and at the aneurysm ostium as well as inside the aneurysm were quantified. In addition, dome-to-neck ratios and size ratios were determined. Multiple correlation analysis (MCA) and hierarchical cluster analysis (HCA) were conducted to demonstrate dependencies between both structural and hemodynamic parameters. Velocities in the aneurysm were reduced by 0.14m/s on average and correlated significantly (p<0.05) with velocity values in the parent artery (average correlation coefficient: 0.70). Pressure changes in the aneurysm correlated significantly with pressure values in the parent artery and aneurysm (average correlation coefficient: 0.87). MCA found statistically significant correlations between velocity values and between pressure values, respectively. HCA sorted velocity parameters, pressure parameters and structural parameters into different hierarchical clusters. HCA of aneurysms based on the parameter values yielded similar results by either including all (n=22) or only non-redundant parameters (n=2, 3 and 4). Hemodynamic and structural parameters before and after virtual FDD treatment show strong inter-correlations. Redundancy of parameters was demonstrated with hierarchical cluster analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The prognostic value of functional and anatomical parameters for the selection of patients receiving yttrium-90 microspheres for the treatment of liver cancer

    NASA Astrophysics Data System (ADS)

    Mesoloras, Geraldine

    Yttrium-90 (90Y) microsphere therapy is being utilized as a treatment option for patients with primary and metastatic liver cancer due to its ability to target tumors within the liver. The success of this treatment is dependent on many factors, including the extent and type of disease and the nature of prior treatments received. Metabolic activity, as determined by PET imaging, may correlate with the number of viable cancer cells and reflect changes in viable cancer cell volume. However, contouring of PET images by hand is labor intensive and introduces an element of irreproducibility into the determination of functional target/tumor volume (FTV). A computer-assisted method to aid in the automatic contouring of FTV has the potential to substantially improve treatment individualization and outcome assessment. Commercial software to determine FTV in FDG-avid primary and metastatic liver tumors has been evaluated and optimized. Volumes determined using the automated technique were compared to those from manually drawn contours identified using the same cutoff in the standard uptake value (SUV). The reproducibility of FTV is improved through the introduction of an optimal threshold value determined from phantom experiments. Application of the optimal threshold value from the phantom experiments to patient scans was in good agreement with hand-drawn determinations of the FTV. It is concluded that computer-assisted contouring of the FTV for primary and metastatic liver tumors improves reproducibility and increases accuracy, especially when combined with the selection of an optimal SUV threshold determined from phantom experiments. A method to link the pre-treatment assessment of functional (PET based) and anatomical (CT based) parameters to post-treatment survival and time to progression was evaluated in 22 patients with colorectal cancer liver metastases treated using 90Y microspheres and chemotherapy. The values for pre-treatment parameters that were the best predictors of response were determined for FTV, anatomical tumor volume, total lesion glycolysis, and the tumor marker, CEA. Of the parameters considered, the best predictors of response were found to be pre-treatment FTV ≤153 cm3, ATV ≤163 cm3, TLG ≤144 g in the chemo-SIRT treated field, and CEA ≤11.6 ng/mL.

  15. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Dutta, B. K.; Chattopadhyay, J.

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (JIC) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine JIC using available empirical correlations. The correlations between JIC and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (εqf) and crack initiation toughness (Ji) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (εqf) and analysis of TPB specimen generated value of Ji. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in Ji for the same value of biaxial fracture strain (εqf) within a limit. Such variation in the value of Ji has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get Ji by using newly developed correlation. A reasonable comparison of calculated Ji with the values quoted in literature confirmed usefulness of the correlation.

  16. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  17. Earthquake hazard analysis for the different regions in and around Aǧrı

    NASA Astrophysics Data System (ADS)

    Bayrak, Erdem; Yilmaz, Şeyda; Bayrak, Yusuf

    2016-04-01

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg-Richter magnitude-frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship, from the maximum likelihood method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.

  18. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Determination of malignancy and characterization of hepatic tumor type with diffusion-weighted magnetic resonance imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motion-derived measurements.

    PubMed

    Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E

    2013-10-01

    The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.

  20. General Analytical Procedure for Determination of Acidity Parameters of Weak Acids and Bases

    PubMed Central

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied. PMID:25692072

  1. General analytical procedure for determination of acidity parameters of weak acids and bases.

    PubMed

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied.

  2. Expert Knowledge-Based Automatic Sleep Stage Determination by Multi-Valued Decision Making Method

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Kawana, Fusae; Wang, Xingyu; Nakamura, Masatoshi

    In this study, an expert knowledge-based automatic sleep stage determination system working on a multi-valued decision making method is developed. Visual inspection by a qualified clinician is adopted to obtain the expert knowledge database. The expert knowledge database consists of probability density functions of parameters for various sleep stages. Sleep stages are determined automatically according to the conditional probability. Totally, four subjects were participated. The automatic sleep stage determination results showed close agreements with the visual inspection on sleep stages of awake, REM (rapid eye movement), light sleep and deep sleep. The constructed expert knowledge database reflects the distributions of characteristic parameters which can be adaptive to variable sleep data in hospitals. The developed automatic determination technique based on expert knowledge of visual inspection can be an assistant tool enabling further inspection of sleep disorder cases for clinical practice.

  3. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex.

    PubMed

    Riesová, Martina; Svobodová, Jana; Ušelová, Kateřina; Tošner, Zdeněk; Zusková, Iva; Gaš, Bohuslav

    2014-10-17

    In this paper we determine acid dissociation constants, limiting ionic mobilities, complexation constants with β-cyclodextrin or heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and mobilities of resulting complexes of profens, using capillary zone electrophoresis and affinity capillary electrophoresis. Complexation parameters are determined for both neutral and fully charged forms of profens and further corrected for actual ionic strength and variable viscosity in order to obtain thermodynamic values of complexation constants. The accuracy of obtained complexation parameters is verified by multidimensional nonlinear regression of affinity capillary electrophoretic data, which provides the acid dissociation and complexation parameters within one set of measurements, and by NMR technique. A good agreement among all discussed methods was obtained. Determined complexation parameters were used as input parameters for simulations of electrophoretic separation of profens by Simul 5 Complex. An excellent agreement of experimental and simulated results was achieved in terms of positions, shapes, and amplitudes of analyte peaks, confirming the applicability of Simul 5 Complex to complex systems, and accuracy of obtained physical-chemical constants. Simultaneously, we were able to demonstrate the influence of electromigration dispersion on the separation efficiency, which is not possible using the common theoretical approaches, and predict the electromigration order reversals of profen peaks. We have shown that determined acid dissociation and complexation parameters in combination with tool Simul 5 Complex software can be used for optimization of separation conditions in capillary electrophoresis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Predictive value of postural and dynamic walking parameters after high-volume lumbar puncture in normal pressure hydrocephalus].

    PubMed

    Mary, P; Gallisa, J-M; Laroque, S; Bedou, G; Maillard, A; Bousquet, C; Negre, C; Gaillard, N; Dutray, A; Fadat, B; Jurici, S; Olivier, N; Cisse, B; Sablot, D

    2013-04-01

    Normal pressure hydrocephalus (NPH) was described by Adams et al. (1965). The common clinical presentation is the triad: gait disturbance, cognitive decline and urinary incontinence. Although these symptoms are suggestive, they are not specific to diagnosis. The improvement of symptoms after high-volume lumbar puncture (hVLP) could be a strong criterion for diagnosis. We tried to determine a specific pattern of dynamic walking and posture parameters in NPH. Additionally, we tried to specify the evolution of these criteria after hVLP and to determine predictive values of ventriculoperitoneal shunting (VPS) efficiency. Sixty-four patients were followed during seven years from January 2002 to June 2009. We identified three periods: before (S1), after hVLP (S2) and after VPS (S3). The following criteria concerned walking and posture parameters: walking parameters were speed, step length and step rhythm; posture parameters were statokinesigram total length and surface, length according to the surface (LFS), average value of equilibration for lateral movements (Xmoyen), anteroposterior movements (Ymoyen), total movement length in lateral axis (longX) and anteroposterior axis (longY). Among the 64 patients included, 22 had VPS and 16 were investigated in S3. All kinematic criteria are decreased in S1 compared with normal values. hVLP improved these criteria significantly (S2). Among posture parameters, only total length and surface of statokinesigram showed improvement in S1, but no improvement in S2. A gain in speed greater or equal to 0.15m/s between S1 and S2 predicted the efficacy of VPS with a positive predictive value (PPV) of 87.1% and a negative predictive value (NPV) of 69.7% (area under the ROC curve [AUC]: 0.86). Kinematic walking parameters are the most disruptive and are partially improved after hVLP. These parameters could be an interesting test for selecting candidates for VPS. These data have to be confirmed in a larger cohort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Submental Ultrasonographic Parameters among Patients with Obstructive Sleep Apnea.

    PubMed

    Bilici, Suat; Engin, Acioglu; Ozgur, Yigit; Ozlem Onerci, Celebi; Ahmet Gorkem, Yasak; Aytul Hande, Yardimci

    2017-03-01

    Objective This study aimed to determine the value of submental ultrasonography (US) parameters for diagnostic workup among patients with obstructive sleep apnea (OSA) and to determine whether there is a correlation between US findings and the severity of OSA. Study Design Cross-sectional analysis. Setting Tertiary education hospital. Subjects and Methods The study included 147 patients with suspected OSA who underwent submental US to evaluate various parameters following overnight polysomnography. US findings were compared with the apnea-hypopnea index and other parameters. Results All US parameters, except for subcutaneous tissue thickness, were significantly different among patients with OSA. Of note, distance between lingual arteries (DLA), geniohyoid muscle thickness (GMT), and lateral parapharyngeal wall thickness (LPWT) were significantly greater in the patients with severe OSA than those with mild and moderate OSA ( P < .001). GMT had the strongest correlation with OSA ( r = 0.419, P < .001); LPWT and DLA also had high correlation coefficient values ( r = 0.343, P < .001, and r = 0.342, P < .001, respectively). Stepwise regression analysis showed that GMT (beta = 0.243, P = 0.004), LPWT (beta = 0.236, P = 0.004), and DLA (beta = 0.204, P = 0.008) were the most significant factors for predicting the severity of OSA according to the apnea-hypopnea index. Conclusion Submental US can be used to determine whether there is a correlation between US findings and severity of OSA. GMT could be considered a novel parameter for determining the severity of OSA.

  6. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  7. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  8. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2007-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  9. An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2005-01-01

    A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.

  10. Determining optimal parameters in magnetic spacecraft stabilization via attitude feedback

    NASA Astrophysics Data System (ADS)

    Bruni, Renato; Celani, Fabio

    2016-10-01

    The attitude control of a spacecraft using magnetorquers can be achieved by a feedback control law which has four design parameters. However, the practical determination of appropriate values for these parameters is a critical open issue. We propose here an innovative systematic approach for finding these values: they should be those that minimize the convergence time to the desired attitude. This a particularly diffcult optimization problem, for several reasons: 1) such time cannot be expressed in analytical form as a function of parameters and initial conditions; 2) design parameters may range over very wide intervals; 3) convergence time depends also on the initial conditions of the spacecraft, which are not known in advance. To overcome these diffculties, we present a solution approach based on derivative-free optimization. These algorithms do not need to write analytically the objective function: they only need to compute it in a number of points. We also propose a fast probing technique to identify which regions of the search space have to be explored densely. Finally, we formulate a min-max model to find robust parameters, namely design parameters that minimize convergence time under the worst initial conditions. Results are very promising.

  11. Training and overtraining markers in selected sport events.

    PubMed

    Hartmann, U; Mester, J

    2000-01-01

    Varieties of symptoms are supposed to detect overtraining (OT). Besides the problems of diagnosis and analysis in elite athletes, a daily monitoring of training status takes place with measurement of the parameters serum urea (SU) and serum creatine kinase (CK); therefore, their meaningfulness will be examined, with special respect inter- and intra-individually. Data were obtained from determinations during training from athletes in rowing and athletes of international level. For 6981 SU determinations (male, N = 717; female, N = 285), a slightly asymmetric normal distribution was found (male, 80%, 5-7 mmol x L(-1); female, 75%, 4-6 mmol x L(-1)). Values for women were approximately 1.5 mmol x L(-1) lower. Individual variability was enormous; there seems little point in setting fixed value as 8.3 mmol x L(-1) for men and 7.0 mmol x L(-1) for women as a critical limit for OT. CK has also been measured and evaluated in sports as an essential parameter for determination of muscular stress. Frequency distributions of CK in 2790 samples (male, N = 497; female, N = 350) presented an asymmetric normal distribution with distinct trend toward higher values being evident for the range between 100 and 250 U x L(-1). Conspicuously elevated values occurred in the ranges 250-350 U x L(-1) and 1000-2000 U x L(-1). Men's maximal values were 3000 U x L(-1) and 1150 U x L(-1) for women. Individual variability was enormous. Athletes with chronically low CK exhibited mainly low variability; those with chronically higher values exhibited considerable variability. Establishment of both parameters should be useful to determine individual baselines from a large number of samples. Determinations should be made at least every 3 d in standardized conditions. If a large increase is observed in combination with reduced exercise tolerance after a phase of exertion (2-4 d), then the possibility of a catabolic/metabolic activity or insufficient exercise tolerance becomes much more likely.

  12. Improvement of shallow landslide prediction accuracy using soil parameterisation for a granite area in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Onda, Y.; Kim, J. K.

    2015-01-01

    SHALSTAB model applied to shallow landslides induced by rainfall to evaluate soil properties related with the effect of soil depth for a granite area in Jinbu region, Republic of Korea. Soil depth measured by a knocking pole test and two soil parameters from direct shear test (a and b) as well as one soil parameters from a triaxial compression test (c) were collected to determine the input parameters for the model. Experimental soil data were used for the first simulation (Case I) and, soil data represented the effect of measured soil depth and average soil depth from soil data of Case I were used in the second (Case II) and third simulations (Case III), respectively. All simulations were analysed using receiver operating characteristic (ROC) analysis to determine the accuracy of prediction. ROC analysis results for first simulation showed the low ROC values under 0.75 may be due to the internal friction angle and particularly the cohesion value. Soil parameters calculated from a stochastic hydro-geomorphological model were applied to the SHALSTAB model. The accuracy of Case II and Case III using ROC analysis showed higher accuracy values rather than first simulation. Our results clearly demonstrate that the accuracy of shallow landslide prediction can be improved when soil parameters represented the effect of soil thickness.

  13. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    NASA Technical Reports Server (NTRS)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Buxton, Richard Bruce (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  14. Planning Robot-Control Parameters With Qualitative Reasoning

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.

    1993-01-01

    Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.

  15. Computational tools for fitting the Hill equation to dose-response curves.

    PubMed

    Gadagkar, Sudhindra R; Call, Gerald B

    2015-01-01

    Many biological response curves commonly assume a sigmoidal shape that can be approximated well by means of the 4-parameter nonlinear logistic equation, also called the Hill equation. However, estimation of the Hill equation parameters requires access to commercial software or the ability to write computer code. Here we present two user-friendly and freely available computer programs to fit the Hill equation - a Solver-based Microsoft Excel template and a stand-alone GUI-based "point and click" program, called HEPB. Both computer programs use the iterative method to estimate two of the Hill equation parameters (EC50 and the Hill slope), while constraining the values of the other two parameters (the minimum and maximum asymptotes of the response variable) to fit the Hill equation to the data. In addition, HEPB draws the prediction band at a user-defined confidence level, and determines the EC50 value for each of the limits of this band to give boundary values that help objectively delineate sensitive, normal and resistant responses to the drug being tested. Both programs were tested by analyzing twelve datasets that varied widely in data values, sample size and slope, and were found to yield estimates of the Hill equation parameters that were essentially identical to those provided by commercial software such as GraphPad Prism and nls, the statistical package in the programming language R. The Excel template provides a means to estimate the parameters of the Hill equation and plot the regression line in a familiar Microsoft Office environment. HEPB, in addition to providing the above results, also computes the prediction band for the data at a user-defined level of confidence, and determines objective cut-off values to distinguish among response types (sensitive, normal and resistant). Both programs are found to yield estimated values that are essentially the same as those from standard software such as GraphPad Prism and the R-based nls. Furthermore, HEPB also has the option to simulate 500 response values based on the range of values of the dose variable in the original data and the fit of the Hill equation to that data. Copyright © 2014. Published by Elsevier Inc.

  16. Comparison of the color of natural teeth measured by a colorimeter and Shade Vision System.

    PubMed

    Cho, Byeong-Hoon; Lim, Yong-Kyu; Lee, Yong-Keun

    2007-10-01

    The objectives were to measure the difference in the color and color parameters of natural teeth measured by a tristimulus colorimeter (CM, used as a reference) and Shade Vision System (SV), and to determine the influence of color parameters on the color difference between the values measured by two instruments. Color of 12 maxillary and mandibular anterior teeth was measured by CM and SV for 47 volunteers (number of teeth=564). Color parameters such as CIE L*, a* and b* values, chroma and hue angle measured by two instruments were compared. Chroma was calculated as C*ab=(a*2 = b*2)1/2, and hue angle was calculated as h degrees =arctan(b*/a*). The influence of color parameters measured by CM on the color difference (DeltaE*(ab)) between the values measured by two instruments was analyzed with multiple regression analysis (alpha=0.01). Mean DeltaE*(ab) value between the values measured by two instruments was 21.7 (+/-3.7), and the mean difference in lightness (CIE L*) and chroma was 16.2 (+/-3.9) and 13.2 (+/-3.0), respectively. Difference in hue angle was high as 132.7 (+/-53.3) degrees . Except for the hue angle, all the color parameters showed significant correlations and the coefficient of determination (r(2)) was in the range of 0.089-0.478. Based on multiple regression analysis, the standardized partial correlation coefficient (beta) of the included predictors for the color difference was -0.710 for CIE L* and -0.300 for C*(ab) (p<0.01). All the color parameters showed significant but weak correlations except for hue angle. When lightness and chroma of teeth were high, color difference between the values measured by two instruments was small. Clinical accuracy of two instruments should be investigated further.

  17. Determination of Stable-Unstable Regions of the Slosh Motion in Spinning Space Vehicle by Perturbation Technique

    NASA Astrophysics Data System (ADS)

    Kang, Jai Young

    2005-12-01

    The objectives of this study are to perform extensive analysis on internal mass motion for a wider parameter space and to provide suitable design criteria for a broader applicability for the class of spinning space vehicles. In order to examine the stability criterion determined by a perturbation method, some numerical simulations will be performed and compared at various parameter points. In this paper, Ince-Strutt diagram for determination of stable-unstable regions of the internal mass motion of the spinning thrusting space vehicle in terms of design parameters will be obtained by an analytical method. Also, phase trajectories of the motion will be obtained for various parameter values and their characteristics are compared.

  18. Linear prediction and single-channel recording.

    PubMed

    Carter, A A; Oswald, R E

    1995-08-01

    The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.

  19. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.

    PubMed

    Li, Dai-Xi; Liu, Bao-Lin; Liu, Yi-shu; Chen, Cheng-lung

    2008-04-01

    Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (T(g)) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. T(g) is usually measured by using differential scanning calorimetry (DSC). In this study, the T(g) of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (C(p)), density (rho), amorphous cell volume (V(cell)) and specific volume (V(specific)) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90-270K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated T(g) value for glycerol-water binary solution. The T(g) values determined by simulation method were compared with the values in the literatures. The simulation values of T(g) (160.06-167.51K) agree well with the DSC results (163.60-167.10K) and the DMA results (159.00K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (T(g)) of glycerol-water binary cryoprotectants and may be used for other vitrification solutions.

  20. PV systems photoelectric parameters determining for field conditions and real operation conditions

    NASA Astrophysics Data System (ADS)

    Shepovalova, Olga V.

    2018-05-01

    In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.

  1. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    PubMed

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated.

  2. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  3. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  4. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  5. A design methodology for nonlinear systems containing parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Young, G. E.; Auslander, D. M.

    1983-01-01

    In the present design methodology for nonlinear systems containing parameter uncertainty, a generalized sensitivity analysis is incorporated which employs parameter space sampling and statistical inference. For the case of a system with j adjustable and k nonadjustable parameters, this methodology (which includes an adaptive random search strategy) is used to determine the combination of j adjustable parameter values which maximize the probability of those performance indices which simultaneously satisfy design criteria in spite of the uncertainty due to k nonadjustable parameters.

  6. Determination and correction of persistent biases in quantum annealers

    PubMed Central

    Perdomo-Ortiz, Alejandro; O’Gorman, Bryan; Fluegemann, Joseph; Biswas, Rupak; Smelyanskiy, Vadim N.

    2016-01-01

    Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances. PMID:26783120

  7. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2012-03-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  8. Reliable noninvasive measurement of blood gases

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.

    1994-01-01

    Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  9. Restoration of acidic mine spoils with sewage sludge: II measurement of solids applied

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stucky, D.J.; Zoeller, A.L.

    1980-01-01

    Sewage sludge was incorporated in acidic strip mine spoils at rates equivalent to 0, 224, 336, and 448 dry metric tons (dmt)/ha and placed in pots in a greenhouse. Spoil parameters were determined 48 hours after sludge incorporation, Time Planting (P), and five months after orchardgrass (Dactylis glomerata L.) was planted, Time Harvest (H), in the pots. Parameters measured were: pH, organic matter content (OM), cation exchange capacity (CEC), electrical conductivity (EC) and yield. Values for each parameter were significantly different at the two sampling times. Correlation coefficient values were calculated for all parameters versus rates of applied sewage sludgemore » and all parameters versus each other. Multiple regressions were performed, stepwise, for all parameters versus rates of applied sewage sludge. Equations to predict amounts of sewage sludge incorporated in spoils were derived for individual and multiple parameters. Generally, measurements made at Time P achieved the highest correlation coefficient and multiple correlation coefficient values; therefore, the authors concluded data from Time P had the greatest predictability value. The most important value measured to predict rate of applied sewage sludge was pH and some additional accuracy was obtained by including CEC in equation. This experiment indicated that soil properties can be used to estimate amounts of sewage sludge solids required to reclaim acidic mine spoils and to estimate quantities incorporated.« less

  10. Physiological parameter values in greyhounds before and after high-intensity exercise.

    PubMed

    Pellegrino, Francisco Javier; Risso, Analía; Vaquero, Pablo G; Corrada, Yanina A

    2018-01-01

    Dog sports competitions have greatly expanded. The availability of reference values for each type of activity could help assess fitness accurately. Heart rate (HR), blood lactate (BL) and rectal temperature (RT) are relevant physiological parameters to determine the dogs response to effort. Previous studies in greyhounds have reported the effect of high-intensity exercise on many physiological parameters immediately after completing different racing distances and recovery times. However, there are no studies concerning physiological changes over shorter racing distances. We therefore assessed the effect of sprint exercise on HR, BL and RT in nine greyhounds performing sprint exercise over a 100-m distance chasing a lure. After the exercise, dogs underwent a passive 10-min recovery phase. Before the exercise, immediately after it and at 5 and 10 min during recovery, HR and RT were assessed and blood samples were collected for BL determination. HR, BL and RT values increased significantly after the exercise (P<0.01). Whereas HR returned to pre-exercise values at 10 min during the recovery phase (P>0.1), BL concentration and RT remained increased (P<0.01). The abrupt increase in HR, BL and RT values observed immediately after the exercise indicates the high intensity of the effort performed. Similarly, BL concentration after the exercise exceeded the 4 mmol/L lactate threshold, suggesting a predominant anaerobic metabolism during effort. Although HR returned to pre-exercise values 10 min after the exercise, a more extensive recovery phase would be necessary for a total return to resting values, particularly for BL and RT. In greyhounds subjected to high-intensity exercise, HR, BL and RT were reliable physiological parameters to accurately assess the physiological response to effort. The use of sprint exercises over short racing distances could be useful for appropriately monitoring fitness in sporting dogs.

  11. Earthquake hazard analysis for the different regions in and around Ağrı

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr

    We investigated earthquake hazard parameters for Eastern part of Turkey by determining the a and b parameters in a Gutenberg–Richter magnitude–frequency relationship. For this purpose, study area is divided into seven different source zones based on their tectonic and seismotectonic regimes. The database used in this work was taken from different sources and catalogues such as TURKNET, International Seismological Centre (ISC), Incorporated Research Institutions for Seismology (IRIS) and The Scientific and Technological Research Council of Turkey (TUBITAK) for instrumental period. We calculated the a value, b value, which is the slope of the frequency–magnitude Gutenberg–Richter relationship, from the maximum likelihoodmore » method (ML). Also, we estimated the mean return periods, the most probable maximum magnitude in the time period of t-years and the probability for an earthquake occurrence for an earthquake magnitude ≥ M during a time span of t-years. We used Zmap software to calculate these parameters. The lowest b value was calculated in Region 1 covered Cobandede Fault Zone. We obtain the highest a value in Region 2 covered Kagizman Fault Zone. This conclusion is strongly supported from the probability value, which shows the largest value (87%) for an earthquake with magnitude greater than or equal to 6.0. The mean return period for such a magnitude is the lowest in this region (49-years). The most probable magnitude in the next 100 years was calculated and we determined the highest value around Cobandede Fault Zone. According to these parameters, Region 1 covered the Cobandede Fault Zone and is the most dangerous area around the Eastern part of Turkey.« less

  12. Modification of surface morphology of Ti6Al4V alloy manufactured by Laser Sintering

    NASA Astrophysics Data System (ADS)

    Draganovská, Dagmar; Ižariková, Gabriela; Guzanová, Anna; Brezinová, Janette; Koncz, Juraj

    2016-06-01

    The paper deals with the evaluation of relation between roughness parameters of Ti6Al4V alloy produced by DMLS and modified by abrasive blasting. There were two types of blasting abrasives that were used - white corundum and Zirblast at three levels of air pressure. The effect of pressure on the value of individual roughness parameters and an influence of blasting media on the parameters for samples blasted by white corundum and Zirblast were evaluated by ANOVA. Based on the measured values, the correlation matrix was set and the standard of correlation statistic importance between the monitored parameters was determined from it. The correlation coefficient was also set.

  13. Reliability and Validity of Kinetic and Kinematic Parameters Determined With Force Plates Embedded Under a Soil-Filled Baseball Mound.

    PubMed

    Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2017-08-01

    We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto 3 force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over the entire duration of pitching motion were 5.3 N˙s, 1.9 N˙s, and 8.2 N˙s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.

  14. Reference charts for fetal biometric parameters in twin pregnancies according to chorionicity.

    PubMed

    Araujo Júnior, Edward; Ruano, Rodrigo; Javadian, Pouya; Martins, Wellington P; Elito, Julio; Pires, Claudio Rodrigues; Zanforlin Filho, Sebastião Marques

    2014-04-01

    The objective of this article is to determine reference values for fetal biometric parameters in twin pregnancies and to compare these values between monochorionic and dichorionic pregnancies. A retrospective cross-sectional study was conducted among 157 monochorionic and 176 dichorionic twin pregnancies between 14 and 38 weeks of gestation. Biometric measurements included the biparietal diameter (BPD), abdominal circumference (AC), femurs length (FL) and estimated fetal weight (EFW). To evaluate the correlation between biometric parameters and gestational age, polynomial regression models were created, with adjustments using the coefficient of determination (R(2) ). Comparison between monochorionic and dichorionic pregnancies was performed using analysis of covariance. The mean BPD, AC, FL and EFW for the dichorionic pregnancies were 56.16 mm, 191.1 mm, 41.08 mm and 816.1 g, respectively. The mean BPD, AC, FL and EFW for the monochorionic pregnancies were 57.14 mm, 184.2 mm, 39.29 mm and 723.4 g, respectively. There was a statistical difference between mono and dichorionic pregnancies for all the biometric parameters (BPD p = 0.012; AC p = 0.047; FL p = 0.007; EFW p = 0.011). Reference curves of biometric parameters in twin pregnancies were determined. Biometric parameters were statistically different between monochorionic and dichorionic pregnancies. © 2014 John Wiley & Sons, Ltd.

  15. Homeostatic enhancement of sensory transduction

    PubMed Central

    Milewski, Andrew R.; Ó Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2017-01-01

    Our sense of hearing boasts exquisite sensitivity, precise frequency discrimination, and a broad dynamic range. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. Small changes in these values could compromise hair cells’ ability to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system uses a homeostatic mechanism that increases the robustness of its operation to variation in parameter values. To slowly adjust the response to sinusoidal stimulation, the homeostatic mechanism feeds back a rectified version of the hair bundle’s displacement to its adaptation process. When homeostasis is enforced, the range of parameter values for which the sensitivity, tuning sharpness, and dynamic range exceed specified thresholds can increase by more than an order of magnitude. Signatures in the hair cell’s behavior provide a means to determine through experiment whether such a mechanism operates in the auditory system. Robustness of function through homeostasis may be ensured in any system through mechanisms similar to those that we describe here. PMID:28760949

  16. Convergence properties of simple genetic algorithms

    NASA Technical Reports Server (NTRS)

    Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.

    1974-01-01

    The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.

  17. Design values of resilient modulus of stabilized and non-stabilized base.

    DOT National Transportation Integrated Search

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  18. Sex Determination by Biometry of Anterior Features of Human Hip Bones in South Indian Population.

    PubMed

    Rajasekhar, Sssn; Vasudha, T K; Aravindhan, K

    2017-06-01

    Sex determination is the first step in establishing the identity of skeletal remains. Many studies included biometry of posterior features of hip bone. Very few studies are reported involving the biometry of anterior features of the hip bone. Anterior features of hip bone are important especially, if there is damage to the posterior features of hip bone in cases involving deliberate disfigurement of the body to resist identification of the crime in medicolegal cases. The present study was done to evaluate the effectiveness of anterior border parameters of the hip bone for prediction of sex using discriminant function analysis in South Indian population. A total of 206 dry bones were used (121 male and 85 female) and parameters like the distance between pubic tubercle and anterior rim of acetabulum, vertical acetabular diameter, transverse acetabular diameter, and the distance between pubic tubercle to highest point on the iliopubic eminence were measured using Vernier calipers. Normally distributed variables were compared using Students t-test to analyse the significance. There was significant difference between the male and female hip bones of the observed variables with p-value less than 0.05. In parameters like the distance between pubic tubercle to anterior rim of acetabulum and distance between the highest points on iliopubic eminence to pubic tubercle; the values were more in female when compared to males. In parameters like vertical and transverse acetabular diameters; the values in males were more when compared to females. These parameters of hip bone can be utilised for sex determination in South Indian population.

  19. Assessing the importance of self-regulating mechanisms in diamondback moth population dynamics: application of discrete mathematical models.

    PubMed

    Nedorezov, Lev V; Löhr, Bernhard L; Sadykova, Dinara L

    2008-10-07

    The applicability of discrete mathematical models for the description of diamondback moth (DBM) (Plutella xylostella L.) population dynamics was investigated. The parameter values for several well-known discrete time models (Skellam, Moran-Ricker, Hassell, Maynard Smith-Slatkin, and discrete logistic models) were estimated for an experimental time series from a highland cabbage-growing area in eastern Kenya. For all sets of parameters, boundaries of confidence domains were determined. Maximum calculated birth rates varied between 1.086 and 1.359 when empirical values were used for parameter estimation. After fitting of the models to the empirical trajectory, all birth rate values resulted considerably higher (1.742-3.526). The carrying capacity was determined between 13.0 and 39.9DBM/plant, after fitting of the models these values declined to 6.48-9.3, all values well within the range encountered empirically. The application of the Durbin-Watson criteria for comparison of theoretical and experimental population trajectories produced negative correlations with all models. A test of residual value groupings for randomness showed that their distribution is non-stochastic. In consequence, we conclude that DBM dynamics cannot be explained as a result of intra-population self-regulative mechanisms only (=by any of the models tested) and that more comprehensive models are required for the explanation of DBM population dynamics.

  20. Soil Parameters for Representing a Karst Geologic Terrain in the Noah Land-Surface Model over Tennessee and Kentucky

    NASA Astrophysics Data System (ADS)

    Sullivan, Z.; Fan, X.

    2015-12-01

    Currently, the Noah Land-Surface Model (Noah-LSM) coupled with the Weather Research and Forecasting (WRF) model does not have a representation of the physical behavior of a karst terrain found in a large area of Tennessee and Kentucky and 25% of land area worldwide. The soluble nature of the bedrock within a karst geologic terrains allows for the formation of caverns, joints, fissures, sinkholes, and underground streams which affect the hydrological behavior of the region. The Highland Rim of Tennessee and the Pennyroyal Plateau and Bluegrass region of Kentucky make up a larger karst area known as the Interior Low Plateau. The highly weathered upper portion of the karst terrain, known as the epikarst, allows for more rapid transport of water through the system. For this study, hydrological aspects, such as bedrock porosity and the hydraulic conductivity, were chosen within this region in order to determine the most representative subsurface parameters for the Noah-LSM. These values along with the use of similar proxy values were chosen to calculate and represent the remaining eight parameters within the SOILPARM.TBL for the WRF model. Hydraulic conductivity values show a variation ranging from around 10-7 and 10-5 ms-1 for the karst bedrock within this region. A sand and clay soil type was used along with bedrock parameters to determine an average soil parameter type for the epikarst bedrock located within this region. Results from this study show parameters for an epikarst bedrock type displaying higher water transport through the system, similar to that of a sandy soil type with a water retention similar to that of a loam type soil. The physical nature of epikarst may lead to a decrease in latent heat values over this region and increase sensible heat values. This, in turn, may effect boundary layer growth which could lead to convective development. Future modeling work can be conducted using these values by way of coupling the soil parameters with the karst regions of the Tennessee/Kentucky area.

  1. Zooming in on neutrino oscillations with DUNE

    NASA Astrophysics Data System (ADS)

    Srivastava, Rahul; Ternes, Christoph A.; Tórtola, Mariam; Valle, José W. F.

    2018-05-01

    We examine the capabilities of the DUNE experiment as a probe of the neutrino mixing paradigm. Taking the current status of neutrino oscillations and the design specifications of DUNE, we determine the experiment's potential to probe the structure of neutrino mixing and C P violation. We focus on the poorly determined parameters θ23 and δC P and consider both two and seven years of run. We take various benchmarks as our true values, such as the current preferred values of θ23 and δC P, as well as several theory-motivated choices. We determine quantitatively DUNE's potential to perform a precision measurement of θ23, as well as to test the C P violation hypothesis in a model-independent way. We find that, after running for seven years, DUNE will make a substantial step in the precise determination of these parameters, bringing to quantitative test the predictions of various theories of neutrino mixing.

  2. Determination of Critical Parameters Based on the Intensity of Transmitted Light Around Gas-Liquid Interface: Critical Parameters of CO

    NASA Astrophysics Data System (ADS)

    Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki

    2014-05-01

    A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.

  3. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    Observation equations for the M2 ocean tide are computed from Geos 3 data for the long periodic variations of the inclination and node of the orbit. M2 ocean tide parameter values C22+ = 3.23 + or - 0.25 cm, epsilon 22+ = 331 + or - 6 deg, and epsilon 42+ = 113 + or - 6 deg are determined. With the assumption of zero solid tide phase lag, the lunar tidal acceleration is mostly (85%) due to the C22+ term in the expansion of the M2 tide with additional small contributions from the O1 and N2 tides. The calculated value for the tidal acceleration in lunar longitude is -27.4 + or - 3 arc sec/sq (100 yr) which is similar to values determined from astronomical data. The mean elements of Geos 3 are presented in tabular form.

