Sample records for determine stellar parameters

  1. An Independent Asteroseismic Analysis of the Fundamental Parameters and Internal Structure of the Solar-like Oscillator KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2017-09-01

    Asteroseismology is a useful tool that is usually used to probe stellar interiors and to determine stellar fundamental parameters, such as stellar mass, radius, and surface gravity. In order to probe stellar interiors, making comparisons between observations and models is usually used with the {χ }2-minimization method. The work of Wu & Li reported that the best parameter determined by the {χ }2-matching process is the acoustic radius for pure p-mode oscillations. In the present work, based on the theoretical calculations of Wu & Li, we will independently analyze the seismic observations of KIC 6225718 to determine its fundamental parameters and to investigate its interior properties. First, in order to test the method, we use it in the Sun to determine its fundamental parameters and to investigate interiors. Second, we independently determine the fundamental parameters of KIC 6225718 without any other non-seismic constraint. Therefore, those determined fundamental parameters are independent of those determined by other methods. They can be regarded as independent references in other analyses. Finally, we analyze the stellar internal structure and find that KIC 6225718 has a convective core with the size of 0.078-0.092 {R}⊙ . Its overshooting parameter {f}{ov} in the core is around 0.010. In addition, its center hydrogen {X}{{c}} is about 0.264-0.355.

  2. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  3. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  4. Photospheres of hot stars. IV - Spectral type O4

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.

    1990-01-01

    The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.

  5. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  6. New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2018-01-01

    Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  7. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  8. The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2016-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.

  9. An application of deep learning in the analysis of stellar spectra

    NASA Astrophysics Data System (ADS)

    Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.

    2018-04-01

    Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.

  10. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less

  11. Improved methods for the measurement and analysis of stellar magnetic fields

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  12. The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.

    2012-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features, as probed both by the direct measurement of the features and cross-correlation function breadths, indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid. The current configuration of the synthetic spectra grid is devoted to slow-rotating FGKM stars. Hence non-standard spectra (binaries, chemically peculiar stars etc.) that could not be identified may pollute the analysis.

  13. BONNSAI: correlated stellar observables in Bayesian methods

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.

    2017-02-01

    In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that accounting for correlations is essential in order to derive reliable stellar parameters including robust uncertainties and will be vital when entering an era of precision stellar astrophysics thanks to the Gaia satellite.

  14. SWEET-Cat update and FASMA. A new minimization procedure for stellar parameters using high-quality spectra

    NASA Astrophysics Data System (ADS)

    Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A. C. S.

    2017-04-01

    Context. Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopaedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets. Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2 m (run 2014B/020), with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and 096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain; runs ID 14AF14 and 53-202).The compiled SWEET-Cat is available online, http://https://www.astro.up.pt/resources/sweet-cat/

  15. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampedach, Regner; Asplund, Martin; Collet, Remo

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less

  16. StePar: an automatic code for stellar parameter determination

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; González Hernández, J. I.; Montes, D.

    2013-05-01

    We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.

  17. BinMag: Widget for comparing stellar observed with theoretical spectra

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.

    2018-05-01

    BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.

  18. Spectroscopic Investigation of TW Dra: Improved Stellar and System Parameters

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Lehmann, H.; Mkrtichian, D.

    2010-12-01

    We investigate the Algol-type system TW Dra by means of the new computer program Shellspec07_inverse which is specially designed for the fine-tuning of stellar and system parameters of eclipsing binaries. We derive precise atmospheric and system parameters of TW Dra with an accuracy comparable to that expected from photometric data, and give a short comparison of our results with previous determinations.

  19. ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár

    2017-05-01

    We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).

  20. AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models

    NASA Astrophysics Data System (ADS)

    Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor

    2014-06-01

    Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame

  1. VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2016-06-01

    Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).

  2. Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB

    NASA Astrophysics Data System (ADS)

    De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie

    2016-07-01

    This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.

  3. Rotation-Activity Correlations in K and M Dwarfs. I. Stellar Parameters and Compilations of v sin I and P/sin I for a Large Sample of Late-K and M Dwarfs

    NASA Astrophysics Data System (ADS)

    Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.

    2016-05-01

    The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T eff, parallax, radius, metallicity, and rotational speed v sin I. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I) C color from the calibrations of Mann et al. and Kenyon & Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T eff, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin I in 92 stars. In combination with our previous v sin I measurements in M and K dwarfs, we now derive P/sin I measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sin I, and we show that they are different from one spectral subtype to another at a 99.9% confidence level. Based on observations available at Observatoire de Haute Provence and the European Southern Observatory databases and on Hipparcos parallax measurements.

  4. ROTATION–ACTIVITY CORRELATIONS IN K AND M DWARFS. I. STELLAR PARAMETERS AND COMPILATIONS OF v sin i AND P /sin i FOR A LARGE SAMPLE OF LATE-K AND M DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houdebine, E. R.; Mullan, D. J.; Paletou, F.

    The reliable determination of rotation–activity correlations (RACs) depends on precise measurements of the following stellar parameters: T {sub eff}, parallax, radius, metallicity, and rotational speed v sin i . In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the ( R – I ){sub C} color from the calibrations of Mann et al. and Kenyon andmore » Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters ( T {sub eff}, log( g ), and [M/H]) using the principal component analysis–based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius–[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin i in 92 stars. In combination with our previous v sin i measurements in M and K dwarfs, we now derive P /sin i measures for a sample of 418 K and M dwarfs. We investigate the distributions of P /sin i , and we show that they are different from one spectral subtype to another at a 99.9% confidence level.« less

  5. DISCOVERY OF A RED GIANT WITH SOLAR-LIKE OSCILLATIONS IN AN ECLIPSING BINARY SYSTEM FROM KEPLER SPACE-BASED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hekker, S.; Debosscher, J.; De Ridder, J.

    2010-04-20

    Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less

  6. S stars in the Gaia era: stellar parameters and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    van Eck, Sophie; Karinkuzhi, Drisya; Shetye, Shreeya; Jorissen, Alain; Goriely, Stéphane; Siess, Lionel; Merle, Thibault; Plez, Bertrand

    2018-04-01

    S stars are s-process and C-enriched (0.5

  7. ABUNDANCES IN THE LOCAL REGION. I. G AND K GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luck, R. Earle, E-mail: rel2@case.edu

    2015-09-15

    Parameters and abundances for 1133 stars of spectral types F, G, and K of luminosity class III have been derived. In terms of stellar parameters, the primary point of interest is the disagreement between gravities derived with masses determined from isochrones, and gravities determined from an ionization balance. This is not a new result per se, but the size of this sample emphasizes the severity of the problem. A variety of arguments led to the selection of the ionization-balance gravity as the working value. The derived abundances indicate that the giants in the solar region have Sun-like total abundances andmore » abundance ratios. Stellar evolution indicators have also been investigated with the Li abundances and the [C/Fe] and C/O ratios, indicating that standard processing has been operating in these stars. The more salient result for stellar evolution is that the [C/Fe] data across the red-giant clump indicates the presence of mass-dependent mixing in accord with standard stellar evolution predictions.« less

  8. The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars

    NASA Astrophysics Data System (ADS)

    Serenelli, Aldo; Johnson, Jennifer; Huber, Daniel; Pinsonneault, Marc; Ball, Warrick H.; Tayar, Jamie; Silva Aguirre, Victor; Basu, Sarbani; Troup, Nicholas; Hekker, Saskia; Kallinger, Thomas; Stello, Dennis; Davies, Guy R.; Lund, Mikkel N.; Mathur, Savita; Mosser, Benoit; Stassun, Keivan G.; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Handberg, Rasmus; Holtzman, Jon; Hearty, Fred; García-Hernández, D. A.; Gaulme, Patrick; Zamora, Olga

    2017-12-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic data for dwarfs and subgiants. Asteroseismic data for our sample of 415 objects have been obtained by the Kepler mission in short (58.5 s) cadence, and light curves span from 30 up to more than 1000 days. The spectroscopic parameters are based on spectra taken as part of the Apache Point Observatory Galactic Evolution Experiment and correspond to Data Release 13 of the Sloan Digital Sky Survey. We analyze our data using two independent {T}{eff} scales, the spectroscopic values from DR13 and those derived from SDSS griz photometry. We use the differences in our results arising from these choices as a test of systematic temperature uncertainties and find that they can lead to significant differences in the derived stellar properties. Determinations of surface gravity ({log}g), mean density (< ρ > ), radius (R), mass (M), and age (τ) for the whole sample have been carried out by means of (stellar) grid-based modeling. We have thoroughly assessed random and systematic error sources in the spectroscopic and asteroseismic data, as well as in the grid-based modeling determination of the stellar quantities provided in the catalog. We provide stellar properties determined for each of the two {T}{eff} scales. The median combined (random and systematic) uncertainties are 2% (0.01 dex; {log}g), 3.4% (< ρ > ), 2.6% (R), 5.1% (M), and 19% (τ) for the photometric {T}{eff} scale and 2% ({log}g), 3.5% (< ρ > ), 2.7% (R), 6.3% (M), and 23% (τ) for the spectroscopic scale. We present comparisons with stellar quantities in the asteroseismic catalog by Chaplin et al. that highlight the importance of having metallicity measurements for determining stellar parameters accurately. Finally, we compare our results with those coming from a variety of sources, including stellar radii determined from TGAS parallaxes and asteroseismic analyses based on individual frequencies. We find a very good agreement for all inferred quantities. The latter comparison, in particular, gives strong support to the determination of stellar quantities based on global seismology, a relevant result for future missions such as TESS and PLATO.

  9. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  10. Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search

    NASA Astrophysics Data System (ADS)

    Adamczyk, M.; Deka-Szymankiewicz, B.; Niedzielski, A.

    2016-03-01

    Aims: We present revised basic astrophysical stellar parameters: the masses, luminosities, ages, and radii for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search. For 327 stars the atmospheric parameters were already available in the literature. For the other 15 objects we also present spectroscopic atmospheric parameters: the effective temperatures, surface gravities, and iron abundances. Methods: Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES and MOOG, or TGVIT codes. To refine the stellar masses, ages, and luminosities, we applied a Bayesian method. Results: The revised stellar masses for 342 stars and their uncertainties are generally lower than previous estimates. Atmospheric parameters for 13 objects are determined here for the first time. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A119

  11. The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.; Beers, T.C.; Sivarani, T.

    2007-10-01

    The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parametermore » estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.« less

  12. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  13. Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample

    NASA Astrophysics Data System (ADS)

    Buldgen, Gaël; Reese, Daniel; Dupret, Marc-Antoine

    2017-10-01

    In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique [1] to determine integrated quantities such as the mean density [2], the acoustic radius, and core conditions indicators [3], and has already been successfully applied to the 16Cyg binary system [4]. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.

  14. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  15. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  16. The Data-Driven Approach to Spectroscopic Analyses

    NASA Astrophysics Data System (ADS)

    Ness, M.

    2018-01-01

    I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.

  17. Interactions in Massive Colliding Wind Binaries

    NASA Technical Reports Server (NTRS)

    Corcoran, M.

    2012-01-01

    The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.

  18. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  19. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  20. VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. V. (Chiavassa+, 2018)

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thevenin, F.; Asplund, M.

    2018-01-01

    Table B0: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for Johnson-Cousins, 2MASS, SDSS (columns 13 to 17), and Gaia systems Table 4: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for SkyMapper photometric system, and Stroemgren index b-y, m1=(v-b)-(b-y), and c1=(u-v)-(v-b) Table 5: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in VEGA system Table 6: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in ST system Table 7: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in AB system (5 data files).

  1. A Bayesian approach to the modelling of α Cen A

    NASA Astrophysics Data System (ADS)

    Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J.

    2012-12-01

    Determining the physical characteristics of a star is an inverse problem consisting of estimating the parameters of models for the stellar structure and evolution, and knowing certain observable quantities. We use a Bayesian approach to solve this problem for α Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition, etc. We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, using either two free parameters or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in α Cen A. When using core-sensitive seismic observational constraints, these can rise above ˜40 per cent. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.

  2. Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  3. Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie

    2018-06-01

    One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.

  4. Non-LTE analysis of the Ofpe/WN9 star HDE 269227 (R84)

    NASA Technical Reports Server (NTRS)

    Schmutz, Werner; Leitherer, Claus; Hubeny, Ivan; Vogel, Manfred; Hamann, Wolf-Rainer

    1991-01-01

    The paper presents the results of a spectral analysis of the Ofpe/WN9 star HD 269227 (R84), which assumes a spherically expanding atmosphere to find solutions for equations of radiative transfer. The spectra of hydrogen and helium were predicted with a non-LTE model. Six stellar parameters were determined for R84. The shape of the velocity law is empirically found, since it can be probed from the terminal velocity of the wind. The six stellar parameters are further employed in a hydrodynamic model where stellar wind is assumed to be directed by radiation pressure, duplicating the mass-loss rate and the terminal wind velocity. The velocity laws found by computation and analysis are found to agree, supporting the theory of radiation-driven stellar wind. R84 is surmised to be a post-red supergiant which lost half of its initial mass, possibly during the red-supergiant phase. This mass loss is also suggested by its spectroscopic similarity to S Doradus.

  5. Non-parametric cell-based photometric proxies for galaxy morphology: methodology and application to the morphologically defined star formation-stellar mass relation of spiral galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.

    2014-02-01

    We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.

  6. Deriving stellar parameters with the SME software package

    NASA Astrophysics Data System (ADS)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  7. VizieR Online Data Catalog: Massive stars in 30 Dor (Schneider+, 2018)

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Grafener, G.; Langer, N.; Ramirez-Agudelo, O. H.; Sabin-Sanjulian, C.; Simon-Diaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Henault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Apellaniz, J. M.; Markova, N.; Najarro, F.; Podsiadlowski, P.; Puls, J.; Taylor, W. D.; van Loon, J. T.; Vink, J. S.; Norman, C.

    2018-02-01

    Through the use of the Fibre Large Array Multi Element Spectrograph (FLAMES) on the Very Large Telescope (VLT), the VLT-FLAMES Tarantula Survey (VFTS) has obtained optical spectra of ~800 massive stars in 30 Dor, avoiding the core region of the dense star cluster R136 because of difficulties with crowding. Repeated observations at multiple epochs allow determination of the orbital motion of potentially binary objects. For a sample of 452 apparently single stars, robust stellar parameters-such as effective temperatures, luminosities, surface gravities, and projected rotational velocities-are determined by modeling the observed spectra. Composite spectra of visual multiple systems and spectroscopic binaries are not considered here because their parameters cannot be reliably inferred from the VFTS data. To match the derived atmospheric parameters of the apparently single VFTS stars to stellar evolutionary models, we use the Bayesian code Bonnsai. (2 data files).

  8. Transient Mass-loss Analysis of Solar Observations Using Stellar Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosley, M. K.; Norman, C.; Osten, R. A.

    Low-frequency dynamic spectra of radio bursts from nearby stars offer the best chance to directly detect the stellar signature of transient mass loss on low-mass stars. Crosley et al. (2016) proposes a multi-wavelength methodology to determine coronal mass ejection (CME) parameters, such as speed, mass, and kinetic energy. We test the validity and accuracy of the results derived from the methodology by using Geostationary Operational Environmental Satellite X-ray observations and Bruny Island Radio Spectrometer radio observations. These are analogous observations to those that would be found in the stellar studies. Derived results from these observations are compared to direct whitemore » light measurements of the Large Angle and Spectrometric Coronagraph. We find that, when a pre-event temperature can be determined, the accuracy of CME speeds are within a few hundred km s{sup −1}, and are reliable when specific criteria has been met. CME mass and kinetic energies are only useful in determining the approximate order of magnitude measurements when considering the large errors associated to them. These results will be directly applicable to the interpretation of any detected stellar events and the derivation of stellar CME properties.« less

  9. A Unified tool to estimate Distances, Ages, and Masses (UniDAM) from spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Mints, Alexey; Hekker, Saskia

    2017-08-01

    Context. Galactic archaeology, the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents, requires precise and accurate knowledge of stellar parameters for as many stars as possible. To achieve this, a number of large spectroscopic surveys have been undertaken and are still ongoing. Aims: So far consortia carrying out the different spectroscopic surveys have used different tools to determine stellar parameters of stars from their derived effective temperatures (Teff), surface gravities (log g), and metallicities ([Fe/H]); the parameters can be combined with photometric, astrometric, interferometric, or asteroseismic information. Here we aim to homogenise the stellar characterisation by applying a unified tool to a large set of publicly available spectrophotometric data. Methods: We used spectroscopic data from a variety of large surveys combined with infrared photometry from 2MASS and AllWISE and compared these in a Bayesian manner with PARSEC isochrones to derive probability density functions (PDFs) for stellar masses, ages, and distances. We treated PDFs of pre-helium-core burning, helium-core burning, and post helium-core burning solutions as well as different peaks in multimodal PDFs (I.e. each unimodal sub-PDF) of the different evolutionary phases separately. Results: For over 2.5 million stars we report mass, age, and distance estimates for each evolutionary phase and unimodal sub-PDF. We report Gaussian, skewed, Gaussian, truncated Gaussian, modified truncated exponential distribution or truncated Student's t-distribution functions to represent each sub-PDF, allowing us to reconstruct detailed PDFs. Comparisons with stellar parameter estimates from the literature show good agreement within uncertainties. Conclusions: We present UniDAM, the unified tool applicable to spectrophotometric data of different surveys, to obtain a homogenised set of stellar parameters. The unified tool and the tables with results are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A108

  10. Colour pairs for constraining the age and metallicity of stellar populations

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-04-01

    Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com

  11. The fundamental stellar parameters of FGK stars in the SEEDS survey Norman, OK 73071, USA

    NASA Astrophysics Data System (ADS)

    Rich, Evan A.; Wisniewski, John P.; McElwain, Michael W.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K.; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Cargile, Phillip; Carson, Joseph C.; Currie, Thayne M.; Egner, Sebastian; Feldt, Markus; Fukagawa, Misato; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hebb, Leslie; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Momose, Munetake; Morino, Jun-Ichi; Moro-Martin, Amaya; Nakagawa, Takao; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Schlieder, Joshua; Serabyn, Eugene; Sitko, Michael L.; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2017-12-01

    Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and Temperature Gravity microtrubulent Velocity ITerations to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are <500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.

  12. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  13. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  14. SP_Ace: Stellar Parameters And Chemical abundances Estimator

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2018-05-01

    SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

  15. Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Holtzman, Jon A.

    1990-07-01

    Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.

  16. Fundamental parameters of exoplanets and their host stars

    NASA Astrophysics Data System (ADS)

    Coughlin, Jeffrey Langer

    For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.

  17. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  18. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  19. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  20. Quantitative UV spectroscopy of early O stars on the Magellanic Clouds: The determination of the stellar metallicities

    NASA Technical Reports Server (NTRS)

    Haser, Stefan M.; Pauldrach, Adalbert W. A.; Lennon, Danny J.; Kudritzki, Rolf-Peter; Lennon, Maguerite; Puls, Joachim; Voels, Stephen A.

    1997-01-01

    Ultraviolet spectra of four O stars in the Magellanic Clouds obtained with the faint object spectrograph of the Hubble Space Telescope are analyzed with respect to their metallicity. The metal abundances are derived from the stellar parameters and the mass loss rate with a two step procedure: hydrodynamic radiation-driven wind models with metallicity as a free parameter are constructed to fit the observed wind momentum rate and thus yield a dynamical metallicity, and synthetic spectra are computed for different metal abundances and compared to the observed spectra in order to obtain a spectroscopic metallicity.

  1. The AMBRE project: Parameterisation of FGK-type stars from the ESO:HARPS archived spectra

    NASA Astrophysics Data System (ADS)

    De Pascale, M.; Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2014-10-01

    Context. The AMBRE project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA). It has been established to determine the stellar atmospheric parameters of the archived spectra of four ESO spectrographs. Aims: The analysis of the ESO:HARPS archived spectra for the determination of their atmospheric parameters (effective temperature, surface gravity, global metallicities, and abundance of α-elements over iron) is presented. The sample being analysed (AMBRE:HARPS) covers the period from 2003 to 2010 and is comprised of 126 688 scientific spectra corresponding to ~17 218 different stars. Methods: For the analysis of the AMBRE:HARPS spectral sample, the automated pipeline developed for the analysis of the AMBRE:FEROS archived spectra has been adapted to the characteristics of the HARPS spectra. Within the pipeline, the stellar parameters are determined by the MATISSE algorithm, which has been developed at OCA for the analysis of large samples of stellar spectra in the framework of galactic archaeology. In the present application, MATISSE uses the AMBRE grid of synthetic spectra, which covers FGKM-type stars for a range of gravities and metallicities. Results: We first determined the radial velocity and its associated error for the ~15% of the AMBRE:HARPS spectra, for which this velocity had not been derived by the ESO:HARPS reduction pipeline. The stellar atmospheric parameters and the associated chemical index [α/Fe] with their associated errors have then been estimated for all the spectra of the AMBRE:HARPS archived sample. Based on key quality criteria, we accepted and delivered the parameterisation of 93 116 (74% of the total sample) spectra to ESO. These spectra correspond to ~10 706 stars; each are observed between one and several hundred times. This automatic parameterisation of the AMBRE:HARPS spectra shows that the large majority of these stars are cool main-sequence dwarfs with metallicities greater than -0.5 dex (as expected, given that HARPS has been extensively used for planet searches around GK-stars).

  2. FAMA: An automatic code for stellar parameter and abundance determination

    NASA Astrophysics Data System (ADS)

    Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella

    2013-10-01

    Context. The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Aims: Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. Methods: The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between log n(Fe i) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed "a priori" but are based on the quality of the spectra. Results: In this paper we present tests performed on the solar spectrum EWs that assess the method's dependency on the initial parameters and we analyze a sample of stars observed in Galactic open and globular clusters. The current version of FAMA is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A38

  3. Mass, Radius, and Composition of the Transiting Planet 55 Cnc e: Using Interferometry and Correlations

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien; Ligi, Roxanne; Dorn, Caroline; Lebreton, Yveline

    2018-06-01

    The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass–radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is 0.08+/- 0.05{R}p. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.

  4. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  5. SpS5 - II. Stellar and wind parameters

    NASA Astrophysics Data System (ADS)

    Martins, F.; Bergemann, M.; Bestenlehner, J. M.; Crowther, P. A.; Hamann, W. R.; Najarro, F.; Nieva, M. F.; Przybilla, N.; Freimanis, J.; Hou, W.; Kaper, L.

    2015-03-01

    The development of infrared observational facilities has revealed a number of massive stars in obscured environments throughout the Milky Way and beyond. The determination of their stellar and wind properties from infrared diagnostics is thus required to take full advantage of the wealth of observations available in the near and mid infrared. However, the task is challenging. This session addressed some of the problems encountered and showed the limitations and successes of infrared studies of massive stars.

  6. The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey Norman, OK 73071, USA

    NASA Technical Reports Server (NTRS)

    Rich, Evan A.; Wisniewski, John P.; McElwain, Michael W.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K.; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; hide

    2017-01-01

    Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and Temperature Gravity microtrubulent Velocity ITerations to calculate the fundamental parameters, we have computed T(sub eff), log(g), v(sub t), [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are less than 500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.

  7. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  8. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu

    2017-02-20

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less

  9. Recent advances in non-LTE stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  10. SP_Ace: a new code to derive stellar parameters and elemental abundances

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters. A simple Web front end of SP_Ace can be found at http://dc.g-vo.org/SP_ACE while the source code will be published soon. Full Tables D.1-D.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A2

  11. Data reduction and calibration for LAMOST survey

    NASA Astrophysics Data System (ADS)

    Luo, Ali; Zhang, Jiannan; Chen, Jianjun; Song, Yihan; Wu, Yue; Bai, Zhongrui; Wang, Fengfei; Du, Bing; Zhang, Haotong

    2014-01-01

    There are three data pipelines for LAMOST survey. The raw data is reduced to one dimension spectra by the data reduction pipeline(2D pipeline), the extracted spectra are classified and measured by the spectral analysis pipeline(1D pipeline), while stellar parameters are measured by LASP pipeline. (a) The data reduction pipeline. The main tasks of the data reduction pipeline include bias calibration, flat field, spectra extraction, sky subtraction, wavelength calibration, exposure merging and wavelength band connection. (b) The spectra analysis pipeline. This pipeline is designed to classify and identify objects from the extracted spectra and to measure their redshift (or radial velocity). The PCAZ (Glazebrook et al. 1998) method is applied to do the classification and redshift measurement. (c) Stellar parameters LASP. Stellar parameters pipeline (LASP) is to estimate stellar atmospheric parameters, e.g. effective temperature Teff, surface gravity log g, and metallicity [Fe/H], for F, G and K type stars. To effectively determine those fundamental stellar measurements, three steps with different methods are employed. The first step utilizes the line indices to approximately define the effective temperature range of the analyzed star. Secondly, a set of the initial approximate values of the three parameters are given based on template fitting method. Finally, we exploit ULySS (Koleva et al. 2009) to give the final values of parameters through minimizing the χ 2 value between the observed spectrum and a multidimensional grid of model spectra which is generated by an interpolating of ELODIE library. There are two other classification for A type star and M type star. For A type star, standard MK system is employed (Gray et al. 2009) to give each object temperature class and luminosity type. For M type star, they are classified into subclasses by an improved Hammer method, and metallicity of each objects is also given. During the pilot survey, algorithms were improved and the pipelines were tested. The products of LAMOST survey will include extracted and calibrated spectra in FITS format, a catalog of FGK stars with stellar parameters, a catalog of M dwarf with subclass and metallicity, and a catalog of A type star with MK classification. A part of the pilot survey data, including about 319 000 high quality spectra with SNR > 10, a catalog of stellar parameters of FGK stars and another catalog of a subclass of M type stars have been released to the public in August 2012 (Luo et al. 2012). The general survey started from October 2012, and completed the first year survey. The formal data release one (DR1) is being prepared, which will include both pilot survey and first year general survey, and planed to be released under the LAMOST data policy.

  12. Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Wu, Zhenyu; Wang, Song; Fan, Zhou; Zhou, Xu; Wu, Jianghua; Jiang, Zhaoji; Chen, Jiansheng

    2010-10-01

    M31 globular cluster B379 is the first extragalactic cluster whose age was determined by main-sequence photometry. In the main-sequence photometric method, the age of a cluster is obtained by fitting its color-magnitude diagram (CMD) with stellar evolutionary models. However, different stellar evolutionary models use different parameters of stellar evolution, such as range of stellar masses, different opacities and equations of state, and different recipes, and so on. So, it is interesting to check whether different stellar evolutionary models can give consistent results for the same cluster. Brown et al. constrained the age of B379 by comparing its CMD with isochrones of the 2006 VandenBerg models. Using SSP models of Bruzual & Charlot and its multiphotometry, ZMa et al. independently determined the age of B379, which is in good agreement with the determination of Brown et al. The models of Bruzual & Charlot are calculated based on the Padova evolutionary tracks. It is necessary to check whether the age of B379 as determined based on the Padova evolutionary tracks is in agreement with the determination of Brown et al.. In this article, we redetermine the age of B379 using isochrones of the Padova stellar evolutionary models. In addition, the metal abundance, the distance modulus, and the reddening value for B379 are reported. The results obtained are consistent with the previous determinations, which include the age obtained by Brown et al. This article thus confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones; i.e., the comparison between the results of Brown et al. and Ma et al. is meaningful. The results reported in this article of values found for B379 are: metallicity [M/H] = log(Z/Z ⊙) = -0.325, age τ = 11.0 ± 1.5 Gyr, reddening E(B - V) = 0.08, and distance modulus (m - M)0 = 24.44 ± 0.10.

  13. Mass loss in O-type stars - Parameters which affect it

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.

    1984-01-01

    Newly determined mass loss rates are presented for sixteen O-type stars in three open clusters. Combining the data with that already in the literature, no evidence is found that the rates are different in clusters with differing galactocentric distances and compositions, at least near the sun. There is still appreciable dispersion in the relationship between the mass loss rate and the stellar luminosity. It may be that the mass loss depends additionally on the stellar mass and/or radius, but these data cannot unequivocally indicate which physical dependence is correct. Evidence is found that a stellar wind increases as a massive star evolves from the zero-age main sequence.

  14. Photospheric properties and fundamental parameters of M dwarfs

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Allard, F.; Teixeira, G. D. C.; Homeier, D.; Rajpurohit, S.; Mousis, O.

    2018-02-01

    Context. M dwarfs are an important source of information when studying and probing the lower end of the Hertzsprung-Russell (HR) diagram, down to the hydrogen-burning limit. Being the most numerous and oldest stars in the galaxy, they carry fundamental information on its chemical history. The presence of molecules in their atmospheres, along with various condensed species, complicates our understanding of their physical properties and thus makes the determination of their fundamental stellar parameters more challenging and difficult. Aim. The aim of this study is to perform a detailed spectroscopic analysis of the high-resolution H-band spectra of M dwarfs in order to determine their fundamental stellar parameters and to validate atmospheric models. The present study will also help us to understand various processes, including dust formation and depletion of metals onto dust grains in M dwarf atmospheres. The high spectral resolution also provides a unique opportunity to constrain other chemical and physical processes that occur in a cool atmosphere. Methods: The high-resolution APOGEE spectra of M dwarfs, covering the entire H-band, provide a unique opportunity to measure their fundamental parameters. We have performed a detailed spectral synthesis by comparing these high-resolution H-band spectra to that of the most recent BT-Settl model and have obtained fundamental parameters such as effective temperature, surface gravity, and metallicity (Teff, log g, and [Fe/H]), respectively. Results: We have determined Teff, log g, and [Fe/H] for 45 M dwarfs using high-resolution H-band spectra. The derived Teff for the sample ranges from 3100 to 3900 K, values of log g lie in the range 4.5 ≤ log g ≤ 5.5, and the resulting metallicities lie in the range ‑0.5 ≤ [Fe/H] ≤ +0.5. We have explored systematic differences between effective temperature and metallicity calibrations with other studies using the same sample of M dwarfs. We have also shown that the stellar parameters determined using the BT-Settl model are more accurate and reliable compared to other comparative studies using alternative models.

  15. Open clusters. II. Fundamental parameters of B stars in Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025

    NASA Astrophysics Data System (ADS)

    Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.

    2015-05-01

    Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.

  16. The Cannon: A data-driven approach to Stellar Label Determination

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.

    2015-07-01

    New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.

  17. Call to Adopt a Nominal Set of Astrophysical Parameters and Constants to Improve the Accuracy of Fundamental Physical Properties of Stars

    NASA Astrophysics Data System (ADS)

    Harmanec, Petr; Prša, Andrej

    2011-08-01

    The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius, and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by (1) replacing the solar radius R⊙ and luminosity L⊙ by the nominal values that are by definition exact and expressed in SI units: and ; (2) computing stellar masses in terms of M⊙ by noting that the measurement error of the product GM⊙ is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values and ; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.

  18. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  19. Robust Modeling of Stellar Triples in PHOEBE

    NASA Astrophysics Data System (ADS)

    Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.

    2017-01-01

    The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.

  20. Cosmic Rays near Proxima Centauri b

    NASA Astrophysics Data System (ADS)

    Sadovski, A. M.; Struminsky, A. B.; Belov, A.

    2018-05-01

    The discovery of a terrestrial planet orbiting Proxima Centauri has led to a lot of papers discussing the possible conditions on this planet. Since the main factors determining space weather in the Solar System are the solar wind and cosmic rays (CRs), it seems important to understand what the parameters of the stellar wind, Galactic and stellar CRs near exoplanets are. Based on the available data, we present our estimates of the stellar wind velocity and density, the possible CR fluxes and fluences near Proxima b. We have found that there are virtually no Galactic CRs near the orbit of Proxima b up to particle energies 1 TeV due to their modulation by the stellar wind. Nevertheless, more powerful and frequent flares on Proxima Centauri than those on the Sun can accelerate particles to maximum energies 3150 αβ GeV ( α, β < 1). Therefore, the intensity of stellar CRs in the astrosphere may turn out to be comparable to the intensity of low-energy CRs in the heliosphere.

  1. The Solar Twin Planet Search. III. The [Y/Mg] clock: estimating stellar ages of solar-type stars

    NASA Astrophysics Data System (ADS)

    Tucci Maia, M.; Ramírez, I.; Meléndez, J.; Bedell, M.; Bean, J. L.; Asplund, M.

    2016-05-01

    Context. Solar twins are stars with similar stellar (surface) parameters to the Sun that can have a wide range of ages. This provides an opportunity to analyze the variation of their chemical abundances with age. Nissen (2015, A&A, 579, A52) recently suggested that the abundances of the s-process element Y and the α-element Mg could be used to estimate stellar ages. Aims: This paper aims to determine with high precision the Y, Mg, and Fe abundances for a sample of 88 solar twins that span a broad age range (0.3-10.0 Gyr) and investigate their use for estimating ages. Methods: We obtained high-quality Magellan Inamori Kyocera Echelle (MIKE) spectra and determined Y and Mg abundances using equivalent widths and a line-by-line differential method within a 1D LTE framework. Stellar parameters and iron abundances were measured in Paper I of this series for all stars, but a few (three) required a small revision. Results: The [Y/Mg] ratio shows a strong correlation with age. It has a slope of -0.041 ± 0.001 dex/Gyr and a significance of 41σ. This is in excellent agreement with the relation first proposed by Nissen (2015). We found some outliers that turned out to be binaries where mass transfer may have enhanced the yttrium abundance. Given a precise measurement of [Y/Mg] with typical error of 0.02 dex in solar twins, our formula can be used to determine a stellar age with ~0.8 Gyr precision in the 0 to 10 Gyr range. Based on observations obtained at the Clay Magellan Telescopes at Las Campanas Observatory, Chile and at the 3.6 m Telescope at the La Silla ESO Observatory, Chile (program ID 188.C-0265).

  2. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    NASA Astrophysics Data System (ADS)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  3. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and datamore » handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.« less

  4. Confronting the Gaia and NLTE spectroscopic parallaxes for the FGK stars

    NASA Astrophysics Data System (ADS)

    Sitnova, Tatyana; Mashonkina, Lyudmila; Pakhomov, Yury

    2018-04-01

    The understanding of the chemical evolution of the Galaxy relies on the stellar chemical composition. Accurate atmospheric parameters is a prerequisite of determination of accurate chemical abundances. For late type stars with known distance, surface gravity (log g) can be calculated from well-known relation between stellar mass, T eff, and absolute bolometric magnitude. This method weakly depends on model atmospheres, and provides reliable log g. However, accurate distances are available for limited number of stars. Another way to determine log g for cool stars is based on ionisation equilibrium, i.e. consistent abundances from lines of neutral and ionised species. In this study we determine atmospheric parameters moving step-by-step from well-studied nearby dwarfs to ultra-metal poor (UMP) giants. In each sample, we select stars with the most reliable T eff based on photometry and the distance-based log g, and compare with spectroscopic gravity calculated taking into account deviations from local thermodinamic equilibrium (LTE). After that, we apply spectroscopic method of log g determination to other stars of the sample with unknown distances.

  5. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. II. Determination of stellar parameters and abundances

    NASA Astrophysics Data System (ADS)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2018-03-01

    Context. Standard spectroscopic analyses of variable stars are based on hydrostatic 1D model atmospheres. This quasi-static approach has not been theoretically validated. Aim. We aim at investigating the validity of the quasi-static approximation for Cepheid variables. We focus on the spectroscopic determination of the effective temperature Teff, surface gravity log g, microturbulent velocity ξt, and a generic metal abundance log A, here taken as iron. Methods: We calculated a grid of 1D hydrostatic plane-parallel models covering the ranges in effective temperature and gravity that are encountered during the evolution of a 2D time-dependent envelope model of a Cepheid computed with the radiation-hydrodynamics code CO5BOLD. We performed 1D spectral syntheses for artificial iron lines in local thermodynamic equilibrium by varying the microturbulent velocity and abundance. We fit the resulting equivalent widths to corresponding values obtained from our dynamical model for 150 instances in time, covering six pulsational cycles. In addition, we considered 99 instances during the initial non-pulsating stage of the temporal evolution of the 2D model. In the most general case, we treated Teff, log g, ξt, and log A as free parameters, and in two more limited cases, we fixed Teff and log g by independent constraints. We argue analytically that our approach of fitting equivalent widths is closely related to current standard procedures focusing on line-by-line abundances. Results: For the four-parametric case, the stellar parameters are typically underestimated and exhibit a bias in the iron abundance of ≈-0.2 dex. To avoid biases of this type, it is favorable to restrict the spectroscopic analysis to photometric phases ϕph ≈ 0.3…0.65 using additional information to fix the effective temperature and surface gravity. Conclusions: Hydrostatic 1D model atmospheres can provide unbiased estimates of stellar parameters and abundances of Cepheid variables for particular phases of their pulsations. We identified convective inhomogeneities as the main driver behind potential biases. To obtain a complete view on the effects when determining stellar parameters with 1D models, multidimensional Cepheid atmosphere models are necessary for variables of longer period than investigated here.

  6. Constraining convective regions with asteroseismic linear structural inversions

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.

    2018-01-01

    Context. Convective regions in stellar models are always associated with uncertainties, for example, due to extra-mixing or the possible inaccurate position of the transition from convective to radiative transport of energy. Such inaccuracies have a strong impact on stellar models and the fundamental parameters we derive from them. The most promising method to reduce these uncertainties is to use asteroseismology to derive appropriate diagnostics probing the structural characteristics of these regions. Aims: We wish to use custom-made integrated quantities to improve the capabilities of seismology to probe convective regions in stellar interiors. By doing so, we hope to increase the number of indicators obtained with structural seismic inversions to provide additional constraints on stellar models and the fundamental parameters we determine from theoretical modeling. Methods: First, we present new kernels associated with a proxy of the entropy in stellar interiors. We then show how these kernels can be used to build custom-made integrated quantities probing convective regions inside stellar models. We present two indicators suited to probe convective cores and envelopes, respectively, and test them on artificial data. Results: We show that it is possible to probe both convective cores and envelopes using appropriate indicators obtained with structural inversion techniques. These indicators provide direct constraints on a proxy of the entropy of the stellar plasma, sensitive to the characteristics of convective regions. These constraints can then be used to improve the modeling of solar-like stars by providing an additional degree of selection of models obtained from classical forward modeling approaches. We also show that in order to obtain very accurate indicators, we need ℓ = 3 modes for the envelope but that the core-conditions indicator is more flexible in terms of the seismic data required for its use.

  7. Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Chaplin, William J.; Bruntt, Hans; Creevey, Orlagh L.; García-Hernández, Antonio; Monteiro, Mario J. P. F. G.; Moya, Andrés; Quirion, Pierre-Olivier; Sousa, Sergio G.; Suárez, Juan-Carlos; Appourchaux, Thierry; Arentoft, Torben; Ballot, Jerome; Bedding, Timothy R.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne; Fletcher, Stephen T.; García, Rafael A.; Houdek, Günter; Jiménez-Reyes, Sebastian J.; Kjeldsen, Hans; New, Roger; Régulo, Clara; Salabert, David; Toutain, Thierry

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of "hares" simulated data of F-K main-sequence stars that a group of "hounds" sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T eff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T eff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  8. VizieR Online Data Catalog: LAMOST candidate members of star clusters (Xiang+, 2015)

    NASA Astrophysics Data System (ADS)

    Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huang, Y.; Huo, Z. Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Wu, Y.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.; Wei, Z.

    2015-08-01

    In this work, we describe the algorithms and implementation of LSP3, the LAMOST Stellar Parameter Pipeline at Peking University, a pipeline developed to determine the stellar parameters (radial velocity Vr, effective temperature Teff, surface gravity logg and metallicity [Fe/H]) from LAMOST spectra based on a template-matching technique. Following the data policy of LAMOST surveys, the data as well as the LSP3 pipeline will be public released as value-added products of the first data release of LAMOST (LAMOST DR1; Bai et al., 2015, A&A submitted), currently scheduled in 2014 December and can be accessed via http://lamost973.pku.edu.cn/site/node/4, along with a description file. (1 data file).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int

    We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less

  10. Which evolutionary status does the Blue Large-Amplitude Pulsators stay at?

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2018-05-01

    Asteroseismology is a very useful tool for exploring the stellar interiors and evolutionary status and for determining stellar fundamental parameters, such as stellar mass, radius, surface gravity, and the stellar mean density. In the present work, we use it to preliminarily analyze the 14 new-type pulsating stars: Blue Large-Amplitude Pulsators (BLAPs) which is observed by OGLE project, to roughly analyze their evolutionary status. We adopt the theory of single star evolution and artificially set the mass loss rate of \\dot{M}=-2× 10^{-4} M_{⊙}/year and mass loss beginning at the radius of R = 40 R_{⊙} on red giant branch to generate a series of theoretical models. Based on these theoretical models and the corresponding observations, we find that those BLAP stars are more likely to be the core helium burning stars. Most of them are in the middle and late phase of the helium burning.

  11. An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.

    2011-03-01

    We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.

  12. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  13. PREFACE: Stellar Atmospheres in the Gaia Era - Preface

    NASA Astrophysics Data System (ADS)

    Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter

    2011-12-01

    Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the abundance of various chemical elements from stellar spectra. The presented methods utilize spectra observed with large spectral dispersion, for example for accurately measuring iron, carbon, and nitrogen abundances. These methods are important for ongoing development and testing of automated and supervised algorithms for determining detailed chemical composition in tagging studies of large (chemo-dynamical) spectroscopic surveys planned to complement the Gaia (astrometric and kinematic) census of the Galaxy. The complete scientific programme is available here. The workshop website also offers the presentation viewgraphs (in PDF format) and some nice photographs of the talks and poster breaks http://great-esf.oma.be/program.php.

  14. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  15. Strömgren survey for asteroseismology and galactic archaeology: Let the saga begin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casagrande, L.; Dotter, A.; Milone, A. P.

    2014-06-01

    Asteroseismology has the capability of precisely determining stellar properties that would otherwise be inaccessible, such as radii, masses, and thus ages of stars. When coupling this information with classical determinations of stellar parameters, such as metallicities, effective temperatures, and angular diameters, powerful new diagnostics for Galactic studies can be obtained. The ongoing Strömgren survey for Asteroseismology and Galactic Archaeology has the goal of transforming the Kepler field into a new benchmark for Galactic studies, similar to the solar neighborhood. Here we present the first results from a stripe centered at a Galactic longitude of 74° and covering latitude from aboutmore » 8° to 20°, which includes almost 1000 K giants with seismic information and the benchmark open cluster NGC 6819. We describe the coupling of classical and seismic parameters, the accuracy as well as the caveats of the derived effective temperatures, metallicities, distances, surface gravities, masses, and radii. Confidence in the achieved precision is corroborated by the detection of the first and secondary clumps in a population of field stars with a ratio of 2 to 1 and by the negligible scatter in the seismic distances among NGC 6819 member stars. An assessment of the reliability of stellar parameters in the Kepler Input Catalog is also performed, and the impact of our results for population studies in the Milky Way is discussed, along with the importance of an all-sky Strömgren survey.« less

  16. Dark Matter Halos with VIRUS-P

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.

    2010-05-01

    We present new, two-dimensional stellar kinematic data on several of the most massive galaxies in the local universe. These data were taken with the integral field spectrograph, VIRUS-P, and extend to unprecedented radial distances. Once robust stellar kinematics are in hand, we run orbit-based axisymmetric dynamical models in order to constrain the stellar mass-to-light ratio and dark matter halo parameters. We have run a large set of dynamical models on the second rank galaxy in the Virgo cluster, M87, and find clear evidence for a massive dark matter halo. The two-dimensional stellar kinematics for several of our other targets, all first and second rank galaxies, are also presented. Dark matter halos are known to dominate the mass profile of elliptical galaxies somewhere between one to two effective radii, yet due to the low surface brightness at these radial distances, determining stellar dynamics is technologically challenging. To overcome this, constraints on the dark matter halo are often made with planetary nebulae or globular clusters at large radii. However, as results from different groups have returned contradictory results, it remains unclear whether different dynamical tracers always follow the stellar kinematics. Due to VIRUS-P's large field of view and on-sky fiber diameter, we are able to determine stellar kinematics at radial distances that overlap with other dynamical tracers. Understanding what the dynamics of stars, planetary nebula and globular clusters tell us about both the extent of the dark matter halo profile and the formation histories of the largest elliptical galaxies is a primary science driver for this work.

  17. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, C.; Raible, C. C.; Stocker, T. F., E-mail: stocker@climate.unibe.ch

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant.more » Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.« less

  18. Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance

    NASA Astrophysics Data System (ADS)

    Kilic, C.; Raible, C. C.; Stocker, T. F.

    2017-08-01

    Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.

  19. Oscillating red giants in eclipsing binary systems: empirical reference value for asteroseismic scaling relation

    NASA Astrophysics Data System (ADS)

    Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.

    2018-05-01

    The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.

  20. Determination of physical parameters of magnetic active regions in stars with different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Biazzo, K.

    2006-11-01

    Understanding stellar magnetic activity phenomena is of paramount importance for stellar evolution and for planetary systems formation and their atmosphere and climate. The dynamo process that generates magnetic fields in stars is well understood and there is still no comprehensive model of solar and stellar magnetic activity. Stellar activity is characterized by tracers such as spots, plages, flares and winds. These features are the fingerprints of magnetic field lines and their detailed analysis provides constraints for theoretical models. Our knowledge can only advance if the active stars besides the Sun are included in our study. Therefore, it is essential to accomplish comprehensive studies of active stars with a wide range of stellar parameters and a variety of activity phenomena. In this thesis, I concentrate on emergence of active regions at photospheric and chromospheric levels, namely spots and plages, in stars with different evolutionary stages. Spots are cool areas on the surface of the stars and are supposed to be the result of the blocking effect on convection caused by magnetic flux-tube emersion. Plages are bright areas linked to emersion of magnetic flux tubes from the sub-photospheric convective level. Starspot temperature represents an important parameter for the investigation of stellar magnetic activity, but its precise determination, relying only on light curve inversion techniques, is strongly hampered by the lack of solution uniqueness. Therefore, a method based on line-depth ratios as temperature discriminant has been developed. This technique is capable of resolving temperature differences less than 10 K. Moreover, combining temperature and light curve solutions, I am able to determine in a univocal way starspot temperature and area. Using the net Halpha emission as indicator of plage presence, I have also studied the spot and plage association. As a matter of fact, the residual Halpha profiles, obtained as the difference between the observed spectra and non-active templates, allows to study the chromospheric structures simultaneously to the photospheric ones. In addition, I have also detected the intensity of the HeI-D3 line to analyse the presence of surface features in the high chromosphere. The observations of both standard and target stars have been performed with different instruments. In particular, the spectra have been acquired at Catania Astrophysical Observatory (Italy), Observatoire de Haute-Provence (France) and Nordic Optical Observatory (Canarian Islands). The photometric observations have been obtained at Catania Astrophysical Observatory, Fairnborn Observatory (USA) and Ege University Observatory (Turkey). Finally, starspot and plage physical parameters have been obtained for sixteen stars of different effective temperature and gravity and different evolutionary stages. The main results can be summarized as follows: - starspot temperatures are more similar to solar penumbrae; - dwarf stars tend to have smaller spots compared to giant stars; - stars with higher gravity seem to have cooler (relative to their photosphere) spots compared to stars with lower gravity; - spatial association exists between surface inhomogeneities at different atmospheric levels.

  1. Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run

    NASA Astrophysics Data System (ADS)

    Mathur, Savita; Huber, Daniel; Batalha, Natalie M.; Ciardi, David R.; Bastien, Fabienne A.; Bieryla, Allyson; Buchhave, Lars A.; Cochran, William D.; Endl, Michael; Esquerdo, Gilbert A.; Furlan, Elise; Howard, Andrew; Howell, Steve B.; Isaacson, Howard; Latham, David W.; MacQueen, Phillip J.; Silva, David R.

    2017-04-01

    The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1–17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1–16 catalog by Huber et al., the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29,000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ∼27% in radius, ∼17% in mass, and ∼51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved {log}g constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars.

  2. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  3. VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)

    NASA Astrophysics Data System (ADS)

    Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.

    2017-11-01

    We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).

  4. Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.

    2017-08-01

    Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.

  5. Reanalysis of 24 Nearby Open Clusters using Gaia data

    NASA Astrophysics Data System (ADS)

    Yen, Steffi X.; Reffert, Sabine; Röser, Siegfried; Schilbach, Elena; Kharchenko, Nina V.; Piskunov, Anatoly E.

    2018-04-01

    We have developed a fully automated cluster characterization pipeline, which simultaneously determines cluster membership and fits the fundamental cluster parameters: distance, reddening, and age. We present results for 24 established clusters and compare them to literature values. Given the large amount of stellar data for clusters available from Gaia DR2 in 2018, this pipeline will be beneficial to analyzing the parameters of open clusters in our Galaxy.

  6. Implementation of the Global Parameters Determination in Gaia's Astrometric Solution (AGIS)

    NASA Astrophysics Data System (ADS)

    Raison, F.; Olias, A.; Hobbs, D.; Lindegren, L.

    2010-12-01

    Gaia is ESA’s space astrometry mission with a foreseen launch date in early 2012. Its main objective is to perform a stellar census of the 1000 Million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS). A core part of AGIS is to determine the accurate spacecraft attitude, geometric instrument calibration and astrometric model parameters for a well-behaved subset of all the objects (the ‘primary stars’). In addition, a small number of global parameters will be estimated, one of these being PPN γ. We present here the implementation of the algorithms dedicated to the determination of the global parameters.

  7. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  8. Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra

    NASA Technical Reports Server (NTRS)

    Valenti, J. A.; Piskunov, N.

    1996-01-01

    We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.

  9. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  10. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  11. A distance of 133-137 parsecs to the Pleiades star cluster.

    PubMed

    Pan, Xiaopei; Shao, M; Kulkarni, S R

    2004-01-22

    Nearby 'open' clusters of stars (those that are not gravitationally bound) have played a crucial role in the development of stellar astronomy because, as a consequence of the stars having a common age, they provide excellent natural laboratories to test theoretical stellar models. Clusters also play a fundamental part in determining distance scales. The satellite Hipparcos surprisingly found that an extensively studied open cluster--the Pleiades (also known as the Seven Sisters)--had a distance of D = 118 +/- 4 pc (refs 2, 3), about ten per cent smaller than the accepted value. The discrepancy generated a spirited debate because the implication was that either current stellar models were incorrect by a surprising amount or Hipparcos was giving incorrect distances. Here we report the orbital parameters of the bright double star Atlas in the Pleiades, using long-baseline optical/infrared interferometry. From the data we derive a firm lower bound of D > 127 pc, with the most likely range being 133 < D < 137 pc. Our result reaffirms the fidelity of current stellar models.

  12. The GALAH Survey and Galactic Archaeology in the Next Decade

    NASA Astrophysics Data System (ADS)

    Martell, S. L.

    2016-10-01

    The field of Galactic Archaeology aims to understand the origins and evolution of the stellar populations in the Milky Way, as a way to understand galaxy formation and evolution in general. The GALAH (Galactic Archaeology with HERMES) Survey is an ambitious Australian-led project to explore the Galactic history of star formation, chemical evolution, minor mergers and stellar migration. GALAH is using the HERMES spectrograph, a novel, highly multiplexed, four-channel high-resolution optical spectrograph, to collect high-quality R˜28,000 spectra for one million stars in the Milky Way. From these data we will determine stellar parameters, radial velocities and abundances for up to 29 elements per star, and carry out a thorough chemical tagging study of the nearby Galaxy. There are clear complementarities between GALAH and other ongoing and planned Galactic Archaeology surveys, and also with ancillary stellar data collected by major cosmological surveys. Combined, these data sets will provide a revolutionary view of the structure and history of the Milky Way.

  13. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-09-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  14. Preparation of the COROT mission: fundamental stellar parameters from photometric and spectroscopic analyses of target candidates

    NASA Astrophysics Data System (ADS)

    Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.

    2001-12-01

    We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.

  15. Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.

    2017-01-01

    We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.

  16. Abundances of disk and bulge giants from high-resolution optical spectra. I. O, Mg, Ca, and Ti in the solar neighborhood and Kepler field samples

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Nordlander, T.; Pehlivan Rhodin, A.; Hartman, H.; Jönsson, P.; Eriksson, K.

    2017-02-01

    Context. The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. Aims: We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. Methods: We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. Results: In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. Conclusions: When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10 K and a standard deviation of 53 K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10 dex and a standard deviation of 0.12 dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs. Based on observations made with the Nordic Optical Telescope (programs 51-018 and 53-002), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias, and on spectral data retrieved from PolarBase at Observatoire Midi Pyrénées.Full Tables A.1 and A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A100

  17. The Dependence of Convective Core Overshooting on Stellar Mass: Additional Binary Systems and Improved Calibration

    NASA Astrophysics Data System (ADS)

    Claret, Antonio; Torres, Guillermo

    2018-06-01

    Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1–1.2 M ⊙, but the adopted shapes for that relation have remained somewhat arbitrary for lack of strong observational constraints. In previous work, we compared stellar evolution models to well-measured eclipsing binaries to show that, when overshooting is implemented as a diffusive process, the fitted free parameter f ov rises sharply up to about 2 M ⊙, and remains largely constant thereafter. Here, we analyze a new sample of eight binaries selected to be in the critical mass range below 2 M ⊙ where f ov is changing the most, nearly doubling the number of individual stars in this regime. This interval is important because the precise way in which f ov changes determines the shape of isochrones in the turnoff region of ∼1–5 Gyr clusters, and can thus affect their inferred ages. It also has a significant influence on estimates of stellar properties for exoplanet hosts, on stellar population synthesis, and on the detailed modeling of interior stellar structures, including the calculation of oscillation frequencies that are observable with asteroseismic techniques. We find that the derived f ov values for our new sample are consistent with the trend defined by our earlier determinations, and strengthen the relation. This provides an opportunity for future series of models to test the new prescription, grounded on observations, against independent observations that may constrain overshooting in a different way.

  18. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.

  19. Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.

    2015-10-01

    Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.

  20. Applicability of Broad-Band Photometry for Determining the Properties of Stars and Interstellar Extinction

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.

    2018-01-01

    The feasibility of the determination of the physical conditions in star's atmosphere and the parameters of interstellar extinction from broad-band photometric observations in the 300-3000 nm wavelength interval is studied using SDSS and 2MASS data. The photometric accuracy of these surveys is shown to be insufficient for achieving in practice the theoretical possibility of estimating the atmospheric parameters of stars based on ugriz and JHK s photometry exclusively because such determinations result in correlations between the temperature and extinction estimates. The uncertainty of interstellar extinction estimates can be reduced if prior data about the temperature are available. The surveys considered can nevertheless be potentially valuable sources of information about both stellar atmospheric parameters and the interstellar medium.

  1. The Visual Orbit and Evolutionary State of 12 Bootes

    NASA Technical Reports Server (NTRS)

    Boden, A.; Creech-Eakman, M.; Queloz, D.

    1999-01-01

    Herein we report the determination of the 12 Boo visual orbit from near-infrared, long-baseline interferometric measurements taken with the Palomar Testbed Interferometer (PTI). We further add photometric and spectroscopic measurements in an attempt to understand the fundamental stellar parameters and evolution of the 12 Boo components.

  2. OB stars at the lowest Local Group metallicity. GTC-OSIRIS observations of Sextans A

    NASA Astrophysics Data System (ADS)

    Camacho, I.; Garcia, M.; Herrero, A.; Simón-Díaz, S.

    2016-01-01

    Context. Massive stars play an important role in the chemical and dynamical evolution of the Universe. The first metal-poor stars may have started the reionization of the Universe. To understand these early epochs it is necessary to know the behavior and the physical properties of massive stars in very metal-poor environments. We focus on the massive stellar content of the metal-poor irregular galaxy Sextans A. Aims: Our aim is to find and classify OB stars in Sextans A, so as to later determine accurate stellar parameters of these blue massive stars in this low-metallicity region (Z ~ 0.1 Z⊙). Methods: Using UBV photometry, the reddening-free index Q and GALEX imaging, we built a list of blue massive star candidates in Sextans A. We obtained low-resolution (R ~ 1000) GTC-OSIRIS spectra for a fraction of them and carried out spectral classification. For the confirmed O-stars, we derived preliminary stellar parameters. Results: The target selection criteria and observations were successful and have produced the first spectroscopic atlas of OB-type stars in Sextans A. From the whole sample of 18 observed stars, 12 were classified as early OB-types, including 5 O-stars. The radial velocities of all target stars are in agreement with their Sextans A membership, although three of them show significant deviations. We determined the stellar parameters of the O-type stars using the stellar atmosphere code FASTWIND and revisited the sub-SMC temperature scale. Two of the O-stars are consistent with relatively strong winds and enhanced helium abundances, although results are not conclusive. We discuss the position of the OB stars in the HRD. Initial stellar masses run from slightly below 20 up to 40 solar masses. Conclusions: The target selection method worked well for Sextans A. The stellar temperatures are consistent with findings in other galaxies. Some of the targets deserve follow-up spectroscopy because of indications of a runaway nature, an enhanced helium abundance, or a relatively strong wind. We observe a correlation between HI and OB associations similar to the irregular galaxy IC 1613, confirming the previous result that the most recent star formation of Sextans A is currently ongoing near the rim of the H I cavity. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC59-12A.The data are available through the GTC archive: http://https://gtc.sdc.cab.inta-csic.es/gtc/jsp/searchres.jsp

  3. A family of models for spherical stellar systems

    NASA Technical Reports Server (NTRS)

    Tremaine, Scott; Richstone, Douglas O.; Byun, Yong-Ik; Dressler, Alan; Faber, S. M.; Grillmair, Carl; Kormendy, John; Lauer, Tod R.