  4. EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.

    PubMed

    Kripal, Ram; Singh, Manju

    2015-01-25

    Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Optimal Parameters to Determine the Apparent Diffusion Coefficient in Diffusion Weighted Imaging via Simulation

    NASA Astrophysics Data System (ADS)

    Perera, Dimuthu

    Diffusion weighted (DW) Imaging is a non-invasive MR technique that provides information about the tissue microstructure using the diffusion of water molecules. The diffusion is generally characterized by the apparent diffusion coefficient (ADC) parametric map. The purpose of this study is to investigate in silico how the calculation of ADC is affected by image SNR, b-values, and the true tissue ADC. Also, to provide optimal parameter combination depending on the percentage accuracy and precision for prostate peripheral region cancer application. Moreover, to suggest parameter choices for any type of tissue, while providing the expected accuracy and precision. In this research DW images were generated assuming a mono-exponential signal model at two different b-values and for known true ADC values. Rician noise of different levels was added to the DWI images to adjust the image SNR. Using the two DWI images, ADC was calculated using a mono-exponential model for each set of b-values, SNR, and true ADC. 40,000 ADC data were collected for each parameter setting to determine the mean and the standard-deviation of the calculated ADC, as well as the percentage accuracy and precision with respect to the true ADC. The accuracy was calculated using the difference between known and calculated ADC. The precision was calculated using the standard-deviation of calculated ADC. The optimal parameters for a specific study was determined when both the percentage accuracy and precision were minimized. In our study, we simulated two true ADCs (ADC 0.00102 for tumor and 0.00180 mm2/s for normal prostate peripheral region tissue). Image SNR was varied from 2 to 100 and b-values were varied from 0 to 2000s/mm2. The results show that the percentage accuracy and percentage precision were minimized with image SNR. To increase SNR, 10 signal-averagings (NEX) were used considering the limitation in total scan time. The optimal NEX combination for tumor and normal tissue for prostate peripheral region was 1: 9. Also, the minimum percentage accuracy and percentage precision were obtained when low b-value is 0 and high b-value is 800 mm2/s for normal tissue and 1400 mm2/s for tumor tissue. Results also showed that for tissues with 1 x 10-3 < ADC < 2.1 x 10-3 mm 2/s the parameter combination at SNR = 20, b-value pair 0, 800 mm 2/s with NEX = 1:9 can calculate ADC with a percentage accuracy of less than 2% and percentage precision of 6-8%. Also, for tissues with 0.6 x 10-3 < ADC < 1.25 x 10-3 mm2 /s the parameter combination at SNR = 20, b-value pair 0, 1400 mm 2/s with NEX =1:9 can calculate ADC with a percentage accuracy of less than 2% and percentage precision of 6-8%.

  6. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    DOEpatents

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  7. Sensitivity analysis of TRX-2 lattice parameters with emphasis on epithermal /sup 238/U capture. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.

    1977-03-01

    The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less

  8. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    NASA Astrophysics Data System (ADS)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  9. Statistical evaluation of stability data: criteria for change-over-time and data variability.

    PubMed

    Bar, Raphael

    2003-01-01

    In a recently issued ICH Q1E guidance on evaluation of stability data of drug substances and products, the need to perform a statistical extrapolation of a shelf-life of a drug product or a retest period for a drug substance is based heavily on whether data exhibit a change-over-time and/or variability. However, this document suggests neither measures nor acceptance criteria of these two parameters. This paper demonstrates a useful application of simple statistical parameters for determining whether sets of stability data from either accelerated or long-term storage programs exhibit a change-over-time and/or variability. These parameters are all derived from a simple linear regression analysis first performed on the stability data. The p-value of the slope of the regression line is taken as a measure for change-over-time, and a value of 0.25 is suggested as a limit to insignificant change of the quantitative stability attributes monitored. The minimal process capability index, Cpk, calculated from the standard deviation of the regression line, is suggested as a measure for variability with a value of 2.5 as a limit for an insignificant variability. The usefulness of the above two parameters, p-value and Cpk, was demonstrated on stability data of a refrigerated drug product and on pooled data of three batches of a drug substance. In both cases, the determined parameters allowed characterization of the data in terms of change-over-time and variability. Consequently, complete evaluation of the stability data could be pursued according to the ICH guidance. It is believed that the application of the above two parameters with their acceptance criteria will allow a more unified evaluation of stability data.

  10. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor

    PubMed Central

    Paeng, Jin Chul; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog

    2018-01-01

    Intratumoral heterogeneity has been suggested to be an important resistance mechanism leading to treatment failure. We hypothesized that radiologic images could be an alternative method for identification of tumor heterogeneity. We tested heterogeneity textural parameters on pretreatment FDG-PET/CT in order to assess the predictive value of target therapy. Recurred or metastatic non-small cell lung cancer (NSCLC) subjects with an activating EGFR mutation treated with either gefitinib or erlotinib were reviewed. An exploratory data set (n = 161) and a validation data set (n = 21) were evaluated, and eight parameters were selected for survival analysis. The optimal cutoff value was determined by the recursive partitioning method, and the predictive value was calculated using Harrell’s C-index. Univariate analysis revealed that all eight parameters showed an increased hazard ratio (HR) for progression-free survival (PFS). The highest HR was 6.41 (P<0.01) with co-occurrence (Co) entropy. Increased risk remained present after adjusting for initial stage, performance status (PS), and metabolic volume (MV) (aHR: 4.86, P<0.01). Textural parameters were found to have an incremental predictive value of early EGFR tyrosine kinase inhibitor (TKI) failure compared to that of the base model of the stage and PS (C-index 0.596 vs. 0.662, P = 0.02, by Co entropy). Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT are highly predictive factors for PFS of EGFR TKI in EGFR-mutated NSCLC patients. These parameters are easily applicable to the identification of a subpopulation at increased risk of early EGFR TKI failure. Correlation to genomic alteration should be determined in future studies. PMID:29385152

  11. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices.

    PubMed

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information.

  12. Characterization of Initial Parameter Information for Lifetime Prediction of Electronic Devices

    PubMed Central

    Li, Zhigang; Liu, Boying; Yuan, Mengxiong; Zhang, Feifei; Guo, Jiaqiang

    2016-01-01

    Newly manufactured electronic devices are subject to different levels of potential defects existing among the initial parameter information of the devices. In this study, a characterization of electromagnetic relays that were operated at their optimal performance with appropriate and steady parameter values was performed to estimate the levels of their potential defects and to develop a lifetime prediction model. First, the initial parameter information value and stability were quantified to measure the performance of the electronics. In particular, the values of the initial parameter information were estimated using the probability-weighted average method, whereas the stability of the parameter information was determined by using the difference between the extrema and end points of the fitting curves for the initial parameter information. Second, a lifetime prediction model for small-sized samples was proposed on the basis of both measures. Finally, a model for the relationship of the initial contact resistance and stability over the lifetime of the sampled electromagnetic relays was proposed and verified. A comparison of the actual and predicted lifetimes of the relays revealed a 15.4% relative error, indicating that the lifetime of electronic devices can be predicted based on their initial parameter information. PMID:27907188

  13. Accuracy Estimation and Parameter Advising for Protein Multiple Sequence Alignment

    PubMed Central

    DeBlasio, Dan

    2013-01-01

    Abstract We develop a novel and general approach to estimating the accuracy of multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new task that we call parameter advising: the problem of choosing values for alignment scoring function parameters from a given set of choices to maximize the accuracy of a computed alignment. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. Compared to prior approaches for estimating accuracy, our new approach (a) introduces novel feature functions that measure nonlocal properties of an alignment yet are fast to evaluate, (b) considers more general classes of estimators beyond linear combinations of features, and (c) develops new regression formulations for learning an estimator from examples; in addition, for parameter advising, we (d) determine the optimal parameter set of a given cardinality, which specifies the best parameter values from which to choose. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 27% improvement in accuracy over the best default parameter choice, and for parameter advising significantly outperforms the best prior approaches to assessing alignment quality. PMID:23489379

  14. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    PubMed

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  15. Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions.

    PubMed

    Van Geel, Paul J; Murray, Kathleen E

    2015-12-01

    Twelve instrument bundles were placed within two waste profiles as waste was placed in an operating landfill in Ste. Sophie, Quebec, Canada. The settlement data were simulated using a three-component model to account for primary or instantaneous compression, secondary compression or mechanical creep and biodegradation induced settlement. The regressed model parameters from the first waste layer were able to predict the settlement of the remaining four waste layers with good agreement. The model parameters were compared to values published in the literature. A MSW landfill scenario referenced in the literature was used to illustrate how the parameter values from the different studies predicted settlement. The parameters determined in this study and other studies with total waste heights between 15 and 60 m provided similar estimates of total settlement in the long term while the settlement rates and relative magnitudes of the three components varied. The parameters determined based on studies with total waste heights less than 15m resulted in larger secondary compression indices and lower biodegradation induced settlements. When these were applied to a MSW landfill scenario with a total waste height of 30 m, the settlement was overestimated and provided unrealistic values. This study concludes that more field studies are needed to measure waste settlement during the filling stage of landfill operations and more field data are needed to assess different settlement models and their respective parameters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Rapid optimization of MRM-MS instrument parameters by subtle alteration of precursor and product m/z targets.

    PubMed

    Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A; Martin, Daniel B

    2009-07-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition.

  17. Rapid Optimization of MRM-MS Instrument Parameters by Subtle Alteration of Precursor and Product m/z Targets

    PubMed Central

    Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A.; Martin, Daniel B.

    2009-01-01

    Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition. PMID:19405522

  18. Monte-Carlo based Uncertainty Analysis For CO2 Laser Microchanneling Model

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Nitish; Kumar, Subrata

    2016-09-01

    CO2 laser microchanneling has emerged as a potential technique for the fabrication of microfluidic devices on PMMA (Poly-methyl-meth-acrylate). PMMA directly vaporizes when subjected to high intensity focused CO2 laser beam. This process results in clean cut and acceptable surface finish on microchannel walls. Overall, CO2 laser microchanneling process is cost effective and easy to implement. While fabricating microchannels on PMMA using a CO2 laser, the maximum depth of the fabricated microchannel is the key feature. There are few analytical models available to predict the maximum depth of the microchannels and cut channel profile on PMMA substrate using a CO2 laser. These models depend upon the values of thermophysical properties of PMMA and laser beam parameters. There are a number of variants of transparent PMMA available in the market with different values of thermophysical properties. Therefore, for applying such analytical models, the values of these thermophysical properties are required to be known exactly. Although, the values of laser beam parameters are readily available, extensive experiments are required to be conducted to determine the value of thermophysical properties of PMMA. The unavailability of exact values of these property parameters restrict the proper control over the microchannel dimension for given power and scanning speed of the laser beam. In order to have dimensional control over the maximum depth of fabricated microchannels, it is necessary to have an idea of uncertainty associated with the predicted microchannel depth. In this research work, the uncertainty associated with the maximum depth dimension has been determined using Monte Carlo method (MCM). The propagation of uncertainty with different power and scanning speed has been predicted. The relative impact of each thermophysical property has been determined using sensitivity analysis.

  19. Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna.

    PubMed

    Neuert, Mark A C; Dunning, Cynthia E

    2013-09-01

    Strain energy-based adaptive material models are used to predict bone resorption resulting from stress shielding induced by prosthetic joint implants. Generally, such models are governed by two key parameters: a homeostatic strain-energy state (K) and a threshold deviation from this state required to initiate bone reformation (s). A refinement procedure has been performed to estimate these parameters in the femur and glenoid; this study investigates the specific influences of these parameters on resulting density distributions in the distal ulna. A finite element model of a human ulna was created using micro-computed tomography (µCT) data, initialized to a homogeneous density distribution, and subjected to approximate in vivo loading. Values for K and s were tested, and the resulting steady-state density distribution compared with values derived from µCT images. The sensitivity of these parameters to initial conditions was examined by altering the initial homogeneous density value. The refined model parameters selected were then applied to six additional human ulnae to determine their performance across individuals. Model accuracy using the refined parameters was found to be comparable with that found in previous studies of the glenoid and femur, and gross bone structures, such as the cortical shell and medullary canal, were reproduced. The model was found to be insensitive to initial conditions; however, a fair degree of variation was observed between the six specimens. This work represents an important contribution to the study of changes in load transfer in the distal ulna following the implementation of commercial orthopedic implants.

  20. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate.

    PubMed

    Kitak, Teja; Dumičić, Aleksandra; Planinšek, Odon; Šibanc, Rok; Srčič, Stanko

    2015-12-03

    In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen's approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen's approach it was δt = 31.15 MPa(0.5) and with IGC it was δt = 35.17 MPa(0.5). However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.

  1. Optimisation of warpage on thin shell plastic part using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Asyirah, B. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.

  2. Empirical flow parameters : a tool for hydraulic model validity

    USGS Publications Warehouse

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  3. Estimation of Geodetic and Geodynamical Parameters with VieVS

    NASA Technical Reports Server (NTRS)

    Spicakova, Hana; Bohm, Johannes; Bohm, Sigrid; Nilsson, tobias; Pany, Andrea; Plank, Lucia; Teke, Kamil; Schuh, Harald

    2010-01-01

    Since 2008 the VLBI group at the Institute of Geodesy and Geophysics at TU Vienna has focused on the development of a new VLBI data analysis software called VieVS (Vienna VLBI Software). One part of the program, currently under development, is a unit for parameter estimation in so-called global solutions, where the connection of the single sessions is done by stacking at the normal equation level. We can determine time independent geodynamical parameters such as Love and Shida numbers of the solid Earth tides. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, it is possible to determine frequency dependent values in the diurnal band together with the resonance frequency of Free Core Nutation. In this paper we show first results obtained from the 24-hour IVS R1 and R4 sessions.

  4. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.

    PubMed

    Kuu, Wei Y; Nail, Steven L; Sacha, Gregory

    2009-03-01

    The purpose of this study was to perform a rapid determination of vial heat transfer parameters, that is, the contact parameter K(cs) and the separation distance l(v), using the sublimation rate profiles measured by tunable diode laser absorption spectroscopy (TDLAS). In this study, each size of vial was filled with pure water followed by a freeze-drying cycle using a LyoStar II dryer (FTS Systems) with step-changes of the chamber pressure set-point at to 25, 50, 100, 200, 300, and 400 mTorr. K(cs) was independently determined by nonlinear parameter estimation using the sublimation rates measured at the pressure set-point of 25 mTorr. After obtaining K(cs), the l(v) value for each vial size was determined by nonlinear parameter estimation using the pooled sublimation rate profiles obtained at 25 to 400 mTorr. The vial heat transfer coefficient K(v), as a function of the chamber pressure, was readily calculated, using the obtained K(cs) and l(v) values. It is interesting to note the significant difference in K(v) of two similar types of 10 mL Schott tubing vials, primary due to the geometry of the vial-bottom, as demonstrated by the images of the contact areas of the vial-bottom. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Implementing Electric Potential Difference as a New Practical Parameter for Rapid and Specific Measurement of Minimum Inhibitory Concentration of Antibiotics.

    PubMed

    Mobasheri, Nasrin; Karimi, Mehrdad; Hamedi, Javad

    2018-06-05

    New methods to determine antimicrobial susceptibility of bacterial pathogens especially the minimum inhibitory concentration (MIC) of antibiotics have great importance in pharmaceutical industry and treatment procedures. In the present study, the MIC of several antibiotics was determined against some pathogenic bacteria using macrodilution test. In order to accelerate and increase the efficiency of culture-based method to determine antimicrobial susceptibility, the possible relationship between the changes in some physico-chemical parameters including conductivity, electrical potential difference (EPD), pH and total number of test strains was investigated during the logarithmic phase of bacterial growth in presence of antibiotics. The correlation between changes in these physico-chemical parameters and growth of bacteria was statistically evaluated using linear and non-linear regression models. Finally, the calculated MIC values in new proposed method were compared with the MIC derived from macrodilution test. The results represent significant association between the changes in EPD and pH values and growth of the tested bacteria during the exponential phase of bacterial growth. It has been assumed that the proliferation of bacteria can cause the significant changes in EPD values. The MIC values in both conventional and new method were consistent to each other. In conclusion, cost and time effective antimicrobial susceptibility test can be developed based on monitoring the changes in EPD values. The new proposed strategy also can be used in high throughput screening of biocompounds for their antimicrobial activity in a relatively shorter time (6-8 h) in comparison with the conventional methods.

  6. Investigating the Metallicity–Mixing-length Relation

    NASA Astrophysics Data System (ADS)

    Viani, Lucas S.; Basu, Sarbani; Joel Ong J., M.; Bonaca, Ana; Chaplin, William J.

    2018-05-01

    Stellar models typically use the mixing-length approximation as a way to implement convection in a simplified manner. While conventionally the value of the mixing-length parameter, α, used is the solar-calibrated value, many studies have shown that other values of α are needed to properly model stars. This uncertainty in the value of the mixing-length parameter is a major source of error in stellar models and isochrones. Using asteroseismic data, we determine the value of the mixing-length parameter required to properly model a set of about 450 stars ranging in log g, {T}eff}, and [{Fe}/{{H}}]. The relationship between the value of α required and the properties of the star is then investigated. For Eddington atmosphere, non-diffusion models, we find that the value of α can be approximated by a linear model, in the form of α /{α }ȯ =5.426{--}0.101 {log}(g)-1.071 {log}({T}eff}) +0.437([{Fe}/{{H}}]). This process is repeated using a variety of model physics, as well as compared with previous studies and results from 3D convective simulations.

  7. Computer program for analysis of hemodynamic response to head-up tilt test

    NASA Astrophysics Data System (ADS)

    ŚwiÄ tek, Eliza; Cybulski, Gerard; Koźluk, Edward; PiÄ tkowska, Agnieszka; Niewiadomski, Wiktor

    2014-11-01

    The aim of this work was to create a computer program, written in the MATLAB environment, which enables the visualization and analysis of hemodynamic parameters recorded during a passive tilt test using the CNS Task Force Monitor System. The application was created to help in the assessment of the relationship between the values and dynamics of changes of the selected parameters and the risk of orthostatic syncope. The signal analysis included: R-R intervals (RRI), heart rate (HR), systolic blood pressure (sBP), diastolic blood pressure (dBP), mean blood pressure (mBP), stroke volume (SV), stroke index (SI), cardiac output (CO), cardiac index (CI), total peripheral resistance (TPR), total peripheral resistance index (TPRI), ventricular ejection time (LVET) and thoracic fluid content (TFC). The program enables the user to visualize waveforms for a selected parameter and to perform smoothing with selected moving average parameters. It allows one to construct the graph of means for any range, and the Poincare plot for a selected time range. The program automatically determines the average value of the parameter before tilt, its minimum and maximum value immediately after changing positions and the times of their occurrence. It is possible to correct the automatically detected points manually. For the RR interval, it determines the acceleration index (AI) and the brake index (BI). It is possible to save calculated values to an XLS with a name specified by user. The application has a user-friendly graphical interface and can run on a computer that has no MATLAB software.

  8. EFFECT OF TEMPERATURE ON THE C ISOTOPIC VALUE OF MICROBIAL LIPIDS APPLIED TO DETERMINE C USAGE IN MICROBIAL COMMUNITIES

    EPA Science Inventory

    The combination of compound specific stable isotopic analysis with phospholipid fatty acid (PLFAS) analysis is useful in determining the source of organic carbon used by groups of a microbial community. Determination of the effect of certain environmental parameters is important ...

  9. Experimental Modal Analysis and Dynamic Component Synthesis. Volume 3. Modal Parameter Estimation

    DTIC Science & Technology

    1987-12-01

    residues as well as poles is achieved. A singular value decomposition method has been used to develop a complex mode indicator function ( CMIF )[70...which can be used to help determine the number of poles before the analysis. The CMIF is formed by performing a singular value decomposition of all of...servo systems which can include both low and high damping modes. "• CMIF can be used to indicate close or repeated eigenvalues before the parameter

  10. Curve Number Application in Continuous Runoff Models: An Exercise in Futility?

    NASA Astrophysics Data System (ADS)

    Lamont, S. J.; Eli, R. N.

    2006-12-01

    The suitability of applying the NRCS (Natural Resource Conservation Service) Curve Number (CN) to continuous runoff prediction is examined by studying the dependence of CN on several hydrologic variables in the context of a complex nonlinear hydrologic model. The continuous watershed model Hydrologic Simulation Program-FORTRAN (HSPF) was employed using a simple theoretical watershed in two numerical procedures designed to investigate the influence of soil type, soil depth, storm depth, storm distribution, and initial abstraction ratio value on the calculated CN value. This study stems from a concurrent project involving the design of a hydrologic modeling system to support the Cumulative Hydrologic Impact Assessments (CHIA) of over 230 coal-mined watersheds throughout West Virginia. Because of the large number of watersheds and limited availability of data necessary for HSPF calibration, it was initially proposed that predetermined CN values be used as a surrogate for those HSPF parameters controlling direct runoff. A soil physics model was developed to relate CN values to those HSPF parameters governing soil moisture content and infiltration behavior, with the remaining HSPF parameters being adopted from previous calibrations on real watersheds. A numerical procedure was then adopted to back-calculate CN values from the theoretical watershed using antecedent moisture conditions equivalent to the NRCS Antecedent Runoff Condition (ARC) II. This procedure used the direct runoff produced from a cyclic synthetic storm event time series input to HSPF. A second numerical method of CN determination, using real time series rainfall data, was used to provide a comparison to those CN values determined using the synthetic storm event time series. It was determined that the calculated CN values resulting from both numerical methods demonstrated a nonlinear dependence on all of the computational variables listed above. It was concluded that the use of the Curve Number as a surrogate for the selected subset of HPSF parameters could not be justified. These results suggest that use of the Curve Number in other complex continuous time series hydrologic models may not be appropriate, given the limitations inherent in the definition of the NRCS CN method.

  11. Comparison of the flexural strength of six reinforced restorative materials.

    PubMed

    Cohen, B I; Volovich, Y; Musikant, B L; Deutsch, A S

    2001-01-01

    This study calculated the flexural strength for six reinforced restorative materials and demonstrated that flexural strength values can be determined simply by using physical parameters (diametral tensile strength and Young's modulus values) that are easily determined experimentally. A one-way ANOVA analysis demonstrated a statistically significant difference between the two reinforced glass ionomers and the four composite resin materials, with the composite resin being stronger than the glass ionomers.

  12. The Sixth Spectrum of Iridium (Ir VI): Determination of the 5d4, 5d36s and 5d36p Configurations

    NASA Astrophysics Data System (ADS)

    Azarov, V. I.; Gayasov, R. R.; Gayasov, R. R.; Joshi, Y. N.; Churilov, S. S.

    The spectrum of five times ionized iridium, Ir VI, was investigated in the 420-1520 Å wavelength region. The analysis has led to the determination of the 5d4, 5d36s and 5d36p configurations. Thirty of thirty four theoretically possible 5d4 levels, 27 of 38 possible 5d36s levels and 96 of 110 possible 5d36p levels have been established. The levels are based on 711 classified spectral lines. The level structure of the configurations has been theoretically interpreted using the orthogonal operators technique. The energy parameters have been determined by a least squares fit to the observed levels. Calculated energy values and LS-compositions, obtained from the fitted parameter values are given.

  13. Rotational characterization of methyl methacrylate: Internal dynamics and structure determination

    NASA Astrophysics Data System (ADS)

    Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe

    2018-01-01

    Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.

  14. Serum chemistry reference values for the common genet (Genetta genetta): variations associated with Leishmania infantum infection.

    PubMed

    Millán, Javier; Chirife, Andrea D; Altet, Laura

    2015-03-01

    The role of wildlife in the epidemiology of leishmaniosis in under debate, and determining whether infection with Leishmania infantum causes illness in wild carnivores is important to determine its potential role as a reservoir. To provide for the first time serum biochemistry reference values for the common genet (Genetta genetta), and to determine variations associated with L. infantum infection. Twenty-five serum biochemistry parameters were determined in 22 wild-caught genets. Blood samples were analyzed for L. infantum DNA by means of real-time polymerase chain reaction (PCR). Two female genets were positive for L. infantum DNA but did not show any external clinical sign upon physical examination. Among other variations in the biochemistry values of these genets, one presented a higher concentration of gamma-globulins and cholesterol, whereas the other genet presented increased creatinine, bilirubin, and chloride levels when compared to uninfected females. Sex-related differences in some parameters were also reported. Infection with L. infantum may sometimes be accompanied by abnormal serum biochemistry in wild carnivores. Clinical disease may occur in L. infantum-infected wild carnivores. This has implications in the epidemiology of leishmaniosis. In addition, the data provided here would also be useful as reference values for researchers or rehabilitators working with the common genet.

  15. Determining the parameters at which burnout occurs in the waterwall tubes of drum boilers

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.

    2007-09-01

    Parameters at which burnout occurs are presented that were obtained by measuring the temperature and heat fluxes during experiments carried out directly on a boiler. The results of a comparison between the obtained values and the data of investigations on a test facility are given.

  16. Data transformation methods for multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  17. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters.

    PubMed

    Zhou, Qian-Jun; Zheng, Zhi-Chun; Zhu, Yong-Qiao; Lu, Pei-Ji; Huang, Jia; Ye, Jian-Ding; Zhang, Jie; Lu, Shun; Luo, Qing-Quan

    2017-05-01

    To investigate the potential value of CT parameters to differentiate ground-glass nodules between noninvasive adenocarcinoma and invasive pulmonary adenocarcinoma (IPA) as defined by IASLC/ATS/ERS classification. We retrospectively reviewed 211 patients with pathologically proved stage 0-IA lung adenocarcinoma which appeared as subsolid nodules, from January 2012 to January 2013 including 137 pure ground glass nodules (pGGNs) and 74 part-solid nodules (PSNs). Pathological data was classified under the 2011 IASLC/ATS/ERS classification. Both quantitative and qualitative CT parameters were used to determine the tumor invasiveness between noninvasive adenocarcinomas and IPAs. There were 154 noninvasive adenocarcinomas and 57 IPAs. In pGGNs, CT size and area, one-dimensional mean CT value and bubble lucency were significantly different between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate regression and ROC analysis revealed that CT size and one-dimensional mean CT value were predictive of noninvasive adenocarcinomas compared to IPAs. Optimal cutoff value was 13.60 mm (sensitivity, 75.0%; specificity, 99.6%), and -583.60 HU (sensitivity, 68.8%; specificity, 66.9%). In PSNs, there were significant differences in CT size and area, solid component area, solid proportion, one-dimensional mean and maximum CT value, three-dimensional (3D) mean CT value between noninvasive adenocarcinomas and IPAs on univariate analysis. Multivariate and ROC analysis showed that CT size and 3D mean CT value were significantly differentiators. Optimal cutoff value was 19.64 mm (sensitivity, 53.7%; specificity, 93.9%), -571.63 HU (sensitivity, 85.4%; specificity, 75.8%). For pGGNs, CT size and one-dimensional mean CT value are determinants for tumor invasiveness. For PSNs, tumor invasiveness can be predicted by CT size and 3D mean CT value.

  18. Method for Predicting and Optimizing System Parameters for Electrospinning System

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  19. Nanostructure Sensing and Transmission of Gas Data

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor)

    2011-01-01

    A system for receiving, analyzing and communicating results of sensing chemical and/or physical parameter values, using wireless transmission of the data. Presence or absence of one or more of a group of selected chemicals in a gas or vapor is determined, using suitably functionalized carbon nanostructures that are exposed to the gas. One or more physical parameter values, such as temperature, vapor pressure, relative humidity and distance from a reference location, are also sensed for the gas, using nanostructures and/or microstructures. All parameter values are transmitted wirelessly to a data processing site or to a control site, using an interleaving pattern for data received from different sensor groups, using I.E.E.E. 802.11 or 802.15 protocol, for example. Methods for estimating chemical concentration are discussed.

  20. DETERMINATION OF KOW VALUES FOR A SERIES OF ARYL GLUCURONIDES

    EPA Science Inventory

    An important perameter in toxicokinetic modeling is the octanol/water partition coefficient (Kow). This parameter has often been used to predict the accumulation of contaminants from water to fish (Klamer and Beekman 1995); however, few Kow values are available for modeling the b...

  1. Content dependent selection of image enhancement parameters for mobile displays

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo

    2011-01-01

    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  2. Effect of Fault Parameter Uncertainties on PSHA explored by Monte Carlo Simulations: A case study for southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Akinci, A.; Pace, B.

    2017-12-01

    In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.

  3. Theoretical performance analysis of doped optical fibers based on pseudo parameters

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Seraji, Faramarz E.

    2010-09-01

    Characterization of doped optical fibers (DOFs) is an essential primary stage for design of DOF-based devices. This paper presents design of novel measurement techniques to determine DOFs parameters using mono-beam propagation in a low-loss medium by generating pseudo parameters for the DOFs. The designed techniques are able to characterize simultaneously the absorption, emission cross-sections (ACS and ECS), and dopant concentration of DOFs. In both the proposed techniques, we assume pseudo parameters for the DOFs instead of their actual values and show that the choice of these pseudo parameters values for design of DOF-based devices, such as erbium-doped fiber amplifier (EDFA), are appropriate and the resulting error is quite negligible when compared with the actual parameters values.Utilization of pseudo ACS and ECS values in design procedure of EDFAs does not require the measurement of background loss coefficient (BLC) and makes the rate equation of the DOFs simple. It is shown that by using the pseudo parameters values obtained by the proposed techniques, the error in the gain of a designed EDFA with a BLC of about 1 dB/km, are about 0.08 dB. It is further indicated that the same scenario holds good for BLC lower than 5 dB/m and higher than 12 dB/m. The proposed characterization techniques have simple procedures and are low cost that can have an advantageous use in manufacturing of the DOFs.

  4. Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment

    NASA Astrophysics Data System (ADS)

    Kang, Ja-Young

    2003-12-01

    The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.

  5. Observational constraints on Hubble parameter in viscous generalized Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Thakur, P.

    2018-04-01

    Cosmological model with viscous generalized Chaplygin gas (in short, VGCG) is considered here to determine observational constraints on its equation of state parameters (in short, EoS) from background data. These data consists of H(z)-z (OHD) data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter and SN Ia data (Union 2.1). Best-fit values of the EoS parameters including present Hubble parameter (H0) and their acceptable range at different confidence limits are determined. In this model the permitted range for the present Hubble parameter and the transition redshift (zt) at 1σ confidence limits are H0= 70.24^{+0.34}_{-0.36} and zt=0.76^{+0.07}_{-0.07} respectively. These EoS parameters are then compared with those of other models. Present age of the Universe (t0) have also been determined here. Akaike information criterion and Bayesian information criterion for the model selection have been adopted for comparison with other models. It is noted that VGCG model satisfactorily accommodates the present accelerating phase of the Universe.

  6. Determination of Earth rotation by the combination of data from different space geodetic systems

    NASA Technical Reports Server (NTRS)

    Archinal, Brent Allen

    1987-01-01

    Formerly, Earth Rotation Parameters (ERP), i.e., polar motion and UTI-UTC values, have been determined using data from only one observational system at a time, or by the combination of parameters previously obtained in such determinations. The question arises as to whether a simultaneous solution using data from several sources would provide an improved determination of such parameters. To pursue this reasoning, fifteen days of observations have been simulated using realistic networks of Lunar Laser Ranging (LLR), Satellite Laser Ranging (SLR) to Lageos, and Very Long Baseline Interferometry (VLBI) stations. A comparison has been done of the accuracy and precision of the ERP obtained from: (1) the individual system solutions, (2) the weighted means of those values, (3) all of the data by means of the combination of the normal equations obtained in 1, and (4) a grand solution with all the data. These simulations show that solutions done by the normal equation combination and grand solution methods provide the best or nearly the best ERP for all the periods considered, but that weighted mean solutions provide nearly the same accuracy and precision. VLBI solutions also provide similar accuracies.

  7. Gaia FGK benchmark stars: Metallicity

    NASA Astrophysics Data System (ADS)

    Jofré, P.; Heiter, U.; Soubiran, C.; Blanco-Cuaresma, S.; Worley, C. C.; Pancino, E.; Cantat-Gaudin, T.; Magrini, L.; Bergemann, M.; González Hernández, J. I.; Hill, V.; Lardo, C.; de Laverny, P.; Lind, K.; Masseron, T.; Montes, D.; Mucciarelli, A.; Nordlander, T.; Recio Blanco, A.; Sobeck, J.; Sordo, R.; Sousa, S. G.; Tabernero, H.; Vallenari, A.; Van Eck, S.

    2014-04-01

    Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or "benchmark stars", with well-defined parameters to be used as a reference. Aims: We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods: Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results: We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time. Based on NARVAL and HARPS data obtained within the Gaia DPAC (Data Processing and Analysis Consortium) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group and on data retrieved from the ESO-ADP database.Tables 6-76 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A133

  8. On the correlations between the polyhedron eccentricity parameters and the bond-valence sums for the cations with one lone electron pair.

    PubMed

    Sidey, Vasyl

    2008-08-01

    Applicability of the Wang-Liebau polyhedron eccentricity parameter in the bond-valence model [Wang & Liebau (2007). Acta Cryst. B63, 216-228] has been found to be doubtful: the correlations between the values of the polyhedron eccentricity parameters and the bond-valence sums calculated for the cations with one lone electron pair are probably an artifact of the poorly determined bond-valence parameters.

  9. Quantitative In Vivo Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions

    PubMed Central

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki

    2014-01-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104

  10. Improved Fuzzy K-Nearest Neighbor Using Modified Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Siringoringo, Rimbun

    2017-12-01

    Fuzzy k-Nearest Neighbor (FkNN) is one of the most powerful classification methods. The presence of fuzzy concepts in this method successfully improves its performance on almost all classification issues. The main drawbackof FKNN is that it is difficult to determine the parameters. These parameters are the number of neighbors (k) and fuzzy strength (m). Both parameters are very sensitive. This makes it difficult to determine the values of ‘m’ and ‘k’, thus making FKNN difficult to control because no theories or guides can deduce how proper ‘m’ and ‘k’ should be. This study uses Modified Particle Swarm Optimization (MPSO) to determine the best value of ‘k’ and ‘m’. MPSO is focused on the Constriction Factor Method. Constriction Factor Method is an improvement of PSO in order to avoid local circumstances optima. The model proposed in this study was tested on the German Credit Dataset. The test of the data/The data test has been standardized by UCI Machine Learning Repository which is widely applied to classification problems. The application of MPSO to the determination of FKNN parameters is expected to increase the value of classification performance. Based on the experiments that have been done indicating that the model offered in this research results in a better classification performance compared to the Fk-NN model only. The model offered in this study has an accuracy rate of 81%, while. With using Fk-NN model, it has the accuracy of 70%. At the end is done comparison of research model superiority with 2 other classification models;such as Naive Bayes and Decision Tree. This research model has a better performance level, where Naive Bayes has accuracy 75%, and the decision tree model has 70%

  11. The electrical conductivity of in vivo human uterine fibroids.

    PubMed

    DeLonzor, Russ; Spero, Richard K; Williams, Joseph J

    2011-01-01

    The purpose of this study was to determine the value of electrical conductivity that can be used for numerical modelling in vivo radiofrequency ablation (RFA) treatments of human uterine fibroids. No experimental electrical conductivity data have previously been reported for human uterine fibroids. In this study electrical data (voltage) from selected in vivo clinical procedures on human uterine fibroids were used to numerically model the treatments. Measured versus calculated power dissipation profiles were compared to determine uterine fibroid electrical conductivity. Numerical simulations were conducted utilising a wide range of values for tissue thermal conductivity, heat capacity and blood perfusion coefficient. The simulations demonstrated that power dissipation was insensitive to the exact values of these parameters for the simulated geometry, treatment duration, and power level. Consequently, it was possible to determine tissue electrical conductivity without precise knowledge of the values for these parameters. Results of this study showed that an electrical conductivity for uterine fibroids of 0.305 S/m at 37°C and a temperature coefficient of 0.2%/°C can be used for modelling Radio Frequency Ablation of human uterine fibroids at a frequency of 460 kHz for temperatures from 37°C to 100°C.

  12. Determination of pKa values of some antipsychotic drugs by HPLC--correlations with the Kamlet and taft solvatochromic parameters and HPLC analysis in dosage forms.

    PubMed

    Sanli, Senem; Akmese, Bediha; Altun, Yuksel

    2013-01-01

    In this study, ionization constant (pKa) values were determined by using the dependence of the retention factor on the pH of the mobile phase for four ionizable drugs, namely, risperidone (RI), clozapine (CL), olanzapine (OL), and sertindole (SE). The effect of the mobile phase composition on the pKa was studied by measuring the pKa at different acetonitrile-water mixtures in an HPLC-UV method. To explain the variation of the pKa values obtained over the whole composition range studied, the quasi-lattice quasi-chemical theory of preferential solvation was applied. The pKa values of drugs were correlated with the Kamlet and Taft solvatochromic parameters. Kamlet and Taft's general equation was reduced to two terms by using combined factor analysis and target factor analysis in these mixtures: the independent term and the hydrogen-bond donating ability a. The HPLC-UV method was successfully applied for the determination of RI, OL, and SE in pharmaceutical dosage forms. CL was chosen as an internal standard. Additionally, the repeatability, reproducibility, selectivity, precision, and accuracy of the method in all media were investigated and calculated.

  13. Parameter estimation of multivariate multiple regression model using bayesian with non-informative Jeffreys’ prior distribution

    NASA Astrophysics Data System (ADS)

    Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.

    2018-05-01

    Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.

  14. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  15. Image analysis and green tea color change kinetics during thin-layer drying.

    PubMed

    Shahabi, Mohammad; Rafiee, Shahin; Mohtasebi, Seyed Saeid; Hosseinpour, Soleiman

    2014-09-01

    This study was conducted to investigate the effect of air temperature and air flow velocity on kinetics of color parameter changes during hot-air drying of green tea, to obtain the best model for hot-air drying of green tea, to apply a computer vision system and to study the color changes during drying. In the proposed computer vision system system, at first RGB values of the images were converted into XYZ values and then to Commission International d'Eclairage L*a*b* color coordinates. The obtained color parameters of L*, a* and b* were calibrated with Hunter-Lab colorimeter. These values were also used for calculation of the color difference, chroma, hue angle and browning index. The values of L* and b* decreased, while the values of a* and color difference (ΔE*ab ) increased during hot-air drying. Drying data were fitted to three kinetic models. Zero, first-order and fractional conversion models were utilized to describe the color changes of green tea. The suitability of fitness was determined using the coefficient of determination (R (2)) and root-mean-square error. Results showed that the fraction conversion model had more acceptable fitness than the other two models in most of color parameters. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Interface morphology of a Cr(001)/Fe(001) superlattice determined by scanning tunneling microscopy and x-ray diffraction: A comparison

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.

    2001-01-01

    A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.

  17. Reference values for biochemical parameters in blood serum of young and adult alpacas (Vicugna pacos).

    PubMed

    Husakova, T; Pavlata, L; Pechova, A; Hauptmanova, K; Pitropovska, E; Tichy, L

    2014-09-01

    The aim of this study was to establish reference interval for biochemical parameters in blood of alpacas on the basis of large population of clinically healthy animals, and to determine the influence of sex, age and season on nitrogen and lipid metabolites, enzymes, electrolytes, vitamins and minerals in blood of alpacas. Blood samples were collected from 311 alpacas (61 males and 201 females >6 months of age and 49 crias (21 males and 28 females) ⩽6 months of age). Selected farms were located in Central Europe (Czech Republic and Germany). We determined 24 biochemical parameters from blood serum. We performed the comparison of results by the sex of animals and for the older group also the comparison of the results with regard to the season, respectively, to the feeding period. We found no highly significant difference (P<0.01) between males and females with the exception of γ-glutamyl transferase (GGT), alkaline phosphatase (ALP) and cholesterol. We found 15 significantly different parameters between the group of crias 6 months of age and the older alpacas. Based on our findings we suggest for most parameters to use different reference intervals (especially ALP, cholesterol, total protein, globulin, non-esterified fatty acids (NEFA), GGT and phosphorus) for the two above-mentioned age groups. Another important finding is the differences between some parameters in older group of alpacas in summer/winter feeding period. Animals in the summer feeding period have higher values of parameters related to fat mobilization (β-hydroxybutyrate, NEFA) and liver metabolism (bilirubin, alanine aminotransferase). The winter period with increased feeding of supplements with higher amount of fat, vitamins and minerals is characteristic by increased values of cholesterol, triglycerides, vitamins A and E, and some minerals (K, Ca, Mg and Cl) in blood serum. Clinical laboratory diagnosis of metabolic disturbances may be improved with use of age-based reference values and with consideration of seasonal differences.

  18. Determination of the Landau Lifshitz damping parameter of composite magnetic fluids

    NASA Astrophysics Data System (ADS)

    Fannin, P. C.; Malaescu, I.; Marin, C. N.

    2007-01-01

    Measurements of the frequency dependent, complex magnetic susceptibility, χ(ω)= χ‧( ω)- iχ″( ω), in the GHz range, are used to investigate the effect which the mixing of two different magnetic fluids has on the value of the damping parameter, α, of the Landau-Lifshitz equation. The magnetic fluid samples investigated in this study were three kerosene-based magnetic fluids, stabilised with oleic acid, denoted as MF1, MF2 and MF3. Sample MF1 was a magnetic fluid with Mn 0.6Fe 0.4Fe 2O 4 particles, sample MF2 was a magnetic fluid with Ni 0.4Zn 0.6Fe 2O 4 particles and sample MF3 was a composite magnetic fluid obtained by mixing a part of sample MF1 with a part of sample MF2, in proportion of 1:1. The experimental results revealed that the value of the damping parameter of the composite sample (sample MF3) is between the α values obtained for its constituents (samples MF1 and MF2). Based on the superposition principle, which states that the susceptibility of a magnetic fluid sample is a superposition of individual contributions of the magnetic particles, a theoretical model is proposed. The experimental results are shown to be in close agreement with the theoretical results. This result is potentially useful in the design of microwave-operating materials, in that it enables one to determine a particular value of damping parameter.

  19. Modeling clear-sky solar radiation across a range of elevations in Hawai‘i: Comparing the use of input parameters at different temporal resolutions

    NASA Astrophysics Data System (ADS)

    Longman, Ryan J.; Giambelluca, Thomas W.; Frazier, Abby G.

    2012-01-01

    Estimates of clear sky global solar irradiance using the parametric model SPCTRAL2 were tested against clear sky radiation observations at four sites in Hawai`i using daily, mean monthly, and 1 year mean model parameter settings. Atmospheric parameters in SPCTRAL2 and similar models are usually set at site-specific values and are not varied to represent the effects of fluctuating humidity, aerosol amount and type, or ozone concentration, because time-dependent atmospheric parameter estimates are not available at most sites of interest. In this study, we sought to determine the added value of using time dependent as opposed to fixed model input parameter settings. At the AERONET site, Mauna Loa Observatory (MLO) on the island of Hawai`i, where daily measurements of atmospheric optical properties and hourly solar radiation observations are available, use of daily rather than 1 year mean aerosol parameter values reduced mean bias error (MBE) from 18 to 10 W m-2 and root mean square error from 25 to 17 W m-2. At three stations in the HaleNet climate network, located at elevations of 960, 1640, and 2590 m on the island of Maui, where aerosol-related parameter settings were interpolated from observed values for AERONET sites at MLO (3397 m) and Lāna`i (20 m), and precipitable water was estimated using radiosonde-derived humidity profiles from nearby Hilo, the model performed best when using constant 1 year mean parameter values. At HaleNet Station 152, for example, MBE was 18, 10, and 8 W m-2 for daily, monthly, and 1 year mean parameters, respectively.

  20. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations.

    PubMed

    Gupta, Jasmine; Nunes, Cletus; Vyas, Shyam; Jonnalagadda, Sriramakamal

    2011-03-10

    The objectives of this study were (i) to develop a computational model based on molecular dynamics technique to predict the miscibility of indomethacin in carriers (polyethylene oxide, glucose, and sucrose) and (ii) to experimentally verify the in silico predictions by characterizing the drug-carrier mixtures using thermoanalytical techniques. Molecular dynamics (MD) simulations were performed using the COMPASS force field, and the cohesive energy density and the solubility parameters were determined for the model compounds. The magnitude of difference in the solubility parameters of drug and carrier is indicative of their miscibility. The MD simulations predicted indomethacin to be miscible with polyethylene oxide and to be borderline miscible with sucrose and immiscible with glucose. The solubility parameter values obtained using the MD simulations values were in reasonable agreement with those calculated using group contribution methods. Differential scanning calorimetry showed melting point depression of polyethylene oxide with increasing levels of indomethacin accompanied by peak broadening, confirming miscibility. In contrast, thermal analysis of blends of indomethacin with sucrose and glucose verified general immiscibility. The findings demonstrate that molecular modeling is a powerful technique for determining the solubility parameters and predicting miscibility of pharmaceutical compounds. © 2011 American Chemical Society

  1. Nuclear Track Detector Characterization via Alpha-Spectrometry for Radioprotection Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morelli, D.; Imme, G.; Catalano, R.

    2011-12-13

    Solid Nuclear Track Detectors (SNTDs), CR-39 type, are usually adopted to monitor radon gas concentrations. In order to characterize the detectors according to track geometrical parameters, detectors were irradiated inside a vacuum chamber by alpha particles at twelve energy values, obtained by different Mylar foils in front of a {sup 241}Am source. The alpha energy values were verified using a Si detector. After the exposure to the alpha particles, the detectors were chemically etched to enlarge the tracks, which were then analyzed by means of a semiautomatic system composed of an optical microscope equipped with a CCD camera connected tomore » a personal computer to store images. A suitable routine analyzed the track parameters: major and minor axis length and mean grey level, allowing us to differentiate tracks according to the incident alpha energy and then to individuate the discrimination factors for radon alpha tracks. The combined use of geometrical and optical parameters allows one to overcome the ambiguity in the alpha energy determination due to the non-monotonicity of each parameter versus energy. After track parameter determination, a calibration procedure was performed by means of a radon chamber. The calibration was verified through an inter-comparing survey.« less

  2. Reliability of reference distances used in photogrammetry.

    PubMed

    Aksu, Muge; Kaya, Demet; Kocadereli, Ilken

    2010-07-01

    To determine the reliability of the reference distances used for photogrammetric assessment. The sample consisted of 100 subjects with mean ages of 22.97 +/- 2.98 years. Five lateral and four frontal parameters were measured directly on the subjects' faces. For photogrammetric assessment, two reference distances for the profile view and three reference distances for the frontal view were established. Standardized photographs were taken and all the parameters that had been measured directly on the face were measured on the photographs. The reliability of the reference distances was checked by comparing direct and indirect values of the parameters obtained from the subjects' faces and photographs. Repeated measure analysis of variance (ANOVA) and Bland-Altman analyses were used for statistical assessment. For profile measurements, the indirect values measured were statistically different from the direct values except for Sn-Sto in male subjects and Prn-Sn and Sn-Sto in female subjects. The indirect values of Prn-Sn and Sn-Sto were reliable in both sexes. The poorest results were obtained in the indirect values of the N-Sn parameter for female subjects and the Sn-Me parameter for male subjects according to the Sa-Sba reference distance. For frontal measurements, the indirect values were statistically different from the direct values in both sexes except for one in male subjects. The indirect values measured were not statistically different from the direct values for Go-Go. The indirect values of Ch-Ch were reliable in male subjects. The poorest results were obtained according to the P-P reference distance. For profile assessment, the T-Ex reference distance was reliable for Prn-Sn and Sn-Sto in both sexes. For frontal assessment, Ex-Ex and En-En reference distances were reliable for Ch-Ch in male subjects.

  3. Surveillance system and method having parameter estimation and operating mode partitioning

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2005-01-01

    A system and method for monitoring an apparatus or process asset including creating a process model comprised of a plurality of process submodels each correlative to at least one training data subset partitioned from an unpartitioned training data set and each having an operating mode associated thereto; acquiring a set of observed signal data values from the asset; determining an operating mode of the asset for the set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a set of estimated signal data values from the selected process submodel for the determined operating mode; and determining asset status as a function of the calculated set of estimated signal data values for providing asset surveillance and/or control.

  4. Diagnostic Value of Ganglion Cell-Inner Plexiform Layer Thickness in Glaucoma With Superior or Inferior Visual Hemifield Defects.

    PubMed

    Kim, Ho Soong; Yang, Heon; Lee, Tae Heon; Lee, Kyung Heon

    2016-06-01

    To determine the diagnostic value of the ganglion cell-inner plexiform layer (GCIPL) thickness in glaucomatous eyes with superior or inferior visual hemifield defects. Eighty-five patients with glaucoma (42 isolated superior hemifield defects and 43 isolated inferior hemifield defects) and 46 normal subjects were enrolled. All patients underwent Cirrus high-definition optical coherence tomography and standard automated perimetry. The area under the receiver operating characteristic curve (AUC) was calculated to determine the diagnostic ability of the GCIPL and peripapillary retinal nerve fiber layer (pRNFL). In the superior hemifield defect glaucoma group, the best parameters for discriminating normal eyes from glaucomatous eyes were the inferotemporal GCIPL thickness (0.942), inferior quadrant RNFL thickness (0.974), and 7 o'clock sector RNFL thickness (0.999). For diagnosing inferior hemifield defect glaucoma, the AUCs of all GCIPL parameters (0.331 to 0.702) were significantly lower than that of the superior quadrant RNFL thickness (0.866, P<0.05). The diagnostic ability of GCIPL parameters was similar to that of the pRNFL parameters in superior hemifield defect glaucoma. However, the diagnostic performance of the GCIPL parameters was significantly inferior to those of the pRNFL parameters in eyes with inferior hemifield defect glaucoma.

  5. Study on Adaptive Parameter Determination of Cluster Analysis in Urban Management Cases

    NASA Astrophysics Data System (ADS)

    Fu, J. Y.; Jing, C. F.; Du, M. Y.; Fu, Y. L.; Dai, P. P.

    2017-09-01

    The fine management for cities is the important way to realize the smart city. The data mining which uses spatial clustering analysis for urban management cases can be used in the evaluation of urban public facilities deployment, and support the policy decisions, and also provides technical support for the fine management of the city. Aiming at the problem that DBSCAN algorithm which is based on the density-clustering can not realize parameter adaptive determination, this paper proposed the optimizing method of parameter adaptive determination based on the spatial analysis. Firstly, making analysis of the function Ripley's K for the data set to realize adaptive determination of global parameter MinPts, which means setting the maximum aggregation scale as the range of data clustering. Calculating every point object's highest frequency K value in the range of Eps which uses K-D tree and setting it as the value of clustering density to realize the adaptive determination of global parameter MinPts. Then, the R language was used to optimize the above process to accomplish the precise clustering of typical urban management cases. The experimental results based on the typical case of urban management in XiCheng district of Beijing shows that: The new DBSCAN clustering algorithm this paper presents takes full account of the data's spatial and statistical characteristic which has obvious clustering feature, and has a better applicability and high quality. The results of the study are not only helpful for the formulation of urban management policies and the allocation of urban management supervisors in XiCheng District of Beijing, but also to other cities and related fields.

  6. 40 CFR 63.704 - Compliance and monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nonregenerative carbon adsorber is used to comply with § 63.703(c)(1), the site-specific operating parameter value... compliance with § 63.703(c), (e)(1)(i), or (f)(1)(i), as appropriate. (5) For each nonregenerative carbon... site-specific operating parameter the carbon replacement time interval, as determined by the maximum...

  7. 40 CFR 63.704 - Compliance and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nonregenerative carbon adsorber is used to comply with § 63.703(c)(1), the site-specific operating parameter value... compliance with § 63.703(c), (e)(1)(i), or (f)(1)(i), as appropriate. (5) For each nonregenerative carbon... site-specific operating parameter the carbon replacement time interval, as determined by the maximum...

  8. 40 CFR 63.704 - Compliance and monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonregenerative carbon adsorber is used to comply with § 63.703(c)(1), the site-specific operating parameter value... compliance with § 63.703(c), (e)(1)(i), or (f)(1)(i), as appropriate. (5) For each nonregenerative carbon... site-specific operating parameter the carbon replacement time interval, as determined by the maximum...

  9. 40 CFR 63.704 - Compliance and monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nonregenerative carbon adsorber is used to comply with § 63.703(c)(1), the site-specific operating parameter value... compliance with § 63.703(c), (e)(1)(i), or (f)(1)(i), as appropriate. (5) For each nonregenerative carbon... site-specific operating parameter the carbon replacement time interval, as determined by the maximum...

  10. 40 CFR 63.704 - Compliance and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nonregenerative carbon adsorber is used to comply with § 63.703(c)(1), the site-specific operating parameter value... compliance with § 63.703(c), (e)(1)(i), or (f)(1)(i), as appropriate. (5) For each nonregenerative carbon... site-specific operating parameter the carbon replacement time interval, as determined by the maximum...

  11. In vivo recovery of factor VIII and factor IX: intra- and interindividual variance in a clinical setting.

    PubMed

    Björkman, S; Folkesson, A; Berntorp, E

    2007-01-01

    In vivo recovery (IVR) is traditionally used as a parameter to characterize the pharmacokinetic properties of coagulation factors. It has also been suggested that dosing of factor VIII (FVIII) and factor IX (FIX) can be adjusted according to the need of the individual patient, based on an individually determined IVR value. This approach, however, requires that the individual IVR value is more reliably representative for the patient than the mean value in the population, i.e. that there is less variance within than between the individuals. The aim of this investigation was to compare intra- and interindividual variance in IVR (as U dL1 per U kg1) for FVIII and plasma-derived FIX in a cohort of non-bleeding patients with haemophilia. The data were collected retrospectively from six clinical studies, yielding 297 IVR determinations in 50 patients with haemophilia A and 93 determinations in 13 patients with haemophilia B. For FVIII, the mean variance within patients exceeded the between-patient variance. Thus, an individually determined IVR value is apparently no more informative than an average, or population, value for the dosing of FVIII. There was no apparent relationship between IVR and age of the patient (1.5-67 years). For FIX, the mean variance within patients was lower than the between-patient variance, and there was a significant positive relationship between IVR and age (13-69 years). From these data, it seems probable that using an individual IVR confers little advantage in comparison to using an age-specific population mean value. Dose tailoring of coagulation factor treatment has been applied successfully after determination of the entire single-dose curve of FVIII:C or FIX:C in the patient and calculation of the relevant pharmacokinetic parameters. However, the findings presented here do not support the assumption that dosing of FVIII or FIX can be individualized on the basis of a clinically determined IVR value.

  12. Constitutive parameter measurements of lossy materials

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.

    1989-01-01

    The electrical constitutive parameters of lossy materials are considered. A discussion of the NRL arch for lossy coatings is presented involving analytical analyses of the reflected field using the geometrical theory of diffraction (GTD) and physical optics (PO). The actual values for these parameters can be obtained through a traditional transmission technique which is examined from an error analysis standpoint. Alternate sample geometries are suggested for this technique to reduce sample tolerance requirements for accurate parameter determination. The performance for one alternate geometry is given.

  13. Precise determination of anthropometric dimensions by means of image processing methods for estimating human body segment parameter values.

    PubMed

    Baca, A

    1996-04-01

    A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.

  14. Determination of the influence of factors (ethanol, pH and a(w) ) on the preservation of cosmetics using experimental design.

    PubMed

    Berthele, H; Sella, O; Lavarde, M; Mielcarek, C; Pense-Lheritier, A-M; Pirnay, S

    2014-02-01

    Ethanol, pH and water activity are three well-known parameters that can influence the preservation of cosmetic products. With the new constraints regarding the antimicrobial effectiveness and the restrictive use of preservatives, a D-optimal design was set up to evaluate the influence of these three parameters on the microbiological conservation. To monitor the effectiveness of the different combination of these set parameters, a challenge test in compliance with the International standard ISO 11930: 2012 was implemented. The formulations established in our study could support wide variations of ethanol concentration, pH values and glycerin concentration without noticeable effects on the stability of the products. In the conditions of the study, determining the value of a single parameter, with the tested concentration, could not guarantee microbiological conservation. However, a high concentration of ethanol associated with an extreme pH could inhibit bacteria growth from the first day (D0). Besides, it appears that despite an aw above 0.6 (even 0.8) and without any preservatives incorporated in formulas, it was possible to guarantee the microbiological stability of the cosmetic product when maintaining the right combination of the selected parameters. Following the analysis of the different values obtained during the experimentation, there seems to be a correlation between the aw and the selected parameters aforementioned. An application of this relationship could be to define the aw of cosmetic products by using the formula, thus avoiding the evaluation of this parameter with a measuring device. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. The opinions of occupational physicians about maintaining healthy workers by means of medical examinations in Japan using the Delphi method.

    PubMed

    Tateishi, Seiichiro; Watase, Mariko; Fujino, Yoshihisa; Mori, Koji

    2016-01-01

    In Japan, employee fitness for work is determined by annual medical examinations. It may be possible to reduce the variability in the results of work fitness determination, particularly for situation, if there is consensus among experts regarding consideration of limitation of work by means of a single parameter. Consensus building was attempted among 104 occupational physicians by employing a 3-round Delphi method. Among the medical examination parameters for which at least 50% of participants agreed in the 3rd round of the survey that the parameter would independently merit consideration for limitation of work, the values of the parameters proposed as criterion values that trigger consideration of limitation of work were sought. Parameters, along with their most frequently proposed criterion values, were defined in the study group meeting as parameters for which consensus was reached. Consensus was obtained for 8 parameters: systolic blood pressure 180 mmHg (86.6%), diastolic blood pressure 110 mmHg (85.9%), postprandial plasma glucose 300 mg/dl (76.9%), fasting plasma glucose 200 mg/dl (69.1%), Cre 2.0mg/dl (67.2%), HbA1c (JDS) 10% (62.3%), ALT 200 U/l (61.6%), and Hb 8 g/l (58.5%). To support physicians who give advice to employers about work-related measures based on the results of general medical examinations of employees, expert consensus information was obtained that can serve as background material for making judgements. It is expected that the use of this information will facilitate the ability to take appropriate measures after medical examination of employees.

  16. [Determination by thermometric titrimetry of the thermodynamic parameters of water/n-octanol transfer of several non-steroidal anti-inflammatory drugs].

    PubMed

    Burgot, G; Burgot, J L

    1995-01-01

    The calorimetric determination by thermometric titrimetry of the water/n-octanol transfer enthalpies of some non steroidic anti-inflammatory compounds is described. By combining the values obtained with that of the free enthalpies of transfer issuing from the values of corresponding log P, it is possible to determinate the transfer entropies of the solutes. The whole results of the show that almost the transfers are both enthalpy and entropy driven. They demonstrate the occurrence of three different mechanisms of transfer.

  17. Tribological Properties of PVD Ti/C-N Nanocoatnigs

    NASA Astrophysics Data System (ADS)

    Leitans, A.; Lungevics, J.; Rudzitis, J.; Filipovs, A.

    2017-04-01

    The present paper discusses and analyses tribological properties of various coatings that increase surface wear resistance. Four Ti/C-N nanocoatings with different coating deposition settings are analysed. Tribological and metrological tests on the samples are performed: 2D and 3D parameters of the surface roughness are measured with modern profilometer, and friction coefficient is measured with CSM Instruments equipment. Roughness parameters Ra, Sa, Sz, Str, Sds, Vmp, Vmc and friction coefficient at 6N load are determined during the experiment. The examined samples have many pores, which is the main reason for relatively large values of roughness parameter. A slight wear is identified in all four samples as well; its friction coefficient values range from 0,.21 to 0.29. Wear rate values are not calculated for the investigated coatings, as no expressed tribotracks are detected on the coating surface.

  18. Stress concentration in a cylindrical shell containing a circular hole.

    NASA Technical Reports Server (NTRS)

    Adams, N. J. I.

    1971-01-01

    The state of stress in a cylindrical shell containing a circular cutout was determined for axial tension, torsion, and internal pressure loading. The solution was obtained for the shallow shell equations by a variational method. The results were expressed in terms of a nondimensional curvature parameter which was a function of shell radius, shell thickness, and hole radius. The function chosen for the solution was such that when the radius of the cylindrical shell approaches infinity, the flat-plate solution was obtained. The results are compared with solutions obtained by more rigorous analytical methods, and with some experimental results. For small values of the curvature parameter, the agreement is good. For higher values of the curvature parameter, the present solutions indicate a limiting value of stress concentration, which is in contrast to previous results.

  19. Technical Note: Using experimentally determined proton spot scanning timing parameters to accurately model beam delivery time.

    PubMed

    Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin

    2017-10-01

    To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide guidance on how to effectively reduce BDT and may be used to identifying deteriorating machine performance. © 2017 American Association of Physicists in Medicine.

  20. Automatic Sleep Stage Determination by Multi-Valued Decision Making Based on Conditional Probability with Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi

    Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.

  1. Methods and means of 3D diffuse Mueller-matrix tomography of depolarizing optically anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Dubolazov, O. V.; Ushenko, V. O.; Trifoniuk, L.; Ushenko, Yu. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Grytsyuk, M.; Kushnerik, L.; Meglinskiy, I.

    2017-09-01

    A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular birefringence of prostate histological sections are found. The interconnections between such distributions and parameters of linear and circular birefringence of prostate tissue histological sections are defined. The comparative investigations of coordinate distributions of phase anisotropy parameters formed by fibrillar networks of prostate tissues of different pathological states (adenoma and carcinoma) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular birefringence are defined. The objective criteria of cause of Benign and malignant conditions differentiation are determined.

  2. Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, Kiel; Earle, Keith

    2016-02-06

    In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes’ Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. In conclusion, the posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise.

  3. Determination of the mechanical parameters of rock mass based on a GSI system and displacement back analysis

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam

    2017-08-01

    It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.

  4. Three-dimensional whole-brain perfusion quantification using pseudo-continuous arterial spin labeling MRI at multiple post-labeling delays: accounting for both arterial transit time and impulse response function.

    PubMed

    Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M

    2014-02-01

    Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Hematologic and serum biochemical values of 4 species of Peromyscus mice and their hybrids.

    PubMed

    Wiedmeyer, Charles E; Crossland, Janet P; Veres, Monika; Dewey, Michael J; Felder, Michael R; Barlow, Shayne C; Vrana, Paul B; Szalai, Gabor

    2014-07-01

    Deer mice (Peromyscus maniculatus) and congeneric species are used in a wide variety of research applications, particularly studies of developmental, physiologic, and behavioral characteristics associated with habitat adaptation and speciation. Because peromyscine mice readily adapt to colony conditions, animals with traits of interest in the field are moved easily into the laboratory where they can be studied under controlled conditions. The purpose of this study was to determine the serum chemistry and hematologic parameters of 4 frequently used species from the Peromyscus Genetic Stock Center species (P. californicus, P. leucopus, P. maniculatus, and P. polionotus) and to determine quantitative differences in these parameters among species and between sexes. Triglyceride values were substantially higher in female compared with male mice in all 4 species. Similar cross-species differences in MCH were present. Overall there was considerable interspecific variation for most blood parameters, with little evidence for covariation of any 2 or more parameters. Because crosses of P. maniculatus and P. polionotus produce fertile offspring, segregation analyses can be applied to determine the genetic basis of any traits that differ between them, such as their 3.8- and 2.1-fold interspecific differences in cholesterol and triglyceride levels, respectively. The current data provide a set of baseline values useful for subsequent comparative studies of species experiencing different circumstances, whether due to natural variation or anthropogenic environmental degradation. To enable such comparisons, the raw data are downloadable from a site maintained by the Stock Center (http://ww2.biol.sc.edu/∼peromyscus).

  6. Performance evaluation of laser induced breakdown spectroscopy in the measurement of liquid and solid samples

    NASA Astrophysics Data System (ADS)

    Bilge, Gonca; Sezer, Banu; Boyaci, Ismail Hakki; Eseller, Kemal Efe; Berberoglu, Halil

    2018-07-01

    Liquid analysis by using LIBS is a complicated process due to difficulties encountered during the collection of light and formation of plasma in liquid. To avoid these, some applications are performed such as aerosol formation and transforming liquid into solid state. However, performance of LIBS in liquid samples still remains a challenging issue. In this study, performance evaluation of LIBS and parameter optimizations in liquid and solid phase samples were performed. For this purpose, milk was chosen as model sample; milk powder was used as solid sample, and milk was used as liquid sample in the experiments. Different experimental setups have been constructed for each sampling technique, and optimizations were performed to determine suitable parameters such as delay time, laser energy, repetition rate and speed of rotary table for solid sampling technique, and flow rate of carrier gas for liquid sampling technique. Target element was determined as Ca, which is a critically important element in milk for determining its nutritional value and Ca addition. In optimum parameters, limit of detection (LOD), limit of quantification (LOQ) and relative standard deviation (RSD) values were calculated as 0.11%, 0.36% and 8.29% respectively for milk powders samples; while LOD, LOQ and RSD values were calculated as 0.24%, 0.81%, and 10.93% respectively for milk samples. It can be said that LIBS is an applicable method in both liquid and solid samples with suitable systems and parameters. However, liquid analysis requires much more developed systems for more accurate results.

  7. Cycle 24 HST+COS Target Acquisition Monitor Summary

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.; White, James

    2018-06-01

    HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.

  8. Motion of a pendulum with damping and vibrating axis of suspension at unconventional values of parameters

    NASA Astrophysics Data System (ADS)

    Demidov, Ivan; Sorokin, Vladislav

    2018-05-01

    Motion of a pendulum with damping and vibrating axis of suspension is considered at unconventional values of parameters. Case when the frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied. Vibration intensity is assumed to be relatively low. In this case, the corresponding equation of the pendulum's motions doesn't involve an explicit small parameter. To solve the equation a new modification of the method of direct separation of motions is used. As the result, stability conditions of the pendulum inverted position are determined. Effects of damping on these conditions are discussed.

  9. Comparison of measured efficiencies of nine turbine designs with efficiencies predicted by two empirical methods

    NASA Technical Reports Server (NTRS)

    English, Robert E; Cavicchi, Richard H

    1951-01-01

    Empirical methods of Ainley and Kochendorfer and Nettles were used to predict performances of nine turbine designs. Measured and predicted performances were compared. Appropriate values of blade-loss parameter were determined for the method of Kochendorfer and Nettles. The measured design-point efficiencies were lower than predicted by as much as 0.09 (Ainley and 0.07 (Kochendorfer and Nettles). For the method of Kochendorfer and Nettles, appropriate values of blade-loss parameter ranged from 0.63 to 0.87 and the off-design performance was accurately predicted.

  10. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2011-10-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  11. Load controller and method to enhance effective capacity of a photovoltaic power supply

    DOEpatents

    Perez, Richard

    2000-01-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The renewable supply may comprise, for example, a photovoltaic power supply or a wind-based power supply.

  12. Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.

    2018-04-01

    In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.

  13. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Zamani, M. H.

    2018-06-01

    The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

  14. Lifting-surface-theory aspect-ratio corrections to the lift and hinge-moment parameters for full-span elevators on horizontal tail surfaces

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S; Crandall, Stewart M

    1948-01-01

    A limited number of lifting-surface-theory solutions for wings with chordwise loadings resulting from angle of attack, parabolic-ac camber, and flap deflection are now available. These solutions were studied with the purpose of determining methods of extrapolating the results in such a way that they could be used to determine lifting-surface-theory values of the aspect-ratio corrections to the lift and hinge-moment parameters for both angle-of-attack and flap-deflection-type loading that could be used to predict the characteristics of horizontal tail surfaces from section data with sufficient accuracy for engineering purposes. Such a method was devised for horizontal tail surfaces with full-span elevators. In spite of the fact that the theory involved is rather complex, the method is simple to apply and may be applied without any knowledge of lifting-surface theory. A comparison of experimental finite-span and section value and of the estimated values of the lift and hinge-moment parameters for three horizontal tail surfaces was made to provide an experimental verification of the method suggested. (author)

  15. Effective depth of spectral line formation in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lestrade, J. P.; Chamberlain, J. W.

    1980-01-01

    The effective level of line formation for spectroscopic absorption lines has long been regarded as a useful parameter for determining average atmospheric values of the quantities involved in line formation. The identity of this parameter was recently disputed. The dependence of this parameter on the average depth where photons are absorbed in a semi-infinite atmosphere is established. It is shown that the mean depths derived by others are similar in nature and behavior.

  16. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  17. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  18. On the Explicit Determination of the Chapman-Jouguet Parameters for an Explosive Compound

    DTIC Science & Technology

    2014-11-19

    relations were tested for the very well characterise explosives PETN, HMX , RDX, TATB, TNT and the calculated values obtained for the C-J parameters...Cyclotrimethylenetrinitramine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine ( HMX ), Pentaerythritol tetranitrate (PETN) and Triamino...the Chapman-Jouguet parameters of PETN, HMX , RDX and TATB Table 1 below provides a summary of the relations in order of requirement to obtain the C

  19. Sequence information signal processor

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1999-01-01

    An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.

  20. Accounting for uncertainty in model-based prevalence estimation: paratuberculosis control in dairy herds.

    PubMed

    Davidson, Ross S; McKendrick, Iain J; Wood, Joanna C; Marion, Glenn; Greig, Alistair; Stevenson, Karen; Sharp, Michael; Hutchings, Michael R

    2012-09-10

    A common approach to the application of epidemiological models is to determine a single (point estimate) parameterisation using the information available in the literature. However, in many cases there is considerable uncertainty about parameter values, reflecting both the incomplete nature of current knowledge and natural variation, for example between farms. Furthermore model outcomes may be highly sensitive to different parameter values. Paratuberculosis is an infection for which many of the key parameter values are poorly understood and highly variable, and for such infections there is a need to develop and apply statistical techniques which make maximal use of available data. A technique based on Latin hypercube sampling combined with a novel reweighting method was developed which enables parameter uncertainty and variability to be incorporated into a model-based framework for estimation of prevalence. The method was evaluated by applying it to a simulation of paratuberculosis in dairy herds which combines a continuous time stochastic algorithm with model features such as within herd variability in disease development and shedding, which have not been previously explored in paratuberculosis models. Generated sample parameter combinations were assigned a weight, determined by quantifying the model's resultant ability to reproduce prevalence data. Once these weights are generated the model can be used to evaluate other scenarios such as control options. To illustrate the utility of this approach these reweighted model outputs were used to compare standard test and cull control strategies both individually and in combination with simple husbandry practices that aim to reduce infection rates. The technique developed has been shown to be applicable to a complex model incorporating realistic control options. For models where parameters are not well known or subject to significant variability, the reweighting scheme allowed estimated distributions of parameter values to be combined with additional sources of information, such as that available from prevalence distributions, resulting in outputs which implicitly handle variation and uncertainty. This methodology allows for more robust predictions from modelling approaches by allowing for parameter uncertainty and combining different sources of information, and is thus expected to be useful in application to a large number of disease systems.

  1. Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values.

    PubMed

    Tofts, Paul S; Cutajar, Marica; Mendichovszky, Iosif A; Peters, A Michael; Gordon, Isky

    2012-06-01

    To model the uptake phase of T(1)-weighted DCE-MRI data in normal kidneys and to demonstrate that the fitted physiological parameters correlate with published normal values. The model incorporates delay and broadening of the arterial vascular peak as it appears in the capillary bed, two distinct compartments for renal intravascular and extravascular Gd tracer, and uses a small-vessel haematocrit value of 24%. Four physiological parameters can be estimated: regional filtration K ( trans ) (ml min(-1) [ml tissue](-1)), perfusion F (ml min(-1) [100 ml tissue](-1)), blood volume v ( b ) (%) and mean residence time MRT (s). From these are found the filtration fraction (FF; %) and total GFR (ml min(-1)). Fifteen healthy volunteers were imaged twice using oblique coronal slices every 2.5 s to determine the reproducibility. Using parenchymal ROIs, group mean values for renal biomarkers all agreed with published values: K ( trans ): 0.25; F: 219; v ( b ): 34; MRT: 5.5; FF: 15; GFR: 115. Nominally cortical ROIs consistently underestimated total filtration (by ~50%). Reproducibility was 7-18%. Sensitivity analysis showed that these fitted parameters are most vulnerable to errors in the fixed parameters kidney T(1), flip angle, haematocrit and relaxivity. These renal biomarkers can potentially measure renal physiology in diagnosis and treatment. • Dynamic contrast-enhanced magnetic resonance imaging can measure renal function. • Filtration and perfusion values in healthy volunteers agree with published normal values. • Precision measured in healthy volunteers is between 7 and 15%.

  2. The sound strength parameter G and its importance in evaluating and planning the acoustics of halls for music.

    PubMed

    Beranek, Leo

    2011-05-01

    The parameter, "Strength of Sound G" is closely related to loudness. Its magnitude is dependent, inversely, on the total sound absorption in a room. By comparison, the reverberation time (RT) is both inversely related to the total sound absorption in a hall and directly related to its cubic volume. Hence, G and RT in combination are vital in planning the acoustics of a concert hall. A newly proposed "Bass Index" is related to the loudness of the bass sound and equals the value of G at 125 Hz in decibels minus its value at mid-frequencies. Listener envelopment (LEV) is shown for most halls to be directly related to the mid-frequency value of G. The broadening of sound, i.e., apparent source width (ASW) is given by degree of source broadening (DSB) which is determined from the combined effect of early lateral reflections as measured by binaural quality index (BQI) and strength G. The optimum values and limits of these parameters are discussed.