    1994-01-01

    We describe a one-parameter family of models of stable sperical stellar systems in which the phase-space distribution function depends only on energy. The models have similar density profiles in their outer parts (rho propotional to r(exp -4)) and central power-law density cusps, rho proportional to r(exp 3-eta), 0 less than eta less than or = 3. The family contains the Jaffe (1983) and Hernquist (1990) models as special cases. We evaluate the surface brightness profile, the line-of-sight velocity dispersion profile, and the distribution function, and discuss analogs of King's core-fitting formula for determining mass-to-light ratio. We also generalize the models to a two-parameter family, in which the galaxy contains a central black hole; the second parameter is the mass of the black hole. Our models can be used to estimate the detectability of central black holes and the velocity-dispersion profiles of galaxies that contain central cusps, with or without a central black hole.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groot, Paul J., E-mail: pgroot@astro.ru.nl

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometricmore » light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.« less

  5. Activity indicators and stellar parameters of the Kepler targets. An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; Catanzaro, G.; Fu, J. N.; Ren, A. B.; Luo, A. L.; Shi, J. R.; Wu, Y.; Zhang, H. T.

    2016-10-01

    Aims: A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. Methods: We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, log g, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff≤ 6000 K), we also calculated the Hα and Ca II-IRT fluxes, which are important proxies of chromospheric activity. Results: We have derived the RV and atmospheric parameters for 61 753 spectra of 51 385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12 km s-1, 1.3%, 0.05 dex, and 0.06 dex for RV, Teff, log g, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14 km s-1. The accuracy of the Teff, log g, and [Fe/H] measurements is about 3.5%, 0.3 dex, and 0.2 dex, respectively. However, while the Teff values are in very good agreement with the literature, we noted some issues with the determination of [Fe/H] of metal poor stars and the tendency, for log g, to cluster around the values typical for main-sequence and red giant stars. We propose correction relations based on these comparisons and we show that this does not have a significant effect on the determination of the chromospheric fluxes. The RV distribution is asymmetric and shows an excess of stars with negative RVs that are larger at low metallicities. Despite the rather low LAMOST resolution, we were able to identify interesting and peculiar objects, such as stars with variable RV, ultrafast rotators, and emission-line objects. Based on the Hα and Ca II-IRT fluxes, we found 442 chromospherically active stars, one of which is a likely accreting object. The availability of precise rotation periods from the Kepler photometry allowed us to study the dependency of these chromospheric fluxes on the rotation rate for a very large sample of field stars. Based on observations collected with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) located at the Xinglong observatory, China.Full Tables A.3 and A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A39

  6. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    2014-01-01

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are sensitive to changes in opacity which are in response to adjustments to the metallicity and helium abundance. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of alpha-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance. Improving the treatment of convection in stellar models remains one of the primary applications of RHD simulations. A simple and direct way to introduce the effect of 3D convection into 1D stellar models is through the surface boundary condition. Usually the atmospheric structure of a stellar model is defined beforehand in the form of a T-tau relation, and is kept fixed at chemical compositions and stages of evolution. Extracting mean atmospheric stratifications from simulations provides a means of introducing surface boundary conditions to stellar models that self-consistently include the effects of realistic convection and overshoot. We apply data from simulations to stellar models in this manner to measure how realistic atmospheric stratifications relate to the value of the mixing length parameter in calibrated stellar models. Moving beyond improving the surface boundary condition, we also explore a method for calibrating the mixing length parameter, which is relevant for improving the adiabatic structure of sub-photospheric convection. Since the MLT treatment of convection defines the thermal structure of the atmosphere and SAL arbitrarily, one strategy for calibrating the mixing length parameter is to tune it so that it matches the thermodynamics of the simulations. In particular, we consider adjusting the mixing length parameter such that the specific entropy of the model matches that of an equivalent simulation eliminates the need to arbitrarily set the parameter, and in principle will produce stellar models with more accurate radii. By examining simulations along contours in the log(g)-log(Teff) plane that correspond to the convective envelope adiabats, the variation in convective properties can be reduced to a simplified form that is more convenient for use in stellar models.

  7. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; Gilligan, Christina; Chaboyer, Brian

    2017-04-01

    The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages of 22 GCs with metallicities ranging from -2.4 dex to -0.7 dex. We find distances with an average uncertainty of 0.15 mag and absolute ages ranging from 10.8 to 13.6 Gyr with an average uncertainty of 1.6 Gyr. Using literature proper motion data, we calculate orbits for the clusters, finding six that reside within the Galactic disk/bulge, while the rest are considered halo clusters. We find no strong evidence for a relationship between age and Galactocentric distance, but we do find a decreasing age-[Fe/H] relation.

  8. Comparative Modelling of the Spectra of Cool Giants

    NASA Technical Reports Server (NTRS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.; hide

    2012-01-01

    Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.

  9. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less

  10. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  11. Star clusters: age, metallicity and extinction from integrated spectra

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2010-01-01

    Integrated optical spectra of star clusters in the Magellanic Clouds and a few Galactic globular clusters are fitted using high-resolution spectral models for single stellar populations. The goal is to estimate the age, metallicity and extinction of the clusters, and evaluate the degeneracies among these parameters. Several sets of evolutionary models that were computed with recent high-spectral-resolution stellar libraries (MILES, GRANADA, STELIB), are used as inputs to the starlight code to perform the fits. The comparison of the results derived from this method and previous estimates available in the literature allow us to evaluate the pros and cons of each set of models to determine star cluster properties. In addition, we quantify the uncertainties associated with the age, metallicity and extinction determinations resulting from variance in the ingredients for the analysis.

  12. Determination of fundamental asteroseismic parameters using the Hilbert transform

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Herzberg, Wiebke; Roth, Markus

    2015-06-01

    Context. Solar-like oscillations exhibit a regular pattern of frequencies. This pattern is dominated by the small and large frequency separations between modes. The accurate determination of these parameters is of great interest, because they give information about e.g. the evolutionary state and the mass of a star. Aims: We want to develop a robust method to determine the large and small frequency separations for time series with low signal-to-noise ratio. For this purpose, we analyse a time series of the Sun from the GOLF instrument aboard SOHO and a time series of the star KIC 5184732 from the NASA Kepler satellite by employing a combination of Fourier and Hilbert transform. Methods: We use the analytic signal of filtered stellar oscillation time series to compute the signal envelope. Spectral analysis of the signal envelope then reveals frequency differences of dominant modes in the periodogram of the stellar time series. Results: With the described method the large frequency separation Δν can be extracted from the envelope spectrum even for data of poor signal-to-noise ratio. A modification of the method allows for an overview of the regularities in the periodogram of the time series.

  13. Do stellar and nebular abundances in the Cocoon nebula agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  14. Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip

    2018-01-01

    The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.

  15. Black Hole growth and star formation activity in the CDFS

    NASA Astrophysics Data System (ADS)

    Brusa, Marcella; Fiore, Fabrizio

    2010-07-01

    We present a study of the properties of obscured Active Galactic Nuclei (AGN) detected in the CDFS 1Ms observation and their host galaxies. We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAACatVLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. Among other findings, we found that the X-ray selected AGN fraction increases with the stellar mass up to a value of 30% at z>1 and M*>3×1011 M.

  16. Estimating metallicities with isochrone fits to photometric data of open clusters

    NASA Astrophysics Data System (ADS)

    Monteiro, H.; Oliveira, A. F.; Dias, W. S.; Caetano, T. C.

    2014-10-01

    The metallicity is a critical parameter that affects the correct determination of stellar cluster's fundamental characteristics and has important implications in Galactic and Stellar evolution research. Fewer than 10% of the 2174 currently catalogued open clusters have their metallicity determined in the literature. In this work we present a method for estimating the metallicity of open clusters via non-subjective isochrone fitting using the cross-entropy global optimization algorithm applied to UBV photometric data. The free parameters distance, reddening, age, and metallicity are simultaneously determined by the fitting method. The fitting procedure uses weights for the observational data based on the estimation of membership likelihood for each star, which considers the observational magnitude limit, the density profile of stars as a function of radius from the center of the cluster, and the density of stars in multi-dimensional magnitude space. We present results of [Fe/H] for well-studied open clusters based on distinct UBV data sets. The [Fe/H] values obtained in the ten cases for which spectroscopic determinations were available in the literature agree, indicating that our method provides a good alternative to estimating [Fe/H] by using an objective isochrone fitting. Our results show that the typical precision is about 0.1 dex.

  17. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  18. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  19. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] < -3.5. For the entire pilot sample, we find typical halo abundance ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  20. Investigation of physical parameters in stellar flares observed by GINGA

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.

  1. Investigation of physical parameters in stellar flares observed by GINGA

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar X-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program.Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.

  2. Photodynamical modeling of hierarchical stellar system KOI-126

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael

    The power and precision of the Kepler space telescope has provided the astrophysical field with a valuable insight into the dynamics of extra-solar systems. KOI-126 represents the first eclipsing hierarchical triple stellar system identified in the Kepler mission's photometry. The dynamics of the system are such that ascertaining the parameters of each body accurately (better than a few percent) is possible from the photometry alone. This allows determination of the characteristics while avoiding biases inherent in traditional studies of low-mass eclipsing systems. The parameter set for KOI-126 was originally reported on by Carter et al. and is uniquely composed of a low-mass binary, KOI-126 B and KOI-126 C. This pair orbits a third, more massive star KOI-126 A. The original analysis employed a full dynamical-photometric model, utilizing a Levenberg-Marquardt algorithm and least-squares minimization, to fit the short-cadence (i.e. successive 58.84 second cadence exposures) photometric data from the Kepler spacecraft captured over a period of 247 days. The updated catalog of short-cadence data now covers a span of 1,300 days. In light of the new data, and the valuable contribution accurately sampled fully-convective stars offer to theoretical stellar models, it is therefore relevant to refine the parameters of this system. Furthermore, with the ubiquity of multi-stellar systems, a well documented, portable, scalable computer modeling code for N-body systems is introduced. Thus, a new analysis is done on KOI-126 using this parallelized dynamical-photometric modeling package written in Python, based on Carter et al.'s original code, titled Pynamic. Pynamic allows the use of several fitting algorithms, but in this analysis utilizes the affine-invariant Markov chain Monte Carlo ensemble.

  3. CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnett, David; Meakin, Casey; Young, Patrick A., E-mail: darnett@as.arizona.ed, E-mail: casey.meakin@gmail.co, E-mail: patrick.young.1@asu.ed

    2010-02-20

    As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a hydrodynamically realistic dissipation length gives a new constraint on solar models. While the stellar structure which results is similar to that obtained by Yale Rotational Evolution Code (Guenther et al.; Bahcall and Pinsonneault) and Garching models (Schlattl et al.), the theoretical picture differs. A new quantitative connection is made between macro-turbulence, micro-turbulence, andmore » the convective velocity scale at the photosphere, which has finite values. The 'geometric parameter' in MLT is found to correspond more reasonably with the thickness of the superadiabatic region (SAR), as it must for consistency in MLT, and its integrated effect may correspond to that of the strong downward plumes which drive convection (Stein and Nordlund), and thus has a physical interpretation even in MLT. If we crudely require the thickness of the SAR to be consistent with the 'geometric factor' used in MLT, there is no longer a free parameter, at least in principle. Use of three-dimensional simulations of both adiabatic convection and stellar atmospheres will allow the determination of the dissipation length and the geometric parameter (i.e., the entropy jump) more realistically, and with no astronomical calibration. A physically realistic treatment of convection in stellar evolution will require substantial additional modifications beyond MLT, including nonlocal effects of kinetic energy flux, entrainment (the most dramatic difference from MLT found by Meakin and Arnett), rotation, and magnetic fields.« less

  4. DETERMINING AGES OF APOGEE GIANTS WITH KNOWN DISTANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuillet, Diane K.; Holtzman, Jon; Bovy, Jo

    2016-01-20

    We present a sample of 705 local giant stars observed using the New Mexico State University 1 m telescope with the Sloan Digital Sky Survey-III/Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectrograph, for which we estimate stellar ages and the local star formation history (SFH). The high-resolution (R ∼ 22,500), near infrared (1.51–1.7 μm) APOGEE spectra provide measurements of stellar atmospheric parameters (temperature, surface gravity, [M/H], and [α/M]). Due to the smaller uncertainties in surface gravity possible with high-resolution spectra and accurate Hipparcos distance measurements, we are able to calculate the stellar masses to within 30%. For giants, the relativelymore » rapid evolution up the red giant branch allows the age to be constrained by the mass. We examine methods of estimating age using both the mass–age relation directly and a Bayesian isochrone matching of measured parameters, assuming a constant SFH. To improve the SFH prior, we use a hierarchical modeling approach to constrain the parameters of the model SFH using the age probability distribution functions of the data. The results of an α-dependent Gaussian SFH model show a clear age–[α/M] relation at all ages. Using this SFH model as the prior for an empirical Bayesian analysis, we determine ages for individual stars. The resulting age–metallicity relation is flat, with a slight decrease in [M/H] at the oldest ages and a ∼0.5 dex spread in metallicity across most ages. For stars with ages ≲1 Gyr we find a smaller spread, consistent with radial migration having a smaller effect on these young stars than on the older stars.« less

  5. New Insights of High-precision Asteroseismology: Acoustic Radius and χ2-matching Method for Solar-like Oscillator KIC 6225718

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Li, Yan

    2017-10-01

    Asteroseismology is a powerful tool for probing stellar interiors and determining stellar fundamental parameters. In the present work, we adopt the χ2-minimization method but only use the observed high-precision seismic observations (i.e., oscillation frequencies) to constrain theoretical models for analyzing solar-like oscillator KIC 6225718. Finally, we find the acoustic radius τ0 is the only global parameter that can be accurately measured by the χ2-matching method between observed frequencies and theoretical model calculations for a pure p-mode oscillation star. We obtain seconds for KIC 6225718. It leads that the mass and radius of the CMMs are degenerate with each other. In addition, we find that the distribution range of acoustic radius is slightly enlarged by some extreme cases, which posses both a larger mass and a higher (or lower) metal abundance, at the lower acoustic radius end.

  6. VizieR Online Data Catalog: PTPS stars. III. The evolved stars sample (Niedzielski+, 2016)

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Deka-Szymankiewicz, B.; Adamczyk, M.; Adamow, M.; Nowak, G.; Wolszczan, A.

    2015-11-01

    We present basic atmospheric parameters (Teff, logg, vt and [Fe/H]), rotation velocities and absolute radial velocities as well as luminosities, masses, ages and radii for 402 stars (including 11 single-lined spectroscopic binaries), mostly subgiants and giants. For 272 of them we present parameters for the first time. For another 53 stars we present estimates of Teff and log g based on photometric calibrations. We also present basic properties of the complete list of 744 stars that form the PTPS evolved stars sample. We examined stellar masses for 1255 stars in five other planet searches and found some of them likely to be significantly overestimated. Applying our uniformly determined stellar masses we confirm the apparent increase of companions masses for evolved stars, and we explain it, as well as lack of close-in planets with limited effective radial velocity precision for those stars due to activity. (5 data files).

  7. Testing the Planet-Metallicity Correlation in M-dwarfs with Gemini GNIRS Spectra

    NASA Astrophysics Data System (ADS)

    Hobson, M. J.; Jofré, E.; García, L.; Petrucci, R.; Gómez, M.

    2018-04-01

    While the planet-metallicity correlation for FGK main-sequence stars hosting giant planets is well established, it is less clear for M-dwarf stars. We determine stellar parameters and metallicities for 16 M-dwarf stars, 11 of which host planets, with near-infrared spectra from the Gemini Near-Infrared Spectrograph (GNIRS). We find that M-dwarfs with planets are preferentially metal-rich compared to those without planets. This result is supported by the analysis of a larger catalogue of 18 M stars with planets and 213 M stars without known planets T15, and demonstrates the utility of GNIRS spectra to obtain reliable stellar parameters of M stars. We also find that M dwarfs with giant planets are preferentially more metallic than those with low-mass planets, in agreement with previous results for solar-type stars. These results favor the core accretion model of planetary formation.

  8. On the link between energy equipartition and radial variation in the stellar mass function of star clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2017-01-01

    We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.

  9. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Chaboyer, B.

    2018-03-01

    Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.

  10. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  11. The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael

    1996-01-01

    Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.

  12. EXPLORING SYSTEMATIC EFFECTS IN THE RELATION BETWEEN STELLAR MASS, GAS PHASE METALLICITY, AND STAR FORMATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.

    2016-08-10

    There is evidence that the well-established mass–metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We presentmore » the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ∼130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%–55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.« less

  13. Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah R.; Valluri, Monica; Hattori, Kohei; Debattista, Victor P.; Bell, Eric F.; Stinson, Greg; Christensen, Charlotte R.; Brooks, Alyson; Quinn, Thomas R.; Governato, Fabio

    2018-02-01

    The velocity anisotropy parameter, β, is a measure of the kinematic state of orbits in the stellar halo, which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for β as a function of radius from three suites of simulations, including accretion-only and cosmological hydrodynamic simulations. We find that the two types of simulations are consistent and predict strong radial anisotropy (< β > ∼ 0.7) for Galactocentric radii greater than 10 kpc. Previous observations of β for the MW’s stellar halo claim a detection of an isotropic or tangential “dip” at r ∼ 20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of “dips” in β. We find that dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z ∼ 1 can result in a present-day low (isotropic to tangential) value of β over a broad range of radii and angles. While all of these mechanisms are plausible drivers for the β dip observed in the MW, each mechanism in the simulations has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of β(r) is required for measuring the mass of the MW halo, we note that significant transient dips in β could cause an overestimate of the halo’s mass when using spherical Jeans equation modeling.

  14. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  15. Stellar Wind Retention and Expulsion in Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  16. Calibrating the metallicity of M dwarfs in wide physical binaries with F-, G-, and K- primaries - I: High-resolution spectroscopy with HERMES: stellar parameters, abundances, and kinematics

    NASA Astrophysics Data System (ADS)

    Montes, D.; González-Peinado, R.; Tabernero, H. M.; Caballero, J. A.; Marfil, E.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González Hernández, J. I.; Klutsch, A.; Moreno-Jódar, C.

    2018-05-01

    We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, log g, ξ, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.

  17. On the Statistical Properties of the Lower Main Sequence

    NASA Astrophysics Data System (ADS)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia; Basu, Sarbani

    2017-04-01

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observable quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.

  18. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library, and the literature atmospheric parameters were recovered within 125 K for T eff, 0.10 dex for [Fe/H], and 0.29 dex for log g. These precisions are consistent with or better than those provided by the pipelines of surveys operating with similar resolutions. These results show that the spectral indices are a competitive tool to characterize stars with intermediate resolution spectra. Based on observations obtained with the 2.2 m MPG telescope at the European Southern Observatory (La Silla, Chile), under the agreement ESO-Observatório Nacional/MCT, and the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium.

  19. StarNet: An application of deep learning in the analysis of stellar spectra

    NASA Astrophysics Data System (ADS)

    Kielty, Collin; Bialek, Spencer; Fabbro, Sebastien; Venn, Kim; O'Briain, Teaghan; Jahandar, Farbod; Monty, Stephanie

    2018-06-01

    In an era when spectroscopic surveys are capable of collecting spectra for hundreds of thousands of stars, fast and efficient analysis methods are required to maximize scientific impact. These surveys provide a homogeneous database of stellar spectra that are ideal for machine learning applications. In this poster, we present StarNet: a convolutional neural network model applied to the analysis of both SDSS-III APOGEE DR13 and synthetic stellar spectra. When trained on synthetic spectra alone, the calculated stellar parameters (temperature, surface gravity, and metallicity) are of excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. While StarNet was developed using the APOGEE observed spectra and corresponding ASSeT synthetic grid, we suggest that this technique is applicable to other spectral resolutions, spectral surveys, and wavelength regimes. As a demonstration of this, we present a StarNet model trained on lower resolution, R=6000, IR synthetic spectra, describing the spectra delivered by Gemini/NIFS and the forthcoming Gemini/GIRMOS instrument (PI Sivanandam, UToronto). Preliminary results suggest that the stellar parameters determined from this low resolution StarNet model are comparable in precision to the high-resolution APOGEE results. The success of StarNet at lower resolution can be attributed to (1) a large training set of synthetic spectra (N ~200,000) with a priori stellar labels, and (2) the use of the entire spectrum in the solution rather than a few weighted windows, which are common methods in other spectral analysis tools (e.g. FERRE or The Cannon). Remaining challenges in our StarNet applications include rectification, continuum normalization, and wavelength coverage. Solutions to these problems could be used to guide decisions made in the development of future spectrographs, spectroscopic surveys, and data reduction pipelines, such as for the future MSE.

  20. Refraction in Exoplanet Transit Observations

    NASA Astrophysics Data System (ADS)

    Dalba, Paul

    2018-01-01

    Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage---a distorted secondary image of the host star---that causes flux increases before transit ingress and after transit egress. The extent of this flux increase provides clues as to the composition and structure of the exoplanetary atmosphere. Here, I model the stellar mirages produced by a comprehensive set of stellar, orbital, planetary, and atmospheric parameters. Refracted light offers unprecedented atmospheric characterization opportunities for cold, long-period gas giant exoplanets. At visible wavelengths, opacity from Rayleigh scattering presents a substantial challenge to detecting stellar mirages for most exoplanets with orbital distances less than 6 AU. Based on physical parameters, I derive a criterion that determines if refracted light will significantly influence observations of a specific exoplanetary system with application to the high-precision Kepler data set. I also investigate the potential for refracted light to identify non-transiting exoplanets and serve as a novel means of out-of-transit atmospheric characterization. The atmospheric lensing events produced by non-transiting exoplanets are more detectable than the corresponding flux increases for transiting exoplanets. Compared to visible light observations, those at red to near-infrared wavelengths are more likely to detect refracted light in an exoplanet atmosphere. With upcoming exoplanet discovery and characterization missions in mind, I consider science cases that are uniquely enabled by photometric and spectroscopic observations of refracted light in exoplanetary systems.

  1. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  2. On the blind use of statistical tools in the analysis of globular cluster stars

    NASA Astrophysics Data System (ADS)

    D'Antona, Francesca; Caloi, Vittoria; Tailo, Marco

    2018-04-01

    As with most data analysis methods, the Bayesian method must be handled with care. We show that its application to determine stellar evolution parameters within globular clusters can lead to paradoxical results if used without the necessary precautions. This is a cautionary tale on the use of statistical tools for big data analysis.

  3. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko

    2018-04-01

    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.

  4. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less

  5. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  6. SDSS-IV MaNGA: What Shapes the Distribution of Metals in Galaxies? Exploring the Roles of the Local Gas Fraction and Escape Velocity

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Zakamska, N. L.; Cleary, J.; Zhu, G.; Brinkmann, J.; Drory, N.; THE MaNGA TEAM

    2018-01-01

    We determine the local metallicity of the ionized gas for more than 9.2 × 105 star-forming regions (spaxels) located in 1023 nearby galaxies included in the Sloan Digital Sky Survey-IV MaNGA integral field spectroscopy unit survey. We use the dust extinction derived from the Balmer decrement and the stellar template fitting in each spaxel to estimate the local gas and stellar mass densities, respectively. We also use the measured rotation curves to determine the local escape velocity (V esc). We then analyze the relationships between the local metallicity and both the local gas fraction (μ) and V esc. We find that metallicity decreases with both increasing μ and decreasing V esc. By examining the residuals in these relations we show that the gas fraction plays a more primary role in the local chemical enrichment than does V esc. We show that the gas-regulator model of chemical evolution provides a reasonable explanation of the metallicity on local scales. The best-fit parameters for this model are consistent with the metal loss caused by momentum-driven galactic outflows. We also argue that both the gas fraction and the local escape velocity are connected to the local stellar surface density, which in turn is a tracer of the epoch at which the dominant local stellar population formed.

  7. Investigating the Metallicity–Mixing-length Relation

    NASA Astrophysics Data System (ADS)

    Viani, Lucas S.; Basu, Sarbani; Joel Ong J., M.; Bonaca, Ana; Chaplin, William J.

    2018-05-01

    Stellar models typically use the mixing-length approximation as a way to implement convection in a simplified manner. While conventionally the value of the mixing-length parameter, α, used is the solar-calibrated value, many studies have shown that other values of α are needed to properly model stars. This uncertainty in the value of the mixing-length parameter is a major source of error in stellar models and isochrones. Using asteroseismic data, we determine the value of the mixing-length parameter required to properly model a set of about 450 stars ranging in log g, {T}eff}, and [{Fe}/{{H}}]. The relationship between the value of α required and the properties of the star is then investigated. For Eddington atmosphere, non-diffusion models, we find that the value of α can be approximated by a linear model, in the form of α /{α }ȯ =5.426{--}0.101 {log}(g)-1.071 {log}({T}eff}) +0.437([{Fe}/{{H}}]). This process is repeated using a variety of model physics, as well as compared with previous studies and results from 3D convective simulations.

  8. A photometric mode identification method, including an improved non-adiabatic treatment of the atmosphere

    NASA Astrophysics Data System (ADS)

    Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.

    2003-02-01

    We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.

  9. Stellar Astrophysics with a Dispersed Fourier Transform Spectrograph. II. Orbits of Double-lined Spectroscopic Binaries

    NASA Astrophysics Data System (ADS)

    Behr, Bradford B.; Cenko, Andrew T.; Hajian, Arsen R.; McMillan, Robert S.; Murison, Marc; Meade, Jeff; Hindsley, Robert

    2011-07-01

    We present orbital parameters for six double-lined spectroscopic binaries (ι Pegasi, ω Draconis, 12 Boötis, V1143 Cygni, β Aurigae, and Mizar A) and two double-lined triple star systems (κ Pegasi and η Virginis). The orbital fits are based upon high-precision radial velocity (RV) observations made with a dispersed Fourier Transform Spectrograph, or dFTS, a new instrument that combines interferometric and dispersive elements. For some of the double-lined binaries with known inclination angles, the quality of our RV data permits us to determine the masses M 1 and M 2 of the stellar components with relative errors as small as 0.2%.

  10. Quantitative spectroscopy of Deneb

    NASA Astrophysics Data System (ADS)

    Schiller, F.; Przybilla, N.

    2008-03-01

    Context: Quantitative spectroscopy of luminous BA-type supergiants offers a high potential for modern astrophysics. Detailed studies allow the evolution of massive stars, galactochemical evolution, and the cosmic distance scale to be constrained observationally. Aims: A detailed and comprehensive understanding of the atmospheres of BA-type supergiants is required in order to use this potential properly. The degree to which we can rely on quantitative studies of this class of stars as a whole depends on the quality of the analyses for benchmark objects. We constrain the basic atmospheric parameters and fundamental stellar parameters, as well as chemical abundances of the prototype A-type supergiant Deneb to unprecedented accuracy by applying a sophisticated analysis methodology, which has recently been developed and tested. Methods: The analysis is based on high-S/N and high-resolution spectra in the visual and near-IR. Stellar parameters and abundances for numerous astrophysically interesting elements are derived from synthesis of the photospheric spectrum using a hybrid non-LTE technique, i.e. line-blanketed LTE model atmospheres and non-LTE line formation. Multiple metal ionisation equilibria and numerous hydrogen lines from the Balmer, Paschen, Brackett, and Pfund series are utilised simultaneously for the stellar parameter determination. The stellar wind properties are derived from Hα line-profile fitting using line-blanketed hydrodynamic non-LTE models. Further constraints come from matching the photospheric spectral energy distribution from the UV to the near-IR L band. Results: The atmospheric parameters of Deneb are tightly constrained: effective temperature T_eff = 8525±75 K, surface gravity log g = 1.10±0.05, microturbulence ξ = 8±1 km s-1, macroturbulence, and projected rotational velocity v sin i are both 20 ± 2 km s-1. The abundance analysis gives helium enrichment by 0.10 dex relative to solar and an N/C ratio of 4.44 ± 0.84 (mass fraction), implying strong mixing with CN-processed matter. The heavier elements are consistently underabundant by 0.20 dex compared to solar. Peculiar abundance patterns, which were suggested in previous analyses cannot be confirmed. Accounting for non-LTE effects is essential for removing systematic trends in the abundance determination, for minimising statistical 1σ-uncertainties to ⪉10-20% and for establishing all ionisation equilibria at the same time. Conclusions: A luminosity of (1.96 ± 0.32)×105 L⊙, a radius of 203 ± 17 R_⊙, and a current mass of 19 ± 4 M⊙ are derived. Comparison with stellar evolution predictions suggests that Deneb started as a fast-rotating late O-type star with M^ZAMS≃ 23 M_⊙ on the main sequence and is currently evolving to the red supergiant stage. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC). Appendix A is only available in electronic form at http://www.aanda.org

  11. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  12. New Asteroseismic Scaling Relations Based on the Hayashi Track Relation Applied to Red Giant Branch Stars in NGC 6791 and NGC 6819

    NASA Astrophysics Data System (ADS)

    Wu, T.; Li, Y.; Hekker, S.

    2014-01-01

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.

  13. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  14. Application of Multi-task Sparse Lasso Feature Extraction and Support Vector Machine Regression in the Stellar Atmospheric Parameterization

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Li, Xiang-ru

    2017-07-01

    The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.

  15. The GALAH survey: observational overview and Gaia DR1 companion

    NASA Astrophysics Data System (ADS)

    Martell, S. L.; Sharma, S.; Buder, S.; Duong, L.; Schlesinger, K. J.; Simpson, J.; Lind, K.; Ness, M.; Marshall, J. P.; Asplund, M.; Bland-Hawthorn, J.; Casey, A. R.; De Silva, G.; Freeman, K. C.; Kos, J.; Lin, J.; Zucker, D. B.; Zwitter, T.; Anguiano, B.; Bacigalupo, C.; Carollo, D.; Casagrande, L.; Da Costa, G. S.; Horner, J.; Huber, D.; Hyde, E. A.; Kafle, P. R.; Lewis, G. F.; Nataf, D.; Navin, C. A.; Stello, D.; Tinney, C. G.; Watson, F. G.; Wittenmyer, R.

    2017-03-01

    The Galactic Archaeology with HERMES (GALAH) survey is a massive observational project to trace the Milky Way's history of star formation, chemical enrichment, stellar migration and minor mergers. Using high-resolution (R ≃ 28 000) spectra, taken with the High Efficiency and Resolution Multi-Element Spectrograph (HERMES) instrument at the Anglo-Australian Telescope, GALAH will determine stellar parameters and abundances of up to 29 elements for up to one million stars. Selecting targets from a colour-unbiased catalogue built from 2MASS, APASS and UCAC4 data, we expect to observe dwarfs at 0.3-3 kpc and giants at 1-10 kpc. This enables a thorough local chemical inventory of the Galactic thin and thick discs, and also captures smaller samples of the bulge and halo. In this paper, we present the plan, process and progress as of early 2016 for GALAH survey observations. In our first two years of survey observing we have accumulated the largest high-quality spectroscopic data set at this resolution, over 200 000 stars. We also present the first public GALAH data catalogue: stellar parameters (Teff, log(g), [Fe/H], [α/Fe]), radial velocity, distance modulus and reddening for 10 680 observations of 9860 Tycho-2 stars, 7894 of which are included in the first Gaia data release.

  16. The peculiar ring galaxy HRG 54103 revisited

    NASA Astrophysics Data System (ADS)

    Freitas-Lemes, P.; Krabbe, A. C.; Faúndez-Abans, M.; da Rocha-Poppe, P.; Rodrigues, I.; de Oliveira-Abans, M.; Fernandes-Martin, V. A.

    2017-07-01

    We present an observational study of the galaxy HRG 54103, a peculiar galaxy with an asymmetric disc ring. The main goal of this work is to study the stellar population and oxygen abundances for the inner bulge region. The kinematics derived from long-slit spectroscopy suggest that the line of nodes of the gaseous component of HRG 54103 is nearly along the galaxy ring minor axis. The gaseous disc seems to be kinematically decoupled relative to the morphology of the stellar ring. A small, but non-negligible, fraction of young stars (5-10 per cent) is estimated to contribute. This object is mainly dominated by old and intermediate stellar populations. The emission-line spectrum shows low-ionization nuclear emission-line region (LINER) type characteristics. We determined oxygen abundances using calibrations between this parameter and the strong emission line ratios known as the indices O3N2 and N2. Our results suggest a relatively homogeneous O/H across the minor axis of the galaxy, with average values of 12 + log(O/H) = 8.4 dex and 12 + log(O/H) = 8.7 dex, using the O3N2 and N2 parameters, respectively. These values are compatible with the few estimations of oxygen abundance for peculiar ring galaxies published in the literature. Implications on the formation history of HRG 54103 were investigated.

  17. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindle, R.; Gal, R. R.; La Barbera, F.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less

  18. The stellar wind as a key to the understanding of the spectral activity of IN Com

    NASA Astrophysics Data System (ADS)

    Kozlova, O. V.; Alekseev, I. Yu.

    2014-06-01

    We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.

  19. Bayesian statistics as a new tool for spectral analysis - I. Application for the determination of basic parameters of massive stars

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2015-11-01

    Spectral analysis is a powerful tool to investigate stellar properties and it has been widely used for decades now. However, the methods considered to perform this kind of analysis are mostly based on iteration among a few diagnostic lines to determine the stellar parameters. While these methods are often simple and fast, they can lead to errors and large uncertainties due to the required assumptions. Here, we present a method based on Bayesian statistics to find simultaneously the best combination of effective temperature, surface gravity, projected rotational velocity, and microturbulence velocity, using all the available spectral lines. Different tests are discussed to demonstrate the strength of our method, which we apply to 54 mid-resolution spectra of field and cluster B stars obtained at the Observatoire du Mont-Mégantic. We compare our results with those found in the literature. Differences are seen which are well explained by the different methods used. We conclude that the B-star microturbulence velocities are often underestimated. We also confirm the trend that B stars in clusters are on average faster rotators than field B stars.

  20. Stellar parameters for the central star of the planetary nebula PRTM 1 using the German Astrophysical Virtual Observatory service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Demleitner, M.; Hoyer, D.; Werner, K.

    2018-04-01

    The German Astrophysical Virtual Observatory (GAVO) developed the registered service TheoSSA (theoretical stellar spectra access) and the supporting registered VO tool TMAW (Tübingen Model-Atmosphere WWW interface). These allow individual spectral analyses of hot, compact stars with state-of-the-art non-local thermodynamical equilibrium (NLTE) stellar-atmosphere models that presently consider opacities of the elements H, He, C, N, O, Ne, Na, and Mg, without requiring detailed knowledge about the involved background codes and procedures. Presently, TheoSSA provides easy access to about 150 000 pre-calculated stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In the case of the exciting star of PN PRTM 1, we demonstrate the easy way to calculate individual NLTE stellar model-atmospheres to reproduce an observed optical spectrum. We measured T_eff = 98 000± 5 000 K, log (g / cm/s^2) = 5.0^{+0.3}_{-0.2}, and photospheric mass fractions of H =7.5 × 10-1 (1.02 times solar), He =2.4 × 10-1 (0.96), C =2.0 × 10-3 (0.84), N =3.2 × 10-4 (0.46), and O =8.5 × 10-3 (1.48) with uncertainties of ±0.2 dex. We determined the stellar mass and luminosity of 0.73^{+0.16}_{-0.15} M_{⊙} and log (L/L⊙) = 4.2 ± 0.4, respectively.

  1. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  2. VizieR Online Data Catalog: Abundances and stellar parameters of LAMOST stars (Lee+, 2015)

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Beers, T. C.; Carlin, J. L.; Newberg, H. J.; Hou, Y.; Li, G.; Luo, A.-L.; Wu, Y.; Yang, M.; Zhang, H.; Zhang, W.; Zhang, Y.

    2016-04-01

    By performing a coordinate match with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; see DR1 in Luo et al. 2015, cat. V/146) stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2015, submitted), the RAdial Velocity Experiment (RAVE; see Kordopatis et al. 2013, cat. III/272), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE; see Yanny et al. 2009, cat. J/AJ/137/4377). The LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey is an ongoing spectroscopic survey being conducted with the Guoshoujing telescope in northeast China. This telescope employs a fixed 4-m Schmidt-type reflector with 4000 optical fibers in the focal plane to obtain spectra of astronomical objects in a 5° field of view. The LEGUE and SEGUE surveys have very similar spectral coverage and resolving power (R~1800). The LAMOST stellar targets mostly comprise stars brighter than r< 17, whereas the SEGUE stars range from r=14 to r=21. SEGUE-1 was executed during the second phase of the Sloan Digital Sky Survey (SDSS-II). This effort was continued as SEGUE-2 during the third phase of SDSS (SDSS-III). APOGEE was designed to obtain high-resolution near-infrared spectra (in the H-band between 1.51 and 1.70μm). The spectra obtained by APOGEE have a resolving power R~22500 and high S/N (>100). APOGEE-1 was a sub-survey of SDSS-III, and is now completed. Its extension, APOGEE-2, is presently underway as part of SDSS-IV. The RAVE survey was designed to observe about a million stars in the southern hemisphere, and obtain optical spectra over the wavelength range 8410-8795Å, the region of the CaII triplet, at a resolving power R~7500. SEGUE-1 and SEGUE-2 have employed the SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008, cat. J/AJ/136/2050; Allende Prieto et al. 2008, cat. J/AJ/136/2070; Smolinski et al. 2011, cat. J/AJ/141/89; Lee et al. 2011, cat. J/AJ/141/90) to derive the stellar atmospheric parameters and available elemental abundance ratios. We modified and upgraded SSPP so that it can process the LAMOST stellar spectra and derive the fundamental stellar parameters as well as the α-element abundances ([α/Fe]) and carbon-to-iron ratios ([C/Fe]) for these stars. The derived atmospheric parameters and chemical abundances obtained by SSPP for LAMOST stars are then compared with those from the stars also observed by SEGUE, APOGEE, and RAVE. Table1 lists the LAMOST stars with appropriate stellar parameters from APOGEE, RAVE, and SEGUE. It also lists the LAMOST/SEGUE Stellar Parameter Pipeline (LSSPP) parameters and abundances. We do not report [α/Fe] and [C/Fe] for stars with S/N<20 and the range outside of Teff=4400-6700K in the table. (1 data file).

  3. On the Statistical Properties of the Lower Main Sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observablemore » quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.« less

  4. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  5. A new stellar spectrum interpolation algorithm and its application to Yunnan-III evolutionary population synthesis models

    NASA Astrophysics Data System (ADS)

    Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang

    2018-05-01

    In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.

  6. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  7. Transiting exoplanets from the CoRoT space mission. XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit

    NASA Astrophysics Data System (ADS)

    Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.

    2015-07-01

    Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org

  8. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  9. The GAPS Programme with HARPS-N at TNG . XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-06-01

    We carried out a Bayesian homogeneous determination of the orbital parameters of 231 transiting giant planets (TGPs) that are alone or have distant companions; we employed differential evolution Markov chain Monte Carlo methods to analyse radial-velocity (RV) data from the literature and 782 new high-accuracy RVs obtained with the HARPS-N spectrograph for 45 systems over 3 years. Our work yields the largest sample of systems with a transiting giant exoplanet and coherently determined orbital, planetary, and stellar parameters. We found that the orbital parameters of TGPs in non-compact planetary systems are clearly shaped by tides raised by their host stars. Indeed, the most eccentric planets have relatively large orbital separations and/or high mass ratios, as expected from the equilibrium tide theory. This feature would be the outcome of planetary migration from highly eccentric orbits excited by planet-planet scattering, Kozai-Lidov perturbations, or secular chaos. The distribution of α = a/aR, where a and aR are the semi-major axis and the Roche limit, for well-determined circular orbits peaks at 2.5; this agrees with expectations from the high-eccentricity migration (HEM), although it might not be limited to this migration scenario. The few planets of our sample with circular orbits and α> 5 values may have migrated through disc-planet interactions instead of HEM. By comparing circularisation times with stellar ages, we found that hot Jupiters with a< 0.05 au have modified tidal quality factors 105 ≲ Q'p ≲ 109, and that stellar Q's ≳ 106 - 107 are required to explain the presence of eccentric planets at the same orbital distance. As aby-product of our analysis, we detected a non-zero eccentricity e = 0.104-0.018+0.021 for HAT-P-29; we determined that five planets that were previously regarded to be eccentric or to have hints of non-zero eccentricity, namely CoRoT-2b, CoRoT-23b, TrES-3b, HAT-P-23b, and WASP-54b, have circular orbits or undetermined eccentricities; we unveiled curvatures caused by distant companions in the RV time series of HAT-P-2, HAT-P-22, and HAT-P-29; we significantly improved the orbital parameters of the long-period planet HAT-P-17c; and we revised the planetary parameters of CoRoT-1b, which turned out to be considerably more inflated than previously found. Full Tables 1, 2, 5-9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A107

  10. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  11. The Fundamental Stellar Parameters of FGK Stars in the SEEDS Survey

    NASA Astrophysics Data System (ADS)

    Rich, Evan; Wisniewski, John P.; SEEDS Team

    2017-01-01

    Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K, and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line fluxes and TGVIT to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity, lithium abundance, and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The future meta-analysis of the results of the SEEDS survey will utilize our results to constrain the occurrence of detected co-moving companions with the properties of their host stars.

  12. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  13. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  14. Long-Term Spectral Variability of the Spotted Star IN Com

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.

    2017-06-01

    We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.

  15. New Low-mass Stars in the 25 Orionis Stellar Group and Orion OB1a Sub-association from SDSS-III/BOSS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Suárez, Genaro; Downes, Juan José; Román-Zúñiga, Carlos; Covey, Kevin R.; Tapia, Mauricio; Hernández, Jesús; Petr-Gotzens, Monika G.; Stassun, Keivan G.; Briceño, César

    2017-07-01

    The Orion OB1a sub-association is a rich low-mass star (LMS) region. Previous spectroscopic studies have confirmed 160 LMSs in the 25 Orionis stellar group (25 Ori), which is the most prominent overdensity of Orion OB1a. Nonetheless, the current census of the 25 Ori members is estimated to be lower than 50% complete, leaving a large number of members to be still confirmed. We retrieved 172 low-resolution stellar spectra in Orion OB1a observed as ancillary science in the SDSS-III/BOSS survey, for which we classified their spectral types and determined physical parameters. To determine memberships, we analyzed the {{{H}}}α emission, Li I λ6708 absorption, and Na I λλ8183, 8195 absorption as youth indicators in stars classified as M type. We report 50 new LMSs spread across the 25 Orionis, ASCC 18, and ASCC 20 stellar groups with spectral types from M0 to M6, corresponding to a mass range of 0.10≤slant m/{M}⊙ ≤slant 0.58. This represents an increase of 50% in the number of known LMSs in the area and a net increase of 20% in the number of 25 Ori members in this mass range. Using parallax values from the Gaia DR1 catalog, we estimated the distances to these three stellar groups and found that they are all co-distant, at 338 ± 66 pc. We analyzed the spectral energy distributions of these LMSs and classified their disks into evolutionary classes. Using H-R diagrams, we found a suggestion that 25 Ori could be slightly older than the other two observed groups in Orion OB1a.

  16. [A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].

    PubMed

    Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng

    2015-12-01

    Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.

  17. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Bensby, T.; Feltzing, S.; Oey, M. S.

    2014-02-01

    Aims: The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk. Methods: We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neighbourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that cannot (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calculated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000-110 000) and high signal-to-noise (S/N = 150-300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes, the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from individual Fe i lines were were corrected for non-LTE effects in every step of the analysis. Results: We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity between -0.7 < [Fe/H] ≲ +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar parameters and abundances show larger uncertainties (Teff ≲ 5400 K) are discarded, showing that it is important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Winn, Joshua N.

    We present a test for spin-orbit alignment for the host stars of 25 candidate planetary systems detected by the Kepler spacecraft. The inclination angle of each star's rotation axis was estimated from its rotation period, rotational line broadening, and radius. The rotation periods were determined using the Kepler photometric time series. The rotational line broadening was determined from high-resolution optical spectra with the Subaru High Dispersion Spectrograph. Those same spectra were used to determine the star's photospheric parameters (effective temperature, surface gravity, metallicity), which were then interpreted with stellar-evolutionary models to determine stellar radii. We combine the new sample withmore » the seven stars from our previous work on this subject, finding that the stars show a statistical tendency to have inclinations near 90°, in alignment with the planetary orbits. Possible spin-orbit misalignments are seen in several systems, including three multiple-planet systems (KOI-304, 988, 2261). Ideally, these systems should be scrutinized with complementary techniques, such as the Rossiter-McLaughlin effect, starspot-crossing anomalies, or asteroseismology, but the measurements will be difficult owing to the relatively faint apparent magnitudes and small transit signals in these systems.« less

  19. Photospheres of hot stars. III - Luminosity effects at spectral type 09.5

    NASA Technical Reports Server (NTRS)

    Voels, Stephen A.; Bohannan, Bruce; Abbott, David C.; Hummer, D. G.

    1989-01-01

    Hydrogen and helium line profiles with high signal-to-noise ratios were obtained for four stars of spectral type 09.5 (Alpha Cam, Xi Ori A, Delta Ori A,AE Aur) that form a sequence in luminosity: Ia, Ib, II, V. The basic stellar parameters of these stars are determined by fitting the observed line profiles of weak photospheric absorption lines with profiles from models which include the effect of radiation scattered back onto the photosphere from their stellar winds, an effect referred to as wind blanketing. For these stars, the inclusion of wind blanketing is significant only for the most luminous star, Alpha Cam, for which the effective temperature was shifted about -2000 K relative to an unblanketed model.

  20. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... DEPARTMENT OF STATE [Public Notice 7850] Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``African Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within...

  1. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  2. The diskmass survey. VIII. On the relationship between disk stability and star formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westfall, Kyle B.; Verheijen, Marc A. W.; Andersen, David R.

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averagingmore » over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.« less

  3. Spectral Analysis of B Stars: An Application of Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2012-12-01

    To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.

  4. The discrimination between star-forming and AGN galaxies in the absence of Hαand [NII]: A machine learning approach

    NASA Astrophysics Data System (ADS)

    Teimoorinia, H.; Keown, J.

    2018-05-01

    In the absence of the two emission lines Hαand [NII] (6584Å) in a BPT diagram, we show that other spectral information is sufficiently informative to distinguish AGN galaxies from star-forming galaxies. We use pattern recognition methods and a sample of galaxy spectra from the Sloan Digital Sky Survey (SDSS) to show that, in this survey, the flux and equivalent width of [OIII] (5007Å) and Hβ, along with the 4000Å break, can be used to classify galaxies in a BPT diagram. This method provides a higher accuracy of predictions than those which use stellar mass and [OIII]/Hβ. First, we use BPT diagrams and various physical parameters to re-classify the galaxies. Next, using confusion matrices, we determine the `correctly' predicted classes as well as confused cases. In this way, we investigate the effect of each parameter in the confusion matrices and rank the physical parameters used in the discrimination of the different classes. We show that in this survey, for example, {g - r} colour can provide the same accuracy as galaxy stellar mass to predict whether or not a galaxy hosts an AGN. Finally, with the same information, we also rank the parameters involved in the discrimination of Seyfert and LINER galaxies.

  5. Asteroseismology of KIC 7107778: a binary comprising almost identical subgiants

    NASA Astrophysics Data System (ADS)

    Li, Yaguang; Bedding, Timothy R.; Li, Tanda; Bi, Shaolan; Murphy, Simon J.; Corsaro, Enrico; Chen, Li; Tian, Zhijia

    2018-05-01

    We analyse an asteroseismic binary system: KIC 7107778, a non-eclipsing, unresolved target, with solar-like oscillations in both components. We used Kepler short cadence time series spanning nearly 2 yr to obtain the power spectrum. Oscillation mode parameters were determined using Bayesian inference and a nested sampling Monte Carlo algorithm with the DIAMONDS package. The power profiles of the two components fully overlap, indicating their close similarity. We modelled the two stars with MESA and calculated oscillation frequencies with GYRE. Stellar fundamental parameters (mass, radius, and age) were estimated by grid modelling with atmospheric parameters and the oscillation frequencies of l = 0, 2 modes as constraints. Most l = 1 mixed modes were identified with models searched using a bisection method. Stellar parameters for the two sub-giant stars are MA = 1.42 ± 0.06 M⊙, MB = 1.39 ± 0.03 M⊙, RA = 2.93 ± 0.05 R⊙, RB = 2.76 ± 0.04 R⊙, tA = 3.32 ± 0.54 Gyr and tB = 3.51 ± 0.33 Gyr. The mass difference of the system is ˜1 per cent. The results confirm their simultaneous birth and evolution, as is expected from binary formation. KIC 7107778 comprises almost identical twins, and is the first asteroseismic sub-giant binary to be detected.

  6. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  7. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  8. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  9. VizieR Online Data Catalog: LAMOST/SP_Ace DR1 catalog (Boeche+, 2018)

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    The catalog contains stellar parameters including effective temperature (Teff), gravity (log g), metallicity [M/H], together with chemical abundances [Fe/H] and [alpha/H], derived with the code SP_Ace. It consists of 2,052,662 spectra, mostly Milky Way stars, from which 1,097,231 have measured parameters. The confidence intervals of the stellar parameters are expressed along with their upper and lower limits. Together with these main parameters we report other auxiliary information such as object designation, RA, DE, and other diagnostics as indicated in the table description. (1 data file).

  10. The spectroscopic indistinguishability of red giant branch and red clump stars

    NASA Astrophysics Data System (ADS)

    Masseron, T.; Hawkins, K.

    2017-01-01

    Context. Stellar spectroscopy provides useful information on the physical properties of stars such as effective temperature, metallicity and surface gravity. However, those photospheric characteristics are often hampered by systematic uncertainties. The joint spectro-sismo project (APOGEE+Kepler, aka APOKASC) of field red giants has revealed a puzzling offset between the surface gravities (log g) determined spectroscopically and those determined using asteroseismology, which is largely dependent on the stellar evolutionary status. Aims: Therefore, in this letter, we aim to shed light on the spectroscopic source of the offset. Methods: We used the APOKASC sample to analyse the dependencies of the log g discrepancy as a function of stellar mass and stellar evolutionary status. We discuss and study the impact of some neglected abundances on spectral analysis of red giants, such as He and carbon isotopic ratio. Results: We first show that, for stars at the bottom of the red giant branch where the first dredge-up had occurred, the discrepancy between spectroscopic log g and asteroseismic log g depends on stellar mass. This seems to indicate that the log g discrepancy is related to CN cycling. Among the CN-cycled elements, we demonstrate that the carbon isotopic ratio (12C /13C) has the largest impact on stellar spectrum. In parallel, we observe that this log g discrepancy shows a similar trend as the 12C /13C ratios as expected by stellar evolution theory. Although we did not detect a direct spectroscopic signature of 13C, other corroborating evidences suggest that the discrepancy in log g is tightly correlated to the production of 13C in red giants. Moreover, by running the data-driven algorithm (the Cannon) on a synthetic grid trained on the APOGEE data, we try to evaluate more quantitatively the impact of various 12C /13C ratios. Conclusions: While we have demonstrated that 13C indeed impacts all parameters, the size of the impact is smaller than the observed offset in log g. If further tests confirm that 13C is not the main element responsible of the log g problem, the number of spectroscopic effects remaining to be investigated is now relatively limited (if any).

  11. What Turns Galaxies Off? the Different Morphologies of Star-Forming and Quiescent Galaxies Since z Approximates 2 from CANDELS

    NASA Technical Reports Server (NTRS)

    Bell, Eric F.; VanDerWel, Arjen; Papovich, Casey; Kocevski, Dale; Lotz, Jennifer; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Faber, S. M.; Ferguson, Harry; Koekemoer, Anton; hide

    2011-01-01

    We use HST/WFC3 imaging from the CANDELS multicyc1e treasury survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses > 3 x 10(exp 10) Solar Mass from Z= 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity and the structural parameters of galaxies as determined from parametric fits to the surface brightness profiles of galaxies. We confirm the dramatic evolution from z= 2.2 to the present day in the number density of non-star-forming galaxies above 3 x 10(exp 10) Solar Mass reported by other authors. We find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sersic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sersic index, stellar mass, mass divided by radius (a proxy for velocity dispersion), and stellar surface density. Quiescence correlates poorly with stellar mass at all z < 2.2 (given the approx < 0.2 dex scatter between halo mass and stellar mass at z approximates 0 inferred by More et al, this argues against halo mass being the only factor determining quiescence). Quiescence correlates better with Sersic index, 'velocity dispersion' and stellar surface density, where Sersic index correlates the best (increasingly so at lower redshift). Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and, perhaps by association, a supermassive black hole) is a necessary but not sufficient condition for quenching star formation on galactic scales over the last 10 Gyr; such a result is qualitatively consistent with the expectations of the AGN feedback paradigm.

  12. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  13. New asteroseismic scaling relations based on the Hayashi track relation applied to red giant branch stars in NGC 6791 and NGC 6819

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de

    2014-01-20

    Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less

  14. Wolf-Rayet stars in the central region of the Milky Way

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  15. Stellar population of the superbubble N 206 in the LMC. I. Analysis of the Of-type stars

    NASA Astrophysics Data System (ADS)

    Ramachandran, Varsha; Hainich, R.; Hamann, W.-R.; Oskinova, L. M.; Shenar, T.; Sander, A. A. C.; Todt, H.; Gallagher, J. S.

    2018-01-01

    Context. Massive stars severely influence their environment by their strong ionizing radiation and by the momentum and kinetic energy input provided by their stellar winds and supernovae. Quantitative analyses of massive stars are required to understand how their feedback creates and shapes large scale structures of the interstellar medium. The giant H II region N 206 in the Large Magellanic Cloud contains an OB association that powers a superbubble filled with hot X-ray emitting gas, serving as an ideal laboratory in this context. Aims: We aim to estimate stellar and wind parameters of all OB stars in N 206 by means of quantitative spectroscopic analyses. In this first paper, we focus on the nine Of-type stars located in this region. We determine their ionizing flux and wind mechanical energy. The analysis of nitrogen abundances in our sample probes rotational mixing. Methods: We obtained optical spectra with the multi-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we used the Potsdam Wolf-Rayet model atmosphere code. We determined the physical parameters and nitrogen abundances of our sample stars by fitting synthetic spectra to the observations. Results: The stellar and wind parameters of nine Of-type stars, which are largely derived from spectral analysis are used to construct wind momentum - luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N 206 association is an Of supergiant that has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age of less than 4 million yr, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. Conclusions: The mechanical energy input from the Of stars alone is comparable to the energy stored in the N 206 superbubble as measured from the observed X-ray and Hα emission.

  16. LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.

  17. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  18. Inferring probabilistic stellar rotation periods using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  19. EK Draconis. Magnetic activity in the photosphere and chromosphere

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Berdyugina, S. V.; Korhonen, H.; Ilyin, I.; Tuominen, I.

    2007-09-01

    Context: As a young solar analogue, EK Draconis provides an opportunity to study the magnetic activity of the infant Sun. Aims: We present three new surface temperature maps of EK Draconis and compare them with previous results obtained from long-term photometry. Furthermore, we determined a set of stellar parameters and compared the determined values with the corresponding solar values. Methods: Atmospheric parameters were determined by comparing observed and synthetic spectra calculated with stellar atmosphere models. Surface temperature maps were obtained using the Occamian approach inversion technique. The differential rotation of EK Dra was estimated using two different methods. Results: A detailed model atmosphere analysis of high resolution spectra of EK Dra has yielded a self-consistent set of atmospheric parameters: T_eff = 5750 K, log g = 4.5, [M/H] = 0.0, ξt = 1.6 km s-1. The evolutionary models imply that the star is slightly more massive than the Sun and has an age between 30-50 Myr, which agrees with the determined lithium abundance of log N(Li) = 3.02. Moreover, the atmospheric parameters, as well as the wings of the Ca ii 8662 Å, indicate that the photosphere of EK Dra is very similar to the one of the present Sun, while their chromospheres differ. There also seems to be a correlation between magnetic features seen in the photosphere and chromosphere. The temperature images reveal spots of only 500 K cooler than the quiet photosphere. The mean spot latitude varies with time. The obtained differential rotation is very small, but the sign of it supports solar type differential rotation on EK Dra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table [see full text] and Figs. [see full text] and [see full text] are only available in electronic form at http://www.aanda.org

  20. Spectroscopy of Dwarf Stars Around the North Celestial Pole

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Šarūnas; Tautvaišienė, Gražina; Drazdauskas, Arnas; Minkevičiūtė, Renata; Klebonas, Lukas; Bagdonas, Vilius; Pakšienė, Erika; Janulis, Rimvydas

    2018-07-01

    New space missions (e.g., NASA-TESS and ESA-PLATO) will perform an in-depth analysis of bright stars in large fields of the celestial sphere searching for extraterrestrial planets and investigating their host-stars. Asteroseismic observations will search for exoplanet-hosting stars with solar-like oscillations. In order to achieve all the goals, a full characterization of the stellar objects is important. However, accurate atmospheric parameters are available for less than 30% of bright dwarf stars of the solar neighborhood. In this study we observed high-resolution (R = 60,000) spectra for all bright (V < 8 mag) and cooler than F5 spectral class dwarf stars in the northern-most field of the celestial sphere with radius of 20° from the α(2000) = 161.°03 and δ(2000) = 86.°60 that is a center of one of the preliminary ESO-PLATO fields. Spectroscopic atmospheric parameters were determined for 140 slowly rotating stars, for 73% of them for the first time. The majority (83%) of the investigated stars are in the TESS object lists and all of them are in the preliminary PLATO field. Our results have no systematic differences when compared with other recent studies. We have 119 stars in common with the Geneva–Copenhagen Survey, where stellar parameters were determined photometrically, and find a 14 ± 125 K difference in effective temperatures, 0.01 ± 0.16 in log g, and ‑0.02 ± 0.09 dex in metallicities. Comparing our results for 39 stars with previous high-resolution spectral determinations, we find only a 7 ± 73 K difference in effective temperatures, 0.02 ± 0.09 in log g, and ‑0.02 ± 0.09 dex in metallicities. We also determined basic kinematic and orbital parameters for this sample of stars. From the kinematical point of view, almost all our stars belong to the thin disk substructure of the Milky Way. The derived galactocentric metallicity gradient is ‑0.066 ± 0.024 dex kpc‑1 (2.5σ significance) and the vertical metallicity gradient is ‑0.102 ± 0.099 dex kpc‑1 (1σ significance) that comply with the latest inside-out thin disk formation models, including those with stellar migration taken into account. Based on observations collected with the 1.65 m telescope and VUES spectrograph at the Molėtai Astronomical Observatory of Institute of Theoretical Physics and Astronomy, Vilnius University, for the SPFOT survey.