  3. Pitch features of environmental sounds

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Kang, Jian

    2016-07-01

    A number of soundscape studies have suggested the need for suitable parameters for soundscape measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch features that are often used in music analysis and their algorithms to environmental sounds. Based on the existing alternative pitch algorithms for simulating the perception of the auditory system and simplified algorithms for practical applications in the areas of music and speech, the applicable algorithms have been determined, considering common types of sound in everyday soundscapes. Considering a number of pitch parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values and a relatively wide range of pitch strengths.

  4. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-05-01

    Physical parameterizations in General Circulation Models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determines parameter sensitivity and the other chooses the optimum initial value of sensitive parameters, are introduced before the downhill simplex method to reduce the computational cost and improve the tuning performance. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9%. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameters tuning during the model development stage.

  5. Free-Spinning Wind-Tunnel Tests of a Low-Wing Monoplane with Systematic Changes in Wings and Tails V : Effect of Airplane Relative Density

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Neihouse, A I

    1940-01-01

    The reported tests are a continuation of an NACA investigation being made in the free-spinning wind tunnel to determine the effects of independent variations in load distribution, wing and tail arrangement, and control disposition on the spin characteristics of airplanes. The standard series of tests was repeated to determine the effect of airplane relative density. Tests were made at values of the relative-density parameter of 6.8, 8.4 (basic), and 12.0; and the results were analyzed. The tested variations in the relative-density parameter may be considered either as variations in the wing loading of an airplane spun at a given altitude, with the radii of gyration kept constant, or as a variation of the altitude at which the spin takes place for a given airplane. The lower values of the relative-density parameter correspond to the lower wing loadings or to the lower altitudes of the spin.

  6. Multirate sampled-data yaw-damper and modal suppression system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1990-01-01

    A multirate control law synthesized algorithm based on an infinite-time quadratic cost function, was developed along with a method for analyzing the robustness of multirate systems. A generalized multirate sampled-data control law structure (GMCLS) was introduced. A new infinite-time-based parameter optimization multirate sampled-data control law synthesis method and solution algorithm were developed. A singular-value-based method for determining gain and phase margins for multirate systems was also developed. The finite-time-based parameter optimization multirate sampled-data control law synthesis algorithm originally intended to be applied to the aircraft problem was instead demonstrated by application to a simpler problem involving the control of the tip position of a two-link robot arm. The GMCLS, the infinite-time-based parameter optimization multirate control law synthesis method and solution algorithm, and the singular-value based method for determining gain and phase margins were all demonstrated by application to the aircraft control problem originally proposed for this project.

  7. Rapid monitoring of the fermentation process for Korean traditional rice wine 'Makgeolli' using FT-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yong; Cho, Byoung-Kwan

    2015-11-01

    The quality parameters of the Korean traditional rice wine "Makgeolli" were monitored using Fourier transform near-infrared (FT-NIR) spectroscopy with multivariate statistical analysis (MSA) during fermentation. Alcohol, reducing sugar, and titratable acid were the parameters assessed to determine the quality index of fermentation substrates and products. The acquired spectra were analyzed with partial least squares regression (PLSR). The best prediction model for alcohol was obtained with maximum normalization, showing a coefficient of determination (Rp2) of 0.973 and a standard error of prediction (SEP) of 0.760%. In addition, the best prediction model for reducing sugar was obtained with no data preprocessing, with a Rp2 value of 0.945 and a SEP of 1.233%. The prediction of titratable acidity was best with mean normalization, showing a Rp2 value of 0.882 and a SEP of 0.045%. These results demonstrate that FT-NIR spectroscopy can be used for rapid measurements of quality parameters during Makgeolli fermentation.

  8. Species differences in hematological values of captive cranes, geese, raptors, and quail

    USGS Publications Warehouse

    Gee, G.F.; Carpenter, J.W.; Hensler, G.L.

    1981-01-01

    Hematological and serum chemical constituents of blood were determined for 12 species, including 7 endangered species, of cranes, geese, raptors, and quail in captivity at the Patuxent Wildlife Research Center. Means, standard deviations, analysis of variance by species and sex, and a series of multiple comparisons of means were derived for each parameter investigated. Differences among some species means were observed in all blood parameters except gamma-glutamyl transpeptidase. Although sampled during the reproductively quiescent period, an influence of sex was noted in red blood cell count, hemoglobin, albumin, glucose, cholesterol, serum glutamic oxaloacetic transaminase, Ca, and P. Our data and values reported in literature indicate that most hematological parameters vary among species and, in some cases, according to methods used to determine them. Therefore, baseline data for captive and wild birds should be established by using standard methods, and should be made available to aid others for use in assessing physiological and pathological conditions of these species.

  9. Determination of kinetic parameters for 123-I thyroid uptake in healthy Japanese

    NASA Astrophysics Data System (ADS)

    Kusuhara, Hiroyuki; Maeda, Kazuya

    2017-09-01

    The purpose of this study was to compare the kinetic parameters for iodide thyroid accumulation in Japanese today with previously reported values. We determined the thyroid uptake of 123-I at 24 hours after the oral administration in healthy male Japanese without any diet restriction. The mean value was 16.1±5.4%, which was similar or rather lower than those previously reported in Japan (1958-1972). Kinetic model analysis was conducted to obtain the clearance for thyroid uptake from the blood circulation. The thyroid uptake clearance of 123-I was 0.540±0.073 ml/min, which was almost similar to those reported previously. There is no obvious difference in the thyroid uptake for 24 hours, and kinetic parameters in healthy Japanese for these 50 years. The fraction of distributed to the thyroid gland is lower than the ICRP reference man, and such difference must be taken into consideration to estimate the radiation exposure upon Fukushima accident in Japan.

  10. Rapeseed Oil as Renewable Resource for Polyol Synthesis

    NASA Astrophysics Data System (ADS)

    Stirna, Uldis; Fridrihsone, Anda; Misane, Marija; Vilsone, Dzintra

    2011-01-01

    Vegetable oils are one of the most important platform chemicals due to their accessibility, specific structure of oils and low price. Rapeseed oil (RO) polyols were prepared by amidization of RO with diethanolamine (DEA). To determine the kinetics of amidization reaction, experiments were carried out. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), amine (NH) value was determined. Group contribution method by Fedor‵s was used to calculate solubility parameters, van der Waals volume was calculated by Askadskii. Obtained polyol‵s OH and NH value are from 304 up to 415 mg KOH/g. RO polyols synthesis meets the criteria of "green chemistry". In the present study, reaction of RO amidization with DEA was investigated, as well as optimum conditions for polyol synthesis was established to obtain polyols for polyurethane production. Calculations of solubility parameter and cohesion energy density were calculated, as RO polyols will be used as side chains in polymers, and solubility parameter will be used to explain properties of polymers.

  11. Thermodynamic parameters of phase transitions of perfluoro-N-(4-methylcyclohexyl)piperidine

    NASA Astrophysics Data System (ADS)

    Druzhinina, A. I.; Efimova, A. A.; Varushchenko, R. M.; Chelovskaya, N. V.

    2007-12-01

    The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance ( N 1 = 99.66 mol %), triple point temperature ( T tp = 293.26 K), and enthalpy of fusion (Δfus H {m/°} = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H {m/°}(298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2-101.6 kPa was determined by comparative ebulliometry. The normal boiling point ( T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H {m/°}(298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.

  12. Non-Isothermic Chemical Kinetics in the Undergraduate Laboratory: Arrhenius Parameters from Experiments with Hyperbolic Temperature Variation.

    ERIC Educational Resources Information Center

    Salvador, F.; And Others

    1984-01-01

    Describes a method which adapts itself to the characteristics of the kinetics of a chemical reaction in solution, enabling students to determine the Arrhenius parameters with satisfactory accuracy by means of a single non-isothermic experiment. Both activation energy and the preexponential factor values can be obtained by the method. (JN)

  13. Methods for Combining Payload Parameter Variations with Input Environment

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Straayer, J. W.

    1975-01-01

    Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occuring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular value of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the methods are also presented.

  14. Semi-experimental equilibrium structure of pyrazinamide from gas-phase electron diffraction. How much experimental is it?

    NASA Astrophysics Data System (ADS)

    Tikhonov, Denis S.; Vishnevskiy, Yury V.; Rykov, Anatolii N.; Grikina, Olga E.; Khaikin, Leonid S.

    2017-03-01

    A semi-experimental equilibrium structure of free molecules of pyrazinamide has been determined for the first time using gas electron diffraction method. The refinement was carried using regularization of geometry by calculated quantum chemical parameters. It is discussed to which extent is the final structure experimental. A numerical approach for estimation of the amount of experimental information in the refined parameters is suggested. The following values of selected internuclear distances were determined (values are in Å with 1σ in the parentheses): re(Cpyrazine-Cpyrazine)av = 1.397(2), re(Npyrazine-Cpyrazine)av = 1.332(3), re(Cpyrazine-Camide) = 1.493(1), re(Namide-Camide) = 1.335(2), re(Oamide-Camide) = 1.219(1). The given standard deviations represent pure experimental uncertainties without the influence of regularization.

  15. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    PubMed

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Parameter estimation in Probabilistic Seismic Hazard Analysis: current problems and some solutions

    NASA Astrophysics Data System (ADS)

    Vermeulen, Petrus

    2017-04-01

    A typical Probabilistic Seismic Hazard Analysis (PSHA) comprises identification of seismic source zones, determination of hazard parameters for these zones, selection of an appropriate ground motion prediction equation (GMPE), and integration over probabilities according the Cornell-McGuire procedure. Determination of hazard parameters often does not receive the attention it deserves, and, therefore, problems therein are often overlooked. Here, many of these problems are identified, and some of them addressed. The parameters that need to be identified are those associated with the frequency-magnitude law, those associated with earthquake recurrence law in time, and the parameters controlling the GMPE. This study is concerned with the frequency-magnitude law and temporal distribution of earthquakes, and not with GMPEs. TheGutenberg-Richter frequency-magnitude law is usually adopted for the frequency-magnitude law, and a Poisson process for earthquake recurrence in time. Accordingly, the parameters that need to be determined are the slope parameter of the Gutenberg-Richter frequency-magnitude law, i.e. the b-value, the maximum value at which the Gutenberg-Richter law applies mmax, and the mean recurrence frequency,λ, of earthquakes. If, instead of the Cornell-McGuire, the "Parametric-Historic procedure" is used, these parameters do not have to be known before the PSHA computations, they are estimated directly during the PSHA computation. The resulting relation for the frequency of ground motion vibration parameters has an analogous functional form to the frequency-magnitude law, which is described by parameters γ (analogous to the b¬-value of the Gutenberg-Richter law) and the maximum possible ground motion amax (analogous to mmax). Originally, the approach was possible to apply only to the simple GMPE, however, recently a method was extended to incorporate more complex forms of GMPE's. With regards to the parameter mmax, there are numerous methods of estimation, none of which is accepted as the standard one. There is also much controversy surrounding this parameter. In practice, when estimating the above mentioned parameters from seismic catalogue, the magnitude, mmin, from which a seismic catalogue is complete becomes important.Thus, the parameter mmin is also considered as a parameter to be estimated in practice. Several methods are discussed in the literature, and no specific method is preferred. Methods usually aim at identifying the point where a frequency-magnitude plot starts to deviate from linearity due to data loss. Parameter estimation is clearly a rich field which deserves much attention and, possibly standardization, of methods. These methods should be the sound and efficient, and a query into which methods are to be used - and for that matter which ones are not to be used - is in order.

  17. Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.

    PubMed

    Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro

    2014-09-01

    Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Implicit assimilation for marine ecological models

    NASA Astrophysics Data System (ADS)

    Weir, B.; Miller, R.; Spitz, Y. H.

    2012-12-01

    We use a new data assimilation method to estimate the parameters of a marine ecological model. At a given point in the ocean, the estimated values of the parameters determine the behaviors of the modeled planktonic groups, and thus indicate which species are dominant. To begin, we assimilate in situ observations, e.g., the Bermuda Atlantic Time-series Study, the Hawaii Ocean Time-series, and Ocean Weather Station Papa. From there, we estimate the parameters at surrounding points in space based on satellite observations of ocean color. Given the variation of the estimated parameters, we divide the ocean into regions meant to represent distinct ecosystems. An important feature of the data assimilation approach is that it refines the confidence limits of the optimal Gaussian approximation to the distribution of the parameters. This enables us to determine the ecological divisions with greater accuracy.

  19. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  20. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  1. Influence of cadmium on life-history characteristics of Folsomia candida (Willem) in an artificial soil substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crommentuijn, T.; Brils, J.; Van Straalen, N.M.

    1993-10-01

    To understand the consequences of soil pollution on higher levels of biological organization, the chain of effects of cadmium on several interrelated responses was studied in a chronic toxicity experiment using the collembolan species Folsomia candida (Willem) in an artificial soil. The individual parameters survival, growth, and number of offspring were determined after different time intervals up to 9 weeks. The accumulation of cadmium in springtails and the population increase during the experimental period were also determined. By combining all the mentioned parameters and their development in time, a detailed picture of the action of cadmium on F. candida wasmore » obtained. In order of decreasing sensitivity the EC50 values for Von Bertalanffy growth, number of offspring, population increase, and survival were 256, > 326, 475, and 850 micrograms Cd/g dry soil, respectively. The ultimate LC50 value and also the equilibrium body burden were reached after about 20 days. Reproduction started later because of retarded growth, but was not affected directly and eventually reached the control level. The results are discussed in light of the seemingly contradictory ideas of Halbach (1984, Hydrobiologia 109, 79-96) and Meyer et al. (1987, Environ. Toxicol. Chem. 6, 115-126) about the sensitivity of individual and population parameters. It appears to be very important to know how individual parameters develop in time so that the most sensitive parameter and the consequences for higher levels of biological organization can be determined.« less

  2. Echocardiographic predictors of atrial fibrillation recurrence after catheter ablation: A literature review.

    PubMed

    Liżewska-Springer, Aleksandra; Dąbrowska-Kugacka, Alicja; Lewicka, Ewa; Drelich, Łukasz; Królak, Tomasz; Raczak, Grzegorz

    2018-06-20

    Catheter ablation (CA) is a well-known treatment option for patients with symptomatic drug-resistant atrial fibrillation (AF). Multiple factors have been identified to determine AF recurrence after CA, however their predictive value is rather small. Identification of novel predictors of CA outcome is therefore of primary importance to reduce health costs and improve long-term results of this intervention. The recurrence of AF following CA is related to the severity of left ventricular (LV) dysfunction, extend of atrial dilatation and fibrosis. The aim of this paper was to present and discuss the latest studies on utility of echocardiographic parameters in terms of CA effectiveness in patients with paroxysmal and persistent AF. PubMed, Google Scholar, EBSCO databases were searched for studies reporting echocardiographic preprocedural predictors of AF recurrence after CA. LV systolic and diastolic function, as well as atrial size, strain and dyssynchrony were taken into consideration. Twenty one full-text articles were analyzed, including three meta-analyses. Several echocardiographic parameters have been reported to determine a risk of AF recurrence after CA. There are conventional methods that measure left atrial (LA) size and volume, LV ejection fraction, parameters assessing LV diastolic dysfunction, and methods using more innovative technologies based on speckle tracking echocardiography (STE) to determine LA synchrony and strain. Each of these parameters has its own predictive value. Regarding CA effectiveness, every patient has to be evaluated individually to estimate the risk of AF recurrence, optimally using a combination of several echocardiographic parameters.

  3. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  4. Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.

    PubMed

    Xie, Suchao; Zhou, Hui

    2014-01-01

    In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.

  5. Macromolecular refinement by model morphing using non-atomic parameterizations.

    PubMed

    Cowtan, Kevin; Agirre, Jon

    2018-02-01

    Refinement is a critical step in the determination of a model which explains the crystallographic observations and thus best accounts for the missing phase components. The scattering density is usually described in terms of atomic parameters; however, in macromolecular crystallography the resolution of the data is generally insufficient to determine the values of these parameters for individual atoms. Stereochemical and geometric restraints are used to provide additional information, but produce interrelationships between parameters which slow convergence, resulting in longer refinement times. An alternative approach is proposed in which parameters are not attached to atoms, but to regions of the electron-density map. These parameters can move the density or change the local temperature factor to better explain the structure factors. Varying the size of the region which determines the parameters at a particular position in the map allows the method to be applied at different resolutions without the use of restraints. Potential applications include initial refinement of molecular-replacement models with domain motions, and potentially the use of electron density from other sources such as electron cryo-microscopy (cryo-EM) as the refinement model.

  6. The Role of Economic Uncertainty on the Block Economic Value - a New Valuation Approach / Rola Czynnika Niepewności Przy Obliczaniu Wskaźnika Rentowności - Nowe Podejście

    NASA Astrophysics Data System (ADS)

    Dehghani, H.; Ataee-Pour, M.

    2012-12-01

    The block economic value (EV) is one of the most important parameters in mine evaluation. This parameter can affect significant factors such as mining sequence, final pit limit and net present value. Nowadays, the aim of open pit mine planning is to define optimum pit limits and an optimum life of mine production scheduling that maximizes the pit value under some technical and operational constraints. Therefore, it is necessary to calculate the block economic value at the first stage of the mine planning process, correctly. Unrealistic block economic value estimation may cause the mining project managers to make the wrong decision and thus may impose inexpiable losses to the project. The effective parameters such as metal price, operating cost, grade and so forth are always assumed certain in the conventional methods of EV calculation. While, obviously, these parameters have uncertain nature. Therefore, usually, the conventional methods results are far from reality. In order to solve this problem, a new technique is used base on an invented binomial tree which is developed in this research. This method can calculate the EV and project PV under economic uncertainty. In this paper, the EV and project PV were initially determined using Whittle formula based on certain economic parameters and a multivariate binomial tree based on the economic uncertainties such as the metal price and cost uncertainties. Finally the results were compared. It is concluded that applying the metal price and cost uncertainties causes the calculated block economic value and net present value to be more realistic than certain conditions.

  7. Sensitivity Analysis of the Bone Fracture Risk Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane

    2017-01-01

    Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including environmental factors, factors associated with the fall event, mass and anthropometric values of the astronaut, BMD characteristics, characteristics of the relationship between BMD and bone strength and bone fracture characteristics. The uncertainty in these factors is captured through the use of parameter distributions and the fracture predictions are probability distributions with a mean value and an associated uncertainty. To determine parameter sensitivity, a correlation coefficient is found between the sample set of each model parameter and the calculated fracture probabilities. Each parameters contribution to the variance is found by squaring the correlation coefficients, dividing by the sum of the squared correlation coefficients, and multiplying by 100. Results: Sensitivity analyses of BFxRM simulations of preflight, 0 days post-flight and 365 days post-flight falls onto the hip revealed a subset of the twelve factors within the model which cause the most variation in the fracture predictions. These factors include the spring constant used in the hip biomechanical model, the midpoint FRI parameter within the equation used to convert FRI to fracture probability and preflight BMD values. Future work: Plans are underway to update the BFxRM by incorporating bone strength information from finite element models (FEM) into the bone strength portion of the BFxRM. Also, FEM bone strength information along with fracture outcome data will be incorporated into the FRI to fracture probability.

  8. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol. This study illustrates that FHH-AT using adsorption parameters constrained by water adsorption is a simple, valid method for predicting CCN activation of fresh clay minerals and provides parameters that can be used in atmospheric models to study the effect of mineral dust aerosol on cloud formation and climate.

  9. Protein dielectric constants determined from NMR chemical shift perturbations.

    PubMed

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P; García-Moreno E, Bertrand; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2013-11-13

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatic calculations are essential for this purpose, but their use has been limited by a long-standing discussion on which value to use for the dielectric constants (ε(eff) and ε(p)) required in Coulombic and Poisson-Boltzmann models. The currently used values for ε(eff) and ε(p) are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for ε(eff) and ε(p) by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in 14 proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (ε(eff)) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (ε(p)) ranged from 2 to 5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders and how different it is from the ε(p) of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of ε(p) = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pK(a) values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable ε(p) common to most folded proteins.

  10. Comparative bioavailability and pharmacokinetics of two oral formulations of flurbiprofen: a single-dose, randomized, open-label, two-period, crossover study in Pakistani subjects.

    PubMed

    Qayyum, Aisha; Najmi, Muzammil Hasan; Abbas, Mateen

    2013-11-01

    Comparative bioavailability studies are conducted to establish the bioequivalence of generic formulation with that of branded reference formulation, providing confidence to clinicians to use these products interchangeably. This study was carried out to compare a locally manufactured formulation of flurbiprofen with that of a branded product. Twenty two healthy male adults received a single dose of flurbiprofen (100mg) either generic or branded product according to randomization scheme on each of 2 periods. Blood samples were collected and plasma flurbiprofen concentration was determined by a validated HPLC method. Pharmacokinetic parameters like AUC(0-t), AUC(0-oo), Cmax, Tmax, t½, Vd and clearance were determined. The 90% CI for the ratio of geometric means of test to reference product's pharmacokinetic variables was calculated. Pharmacokinetic parameters for two formulations were comparable. Ratio of means of AUC(0-24), AUC(0-oo) and Cmax for test to reference products and 90% CI for these ratios were within the acceptable range. The p-values calculated by TOST were much less than the specified value (p-0.05). ANOVA gave p-values which were more than the specified value (p-0.05) for sequence, subject, period and formulation. Test formulation of flurbiprofen (tablet Flurso) was found to meet the criteria for bioequivalence to branded product (tablet Ansaid) based on pharmacokinetic parameters.

  11. The investigation of interspecies diversity of erythrocyte aggregation properties by two different photometric methods in four animal species.

    PubMed

    Kiss, F; Toth, E; Peto, K; Miko, I; Nemeth, N

    2015-12-01

    Among the haemorheological parameters, red blood cell (RBC) aggregation shows the largest interspecies diversity, and often controversial data can be found in the literature, besides the methodology-dependent issues. In this present investigation, we compared four experimental/laboratory animal species' RBC aggregation by two different photometric methods for better revealing the differences. Blood samples (K3-EDTA, 1.5 mg/ml) were taken from female animals: 16 inbred mice (Mus musculus, cardiac puncture), 15 outbred rats (Rattus norvegicus, caudal caval vein puncture), 15 beagle dogs (Canis canis, cephalic vein) and 23 juvenile pigs (Sus scrofa domesticus, medial saphenous vein). Haematological parameters (microcell counter) and RBC aggregation (light transmission and syllectometry-laser backscatter methods) were determined within 2 h after sampling. Describing the first 5-10 s of the aggregation process, additional parameters were calculated out of the syllectometric raw data. Standardized difference was calculated to determine the sensitivity of the two devices. Parameters describing the extent and magnitude of red blood cell aggregation showed the lowest values in the rat and the highest in the pig and canine blood. In turn, parameters describing the kinetics of aggregation showed the lowest values in the mouse and the highest in the rat. The standardized difference values for the laser backscattering method were 2-4 times larger vs. the light transmission one. The magnitude of the differences was not consequent in the aggregation parameters. These comparative results show that the laser backscattering method can detect the RBC aggregation differences between the investigated species more sensitively than the light transmission method. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  12. High frequency acoustic reflections from an air-snow interface

    NASA Astrophysics Data System (ADS)

    Courville, Z.; Albert, D. G.; Lieb-Lappen, R.; Fegyveresi, J. M.

    2016-12-01

    High frequency wave propagation methods can be used to determine in situ near surface micro-pore geometry parameters in real Earth materials including snow. To this end, we have been developing a portable ultrasonic transducer rig to make measurements of acoustic reflections from a variety of natural porous media. Fresh natural snow, in particular, is a difficult material to characterize, as any mechanical interaction is likely to damage the fragile pores and grain bonds. Because acoustic waves are sensitive to the porous material properties, they potentially can be used to measure snow properties in a non-destructive manner. Such methods have already been demonstrated on cohesive porous materials including manufactured foams, porous metals, and sintered glass beads. We conducted high frequency, oblique-angle and near vertical reflection measurements on snow samples in a cold room. We then compare the acoustically derived snow physical parameters, including porosity, with values determined from micro-computed tomography (μCT) and with standard (but destructive) laboratory measurements. Preliminary results using a manufactured open cell foam following previous work by Fellah et al., (2003) shows very good agreement between values of porosity determined from the acoustic measurements and the values determined from μCT image analysis and gravimetric determination. Similarly, preliminary results comparing acoustic measurements of natural, dry snow samples prepared in the laboratory show good agreement between acoustically-derived porosity values and porosity values derived through independent means. Fellah, Z.E.A., S. Berger, W. Lauriks, C. Depollier, C. Aristegui, and J.Y. Chapelon, (2003b), Measuring the porosity and tortuosity of porous materials via reflected waves at oblique incidence, J. Acous. Soc. Am., 113, 2424-2433.

  13. Optimization of a sensor cluster for determination of trajectories and velocities of supersonic objects

    NASA Astrophysics Data System (ADS)

    Cannella, Marco; Sciuto, Salvatore Andrea

    2001-04-01

    An evaluation of errors for a method for determination of trajectories and velocities of supersonic objects is conducted. The analytical study of a cluster, composed of three pressure transducers and generally used as an apparatus for cinematic determination of parameters of supersonic objects, is developed. Furthermore, detailed investigation into the accuracy of this cluster on determination of the slope of an incoming shock wave is carried out for optimization of the device. In particular, a specific non-dimensional parameter is proposed in order to evaluate accuracies for various values of parameters and reference graphs are provided in order to properly design the sensor cluster. Finally, on the basis of the error analysis conducted, a discussion on the best estimation of the relative distance for the sensor as a function of temporal resolution of the measuring system is presented.

  14. Dependence of subject-specific parameters for a fast helical CT respiratory motion model on breathing rate: an animal study

    NASA Astrophysics Data System (ADS)

    O'Connell, Dylan; Thomas, David H.; Lamb, James M.; Lewis, John H.; Dou, Tai; Sieren, Jered P.; Saylor, Melissa; Hofmann, Christian; Hoffman, Eric A.; Lee, Percy P.; Low, Daniel A.

    2018-02-01

    To determine if the parameters relating lung tissue displacement to a breathing surrogate signal in a previously published respiratory motion model vary with the rate of breathing during image acquisition. An anesthetized pig was imaged using multiple fast helical scans to sample the breathing cycle with simultaneous surrogate monitoring. Three datasets were collected while the animal was mechanically ventilated with different respiratory rates: 12 bpm (breaths per minute), 17 bpm, and 24 bpm. Three sets of motion model parameters describing the correspondences between surrogate signals and tissue displacements were determined. The model error was calculated individually for each dataset, as well asfor pairs of parameters and surrogate signals from different experiments. The values of one model parameter, a vector field denoted α which related tissue displacement to surrogate amplitude, determined for each experiment were compared. The mean model error of the three datasets was 1.00  ±  0.36 mm with a 95th percentile value of 1.69 mm. The mean error computed from all combinations of parameters and surrogate signals from different datasets was 1.14  ±  0.42 mm with a 95th percentile of 1.95 mm. The mean difference in α over all pairs of experiments was 4.7%  ±  5.4%, and the 95th percentile was 16.8%. The mean angle between pairs of α was 5.0  ±  4.0 degrees, with a 95th percentile of 13.2 mm. The motion model parameters were largely unaffected by changes in the breathing rate during image acquisition. The mean error associated with mismatched sets of parameters and surrogate signals was 0.14 mm greater than the error achieved when using parameters and surrogate signals acquired with the same breathing rate, while maximum respiratory motion was 23.23 mm on average.

  15. Implicit Solvation Parameters Derived from Explicit Water Forces in Large-Scale Molecular Dynamics Simulations

    PubMed Central

    2012-01-01

    Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979

  16. The solubility parameter for biomedical polymers-Application of inverse gas chromatography.

    PubMed

    Adamska, K; Voelkel, A; Berlińska, A

    2016-08-05

    The solubility parameter seems to be a useful tool for thermodynamic characterisation of different materials. The solubility parameter concept can be used to predict sufficient miscibility or solubility between a solvent and a polymer, as well as components of co-polymer matrix in composite biomaterials. The values of solubility parameter were determined for polycaprolactone (PCL), polylactic acid (PLA) and polyethylene glycol (PEG) by using different procedures and experimental data, collected by means of inverse gas chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Utility of coupling nonlinear optimization methods with numerical modeling software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, M.J.

    1996-08-05

    Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less

  18. MUTUAL DIFFUSION OF PAIRS OF RARE GASES AT DIFFERENT TEMPERATURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, B.N.; Srivastava, K.P.

    1959-04-01

    The eoefficient of mutual diffusion of the binary gas mixtures Ne--Ar, Ar--Krs and Ne--Kr has been determined at 0, 15, 30s and 45 C. Diffusion is allowed to take place between two diffusion bulbs through a precision capillary tube and samples of gas are withdrawn from one bulb at different times and analyzed by a differential conductivity analyzer. From the experimentally determined values of the diffusion coefficient at different temperatures the unlike interaction parameters for the above gas pairs have been calculated by two different methods on the Lennard-Jones I2:6 model. These values of the force parameters are found tomore » be in good agreement with those obtained from the usual combination rules and also from the thermal diffusion data following the method of Srivastava and Madan. These values are found to reproduce the experimental data on mutual diffusion quite satisfactorily. With Kelvin's method, these data have also been utilized to calculate the self-diffusion coefficient of neon, argons and krypton. (auth)« less

  19. SU-D-19A-05: The Dosimetric Impact of Using Xoft Axxent® Electronic Brachytherapy Source TG-43 Dosimetry Parameters for Treatment with the Xoft 30 Mm Diameter Vaginal Applicator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, S; Micka, J; Culberson, W

    2014-06-01

    Purpose: A full TG-43 dosimetric characterization has not been performed for the Xoft Axxent ® electronic brachytherapy source (Xoft, a subsidiary of iCAD, San Jose, CA) within the Xoft 30 mm diameter vaginal applicator. Currently, dose calculations are performed using the bare-source TG-43 parameters and do not account for the presence of the applicator. This work focuses on determining the difference between the bare-source and sourcein- applicator TG-43 parameters. Both the radial dose function (RDF) and polar anisotropy function (PAF) were computationally determined for the source-in-applicator and bare-source models to determine the impact of using the bare-source dosimetry data. Methods:more » MCNP5 was used to model the source and the Xoft 30 mm diameter vaginal applicator. All simulations were performed using 0.84p and 0.03e cross section libraries. All models were developed based on specifications provided by Xoft. The applicator is made of a proprietary polymer material and simulations were performed using the most conservative chemical composition. An F6 collision-kerma tally was used to determine the RDF and PAF values in water at various dwell positions. The RDF values were normalized to 2.0 cm from the source to accommodate the applicator radius. Source-in-applicator results were compared with bare-source results from this work as well as published baresource results. Results: For a 0 mm source pullback distance, the updated bare-source model and source-in-applicator RDF values differ by 2% at 3 cm and 4% at 5 cm. The largest PAF disagreements were observed at the distal end of the source and applicator with up to 17% disagreement at 2 cm and 8% at 8 cm. The bare-source model had RDF values within 2.6% of the published TG-43 data and PAF results within 7.2% at 2 cm. Conclusion: Results indicate that notable differences exist between the bare-source and source-in-applicator TG-43 simulated parameters. Xoft Inc. provided partial funding for this work.« less

  20. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  1. Development of a simple chromatographic method for the determination of piracetam in human plasma and its pharmacokinetic evaluation.

    PubMed

    Barkat, K; Ahmad, M; Minhas, M U; Malik, M Z; Sohail, M

    2014-07-01

    The objective of study was to develop an accurate and reproducible HPLC method for determination of piracetam in human plasma and to evaluate pharmacokinetic parameters of 800 mg piracetam. A simple, rapid, accurate, precise and sensitive high pressure liquid chromatography method has been developed and subsequently validated for determination of piracetam. This study represents the results of a randomized, single-dose and single-period in 18 healthy male volunteers to assess pharmacokinetic parameters of 800 mg piracetam tablets. Various pharmacokinetic parameters were determined from plasma for piracetam and found to be in good agreement with previous reported values. The data was analyzed by using Kinetica® version 4.4 according to non-compartment model of pharmacokinetic analysis and after comparison with previous studies, no significant differences were found in present study of tested product. The major pharmacokinetic parameters for piracetam were as follows: t1/2 was (4.40 ± 0.179) h; Tmax value was (2.33 ± 0.105) h; Cmax was (14.53 ± 0.282) µg/mL; the AUC(0-∞) was (59.19 ± 4.402) µg · h/mL. AUMC(0-∞) was (367.23 ± 38.96) µg. (h)(2)/mL; Ke was (0.16 ± 0.006) h; MRT was (5.80 ± 0.227) h; Vd was (96.36 ± 8.917 L). A rapid, accurate and precise high pressure liquid chromatography method was developed and validated before the study. It is concluded that this method is very useful for the analysis of pharmacokinetic parameters, in human plasma and assured the safety and efficacy of piracetam, can be effectively used in medical practice. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  3. Prediction of compressibility parameters of the soils using artificial neural network.

    PubMed

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  4. Determining the accuracy of maximum likelihood parameter estimates with colored residuals

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1994-01-01

    An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.

  5. Application of the precipitation-runoff model in the Warrior coal field, Alabama

    USGS Publications Warehouse

    Kidd, Robert E.; Bossong, C.R.

    1987-01-01

    A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.

  6. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Lilly, A.

    2001-10-01

    There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.

  7. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    USGS Publications Warehouse

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.

  8. Reliability of capturing foot parameters using digital scanning and the neutral suspension casting technique

    PubMed Central

    2011-01-01

    Background A clinical study was conducted to determine the intra and inter-rater reliability of digital scanning and the neutral suspension casting technique to measure six foot parameters. The neutral suspension casting technique is a commonly utilised method for obtaining a negative impression of the foot prior to orthotic fabrication. Digital scanning offers an alternative to the traditional plaster of Paris techniques. Methods Twenty one healthy participants volunteered to take part in the study. Six casts and six digital scans were obtained from each participant by two raters of differing clinical experience. The foot parameters chosen for investigation were cast length (mm), forefoot width (mm), rearfoot width (mm), medial arch height (mm), lateral arch height (mm) and forefoot to rearfoot alignment (degrees). Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) were calculated to determine the intra and inter-rater reliability. Measurement error was assessed through the calculation of the standard error of the measurement (SEM) and smallest real difference (SRD). Results ICC values for all foot parameters using digital scanning ranged between 0.81-0.99 for both intra and inter-rater reliability. For neutral suspension casting technique inter-rater reliability values ranged from 0.57-0.99 and intra-rater reliability values ranging from 0.36-0.99 for rater 1 and 0.49-0.99 for rater 2. Conclusions The findings of this study indicate that digital scanning is a reliable technique, irrespective of clinical experience, with reduced measurement variability in all foot parameters investigated when compared to neutral suspension casting. PMID:21375757

  9. [Is there a relation between weight in rats, bone density, ash weight and histomorphometric indicators of trabecular volume and thickness in the bones of extremities?].

    PubMed

    Zák, J; Kapitola, J; Povýsil, C

    2003-01-01

    Authors deal with question, if there is possibility to infer bone histological structure (described by histomorphometric parameters of trabecular bone volume and trabecular thickness) from bone density, ash weight or even from weight of animal (rat). Both tibias of each of 30 intact male rats, 90 days old, were processed. Left tibia was utilized to the determination of histomorphometric parameters of undecalcified bone tissue patterns by automatic image analysis. Right tibia was used to the determination of values of bone density, using Archimedes' principle. Values of bone density, ash weight, ash weight related to bone volume and animal weight were correlated with histomorphometric parameters (trabecular bone volume, trabecular thickness) by Pearson's correlation test. One could presume the existence of relation between data, describing bone mass at the histological level (trabecular bone of tibia) and other data, describing mass of whole bone or even animal mass (weight). But no statistically significant correlation was found. The reason of the present results could be in the deviations of trabecular density in marrow of tibia. Because of higher trabecular bone density in metaphyseal and epiphyseal regions, the histomorphometric analysis of trabecular bone is preferentially done in these areas. It is possible, that this irregularity of trabecular tibial density could be the source of the deviations, which could influence the results of correlations determined. The values of bone density, ash weight and animal weight do not influence trabecular bone volume and vice versa: static histomorphometric parameters of trabecular bone do not reflect bone density, ash weight and weight of animal.

  10. Analysis of the methods for assessing socio-economic development level of urban areas

    NASA Astrophysics Data System (ADS)

    Popova, Olga; Bogacheva, Elena

    2017-01-01

    The present paper provides a targeted analysis of current approaches (ratings) in the assessment of socio-economic development of urban areas. The survey focuses on identifying standardized methodologies to area assessment techniques formation that will result in developing the system of intelligent monitoring, dispatching, building management, scheduling and effective management of an administrative-territorial unit. This system is characterized by complex hierarchical structure, including tangible and intangible properties (parameters, attributes). Investigating the abovementioned methods should increase the administrative-territorial unit's attractiveness for investors and residence. The research aims at studying methods for evaluating socio-economic development level of the Russian Federation territories. Experimental and theoretical territory estimating methods were revealed. Complex analysis of the characteristics of the areas was carried out and evaluation parameters were determined. Integral indicators (resulting rating criteria values) as well as the overall rankings (parameters, characteristics) were analyzed. The inventory of the most widely used partial indicators (parameters, characteristics) of urban areas was revealed. The resulting criteria of rating values homogeneity were verified and confirmed by determining the root mean square deviation, i.e. divergence of indices. The principal shortcomings of assessment methodologies were revealed. The assessment methods with enhanced effectiveness and homogeneity were proposed.

  11. Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives.

    PubMed

    Salguero-Chaparro, Lourdes; Baeten, Vincent; Fernández-Pierna, Juan A; Peña-Rodríguez, Francisco

    2013-08-15

    The acidity, moisture and fat content in intact olive fruits were determined on-line using a NIR diode array instrument, operating on a conveyor belt. Four sets of calibrations models were obtained by means of different combinations from samples collected during 2009-2010 and 2010-2011, using full-cross and external validation. Several preprocessing treatments such as derivatives and scatter correction were investigated by using the root mean square error of cross-validation (RMSECV) and prediction (RMSEP), as control parameters. The results obtained showed RMSECV values of 2.54-3.26 for moisture, 2.35-2.71 for fat content and 2.50-3.26 for acidity parameters, depending on the calibration model developed. Calibrations for moisture, fat content and acidity gave residual predictive deviation (RPD) values of 2.76, 2.37 and 1.60, respectively. Although, it is concluded that the on-line NIRS prediction results were acceptable for the three parameters measured in intact olive samples in movement, the models developed must be improved in order to increase their accuracy before final NIRS implementation at mills. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The influence of pH adjustment on kinetics parameters in tapioca wastewater treatment using aerobic sequencing batch reactor system

    NASA Astrophysics Data System (ADS)

    Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid

    2018-02-01

    The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.

  13. Prediction of kinase-inhibitor binding affinity using energetic parameters

    PubMed Central

    Usha, Singaravelu; Selvaraj, Samuel

    2016-01-01

    The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052

  14. Comparison of in situ uranium KD values with a laboratory determined surface complexation model

    USGS Publications Warehouse

    Curtis, G.P.; Fox, P.; Kohler, M.; Davis, J.A.

    2004-01-01

    Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ K D values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ K D values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model. ?? 2004 Elsevier Ltd. All rights reserved.

  15. An automatic and effective parameter optimization method for model tuning

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Li, L.; Lin, Y.; Xue, W.; Xie, F.; Xu, H.; Huang, X.

    2015-11-01

    Physical parameterizations in general circulation models (GCMs), having various uncertain parameters, greatly impact model performance and model climate sensitivity. Traditional manual and empirical tuning of these parameters is time-consuming and ineffective. In this study, a "three-step" methodology is proposed to automatically and effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. Different from the traditional optimization methods, two extra steps, one determining the model's sensitivity to the parameters and the other choosing the optimum initial value for those sensitive parameters, are introduced before the downhill simplex method. This new method reduces the number of parameters to be tuned and accelerates the convergence of the downhill simplex method. Atmospheric GCM simulation results show that the optimum combination of these parameters determined using this method is able to improve the model's overall performance by 9 %. The proposed methodology and software framework can be easily applied to other GCMs to speed up the model development process, especially regarding unavoidable comprehensive parameter tuning during the model development stage.

  16. Using Active Learning for Speeding up Calibration in Simulation Models.

    PubMed

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  17. Using Active Learning for Speeding up Calibration in Simulation Models

    PubMed Central

    Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2015-01-01

    Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190

  18. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 2: Derivation of system energy price equations

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The methodology presented is a derivation of the utility owned solar electric systems model. The net present value of the system is determined by consideration of all financial benefits and costs including a specified return on investment. Life cycle costs, life cycle revenues, and residual system values are obtained. Break-even values of system parameters are estimated by setting the net present value to zero.

  19. Parameter identification for nonlinear aerodynamic systems

    NASA Technical Reports Server (NTRS)

    Pearson, Allan E.

    1990-01-01

    Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

  20. Experimental Research and Mathematical Modeling of Parameters Effecting on Cutting Force and SurfaceRoughness in CNC Turning Process

    NASA Astrophysics Data System (ADS)

    Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.

    2018-01-01

    In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.

  1. Reaction-Diffusion-Delay Model for EPO/TNF-α Interaction in articular cartilage lesion abatement

    PubMed Central

    2012-01-01

    Background Injuries to articular cartilage result in the development of lesions that form on the surface of the cartilage. Such lesions are associated with articular cartilage degeneration and osteoarthritis. The typical injury response often causes collateral damage, primarily an effect of inflammation, which results in the spread of lesions beyond the region where the initial injury occurs. Results and discussion We present a minimal mathematical model based on known mechanisms to investigate the spread and abatement of such lesions. The first case corresponds to the parameter values listed in Table 1, while the second case has parameter values as in Table 2. In particular we represent the "balancing act" between pro-inflammatory and anti-inflammatory cytokines that is hypothesized to be a principal mechanism in the expansion properties of cartilage damage during the typical injury response. We present preliminary results of in vitro studies that confirm the anti-inflammatory activities of the cytokine erythropoietin (EPO). We assume that the diffusion of cytokines determine the spatial behavior of injury response and lesion expansion so that a reaction diffusion system involving chemical species and chondrocyte cell state population densities is a natural way to represent cartilage injury response. We present computational results using the mathematical model showing that our representation is successful in capturing much of the interesting spatial behavior of injury associated lesion development and abatement in articular cartilage. Further, we discuss the use of this model to study the possibility of using EPO as a therapy for reducing the amount of inflammation induced collateral damage to cartilage during the typical injury response. Table 1 Model Parameter Values for Results in Figure 5 Table of Parameter Values Corresponding to Simulations in Figure 5 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] D P 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0 micromolar ⋅ c m 2 day ⋅ cells Case with no anti-inflammatory response Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 0 1 day Case with no anti-inflammatory response β 1 100 1 day Approximated Β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Table 2 Model Parameter Values for Results in Figure 6 Table of Parameter Values Corresponding to Simulations in Figure 6 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] DP 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0.001 micromolar ⋅ c m 2 day ⋅ cells Approximated Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 10 1 day Approximated β 1 100 1 day Approximated β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Conclusions The mathematical model presented herein suggests that not only are anti-inflammatory cy-tokines, such as EPO necessary to prevent chondrocytes signaled by pro-inflammatory cytokines from entering apoptosis, they may also influence how chondrocytes respond to signaling by pro-inflammatory cytokines. Reviewers This paper has been reviewed by Yang Kuang, James Faeder and Anna Marciniak-Czochra. PMID:22353555

  2. The Impact of Variability of Selected Geological and Mining Parameters on the Value and Risks of Projects in the Hard Coal Mining Industry

    NASA Astrophysics Data System (ADS)

    Kopacz, Michał

    2017-09-01

    The paper attempts to assess the impact of variability of selected geological (deposit) parameters on the value and risks of projects in the hard coal mining industry. The study was based on simulated discounted cash flow analysis, while the results were verified for three existing bituminous coal seams. The Monte Carlo simulation was based on nonparametric bootstrap method, while correlations between individual deposit parameters were replicated with use of an empirical copula. The calculations take into account the uncertainty towards the parameters of empirical distributions of the deposit variables. The Net Present Value (NPV) and the Internal Rate of Return (IRR) were selected as the main measures of value and risk, respectively. The impact of volatility and correlation of deposit parameters were analyzed in two aspects, by identifying the overall effect of the correlated variability of the parameters and the indywidual impact of the correlation on the NPV and IRR. For this purpose, a differential approach, allowing determining the value of the possible errors in calculation of these measures in numerical terms, has been used. Based on the study it can be concluded that the mean value of the overall effect of the variability does not exceed 11.8% of NPV and 2.4 percentage points of IRR. Neglecting the correlations results in overestimating the NPV and the IRR by up to 4.4%, and 0.4 percentage point respectively. It should be noted, however, that the differences in NPV and IRR values can vary significantly, while their interpretation depends on the likelihood of implementation. Generalizing the obtained results, based on the average values, the maximum value of the risk premium in the given calculation conditions of the "X" deposit, and the correspondingly large datasets (greater than 2500), should not be higher than 2.4 percentage points. The impact of the analyzed geological parameters on the NPV and IRR depends primarily on their co-existence, which can be measured by the strength of correlation. In the analyzed case, the correlations result in limiting the range of variation of the geological parameters and economics results (the empirical copula reduces the NPV and IRR in probabilistic approach). However, this is due to the adjustment of the calculation under conditions similar to those prevailing in the deposit.

  3. Temperature, stress, and corrosive sensing apparatus utilizing harmonic response of magnetically soft sensor element (s)

    NASA Technical Reports Server (NTRS)

    Grimes, Craig A. (Inventor); Ong, Keat Ghee (Inventor)

    2003-01-01

    A temperature sensing apparatus including a sensor element made of a magnetically soft material operatively arranged within a first and second time-varying interrogation magnetic field, the first time-varying magnetic field being generated at a frequency higher than that for the second magnetic field. A receiver, remote from the sensor element, is engaged to measure intensity of electromagnetic emissions from the sensor element to identify a relative maximum amplitude value for each of a plurality of higher-order harmonic frequency amplitudes so measured. A unit then determines a value for temperature (or other parameter of interst) using the relative maximum harmonic amplitude values identified. In other aspects of the invention, the focus is on an apparatus and technique for determining a value for of stress condition of a solid analyte and for determining a value for corrosion, using the relative maximum harmonic amplitude values identified. A magnetically hard element supporting a biasing field adjacent the magnetically soft sensor element can be included.

  4. Structural and luminescence behavior of Er(3+) ions doped Barium tellurofluoroborate glasses.

    PubMed

    Annapoorani, K; Maheshvaran, K; Arunkumar, S; Suriya Murthy, N; Marimuthu, K

    2015-01-25

    Er(3+) doped Barium tellurofluoroborate glasses (BTFBxE) with the chemical composition (30-x)TeO2+30B2O3+20BaO+20BaF+xEr2O3 (where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 in wt%) were prepared following the melt quenching technique. The different vibrational modes of borates and tellurites in the prepared glasses were explored through FTIR and Raman spectra. The optical absorption spectra have been used to determine the ionic/covalent nature of the metal-ligand bond in the prepared glasses with the help of Nephelauxetic ratio (β) and bonding parameter (δ) studies. The optical band gap of direct and indirect allowed transitions were determined from Tauc's plot and the variations of band gap energy with structural arrangements were discussed. The Urbach energy values were determined and the relatively lower values of the Urbach's energy reveal the minimal degree of disorderness in the prepared glasses. The oscillator strengths (fexp and fcal) and Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6) were calculated with the application of JO theory and the trends of the JO intensity parameters are found to be Ω2>Ω6>Ω4 for all the prepared glasses with a minimum variation in Ω2 intensity parameter values. A bright green emission was observed from the (2)H11/2+(4)S3/2→ (4)I15/2 transition and the radiative properties such as transition probability (A), stimulated emission cross-section (σP(E)), branching ratio (βr) and radiative lifetime (τ) were calculated using the JO parameters. The suitability of the prepared glasses for the fabrication of photonic devices were also discussed and reported in the present work. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MOVES sensitivity study

    DOT National Transportation Integrated Search

    2012-01-01

    Purpose: : To determine ranking of important parameters and the overall sensitivity to values of variables in MOVES : To allow a greater understanding of the MOVES modeling process for users : Continued support by FHWA to transportation modeling comm...

  6. Aggregate Load Controllers and Associated Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.

    Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less

  7. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  8. An automatic scaling method for obtaining the trace and parameters from oblique ionogram based on hybrid genetic algorithm

    NASA Astrophysics Data System (ADS)

    Song, Huan; Hu, Yaogai; Jiang, Chunhua; Zhou, Chen; Zhao, Zhengyu; Zou, Xianjian

    2016-12-01

    Scaling oblique ionogram plays an important role in obtaining ionospheric structure at the midpoint of oblique sounding path. The paper proposed an automatic scaling method to extract the trace and parameters of oblique ionogram based on hybrid genetic algorithm (HGA). The extracted 10 parameters come from F2 layer and Es layer, such as maximum observation frequency, critical frequency, and virtual height. The method adopts quasi-parabolic (QP) model to describe F2 layer's electron density profile that is used to synthesize trace. And it utilizes secant theorem, Martyn's equivalent path theorem, image processing technology, and echoes' characteristics to determine seven parameters' best fit values, and three parameter's initial values in QP model to set up their searching spaces which are the needed input data of HGA. Then HGA searches the three parameters' best fit values from their searching spaces based on the fitness between the synthesized trace and the real trace. In order to verify the performance of the method, 240 oblique ionograms are scaled and their results are compared with manual scaling results and the inversion results of the corresponding vertical ionograms. The comparison results show that the scaling results are accurate or at least adequate 60-90% of the time.

  9. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p < 0.001 in all cases. The value of β was also found to be associated with patient age and breast diameter, parameters both related to breast density. In all associations between other parameters, lower values of β were associated with increased breast cancer detection performance. Specifically, lower values of β were associated with lower breast density, higher detectability index, higher sensitivity, and lower fractal dimension values. While causality was not and probably cannot be demonstrated, the strong, statistically significant association between the β metric and the other more widely used parameters suggest that β may be considered as a surrogate measure for breast cancer detection performance. These findings are specific to breast parenchymal patterns and mass lesions only.

  10. SWEET-Cat update and FASMA. A new minimization procedure for stellar parameters using high-quality spectra

    NASA Astrophysics Data System (ADS)

    Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A. C. S.

    2017-04-01

    Context. Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopaedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets. Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2 m (run 2014B/020), with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and 096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain; runs ID 14AF14 and 53-202).The compiled SWEET-Cat is available online, http://https://www.astro.up.pt/resources/sweet-cat/

  11. Sparing of normal urothelium in hexyl-aminolevulinate-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Vaucher, Laurent; Jichlinski, Patrice; Lange, Norbert; Ritter-Schenk, Celine; van den Bergh, Hubert; Kucera, Pavel

    2005-04-01

    This work determines on an in vitro porcine urothelium model the threshold values of different parameters such as photosensitizer concentration, irradiation parameters and production of reactive oxygen species in order to control the damage on normal urothelium and spare about 50% of normal mucosa. For a three hours HAL incubation time, these threshold values were with blue light (0.75J/cm at 75 mW/cm2 or 0.15J/cm2 at 30 mW/cm2) and with white light (0.55J/cm2, at 30 mW/cm2). This means that for identical fluence rates, the threshold value for white light irradiation may be 3 times higher than for blue light irradiation.

  12. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system.

    PubMed

    Mitov, Gergo; Lohbauer, Ulrich; Rabbo, Mohammad Abed; Petschelt, Anselm; Pospiech, Peter

    2008-02-01

    The mechanical properties and slow crack propapagation of the all-porcelain system Empress 2 (Ivoclar Vivadent, Schaan, Liechtenstein) with its framework compound Empress 2 and the veneering compounds "Empress 2 and Eris were examined. For all materials, the fracture strength, Weibull parameter and elastic moduli were experimentally determined in a four-point-bending test. For the components of the Empress 2 system, the fracture toughness K(IC) was determined, and the crack propagation parameters n and A were determined in a dynamic fatigue method. Using these data, life data analysis was performed and lifetime diagrams were produced. The development of strength under static fatigue conditions was calculated for a period of 5 years. The newly developed veneering ceramic Eris showed a higher fracture strength (sigma(0)=66.1 MPa) at a failure probability of P(F)=63.2%, and crack growth parameters (n=12.9) compared to the veneering ceramic Empress 2 (sigma(0)=60.3 MPa). For Empress 2 veneer the crack propagation parameter n could only be estimated (n=9.5). This is reflected in the prognosis of long-term resistance presented in the SPT diagrams. For all materials investigated, the Weibull parameter m values (Empress 2 framework m=4.6; Empress 2 veneer m=7.9; Eris m=6.9) were much lower than the minimum demanded by the literature (m=15). The initial fracture strength value alone is not sufficient to characterize the mechanical resistance of ceramic materials, since their stressability is time-dependent. Knowledge about the crack propagation parameters n and A are of great importance when preclinically predicting the clinical suitability of dental ceramic materials. The use of SPT diagrams for lifetime calculation of ceramic materials is a valuable method for comparing different ceramics.

  13. The Application of Some Hartree-Fock Model Calculation to the Analysis of Atomic and Free-Ion Optical Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayhurst, Thomas Laine

    1980-08-06

    Techniques for applying ab-initio calculations to the is of atomic spectra are investigated, along with the relationship between the semi-empirical and ab-initio forms of Slater-Condon theory. Slater-Condon theory is reviewed with a focus on the essential features that lead to the effective Hamiltonians associated with the semi-empirical form of the theory. Ab-initio spectroscopic parameters are calculated from wavefunctions obtained via self-consistent field methods, while multi-configuration Hamiltonian matrices are constructed and diagonalized with computer codes written by Robert Cowan of Los Alamos Scientific Laboratory. Group theoretical analysis demonstrates that wavefunctions more general than Slater determinants (i.e. wavefunctions with radial correlations betweenmore » electrons) lead to essentially the same parameterization of effective Hamiltonians. In the spirit of this analysis, a strategy is developed for adjusting ab-initio values of the spectroscopic parameters, reproducing parameters obtained by fitting the corresponding effective Hamiltonian. Secondary parameters are used to "screen" the calculated (primary) spectroscopic parameters, their values determined by least squares. Extrapolations of the secondary parameters determined from analyzed spectra are attempted to correct calculations of atoms and ions without experimental levels. The adjustment strategy and extrapolations are tested on the K I sequence from K 0+ through Fe 7+, fitting to experimental levels for V 4+, and Cr 5+; unobserved levels and spectra are predicted for several members of the sequence. A related problem is also discussed: Energy levels of the Uranium hexahalide complexes, (UX 6) 2- for X= F, Cl, Br, and I, are fit to an effective Hamiltonian (the f 2 configuration in O h symmetry) with corrections proposed by Brian Judd.« less

  14. Decrease in the orbital period of Hercules X-1

    NASA Technical Reports Server (NTRS)

    Deeter, John E.; Boynton, Paul E.; Miyamoto, Sigenori; Kitamoto, Shunji; Nagase, Fumiaki; Kawai, Nobuyuki

    1991-01-01

    From a pulse-timing analysis of Ginga observations of the binary X-ray pulsar Her X-1 obtained during the interval 1989 April-June local orbital parameters are determined for a short high state. An orbital epoch is also determined in the adjacent main high state. By comparing these orbital solutions with previously published results, a decrease is detected in the orbital period for Her X-1 over the interval 1971-1989. The value is substantially larger than the value predicted from current estimates of the mass-transfer rate, and motivates consideration of other mechanisms of mass transfer and/or mass loss. A second result from these observations is a close agreement between orbital parameters determined separately in main high and short high states. This agreement places strong constraints on the obliquity of the stellar companion, HZ Her, if undergoing forced precession with a 35-day period. As a consequence further doubt is placed on the slaved-disk model as the underlying cause of the 35-day cycle in Her X-1.

  15. Estimating clinical chemistry reference values based on an existing data set of unselected animals.

    PubMed

    Dimauro, Corrado; Bonelli, Piero; Nicolussi, Paola; Rassu, Salvatore P G; Cappio-Borlino, Aldo; Pulina, Giuseppe

    2008-11-01

    In an attempt to standardise the determination of biological reference values, the International Federation of Clinical Chemistry (IFCC) has published a series of recommendations on developing reference intervals. The IFCC recommends the use of an a priori sampling of at least 120 healthy individuals. However, such a high number of samples and laboratory analysis is expensive, time-consuming and not always feasible, especially in veterinary medicine. In this paper, an alternative (a posteriori) method is described and is used to determine reference intervals for biochemical parameters of farm animals using an existing laboratory data set. The method used was based on the detection and removal of outliers to obtain a large sample of animals likely to be healthy from the existing data set. This allowed the estimation of reliable reference intervals for biochemical parameters in Sarda dairy sheep. This method may also be useful for the determination of reference intervals for different species, ages and gender.

  16. Gravitational-wave cosmography with LISA and the Hubble tension

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  17. Consistent van der Waals Radii for the Whole Main Group

    PubMed Central

    Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.

    2013-01-01

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751

  18. Consistent van der Waals radii for the whole main group.

    PubMed

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  19. The Use of Asymptotic Functions for Determining Empirical Values of CN Parameter in Selected Catchments of Variable Land Cover

    NASA Astrophysics Data System (ADS)

    Wałęga, Andrzej; Młyński, Dariusz; Wachulec, Katarzyna

    2017-12-01

    The aim of the study was to assess the applicability of asymptotic functions for determining the value of CN parameter as a function of precipitation depth in mountain and upland catchments. The analyses were carried out in two catchments: the Rudawa, left tributary of the Vistula, and the Kamienica, right tributary of the Dunajec. The input material included data on precipitation and flows for a multi-year period 1980-2012, obtained from IMGW PIB in Warsaw. Two models were used to determine empirical values of CNobs parameter as a function of precipitation depth: standard Hawkins model and 2-CN model allowing for a heterogeneous nature of a catchment area. The study analyses confirmed that asymptotic functions properly described P-CNobs relationship for the entire range of precipitation variability. In the case of high rainfalls, CNobs remained above or below the commonly accepted average antecedent moisture conditions AMCII. The study calculations indicated that the runoff amount calculated according to the original SCS-CN method might be underestimated, and this could adversely affect the values of design flows required for the design of hydraulic engineering projects. In catchments with heterogeneous land cover, the results of CNobs were more accurate when 2-CN model was used instead of the standard Hawkins model. 2-CN model is more precise in accounting for differences in runoff formation depending on retention capacity of the substrate. It was also demonstrated that the commonly accepted initial abstraction coefficient λ = 0.20 yielded too big initial loss of precipitation in the analyzed catchments and, therefore, the computed direct runoff was underestimated. The best results were obtained for λ = 0.05.

  20. Denudation rates of the Southern Espinhaço Range, Minas Gerais, Brazil, determined by in situ-produced cosmogenic beryllium-10

    NASA Astrophysics Data System (ADS)

    Barreto, Helen N.; Varajão, César A. C.; Braucher, Régis; Bourlès, Didier L.; Salgado, André A. R.; Varajão, Angélica F. D. C.

    2013-06-01

    To investigate denudation rates in the southern part of the Espinhaço Range (central-eastern Brazil) and to understand how this important resistant and residual relief has evolved in the past 1.38 My, cosmogenic 10Be concentrations produced in situ were measured in alluvial sediments from the three main regional basins, whose substratum is composed primarily of quartzites. The long-term denudation rates (up to 1.38 My) estimated from these measurements were compared with those that affect the western (São Francisco River) and eastern (Doce and Jequitinhonha Rivers) basins, which face the West San Francisco craton and the Atlantic, respectively. Denudation rates were measured in 27 samples collected in catchments of different sizes (6-970 km2) and were compared with geomorphic parameters. The mean denudation rates determined in the northern part are low and similar to those determined in the southern part, despite slightly different geomorphic parameter values (catchment relief and mean slope). For the southern catchments, the values are 4.91 ± 1.01 m My- 1 and 3.65 ± 1.26 m My- 1 for the Doce and São Francisco River basins, respectively; for the northern catchments, they are 4.40 ± 1.06 m My- 1 and 3.96 ± 0.91 m My- 1 for the Jequitinhonha and São Francisco River basins, respectively. These low values of denudation rates suggest no direct correlation if plotted against geomorphic parameters such as the catchment area, maximum elevation, catchment relief, average relief and mean slope gradients. These values show that the regional landscape evolves slowly and is strongly controlled by resistant lithology, with similar erosional rates in the three studied basins.

  1. A generic hydrological model for a green roof drainage layer.

    PubMed

    Vesuviano, Gianni; Stovin, Virginia

    2013-01-01

    A rainfall simulator of length 5 m and width 1 m was used to supply constant intensity and largely spatially uniform water inflow events to 100 different configurations of commercially available green roof drainage layer and protection mat. The runoff from each inflow event was collected and sampled at one-second intervals. Time-series runoff responses were subsequently produced for each of the tested configurations, using the average response of three repeat tests. Runoff models, based on storage routing (dS/dt = I-Q) and a power-law relationship between storage and runoff (Q = kS(n)), and incorporating a delay parameter, were created. The parameters k, n and delay were optimized to best fit each of the runoff responses individually. The range and pattern of optimized parameter values was analysed with respect to roof and event configuration. An analysis was performed to determine the sensitivity of the shape of the runoff profile to changes in parameter values. There appears to be potential to consolidate values of n by roof slope and drainage component material.

  2. Converting HAZUS capacity curves to seismic hazard-compatible building fragility functions: effect of hysteretic models

    USGS Publications Warehouse

    Ryu, Hyeuk; Luco, Nicolas; Baker, Jack W.; Karaca, Erdem

    2008-01-01

    A methodology was recently proposed for the development of hazard-compatible building fragility models using parameters of capacity curves and damage state thresholds from HAZUS (Karaca and Luco, 2008). In the methodology, HAZUS curvilinear capacity curves were used to define nonlinear dynamic SDOF models that were subjected to the nonlinear time history analysis instead of the capacity spectrum method. In this study, we construct a multilinear capacity curve with negative stiffness after an ultimate (capping) point for the nonlinear time history analysis, as an alternative to the curvilinear model provided in HAZUS. As an illustration, here we propose parameter values of the multilinear capacity curve for a moderate-code low-rise steel moment resisting frame building (labeled S1L in HAZUS). To determine the final parameter values, we perform nonlinear time history analyses of SDOF systems with various parameter values and investigate their effects on resulting fragility functions through sensitivity analysis. The findings improve capacity curves and thereby fragility and/or vulnerability models for generic types of structures.

  3. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  4. Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers.

    PubMed

    McGill, L A; Ferreira, P F; Scott, A D; Nielles-Vallespin, S; Giannakidis, A; Kilner, P J; Gatehouse, P D; de Silva, R; Firmin, D N; Pennell, D J

    2016-01-06

    In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.

  5. Angular photogrammetric comparison of the soft-tissue facial profile of Kenyans and Chinese.

    PubMed

    Wamalwa, Peter; Amisi, Stella Kabarika; Wang, Yunji; Chen, Song

    2011-05-01

    The purpose of this study was to determine the average angular dimensions that define the normal soft-tissue facial profiles of black Kenyans and Chinese and compare them with each other and with values proposed for whites. Standardized facial profile photographs, taken in natural head position, of 177 black Kenyans and 156 Chinese with normal occlusion and well-balanced faces were analyzed for 12 angular parameters. Two-sample t-tests were used to determine sex and racial differences. Kenyan and Chinese averages were compared with proposed white values using 1-sample t-tests. Eight parameters in Kenyans and 7 in Chinese showed sex differences. All angles, except for facial convexity, nasal dorsum, and inferior facial height, were different between Kenyans and Chinese. Kenyan and Chinese averages for all parameters were different from proposed white average, except for facial convexity. Nasolabial and mentolabial angles showed large individual variability and racial differences. The study demonstrated many differences in average angular measurements of the facial profiles of black Kenyans, Chinese, and white standards. Orthodontists, maxillofacial and plastic surgeons, and other clinicians working in the craniofacial region should bear these in mind when setting aesthetic treatment goals for patients of different races. Mean values from this study can be used for comparison with similar records of subjects with same ethnicity.

  6. Azimuthally invariant Mueller-matrix mapping of biological optically anisotropic network

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Vanchuliak, O.; Bodnar, G. B.; Ushenko, V. O.; Grytsyuk, M.; Pavlyukovich, N.; Pavlyukovich, O. V.; Antonyuk, O.

    2017-09-01

    A new technique of Mueller-matrix mapping of polycrystalline structure of histological sections of biological tissues is suggested. The algorithms of reconstruction of distribution of parameters of linear and circular dichroism of histological sections liver tissue of mice with different degrees of severity of diabetes are found. The interconnections between such distributions and parameters of linear and circular dichroism of liver of mice tissue histological sections are defined. The comparative investigations of coordinate distributions of parameters of amplitude anisotropy formed by Liver tissue with varying severity of diabetes (10 days and 24 days) are performed. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of coordinate distributions of the value of linear and circular dichroism are defined. The objective criteria of cause of the degree of severity of the diabetes differentiation are determined.

  7. An adaptive embedded mesh procedure for leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.

    1989-01-01

    A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.

  8. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  9. Experimental and computational correlation of fracture parameters KIc, JIc, and GIc for unimodular and bimodular graphite components

    NASA Astrophysics Data System (ADS)

    Bhushan, Awani; Panda, S. K.

    2018-05-01

    The influence of bimodularity (different stress ∼ strain behaviour in tension and compression) on fracture behaviour of graphite specimens has been studied with fracture toughness (KIc), critical J-integral (JIc) and critical strain energy release rate (GIc) as the characterizing parameter. Bimodularity index (ratio of tensile Young's modulus to compression Young's modulus) of graphite specimens has been obtained from the normalized test data of tensile and compression experimentation. Single edge notch bend (SENB) testing of pre-cracked specimens from the same lot have been carried out as per ASTM standard D7779-11 to determine the peak load and critical fracture parameters KIc, GIc and JIc using digital image correlation technology of crack opening displacements. Weibull weakest link theory has been used to evaluate the mean peak load, Weibull modulus and goodness of fit employing two parameter least square method (LIN2), biased (MLE2-B) and unbiased (MLE2-U) maximum likelihood estimator. The stress dependent elasticity problem of three-dimensional crack progression behaviour for the bimodular graphite components has been solved as an iterative finite element procedure. The crack characterizing parameters critical stress intensity factor and critical strain energy release rate have been estimated with the help of Weibull distribution plot between peak loads versus cumulative probability of failure. Experimental and Computational fracture parameters have been compared qualitatively to describe the significance of bimodularity. The bimodular influence on fracture behaviour of SENB graphite has been reflected on the experimental evaluation of GIc values only, which has been found to be different from the calculated JIc values. Numerical evaluation of bimodular 3D J-integral value is found to be close to the GIc value whereas the unimodular 3D J-value is nearer to the JIc value. The significant difference between the unimodular JIc and bimodular GIc indicates that GIc should be considered as the standard fracture parameter for bimodular brittle specimens.

  10. Ring rolling process simulation for microstructure optimization

    NASA Astrophysics Data System (ADS)

    Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio

    2017-10-01

    Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.

  11. Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation.

    PubMed

    Kurşun, Burak; Uğur, Levent; Keskin, Gökhan

    2018-05-01

    Hemodynamic analyzes are used in the clinical investigation and treatment of cardiovascular diseases. In the present study, the effect of bypass geometry on intracranial aneurysm hemodynamics was investigated numerically. Pressure, wall shear stress (WSS) and velocity distribution causing the aneurysm to grow and rupture were investigated and the best conditions were tried to be determined in case of bypassing between basilar (BA) and left/right posterior arteries (LPCA/RPCA) for different values of parameters. The finite volume method was used for numerical solutions and calculations were performed with the ANSYS-Fluent software. The SIMPLE algorithm was used to solve the discretized conservation equations. Second Order Upwind method was preferred for finding intermediate point values in the computational domain. As the blood flow velocity changes with time, the blood viscosity value also changes. For this reason, the Carreu model was used in determining the viscosity depending on the velocity. Numerical study results showed that when bypassed, pressure and wall shear stresses reduced in the range of 40-70% in the aneurysm. Numerical results obtained are presented in graphs including the variation of pressure, wall shear stress and velocity streamlines in the aneurysm. Considering the numerical results for all parameter values, it is seen that the most important factors affecting the pressure and WSS values in bypassing are the bypass position on the basilar artery (L b ) and the diameter of the bypass vessel (d). Pressure and wall shear stress reduced in the range of 40-70% in the aneurysm in the case of bypass for all parameters. This demonstrates that pressure and WSS values can be greatly reduced in aneurysm treatment by bypassing in cases where clipping or coil embolization methods can not be applied. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    PubMed

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  13. Method and system for determining the torque required to launch a vehicle having a hybrid drive-train

    DOEpatents

    Hughes, Douglas A.

    2006-04-04

    A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

  14. Testable solution of the cosmological constant and coincidence problems

    NASA Astrophysics Data System (ADS)

    Shaw, Douglas J.; Barrow, John D.

    2011-02-01

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, Λ, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of Λ≈(9.3Gyrs)-2 [≈10-120 in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of Ωk0=-0.0056(ζb/0.5), where ζb˜1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given Λ. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between tΛ=Λ-1/2 and the age of the Universe, tU, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different Λ values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  16. An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek-Brown Failure Criterion

    NASA Astrophysics Data System (ADS)

    Wu, Li; Adoko, Amoussou Coffi; Li, Bo

    2018-04-01

    In tunneling, determining quantitatively the rock mass strength parameters of the Hoek-Brown (HB) failure criterion is useful since it can improve the reliability of the design of tunnel support systems. In this study, a quantitative method is proposed to determine the rock mass quality parameters of the HB failure criterion, namely the Geological Strength Index (GSI) and the disturbance factor ( D) based on the structure of drilling core and weathering condition of rock mass combined with acoustic wave test to calculate the strength of rock mass. The Rock Mass Structure Index and the Rock Mass Weathering Index are used to quantify the GSI while the longitudinal wave velocity ( V p) is employed to derive the value of D. The DK383+338 tunnel face of Yaojia tunnel of Shanghai-Kunming passenger dedicated line served as illustration of how the methodology is implemented. The values of the GSI and D are obtained using the HB criterion and then using the proposed method. The measured in situ stress is used to evaluate their accuracy. To this end, the major and minor principal stresses are calculated based on the GSI and D given by HB criterion and the proposed method. The results indicated that both methods were close to the field observation which suggests that the proposed method can be used for determining quantitatively the rock quality parameters, as well. However, these results remain valid only for rock mass quality and rock type similar to those of the DK383+338 tunnel face of Yaojia tunnel.

  17. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid.

    PubMed

    Arefi-Oskoui, Samira; Khataee, Alireza; Vatanpour, Vahid

    2017-07-10

    In this research, MgAl-CO 3 2- nanolayered double hydroxide (NLDH) was synthesized through a facile coprecipitation method, followed by a hydrothermal treatment. The prepared NLDHs were used as a hydrophilic nanofiller for improving the performance of the PVDF-based ultrafiltration membranes. The main objective of this research was to obtain the optimized formula of NLDH/PVDF nanocomposite membrane presenting the best performance using computational techniques as a cost-effective method. For this aim, an artificial neural network (ANN) model was developed for modeling and expressing the relationship between the performance of the nanocomposite membrane (pure water flux, protein flux and flux recovery ratio) and the affecting parameters including the NLDH, PVP 29000 and polymer concentrations. The effects of the mentioned parameters and the interaction between the parameters were investigated using the contour plot predicted with the developed model. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and water contact angle techniques were applied to characterize the nanocomposite membranes and to interpret the predictions of the ANN model. The developed ANN model was introduced to genetic algorithm (GA) as a bioinspired optimizer to determine the optimum values of input parameters leading to high pure water flux, protein flux, and flux recovery ratio. The optimum values for NLDH, PVP 29000 and the PVDF concentration were determined to be 0.54, 1, and 18 wt %, respectively. The performance of the nanocomposite membrane prepared using the optimum values proposed by GA was investigated experimentally, in which the results were in good agreement with the values predicted by ANN model with error lower than 6%. This good agreement confirmed that the nanocomposite membranes prformance could be successfully modeled and optimized by ANN-GA system.