  1. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  2. Applications of the k – ω Model in Stellar Evolutionary Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan, E-mail: ly@ynao.ac.cn

    The k – ω model for turbulence was first proposed by Kolmogorov. A new k – ω model for stellar convection was developed by Li, which could reasonably describe turbulent convection not only in the convectively unstable zone, but also in the overshooting regions. We revised the k – ω model by improving several model assumptions (including the macro-length of turbulence, convective heat flux, and turbulent mixing diffusivity, etc.), making it applicable not only for convective envelopes, but also for convective cores. Eight parameters are introduced in the revised k – ω model. It should be noted that the Reynoldsmore » stress (turbulent pressure) is neglected in the equation of hydrostatic support. We applied it into solar models and 5 M {sub ⊙} stellar models to calibrate the eight model parameters, as well as to investigate the effects of the convective overshooting on the Sun and intermediate mass stellar models.« less

  3. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  4. Time evolution of high-energy emissions of low-mass stars. I. Age determination using stellar chronology with white dwarfs in wide binaries

    NASA Astrophysics Data System (ADS)

    Garcés, A.; Catalán, S.; Ribas, I.

    2011-07-01

    Context. Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims: We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods: We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, low-resolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results: The spectroscopic observations have allowed us to determine ages for the binary systems using WDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions: We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Based on observations made with the WHT (William Herschel Telescope) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  5. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  6. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  7. Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants

    NASA Astrophysics Data System (ADS)

    Ho, Anna Y. Q.; Ness, Melissa K.; Hogg, David W.; Rix, Hans-Walter; Liu, Chao; Yang, Fan; Zhang, Yong; Hou, Yonghui; Wang, Yuefei

    2017-02-01

    In this era of large-scale spectroscopic stellar surveys, measurements of stellar attributes (“labels,” I.e., parameters and abundances) must be made precise and consistent across surveys. Here, we demonstrate that this can be achieved by a data-driven approach to spectral modeling. With The Cannon, we transfer information from the APOGEE survey to determine precise {T}{eff}, {log} {\\text{}}g, [{Fe}/{{H}}], and [α /{{M}}] from the spectra of 450,000 LAMOST giants. The Cannon fits a predictive model for LAMOST spectra using 9952 stars observed in common between the two surveys, taking five labels from APOGEE DR12 as ground truth {T}{eff}, {log} {\\text{}}g, [{Fe}/{{H}}], [α /{{M}}], and K-band extinction {A}{{k}}. The model is then used to infer {T}{eff}, {log} {\\text{}}g, [{Fe}/{{H}}], and [α /{{M}}] for 454,180 giants, 20% of the LAMOST DR2 stellar sample. These are the first [α /{{M}}] values for the full set of LAMOST giants, and the largest catalog of [α /{{M}}] for giant stars to date. Furthermore, these labels are by construction on the APOGEE label scale; for spectra with S/N > 50, cross-validation of the model yields typical uncertainties of 70 K in {T}{eff}, 0.1 in {log} {\\text{}}g, 0.1 in [{Fe}/{{H}}], and 0.04 in [α /{{M}}], values comparable to the broadly stated, conservative APOGEE DR12 uncertainties. Thus, by using “label transfer” to tie low-resolution (LAMOST R ≈ 1800) spectra to the label scale of a much higher-resolution (APOGEE R ≈ 22,500) survey, we substantially reduce the inconsistencies between labels measured by the individual survey pipelines. This demonstrates that label transfer with The Cannon can successfully bring different surveys onto the same physical scale.

  8. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  9. The local stellar velocity distribution of the Galaxy. Galactic structure and potential

    NASA Astrophysics Data System (ADS)

    Bienaymé, O.

    1999-01-01

    The velocity distribution of neighbouring stars is deduced from the Hipparcos proper motions. We have used a classical Schwarzschild decomposition and also developed a dynamical model for quasi-exponential stellar discs. This model is a 3-D derivation of Shu's model in the framework of Stäckel potentials with three integrals of motion. We determine the solar motion relative to the local standard of rest (LSR) (U_sun=9.7+/-0.3kms , V_sun=5.2+/-1.0kms and W_sun=6.7+/-0.2kms ), the density and kinematic radial gradients, as well as the local slope of the velocity curve. We find out that the scale density length of the Galaxy is 1.8+/-0.2kpc . We measure a large kinematic scale length for blue (young) stars, R_{sigma_r }=17+/-4kpc , while for red stars (predominantly old) we find R_{sigma_r }=9.7+/-0.8kpc (or R_{sigma_r (2}=4.8+/-0.4kpc ) ). From the stellar disc dynamical model, we determine explicitly the link between the tangential-vertical velocity (v_theta , v_z) coupling and the local shape of the potential. Using a restricted sample of 3-D velocity data, we measure z_o, the focus of the spheroidal coordinate system defining the best fitted Stäckel potential. The parameter z_o is related to the tilt of the velocity ellipsoid and more fundamentally to the mass gradient in the galactic disc. This parameter is found to be 5.7+/-1.4kpc . This implies that the galactic potential is not extremely flat and that the dark matter component is not confined in the galactic plane. Based on data from the Hipparcos astrometry satellite.

  10. New Teff and [Fe/H] spectroscopic calibration for FGK dwarfs and GK giants

    NASA Astrophysics Data System (ADS)

    Teixeira, G. D. C.; Sousa, S. G.; Tsantaki, M.; Monteiro, M. J. P. F. G.; Santos, N. C.; Israelian, G.

    2016-10-01

    Context. The ever-growing number of large spectroscopic survey programs has increased the importance of fast and reliable methods with which to determine precise stellar parameters. Some of these methods are highly dependent on correct spectroscopic calibrations. Aims: The goal of this work is to obtain a new spectroscopic calibration for a fast estimate of Teff and [Fe/H] for a wide range of stellar spectral types. Methods: We used spectra from a joint sample of 708 stars, compiled from 451 FGK dwarfs and 257 GK-giant stars. We used homogeneously determined spectroscopic stellar parameters to derive temperature calibrations using a set of selected EW line-ratios, and [Fe/H] calibrations using a set of selected Fe I lines. Results: We have derived 322 EW line-ratios and 100 Fe I lines that can be used to compute Teff and [Fe/H], respectively. We show that these calibrations are effective for FGK dwarfs and GK-giant stars in the following ranges: 4500 K

  11. StarHorse: a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars

    NASA Astrophysics Data System (ADS)

    Queiroz, A. B. A.; Anders, F.; Santiago, B. X.; Chiappini, C.; Steinmetz, M.; Dal Ponte, M.; Stassun, K. G.; da Costa, L. N.; Maia, M. A. G.; Crestani, J.; Beers, T. C.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Roman-Lopes, A.; Zamora, O.

    2018-05-01

    Understanding the formation and evolution of our Galaxy requires accurate distances, ages, and chemistry for large populations of field stars. Here, we present several updates to our spectrophotometric distance code, which can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectrophotometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called StarHorse) can accommodate different observational data sets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known Gaia-like parallaxes. The typical internal precisions (obtained from realistic simulations of an APOGEE+Gaia-like sample) are {˜eq } 8 {per cent} in distance, {˜eq } 20 {per cent} in age, {˜eq } 6 {per cent} in mass, and ≃ 0.04 mag in AV. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of {˜eq } [0,2] {per cent} for distances, {˜eq } [12,31] {per cent} for ages, {˜eq } [4,12] {per cent} for masses, and ≃ 0.07 mag for AV. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3, and GALAH DR1 catalogues.

  12. Revived STIS. II. Properties of Stars in the Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.

    2010-01-01

    Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.

  13. On the Red Giant Branch: Ambiguity in the Surface Boundary Condition Leads to ≈100 K Uncertainty in Model Effective Temperatures

    NASA Astrophysics Data System (ADS)

    Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Ting, Yuan-Sen

    2018-06-01

    The effective temperature (T eff) distribution of stellar evolution models along the red giant branch (RGB) is sensitive to a number of parameters including the overall metallicity, elemental abundance patterns, the efficiency of convection, and the treatment of the surface boundary condition (BC). Recently there has been interest in using observational estimates of the RGB T eff to place constraints on the mixing length parameter, α MLT, and possible variation with metallicity. Here we use 1D Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution models to explore the sensitivity of the RGB T eff to the treatment of the surface BC. We find that different surface BCs can lead to ±100 K metallicity-dependent offsets on the RGB relative to one another in spite of the fact that all models can reproduce the properties of the Sun. Moreover, for a given atmosphere T–τ relation, we find that the RGB T eff is also sensitive to the optical depth at which the surface BC is applied in the stellar model. Nearly all models adopt the photosphere as the location of the surface BC, but this choice is somewhat arbitrary. We compare our models to stellar parameters derived from the APOGEE-Kepler sample of first ascent red giants and find that systematic uncertainties in the models due to treatment of the surface BC place a limit of ≈100 K below which it is not possible to make firm conclusions regarding the fidelity of the current generation of stellar models.

  14. A Pipeline for the Analysis of APOGEE Spectra Based on Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Arfon Williams, Rob; Bosley, Corinne; Jones, Hayden; Schiavon, Ricardo P.; Allende-Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia M. L.; Nguyen, Duy; Feuillet, Diane; Frinchaboy, Peter M.; García Pérez, Ana; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Majewski, Steven R.; Meszaros, Szabolcs; Nidever, David L.; Shetrone, Matthew D.; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas William; Wilson, John C.; Zasowski, Gail

    2015-01-01

    The Apache Point Galactic Evolution Experiment (APOGEE) forms part of the third Sloan Digital Sky Survey and has obtained high resolution, high signal-to-noise infrared spectra for ~1.3 x 105 stars across the galactic bulge, disc and halo. From these, stellar parameters are derived together with abundances for various elements using the APOGEE Stellar Parameters and Chemical Abundance Pipeline (ASPCAP). In this poster we report preliminary results from application of an alternative stellar parameters and abundances pipeline, based on measurements of equivalent widths of absorption lines in APOGEE spectra. The method is based on a sequential grid inversion algorithm, originally designed for the derivation of ages and elemental abundances of stellar populations from line indices in their integrated spectra. It allows for the rapid processing of large spectroscopic data sets from both current and future surveys, such as APOGEE and APOGEE 2, and it is easily adaptable for application to other very large data sets that are being/will be generated by other massive surveys of the stellar populations of the Galaxy. It will also allow the cross checking of ASPCAP results using an independent method. In this poster we present preliminary results showing estimates of effective temperature and iron abundance [Fe/H] for a subset of the APOGEE sample, comparing with DR12 numbers produced by the ASPCAP pipeline.

  15. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    NASA Technical Reports Server (NTRS)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  16. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca II, and Na I lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca II-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high values typical of optically thin emission, suggesting that the Balmer emission originates in different parts of the accretion funnels with a smaller optical depth. Based on observations collected at the Very Large Telescope of the European Southern Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A), 089.C-0143(A), 095.C-0134(A), 097.C-0349(A), and archive data of programmes 085.C-0764(A) and 093.C-0506(A). Tables 1-3 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A33

  17. Evaluation of parameters of Black Hole, stellar cluster and dark matter distribution from bright star orbits in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zakharov, Alexander

    It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).

  18. SED Modeling of 20 Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.

  19. Chemical composition of δ Scuti stars: 1. AO CVn, CP Boo, KW Aur

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Ivanova, D. V.; Shimansky, V. V.; Bikmaev, I. F.

    2012-11-01

    We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three δ Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6-0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.

  20. VizieR Online Data Catalog: Fundamental parameters of Kepler stars (Silva Aguirre+, 2015)

    NASA Astrophysics Data System (ADS)

    Silva Aguirre, V.; Davies, G. R.; Basu, S.; Christensen-Dalsgaard, J.; Creevey, O.; Metcalfe, T. S.; Bedding, T. R.; Casagrande, L.; Handberg, R.; Lund, M. N.; Nissen, P. E.; Chaplin, W. J.; Huber, D.; Serenelli, A. M.; Stello, D.; van Eylen, V.; Campante, T. L.; Elsworth, Y.; Gilliland, R. L.; Hekker, S.; Karoff, C.; Kawaler, S. D.; Kjeldsen, H.; Lundkvist, M. S.

    2016-02-01

    Our sample has been extracted from the 77 exoplanet host stars presented in Huber et al. (2013, Cat. J/ApJ/767/127). We have made use of the full time-base of observations from the Kepler satellite to uniformly determine precise fundamental stellar parameters, including ages, for a sample of exoplanet host stars where high-quality asteroseismic data were available. We devised a Bayesian procedure flexible in its input and applied it to different grids of models to study systematics from input physics and extract statistically robust properties for all stars. (4 data files).

  1. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  2. Solving the Mystery of Galaxy Bulges and Bulge Substructure

    NASA Astrophysics Data System (ADS)

    Erwin, Peter

    2017-08-01

    Understanding galaxy bulges is crucial for understanding galaxy evolution and the growth of supermassive black holes (SMBHs). Recent studies have shown that at least some - perhaps most - disk-galaxy bulges are actually composite structures, with both classical-bulge (spheroid) and pseudobulge (disky) components; this calls into question the standard practice of using simple, low-resolution bulge/disk decompositions to determine spheroid and SMBH mass functions. We propose WFC3 optical and near-IR imaging of a volume- and mass-limited sample of local disk galaxies to determine the full range of pure-classical, pure-pseudobulge, and composite-bulge frequencies and parameters, including stellar masses for classical bulges, disky pseudobulges, and boxy/peanut-shaped bulges. We will combine this with ground-based spectroscopy to determine the stellar-kinematic and population characteristics of the different substructures revealed by our WFC3 imaging. This will help resolve growing uncertainties about the status and nature of bulges and their relation to SMBH masses, and will provide an essential local-universe reference for understanding bulge (and SMBH) formation and evolution.

  3. Improving 1D Stellar Models with 3D Atmospheres

    NASA Astrophysics Data System (ADS)

    Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  4. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca

    2013-10-01

    Large astronomical facilities usually provide data reduction pipeline designed to deliver ready-to-use scientific data, and too often as- tronomers are relying on this to avoid the most difficult part of an astronomer job Standard data reduction pipelines however are usu- ally designed and tested to have good performance on data with av- erage Signal to Noise Ratio (SNR) data, and the issues that are related with the reduction of data in the very low SNR domain are not taken int account properly. As a result, informations in data with low SNR are not optimally exploited. During the last decade our group has collected thousands of spec- tra using the GIRAFFE spectrograph at Very Large Telescope (Chile) of the European Southern Observatory (ESO) to determine the ge- ometrical distance and dynamical state of several Galactic Globular Clusters but ultimately the analysis has been hampered by system- atics in data reduction, calibration and radial velocity measurements. Moreover these data has never been exploited to get other informa- tions like temperature and metallicity of stars, because considered too noisy for these kind of analyses. In this thesis we focus our attention on data reduction and analysis of spectra with very low SNR. The dataset we analyze in this thesis comprises 7250 spectra for 2771 stars of the Globular Cluster M 4 (NGC 6121) in the wavelength region 5145-5360Å obtained with GIRAFFE. Stars from the upper Red Giant Branch down to the Main Sequence have been observed in very different conditions, including nights close to full moon, and reaching SNR - 10 for many spectra in the dataset. We will first review the basic steps of data reduction and spec- tral extraction, adapting techniques well tested in other field (like photometry) but still under-developed in spectroscopy. We improve the wavelength dispersion solution and the correction of radial veloc- ity shift between day-time calibrations and science observations by following a completely different approach with respect to the ESO pipeline. We then analyze deeply the best way to perform sky sub- traction and continuum normalization, the most important sources respectively of noise and systematics in radial velocity determination and chemical analysis of spectra. The huge number of spectra of our dataset requires an automatic but robust approach, which we do not fail to provide. We finally determine radial velocities for the stars in the sample with unprecedented precision with respect to previous works with similar data and we recover the same stellar atmosphere parameters of other studies performed on the same cluster but on brighter stars, with higher spectral resolution and wavelength range ten times larger than our data. In the final chapter of the thesis we face a similar problem but from a completely different perspective. High resolution, high SNR data from the High Accuracy Radial Velocity Planet Searcher spectro- graph (HARPS) in La Silla (Chile) have been used to calibrate the at- mospheric stellar parameters as functions of the main characteristics of Cross-Correlation Functions, specifically built by including spec- tral lines with different sensitivity to stellar atmosphere parameters. These tools has been designed to be quick and to be easy to imple- ment in a instrument pipeline for a real-time determination, neverthe- less they provide accurate parameters even for lower SNR spectra.

  5. Chemical element transport in stellar evolution models

    PubMed Central

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972

  6. Chemical element transport in stellar evolution models.

    PubMed

    Salaris, Maurizio; Cassisi, Santi

    2017-08-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  7. The GAPS programme with HARPS-N at TNG. XVI. Measurement of the Rossiter-McLaughlin effect of transiting planetary systems HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Esposito, M.; Covino, E.; Southworth, J.; Biazzo, K.; Bruni, I.; Ciceri, S.; Evans, D.; Lanza, A. F.; Poretti, E.; Sarkis, P.; Smith, A. M. S.; Brogi, M.; Affer, L.; Benatti, S.; Bignamini, A.; Boccato, C.; Bonomo, A. S.; Borsa, F.; Carleo, I.; Claudi, R.; Cosentino, R.; Damasso, M.; Desidera, S.; Giacobbe, P.; González-Álvarez, E.; Gratton, R.; Harutyunyan, A.; Leto, G.; Maggio, A.; Malavolta, L.; Maldonado, J.; Martinez-Fiorenzano, A.; Masiero, S.; Micela, G.; Molinari, E.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.; Smareglia, R.; Sozzetti, A.; Andreuzzi, G.; Henning, Th.

    2018-05-01

    Context. The measurement of the orbital obliquity of hot Jupiters with different physical characteristics can provide clues to the mechanisms of migration and orbital evolution of this particular class of giant exoplanets. Aims: We aim to derive the degree of alignment between planetary orbit and stellar spin angular momentum vectors and look for possible links with other orbital and fundamental physical parameters of the star-planet system. We focus on the characterisation of five transiting planetary systems (HAT-P-3, HAT-P-12, HAT-P-22, WASP-39, and WASP-60) and the determination of their sky-projected planet orbital obliquity through the measurement of the Rossiter-McLaughlin effect. Methods: We used HARPS-N high-precision radial velocity measurements, gathered during transit events, to measure the Rossiter-McLaughlin effect in the target systems and determine the sky-projected angle between the planetary orbital plane and stellar equator. The characterisation of stellar atmospheric parameters was performed by exploiting the HARPS-N spectra, using line equivalent width ratios and spectral synthesis methods. Photometric parameters of the five transiting exoplanets were re-analysed through 17 new light curves, obtained with an array of medium-class telescopes, and other light curves from the literature. Survey-time-series photometric data were analysed for determining the rotation periods of the five stars and their spin inclination. Results: From the analysis of the Rossiter-McLaughlin effect we derived a sky-projected obliquity of λ = 21.2° ± 8.7°, λ = -54°-13°+41°, λ = -2.1° ± 3.0°, λ = 0° ± 11°, and λ = -129° ± 17° for HAT-P-3 b, HAT-P-12 b, HAT-P-22 b, WASP-39 b, and WASP-60 b, respectively. The latter value indicates that WASP-60 b is moving on a retrograde orbit. These values represent the first measurements of λ for the five exoplanetary systems under study. The stellar activity of HAT-P-22 indicates a rotation period of 28.7 ± 0.4 days, which allowed us to estimate the true misalignment angle of HAT-P-22 b, ψ = 24° ± 18°. The revision of the physical parameters of the five exoplanetary systems returned values that are fully compatible with those existing in the literature. The exception to this is the WASP-60 system, for which, based on higher quality spectroscopic and photometric data, we found a more massive and younger star and a larger and hotter planet. Tables of the light curve and radial velocity data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A41

  8. Physical Orbit for λ Virginis and a Test of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Monnier, J. D.; Torres, G.; Boden, A. F.; Claret, A.; Millan-Gabet, R.; Pedretti, E.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Carleton, N. P.; Kern, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.

    2007-04-01

    The star λ Virginis is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. We present combined interferometric and spectroscopic studies of λ Vir. The small scale of the λ Vir orbit (~20 mas) is well resolved by the Infrared Optical Telescope Array (IOTA), allowing us to determine its elements, as well as the physical properties of the components, to high accuracy. The masses of the two stars are determined to be 1.897 and 1.721 Msolar, with 0.7% and 1.5% errors, respectively, and the two stars are found to have the same temperature of 8280+/-200 K. The accurately determined properties of λ Vir allow comparisons between observations and current stellar evolution models, and reasonable matches are found. The best-fit stellar model gives λ Vir a subsolar metallicity of Z=0.0097 and an age of 935 Myr. The orbital and physical parameters of λ Vir also allow us to study its tidal evolution timescales and status. Although atomic diffusion is currently considered to be the most plausible cause of the Am phenomenon, the issue is still being actively debated in the literature. With the present study of the properties and evolutionary status of λ Vir, this system is an ideal candidate for further detailed abundance analyses that might shed more light on the source of the chemical anomalies in these A stars.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Jason W.; Linscott, Ethan; Shporer, Avi, E-mail: jwbarnes@uidaho.edu

    We model the asymmetry of the KOI-13.01 transit lightcurve assuming a gravity-darkened rapidly rotating host star in order to constrain the system's spin-orbit alignment and transit parameters. We find that our model can reproduce the Kepler lightcurve for KOI-13.01 with a sky-projected alignment of {lambda} = 23 Degree-Sign {+-} 4 Degree-Sign and with the star's north pole tilted away from the observer by 48 Degree-Sign {+-} 4 Degree-Sign (assuming M{sub *} = 2.05 M{sub Sun }). With both these determinations, we calculate that the net misalignment between this planet's orbit normal and its star's rotational pole is 56 Degree-Sign {+-}more » 4 Degree-Sign . Degeneracies in our geometric interpretation also allow a retrograde spin-orbit angle of 124 Degree-Sign {+-} 4 Degree-Sign . This is the first spin-orbit measurement to come from gravity darkening and is one of only a few measurements of the full (not just the sky-projected) spin-orbit misalignment of an extrasolar planet. We also measure accurate transit parameters incorporating stellar oblateness and gravity darkening: R{sub *} 1.756 {+-} 0.014 R{sub Sun }, R{sub p} = 1.445 {+-} 0.016 R{sub Jup}, and i = 85.{sup 0}9 {+-} 0.{sup 0}4. The new lower planetary radius falls within the planetary mass regime for plausible interior models for the transiting body. A simple initial calculation shows that KOI-13.01's circular orbit is apparently inconsistent with the Kozai mechanism having driven its spin-orbit misalignment; planet-planet scattering and stellar spin migration remain viable mechanisms. Future Kepler data will improve the precision of the KOI-13.01 transit lightcurve, allowing more precise determination of transit parameters and the opportunity to use the Photometric Rossiter-McLaughlin effect to resolve the prograde/retrograde orbit determination degeneracy.« less

  10. Tutorial: Measuring Stellar Atmospheric Parameters with ARES+MOOG

    NASA Astrophysics Data System (ADS)

    Sousa, Sérgio G.; Andreasen, Daniel T.

    The technical aspects of using an Equivalent Width (EW) method for the derivation of spectroscopic stellar parameters with ares+ moog are described herein. While the science background to this method can be found in numerous references, the goal here is to provide a user-friendly guide to the several codes and scripts used in the tutorial presented at the School. All the required data have been made available online at the following repository: https://github.com/sousasag/school_codes.

  11. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    NASA Astrophysics Data System (ADS)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth

    2016-10-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion-mass relation. Our method is open source and freely available for the community to use.6

  12. The peculiar globular cluster Palomar 1 and persistence in the SDSS-APOGEE data base

    NASA Astrophysics Data System (ADS)

    Jahandar, Farbod; Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike; Bovy, Jo; Sakari, Charli M.; Kielty, Collin L.; Digby, Ruth A. R.; Frinchaboy, Peter M.

    2017-10-01

    The Sloan Digital Sky Survey-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 12 (DR12) is a unique resource to search for stars beyond the tidal radii of star clusters. We have examined the APOGEE DR12 data base for new candidates of the young star cluster Palomar 1 (Pal 1), a system with previously reported tidal tails (Niederste-Ostholt et al. 2010). The APOGEE Stellar Parameters and Chemical Abundances Pipeline data base includes spectra and stellar parameters for two known members of Pal 1 (Stars I and II), however these do not agree with the stellar parameters determined from optical spectra by Sakari et al. (2011). We find that the APOGEE analysis of these two stars is strongly affected by the known persistence problem (Majewski et al. 2015; Nidever et al. 2015). By re-examining the individual visits, and removing the blue (and sometimes green) APOGEE detector spectra affected by persistence, then we find excellent agreement in a re-analysis of the combined spectra. These methods are applied to another five stars in the APOGEE field with similar radial velocities and metallicities as those of Pal 1. Only one of these new candidates, Star F, may be a member located in the tidal tail based on its heliocentric radial velocity, metallicity and chemistry. The other four candidates are not well aligned with the tidal tails, and comparison to the Besançon model (Robin et al. 2003) suggests that they are more likely to be non-members, I.e. part of the Galactic halo. This APOGEE field could be re-examined for other new candidates if the persistence problem can be removed from the APOGEE spectral data base.

  13. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  14. On the importance of using appropriate spectral models to derive physical properties of galaxies at 0.7 < z < 2.8

    NASA Astrophysics Data System (ADS)

    Pacifici, Camilla; da Cunha, Elisabete; Charlot, Stéphane; Rix, Hans-Walter; Fumagalli, Mattia; Wel, Arjen van der; Franx, Marijn; Maseda, Michael V.; van Dokkum, Pieter G.; Brammer, Gabriel B.; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine; Leja, Joel; Lundgren, Britt; Kassin, Susan A.; Yi, Sukyoung K.

    2015-02-01

    Interpreting observations of distant galaxies in terms of constraints on physical parameters - such as stellar mass (M★), star formation rate (SFR) and dust optical depth ({hat{τ}V}) - requires spectral synthesis modelling. We analyse the reliability of these physical parameters as determined under commonly adopted `classical' assumptions: star formation histories assumed to be exponentially declining functions of time, a simple dust law and no emission-line contribution. Improved modelling techniques and data quality now allow us to use a more sophisticated approach, including realistic star formation histories, combined with modern prescriptions for dust attenuation and nebular emission. We present a Bayesian analysis of the spectra and multiwavelength photometry of 1048 galaxies from the 3D-HST survey in the redshift range 0.7 < z < 2.8 and in the stellar mass range 9 ≲ log (M★/M⊙) ≲ 12. We find that, using the classical spectral library, stellar masses are systematically overestimated (˜0.1 dex) and SFRs are systematically underestimated (˜0.6 dex) relative to our more sophisticated approach. We also find that the simultaneous fit of photometric fluxes and emission-line equivalent widths helps break a degeneracy between SFR and {hat{τ}V}, reducing the uncertainties on these parameters. Finally, we show how the biases of classical approaches can affect the correlation between M★ and SFR for star-forming galaxies (the `star-formation main sequence'). We conclude that the normalization, slope and scatter of this relation strongly depend on the adopted approach and demonstrate that the classical, oversimplified approach cannot recover the true distribution of M★ and SFR.

  15. Demonstration of a Novel Method for Measuring Mass-loss Rates for Massive Stars

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Chick, William T.; Povich, Matthew S.

    2018-03-01

    The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolution. We employ an unexploited observational technique for measuring the mass-loss rates of O and early-B stars. Our approach, which has no adjustable parameters, uses the principle of pressure equilibrium between the stellar wind and the ambient interstellar medium for a high-velocity star generating an infrared bow shock nebula. Results for 20 bow-shock-generating stars show good agreement with two sets of theoretical predictions for O5–O9.5 main-sequence stars, yielding \\dot{M} = 1.3 × 10‑6 to 2 × 10‑9 {M}ȯ {yr}}-1. Although \\dot{M} values derived for this sample are smaller than theoretical expectations by a factor of about two, this discrepancy is greatly reduced compared to canonical mass-loss methods. Bow-shock-derived mass-loss rates are factors of 10 smaller than Hα-based measurements (uncorrected for clumping) for similar stellar types and are nearly an order of magnitude larger than P4+ and some other diagnostics based on UV absorption lines. Ambient interstellar densities of at least several cm‑3 appear to be required for formation of a prominent infrared bow shock nebula. Measurements of \\dot{M} for early-B stars are not yet compelling owing to the small number in our sample and the lack of clear theoretical predictions in the regime of lower stellar luminosities. These results may constitute a partial resolution of the extant “weak-wind problem” for late-O stars. The technique shows promise for determining mass-loss rates in the weak-wind regime.

  16. VizieR Online Data Catalog: ATLAS3D Project. XXX (McDermid+, 2015)

    NASA Astrophysics Data System (ADS)

    McDermid, R. M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; Crocker, A. F.; Davies, R. L.; Davis, T. A.; De Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.-M.; Young, L. M.

    2015-09-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, Rmaje), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 percent of all stars formed within the first 2Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5M⊙), which themselves formed 90 percent of their stars by z~2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions. (4 data files).

  17. Stellar Parameters for Trappist-1

    NASA Astrophysics Data System (ADS)

    Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.

    2018-01-01

    TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.

  18. VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.

    2015-06-01

    The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).