  18. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, Noah G.; Veirs, Douglas K.; Claytor, Thomas N.

    1994-01-01

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure.

  19. Fluid density and concentration measurement using noninvasive in situ ultrasonic resonance interferometry

    DOEpatents

    Pope, N.G.; Veirs, D.K.; Claytor, T.N.

    1994-10-25

    The specific gravity or solute concentration of a process fluid solution located in a selected structure is determined by obtaining a resonance response spectrum of the fluid/structure over a range of frequencies that are outside the response of the structure itself. A fast Fourier transform (FFT) of the resonance response spectrum is performed to form a set of FFT values. A peak value for the FFT values is determined, e.g., by curve fitting, to output a process parameter that is functionally related to the specific gravity and solute concentration of the process fluid solution. Calibration curves are required to correlate the peak FFT value over the range of expected specific gravities and solute concentrations in the selected structure. 7 figs.

  20. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  1. Development and system identification of a light unmanned aircraft for flying qualities research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, M.E.; Andrisani, D. II

    This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by themore » empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.« less

  2. The behavior of gain and saturation characteristics versus temperature in a copper bromide laser

    NASA Astrophysics Data System (ADS)

    Mohammadpour Lima, S.; Behrouzinia, S.; Salem, M. K.; Elahei, M.; Khorasani, K.; Dorranian, D.

    2017-05-01

    A pair of copper bromide lasers in an oscillator-amplifier configuration was used to investigate the temperature dependence of the small-signal gain, saturation intensity, and output power of the laser. The observations were explained in terms of the electron temperature and energy levels of transition. An optimum electrical input power of 1.6 kW and a corresponding operational temperature of 510 °C were determined for the maximum values of these parameters. The balance between the microscopic parameters, such as stimulated emission cross-section, laser upper-level lifetime, and population inversion, which determine the behavior of the amplifying parameters and laser output power with respect to the operational temperature, has been investigated. We used the steady-state rate equation from the Hargrove model to determine the amplifying parameters, instead of the Frantz-Nodvik formula. The power extracted from the amplifier exceeds that achieved with the same device as the oscillator by more than 60%.

  3. Analysis of radiological parameters associated with decreased fractional anisotropy values on diffusion tensor imaging in patients with lumbar spinal stenosis.

    PubMed

    Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan

    2018-04-26

    Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.

  4. System and method for regulating resonant inverters

    DOEpatents

    Stevanovic, Ljubisa Dragoljub [Clifton Park, NY; Zane, Regan Andrew [Superior, CO

    2007-08-28

    A technique is provided for direct digital phase control of resonant inverters based on sensing of one or more parameters of the resonant inverter. The resonant inverter control system includes a switching circuit for applying power signals to the resonant inverter and a sensor for sensing one or more parameters of the resonant inverter. The one or more parameters are representative of a phase angle. The resonant inverter control system also includes a comparator for comparing the one or more parameters to a reference value and a digital controller for determining timing of the one or more parameters and for regulating operation of the switching circuit based upon the timing of the one or more parameters.

  5. Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation

    PubMed Central

    Martin, Bryn A.; Kalata, Wojciech; Shaffer, Nicholas; Fischer, Paul; Luciano, Mark; Loth, Francis

    2013-01-01

    Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning. PMID:24130704

  6. Image quality assessment for CT used on small animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellomo, Nicola; Bellini, Emilio; Hu, Bin

    Cosmological observables show a dependence with the neutrino mass, which is partially degenerate with parameters of extended models of gravity. We study and explore this degeneracy in Horndeski generalized scalar-tensor theories of gravity. Using forecasted cosmic microwave background and galaxy power spectrum datasets, we find that a single parameter in the linear regime of the effective theory dominates the correlation with the total neutrino mass. For any given mass, a particular value of this parameter approximately cancels the power suppression due to the neutrino mass at a given redshift. The extent of the cancellation of this degeneracy depends on themore » cosmological large-scale structure data used at different redshifts. We constrain the parameters and functions of the effective gravity theory and determine the influence of gravity on the determination of the neutrino mass from present and future surveys.« less

  8. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  9. Parameters for the Operation of Bacterial Thiosalt Oxidation Ponds

    PubMed Central

    Silver, M.

    1985-01-01

    Shake flask and pH-controlled reactor tests were used to determine the mathematical parameters for a mixed-culture bacterial thiosalt treatment pond. Values determined were as follows: Km and Vmax (thiosulfate), 9.83 g/liter and 243.9 mg/liter per h, respectively; Ki (lead), 3.17 mg/liter; Ki (copper), 1.27 mg/liter; Q10 between 10 and 30°C, 1.95. From these parameters, the required bioxidation pond volume and residence time could be calculated. Soluble zinc (0.2 g/liter) and particulate mill products and by-products (0.25 g/liter) were not inhibitory. Correlation with an operating thiosalt biooxidation pond showed the parameters used to be valid for thiosalt concentrations up to at least 2 g/liter, lead concentrations of at least 10 mg/liter, and temperatures of >2°C. PMID:16346885

  10. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  11. Energy spectra and E2 transition rates of 124—130Ba

    NASA Astrophysics Data System (ADS)

    Sabri, H.; Seidi, M.

    2016-10-01

    In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.

  12. Three-Dimensional Echocardiographic Assessment of Left Heart Chamber Size and Function with Fully Automated Quantification Software in Patients with Atrial Fibrillation.

    PubMed

    Otani, Kyoko; Nakazono, Akemi; Salgo, Ivan S; Lang, Roberto M; Takeuchi, Masaaki

    2016-10-01

    Echocardiographic determination of left heart chamber volumetric parameters by using manual tracings during multiple beats is tedious in atrial fibrillation (AF). The aim of this study was to determine the usefulness of fully automated left chamber quantification software with single-beat three-dimensional transthoracic echocardiographic data sets in patients with AF. Single-beat full-volume three-dimensional transthoracic echocardiographic data sets were prospectively acquired during consecutive multiple cardiac beats (≥10 beats) in 88 patients with AF. In protocol 1, left ventricular volumes, left ventricular ejection fraction, and maximal left atrial volume were validated using automated quantification against the manual tracing method in identical beats in 10 patients. In protocol 2, automated quantification-derived averaged values from multiple beats were compared with the corresponding values obtained from the indexed beat in all patients. Excellent correlations of left chamber parameters between automated quantification and the manual method were observed (r = 0.88-0.98) in protocol 1. The time required for the analysis with the automated quantification method (5 min) was significantly less compared with the manual method (27 min) (P < .0001). In protocol 2, there were excellent linear correlations between the averaged left chamber parameters and the corresponding values obtained from the indexed beat (r = 0.94-0.99), and test-retest variability of left chamber parameters was low (3.5%-4.8%). Three-dimensional transthoracic echocardiography with fully automated quantification software is a rapid and reliable way to measure averaged values of left heart chamber parameters during multiple consecutive beats. Thus, it is a potential new approach for left chamber quantification in patients with AF in daily routine practice. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  13. Surveillance system and method having parameter estimation and operating mode partitioning

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2003-01-01

    A system and method for monitoring an apparatus or process asset including partitioning an unpartitioned training data set into a plurality of training data subsets each having an operating mode associated thereto; creating a process model comprised of a plurality of process submodels each trained as a function of at least one of the training data subsets; acquiring a current set of observed signal data values from the asset; determining an operating mode of the asset for the current set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a current set of estimated signal data values from the selected process submodel for the determined operating mode; and outputting the calculated current set of estimated signal data values for providing asset surveillance and/or control.

  14. Ricci-Gauss-Bonnet holographic dark energy

    NASA Astrophysics Data System (ADS)

    Saridakis, Emmanuel N.

    2018-03-01

    We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.

  15. Evaluation of mesoporous silicon thermal conductivity by electrothermal finite element simulation

    PubMed Central

    2012-01-01

    The aim of this work is to determine the thermal conductivity of mesoporous silicon (PoSi) by fitting the experimental results with simulated ones. The electrothermal response (resistance versus applied current) of differently designed test lines integrated onto PoSi/silicon substrates and the bulk were compared to the simulations. The PoSi thermal conductivity was the single parameter used to fit the experimental results. The obtained thermal conductivity values were compared with those determined from Raman scattering measurements, and a good agreement between both methods was found. This methodology can be used to easily determine the thermal conductivity value for various porous silicon morphologies. PMID:22849851

  16. Alterations in malondialdehyde levels and laboratory parameters among methamphetamine abusers.

    PubMed

    Suriyaprom, Kanjana; Tanateerabunjong, Rossukon; Tungtrongchitr, Anchalee; Tungtrongchitr, Rungsunn

    2011-12-01

    To determine the concentrations of malondialdehyde, biochemical, and hematological parameters among methamphetamine abusers compared with a healthy control group and to evaluate the association between malondialdehyde and biochemical-hematological parameters. The concentrations of malondialdehyde, lipids, liver enzymes, albumin, blood urea nitrogen, creatinine, and hematological measurements were determined in 60 methamphetamine abusers and 60 controls. Significantly higher levels of malondialdehyde were found in the methamphetamine abusers than the controls [2.45 (2.12-2.81) vs. 1.41 (1.15-2.08)]. The levels ofalanine aminotransferase and alkaline phosphatase and white blood cell and platelet counts of the methamphetamine abusers were significantly elevated (p-value < 0.05) compared with the controls. Meanwhile, the levels of hemoglobin, hematocrit, albumin and body mass index were significantly lower among the methamphetamine-abusing group than the control group (p-value < 0.05). It was found that higher numbers of methamphetamine tablets per day were associated with higher malondialdehyde concentrations in methamphetamine abusers, and that malondialdehyde concentration inversely correlated with albumin level (r = -0.458, p-value < 0.05). Stepwise multiple regression analysis revealed that number of methamphetamine tablets per day, white blood cell count and albumin level were independent predictors of malondialdehyde level (p-value < 0.05). Methamphetamine abuse is related to increased lipid peroxidation, changes in inflammatory marker level, increase in liver enzymes, and decrease in hemoglobin and hematocrit concentrations. These effects may be early signs of the development of diseases associated with methamphetamine abuse.

  17. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification.

    PubMed

    Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia

    2012-01-01

    Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.

  18. An inverse gas chromatographic methodology for studying gas-liquid mass transfer.

    PubMed

    Paloglou, A; Martakidis, K; Gavril, D

    2017-01-13

    A novel methodology of reversed flow inverse gas chromatography (RF-IGC) is presented. It permits the simultaneous determination of mass transfer coefficients across the gas liquid interface as well as the respective solubility parameters and thermodynamic functions of dissolution of gases into liquids. The standard deviation of the experimentally determined parameters is estimated for first time, which combined with the successful comparison of the values of the present parameters with other literature ones ascertain the reliability of the methodology. Another novelty of the present work is that the chromatographic sampling of the physicochemical phenomena is done without performing the usual flow reversals procedure. Vinyl chloride monomer's (VCM) interaction with various composition liquid foods: orange juice, milk and olive oil was used as model system. The present transfer rates are controlled by the gas film at lower temperatures, but at higher temperatures the resistances in both films tend to become equal. The found liquid diffusivity values express the total mass transfer from the gas phase into the liquid's bulk and they decrease with rising temperature, as the solubilities of gases in liquids do. Solubility, expressed by Henry's law constant and the mean values of interfacial thickness are of the same order of magnitude to literature ones. From the thermodynamic point of view, VCM dissolution in all liquids is accompanied by significant heat release and it is a slightly non-spontaneous process, near equilibrium, while the entropy change values are negative. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Static liquid permeation cell method for determining the migration parameters of low molecular weight organic compounds in polyethylene terephthalate.

    PubMed

    Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang

    2013-01-01

    The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.

  20. Determining Sala mango qualities with the use of RGB images captured by a mobile phone camera

    NASA Astrophysics Data System (ADS)

    Yahaya, Ommi Kalsom Mardziah; Jafri, Mohd Zubir Mat; Aziz, Azlan Abdul; Omar, Ahmad Fairuz

    2015-04-01

    Sala mango (Mangifera indicia) is one of the Malaysia's most popular tropical fruits that are widely marketed within the country. The degrees of ripeness of mangoes have conventionally been evaluated manually on the basis of color parameters, but a simple non-destructive technique using the Samsung Galaxy Note 1 mobile phone camera is introduced to replace the destructive technique. In this research, color parameters in terms of RGB values acquired using the ENVI software system were linked to detect Sala mango quality parameters. The features of mango were extracted from the acquired images and then used to classify of fruit skin color, which relates to the stages of ripening. A multivariate analysis method, multiple linear regression, was employed with the purpose of using RGB color parameters to estimate the pH, soluble solids content (SSC), and firmness. The relationship between these qualities parameters of Sala mango and its mean pixel values in the RGB system is analyzed. Findings show that pH yields the highest accuracy with a correlation coefficient R = 0.913 and root mean square of error RMSE = 0.166 pH. Meanwhile, firmness has R = 0.875 and RMSE = 1.392 kgf, whereas soluble solid content has the lowest accuracy with R = 0.814 and RMSE = 1.218°Brix with the correlation between color parameters. Therefore, this non-invasive method can be used to determine the quality attributes of mangoes.

  1. Biometric parameters in different stages of primary angle closure using low-coherence interferometry.

    PubMed

    Yazdani, Shahin; Akbarian, Shadi; Pakravan, Mohammad; Doozandeh, Azadeh; Afrouzifar, Mohsen

    2015-03-01

    To compare ocular biometric parameters using low-coherence interferometry among siblings affected with different degrees of primary angle closure (PAC). In this cross-sectional comparative study, a total of 170 eyes of 86 siblings from 47 families underwent low-coherence interferometry (LenStar 900; Haag-Streit, Koeniz, Switzerland) to determine central corneal thickness, anterior chamber depth (ACD), aqueous depth (AD), lens thickness (LT), vitreous depth, and axial length (AL). Regression coefficients were applied to show the trend of the measured variables in different stages of angle closure. To evaluate the discriminative power of the parameters, receiver operating characteristic curves were used. Best cutoff points were selected based on the Youden index. Sensitivity, specificity, positive and negative predicative values, positive and negative likelihood ratios, and diagnostic accuracy were determined for each variable. All biometric parameters changed significantly from normal eyes to PAC suspects, PAC, and PAC glaucoma; there was a significant stepwise decrease in central corneal thickness, ACD, AD, vitreous depth, and AL, and an increase in LT and LT/AL. Anterior chamber depth and AD had the best diagnostic power for detecting angle closure; best levels of sensitivity and specificity were obtained with cutoff values of 3.11 mm for ACD and 2.57 mm for AD. Biometric parameters measured by low-coherence interferometry demonstrated a significant and stepwise change among eyes affected with various degrees of angle closure. Although the current classification scheme for angle closure is based on anatomical features, it has excellent correlation with biometric parameters.

  2. Research of Surface Roughness Anisotropy

    NASA Astrophysics Data System (ADS)

    Bulaha, N.; Rudzitis, J.; Lungevics, J.; Linins, O.; Krizbergs, J.

    2017-04-01

    The authors of the paper have investigated surfaces with irregular roughness for the purpose of determination of roughness spacing parameters perpendicularly to machining traces - RSm1 and parallel to them - RSm2, as well as checking the relationship between the surface anisotropy coefficient c and surface aspect ratio Str from the standard LVS EN ISO 25178-2. Surface roughness measurement experiments with 11 surfaces show that measuring equipment values of mean spacing of profile irregularities in the longitudinal direction are not reliable due to the divergence of surface mean plane and roughness profile mean line. After the additional calculations it was stated that parameter Str can be used for determination of parameter RSm2 and roughness anisotropy evaluation for grinded, polished, friction surfaces and other surfaces with similar characteristics.

  3. Quantification of tidal parameters from Solar System data

    NASA Astrophysics Data System (ADS)

    Lainey, Valéry

    2016-11-01

    Tidal dissipation is the main driver of orbital evolution of natural satellites and a key point to understand the exoplanetary system configurations. Despite its importance, its quantification from observations still remains difficult for most objects of our own Solar System. In this work, we overview the method that has been used to determine, directly from observations, the tidal parameters, with emphasis on the Love number k_2 and the tidal quality factor Q. Up-to-date values of these tidal parameters are summarized. Last, an assessment on the possible determination of the tidal ratio k_2/Q of Uranus and Neptune is done. This may be particularly relevant for coming astrometric campaigns and future space missions focused on these systems.

  4. IN718 Additive Manufacturing Properties and Influences

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2015-01-01

    The results of tensile, fracture, and fatigue testing of IN718 coupons produced using the selective laser melting (SLM) additive manufacturing technique are presented. The data have been "sanitized" to remove the numerical values, although certain references to material standards are provided. This document provides some knowledge of the effect of variation of controlled build parameters used in the SLM process, a snapshot of the capabilities of SLM in industry at present, and shares some of the lessons learned along the way. For the build parameter characterization, the parameters were varied over a range that was centered about the machine manufacturer's recommended value, and in each case they were varied individually, although some co-variance of those parameters would be expected. Tensile, fracture, and high-cycle fatigue properties equivalent to wrought IN718 are achievable with SLM-produced IN718. Build and post-build processes need to be determined and then controlled to established limits to accomplish this. It is recommended that a multi-variable evaluation, e.g., design-of experiment (DOE), of the build parameters be performed to better evaluate the co-variance of the parameters.

  5. IN718 Additive Manufacturing Properties and Influences

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2015-01-01

    The results of tensile, fracture, and fatigue testing of IN718 coupons produced using the selective laser melting (SLM) additive manufacturing technique are presented. The data has been "generalized" to remove the numerical values, although certain references to material standards are provided. This document provides some knowledge of the effect of variation of controlled build parameters used in the SLM process, a snapshot of the capabilities of SLM in industry at present, and shares some of the lessons learned along the way. For the build parameter characterization, the parameters were varied over a range about the machine manufacturer's recommended value, and in each case they were varied individually, although some co-variance of those parameters would be expected. SLM-produced IN718, tensile, fracture, and high-cycle fatigue properties equivalent to wrought IN718 are achievable. Build and post-build processes need to be determined and then controlled to established limits to accomplish this. It is recommended that a multi-variable evaluation, e.g., design-of-experiment (DOE), of the build parameters be performed to better evaluate the co-variance of the parameters.

  6. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    NASA Astrophysics Data System (ADS)

    Li, Yue; Bai, Xiao Yong; Jie Wang, Shi; Qin, Luo Yi; Chao Tian, Yi; Jie Luo, Guang

    2017-05-01

    Soil loss tolerance (T value) is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a), and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD) is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL) and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  7. Characteristics of melting heat transfer during flow of Carreau fluid induced by a stretching cylinder.

    PubMed

    Hashim; Khan, Masood; Saleh Alshomrani, Ali

    2017-01-01

    This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.

  8. Computing the structural influence matrix for biological systems.

    PubMed

    Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco

    2016-06-01

    We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.

  9. Evaluation of lumbar segmental instability in degenerative diseases by using a new intraoperative measurement system.

    PubMed

    Hasegawa, Kazuhiro; Kitahara, Ko; Hara, Toshiaki; Takano, Ko; Shimoda, Haruka; Homma, Takao

    2008-03-01

    In vivo quantitative measurement of lumbar segmental stability has not been established. The authors developed a new measurement system to determine intraoperative lumbar stability. The objective of this study was to clarify the biomechanical properties of degenerative lumbar segments by using the new method. Twenty-two patients with a degenerative symptomatic segment were studied and their measurements compared with those obtained in normal or asymptomatic degenerative segments (Normal group). The measurement system produces cyclic flexion-extension through spinous process holders by using a computer-controlled motion generator with all ligamentous structures intact. The following biomechanical parameters were determined: stiffness, absorption energy (AE), and neutral zone (NZ). Discs with degeneration were divided into 2 groups based on magnetic resonance imaging grading: degeneration without collapse (Collapse[-]) and degeneration with collapse (Collapse[+]). Biomechanical parameters were compared among the groups. Relationships among the biomechanical parameters and age, diagnosis, or radiographic parameters were analyzed. The mean stiffness value in the Normal group was significantly greater than that in Collapse(-) or Collapse(+) group. There was no significant difference in the average AE value among the Normal, Collapse(-), and Collapse(+) groups. The NZ in the Collapse(-) was significantly higher than in the Normal or Collapse(+) groups. Stiffness was negatively and NZ was positively correlated with age. Stiffness demonstrated a significant negative and NZ a significant positive relationship with disc height, however. There were no significant differences in stiffness between spines in the Collapse(-) and Collapse(+) groups. The values of a more sensitive parameter, NZ, were higher in Collapse(-) than in Collapse(+) groups, demonstrating that degenerative segments with preserved disc height have a latent instability compared to segments with collapsed discs.

  10. Determination of band offsets at GaN/single-layer MoS{sub 2} heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangi, Malleswararao; Mishra, Pawan; Ng, Tien Khee

    2016-07-18

    We report the band alignment parameters of the GaN/single-layer (SL) MoS{sub 2} heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS{sub 2}/c-sapphire. We confirm that the MoS{sub 2} is an SL by measuring the separation and position of room temperature micro-Raman E{sup 1}{sub 2g} and A{sup 1}{sub g} modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS{sub 2} heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS{sub 2} and GaN. Themore » valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.« less

  11. Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images.

    PubMed

    Sadeghi-Naini, Ali; Vorauer, Eric; Chin, Lee; Falou, Omar; Tran, William T; Wright, Frances C; Gandhi, Sonal; Yaffe, Martin J; Czarnota, Gregory J

    2015-11-01

    Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean values of these functional metabolic maps. Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001

  12. Statistical Parameter Study of the Time Interval Distribution for Nonparalyzable, Paralyzable, and Hybrid Dead Time Models

    NASA Astrophysics Data System (ADS)

    Syam, Nur Syamsi; Maeng, Seongjin; Kim, Myo Gwang; Lim, Soo Yeon; Lee, Sang Hoon

    2018-05-01

    A large dead time of a Geiger Mueller (GM) detector may cause a large count loss in radiation measurements and consequently may cause distortion of the Poisson statistic of radiation events into a new distribution. The new distribution will have different statistical parameters compared to the original distribution. Therefore, the variance, skewness, and excess kurtosis in association with the observed count rate of the time interval distribution for well-known nonparalyzable, paralyzable, and nonparalyzable-paralyzable hybrid dead time models of a Geiger Mueller detector were studied using Monte Carlo simulation (GMSIM). These parameters were then compared with the statistical parameters of a perfect detector to observe the change in the distribution. The results show that the behaviors of the statistical parameters for the three dead time models were different. The values of the skewness and the excess kurtosis of the nonparalyzable model are equal or very close to those of the perfect detector, which are ≅2 for skewness, and ≅6 for excess kurtosis, while the statistical parameters in the paralyzable and hybrid model obtain minimum values that occur around the maximum observed count rates. The different trends of the three models resulting from the GMSIM simulation can be used to distinguish the dead time behavior of a GM counter; i.e. whether the GM counter can be described best by using the nonparalyzable, paralyzable, or hybrid model. In a future study, these statistical parameters need to be analyzed further to determine the possibility of using them to determine a dead time for each model, particularly for paralyzable and hybrid models.

  13. Analysis and Thermodynamic Prediction of Hydrogen Solution in Solid and Liquid Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Anyalebechi, P. N.

    Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.

  14. Studies on the physicochemical characteristics of oil extracted from gamma irradiated pistachio (Pistacia vera L.).

    PubMed

    Al-Bachir, Mahfouz

    2015-01-15

    The present study evaluated the quality of pistachio oil, as a function of irradiation, to determine the dose level causing undesirable changes to pistachio oil. Physicochemical fatty acid composition, acidity value, peroxide value, iodine value specification number, thiobarbituric acid (TBA) value and colour of pistachio oil extracted from samples treated with 0, 1, 2 and 3 kGy doses of gamma irradiation were determined. Gamma irradiation caused the alteration of fatty acids of pistachio oil which showed a decrease in oleic acid (C18:1) and an increase in linoleic acid (C18:2). All other fatty acids remained unaffected after irradiation. The higher used doses (2 and 3 kGy) decreased acidity value, peroxide value and iodine value, and increased specification number, with no effect on TBA value. Irradiation had a significant effect on colour values of pistachio oil. Parameters L, a and b increased at doses of 1 and 2 kGy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Can we define an asymptotic value for the ice active surface site density for heterogeneous ice nucleation?

    NASA Astrophysics Data System (ADS)

    Niedermeier, Dennis; Augustin-Bauditz, Stefanie; Hartmann, Susan; Wex, Heike; Ignatius, Karoliina; Stratmann, Frank

    2015-05-01

    The immersion freezing behavior of droplets containing size-segregated, monodisperse feldspar particles was investigated. For all particle sizes investigated, a leveling off of the frozen droplet fraction was observed reaching a plateau within the heterogeneous freezing temperature regime (T >- 38°C). The frozen fraction in the plateau region was proportional to the particle surface area. Based on these findings, an asymptotic value for ice active surface site density ns, which we named ns⋆, could be determined for the investigated feldspar sample. The comparison of these results with those of other studies not only elucidates the general feasibility of determining such an asymptotic value but also shows that the value of ns⋆ strongly depends on the method of the particle surface area determination. However, such an asymptotic value might be an important input parameter for atmospheric modeling applications. At least it shows that care should be taken when ns is extrapolated to lower or higher temperature.

  16. Metastases to the Liver from Neuroendocrine Tumors: Effect of Duration of Scan Acquisition on CT Perfusion Values

    PubMed Central

    Hobbs, Brian P.; Chandler, Adam G.; Anderson, Ella F.; Herron, Delise H.; Charnsangavej, Chusilp; Yao, James

    2013-01-01

    Purpose To assess the effects of acquisition duration on computed tomographic (CT) perfusion parameter values in neuroendocrine liver metastases and normal liver tissue. Materials and Methods This retrospective study was institutional review board approved, with waiver of informed consent. CT perfusion studies in 16 patients (median age, 57.5 years; range, 42.0–69.7 years), including six men (median, 54.1 years; range, 42.0–69.7), and 10 women (median, 59.3 years; range 43.6–66.3), with neuroendocrine liver metastases were analyzed by means of distributed parametric modeling to determine tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction for tumors and normal liver tissue. Analyses were undertaken with acquisition time of 12–590 seconds. Nonparameteric regression analyses were used to evaluate the functional relationships between CT perfusion parameters and acquisition duration. Evidence for time invariance was evaluated for each parameter at multiple time points by inferring the fitted derivative to assess its proximity to zero as a function of acquisition time by using equivalence tests with three levels of confidence (20%, 70%, and 90%). Results CT perfusion parameter values varied, approaching stable values with increasing acquisition duration. Acquisition duration greater than 160 seconds was required to obtain at least low confidence stability in any of the CT perfusion parameters. At 160 seconds of acquisition, all five CT perfusion parameters stabilized with low confidence in tumor and normal tissues, with the exception of hepatic arterial fraction in tumors. After 220 seconds of acquisition, there was stabilization with moderate confidence for blood flow, blood volume, and hepatic arterial fraction in tumors and normal tissue, and for mean transit time in tumors; however, permeability values did not satisfy the moderate stabilization criteria in both tumors and normal tissue until 360 seconds of acquisition. Blood flow, mean transit time, permeability, and hepatic arterial fraction were significantly different between tumor and normal tissue at 360 seconds (P < .001). Conclusion CT perfusion parameter values are affected by acquisition duration and approach progressively stable values with increasing acquisition times. © RSNA, 2013 Online supplemental material is available for this article. PMID:23824990

  17. Comet brightness parameters: Definition, determination, and correlations

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Morris, C. S.

    1976-01-01

    The power-law definition of comet brightness is reviewed and possible systematic influences are discussed that can affect the derivation of m sub o and n values from visual magnitude estimates. A rationale for the Bobrovnikoff aperture correction method is given and it is demonstrated that the Beyer extrafocal method leads to large systematic effects which if uncorrected by an instrumental relationship result in values significantly higher than those derived according to the Bobrovnikoff guidelines. A series of visual brightness parameter sets are presented which have been reduced to the same photometric system. Recommendations are given to insure that future observations are reduced to the same system.

  18. Radial integrals 4f and nephelauxetic effect of Nd3+ in crystals.

    PubMed

    Petrov, D; Angelov, B

    2014-01-24

    The radial expectation values 4f,k=2, 4, 6, for oxygen- or halogen- coordinated Nd(3+) ions in 25 crystals have been obtained from experimental Slater parameter shifts ΔFk=Fk (free ion) - Fk (crystal) by means of the dielectric screening model. The 4f values found by this new approach are compatible with those computed by relativistic 4f wave functions. The nephelauxetic ratios βk in respect to the free ion Nd IV have been also determined and related to covalency and bonding parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Quantifying thermohaline circulations: seawater isotopic compositions and salinity as proxies of the ratio between advection time and evaporation time

    NASA Astrophysics Data System (ADS)

    Paldor, N.; Berman, H.; Lazar, B.

    2017-12-01

    Uncertainties in quantitative estimates of the thermohaline circulation in any particular basin are large, partly due to large uncertainties in quantifying excess evaporation over precipitation and surface velocities. A single nondimensional parameter, γ=(qx)/(hu) is proposed to characterize the "strength" of the thermohaline circulation by combining the physical parameters of surface velocity (u), evaporation rate (q), mixed layer depth (h) and trajectory length (x). Values of g can be estimated directly from cross-sections of salinity or seawater isotopic composition (δ18O and δD). Estimates of q in the Red Sea and the South-West Indian Ocean are 0.1 and 0.02, respectively, which implies that the thermohaline contribution to the circulation in the former is higher than in the latter. Once the value of g has been determined in a particular basin, either q or u can be estimated from known values of the remaining parameters. In the studied basins such estimates are consistent with previous studies.

  20. Coal Seam Methane Pressure as a Parameter Determining the Level of the Outburst Risk - Laboratory and in Situ Research / Ciśnienie Złożowe Jako Parametr Określający Stan Zagrożenia Wyrzutami Metanu I Skał - Badania Laboratoryjne I Kopalniane

    NASA Astrophysics Data System (ADS)

    Skoczylas, Norbert

    2012-12-01

    Scarcity of research focusing on the evaluation of the coal seam methane pressure as a parameter determining the outburst risk makes it difficult to assess the value for which the level of this risk increases considerably. It is obvious that, apart from the gas factor, the evaluation of the threat should also take into account the strength factor. The research presented in this paper attempted at estimating the level of the outburst risk on the basis of the coal seam methane pressure value and firmness of coal. In this work, the author seeks to present both the relevant laboratory research and the measurements carried out in mines.

  1. Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3-BaO-B2O3-Na2O glass system

    NASA Astrophysics Data System (ADS)

    Dogra, Mridula; Singh, K. J.; Kaur, Kulwinder; Anand, Vikas; Kaur, Parminder; Singh, Prabhjot; Bajwa, B. S.

    2018-03-01

    In the present study, quaternary system of the composition (0.45 + x) Bi2O3-(0.25 - x) BaO-0.15 B2O3-0.15 Na2O (where 0 ≤ x ≤ 0.2 mol fraction) has been prepared by using melt-quenching technique for investigation of gamma ray shielding properties. Mass attenuation coefficients and half value layer parameters have been determined experimentally at 662 keV by using 137Cs source. It has been found that experimental results of these parameters hold good agreement with theoretical values. The density, molar volume, XRD, FTIR, Raman and UV-visible studies have been used to determine structural properties of the prepared glass samples. Dissolution rate of the samples has also been measured to check their utility as long term durable glasses.

  2. Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Boucher, Matthew J.

    2017-01-01

    Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.

  3. Lateral position detection and control for friction stir systems

    DOEpatents

    Fleming, Paul; Lammlein, David H.; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David R.; Hartman, Daniel A.

    2012-06-05

    An apparatus and computer program are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.

  4. Lateral position detection and control for friction stir systems

    DOEpatents

    Fleming, Paul [Boulder, CO; Lammlein, David H [Houston, TX; Cook, George E [Brentwood, TN; Wilkes, Don Mitchell [Nashville, TN; Strauss, Alvin M [Nashville, TN; Delapp, David R [Ashland City, TN; Hartman, Daniel A [Fairhope, AL

    2011-11-08

    Friction stir methods are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.

  5. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison.

    PubMed

    Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute

    2018-01-01

    Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.

  6. Experimental determination of the x-ray atomic fundamental parameters of nickel

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.; Hönicke, P.; Müller, M.; Unterumsberger, R.; Beckhoff, B.; Hoszowska, J.; Dousse, J.-Cl; Błachucki, W.; Ito, Y.; Yamashita, M.; Fukushima, S.

    2018-02-01

    The x-ray atomic properties of nickel (Ni) were investigated in a unique approach combining different experimental techniques to obtain new, useful and reliable values of atomic fundamental parameters for x-ray spectrometric purposes and for comparison with theoretical predictions. We determined the mass attenuation coefficients in an energy range covering the L- and K-absorption edges, the K-shell fluorescence yield and the Kβ/Kα and Kβ1, 3/Kα1, 2 transition probability ratios. The obtained line profiles and linewidths of the Kα and Kβ transitions in Ni can be considered as the contribution of the satellite lines arising from the [KM] shake processes suggested by Deutsch et al (1995 Phys. Rev. A 51 283) and Ito et al (2016 Phys. Rev. A 94 042506). Comparison of the new data with several databases showed good agreement, but also discrepancies were found with existing tabulated values.

  7. Effect of morphological and functional changes in the secundines on biometric parameters of newborns from dichorionic twin pregnancies.

    PubMed

    Waszak, Małgorzata; Cieślik, Krystyna; Pietryga, Marek; Lewandowski, Jacek; Chuchracki, Marek; Nowak-Markwitz, Ewa; Bręborowicz, Grzegorz

    2016-01-01

    The aim of the study was to determine if, and to what extent, structural and functional changes of the secundines influence biometric parameters of neonates from dichorionic twin pregnancies. The study included neonates from dichorionic, diamniotic twin pregnancies, along with their secundines. Based on histopathological examination of the secundines, the mass and dimensions of the placenta, length and condition of the umbilical cord, chorionicity, focal lesions, and microscopic placental abnormalities were determined for 445 pairs of twins. Morphological development of examined twins was characterized on the basis of their six somatic traits, while birth status of the newborns was assessed based on their Apgar scores. Statistical analysis included Student t-tests, Snedecor's F-tests, post-hoc tests, non-parametric chi-squared Pearson's tests, and determination of Spearman coefficients of rank correlation. The lowest values of analyzed somatic traits were observed in twins who had placentas with velamentous or marginal cord insertion. Inflammatory lesions in the placenta and placental abruption turned out to have the greatest impact of all analyzed abnormalities of the secundines. Inflammatory lesions in the placenta were associated with lower values of biometric parameters and a greater likelihood of preterm birth. Neonates with a history of placental abruption were characterized by significantly lower birth weight and smaller chest circumference. Morphological changes in the secundines have a limited impact on biometric parameters of neonates from dichorionic twin pregnancies. In turn, functional changes exert a significant effect and more often contribute to impaired fetal development.

  8. The Use of the Nelder-Mead Method in Determining Projection Parameters for Globe Photographs

    NASA Astrophysics Data System (ADS)

    Gede, M.

    2009-04-01

    A photo of a terrestrial or celestial globe can be handled as a map. The only hard issue is its projection: the so-called Tilted Perspective Projection which, if the optical axis of the photo intersects the globe's centre, is simplified to the Vertical Near-Side Perspective Projection. When georeferencing such a photo, the exact parameters of the projections are also needed. These parameters depend on the position of the viewpoint of the camera. Several hundreds of globe photos had to be georeferenced during the Virtual Globes Museum project, which made necessary to automatize the calculation of the projection parameters. The author developed a program for this task which uses the Nelder-Mead Method in order to find the optimum parameters when a set of control points are given as input. The Nelder-Mead method is a numerical algorithm for minimizing a function in a many-dimensional space. The function in the present application is the average error of the control points calculated from the actual values of parameters. The parameters are the geographical coordinates of the projection centre, the image coordinates of the same point, the rotation of the projection, the height of the perspective point and the scale of the photo (calculated in pixels/km). The program reads the Global Mappers Ground Control Point (.GCP) file format as input and creates projection description files (.PRJ) for the same software. The initial values of the geographical coordinates of the projection centre are calculated as the average of the control points, while the other parameters are set to experimental values which represent the most common circumstances of taking a globe photograph. The algorithm runs until the change of the parameters sinks below a pre-defined limit. The minimum search can be refined by using the previous result parameter set as new initial values. This paper introduces the calculation mechanism and examples of the usage. Other possible other usages of the method are also discussed.