  19. Absolute Dimensions and Evolutionary Status of the Semi-detached Algol W Ursae Minoris

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ho; Hong, Kyeongsoo; Koo, Jae-Rim; Lee, Jae Woo; Kim, Chun-Hwey

    2018-03-01

    Double-lined eclipsing binaries allow accurate and direct determination of fundamental parameters such as mass and radius for each component, and they provide important constraints on the stellar structure and evolution models. In this study, we aim to determine a unique set of binary parameters for the Algol system W UMi and to examine its evolutionary status. New high-resolution time-series spectroscopic observations were carried out during 14 nights from 2008 April to 2011 March, and a total of 37 spectra were obtained using the Bohyunsan Optical Echelle Spectrograph. We measured the radial velocities (RVs) for both components, and the effective temperature of the primary star was found to be T eff,1 = 9310 ± 90 K by a comparison of the observed spectra and the Kurucz models. The physical parameters of W UMi were derived by an analysis of our RV data together with the multi-band light curves of Devinney et al. The individual masses, radii, and luminosities of both components are M 1 = 3.68 ± 0.10 M ⊙ and M 2 = 1.47 ± 0.04 M ⊙, R 1 = 3.88 ± 0.03 R ⊙ and R 2 = 3.13 ± 0.03 R ⊙, and L 1 = 102 ± 1 L ⊙ and L 2 = 7.3 ± 0.1 L ⊙, respectively. A comparison of these parameters with theoretical stellar models showed that the primary component lies in the main-sequence band, while the less massive secondary is noticeably evolved. The results indicate that the initially more massive star became the present secondary by losing most of its own mass via mass transfer to the companion (present primary).

  20. FliPer: checking the reliability of global seismic parameters from automatic pipelines

    NASA Astrophysics Data System (ADS)

    Bugnet, L.; García, R. A.; Davies, G. R.; Mathur, S.; Corsaro, E.

    2017-12-01

    Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, \\keplerp, \\ktop, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ˜ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of \\powvar enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.

  1. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  2. Satellite accretion on to massive galaxies with central black holes

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Ma, Chung-Pei

    2007-02-01

    Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect the properties of the remnants.

  3. Stellar Gyroscope for Determining Attitude of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey

    2005-01-01

    A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.

  4. Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars

    NASA Technical Reports Server (NTRS)

    Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.

    1994-01-01

    Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.

  5. Deep SDSS optical spectroscopy of distant halo stars. I. Atmospheric parameters and stellar metallicity distribution

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernández-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Malanushenko, V.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-08-01

    Aims: We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Methods: Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with log g (cgs units) lower than 2.5. Results: An analysis of stars in the globular cluster M 13 reveals a dependence of the inferred metallicity on surface gravity for stars with log g < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A7

  6. Characterization of members to stellar kinematic groups using chemical tagging

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.

    2014-10-01

    In this thesis we have characterized more than one thousand late-type stars. For this characterization we have been making use of high resolution spectroscopy (R > 40,000) taken in different spectrographs, HERMES at the Mercator telescope in La Palma, FOCES in the 2.2m telescope at Calar Alto, the Coudé-Echelle spectrograph at 2 m-the Alfred- Jensch-Teleskop in Tautenburg, and UVES at the Very Large Telescope in La Silla. Stellar spectroscopy, in particular at high-resolution, is a modern tool that allows us to extract a lot of information of a given star. In particular, we have obtained their atmospheric parameters, namely: effective temperature (Teff), surface gravity (log g), microturbulent velocity (ξ), and iron abundance ([Fe/H], used as a metallicity proxy). An automatic code (StePar) has been developed. This code allows to derive stellar atmospheric parameters (Teff , log g, ξ, and [Fe/H]) only in a few minutes. Also, with these parameters at hand we have derived chemical abundances for 20 different chemical elements: Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, Ce, and Nd, which offer many or at least some isolated transitions in the wavelength range of the spectra taken with these spectrographs. This work comprises two publications in Astronomy & Astrophysics. The first one is about chemical tagging applied to the Hyades SC (see Chapter 2 or Tabernero et al. 2012). The second paper is a in-depth study of the chemical composition of candidate members to the Ursa Major MG (see Chapter 3 or Tabernero et al. 2015). Additionally there is another chapter that comprises the analysis of Galactic stars within the GAIA ESO Survey stars (GES, Gilmore et al. 2012; Randich & Gilmore 2013) whose data have contributed to the publication of some release (Lanzafame et al. 2014; Smiljanic et al. 2014) and science papers (Jofre et al. 2014; Sousa et al. 2014; Spina et al. 2014a,b) that made use the survey results. The two papers included in this thesis deal with the characterization of late-type stars (F, G, and K spectral types). In particular, this thesis is based on the determination of stellar atmospheric parameters and element abundances.

  7. Statistical errors and systematic biases in the calibration of the convective core overshooting with eclipsing binaries. A case study: TZ Fornacis

    NASA Astrophysics Data System (ADS)

    Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2017-04-01

    Context. Recently published work has made high-precision fundamental parameters available for the binary system TZ Fornacis, making it an ideal target for the calibration of stellar models. Aims: Relying on these observations, we attempt to constrain the initial helium abundance, the age and the efficiency of the convective core overshooting. Our main aim is in pointing out the biases in the results due to not accounting for some sources of uncertainty. Methods: We adopt the SCEPtER pipeline, a maximum likelihood technique based on fine grids of stellar models computed for various values of metallicity, initial helium abundance and overshooting efficiency by means of two independent stellar evolutionary codes, namely FRANEC and MESA. Results: Beside the degeneracy between the estimated age and overshooting efficiency, we found the existence of multiple independent groups of solutions. The best one suggests a system of age 1.10 ± 0.07 Gyr composed of a primary star in the central helium burning stage and a secondary in the sub-giant branch (SGB). The resulting initial helium abundance is consistent with a helium-to-metal enrichment ratio of ΔY/ ΔZ = 1; the core overshooting parameter is β = 0.15 ± 0.01 for FRANEC and fov = 0.013 ± 0.001 for MESA. The second class of solutions, characterised by a worse goodness-of-fit, still suggest a primary star in the central helium-burning stage but a secondary in the overall contraction phase, at the end of the main sequence (MS). In this case, the FRANEC grid provides an age of Gyr and a core overshooting parameter , while the MESA grid gives 1.23 ± 0.03 Gyr and fov = 0.025 ± 0.003. We analyse the impact on the results of a larger, but typical, mass uncertainty and of neglecting the uncertainty in the initial helium content of the system. We show that very precise mass determinations with uncertainty of a few thousandths of solar mass are required to obtain reliable determinations of stellar parameters, as mass errors larger than approximately 1% lead to estimates that are not only less precise but also biased. Moreover, we show that a fit obtained with a grid of models computed at a fixed ΔY/ ΔZ - thus neglecting the current uncertainty in the initial helium content of the system - can provide severely biased age and overshooting estimates. The possibility of independent overshooting efficiencies for the two stars of the system is also explored. Conclusions: The present analysis confirms that to constrain the core overshooting parameter by means of binary systems is a very difficult task that requires an observational precision still rarely achieved and a robust statistical treatment of the error sources.

  8. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos

    2012-11-19

    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperaturemore » estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.« less

  9. On the determination of the number of O stars in H II regions and starburst galaxies

    NASA Technical Reports Server (NTRS)

    Vacca, William D.

    1994-01-01

    The hot star population in H II regions, H II galaxies, and starburst galaxies is often described in terms of the number of 'equivalent' O stars of a single representative subtype and luminosity class needed to produce the ionizing luminosity deduced from the nebular recombination lines in the optical spectra. In this paper we define conversion factors eta(sub 0), eta(sub 1), and zeta(sub 5000) with which the total number of O V stars and their flux contribution at 5000 A can be derived from the number of these 'equivalent' stars. These quantities depend primarily on three parameters: the slope and upper mass limit of the stellar mass function and the metallicity of the region. Using the latest stellar atmosphere and evolution models, we calculate eta(sub 0), eta(sub 1), and zeta(sub 5000) for a large number of values of these parameters. The results are presented in tabular as well as graphical form. We apply our results to two H II regions for which the hot star population are known and find that the predicted numbers of O stars agree well the observed counts. In addition, we describe a method by which the values of eta(sub 0) and eta(sub 1) and the observed emission-line fluxes can be used to place constraints on the allowed values of the slope and upper mass limit of the stellar mass function in a region.

  10. Two-component Jaffe models with a central black hole - I. The spherical case

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Ziaee Lorzad, Azadeh

    2018-02-01

    Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.

  11. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  12. RR Lyrae in the UMi dSph Galaxy

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles; Kinemuchi, Karen; Jeffery, Elizabeth; Grabowski, Kathleen; Nemec, James; Herrera, Daniel

    2018-01-01

    Over the past two years we have obtained observations of the Ursa Minor dwarf spheroidal galaxy with the goal of completing an updated catalog of the variable stars in the dwarf galaxy. In addition to finding new variable stars, this updated catalog will allow us to look at period changes in the variables and to determine stellar characteristic for the RR Lyrae stars in the dSph. We will compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies; these comparisons can give us insights to the near-field cosmology of the Local Group. In this poster we present our updated catalog of RR Lyrae stars in the UMi dSph; the updated catalog includes Fourier decomposition parameters, metallicities, and other physical properties for the RR Lyrae stars.

  13. On the estimation of stellar parameters with uncertainty prediction from Generative Artificial Neural Networks: application to Gaia RVS simulated spectra

    NASA Astrophysics Data System (ADS)

    Dafonte, C.; Fustes, D.; Manteiga, M.; Garabato, D.; Álvarez, M. A.; Ulla, A.; Allende Prieto, C.

    2016-10-01

    Aims: We present an innovative artificial neural network (ANN) architecture, called Generative ANN (GANN), that computes the forward model, that is it learns the function that relates the unknown outputs (stellar atmospheric parameters, in this case) to the given inputs (spectra). Such a model can be integrated in a Bayesian framework to estimate the posterior distribution of the outputs. Methods: The architecture of the GANN follows the same scheme as a normal ANN, but with the inputs and outputs inverted. We train the network with the set of atmospheric parameters (Teff, log g, [Fe/H] and [α/ Fe]), obtaining the stellar spectra for such inputs. The residuals between the spectra in the grid and the estimated spectra are minimized using a validation dataset to keep solutions as general as possible. Results: The performance of both conventional ANNs and GANNs to estimate the stellar parameters as a function of the star brightness is presented and compared for different Galactic populations. GANNs provide significantly improved parameterizations for early and intermediate spectral types with rich and intermediate metallicities. The behaviour of both algorithms is very similar for our sample of late-type stars, obtaining residuals in the derivation of [Fe/H] and [α/ Fe] below 0.1 dex for stars with Gaia magnitude Grvs < 12, which accounts for a number in the order of four million stars to be observed by the Radial Velocity Spectrograph of the Gaia satellite. Conclusions: Uncertainty estimation of computed astrophysical parameters is crucial for the validation of the parameterization itself and for the subsequent exploitation by the astronomical community. GANNs produce not only the parameters for a given spectrum, but a goodness-of-fit between the observed spectrum and the predicted one for a given set of parameters. Moreover, they allow us to obtain the full posterior distribution over the astrophysical parameters space once a noise model is assumed. This can be used for novelty detection and quality assessment.

  14. VizieR Online Data Catalog: 3.6um S4G Galactic bars characterization (Diaz-Garcia+, 2016)

    NASA Astrophysics Data System (ADS)

    Diaz-Garcia, S.; Salo, H.; Laurikainen, E.; Herrera-Endoqui, M.

    2015-11-01

    Here, we provide the bar strength measurements of a sample of ~600 barred galaxies drawn from the Spitzer Survey of Stellar Structure in Galaxies (Sheth et al., 2010, Cat. J/PASP/122/1397). Bars were identified based on the morphological classifications by Buta et al. (2015, Cat. J/ApJS/217/32). Besides, we provide a parameterization of the stellar contribution to the rotation curve and an estimate to the stellar-to-halo mass ratio within the optical radius for a sample of 1345 non-highly inclined galaxies (i<65°). The radial force profiles and rotation curve decomposition models of each of these galaxies are also given. Table A1 contains fundamental parameters of the galaxies such as the total stellar mass and distances (values for all the S4G sample are calculated in Munoz-Mateos et al., 2015ApJS..219....3M). Besides, we provide an estimate of the scale-heights and optical radii. We also list the inclination-corrected HI maximum velocities, the parameters of the stellar and halo components of the rotation curves, and the estimates of the halo-to-stellar mass ratios within the optical disk. In Table A2 it is given the gravitational torque parameters and radii, with and without spiral arms and halo correction. In Table A3 it is provided the maximum normalized Fourier amplitudes and radii (for the m = 2, 4, 6 and 8 components) and the bar ellipticities (from Herrera-Endoqui et al., 2015A&A...582A..86H) deprojected to the disk plane using the orientation parameters from S4G Pipeline 4 (Salo et al., 2015, Cat. J/ApJS/219/4). The evaluation of the gravitational torques and m=2 Fourier amplitude at the bar radius is also listed in both tables. In the directory "rfp" we provide the gravitational torque radial profiles, with and without spiral arms and halo correction, even Fourier amplitudes and m=2 phase of 1345 non-highly inclined disk S4G galaxies ("radialforce_profiles.dat"). Likewise, for the same sample, in the directory "rcdm" we tabulate the rotation curve decomposition model ("rotationcurve_decomposition.dat"), with the stellar component inferred from the 3.6~μm imaging and the halo component estimated using the universal rotation curve models). (5 data files).

  15. Empirical scaling laws for coronal heating

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1983-01-01

    The origins and uses of scaling laws in studies of stellar outer atmospheres are reviewed with particular emphasis on the properties of coronal loops. Some evidence is presented for a fundamental structuring of the solar corona and the thermodynamics of scaling laws are discussed. It is found that magnetic field-related scaling laws can be obtained by relating coronal pressure, temperature, and magnetic field strength. Available data validate this method. Some parameters of the theory, however, must be treated as adjustable, and it is considered necessary to examine data from other stars in order to determine the validity of the parameters. Using detailed observational data, the applicability of single loop models is examined.

  16. Anisotropic strange star with Tolman V potential

    NASA Astrophysics Data System (ADS)

    Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.

    In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.

  17. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  18. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  19. Binary stellar winds. [flow and magnetic field geometry

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.

  20. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  1. Know the Planet, Know the Star: Precise Stellar Parameters with Kepler

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David M.

    2017-01-01

    The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.

  2. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less

  3. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  4. Properties of six short-period massive binaries: A study of the effects of binarity on surface chemical abundances

    NASA Astrophysics Data System (ADS)

    Martins, F.; Mahy, L.; Hervé, A.

    2017-11-01

    Context. A significant percentage of massive stars are found in multiple systems. The effect of binarity on stellar evolution is poorly constrained. In particular, the role of tides and mass transfer on surface chemical abundances is not constrained observationally. Aims: The aim of this study is to investigate the effect of binarity on the stellar properties and surface abundances of massive binaries. Methods: We performed a spectroscopic analysis of six Galactic massive binaries. We obtained the spectra of individual components via a spectral disentangling method and subsequently analyzed these spectra by means of atmosphere models. The stellar parameters and CNO surface abundances were determined. Results: Most of these six systems are comprised of main-sequence stars. Three systems are detached, two are in contact, and no information is available for the sixth system. For 11 out of the 12 stars studied, the surface abundances are only mildly affected by stellar evolution and mixing. The surface abundances are not different from those of single stars within the uncertainties. The secondary of XZ Cep is strongly chemically enriched. Considering previous determinations of surface abundances in massive binary systems suggests that the effect of tides on chemical mixing is limited, whereas the mass transfer and removal of outer layers of the mass donor leads to the appearance of chemically processed material at the surface, although this is not systematic. The evolutionary masses of the components of our six systems are on average 16.5% higher than the dynamical masses. Some systems seem to have reached synchronization, while others may still be in a transitory phase. Based on observations made with the SOPHIE spectrograph on the 1.93 m telescope at Observatoire de Haute-Provence (OHP, CNRS/AMU), France.

  5. Star formation in the outskirts of DDO 154: A top-light IMF in a nearly dormant disc

    NASA Astrophysics Data System (ADS)

    Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza

    2018-04-01

    We present optical photometry of Hubble Space Telescope (HST) ACS/WFC data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence stars are almost absent from the outermost HI disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the main sequence stars to simulated stellar populations assuming a constant star formation rate over the dynamical timescale. The best-fitting IMF is deficient in high mass stars compared to a canonical Kroupa IMF, with a best-fit slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the Integrated Galaxy-wide IMF theory. Combining the HST images with HI data from The HI Nearby Galaxy Survey Treasury (THINGS) we determine the star formation law (SFL) in the outer disc. The fit has a power law exponent N = 2.92 ± 0.22 and zero point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt Star Formation Law, but consistent with weak star formation observed in diffuse HI environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in Hα. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS HI rotation curve and velocity dispersion map. 72% of the HI in our field has Q ≤ 4 and this incorporates 96% of the observed MS stars. Hence 28% of the HI in the field is largely dormant.

  6. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  7. High spectral resolution observations of HNC3 and HCCNC in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Vastel, C.; Kawaguchi, K.; Quénard, D.; Ohishi, M.; Lefloch, B.; Bachiller, R.; Müller, H. S. P.

    2018-02-01

    HCCNC and HNC3 are less commonly found isomers of cyanoacetylene, HC3N, a molecule that is widely found in diverse astronomical sources. We want to know if HNC3 is present in sources other than the dark cloud TMC-1 and how its abundance is relative to that of related molecules. We used the Astrochemical Studies At IRAM unbiased spectral survey at IRAM 30 m towards the prototypical pre-stellar core L1544 to search for HNC3 and HCCNC which are by-product of the HC3NH+ recombination, previously detected in this source. We performed a combined analysis of published HNC3 microwave rest frequencies with thus far unpublished millimetre data because of issues with available rest frequency predictions. We determined new spectroscopic parameters for HNC3, produced new predictions and detected it towards L1544. We used a gas-grain chemical modelling to predict the abundances of N-species and compare with the observations. The modelled abundances are consistent with the observations, considering a late stage of the evolution of the pre-stellar core. However, the calculated abundance of HNC3 was found 5-10 times higher than the observed one. The HC3N, HNC3, and HCCNC versus HC3NH+ ratios are compared in the TMC-1 dark cloud and the L1544 pre-stellar core.

  8. The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition

    NASA Astrophysics Data System (ADS)

    Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.

    2017-02-01

    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.

  9. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.

    2016-09-01

    Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9344.

  10. Constraints on modified gravity models from white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in

    Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.

  11. Comparative modelling of the spectra of cool giants⋆⋆⋆

    NASA Astrophysics Data System (ADS)

    Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W.; Maldonado, J.; Merle, T.; Peterson, R.; Plez, B.; Short, C. I.; Wahlgren, G. M.; Worley, C.; Aringer, B.; Bladh, S.; de Laverny, P.; Goswami, A.; Mora, A.; Norris, R. P.; Recio-Blanco, A.; Scholz, M.; Thévenin, F.; Tsuji, T.; Kordopatis, G.; Montesinos, B.; Wing, R. F.

    2012-11-01

    Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims: We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods: Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results: We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions: Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 6-11 are only available in electronic form at http://www.aanda.orgThe spectra of stars 1 to 4 used in the experiment presented here are only availalbe at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A108

  12. Young, active radio stars in the AB Doradus moving group

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.; Tognelli, E.; Hormuth, F.; Ortiz, J. L.

    2017-06-01

    Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M⊙. To improve such a test, and based on our previous studies, we selected the AB Doradus moving group (AB Dor-MG) as the best-suited association on which to apply radio-based high-precision astrometric techniques to study binary systems. Aims: We seek to determine precise estimates of the masses of a set of stars belonging to the AB Dor-MG using radio and infrared observations. Methods: We observed in phase-reference mode with the Very Large Array (VLA) at 5 GHz and with the European VLBI Network (EVN) at 8.4 GHz the stars HD 160934, EK Dra, PW And, and LO Peg. We also observed some of these stars with the near-infrared CCD AstraLux camera at the Calar Alto observatory to complement the radio observations. Results: We determine model-independent dynamical masses of both components of the star HD 160934, A and c, which are 0.70 ± 0.07 M⊙ and 0.45 ± 0.04 M⊙, respectively. We revised the orbital parameters of EK Dra and we determine a sum of the masses of the system of 1.38 ± 0.08 M⊙. We also explored the binarity of the stars LO Peg and PW And. Conclusions: We found observational evidence that PMS evolutionary models underpredict the mass of PMS stars by 10%-40%, as previously reported by other authors. We also inferred that the origin of the radio emission must be similar in all observed stars, that is, extreme magnetic activity of the stellar corona that triggers gyrosynchrotron emission from non-thermal, accelerated electrons.

  13. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The SED models, which include nebular emission shed new light on the properties of LBGs with numerous important implications. Appendix A is available in electronic form at http://www.aanda.org

  14. Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters

    NASA Astrophysics Data System (ADS)

    Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.

    2005-12-01

    The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.

  15. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  16. WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun

    2013-10-01

    In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less

  17. Stellar Parameters in an Instant with Machine Learning. Application to Kepler LEGACY Targets

    NASA Astrophysics Data System (ADS)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabet

    2017-10-01

    With the advent of dedicated photometric space missions, the ability to rapidly process huge catalogues of stars has become paramount. Bellinger and Angelou et al. [1] recently introduced a new method based on machine learning for inferring the stellar parameters of main-sequence stars exhibiting solar-like oscillations. The method makes precise predictions that are consistent with other methods, but with the advantages of being able to explore many more parameters while costing practically no time. Here we apply the method to 52 so-called "LEGACY" main-sequence stars observed by the Kepler space mission. For each star, we present estimates and uncertainties of mass, age, radius, luminosity, core hydrogen abundance, surface helium abundance, surface gravity, initial helium abundance, and initial metallicity as well as estimates of their evolutionary model parameters of mixing length, overshooting coeffcient, and diffusion multiplication factor. We obtain median uncertainties in stellar age, mass, and radius of 14.8%, 3.6%, and 1.7%, respectively. The source code for all analyses and for all figures appearing in this manuscript can be found electronically at https://github.com/earlbellinger/asteroseismology

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaidos, Eric, E-mail: gaidos@hawaii.edu

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass,more » age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.« less

  19. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and 0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. Conclusions: The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit periods.

  20. Spectroscopy Made Easy: Evolution

    NASA Astrophysics Data System (ADS)

    Piskunov, Nikolai; Valenti, Jeff A.

    2017-01-01

    Context. The Spectroscopy Made Easy (SME) package has become a popular tool for analyzing stellar spectra, often in connection with large surveys or exoplanet research. SME has evolved significantly since it was first described in 1996, but many of the original caveats and potholes still haunt users. The main drivers for this paper are complexity of the modeling task, the large user community, and the massive effort that has gone into SME. Aims: We do not intend to give a comprehensive introduction to stellar atmospheres, but will describe changes to key components of SME: the equation of state, opacities, and radiative transfer. We will describe the analysis and fitting procedure and investigate various error sources that affect inferred parameters. Methods: We review the current status of SME, emphasizing new algorithms and methods. We describe some best practices for using the package, based on lessons learned over two decades of SME usage. We present a new way to assess uncertainties in derived stellar parameters. Results: Improvements made to SME, better line data, and new model atmospheres yield more realistic stellar spectra, but in many cases systematic errors still dominate over measurement uncertainty. Future enhancements are outlined.

  1. Spitzer Lensing Cluster Legacy Survey

    NASA Astrophysics Data System (ADS)

    Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin

    2015-11-01

    Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.

  2. Observations and Light Curve Solutions of Ultrashort-Period Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Dimitrov, Dinko P.; Ibryamov, Sunay I.; Vasileva, Doroteya L.

    2018-02-01

    Photometric observations in V and I bands and low-dispersion spectra of 10 ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modelling and analysis of our observations revealed that (i) eight targets have overcontact configurations with considerable fill-out factor (up to 0.5), while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62 + 224448.5 exhibit total eclipses and their parameters could be assumed as well determined; (v) NSVS 2729229 shows emission in the Hα line. Masses, radii, and luminosities of the stellar components were estimated by the empirical relation `period, orbital axis' for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.

  3. Rapid rotators revisited: absolute dimensions of KOI-13

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.; Morello, Giuseppe

    2017-09-01

    We analyse Kepler light-curves of the exoplanet Kepler Object of Interest no. 13b (KOI-13b) transiting its moderately rapidly rotating (gravity-darkened) parent star. A physical model, with minimal ad hoc free parameters, reproduces the time-averaged light-curve at the ˜10 parts per million level. We demonstrate that this Roche-model solution allows the absolute dimensions of the system to be determined from the star's projected equatorial rotation speed, ve sin I*, without any additional assumptions; we find a planetary radius RP = (1.33 ± 0.05) R♃, stellar polar radius Rp★ = (1.55 ± 0.06) R⊙, combined mass M* + MP( ≃ M*) = (1.47 ± 0.17) M⊙ and distance d ≃ (370 ± 25) pc, where the errors are dominated by uncertainties in relative flux contribution of the visual-binary companion KOI-13B. The implied stellar rotation period is within ˜5 per cent of the non-orbital, 25.43-hr signal found in the Kepler photometry. We show that the model accurately reproduces independent tomographic observations, and yields an offset between orbital and stellar-rotation angular-momentum vectors of 60.25° ± 0.05°.

  4. UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Sarah H.; Sullivan, Mark; Ellis, Richard S., E-mail: smiller@astro.caltech.edu

    2013-01-01

    In order to determine what processes govern the assembly history of galaxies with rotating disks, we examine the stellar mass Tully-Fisher (TF) relation over a wide range in redshift partitioned according to whether or not galaxies contain a prominent bulge. Using our earlier Keck spectroscopic sample, for which bulge/total parameters are available from analyses of Hubble Space Telescope images, we find that bulgeless disk galaxies with z > 0.8 present a significant offset from the local (TF) relation whereas, at all redshifts probed, those with significant bulges fall along the local relation. Our results support the suggestion that bulge growthmore » may somehow expedite the maturing of disk galaxies onto the (TF) relation. We discuss a variety of physical hypotheses that may explain this result in the context of kinematic observations of star-forming galaxies at redshifts z = 0 and z > 2.« less

  5. Stellar mass and velocity functions of galaxies. Backward evolution and the fate of Milky Way siblings

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Buat, V.; Ilbert, O.

    2010-11-01

    Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate redshifts. If this picture is correct, 50% of the Milky-Way sisters (galaxies with the same velocity as our Galaxy, i.e. 220 km s-1) have quenched their star formation since redshift 1 (and an even higher fraction for higher velocities). We discuss the processes that might be responsible for this transformation.

  6. Asteroseismology of the δ Scuti star HD 50844

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Li, Y.; Lai, X. J.; Wu, T.

    2016-09-01

    Aims: We aim to probe the internal structure and investigate with asteroseismology for more detailed information on the δ Scuti star HD 50844. Methods: We analyse the observed frequencies of the δ Scuti star HD 50844 and search for possible multiplets, which are based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 only by means of rotational splitting. We then compare these with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results: There are three multiplets, including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree l and azimuthal number m are unique. The corresponding rotational period of HD 50844 is found to be 2.44 days. The physical parameters of HD 50844 are well limited in a small region by three modes that have been identified as nonradial ones (f11, f22, and f29) and by the fundamental radial mode (f4). Our results show that the three nonradial modes (f11, f22, and f29) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4) mainly represents the property of the stellar envelope. To fit these four pulsation modes, both the helium core and the stellar envelope need to be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ± 0.004 M⊙ for the first time. The physical parameters of HD 50844 are determined to be M = 1.81 ± 0.01 M⊙, Z = 0.008 ± 0.001. Teff = 7508 ± 125 K, log g = 3.658 ± 0.004, R = 3.300 ± 0.023 R⊙, L = 30.98 ± 2.39 L⊙.

  7. LASR-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity

    NASA Astrophysics Data System (ADS)

    Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.

    2017-10-01

    Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.

  8. Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler

    NASA Astrophysics Data System (ADS)

    Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey

    2018-01-01

    Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.

  9. Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations

    NASA Astrophysics Data System (ADS)

    Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.

    2017-12-01

    The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.

  10. ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara

    2012-11-01

    We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This database is the largest homogeneous catalog of UV colors ever published for stellar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly usedmore » to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance, and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV - V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.« less

  11. Automated asteroseismic peak detections

    NASA Astrophysics Data System (ADS)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  12. Hot subdwarfs in (eclipsing) binaries with brown dwarf or low-mass main-sequence companions

    NASA Astrophysics Data System (ADS)

    Schaffenroth, Veronika; Geier, Stephan; Heber, Uli

    2014-09-01

    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is not yet understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods of between a few hours and a few days, with either M-star or white-dwarf companions. Common-envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light-curve analyses. They are called HW Virginis systems. Soker (1998) proposed that planetary or brown-dwarf companions could cause the mass loss necessary to form an sdB. Substellar objects with masses greater than >10 M_J were predicted to survive the common-envelope phase and end up in a close orbit around the stellar remnant, while planets with lower masses would entirely evaporate. This raises the question if planets can affect stellar evolution. Here we report on newly discovered eclipsing or not eclipsing hot subdwarf binaries with brown-dwarf or low-mass main-sequence companions and their spectral and photometric analysis to determine the fundamental parameters of both components.

  13. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsch, R.; Palouš, J.; Ehlerová, S.

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less

  14. Low resolution spectroscopic investigation of Am stars using Automated method

    NASA Astrophysics Data System (ADS)

    Sharma, Kaushal; Joshi, Santosh; Singh, Harinder P.

    2018-04-01

    The automated method of full spectrum fitting gives reliable estimates of stellar atmospheric parameters (Teff, log g and [Fe/H]) for late A, F, G, and early K type stars. Recently, the technique was further improved in the cooler regime and the validity range was extended up to a spectral type of M6 - M7 (Teff˜ 2900 K). The present study aims to explore the application of this method on the low-resolution spectra of Am stars, a class of chemically peculiar stars, to examine its robustness for these objects. We use ULySS with the Medium-resolution INT Library of Empirical Spectra (MILES) V2 spectral interpolator for parameter determination. The determined Teff and log g values are found to be in good agreement with those obtained from high-resolution spectroscopy.

  15. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  16. The seismology of eta Bootes

    NASA Technical Reports Server (NTRS)

    Demarque, Pierre; Guenther, D. B.

    1995-01-01

    Some p-mode frequencies and other observations were used to determine the mass, the age and the helium abundance of eta Bootes. It is shown how, by direct application, the p-mode frequencies and stellar seismological tools help in constraining the physical parameters of eta Boo. The existence of mode bumping is confirmed and it is discussed how it may be used to refine the estimate of the eta Boo's age. The effect of the OPAL equation of state on the p-mode frequencies is described.

  17. The Starchive: An open access, open source archive of nearby and young stars and their planets

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle; Gelino, Chris; Elfeki, Mario

    2015-12-01

    Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and exo-planetary parameters in the absence of corresponding images and spectra. As the search for planets around young stars through direct imaging, transits and infrared/optical radial velocity surveys blossoms, there is a void in the available set of to create comprehensive lists of the stellar parameters of nearby stars especially for important parameters such as metallicity and stellar activity indicators. For direct imaging surveys, we need better resources for downloading existing high contrast images to help confirm new discoveries and find ideal target stars. Once we have discovered new planets, we need a uniform database of stellar and planetary parameters from which to look for correlations to better understand the formation and evolution of these systems. As a solution to these issues, we are developing the Starchive - an open access stellar archive in the spirit of the open exoplanet catalog, the Kepler Community Follow-up Program and many others. The archive will allow users to download various datasets, upload new images, spectra and metadata and will contain multiple plotting tools to use in presentations and data interpretations. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be expanded efficiently and have a level of versatility which is necessary in today's fast moving, big data community. Finally, the front-end scripts will be placed on github and users will be encouraged to contribute new plotting tools. Here, I will introduce the community to the content and expected capabilities of the archive and query the audience for community feedback.

  18. A catalogue of /Fe/H/ determinations

    NASA Astrophysics Data System (ADS)

    Cayrel de Strobel, G.; Bentolila, C.; Hauck, B.; Curchod, A.

    1980-09-01

    A catalog of iron/hydrogen abundance ratios for 628 stars is compiled based on 1109 published values. The catalog consists of (1) a table of absolute iron abundance determinations in the solar photosphere as compiled by Blackwell (1974); (2) the iron/hydrogen abundances of 628 stars in the form of logarithmic differences between iron abundances in the given star and a standard star, obtained from analyses of high-dispersion spectra as well as useful stellar spectroscopic and photometric parameters; and (3) indications of the mean dispersion and wavelength interval used in the analyses. In addition, statistics on the distributions of the number of determinations per star and the apparent magnitudes and spectral types of the stars are presented.

  19. Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect

    NASA Astrophysics Data System (ADS)

    de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.

    2017-12-01

    Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.

  20. Two-jet astrosphere model: effect of azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Golikov, E. A.; Izmodenov, V. V.; Alexashov, D. B.; Belov, N. A.

    2017-01-01

    Opher et al., Drake, Swisdak and Opher have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, I.e. in the subsonic region between the heliospheric termination shock (TS) and the heliopause. In this scenario, the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere. In this paper, we explore the two-jet scenario for a simplified astrosphere in which (1) the star is at rest with respect to the circumstellar medium, (2) radial magnetic field is neglected as compared with azimuthal component and (3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfvénic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter ɛ that is reciprocal of the Alfvénic Mach number at the inflow boundary. This parameter is proportional to stellar magnetic field. We present the numerical solution of the problem for various values of ɛ. Three first integrals of the governing ideal magnetohydrodynamic equations are presented, and we make use of them in order to get the plasma distribution in the jets. Simple relations between distances to the TS, astropause and the size of the jet are established. These relations allow us to determine the stellar magnetic field from the geometrical pattern of the jet-like astrosphere.

  1. The last 6 Gyr of dark matter assembly in massive galaxies from the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Roy, N.; Radovich, M.; Getman, F.; Koopmans, L. V. E.; Verdoes Kleijn, G. A.; Kuijken, K. H.

    2018-01-01

    We study the dark matter (DM) assembly in the central regions of massive early-type galaxies up to z ∼ 0.65. We use a sample of ∼3800 massive (log M⋆/M⊙ > 11.2) galaxies with photometry and structural parameters from 156 deg2 of the Kilo Degree Survey (KiDS), and spectroscopic redshifts and velocity dispersions from Sloan Digital Sky Survey (SDSS). We obtain central total-to-stellar mass ratios, Mdyn/M⋆, and DM fractions, by determining dynamical masses, Mdyn, from Jeans modelling of SDSS aperture velocity dispersions and stellar masses, M⋆, from KiDS galaxy colours. We first show how the central DM fraction correlates with structural parameters, mass and density proxies, and demonstrate that most of the local correlations are still observed up to z ∼ 0.65; at fixed M⋆, local galaxies have larger DM fraction, on average, than their counterparts at larger redshift. We also interpret these trends with a non-universal initial mass function (IMF), finding a strong evolution with redshift, which contrast independent observations and is at odds with the effect of galaxy mergers. For a fixed IMF, the galaxy assembly can be explained, realistically, by mass and size accretion, which can be physically achieved by a series of minor mergers. We reproduce both the Re-M⋆ and Mdyn/M⋆-M⋆ evolution with stellar and dark mass changing at a different rate. This result suggests that the main progenitor galaxy is merging with less massive systems, characterized by a smaller Mdyn/M⋆, consistently with results from halo abundance matching.

  2. Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J.

    2011-01-01

    We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.

  3. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.

  4. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    NASA Astrophysics Data System (ADS)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  5. VizieR Online Data Catalog: Stellar models. 0.85

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Auriere, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.

    2018-02-01

    Grid of stellar models and convective turnover timescale for four metallicities (Z= 0.0001, 0.002, 0.004, and 0.014) in the mass range from 0.85 to 6.0Mȯ. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid, we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the turnover timescale estimated a different heights in the convective envelope and their corresponding Rossby number. (4 data files).

  6. Revealing Stellar Surface Structure Behind Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.

  7. Probing crustal structures from neutron star compactness

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2017-10-01

    With various sets of the parameters that characterize the equation of state (EOS) of nuclear matter, we systematically examine the thickness of a neutron star crust and of the pasta phases contained therein. Then, with respect to the thickness of the phase of spherical nuclei, the thickness of the cylindrical phase and the crust thickness, we successfully derive fitting formulas that express the ratio of each thickness to the star's radius as a function of the star's compactness, the incompressibility of symmetric nuclear matter and the density dependence of the symmetry energy. In particular, we find that the thickness of the phase of spherical nuclei has such a strong dependence on the stellar compactness as the crust thickness, but both of them show a much weaker dependence on the EOS parameters. Thus, via determination of the compactness, the thickness of the phase of spherical nuclei as well as the crust thickness can be constrained reasonably, even if the EOS parameters remain to be well-determined.

  8. The Gaia-ESO Survey: Churning through the Milky Way

    NASA Astrophysics Data System (ADS)

    Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Guiglion, G.; Hill, V.; Gilmore, G.; Randich, S.; Bayo, A.; Bensby, T.; Bergemann, M.; Bragaglia, A.; Casey, A.; Costado, M.; Feltzing, S.; Franciosini, E.; Hourihane, A.; Jofre, P.; Koposov, S.; Kordopatis, G.; Lanzafame, A.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Pancino, E.; Sacco, G.; Stonkute, E.; Worley, C. C.; Zwitter, T.

    2018-01-01

    Context. There have been conflicting results with respect to the extent that radial migration has played in the evolution of the Galaxy. Additionally, observations of the solar neighborhood have shown evidence of a merger in the past history of the Milky Way that drives enhanced radial migration. Aims: We attempt to determine the relative fraction of stars that have undergone significant radial migration by studying the orbital properties of metal-rich ([Fe/H] > 0.1) stars within 2 kpc of the Sun. We also aim to investigate the kinematic properties, such as velocity dispersion and orbital parameters, of stellar populations near the Sun as a function of [Mg/Fe] and [Fe/H], which could show evidence of a major merger in the past history of the Milky Way. Methods: We used a sample of more than 3000 stars selected from the fourth internal data release of the Gaia-ESO Survey. We used the stellar parameters from the Gaia-ESO Survey along with proper motions from PPMXL to determine distances, kinematics, and orbital properties for these stars to analyze the chemodynamic properties of stellar populations near the Sun. Results: Analyzing the kinematics of the most metal-rich stars ([Fe/H] > 0.1), we find that more than half have small eccentricities (e< 0.2) or are on nearly circular orbits. Slightly more than 20% of the metal-rich stars have perigalacticons Rp> 7 kpc. We find that the highest [Mg/Fe], metal-poor populations have lower vertical and radial velocity dispersions compared to lower [Mg/Fe] populations of similar metallicity by 10 km s-1. The median eccentricity increases linearly with [Mg/Fe] across all metallicities, while the perigalacticon decreases with increasing [Mg/Fe] for all metallicities. Finally, the most [Mg/Fe]-rich stars are found to have significant asymmetric drift and rotate more than 40 km s-1 slower than stars with lower [Mg/Fe] ratios. Conclusions: While our results cannot constrain how far stars have migrated, we propose that migration processes are likely to have played an important role in the evolution of the Milky Way, with metal-rich stars migrating from the inner disk toward to solar neighborhood and past mergers potentially driving enhanced migration of older stellar populations in the disk.

  9. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE PAGES

    Luque, E.; Pieres, A.; Santiago, B.; ...

    2017-02-17

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  10. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  11. The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates

    NASA Astrophysics Data System (ADS)

    Luque, E.; Pieres, A.; Santiago, B.; Yanny, B.; Vivas, A. K.; Queiroz, A.; Drlica-Wagner, A.; Morganson, E.; Balbinot, E.; Marshall, J. L.; Li, T. S.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Bechtol, K.; Kim, A. G.; Bernstein, G. M.; Dodelson, S.; Whiteway, L.; Diehl, H. T.; Finley, D. A.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Martini, P.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-06-01

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ˜25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ˜1.73 kpc (DES J0111-1341) and ˜0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 ≲ [Fe/H] ≲ -0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.

  12. The Stellar Obliquity, Planet Mass, and Very Low Albedo of Qatar-2 from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Yu, Liang; Albrecht, Simon

    2017-01-01

    The Qatar-2 transiting exoplanet system was recently observed in short-cadence mode by Kepler as part of K2 Campaign 6. We identify dozens of starspot-crossing events, when the planet eclipses a relatively dark region of the stellar photosphere. The observed patterns of these events demonstrate that the planet always transits over the same range of stellar latitudes and, therefore, that the stellar obliquity is less than about 10°. We support this conclusion with two different modeling approaches: one based on explicit identification and timing of the events and the other based on fitting the light curves with a spotted-star model. We refine the transit parameters and measure the stellar rotation period (18.5 ± 1.9 days), which corresponds to a “gyrochronological” age of 1.4 ± 0.3 Gyr. Coherent flux variations with the same period as the transits are well modeled as the combined effects of ellipsoidal light variations (15.4 ± 4.8 ppm) and Doppler boosting (14.6 ± 5.1 ppm). The magnitudes of these effects correspond to a planetary mass of 2.6+/- 0.9 {M}{Jup} and 3.9+/- 1.5 {M}{Jup}, respectively. Both of these independent mass estimates agree with the mass determined by the spectroscopic Doppler technique (2.487+/- 0.086 {M}{Jup}). No occultations are detected, giving a 2σ upper limit of 0.06 on the planet’s visual geometric albedo. We find no evidence for orbital decay, although we are only able to place a weak lower bound on the relevant tidal quality factor: {Q}\\star \\prime > 1.5× {10}4 (95% confidence).

  13. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.; Pieres, A.; Santiago, B.

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  14. VizieR Online Data Catalog: WDMS from LAMOST DR1 (Ren+, 2014)

    NASA Astrophysics Data System (ADS)

    Ren, J. J.; Rebassa-Mansergas, A.; Luo, A. L.; Zhao, Y. H.; Xiang, M. S.; Liu, X. W.; Zhao, G.; Jin, G.; Zhang, Y.

    2014-08-01

    The ascii data of all LAMOST DR1 DA/M binary spectra are presented. The complete table of stellar parameters, magnitudes, radial velocities of the LAMOST DA/M binaries are also provided. The stellar parameters table includes the white dwarf stellar parameters (effective temperature, surface gravity and mass), spectral type of the companions and distance when available, however only those with a S/N higher 12 (second column) are considered in the analysis of the paper. Spectral types of -1 imply that no values are available. For completeness, the table also include 181 systems that are not considered by us as DA/M binaries but that show blue and red components in their spectra. These are flagged as 1 in the last column. The magnitudes table includes the SDSS or Xuyi magnitudes (when available) and coordinates. The radial velocities includes the NaI 8183.27,8194.81 absorption doublet and Halpha emission radial velocities and errors, as well as the Heliocentric Julian dates and the telescope used for obtaining the spectra (either LAMOST or SDSS). (4 data files).

  15. FAST: Fitting and Assessment of Synthetic Templates

    NASA Astrophysics Data System (ADS)

    Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis

    2018-03-01

    FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.

  16. Beryllium abundances along the evolutionary sequence of the open cluster IC 4651 - A new test for hydrodynamical stellar models

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Pasquini, L.; Charbonnel, C.; Lagarde, N.

    2010-02-01

    Context. Previous analyses of lithium abundances in main sequence and red giant stars have revealed the action of mixing mechanisms other than convection in stellar interiors. Beryllium abundances in stars with Li abundance determinations can offer valuable complementary information on the nature of these mechanisms. Aims: Our aim is to derive Be abundances along the whole evolutionary sequence of an open cluster. We focus on the well-studied open cluster IC 4651. These Be abundances are used with previously determined Li abundances, in the same sample stars, to investigate the mixing mechanisms in a range of stellar masses and evolutionary stages. Methods: Atmospheric parameters were adopted from a previous abundance analysis by the same authors. New Be abundances have been determined from high-resolution, high signal-to-noise UVES spectra using spectrum synthesis and model atmospheres. The careful synthetic modeling of the Be lines region is used to calculate reliable abundances in rapidly rotating stars. The observed behavior of Be and Li is compared to theoretical predictions from stellar models including rotation-induced mixing, internal gravity waves, atomic diffusion, and thermohaline mixing. Results: Beryllium is detected in all the main sequence and turn-off sample stars, both slow- and fast-rotating stars, including the Li-dip stars, but is not detected in the red giants. Confirming previous results, we find that the Li dip is also a Be dip, although the depletion of Be is more modest than for Li in the corresponding effective temperature range. For post-main-sequence stars, the Be dilution starts earlier within the Hertzsprung gap than expected from classical predictions, as does the Li dilution. A clear dispersion in the Be abundances is also observed. Theoretical stellar models including the hydrodynamical transport processes mentioned above are able to reproduce all the observed features well. These results show a good theoretical understanding of the Li and Be behavior along the color-magnitude diagram of this intermediate-age cluster for stars more massive than 1.2 M⊙. Based on observations made with the ESO VLT, at Paranal Observatory, under programs 065.L-0427 and 067.D-0126.Current address: European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany.

  17. High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age

    NASA Astrophysics Data System (ADS)

    Nissen, P. E.

    2016-09-01

    Aims: A previous study of correlations between element abundances and ages of solar twin stars in the solar neighborhood is extended to include Sc, Mn, Cu, and Ba to obtain new information on the nucleosynthetic history of these elements. Methods: HARPS spectra with S/N ≳ 600 are used to derive very precise (σ ~ 0.01 dex) differential abundances of Sc, Mn, Cu, and Ba for 21 solar twins and the Sun. The analysis is based on MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the log g - Teff diagram between isochrones based on the Aarhus Stellar Evolution Code. Results: For stars younger than 6 Gyr, [Sc/Fe], [Mn/Fe], [Cu/Fe], and [Ba/Fe] are tightly correlated with stellar age, which is also the case for the other elements previously studied; linear relations between [X/Fe] and age have χ^2red ˜ 1, and for most stars the residuals do not depend on elemental condensation temperature. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements Na, Al, Sc, and Cu. Conclusions: While stars in the solar neighborhood younger than ~ 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars seem to have originated from regions enriched by supernovae with different neutron excesses. Correlations between abundance ratios and stellar age suggest that: (I) Sc is made in Type II supernovae along with the α-capture elements; (II) the Type II to Ia yield ratio is about the same for Mn and Fe; (III) Cu is mainly made by the weak s-process in massive stars; (iv) the Ba/Y yield ratio for asymptotic giant branch stars increases with decreasing stellar mass; (v) [Y/Mg] and [Y/Al] can be used as chemical clocks when determining ages of solar metallicity stars. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs 072.C-0488, 088.C-0323, 183.C-0972, 188.C-0265.

  18. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, John P.; Agol, Eric; Barnes, Rory

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T{sub eff} {approx}< 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged ({approx}<5 Gyr) solar-like star having a mass of 1.07 {+-} 0.08 M{sub Sun} and radius of 0.99 {+-} 0.18 R{sub Sun }. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of {approx}2more » years. The best Keplerian orbital fit parameters were found to have a period of 78.994 {+-} 0.012 days, an eccentricity of 0.1095 {+-} 0.0023, and a semi-amplitude of 4199 {+-} 11 m s{sup -1}. We determine the minimum companion mass (if sin i = 1) to be 97.7 {+-} 5.8 M{sub Jup}. The system's companion to host star mass ratio, {>=}0.087 {+-} 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T{sub eff} {approx}< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.« less

  19. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  20. The calculation and publication of a grid of line-blanketed model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1972-01-01

    The luminosity, mass, and elemental abundances, as well as other properties of each star are studied in order to locate them in an evolutionary pattern. A method for determining the flux, gravity, and abundances at the stellar surface is the construction of theoretical stellar atmospheric models that predict the observed energy distribution and detailed stellar spectrum.

  1. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  2. Study of charged stellar structures in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    2017-12-01

    This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.

  3. Preface (for CUP)

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1993-01-01

    Study of changes in solar and stellar irradiances has been of high interest for a long time. Determining the absolute value of the luminosity of stars with different ages is a crucial question for the theory of stellar evolution and energy production in stellar interiors.

  4. Basic research in solar physics

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1991-01-01

    This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.

  5. The shape of dark matter haloes - IV. The structure of stellar discs in edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Peters, S. P. C.; de Geyter, G.; van der Kruit, P. C.; Freeman, K. C.

    2017-01-01

    We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FITSKIRT software package. Using FITSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to measure accurately both the scalelength and scaleheight of the stellar disc, plus the shape parameters of the bulge. By combining these data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but we have not been able to model the stellar bulge reliably. Our sample consists for the most part of slowly rotating galaxies and we find that the average dust layer is much thicker than is reported for faster rotating galaxies.

  6. Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Gully-Santiago, Michael A.; Marley, Mark S.

    2017-01-01

    In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.

  7. VizieR Online Data Catalog: Seismology and spectroscopy of CoRoGEE red giants (Anders+, 2017)

    NASA Astrophysics Data System (ADS)

    Anders, F.; Chiappini, C.; Rodrigues, T. S.; Miglio, A.; Montalban, J.; Mosser, B.; Girardi, L.; Valentini, M.; Noels, A.; Morel, T.; Johnson, J. A.; Schultheis, M.; Baudin, F.; de Assis Peralta, R.; Hekker, S.; Themessl, N.; Kallinger, T.; Garcia, R. A.; Mathur, S.; Baglin, A.; Santiago, B. X.; Martig, M.; Minchev, I.; Steinmetz, M.; da Costa, L. N.; Maia, M. A. G.; Allende Prieto, C.; Cunha, K.; Beers, T. C.; Epstein, C.; Garcia Perez, A. E.; Garcia-Hernandez, D. A.; Harding, P.; Holtzman, J.; Majewski, S. R.; Meszaros, Sz.; Nidever, D.; Pan, K.; Pinsonneault, M.; Schiavon, R. P.; Schneider, D. P.; Shetrone, M. D.; Stassun, K.; Zamora, O.; Zasowski, G.

    2016-08-01

    For the 606 successfully observed stars, asteroseismic parameters from CoRoT, spectroscopic data from APOGEE (SDSS DR12), wide-band photometry from OBSCAT, APASS, SDSS, 2MASS, and WISE are presented. Additional information from the EXODAT archive, stellar parameters from PARAM (Rodrigues et al. 2014MNRAS.445.2758R), cross-matches to the APOGEE red-clump catalogue (Bovy et al. 2014ApJ...790..127B), the UCAC-4 catalogue (Zacharias et al., 2013, Cat. I/322), and derived stellar kinematics are also included. (2 data files).

  8. Programs and Perspectives of Visible Long Baseline Interferometry VEGA/CHARA

    NASA Astrophysics Data System (ADS)

    Mourard, D.; Nardetto, N.; Ligi, R.; Perraut, K.

    VEGA/CHARA is a visible spectro-interferometer installed on the CHARA Array at Mount Wilson Observatory. Combining high spectral resolution (6,000 or 30,000) and high angular resolution (0.3 mas), VEGA/CHARA opens a wide class of astrophysical topics in the stellar physics domain. Circumstellar environments and fundamental parameters with a high precision could be studied. We will present a review of recent results and discuss the programs currently engaged in the field of pulsating stars and more generally for the fundamental stellar parameters. Details could be found at http://www-n.oca.eu/vega/en/publications/index.htm.

  9. FITspec: A New Algorithm for the Automated Fit of Synthetic Stellar Spectra for OB Stars

    NASA Astrophysics Data System (ADS)

    Fierro-Santillán, Celia R.; Zsargó, Janos; Klapp, Jaime; Díaz-Azuara, Santiago A.; Arrieta, Anabel; Arias, Lorena; Sigalotti, Leonardo Di G.

    2018-06-01

    In this paper we describe the FITspec code, a data mining tool for the automatic fitting of synthetic stellar spectra. The program uses a database of 27,000 CMFGEN models of stellar atmospheres arranged in a six-dimensional (6D) space, where each dimension corresponds to one model parameter. From these models a library of 2,835,000 synthetic spectra were generated covering the ultraviolet, optical, and infrared regions of the electromagnetic spectrum. Using FITspec we adjust the effective temperature and the surface gravity. From the 6D array we also get the luminosity, the metallicity, and three parameters for the stellar wind: the terminal velocity ({v}∞ ), the β exponent of the velocity law, and the clumping filling factor (F cl). Finally, the projected rotational velocity (v\\cdot \\sin i) can be obtained from the library of stellar spectra. Validation of the algorithm was performed by analyzing the spectra of a sample of eight O-type stars taken from the IACOB spectroscopic survey of Northern Galactic OB stars. The spectral lines used for the adjustment of the analyzed stars are reproduced with good accuracy. In particular, the effective temperatures calculated with the FITspec are in good agreement with those derived from spectral type and other calibrations for the same stars. The stellar luminosities and projected rotational velocities are also in good agreement with previous quantitative spectroscopic analyses in the literature. An important advantage of FITspec over traditional codes is that the time required for spectral analyses is reduced from months to a few hours.

  10. The GALAH Survey: Second Data Release

    NASA Astrophysics Data System (ADS)

    Buder, Sven; Asplund, Martin; Duong, Ly; Kos, Janez; Lind, Karin; Ness, Melissa K.; Sharma, Sanjib; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D'Orazi, Valentina; Freeman, Ken C.; Lewis, Geraint F.; Lin, Jane; Martell, Sarah L.; Schlesinger, Katharine J.; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaž; Amarsi, Anish M.; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Čotar, Klemen; Cottrell, Peter L.; Da Costa, Gary; Gao, Xudong D.; Hayden, Michael R.; Horner, Jonathan; Ireland, Michael J.; Kafle, Prajwal R.; Munari, Ulisse; Nataf, David M.; Nordlander, Thomas; Stello, Dennis; Ting, Yuan-Sen; Traven, Gregor; Watson, Fred; Wittenmyer, Robert A.; Wyse, Rosemary F. G.; Yong, David; Zinn, Joel C.; Žerjal, Maruša

    2018-05-01

    The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (Teff, log g, [Fe/H], [X/Fe], vmic, vsin i, A_{K_S}) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.

  11. Grain formation around carbon stars. 1: Stationary outflow models

    NASA Technical Reports Server (NTRS)

    Egan, Michael P.; Leung, Chun Ming

    1995-01-01

    Asymptotic giant branch (AGB) stars are known to be sites of dust formation and undergo significant mass loss. The outflow is believed to be driven by radiation pressure on grains and momentum coupling between the grains and gas. While the physics of shell dynamics and grain formation are closely coupled, most previous models of circumstellar shells have treated the problem separately. Studies of shell dynamics typically assume the existence of grains needed to drive the outflow, while most grain formation models assume a constant veolcity wind in which grains form. Furthermore, models of grain formation have relied primarily on classical nucleation theory instead of using a more realistic approach based on chemical kinetics. To model grain formation in carbon-rich AGB stars, we have coupled the kinetic equations governing small cluster growth to moment equations which determine the growth of large particles. Phenomenological models assuming stationary outflow are presented to demonstrate the differences between the classical nucleation approach and the kinetic equation method. It is found that classical nucleation theory predicts nucleation at a lower supersaturation ratio than is predicted by the kinetic equations, resulting in significant differences in grain properties. Coagulation of clusters larger than monomers is unimportant for grain formation in high mass-loss models but becomes more important to grain growth in low mass-loss situations. The properties of the dust grains are altered considerably if differential drift velocities are ignored in modeling grain formation. The effect of stellar temperature, stellar luminosity, and different outflow velocities are investigated. The models indicate that changing the stellar temperature while keeping the stellar luminosity constant has little effect on the physical parameters of the dust shell formed. Increasing the stellar luminosity while keeping the stellar temperature constant results in large differences in grain properties. For small outflow velocities, grains form at lower supersaturation ratios and close to the stellar photosphere, resulting in larger but fewer grains. The reverse is true when grains form under high outflow velocities, i.e., they form at higher supersaturation ratios, farther from the star, and are much smaller but at larger quantities.

  12. Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective

    NASA Astrophysics Data System (ADS)

    Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.

    2018-05-01

    Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.

  13. VizieR Online Data Catalog: Model SDSS colors for halo stars (Allende Prieto+, 2014)

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Fernandez-Alvar, E.; Schlesinger, K. J.; Lee, Y. S.; Morrison, H. L.; Schneider, D. P.; Beers, T. C.; Bizyaev, D.; Ebelke, G.; Malanushenko, E.; Oravetz, D.; Pan, K.; Simmons, A.; Simmerer, J.; Sobeck, J.; Robin, A. C.

    2014-06-01

    We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population "in situ" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that best reproduces each observed spectrum. We use an optimization algorithm and evaluate model fluxes by means of interpolation in a pre-computed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars at logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg<2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We also find excellent agreement with several independent analyses. We show that the SDSS color criteria for selecting F-type halo turnoff stars as flux calibrators efficiently excludes stars with high metallicities, but does not significantly distort the shape of the metallicity distribution at low metallicity. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with that expected from a dual halo system in the Milky Way. (1 data file).

  14. A Public Ks -selected Catalog in the COSMOS/ULTRAVISTA Field: Photometry, Photometric Redshifts, and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Marchesini, Danilo; Stefanon, Mauro; Franx, Marijn; Milvang-Jensen, Bo; Dunlop, James S.; Fynbo, J. P. U.; Brammer, Gabriel; Labbé, Ivo; van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg2 of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 μm including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K s, tot = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z phot are accurate to Δz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z phot also show good agreement with the z phot from the NEWFIRM Medium Band Survey out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L 2800 and L IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star-forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3-4. .

  15. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZYmore » code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

  16. Disk mass and disk heating in the spiral galaxy NGC 3223

    NASA Astrophysics Data System (ADS)

    Gentile, G.; Tydtgat, C.; Baes, M.; De Geyter, G.; Koleva, M.; Angus, G. W.; de Blok, W. J. G.; Saftly, W.; Viaene, S.

    2015-04-01

    We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the observed NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M/L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of σz/σR = 1.21 ± 0.14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M/L ratio in the range 0.5-1.7, which is at the high end of (but consistent with) the predictions of stellar population synthesis models. Such a weak constraint on the stellar M/L ratio, however, does not allow us to securely determine the dark matter density distribution. To achieve this, either a statistical approach or additional data (e.g. integral-field unit) are needed. Based on observations collected at the European Southern Observatory, Chile, under proposal 68.B-0588.