  9. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    PubMed

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary mixtures of surfactants contains urea in concentration of 4M significant decreases of an interaction parameter value happens which confirms the importance of hydrogen bonds in synergistic interactions (urea compete in hydrogen bonds). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Update of the equations of the limit state of the structural material with the realization of their deformation

    NASA Astrophysics Data System (ADS)

    Zenkov, E. V.

    2018-01-01

    Two methods are given in the article by considering the type of stressed-Deformed state (SDS) based on equations limit condition and analyzing the results of laboratory tests of special specimens for mechanical testing, focus having destruction thereof in the same view of SDS as in focus possible destruction of the structural member. The considered limited use of these methods in terms of considering physically consistent strength criterion type Pisarenko-Lebedev. A revised design-experimental procedure for determining the strength of the material of the structure, combining therein the elements of these two methods, consisting in determining the strength parameters of construction material, entering criterion equation Pisarenko-Lebedev, considering the actual appearance of the region-of-interest SDS structure. The implementation of the procedure is performed on the basis of the selection of the respective experimental laboratory specimens for mechanical testing, plan SDS in working zone coinciding with a SDS: structure whose strength is evaluated. The refinement process limit state equations demonstrated in determining 50CrV4 steel strength parameters, being in a state of biaxial stretching. Design-experimentally determined by, that steel for a given voltage limit value is almost a quarter of its value is reduced compared to the conventional tensile strength. value is reduced compared to the conventional tensile strength.

  11. Determination of detonation parameters for liquid High Explosives

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander

    2011-06-01

    The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.

  12. Determination of detonation parameters for liquid high explosives

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander

    2012-03-01

    The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.

  13. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3 +:GdTaO4

    NASA Astrophysics Data System (ADS)

    Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang

    2016-11-01

    The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F-L formula gives larger values in the wavelength range with reabsorption. Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 51502292, 51272254, 51102239, 61205173, and 61405206).

  14. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  15. An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-05-01

    Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.

  16. Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions

    USGS Publications Warehouse

    Mori, J.; Frankel, A.

    1990-01-01

    Using small events as empirical Green functions, source parameters were estimated for 25 ML 3.4 to 4.4 events associated with the 1986 North Palm Springs earthquake. The static stress drops ranged from 3 to 80 bars, for moments of 0.7 to 11 ?? 1021 dyne-cm. There was a spatial pattern to the stress drops of the aftershocks which showed increasing values along the fault plane toward the northwest compared to relatively low values near the hypocenter of the mainshock. The highest values were outside the main area of slip, and are believed to reflect a loaded area of the fault that still has an higher level of stress which was not released during the main shock. -from Authors

  17. Nephelauxetic effect and 〈r(k)〉₄f radial integrals of Tm³⁺ in crystals.

    PubMed

    Petrov, Dimitar

    2015-12-05

    Bonding and covalency parameters have been evaluated from the nephelauxetic ratios βk=Fk (crystal)/Fk (free ion), with k=2, 4, 6, for 24 halide and chalcogenide crystals containing Tm(3+) ions. The radial expectation values for 4f electrons 〈r(k)〉4f of Tm(3+) ion in certain complex oxides, fluorides, and a sulfide have been determined by means of experimental Slater parameter shifts ΔFk relative to the Fk values for the free ion Tm IV. The 〈r(k)〉1f values derived in the dielectric screening model have been compared with those computed by different types of 4f wave functions as well as with other estimates. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Application of Statistically Derived CPAS Parachute Parameters

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.; Ray, Eric S.

    2013-01-01

    The Capsule Parachute Assembly System (CPAS) Analysis Team is responsible for determining parachute inflation parameters and dispersions that are ultimately used in verifying system requirements. A model memo is internally released semi-annually documenting parachute inflation and other key parameters reconstructed from flight test data. Dispersion probability distributions published in previous versions of the model memo were uniform because insufficient data were available for determination of statistical based distributions. Uniform distributions do not accurately represent the expected distributions since extreme parameter values are just as likely to occur as the nominal value. CPAS has taken incremental steps to move away from uniform distributions. Model Memo version 9 (MMv9) made the first use of non-uniform dispersions, but only for the reefing cutter timing, for which a large number of sample was available. In order to maximize the utility of the available flight test data, clusters of parachutes were reconstructed individually starting with Model Memo version 10. This allowed for statistical assessment for steady-state drag area (CDS) and parachute inflation parameters such as the canopy fill distance (n), profile shape exponent (expopen), over-inflation factor (C(sub k)), and ramp-down time (t(sub k)) distributions. Built-in MATLAB distributions were applied to the histograms, and parameters such as scale (sigma) and location (mu) were output. Engineering judgment was used to determine the "best fit" distribution based on the test data. Results include normal, log normal, and uniform (where available data remains insufficient) fits of nominal and failure (loss of parachute and skipped stage) cases for all CPAS parachutes. This paper discusses the uniform methodology that was previously used, the process and result of the statistical assessment, how the dispersions were incorporated into Monte Carlo analyses, and the application of the distributions in trajectory benchmark testing assessments with parachute inflation parameters, drag area, and reefing cutter timing used by CPAS.

  19. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    PubMed

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas.

  20. True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis

    PubMed Central

    Song, Yong Sub; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    Objective The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm2). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10-6 mm2/sec for observer 1 and 907 × 10-6 mm2/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). Conclusion The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas. PMID:23901325

  1. T2 values of articular cartilage in clinically relevant subregions of the asymptomatic knee.

    PubMed

    Surowiec, Rachel K; Lucas, Erin P; Fitzcharles, Eric K; Petre, Benjamin M; Dornan, Grant J; Giphart, J Erik; LaPrade, Robert F; Ho, Charles P

    2014-06-01

    In order for T2 mapping to become more clinically applicable, reproducible subregions and standardized T2 parameters must be defined. This study sought to: (1) define clinically relevant subregions of knee cartilage using bone landmarks identifiable on both MR images and during arthroscopy and (2) determine healthy T2 values and T2 texture parameters within these subregions. Twenty-five asymptomatic volunteers (age 18-35) were evaluated with a sagittal T2 mapping sequence. Manual segmentation was performed by three raters, and cartilage was divided into twenty-one subregions modified from the International Cartilage Repair Society Articular Cartilage Mapping System. Mean T2 values and texture parameters (entropy, variance, contrast, homogeneity) were recorded for each subregion, and inter-rater and intra-rater reliability was assessed. The central regions of the condyles had significantly higher T2 values than the posterior regions (P < 0.05) and higher variance than the posterior region on the medial side (P < 0.001). The central trochlea had significantly greater T2 values than the anterior and posterior condyles. The central lateral plateau had lower T2 values, lower variance, higher homogeneity, and lower contrast than nearly all subregions in the tibia. The central patellar regions had higher entropy than the superior and inferior regions (each P ≤ 0.001). Repeatability was good to excellent for all subregions. Significant differences in mean T2 values and texture parameters were found between subregions in this carefully selected asymptomatic population, which suggest that there is normal variation of T2 values within the knee joint. The clinically relevant subregions were found to be robust as demonstrated by the overall high repeatability.

  2. Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)

    NASA Astrophysics Data System (ADS)

    Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa

    2013-10-01

    Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.

  3. A Critical Evaluation of the Influence of the Dark Exchange Current on the Performance of Dye-Sensitized Solar Cells

    PubMed Central

    García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko

    2016-01-01

    The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833

  4. Antioxidant capacity index based on gold nanoparticles formation. Application to extra virgin olive oil samples.

    PubMed

    Della Pelle, Flavio; Vilela, Diana; González, María Cristina; Lo Sterzo, Claudio; Compagnone, Darío; Del Carlo, Michele; Escarpa, Alberto

    2015-07-01

    A simple gold nanoparticles (AuNPs) based colorimetric assay for the antioxidant activity determination has been developed. The AuNP formation is mediated by extra virgin olive oil (EVOO's) endogenous polyphenols; the reaction is described by a sigmoidal curve. The ratio KAuNPs/Xc(50) (slope of the linear part of the sigmoid/concentration at half value of the absorbance) was found to be the optimal parameter to report the antioxidant capacity with respect to the single KAuNPs or Xc(50) values. The obtained data demonstrated that the compounds with ortho-diphenols functionality are most active in reducing gold (III) to gold (0). Thus, intermediate activity was found for gallic acid, while tyrosol (mono-phenols) had a significant lower activity than the others antioxidant compounds (at least one order of magnitude). In the analysis of olive oil samples, a significant correlation among classical methods used to determine antioxidant activity and the proposed parameter was found with R values in the 0.96-0.97 range. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modification Of Learning Rate With Lvq Model Improvement In Learning Backpropagation

    NASA Astrophysics Data System (ADS)

    Tata Hardinata, Jaya; Zarlis, Muhammad; Budhiarti Nababan, Erna; Hartama, Dedy; Sembiring, Rahmat W.

    2017-12-01

    One type of artificial neural network is a backpropagation, This algorithm trained with the network architecture used during the training as well as providing the correct output to insert a similar but not the same with the architecture in use at training.The selection of appropriate parameters also affects the outcome, value of learning rate is one of the parameters which influence the process of training, Learning rate affects the speed of learning process on the network architecture.If the learning rate is set too large, then the algorithm will become unstable and otherwise the algorithm will converge in a very long period of time.So this study was made to determine the value of learning rate on the backpropagation algorithm. LVQ models of learning rate is one of the models used in the determination of the value of the learning rate of the algorithm LVQ.By modifying this LVQ model to be applied to the backpropagation algorithm. From the experimental results known to modify the learning rate LVQ models were applied to the backpropagation algorithm learning process becomes faster (epoch less).

  6. Reanalysis of 24 Nearby Open Clusters using Gaia data

    NASA Astrophysics Data System (ADS)

    Yen, Steffi X.; Reffert, Sabine; Röser, Siegfried; Schilbach, Elena; Kharchenko, Nina V.; Piskunov, Anatoly E.

    2018-04-01

    We have developed a fully automated cluster characterization pipeline, which simultaneously determines cluster membership and fits the fundamental cluster parameters: distance, reddening, and age. We present results for 24 established clusters and compare them to literature values. Given the large amount of stellar data for clusters available from Gaia DR2 in 2018, this pipeline will be beneficial to analyzing the parameters of open clusters in our Galaxy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capurro, O. A.; Niello, J. O. Fernandez; Pacheco, A. J.

    We have investigated experimental quasielastic cross sections measured at backward angles and at deep sub-barrier energies for the {sup 35}Cl+{sup 105,106,110}Pd and {sup 32}S+{sup 110}Pd systems. Since coupling effects are almost negligible at very low bombarding energies, the quasielastic data allow one to determine the diffuseness parameter of the ion-ion potential. For the analyzed reactions we have obtained a surface diffuseness parameter value around 0.58{+-}0.04 fm.

  8. Understanding the transmission dynamics of respiratory syncytial virus using multiple time series and nested models.

    PubMed

    White, L J; Mandl, J N; Gomes, M G M; Bodley-Tickell, A T; Cane, P A; Perez-Brena, P; Aguilar, J C; Siqueira, M M; Portes, S A; Straliotto, S M; Waris, M; Nokes, D J; Medley, G F

    2007-09-01

    The nature and role of re-infection and partial immunity are likely to be important determinants of the transmission dynamics of human respiratory syncytial virus (hRSV). We propose a single model structure that captures four possible host responses to infection and subsequent reinfection: partial susceptibility, altered infection duration, reduced infectiousness and temporary immunity (which might be partial). The magnitude of these responses is determined by four homotopy parameters, and by setting some of these parameters to extreme values we generate a set of eight nested, deterministic transmission models. In order to investigate hRSV transmission dynamics, we applied these models to incidence data from eight international locations. Seasonality is included as cyclic variation in transmission. Parameters associated with the natural history of the infection were assumed to be independent of geographic location, while others, such as those associated with seasonality, were assumed location specific. Models incorporating either of the two extreme assumptions for immunity (none or solid and lifelong) were unable to reproduce the observed dynamics. Model fits with either waning or partial immunity to disease or both were visually comparable. The best fitting structure was a lifelong partial immunity to both disease and infection. Observed patterns were reproduced by stochastic simulations using the parameter values estimated from the deterministic models.

  9. Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

    NASA Astrophysics Data System (ADS)

    Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.

    2016-08-01

    Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.

  10. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    PubMed

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  11. Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil

    NASA Technical Reports Server (NTRS)

    Schluessel, G.; Dickinson, R. E.; Privette, J. L.; Emery, W. J.; Kokaly, R.

    1994-01-01

    An analytical model of the bidirectional reflectance for optically semi-infinite plant canopies has been extended to describe the reflectance of finite depth canopies contributions from the underlying soil. The model depends on 10 independent parameters describing vegetation and soil optical and structural properties. The model is inverted with a nonlinear minimization routine using directional reflectance data for lawn (leaf area index (LAI) is equal to 9.9), soybeans (LAI, 2.9) and simulated reflectance data (LAI, 1.0) from a numerical bidirectional reflectance distribution function (BRDF) model (Myneni et al., 1988). While the ten-parameter model results in relatively low rms differences for the BRDF, most of the retrieved parameters exhibit poor stability. The most stable parameter was the single-scattering albedo of the vegetation. Canopy albedo could be derived with an accuracy of less than 5% relative error in the visible and less than 1% in the near-infrared. Sensitivity were performed to determine which of the 10 parameters were most important and to assess the effects of Gaussian noise on the parameter retrievals. Out of the 10 parameters, three were identified which described most of the BRDF variability. At low LAI values the most influential parameters were the single-scattering albedos (both soil and vegetation) and LAI, while at higher LAI values (greater than 2.5) these shifted to the two scattering phase function parameters for vegetation and the single-scattering albedo of the vegetation. The three-parameter model, formed by fixing the seven least significant parameters, gave higher rms values but was less sensitive to noise in the BRDF than the full ten-parameter model. A full hemispherical reflectance data set for lawn was then interpolated to yield BRDF values corresponding to advanced very high resolution radiometer (AVHRR) scan geometries collected over a period of nine days. The resulting parameters and BRDFs are similar to those for the full sampling geometry, suggesting that the limited geometry of AVHRR measurements might be used to reliably retrieve BRDF and canopy albedo with this model.

  12. Biological and analytical variations of 16 parameters related to coagulation screening tests and the activity of coagulation factors.

    PubMed

    Chen, Qian; Shou, Weiling; Wu, Wei; Guo, Ye; Zhang, Yujuan; Huang, Chunmei; Cui, Wei

    2015-04-01

    To accurately estimate longitudinal changes in individuals, it is important to take into consideration the biological variability of the measurement. The few studies available on the biological variations of coagulation parameters are mostly outdated. We confirmed the published results using modern, fully automated methods. Furthermore, we added data for additional coagulation parameters. At 8:00 am, 12:00 pm, and 4:00 pm on days 1, 3, and 5, venous blood was collected from 31 healthy volunteers. A total of 16 parameters related to coagulation screening tests as well as the activity of coagulation factors were analyzed; these included prothrombin time, fibrinogen (Fbg), activated partial thromboplastin time, thrombin time, international normalized ratio, prothrombin time activity, activated partial thromboplastin time ratio, fibrin(-ogen) degradation products, as well as the activity of factor II, factor V, factor VII, factor VIII, factor IX, and factor X. All intraindividual coefficients of variation (CVI) values for the parameters of the screening tests (except Fbg) were less than 5%. Conversely, the CVI values for the activity of coagulation factors were all greater than 5%. In addition, we calculated the reference change value to determine whether a significant difference exists between two test results from the same individual. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Effect of fiber addition on slow crack growth of a dental porcelain.

    PubMed

    de Araújo, Maico Dutra; Miranda, Ranulfo Benedito de Paula; Fredericci, Catia; Yoshimura, Humberto Naoyuki; Cesar, Paulo Francisco

    2015-04-01

    To evaluate the effect of the processing method (conventional sintering, S, and heat-pressing, HP) and addition of potassium titanate fibers, PTF, on the microstructure, mechanical properties (flexural strength, σf, and Weibull parameters, m and σ5%), slow crack growth parameters n (stress corrosion susceptibility coefficient), and optical properties (translucency parameter, TP, and opalescence index, OI) of a feldsphatic dental porcelain. Disks (n = 240, Ø12 × 1 mm) of porcelain (Vintage-Halo, Shofu) were produced using S and HP methods with and without addition of 10 wt% (conventional sintering) or 5 wt% (heat-pressing) of PTF. For the S method, porcelain was sintered in a conventional furnace. In the HP technique, refractory molds were produced by lost wax technique. The porcelain slurry was dry-pressed (3t/30s) to form a cylinder with 12 mm (diameter) and 20mm (height), which was heat-pressed for 5 min/3.5 bar into the mold. Specimens were tested for biaxial flexural strength in artificial saliva at 37°C. Weibull analysis was used to determine m and σ5%. Slow crack growth (SCG) parameters were determined by the dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s (n=10), immersed in artificial saliva at 37°C. Parameter n was calculated and statistically analyzed according to ASTM F394-78. Optical properties were determined in a spectrophotometer in the diffuse reflectance mode. The highest n value was obtained by the combination of heat-pressing with fiber addition (37.1) and this value was significantly higher than those obtained by both sintered groups (26.2 for control group and 27.7 for sintered with fiber). Although heat-pressing alone also resulted in higher n values compared to the sintered groups, there were no significant differences among them. Fiber addition had no effect on mechanical strength, but it resulted in decreased TP values and increased OI values for both processing methods. Heat-pressing alone was able to reduce the porosity level of the porcelain. Addition of PTF combined with heat-pressing can reduce strength degradation of a dental porcelain compared to sintered materials with or without fibers. Heat-pressing (HP) alone should be considered as a good alternative for clinical cases where high translucency is required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Observations of Ion Diffusion Regions in the Geomagnetic Tail

    NASA Astrophysics Data System (ADS)

    Rogers, A. J.; Farrugia, C. J.; Torbert, R. B.; Argall, M. R.; Strangeway, R. J.; Ergun, R.

    2017-12-01

    We present analysis of two Ion Diffusion Regions (IDRs) in the geomagnetic tail, as observed by the Magnetospheric Multiscale Mission (MMS). Analysis of each event is centered around discussion of parameters commonly associated with IDRs such as enhanced electric field magnitude, guiding center expansion parameter, and ion velocity. Characteristic values for these parameters are determined, as well as other common attributes of IDRs, and used to develop a searching algorithm to automate identification of possible IDRs for closer inspection. Preliminary results of applying this algorithm to in situ MMS observations are also presented

  15. Control and Diagnostic Model of Brushless Dc Motor

    NASA Astrophysics Data System (ADS)

    Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol

    2014-09-01

    A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values

  16. Investigation of the influence of geometric parameters of carbon nanotube arrays on their adhesion properties

    NASA Astrophysics Data System (ADS)

    Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.

    2018-03-01

    The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.

  17. Development of Methods for the Determination of pKa Values

    PubMed Central

    Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram

    2013-01-01

    The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574

  18. Apparent diffusion coefficient measurement in glioma: Influence of region-of-interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability.

    PubMed

    Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong

    2017-03-01

    To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P < 0.05). Mean ADC value of single-round ROI had the highest effect size (0.72) and the greatest areas under the curve (0.872). Three single-slice methods had good to excellent ICCs (0.67-0.89) and the whole-volume method fair to excellent ICCs (0.32-0.96). Minimum ADC values differed significantly between whole-volume and single-round ROI (P = 0.003) and, between whole-volume and five-round ROI (P = 0.001). The whole-volume method took significantly longer than all single-slice methods (all P < 0.001). ADC measurements are influenced by ROI determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.

  19. The reconstruction of tachyon inflationary potentials

    NASA Astrophysics Data System (ADS)

    Fei, Qin; Gong, Yungui; Lin, Jiong; Yi, Zhu

    2017-08-01

    We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of e-folds before the end of inflation. Using the relation between the observables like ns and r with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter wre during reheating is a constant. Depending on the model parameters and the value of wre, the constraints on Nre and Tre are different. As ns increases, the allowed reheating epoch becomes longer for wre=-1/3, 0 and 1/6 while the allowed reheating epoch becomes shorter for wre=2/3.

  20. OT calibration and service maintenance manual.

    DOT National Transportation Integrated Search

    2012-01-01

    The machine conditions, as well as the values at the calibration and control parameters, may determine the quality of each test results obtained. In order to keep consistency and accuracy, the conditions, performance and measurements of an OT must be...

  1. Parameterization guidelines and considerations for hydrologic models

    Treesearch

     R. W. Malone; G. Yagow; C. Baffaut; M.W  Gitau; Z. Qi; Devendra Amatya; P.B.   Parajuli; J.V. Bonta; T.R.  Green

    2015-01-01

     Imparting knowledge of the physical processes of a system to a model and determining a set of parameter values for a hydrologic or water quality model application (i.e., parameterization) are important and difficult tasks. An exponential...

  2. Variable-focus microscopy and UV surface dissolution imaging as complementary techniques in intrinsic dissolution rate determination.

    PubMed

    Ward, Adam; Walton, Karl; Box, Karl; Østergaard, Jesper; Gillie, Lisa J; Conway, Barbara R; Asare-Addo, Kofi

    2017-09-15

    This work reports a novel approach to the assessment of the surface properties of compacts used in Surface Dissolution Imaging (SDI). SDI is useful for determining intrinsic dissolution rate (IDR), an important parameter in early stage drug development. Surface topography, post-compaction and post-SDI run, have been measured using a non-contact, optical, three-dimensional microscope based on focus variation, the Alicona Infinite Focus Microscope, with the aim of correlating the IDRs to the surface properties. Ibuprofen (IBU) was used as a model poorly-soluble drug. DSC and XRD were used to monitor possible polymorphic changes that may have occurred post-compaction and post-SDI run. IBUs IDR decreased from 0.033mg/min/cm 2 to 0.022mg/min/cm 2 from 10 to 20min, respectively, during the experiment. XRD and DSC showed no form changes during the SDI run. The surface topography images showed that a distinct imprint was embossed on the surfaces of some compacts which could affect IDRs. Surface parameter values were associated with the SDI experiments which showed strong correlations with the IDR values. The variable-focus microscope can be used as a complimentary tool in the determination of IDR values from the SDI. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  3. PubChem3D: Conformer generation

    PubMed Central

    2011-01-01

    Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall average accuracy of reproduction of bioactive conformations was remarkably linear with respect to both non-hydrogen atom count ("size") and effective rotor count ("flexibility"). Using these as independent variables, a regression equation was developed to predict the RMSD accuracy of a theoretical ensemble to reproduce bioactive conformations. The equation was modified to give a minimum RMSD conformer sampling value to help ensure that 90% of the sampled theoretical models should contain at least one conformer within the RMSD sampling value to a "bioactive" conformation. Conclusion Optimal parameters for conformer generation using OMEGA were explored and determined. An equation was developed that provides an RMSD sampling value to use that is based on the relative accuracy to reproduce bioactive conformations. The optimal conformer generation parameters and RMSD sampling values determined are used by the PubChem3D project to generate theoretical conformer models. PMID:21272340

  4. Assessing the efficacy of immunotherapy with a glutaraldehyde-modified house dust mite extract in children by monitoring changes in clinical parameters and inflammatory markers in exhaled breath.

    PubMed

    Lozano, Jaime; Cruz, María-Jesús; Piquer, Mónica; Giner, Maria-Teresa; Plaza, Ana María

    2014-01-01

    The aim of this study was to evaluate the effectiveness of specific immunotherapy (SIT) management with allergoids in children with allergic asthma by monitoring changes in clinical parameters and inflammatory markers in exhaled breath. The study population included 43 patients (24 males) of 6-14 years of age, who had allergic asthma and were sensitized to mites. Twenty-three individuals were treated with subcutaneous SIT (PURETHAL® Mites, HAL Allergy) for 8 months, i.e. the SIT group, and 20 were given medication to treat symptoms only, i.e. the control group. Before treatment and after 4 and 8 months, several clinical parameters, the levels of exhaled nitric oxide and the pH of exhaled breath condensate (EBC) were determined. The SIT group presented with an improvement in asthma classification, a reduction in maintenance drug therapy and improved scores on the quality-of-life questionnaire. These changes were not observed in the control group. Both groups presented significant decreases in EBC pH values at 4 and 8 months after treatment compared to at baseline. However, analysis of the variable 'ratio' showed an increase in the EBC pH values after 8 months of treatment in the SIT group compared with the values at 4 months. SIT with standardized mite extract reduces asthma symptoms in children. A decrease in EBC pH values was observed in both groups, although the SIT group presented a tendency of recovered values after 8 months. Future studies of EBC pH monitoring in the longer term are needed to determine the effectiveness of this marker. © 2014 S. Karger AG, Basel.

  5. Testable solution of the cosmological constant and coincidence problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Douglas J.; Barrow, John D.

    2011-02-15

    We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvaturemore » of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.« less

  6. Determining the Pollution Parameters of Degirmendere Stream (Trabzon, NE TURKEY)

    NASA Astrophysics Data System (ADS)

    Sunnetci, M. O.; Hatipoglu, E.; Firat Ersoy, A.; Gultekin, F.

    2013-12-01

    The pollution parameters of Degirmendere Stream (Trabzon, TURKEY) are determined in this study. The study area is located between Maçka, 26 km to the south of Trabzon city, and the Black Sea. The area consists of Late Cretaceous volcano-sedimentary rocks, dacite, and basalt, overlain by Eocene volcanic rocks. Quaternary alluvium overlay all geological units following Degirmendere Stream bed. In-situ physical parameter measurements, anion-cation analysis, and heavy and pollutant element analysis on water samples were carried out for four months at four different locations on the stream. The stream's water temperature values were between 4.7 and 9.7oC, pH values were between 6.01 and 7.98, dissolved oxygen (DO) values were between 7.03 and 12.38 mg/l, electrical conductivity (EC) values were between 86 and 254 μS/cm. According to the Piper diagram, the stream water is classified as Ca-HCO3 type water. In the Schoeller diagram, the lines combining mek/l values of the ions in stream water are parallel. Al concentration in the stream water varied from 0.06 to 0.22 mg/l, Mn concentration varied from 0.1 to 0.36 mg/l, and Fe concentration varied from 0.01 to 0.12 mg/l. The stream water is classified as first class in point of temperature, pH, DO, total dissolved solids (TDS), NO3-, P, Pb, Fe, and Al; first and second class in point of NH4+; second class in point of Cu; and third class in point of NO2-, according to the Water Pollution Control Regulation of the Turkish Republic's Criteria for Inland Surface Water Classification. Results indicate waters of the Degirmendere Stream is very good-good for irrigation use according to the Wilcox diagram.

  7. Robust determination of surface relaxivity from nuclear magnetic resonance DT2 measurements

    NASA Astrophysics Data System (ADS)

    Luo, Zhi-Xiang; Paulsen, Jeffrey; Song, Yi-Qiao

    2015-10-01

    Nuclear magnetic resonance (NMR) is a powerful tool to probe into geological materials such as hydrocarbon reservoir rocks and groundwater aquifers. It is unique in its ability to obtain in situ the fluid type and the pore size distributions (PSD). The T1 and T2 relaxation times are closely related to the pore geometry through the parameter called surface relaxivity. This parameter is critical for converting the relaxation time distribution into the PSD and so is key to accurately predicting permeability. The conventional way to determine the surface relaxivity ρ2 had required independent laboratory measurements of the pore size. Recently Zielinski et al. proposed a restricted diffusion model to extract the surface relaxivity from the NMR diffusion-T2 relaxation (DT2) measurement. Although this method significantly improved the ability to directly extract surface relaxivity from a pure NMR measurement, there are inconsistencies with their model and it relies on a number of preset parameters. Here we propose an improved signal model to incorporate a scalable LT and extend their method to extract the surface relaxivity based on analyzing multiple DT2 maps with varied diffusion observation time. With multiple diffusion observation times, the apparent diffusion coefficient correctly describes the restricted diffusion behavior in samples with wide PSDs, and the new method does not require predetermined parameters, such as the bulk diffusion coefficient and tortuosity. Laboratory experiments on glass beads packs with the beads diameter ranging from 50 μm to 500 μm are used to validate the new method. The extracted diffusion parameters are consistent with their known values and the determined surface relaxivity ρ2 agrees with the expected value within ±7%. This method is further successfully applied on a Berea sandstone core and yields surface relaxivity ρ2 consistent with the literature.

  8. The effect of abdominal obesity in patients with polycystic ovary syndrome on metabolic parameters.

    PubMed

    Franik, G; Bizoń, A; Włoch, S; Pluta, D; Blukacz, Ł; Milnerowicz, H; Madej, P

    2017-11-01

    Polycystic ovarian syndrome and obesity contribute to the metabolic complications for women of reproductive age. The aim of present study was to analyze the effect of abdominal obesity expressed using waist/hip ratio (WHR) in patients with polycystic ovary syndrome on metabolic parameters. The study included 659 women with PCOS with WHR <0.8 and ≥0.8 aged between 17 and 44 years. Patients were tested for follicular stimulating hormone, luteinizing hormone, 17-beta-estradiol, dehydroepiandrosterone sulfate, androstenedione, sex hormone binding globulin, and total lipid profile during the follicular phase (within 3 and 5 days of their menstrual cycle). Also, fasting glucose and insulin concentrations, and after, oral-glucose glucose administration, were determinate. De Ritis and Castelli index I and II were calculated. Women with WHR ≥0.8 had higher concentration of glucose and  insulin (both fasting and after 120 min of oral administration of 75 g glucose), as well as HOMA-IR value, than women with WHR value < 0.8. Also, abdominal obesity disorders hormonal parameters. Higher free androgen index and lower concentration of sex hormone binding globulin and dehydroepiandrosterone sulfate were found in female with WHR ≥ 0.8. Follicular stimulating hormone, luteinizing hormone, androstenedione, and 17-beta-estradiol, were on similar level in both groups. Elevation in triglycerides, total cholesterol, and low-density lipoprotein levels, as well as decrease in high density lipoprotein level in serum of women with WHR value ≥ 0.8, were found when compared to women with WHR < 0.8. A statistically significant correlation was found between WHR value and glucose, insulin, sex hormone binding globulin, free androgen index and lipid profile parameters. Abdominal obesity causes additional disorders in metabolic and hormonal parameters in PCOS women, which confirmed changes in analyzed parameters between PCOS women with WHR < 0.8 and WHR ≥ 0.8 and statistically significant correlations between WHR value and analyzed parameters.

  9. Sensitivity Analysis of the USLE Soil Erodibility Factor to Its Determining Parameters

    NASA Astrophysics Data System (ADS)

    Mitova, Milena; Rousseva, Svetla

    2014-05-01

    Soil erosion is recognized as one of the most serious soil threats worldwide. Soil erosion prediction is the first step in soil conservation planning. The Universal Soil Loss Equation (USLE) is one of the most widely used models for soil erosion predictions. One of the five USLE predictors is the soil erodibility factor (K-factor), which evaluates the impact of soil characteristics on soil erosion rates. Soil erodibility nomograph defines K-factor depending on soil characteristics, such as: particle size distribution (fractions finer that 0.002 mm and from 0.1 to 0.002 mm), organic matter content, soil structure and soil profile water permeability. Identifying the soil characteristics, which mostly influence the K-factor would give an opportunity to control the soil loss through erosion by controlling the parameters, which reduce the K-factor value. The aim of the report is to present the results of analysis of the relative weight of these soil characteristics in the K-factor values. The relative impact of the soil characteristics on K-factor was studied through a series of statistical analyses of data from the geographic database for soil erosion risk assessments in Bulgaria. Degree of correlation between K-factor values and the parameters that determine it was studied by correlation analysis. The sensitivity of the K-factor was determined by studying the variance of each parameter within the range between minimum and maximum possible values considering average value of the other factors. Normalizing transformation of data sets was applied because of the different dimensions and the orders of variation of the values of the various parameters. The results show that the content of particles finer than 0.002 mm has the most significant relative impact on the soil erodibility, followed by the content of particles with size from 0.1 mm to 0.002 mm, the class of the water permeability of the soil profile, the content of organic matter and the aggregation class. The relationships of the K-factor with the relative content of particle size from 0.1 to 0.002 mm and the class of aggregation are linear, directly proportional. When the content of particles sized from 0.1 to 0.002 mm increases with one relative unit, the K-factor increases with 0.0091 t ha h / ha MJ mm, while the same relative increase of the class of aggregation, results to an increase of the K-factor by 0.0034 t ha h / ha MJ mm. On the other side, the relationships between the K-factor values and the contents of clay and organic matter, and the class of profile water permeability, are linear, inversely proportional. When the clay content increases with one relative unit, the K-factor value decreases by 0.0099 t ha h / ha MJ mm. The same relative increases in the content of soil organic matter and the class of soil profile water permeability, result to a decrease of the values of K-factor respectively by 0.0042 and 0.0045 t ha h / ha MJ mm.

  10. Critical parameters for sterilization of oil palm fruit by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Sarah, Maya; Taib, M. R.

    2017-08-01

    Study to evaluate critical parameters for microwave irradiation to sterilize oil palm fruit was carried out at power density of 560 to 1120 W/kg. Critical parameters are important to ensure moisture loss during sterilization exceed the critical moisture (Mc) but less than maximum moisture (Mmax). Critical moisture in this study was determined according to dielectric loss factor of heated oil palm fruits at 2450 MHz. It was obtained from slope characterization of dielectric loss factor-vs-moisture loss curve. The Mc was used to indicate critical temperature (Tc) and critical time (tc) for microwave sterilization. To ensure moisture loss above critical value but not exceed maximum value, the combinations of time-temperature for sterilization of oil palm fruits by microwave irradiation were 6 min and 75°C to 17 min and 82°C respectively.

  11. Laser confocal microscope for analysis of 3013 inner container closure weld region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rodriguez, M. J.

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for datamore » acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.« less

  12. A comparison of airborne wake vortex detection measurements with values predicted from potential theory

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1991-01-01

    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors.

  13. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).

  14. Soil conservation service curve number: How to take into account spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.

    2012-09-01

    The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.

  15. Dynamics Change of Vegetated Lands in A Highway Corridor during 37 Years (Case study of Jagorawi Toll Road, Jakarta-Bogor)

    NASA Astrophysics Data System (ADS)

    Perdana, B. P.; Setiawan, Y.; Prasetyo, L. B.

    2018-02-01

    Recently, a highway development is required as a liaison between regions to support the economic development of the regions. Even the availability of highways give positive impacts, it also has negative impacts, especially related to the changes of vegetated lands. This study aims to determine the change of vegetation coverage in Jagorawi corridor Jakarta-Bogor during 37 years, and to analyze landscape patterns in the corridor based on distance factor from Jakarta to Bogor. In this study, we used a long-series of Landsat images taken by Landsat 2 MSS (1978), Landsat 5 TM (1988, 1995, and 2005) and Landsat 8 OLI/TIRS (2015). Analysis of landscape metrics was conducted through patch analysis approach to determine the change of landscape patterns in the Jagorawi corridor Jakarta-Bogor. Several parameters of landscape metrics used are Number of Patches (NumP), Mean Patch Size (MPS), Mean Shape Index (MSI), and Edge Density (ED). These parameters can be used to provide information of structural elements of landscape, composition and spatial distribution in the corridor. The results indicated that vegetation coverage in the Jagorawi corridor Jakarta-Bogor decreased about 48% for 35 years. Moreover, NumP value increased and decreasing of MPS value as a means of higher fragmentation level occurs with patch size become smaller. Meanwhile, The increase in ED parameters indicates that vegetated land is damaged annually. MSI parameter shows a decrease in every year which means land degradation on vegetated land. This indicates that the declining value of MSI will have an impact on land degradation.

  16. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  17. Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.

    2017-07-01

    In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.

  18. Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach

    NASA Astrophysics Data System (ADS)

    Handley, Heather K.; Turner, Simon; Afonso, Juan C.; Dosseto, Anthony; Cohen, Tim

    2013-02-01

    Quantifying the rates of landscape evolution in response to climate change is inhibited by the difficulty of dating the formation of continental detrital sediments. We present uranium isotope data for Cooper Creek palaeochannel sediments from the Lake Eyre Basin in semi-arid South Australia in order to attempt to determine the formation ages and hence residence times of the sediments. To calculate the amount of recoil loss of 234U, a key input parameter used in the comminution approach, we use two suggested methods (weighted geometric and surface area measurement with an incorporated fractal correction) and typical assumed input parameter values found in the literature. The calculated recoil loss factors and comminution ages are highly dependent on the method of recoil loss factor determination used and the chosen assumptions. To appraise the ramifications of the assumptions inherent in the comminution age approach and determine individual and combined comminution age uncertainties associated to each variable, Monte Carlo simulations were conducted for a synthetic sediment sample. Using a reasonable associated uncertainty for each input factor and including variations in the source rock and measured (234U/238U) ratios, the total combined uncertainty on comminution age in our simulation (for both methods of recoil loss factor estimation) can amount to ±220-280 ka. The modelling shows that small changes in assumed input values translate into large effects on absolute comminution age. To improve the accuracy of the technique and provide meaningful absolute comminution ages, much tighter constraints are required on the assumptions for input factors such as the fraction of α-recoil lost 234Th and the initial (234U/238U) ratio of the source material. In order to be able to directly compare calculated comminution ages produced by different research groups, the standardisation of pre-treatment procedures, recoil loss factor estimation and assumed input parameter values is required. We suggest a set of input parameter values for such a purpose. Additional considerations for calculating comminution ages of sediments deposited within large, semi-arid drainage basins are discussed.

  19. The contribution of NOAA/CMDL ground-based measurements to understanding long-term stratospheric changes

    NASA Astrophysics Data System (ADS)

    Montzka, S. A.; Butler, J. H.; Dutton, G.; Thompson, T. M.; Hall, B.; Mondeel, D. J.; Elkins, J. W.

    2005-05-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  20. Determination of the optimal cutoff value for a serological assay: an example using the Johne's Absorbed EIA.

    PubMed Central

    Ridge, S E; Vizard, A L

    1993-01-01

    Traditionally, in order to improve diagnostic accuracy, existing tests have been replaced with newly developed diagnostic tests with superior sensitivity and specificity. However, it is possible to improve existing tests by altering the cutoff value chosen to distinguish infected individuals from uninfected individuals. This paper uses data obtained from an investigation of the operating characteristics of the Johne's Absorbed EIA to demonstrate a method of determining a preferred cutoff value from several potentially useful cutoff settings. A method of determining the financial gain from using the preferred rather than the current cutoff value and a decision analysis method to assist in determining the optimal cutoff value when critical population parameters are not known with certainty are demonstrated. The results of this study indicate that the currently recommended cutoff value for the Johne's Absorbed EIA is only close to optimal when the disease prevalence is very low and false-positive test results are deemed to be very costly. In other situations, there were considerable financial advantages to using cutoff values calculated to maximize the benefit of testing. It is probable that the current cutoff values for other diagnostic tests may not be the most appropriate for every testing situation. This paper offers methods for identifying the cutoff value that maximizes the benefit of medical and veterinary diagnostic tests. PMID:8501227

  1. Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter Fo.

    PubMed

    Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang

    2017-04-01

    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Continuous cardiac troponin I release in Fabry disease.

    PubMed

    Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian

    2014-01-01

    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  3. Proton dissociation properties of arylphosphonates: Determination of accurate Hammett equation parameters.

    PubMed

    Dargó, Gergő; Bölcskei, Adrienn; Grün, Alajos; Béni, Szabolcs; Szántó, Zoltán; Lopata, Antal; Keglevich, György; Balogh, György T

    2017-09-05

    Determination of the proton dissociation constants of several arylphosphonic acid derivatives was carried out to investigate the accuracy of the Hammett equations available for this family of compounds. For the measurement of the pK a values modern, accurate methods, such as the differential potentiometric titration and NMR-pH titration were used. We found our results significantly different from the pK a values reported before (pK a1 : MAE = 0.16 pK a2 : MAE=0.59). Based on our recently measured pK a values, refined Hammett equations were determined that might be used for predicting highly accurate ionization constants of newly synthesized compounds (pK a1 =1.70-0.894σ, pK a2 =6.92-0.934σ). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Reliability measurement for mixed mode failures of 33/11 kilovolt electric power distribution stations.

    PubMed

    Alwan, Faris M; Baharum, Adam; Hassan, Geehan S

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter [Formula: see text] and shape parameters [Formula: see text] and [Formula: see text]. Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models.

  5. Reliability Measurement for Mixed Mode Failures of 33/11 Kilovolt Electric Power Distribution Stations

    PubMed Central

    Alwan, Faris M.; Baharum, Adam; Hassan, Geehan S.

    2013-01-01

    The reliability of the electrical distribution system is a contemporary research field due to diverse applications of electricity in everyday life and diverse industries. However a few research papers exist in literature. This paper proposes a methodology for assessing the reliability of 33/11 Kilovolt high-power stations based on average time between failures. The objective of this paper is to find the optimal fit for the failure data via time between failures. We determine the parameter estimation for all components of the station. We also estimate the reliability value of each component and the reliability value of the system as a whole. The best fitting distribution for the time between failures is a three parameter Dagum distribution with a scale parameter and shape parameters and . Our analysis reveals that the reliability value decreased by 38.2% in each 30 days. We believe that the current paper is the first to address this issue and its analysis. Thus, the results obtained in this research reflect its originality. We also suggest the practicality of using these results for power systems for both the maintenance of power systems models and preventive maintenance models. PMID:23936346

  6. Plasma levels and diagnostic utility of VEGF, MMP-2 and TIMP-2 in the diagnostics of breast cancer patients.

    PubMed

    Ławicki, Sławomir; Zajkowska, Monika; Głażewska, Edyta Katarzyna; Będkowska, Grażyna Ewa; Szmitkowski, Maciej

    2017-03-01

    We investigated plasma levels and diagnostic utility of vascular endothelial growth factor VEGF, matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2) in comparison to cancer antigen 15-3 (CA 15-3). Plasma levels of tested parameters were determined using enzyme-linked immunosorbent assay (ELISA) while CA 15-3 with chemiluminescent microparticle immunoassay (CMIA). The plasma levels of VEGF, TIMP-2 showed significantly higher than CA 15-3 values of the diagnostic sensitivity, the predictive values of positive and negative test results (PPV, NPV) and the area under the receiver-operating characteristics (ROC) curve (AUC) in early stages of breast cancer (BC). The combined use of the tested parameters with CA 15-3 resulted in the increase in sensitivity, NPV and AUC, especially in the combination with VEGF (83%; 72%; 0.888) and TIMP-2 (83%; 72%; 0.894). The highest values were obtained for combination of all three parameters (93%; 85%; 0.923). These findings suggest the usefulness of the tested parameters in the diagnosis of BC, especially VEGF and TIMP-2 with CA 15-3 in early stages of BC, which could be a new diagnostic panel.

  7. Spray Modelling for Multifuel Engines.

    DTIC Science & Technology

    1982-07-01

    representation of equation 44. 191 Fig.36 Comparison of calculated and experimental values of 192 Sauter mean diameter. IIIIII~ i ii .. ... .. .I...fuel and the effect of various parameters have been determined experimentally. Gene- ralized expressions have been determined for the calculation of...average properties of velocity, pressure temperature and chemical species concentration. Elkotb 118 used this theory in the calculation of the flow field

  8. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration.

    PubMed

    Huang, Jinfeng; Zhu, Yali; Sun, Bin; Yao, Yuan; Liu, Junjun

    2016-03-01

    The protonation state of the Asp dyad is important as it can reveal enzymatic mechanisms, and the information this provides can be used in the development of drugs for proteins such as memapsin 2 (BACE-1), HIV-1 protease, and rennin. Conventional molecular dynamics (MD) simulations have been successfully used to determine the preferred protonation state of the Asp dyad. In the present work, we demonstrate that the results obtained from conventional MD simulations can be greatly influenced by the particular force field applied or the values used for control parameters. In principle, free-energy changes between possible protonation states can be used to determine the protonation state. We show that protonation state prediction by the thermodynamic integration (TI) method is insensitive to force field version or to the cutoff for calculating nonbonded interactions (a control parameter). In the present study, the protonation state of the Asp dyad predicted by TI calculations was the same regardless of the force field and cutoff value applied. Contrary to the intuition that conventional MD is more efficient, our results clearly show that the TI method is actually more efficient and more reliable for determining the protonation state of the Asp dyad.

  9. Inactivation kinetics of various chemical disinfectants on Aeromonas hydrophila planktonic cells and biofilms.

    PubMed

    Jahid, Iqbal Kabir; Ha, Sang-Do

    2014-05-01

    The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (p<0.05) the biofilms matrix. The Weibull parameter b-value correlated (R(2)=0.6835) with the biofilms matrix removal. The present findings deduce that the Weibull model is suitable to determine biofilms matrix reduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.

  10. [Full blood count reference values in children of 8 to 12 years old residing at 2,760 m above sea level].

    PubMed

    Armando García-Miranda, L; Contreras, I; Estrada, J A

    2014-04-01

    To determine reference values for full blood count parameters in a population of children 8 to 12 years old, living at an altitude of 2760 m above sea level. Our sample consisted of 102 individuals on whom a full blood count was performed. The parameters included: total number of red blood cells, platelets, white cells, and a differential count (millions/μl and %) of neutrophils, lymphocytes, monocytes, eosinophils and basophils. Additionally, we obtained values for hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, concentration of corpuscular hemoglobin and red blood cell distribution width. The results were statistically analyzed with a non-parametric test, to divide the sample in quartiles and obtain the lower and upper limits for our intervals. Moreover, the values for the intervals obtained from this analysis were compared to intervals obtained estimating+- 2 standard deviations above and below from our mean values. Our results showed significant differences compared to normal interval values reported for the adult Mexican population in most of the parameters studied. The full blood count is an important laboratory test used routinely for the initial assessment of a patient. Values of full blood counts in healthy individuals vary according to gender, age and geographic location; therefore, each population should have its own reference values. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  11. StePar: an automatic code for stellar parameter determination

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; González Hernández, J. I.; Montes, D.

    2013-05-01

    We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.

  12. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Gregory T.; Sellnau, Mark C.

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder ofmore » the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.« less

  13. Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen

    2018-01-01

    A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.

  14. A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times

    PubMed Central

    Heath, Tracy A.

    2012-01-01

    In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account. PMID:22334343

  15. Early variations of laboratory parameters predicting shunt-dependent hydrocephalus after subarachnoid hemorrhage.

    PubMed

    Na, Min Kyun; Won, Yu Deok; Kim, Choong Hyun; Kim, Jae Min; Cheong, Jin Hwan; Ryu, Je Il; Han, Myung-Hoon

    2017-01-01

    Hydrocephalus is a frequent complication following subarachnoid hemorrhage. Few studies investigated the association between laboratory parameters and shunt-dependent hydrocephalus. This study aimed to investigate the variations of laboratory parameters after subarachnoid hemorrhage. We also attempted to identify predictive laboratory parameters for shunt-dependent hydrocephalus. Multiple imputation was performed to fill the missing laboratory data using Bayesian methods in SPSS. We used univariate and multivariate Cox regression analyses to calculate hazard ratios for shunt-dependent hydrocephalus based on clinical and laboratory factors. The area under the receiver operating characteristic curve was used to determine the laboratory risk values predicting shunt-dependent hydrocephalus. We included 181 participants with a mean age of 54.4 years. Higher sodium (hazard ratio, 1.53; 95% confidence interval, 1.13-2.07; p = 0.005), lower potassium, and higher glucose levels were associated with higher shunt-dependent hydrocephalus. The receiver operating characteristic curve analysis showed that the areas under the curve of sodium, potassium, and glucose were 0.649 (cutoff value, 142.75 mEq/L), 0.609 (cutoff value, 3.04 mmol/L), and 0.664 (cutoff value, 140.51 mg/dL), respectively. Despite the exploratory nature of this study, we found that higher sodium, lower potassium, and higher glucose levels were predictive values for shunt-dependent hydrocephalus from postoperative day (POD) 1 to POD 12-16 after subarachnoid hemorrhage. Strict correction of electrolyte imbalance seems necessary to reduce shunt-dependent hydrocephalus. Further large studies are warranted to confirm our findings.

  16. The single-scattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the T-matrix method

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Liou, K. N.; Kahnert, M.; Yang, P.

    2013-08-01

    The single-scattering properties of eight black carbon (BC, soot) fractal aggregates, composed of primary spheres from 7 to 600, computed by the geometric-optics surface-wave (GOS) approach coupled with the Rayleigh-Gans-Debye (RGD) adjustment for size parameters smaller than approximately 2, are compared with those determined from the superposition T-matrix method. We show that under the condition of random orientation, the results from GOS/RGD are in general agreement with those from T-matrix in terms of the extinction and absorption cross-sections, the single-scattering co-albedo, and the asymmetry factor. When compared with the specific absorption (m2/g) measured in the laboratory, we illustrate that using the observed radii of primary spheres ranging from 3.3 to 25 nm, the theoretical values determined from GOS/RGD for primary sphere numbers of 100-600 are within the range of measured values. The GOS approach can be effectively applied to aggregates composed of a large number of primary spheres (e.g., >6000) and large size parameters (≫2) in terms of computational efforts.

  17. Development of a Method for the Determination of Chromium and Cadmium in Tannery Wastewater Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Bukhari, Mahwish; Awan, M. Ali; Qazi, Ishtiaq A.; Baig, M. Anwar

    2012-01-01

    This paper illustrates systematic development of a convenient analytical method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy (LIBS). A new approach was developed by which liquid was converted into solid phase sample surface using absorption paper for subsequent LIBS analysis. The optimized values of LIBS parameters were 146.7 mJ for chromium and 89.5 mJ for cadmium (laser pulse energy), 4.5 μs (delay time), 70 mm (lens to sample surface distance), and 7 mm (light collection system to sample surface distance). Optimized values of LIBS parameters demonstrated strong spectrum lines for each metal keeping the background noise at minimum level. The new method of preparing metal standards on absorption papers exhibited calibration curves with good linearity with correlation coefficients, R2 in the range of 0.992 to 0.998. The developed method was tested on real tannery wastewater samples for determination of chromium and cadmium. PMID:22567570

  18. Early detection of chemotherapy-refractory patients by monitoring textural alterations in diffuse optical spectroscopic images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J., E-mail: Gregory.Czarnota@sunnybrook.ca

    2015-11-15

    Purpose: Changes in textural characteristics of diffuse optical spectroscopic (DOS) functional images, accompanied by alterations in their mean values, are demonstrated here for the first time as early surrogates of ultimate treatment response in locally advanced breast cancer (LABC) patients receiving neoadjuvant chemotherapy (NAC). NAC, as a standard component of treatment for LABC patient, induces measurable heterogeneous changes in tumor metabolism which were evaluated using DOS-based metabolic maps. This study characterizes such inhomogeneous nature of response development, by determining alterations in textural properties of DOS images apparent at early stages of therapy, followed later by gross changes in mean valuesmore » of these functional metabolic maps. Methods: Twelve LABC patients undergoing NAC were scanned before and at four times after treatment initiation, and tomographic DOS images were reconstructed at each time. Ultimate responses of patients were determined clinically and pathologically, based on a reduction in tumor size and assessment of residual tumor cellularity. The mean-value parameters and textural features were extracted from volumetric DOS images for several functional and metabolic parameters prior to the treatment initiation. Changes in these DOS-based biomarkers were also monitored over the course of treatment. The measured biomarkers were applied to differentiate patient responses noninvasively and compared to clinical and pathologic responses. Results: Responding and nonresponding patients demonstrated different changes in DOS-based textural and mean-value parameters during chemotherapy. Whereas none of the biomarkers measured prior the start of therapy demonstrated a significant difference between the two patient populations, statistically significant differences were observed at week one after treatment initiation using the relative change in contrast/homogeneity of seven functional maps (0.001 < p < 0.049), and mean value of water content in tissue (p = 0.010). The cross-validated sensitivity and specificity of these parameters at week one of therapy ranged between 80%–100% and 67%–100%, respectively. Higher levels of statistically significant differences were exhibited at week four after start of treatment, with cross-validated sensitivities and specificities ranging between 80% and 100% for three textural and three mean-value parameters. The combination of the textural and mean-value parameters in a “hybrid” profile could better separate the two patient populations early on during a course of treatment, with cross-validated sensitivities and specificities of up to 100% (p = 0.001). Conclusions: The results of this study suggest that alterations in textural characteristics of DOS images, in conjunction with changes in their mean values, can classify noninvasively the ultimate clinical and pathologic response of LABC patients to chemotherapy, as early as one week after start of their treatment. This provides a basis for using DOS imaging as a tool for therapy personalization.« less

  19. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

    NASA Astrophysics Data System (ADS)

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-08-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.

  20. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A Bayesian geostatistical parameter estimation approach

    USGS Publications Warehouse

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-01-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologic parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into facies associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained.

  1. Hot horizontal branch stars in NGC 288 - effects of diffusion and stratification on their atmospheric parameters (Corrigendum)

    NASA Astrophysics Data System (ADS)

    Moehler, S.; Dreizler, S.; LeBlanc, F.; Khalack, V.; Michaud, G.; Richer, J.; Sweigart, A. V.; Grundahl, F.

    2017-09-01

    We found that the script to determine the masses of the stars contains two errors. This script and a related one have been used to determine masses of globular cluster stars and distances to field stars in 12 papers published between 1990 and 2014. While the numerical values need to be revised none of the conclusions are affected. We provide the updated numerical values and figures for all 12 publications here. In addition we describe the effects on those refereed publications that used the distances to the field stars.

  2. Computer programs for computing particle-size statistics of fluvial sediments

    USGS Publications Warehouse

    Stevens, H.H.; Hubbell, D.W.

    1986-01-01

    Two versions of computer programs for inputing data and computing particle-size statistics of fluvial sediments are presented. The FORTRAN 77 language versions are for use on the Prime computer, and the BASIC language versions are for use on microcomputers. The size-statistics program compute Inman, Trask , and Folk statistical parameters from phi values and sizes determined for 10 specified percent-finer values from inputed size and percent-finer data. The program also determines the percentage gravel, sand, silt, and clay, and the Meyer-Peter effective diameter. Documentation and listings for both versions of the programs are included. (Author 's abstract)

  3. Consequences of a new experimental determination of the quadrupole moment of the sun for gravitation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, J.W.

    1983-03-07

    A preliminary experimental determination by Hill, Bos and Goode of the interior rotation of the sun leads to a nonzero value for the quadrupole-moment coefficient J/sub 2/. This produces a deviation of 1.6% from Einstein's prediction of the precession of the perihelion of Mercury. A nonsymmetric gravitational theory can fit the measured precession with this J/sub 2/ and all other solar-system relativity experiments for one value of a post-Newtonian parameter in the theory. A prediction is made for the perihelion precession of Icarus.

  4. Predicting environmental fate parameters with infrared spectroscopy.

    EPA Science Inventory

    One of the principal uncertainties associated with risk assessments of organic chemicals in the environment is the lack of chemical-specific values that quantify the many processes determining the chemical's transport and transformation. Because it is not feasible to measure the ...

  5. Evaluation of different mathematical models and different b-value ranges of diffusion-weighted imaging in peripheral zone prostate cancer detection using b-value up to 4500 s/mm2

    PubMed Central

    Feng, Zhaoyan; Min, Xiangde; Margolis, Daniel J. A.; Duan, Caohui; Chen, Yuping; Sah, Vivek Kumar; Chaudhary, Nabin; Li, Basen; Ke, Zan; Zhang, Peipei; Wang, Liang

    2017-01-01

    Objectives To evaluate the diagnostic performance of different mathematical models and different b-value ranges of diffusion-weighted imaging (DWI) in peripheral zone prostate cancer (PZ PCa) detection. Methods Fifty-six patients with histologically proven PZ PCa who underwent DWI-magnetic resonance imaging (MRI) using 21 b-values (0–4500 s/mm2) were included. The mean signal intensities of the regions of interest (ROIs) placed in benign PZs and cancerous tissues on DWI images were fitted using mono-exponential, bi-exponential, stretched-exponential, and kurtosis models. The b-values were divided into four ranges: 0–1000, 0–2000, 0–3200, and 0–4500 s/mm2, grouped as A, B, C, and D, respectively. ADC, , D*, f, DDC, α, Dapp, and Kapp were estimated for each group. The adjusted coefficient of determination (R2) was calculated to measure goodness-of-fit. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic performance of the parameters. Results All parameters except D* showed significant differences between cancerous tissues and benign PZs in each group. The area under the curve values (AUCs) of ADC were comparable in groups C and D (p = 0.980) and were significantly higher than those in groups A and B (p< 0.05 for all). The AUCs of ADC and Kapp in groups B and C were similar (p = 0.07 and p = 0.954), and were significantly higher than the other parameters (p< 0.001 for all). The AUCs of ADC in group D was slightly higher than Kapp (p = 0.002), and both were significantly higher than the other parameters (p< 0.001 for all). Conclusions ADC derived from conventional mono-exponential high b-value (3200 s/mm2) models is an optimal parameter for PZ PCa detection. PMID:28199367

  6. Parametric response mapping cut-off values that predict survival of hepatocellular carcinoma patients after TACE.

    PubMed

    Nörthen, Aventinus; Asendorf, Thomas; Shin, Hoen-Oh; Hinrichs, Jan B; Werncke, Thomas; Vogel, Arndt; Kirstein, Martha M; Wacker, Frank K; Rodt, Thomas

    2018-04-21

    Parametric response mapping (PRM) is a novel image-analysis technique applicable to assess tumor viability and predict intrahepatic recurrence of hepatocellular carcinoma (HCC) patients treated with transarterial chemoembolization (TACE). However, to date, the prognostic value of PRM for prediction of overall survival in HCC patients undergoing TACE is unclear. The objective of this explorative, single-center study was to identify cut-off values for voxel-specific PRM parameters that predict the post TACE overall survival in HCC patients. PRM was applied to biphasic CT data obtained at baseline and following 3 TACE treatments of 20 patients with HCC tumors ≥ 2 cm. The individual portal venous phases were registered to the arterial phases followed by segmentation of the largest lesion, i.e., the region of interest (ROI). Segmented voxels with their respective arterial and portal venous phase density values were displayed as a scatter plot. Voxel-specific PRM parameters were calculated and compared to patients' survival at 1, 2, and 3 years post treatment to identify the maximal predictive parameters. The hypervascularized tissue portion of the ROI was found to represent an independent predictor of the post TACE overall survival. For this parameter, cut-off values of 3650, 2057, and 2057 voxels, respectively, were determined to be optimal to predict overall survival at 1, 2, and 3 years after TACE. Using these cut points, patients were correctly classified as having died with a sensitivity of 80, 92, and 86% and as still being alive with a specificity of 60, 75, and 83%, respectively. The prognostic accuracy measured by area under the curve (AUC) values ranged from 0.73 to 0.87. PRM may have prognostic value to predict post TACE overall survival in HCC patients.

  7. Choice of fineness of pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.N. Tolchinskii; A.Yu. Lavrent'ev

    2002-11-15

    Various methods for choosing the fineness of power plant coal dust are reviewed and analytical expressions for determining the fineness are presented. It is shown that the use of the yield of combustibles as a parameter is not always suitable for evaluating the fineness of pulverized coal. The suggested expression for computing the fineness bears composite parameters that allow for the heat value of the volatiles and for the internal surface of the fuel particles.

  8. The evolution of environmental and genetic sex determination in fluctuating environments.

    PubMed

    Van Dooren, Tom J M; Leimar, Olof

    2003-12-01

    Twenty years ago, Bulmer and Bull suggested that disruptive selection, produced by environmental fluctuations, can result in an evolutionary transition from environmental sex determination (ESD) to genetic sex determination (GSD). We investigated the feasibility of such a process, using mutation-limited adaptive dynamics and individual-based computer simulations. Our model describes the evolution of a reaction norm for sex determination in a metapopulation setting with partial migration and variation in an environmental variable both within and between local patches. The reaction norm represents the probability of becoming a female as a function of environmental state and was modeled as a sigmoid function with two parameters, one giving the location (i.e., the value of the environmental variable for which an individual has equal chance of becoming either sex) and the other giving the slope of the reaction norm for that environment. The slope can be interpreted as being set by the level of developmental noise in morph determination, with less noise giving a steeper slope and a more switchlike reaction norm. We found convergence stable reaction norms with intermediate to large amounts of developmental noise for conditions characterized by low migration rates, small differential competitive advantages between the sexes over environments, and little variation between individual environments within patches compared to variation between patches. We also considered reaction norms with the slope parameter constrained to a high value, corresponding to little developmental noise. For these we found evolutionary branching in the location parameter and a transition from ESD toward GSD, analogous to the original analysis by Bulmer and Bull. Further evolutionary change, including dominance evolution, produced a polymorphism acting as a GSD system with heterogamety. Our results point to the role of developmental noise in the evolution of sex determination.

  9. Scanning-slit topography in patients with keratoconus.

    PubMed

    Módis, László; Németh, Gábor; Szalai, Eszter; Flaskó, Zsuzsa; Seitz, Berthold

    2017-01-01

    To evaluate the anterior and posterior corneal surfaces using scanning-slit topography and to determine the diagnostic ability of the measured corneal parameters in keratoconus. Orbscan II measurements were taken in 39 keratoconic corneas previously diagnosed by corneal topography and in 39 healthy eyes. The central minimum, maximum, and astigmatic simulated keratometry (K) and anterior axial power values were determined. Spherical and cylindrical mean power diopters were obtained at the central and at the steepest point of the cornea both on anterior and on posterior mean power maps. Pachymetry evaluations were taken at the center and paracentrally in the 3 mm zone from the center at a location of every 45 degrees. Receiver operating characteristic (ROC) analysis was used to determine the best cut-off values and to evaluate the utility of the measured parameters in identifying patients with keratoconus. The minimum, maximum and astigmatic simulated K readings were 44.80±3.06 D, 47.17±3.67 D and 2.42±1.84 D respectively in keratoconus patients and these values differed significantly ( P <0.0001 for all comparisons) from healthy subjects. For all pachymetry measurements and for anterior and posterior mean power values significant differences were found between the two groups. Moreover, anterior central cylindrical power had the best discrimination ability (area under the ROC curve=0.948). The results suggest that scanning-slit topography and pachymetry are accurate methods both for keratoconus screening and for confirmation of the diagnosis.

  10. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.

    PubMed

    Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop

    2010-03-15

    An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.

  11. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters 214 Pb and 214 Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Application of an ETV-ICP system for the determination of elements in human hair*1

    NASA Astrophysics Data System (ADS)

    Plantikow-Voβgätter, F.; Denkhaus, E.

    1996-01-01

    When determining element contents in hair samples without sample digestion it is necessary to analyze large sample volumes in order to minimize problems of inhomogeneity of biological sample materials. Therefore an electrothermal vaporization system (ETV) is used for solid sample introduction into an inductively coupled plasma (ICP) for the determination of matrix and trace elements in hair. This paper concentrates on the instrumental aspects without time consuming sample preparation. The results obtained for optimization tests, ETV operating parameters and ICP operating parameters, are shown and discussed. Standard additions are used for calibration for the determination of Zn, Mg, and Mn in human hair. Studies including reproducibility and detection limits for chosen elements have been carried out on certified reference materials (CRMs). The determination of reproducibility (relative standard deviation (RSD) of n = 10) and detection limits (DLs) of Zn (RSD < 8.5%, DL < 0.8 μ g -1), Mn (RSD < 14.1%, DL < 0.3 μ g -1), and Mg (RSD < 7.4%, DL < 6.6 μ g -1) are satisfactory. The concentration values found show good agreement with the corresponding certified values. Further sample preparation steps, including hair sampling, washing procedure and homogenization for hair, relating to measurements of real hair samples are described.

  13. Normal Values of Tissue-Muscle Perfusion Indexes of Lower Limbs Obtained with a Scintigraphic Method.

    PubMed

    Manevska, Nevena; Stojanoski, Sinisa; Pop Gjorceva, Daniela; Todorovska, Lidija; Miladinova, Daniela; Zafirova, Beti

    2017-09-01

    Introduction Muscle perfusion is a physiologic process that can undergo quantitative assessment and thus define the range of normal values of perfusion indexes and perfusion reserve. The investigation of the microcirculation has a crucial role in determining the muscle perfusion. Materials and method The study included 30 examinees, 24-74 years of age, without a history of confirmed peripheral artery disease and all had normal findings on Doppler ultrasonography and pedo-brachial index of lower extremity (PBI). 99mTc-MIBI tissue muscle perfusion scintigraphy of lower limbs evaluates tissue perfusion in resting condition "rest study" and after workload "stress study", through quantitative parameters: Inter-extremity index (for both studies), left thigh/right thigh (LT/RT) left calf/right calf (LC/RC) and perfusion reserve (PR) for both thighs and calves. Results In our investigated group we assessed the normal values of quantitative parameters of perfusion indexes. Indexes ranged for LT/RT in rest study 0.91-1.05, in stress study 0.92-1.04. LC/RC in rest 0.93-1.07 and in stress study 0.93-1.09. The examinees older than 50 years had insignificantly lower perfusion reserve of these parameters compared with those younger than 50, LC (p=0.98), and RC (p=0.6). Conclusion This non-invasive scintigraphic method allows in individuals without peripheral artery disease to determine the range of normal values of muscle perfusion at rest and stress condition and to clinically implement them in evaluation of patients with peripheral artery disease for differentiating patients with normal from those with impaired lower limbs circulation.

  14. Influence of the power supply parameters on the projectile energy in the permanent magnet electrodynamic accelerator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Piekielny, Paweł

    2017-10-01

    The main objective of the research is to investigate, how the power supply parameters influence the kinetic energy of the movable element, called commonly a projectile or bullet. A calculation and measurement results of transient characteristics for an electrodynamic accelerator with permanent magnet support were presented in the paper. The calculations were made with using field-circuit model, which includes the parameters of the power supply, mass of the bullet and friction phenomenon. Characteristics of energy and muzzle velocity verso supply voltage (50 V to 350 V) and capacitance value (60 mF to 340.5 mF) were determined, as well. A measurement verification of selected points of calculation characteristics were carried out for investigated values of muzzle velocity. A good conformity between calculation and measurement results was obtained. Concluding, presented characteristics of the muzzle velocity and energy of the projectile vs. power supply parameters indicate, that accelerators could be used for fatigue testing of materials.

  15. Parameters Identification of Interface Friction Model for Ceramic Matrix Composites Based on Stress-Strain Response

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Gao, Xiguang; Song, Yingdong

    2017-10-01

    An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.

  16. The Effect of Roughness Model on Scattering Properties of Ice Crystals.

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Van Diedenhoven, Bastiaan

    2016-01-01

    We compare stochastic models of microscale surface roughness assuming uniform and Weibull distributions of crystal facet tilt angles to calculate scattering by roughened hexagonal ice crystals using the geometric optics (GO) approximation. Both distributions are determined by similar roughness parameters, while the Weibull model depends on the additional shape parameter. Calculations were performed for two visible wavelengths (864 nm and 410 nm) for roughness values between 0.2 and 0.7 and Weibull shape parameters between 0 and 1.0 for crystals with aspect ratios of 0.21, 1 and 4.8. For this range of parameters we find that, for a given roughness level, varying the Weibull shape parameter can change the asymmetry parameter by up to about 0.05. The largest effect of the shape parameter variation on the phase function is found in the backscattering region, while the degree of linear polarization is most affected at the side-scattering angles. For high roughness, scattering properties calculated using the uniform and Weibull models are in relatively close agreement for a given roughness parameter, especially when a Weibull shape parameter of 0.75 is used. For smaller roughness values, a shape parameter close to unity provides a better agreement. Notable differences are observed in the phase function over the scattering angle range from 5deg to 20deg, where the uniform roughness model produces a plateau while the Weibull model does not.

  17. Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic

    NASA Astrophysics Data System (ADS)

    Haag, T.; Herrmann, J.; Hanss, M.

    2010-10-01

    For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.

  18. Reference charts of fetal biometric parameters in 31,476 Brazilian singleton pregnancies.

    PubMed

    Araujo Júnior, Edward; Martins Santana, Eduardo Félix; Martins, Wellington P; Júnior, Julio Elito; Ruano, Rodrigo; Pires, Claudio Rodrigues; Filho, Sebastião Marques Zanforlin

    2014-07-01

    The purpose of this study was to establish reference charts of fetal biometric parameters measured by 2-dimensional sonography in a large Brazilian population. A cross-sectional retrospective study was conducted including 31,476 low-risk singleton pregnancies between 18 and 38 weeks' gestation. The following fetal parameters were measured: biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight. To assess the correlation between the fetal biometric parameters and gestational age, polynomial regression models were created, with adjustments made by the determination coefficient (R(2)). The means ± SDs of the biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight measurements at 18 and 38 weeks were 4.2 ± 2.34 and 9.1 ± 4.0 cm, 15.3 ± 7.56 and 32.3 ± 11.75 cm, 13.3 ± 10.42 and 33.4 ± 20.06 cm, 2.8 ± 2.17 and 7.2 ± 3.58 cm, and 256.34 ± 34.03 and 3169.55 ± 416.93 g, respectively. Strong correlations were observed between all fetal biometric parameters and gestational age, best represented by second-degree equations, with R(2) values of 0.95, 0.96, 0.95, 0.95, and 0.95 for biparietal diameter, head circumference, abdominal circumference, femur length, and estimated fetal weight. Fetal biometric parameters were determined for a large Brazilian population, and they may serve as reference values in cases with a high risk of intrauterine growth disorders. © 2014 by the American Institute of Ultrasound in Medicine.

  19. Musings on cosmological relaxation and the hierarchy problem

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.

    2016-03-01

    Recently Graham, Kaplan and Rajendran proposed cosmological relaxation as a mechanism for generating a hierarchically small Higgs vacuum expectation value. Inspired by this we collect some thoughts on steps towards a solution to the electroweak hierarchy problem and apply them to the original model of cosmological relaxation [Phys. Rev. Lett. 115, 221801 (2015)]. To do so, we study the dynamics of the model and determine the relation between the fundamental input parameters and the electroweak vacuum expectation value. Depending on the input parameters the model exhibits three qualitatively different regimes, two of which allow for hierarchically small Higgs vacuum expectation values. One leads to standard electroweak symmetry breaking whereas in the other regime electroweak symmetry is mainly broken by a Higgs source term. While the latter is not acceptable in a model based on the QCD axion, in non-QCD models this may lead to new and interesting signatures in Higgs observables. Overall, we confirm that cosmological relaxation can successfully give rise to a hierarchically small Higgs vacuum expectation value if (at least) one model parameter is chosen sufficiently small. However, we find that the required level of tuning for achieving this hierarchy in relaxation models can be much more severe than in the Standard Model.

  20. A Priori Method of Using Photon Activation Analysis to Determine Unknown Trace Element Concentrations in NIST Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Jaromy; Sun Zaijing; Wells, Doug

    2009-03-10

    Photon activation analysis detected elements in two NIST standards that did not have reported concentration values. A method is currently being developed to infer these concentrations by using scaling parameters and the appropriate known quantities within the NIST standard itself. Scaling parameters include: threshold, peak and endpoint energies; photo-nuclear cross sections for specific isotopes; Bremstrahlung spectrum; target thickness; and photon flux. Photo-nuclear cross sections and energies from the unknown elements must also be known. With these quantities, the same integral was performed for both the known and unknown elements resulting in an inference of the concentration of the un-reported elementmore » based on the reported value. Since Rb and Mn were elements that were reported in the standards, and because they had well-identified peaks, they were used as the standards of inference to determine concentrations of the unreported elements of As, I, Nb, Y, and Zr. This method was tested by choosing other known elements within the standards and inferring a value based on the stated procedure. The reported value of Mn in the first NIST standard was 403{+-}15 ppm and the reported value of Ca in the second NIST standard was 87000 ppm (no reported uncertainty). The inferred concentrations were 370{+-}23 ppm and 80200{+-}8700 ppm respectively.« less

Top