  17. Stellar parameters of Be stars observed with X-shooter

    NASA Astrophysics Data System (ADS)

    Shokry, A.; Rivinius, Th.; Mehner, A.; Martayan, C.; Hummel, W.; Townsend, R. H. D.; Mérand, A.; Mota, B.; Faes, D. M.; Hamdy, M. A.; Beheary, M. M.; Gadallah, K. A. K.; Abo-Elazm, M. S.

    2018-01-01

    Aims: The X-shooter archive of several thousand telluric standard star spectra was skimmed for Be and Be shell stars to derive the stellar fundamental parameters and statistical properties, in particular for the less investigated late-type Be stars and the extension of the Be phenomenon into early A stars. Methods: An adapted version of the BCD method is used, using the Balmer discontinuity parameters to determine effective temperature and surface gravity. This method is optimally suited for late B stars. The projected rotational velocity was obtained by profile fitting to the Mg ii lines of the targets, and the spectra were inspected visually for the presence of peculiar features such as the infrared Ca ii triplet or the presence of a double Balmer discontinuity. The Balmer line equivalent widths were measured, but they are only useful for determining the pure emission contribution in a subsample of Be stars owing to uncertainties in determining the photospheric contribution. Results: A total of 78, mostly late-type, Be stars, were identified in the X-shooter telluric standard star archive, out of which 48 had not been reported before. We confirm the general trend that late-type Be stars have more tenuous disks and are less variable than early-type Be stars. The relatively large number (48) of relatively bright (V> 8.5) additional Be stars casts some doubt on the statistics of late-type Be stars; they are more common than currently thought. The Be/B star fraction may not strongly depend on spectral subtype. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 60.A-9022, 60.A-9024, 077.D-0085, 085.A-0962, 185.D-0056, 091.B-0900, and 093.D-0415.Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A108

  18. Minicourses in Astrophysics, Modular Approach, Vol. II.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  19. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  20. Predictions of stellar occultations by TNOs/Centaurs using Gaia

    NASA Astrophysics Data System (ADS)

    Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team

    2017-10-01

    Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar occultations.**Part of the research leading to these results has received funding from the European Research Council under theEuropean Community’s H2020 (2014-2020/ ERC Grant Agreement n 669416 ”LUCKY STAR”).

  1. Activity and the Li abundances in the FGK dwarfs⋆

    NASA Astrophysics Data System (ADS)

    Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.; Katsova, M. M.; Livshits, M. A.

    2012-11-01

    Aims: The aim of the present study is to determine the Li abundances for a large set of the FGK dwarfs and to analyse the connections between the Li content, stellar parameters, and activity. Methods: The atmospheric parameters, rotational velocities and the Li abundances were determined from a homogeneous collection of the echelle spectra with high resolution and a high signal-to-noise ratio. The rotational velocities vsini were determined by calibrating the cross-correlation function. The effective temperatures Teff were estimated by the line-depth ratio method. The surface gravities log g were computed by two methods: the iron ionization balance and the parallax. The LTE Li abundances were computed using synthetic spectra method. The behaviour of the Li abundance was examined in correlation with Teff, [Fe/H] , as well as with vsini and the level of activity in three stellar groups of the different temperature range. Results: The stellar parameters and the Li abundances are presented for 150 slow rotating stars of the lower part of the main sequence. The studied stars show a decline in the Li abundance with decreasing temperature Teff and a significant spread, which should be due to the difference of age of stars. The correlations between the Li abundances, rotational velocities vsini, and the level of the chromospheric activity were discovered for the stars with 6000 > Teff > 5700 K, and it is tighter for the stars with 5700 > Teff > 5200 K. The target stars with Teff < 5200 K do not show any correlation between log A(Li) and vsini. The relationship between the chromospheric and coronal fluxes in active with detected Li as well as in less active stars gives a hint that there exist different conditions in the action of the dynamo mechanism in those stars. Conclusions: We found that the Li-activity correlation is evident only in a restricted temperature range and the Li abundance spread seems to be present in a group of low chromospheric activity stars that also show a broad spread in the chromospheric vs. coronal activity. Based on the spectra collected with the ELODIE spectrograph using the 1.93-m telescope at the Observatoire de Haute Provence (CNRS, France).Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A106

  2. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  3. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  4. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to be strongly oblate (flattening parameter q=0.53). A catalog of stars consistent with this density profile is produced as a template for matching future disruption models. The results of this analysis favor a description of the Sgr debris system that includes more than one dwarf galaxy progenitor, with the major streams above and below the Galactic disk being separate substructures. Preliminary results for the minor tidal stream characterizations are presented and discussed. Additionally, a more robust characterization of halo turnoff star brightnesses is performed, and it is found that increasing color errors with distance result in a previously unaccounted for incompleteness in star counts as the SDSS magnitude limit is approached. These corrections are currently in the process of being implemented on MilkyWay home.

  5. The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Ramstedt, S.; Höfner, S.; Olofsson, H.; Bladh, S.; Eriksson, K.; Aringer, B.; Klotz, D.; Maercker, M.

    2013-03-01

    Aims: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. Methods: We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. Results: MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (<5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 μm. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 μm visibility measurements for all baselines. Conclusions: This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 μm spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 083.D-0234 and 086.D-0737 (Open Time Observations).

  6. Decrease in the orbital period of Hercules X-1

    NASA Technical Reports Server (NTRS)

    Deeter, John E.; Boynton, Paul E.; Miyamoto, Sigenori; Kitamoto, Shunji; Nagase, Fumiaki; Kawai, Nobuyuki

    1991-01-01

    From a pulse-timing analysis of Ginga observations of the binary X-ray pulsar Her X-1 obtained during the interval 1989 April-June local orbital parameters are determined for a short high state. An orbital epoch is also determined in the adjacent main high state. By comparing these orbital solutions with previously published results, a decrease is detected in the orbital period for Her X-1 over the interval 1971-1989. The value is substantially larger than the value predicted from current estimates of the mass-transfer rate, and motivates consideration of other mechanisms of mass transfer and/or mass loss. A second result from these observations is a close agreement between orbital parameters determined separately in main high and short high states. This agreement places strong constraints on the obliquity of the stellar companion, HZ Her, if undergoing forced precession with a 35-day period. As a consequence further doubt is placed on the slaved-disk model as the underlying cause of the 35-day cycle in Her X-1.

  7. Gravitational-wave cosmography with LISA and the Hubble tension

    NASA Astrophysics Data System (ADS)

    Kyutoku, Koutarou; Seto, Naoki

    2017-04-01

    We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.

  8. Novel Relationship among Spiral Arm Pitch Angles (p) and momentum parameter of the host spiral galaxies

    NASA Astrophysics Data System (ADS)

    Al-Baidhany, Ismaeel; Rashid, Hayfa G.; Chiad, Sami S.; Habubi, Nadir F.; Jandow, Nidhal N.; Jabbar, Wasmaa A.; Abass, khalid H.

    2018-05-01

    In this study, we have found a novel relationship among spiral arm pitch angles (p) and momentum parameter of the host spiral galaxies. In this study, we measured the momentum parameter for specimen of Spitzer/IRAC 3.6 μm images of 41 spiral galaxies evaluated employing a relation(Mbulge σ*/c)where Mbulge is mass of the bulge and σ* is the stellar velocity dispersion. We have taken velocity dispersions (σ*) from the literature. In order to determine the spiral arm pitch angles. The selection of specimen of nearly face-on spiral galaxies and employ IRAF ellipse to indicate the ellipticity and major-axis position angle so as to deproject the images to face-on, employing 2D Fast Fourier Transform decomposition mehtod. The specified bulge mass (Mbulge) using the virial theorem was include.

  9. New inclination changing eclipsing binaries in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, J.; Vokrouhlický, D.; Skarka, M.; Liška, J.; Janík, J.; Zejda, M.; Kurfürst, P.; Paunzen, E.

    2018-01-01

    Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims: We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods: We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter-dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results: We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood. Full Table 4 and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A46

  10. Determining the properties of accretion-gap neutron stars

    NASA Technical Reports Server (NTRS)

    Kluzniak, Wlodzimierz; Michelson, Peter; Wagoner, Robert V.

    1990-01-01

    If neutron stars have radii as small as has been argued by some, observations of accretion-powered X-rays could verify the existence of innermost stable circular orbits (predicted by general relativity) around weakly magnetized neutron stars. This may be done by detecting X-ray emission from clumps of matter before and after they cross the gap (where matter cannot be supported by rotation) between the inner accretion disk and the stellar surface. Assuming the validity of general relativity, it would then be possible to determine the masses of such neutron stars independently of any knowledge of binary orbital parameters. If an accurate mass determination were already available through any of the methods conventionally used, the new mass determination method proposed here could then be used to quantitatively test strong field effects of gravitational theory.

  11. New method to design stellarator coils without the winding surface

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  12. Outlook for ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    A brief overview of galactic and extragalactic research is given with emphasis on the problems of temperature determination, chemical abundance determination, and the question about the energy sources for the high temperature regions. Stellar astronomy, stellar winds, and the interstellar medium are among the topics covered.

  13. Catalyzed D-D stellarator reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, John; Spong, Donald A.

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  14. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  15. Asymmetry of Line Profiles of Stellar Oscillations Measured by Kepler for Ensembles of Solar-like Oscillators: Impact on Mode Frequencies and Dependence on Effective Temperature

    NASA Astrophysics Data System (ADS)

    Benomar, O.; Goupil, Mjo.; Belkacem, K.; Appourchaux, T.; Nielsen, M. B.; Bazot, M.; Gizon, L.; Hanasoge, S.; Sreenivasan, K. R.; Marchand, B.

    2018-04-01

    Oscillation properties are usually measured by fitting symmetric Lorentzian profiles to the power spectra of Sun-like stars. However, the line profiles of solar oscillations have been observed to be asymmetrical for the Sun. The physical origin of this line asymmetry is not fully understood; though, it should depend on the depth dependence of the source of wave excitation (convective turbulence) and details of the observable (velocity or intensity). For oscillations of the Sun, it has been shown that neglecting the asymmetry leads to systematic errors in the frequency determination. This could subsequently affect the results of seismic inferences of the solar internal structure. Using light curves from the Kepler spacecraft, we have measured mode asymmetries in 43 stars. We confirm that neglecting the asymmetry leads to systematic errors that can exceed the 1σ confidence intervals for seismic observations longer than one year. Therefore, the application of an asymmetric Lorentzian profile should be favored to improve the accuracy of the internal stellar structure and stellar fundamental parameters. We also show that the asymmetry changes sign between cool Sun-like stars and hotter stars. This provides the best constraints to date on the location of the excitation sources across the Hertzsprung–Russel diagram.

  16. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  17. Transiting exoplanets from the CoRoT space mission. IV. CoRoT-Exo-4b: a transiting planet in a 9.2 day synchronous orbit

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.

    2008-09-01

    CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org

  18. Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Arturo O.; Crossfield, Ian J. M.; Peacock, Sarah

    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planetmore » and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.« less

  19. THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Sun; Beers, Timothy C.; Prieto, Carlos Allende

    We present a method for the determination of [{alpha}/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15, 000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [{alpha}/Fe] from SDSS/SEGUE spectra (with S/N>20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range T{sub eff} = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over themore » range [{alpha}/Fe] = [-0.1, +0.6]. For stars with [Fe/H] <-1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N>25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [{alpha}/Fe] can be obtained from our approach is [Fe/H] {approx}-2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] {approx}-3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [{alpha}/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [{alpha}/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to {approx}+0.5.« less

  20. On the origin of stars with and without planets. Tc trends and clues to Galactic evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; González Hernández, J. I.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; Israelian, G.; Figueira, P.; Bertran de Lis, S.

    2014-04-01

    We explore a sample of 148 solar-like stars to search for a possible correlation between the slopes of the abundance trends versus condensation temperature (known as the Tc slope) with stellar parameters and Galactic orbital parameters in order to understand the nature of the peculiar chemical signatures of these stars and the possible connection with planet formation. We find that the Tc slope significantly correlates (at more than 4σ) with the stellar age and the stellar surface gravity. We also find tentative evidence that the Tc slope correlates with the mean galactocentric distance of the stars (Rmean), suggesting that those stars that originated in the inner Galaxy have fewer refractory elements relative to the volatiles. While the average Tc slope for planet-hosting solar analogs is steeper than that of their counterparts without planets, this difference probably reflects the difference in their age and Rmean. We conclude that the age and probably the Galactic birth place are determinant to establish the star's chemical properties. Old stars (and stars with inner disk origin) have a lower refractory-to-volatile ratio. Based on observations collected with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)), installed at the La Silla Observatory, ESO (Chile), with the UVES spectrograph at the 8-m Very Large Telescope program IDs: 67.C-0206(A), 074.C-0134(A), 075.D-0453(A), installed at the Cerro Paranal Observatory, ESO (Chile), and with the UES spectrograph at the 4.2-m William Herschel Telescope, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma.Appendix A is available in electronic form at http://www.aanda.org

  1. Failure of continuum methods for determining the effective temperature of hot stars

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Abbott, David C.; Voels, Stephen A.; Bohannan, Bruce

    1988-01-01

    It is demonstrated here that, for hot stars, methods based on the integrated continuum flux are completely unreliable discriminators of the effective temperature. Absorption line profiles provide much more accurate values of these parameters. It is not necessary to invoke nonradiative energy and momentum effects to explain the spectroscopic appearance of O-type stars of very different spectral type; rather, the observed spectra can be well modeled and fully interpreted by normal interaction of gas and radiation in stellar atmospheres of differing effective temperature and gravity.

  2. Synthetic filter photometry and evolutionary status of two Be stars in the association Per OB1

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.

    1987-01-01

    Stromgren and H-beta colors have been determined from spectrophotometric observations for two Be stars without published photometry in the association Per OB1: HD 12856 (B0 pe) and HD 13890 (B1 III:pe). Stellar parameters and improved spectral types are then derived from the color indices using the calibrations of Jakobsen (1986), and independently from the BCD classification method. The intrinsic properties of HD 12856 and HD 13890 are compared with those of normal B stars and are used to estimate their evolutionary status.

  3. Star formation in the outskirts of DDO 154: a top-light IMF in a nearly dormant disc

    NASA Astrophysics Data System (ADS)

    Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza

    2018-07-01

    We present optical photometry of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)/Wide Field Camera (WFC) data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence (MS) stars are almost absent from the outermost H I disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the MS stars to simulated stellar populations, assuming a constant star formation rate over the dynamical time-scale. The best-fitting IMF is deficient in high-mass stars compared to a canonical Kroupa IMF, with a best-fitting slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the integrated galactic IMF theory. Combining the HST images with H I data from The H I Nearby Galaxy Survey (THINGS), we determine the star formation law (SFL) in the outer disc. The fit has a power-law exponent N = 2.92 ± 0.22 and zero-point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt SFL, but consistent with weak star formation observed in diffuse H I environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in H α. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS H I rotation curve and velocity dispersion map. 72 per cent of the H I in our field has Q ≤ 4 and this incorporates 96 per cent of the observed MS stars. Hence, 28 per cent of the H I in the field is largely dormant.

  4. Early-Type Galaxy Star Formation Histories in Different Environments

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  5. Determining Empirical Stellar Masses and Radii from Transits and Gaia Parallaxes as Illustrated by Spitzer Observations of KELT-11b

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.; Stevens, Daniel J.; Collins, Karen A.; Colón, Knicole D.; James, David J.; Kreidberg, Laura; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Kielkopf, John F.

    2017-07-01

    Using the Spitzer Space Telescope, we observed a transit at 3.6 μm of KELT-11b. We also observed three partial planetary transits from the ground. We simultaneously fit these observations, ground-based photometry from Pepper et al., radial velocity data from Pepper et al., and a spectral energy distribution (SED) model using catalog magnitudes and the Hipparcos parallax to the system. The only significant difference between our results and those of Pepper et al. is that we find the orbital period to be shorter by 37 s, 4.73610 ± 0.00003 versus 4.73653 ± 0.00006 days, and we measure a transit center time of {{BJD}}{TDB} 2457483.4310 ± 0.0007, which is 42 minutes earlier than predicted. Using our new photometry, we precisely measure the density of the star KELT-11 to 4%. By combining the parallax and catalog magnitudes of the system, we are able to measure the radius of KELT-11b essentially empirically. Coupled with the stellar density, this gives a parallactic mass and radius of 1.8 {M}⊙ and 2.9 {R}⊙ , which are each approximately 1σ higher than the adopted model-estimated mass and radius. If we conduct the same fit using the expected parallax uncertainty from the final Gaia data release, this difference increases to 4σ. The differences between the model and parallactic masses and radii for KELT-11 demonstrate the role that precise Gaia parallaxes, coupled with simultaneous photometric, radial velocity, and SED fitting, can play in determining stellar and planetary parameters. With high-precision photometry of transiting planets and high-precision Gaia parallaxes, the parallactic mass and radius uncertainties of stars become 1% and 3%, respectively. TESS is expected to discover 60-80 systems where these measurements will be possible. These parallactic mass and radius measurements have uncertainties small enough that they may provide observational input into the stellar models themselves.

  6. Nongrayness Effects in Wolf-Rayet Wind Momentum Deposition

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2004-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes and optically thick winds. A simple analytic approach that helps to understand the most critical processes is the effecively gray approximation, but this has not been generalized to more realistic nongray opacities. We have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive to the line strengths as well as the wavelength distribution of lines. We determine these statistical parameters for several real line lists, exploring the effects of temperature and density changes on the efficiency of momentum driving relative to gray opacity. We wish to acknowledge NSF grant AST-0098155.

  7. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie

    2017-03-10

    Broadband photometry of galaxies measures an unresolved mix of complex stellar populations, gas, and dust. Interpreting these data is a challenge for models: many studies have shown that properties derived from modeling galaxy photometry are uncertain by a factor of two or more, and yet answering key questions in the field now requires higher accuracy than this. Here, we present a new model framework specifically designed for these complexities. Our model, Prospector- α , includes dust attenuation and re-radiation, a flexible attenuation curve, nebular emission, stellar metallicity, and a six-component nonparametric star formation history. The flexibility and range of themore » parameter space, coupled with Monte Carlo Markov chain sampling within the Prospector inference framework, is designed to provide unbiased parameters and realistic error bars. We assess the accuracy of the model with aperture-matched optical spectroscopy, which was excluded from the fits. We compare spectral features predicted solely from fits to the broadband photometry to the observed spectral features. Our model predicts H α luminosities with a scatter of ∼0.18 dex and an offset of ∼0.1 dex across a wide range of morphological types and stellar masses. This agreement is remarkable, as the H α luminosity is dependent on accurate star formation rates, dust attenuation, and stellar metallicities. The model also accurately predicts dust-sensitive Balmer decrements, spectroscopic stellar metallicities, polycyclic aromatic hydrocarbon mass fractions, and the age- and metallicity-sensitive features D{sub n}4000 and H δ . Although the model passes all these tests, we caution that we have not yet assessed its performance at higher redshift or the accuracy of recovered stellar masses.« less

  8. Stellar Parameters, Chemical composition and Models of chemical evolution

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.

    2018-04-01

    We present an in-depth study of metal-poor stars, based high resolution spectra combined with newly released astrometric data from Gaia, with special attention to observational uncertainties. The results are compared to those of other studies, including Gaia benchmark stars. Chemical evolution models are discussed, highlighting few puzzles that are still affecting our understanding of stellar nucleosynthesis and of the evolution of our Galaxy.

  9. IUE observations of interstellar hydrogen and deuterium toward Alpha Centauri B

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    A high dispersion profile is presented of the Lyman-alpha emission toward Alpha Cen B as recorded in two images taken with the IUE spacecraft. The spectra were examined with a three-parameter Gaussian or five-parameter solar-type profile to derive the intrinsic background stellar emission. Voight absorption profiles were calculated for the intervening H I and D I gas. A uniform, thermally broadened medium was assumed, with the calculations being based on the free stellar parameters of density, velocity dispersion and the bulk velocity of H I, and the density of D I. The use of a small aperture is shown to have been effective in eliminating geocoronal and interplanetary diffuse Ly-alpha contamination. The H I absorption profile toward Alpha Cen B is found to be equivalent to that toward Alpha Cen A, indicating that the H I profiles derived are essentially independent of stellar emission. Less success, however, was attained in obtaining any definitive D I profile, although an asymmetry in the blue and red wings of the Lyman-alpha emissions did show the presence of absorption by interstellar deuterium and allow setting a lower limit of 0.00001 for the D I/H I ratio.

  10. The mass and age of the first SONG target: the red giant 46 LMi

    NASA Astrophysics Data System (ADS)

    Frandsen, S.; Fredslund Andersen, M.; Brogaard, K.; Jiang, C.; Arentoft, T.; Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Weiss, E.; Pallé, P.; Antoci, V.; Kjærgaard, P.; Sørensen, A. N.; Skottfelt, J.; Jørgensen, U. G.

    2018-05-01

    Context. The Stellar Observation Network Group (SONG) is an initiative to build a worldwide network of 1m telescopes with high-precision radial-velocity spectrographs. Here we analyse the first radial-velocity time series of a red-giant star measured by the SONG telescope at Tenerife. The asteroseismic results demonstrate a major increase in the achievable precision of the parameters for red-giant stars obtainable from ground-based observations. Reliable tests of the validity of these results are needed, however, before the accuracy of the parameters can be trusted. Aims: We analyse the first SONG time series for the star 46 LMi, which has a precise parallax and an angular diameter measured from interferometry, and therefore a good determination of the stellar radius. We use asteroseismic scaling relations to obtain an accurate mass, and modelling to determine the age. Methods: A 55-day time series of high-resolution, high S/N spectra were obtained with the first SONG telescope. We derive the asteroseismic parameters by analysing the power spectrum. To give a best guess on the large separation of modes in the power spectrum, we have applied a new method which uses the scaling of Kepler red-giant stars to 46 LMi. Results: Several methods have been applied: classical estimates, seismic methods using the observed time series, and model calculations to derive the fundamental parameters of 46 LMi. Parameters determined using the different methods are consistent within the uncertainties. We find the following values for the mass M (scaling), radius R (classical), age (modelling), and surface gravity (combining mass and radius): M = 1.09 ± 0.04M⊙, R = 7.95 ± 0.11R⊙ age t = 8.2 ± 1.9 Gy, and logg = 2.674 ± 0.013. Conclusions: The exciting possibilities for ground-based asteroseismology of solar-like oscillations with a fully robotic network have been illustrated with the results obtained from just a single site of the SONG network. The window function is still a severe problem which will be solved when there are more nodes in the network. Based on observations made with the Hertzsprung SONG telescope operated at the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias.

  11. 3D view on Virgo and field dwarf elliptical galaxies: late-type origin and environmental transformations

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2015-03-01

    In our contribution we show the effects of environmental evolution on cluster and field dwarf elliptical galaxies (dEs), presenting the first large-scale integral-field spectroscopic data for this galaxy class. Our sample con sists of 12 galaxies and no two of them are alike. We find that the level of rotation is not tied to flattening; we observe kinematic twists; we discover large-scale kinematically-decoupled components; we see varying gradient s in line-strength maps: from nearly flat to strongly peaked in the center. The great variety of morphological, kinematic, and stellar population parameters seen in our data supports the claim that dEs are defunct dwarf spiral/irregular galaxies and points to a formation scenario that allows for a stochastic shaping of galaxy properties. The combined influence of ram-pressure stripping and harassment fulfills these requirements, still, the exact impact of the two is not yet understood. We further investigate the properties of our sample by performing a detailed comprehensive analysis of its kinematic, dynamical, and stellar population parameters. The combined knowledge of the dynamical properties and star-formation histories, together with model predictions for different formation mechanisms, will be used to quant itatively determine the actual transformation paths for these galaxies.

  12. Scattering linear polarization of late-type active stars

    NASA Astrophysics Data System (ADS)

    Yakobchuk, T. M.; Berdyugina, S. V.

    2018-05-01

    Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.

  13. Galaxy and Mass Assembly (GAMA): probing the merger histories of massive galaxies via stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Hopkins, A. M.; Gunawardhana, M. L. P.; Sansom, A. E.; Owers, M. S.; Driver, S.; Davies, L.; Robotham, A.; Taylor, E. N.; Konstantopoulos, I.; Brough, S.; Norberg, P.; Croom, S.; Loveday, J.; Wang, L.; Bremer, M.

    2017-06-01

    The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxies in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above 1011M⊙ in the highly complete Galaxy and Mass Assembly (GAMA) survey. Our working sample comprises 2692 satellite galaxy spectra (0.1 ≤ z ≤ 0.3). These spectra are combined into high S/N stacks, and binned according to both an 'internal' parameter, the stellar mass of the satellite galaxy (I.e. the secondary), and an 'external' parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal-rich, with age differences ˜1-2 Gyr within the subset of lower mass satellites (˜1010 M⊙). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.

  14. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  15. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  16. Three small transiting planets around the M-dwarf host star LP 358-499

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.

    2018-01-01

    We report on the detection of three transiting small planets around the low-mass star LP 358-499 (K2-133), using photometric data from the Kepler-K2 mission. Using multiband photometry, we determine the host star to be an early M dwarf with an age likely older than a gigayear. The three detected planets K2-133 b, c and d have orbital periods of ca. 3, 4.9 and 11 d and transit depths of ca. 700, 1000 and 2000 ppm, respectively. We also report a planetary candidate EPIC 247887989.01 with a period of 26.6 d and a depth of ca. 1000 ppm, which may be at the inner edge of the stellar habitable zone, depending on the specific host star properties. Using the transit parameters and the stellar properties, we estimate that the innermost planet may be rocky. The system is suited for follow-up observations to measure planetary masses and JWST transmission spectra of planetary atmospheres.

  17. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  18. Metallicity determination of M dwarfs. Expanded parameter range in metallicity and effective temperature

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike

    2017-08-01

    Context. Reliable metallicity values for late K and M dwarfs are important for studies of the chemical evolution of the Galaxy and advancement of planet formation theory in low-mass environments. Historically it has been challenging to determine the stellar parameters of low-mass stars because of their low surface temperature, which causes several molecules to form in the photospheric layers. In our work we use the fact that infrared high-resolution spectrographs have opened up a new window for investigating M dwarfs. This enables us to use similar methods as for warmer solar-like stars. Aims: Metallicity determination with high-resolution spectra is more accurate than with low-resolution spectra, but it is rather time consuming. In this paper we expand our sample analyzed with this precise method both in metallicity and effective temperature to build a calibration sample for a future revised empirical calibration. Methods: Because of the relatively few molecular lines in the J band, continuum rectification is possible for high-resolution spectra, allowing the stellar parameters to be determined with greater accuracy than with optical spectra. We obtained high-resolution spectra with the CRIRES spectrograph at the Very Large Telescope (VLT). The metallicity was determined using synthetic spectral fitting of several atomic species. For M dwarfs that are cooler than 3575 K, the line strengths of FeH lines were used to determine the effective temperatures, while for warmer stars a photometric calibration was used. Results: We analyzed 16 targets with a range of effective temperature from 3350-4550 K. The resulting metallicities lie between -0.5< [M/H] < +0.4. A few targets have previously been analyzed using low-resolution spectra and we find a rather good agreement with our values. A comparison with available photometric calibrations shows varying agreement and the spread within all empirical calibrations is large. Conclusions: Including the targets from our previous paper, we analyzed 28 M dwarfs with high-resolution infrared spectra. The targets spread approximately one dex in metallicity and 1400 K in effective temperature. For individual M dwarfs we achieve uncertainties of 0.05 dex and 100 K on average. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 090.D-0796(A).

  19. Out-of-transit Refracted Light in the Atmospheres of Transiting and Non-transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dalba, Paul A.

    2017-10-01

    Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage—a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit flux increase across a comprehensive exoplanetary parameter space. At visible wavelengths, Rayleigh scattering limits the detectability of stellar mirages in most exoplanetary systems with semimajor axes ≲ 6 {au}. A notable exception is almost any planet orbiting a late M or ultra-cool dwarf star at ≳ 0.5 {au}, where the maximum relative flux increase is >50 parts per million. Based partly on previous work, I propose that the importance of refraction in an exoplanet system is governed by two angles: the orbital distance divided by the stellar radius and the total deflection achieved by a ray in the optically thin portion of the atmosphere. Atmospheric lensing events caused by non-transiting exoplanets, which allow for exoplanet detection and atmospheric characterization, are also investigated. I derive the basic formalism to determine the total signal-to-noise ratio of an atmospheric lensing event, with application to Kepler data. It is unlikely that out-of-transit refracted light signals are clearly present in Kepler data due to Rayleigh scattering and the bias toward short-period exoplanets. However, observations at long wavelengths (e.g., the near-infrared) are significantly more likely to detect stellar mirages. Lastly, I discuss the potential for the Transiting Exoplanet Survey Satellite to detect refracted light and consider novel science cases enabled by refracted light spectra from the James Webb Space Telescope.

  20. Stellar Color Regression: A Spectroscopy-based Method for Color Calibration to a Few Millimagnitude Accuracy and the Recalibration of Stripe 82

    NASA Astrophysics Data System (ADS)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu

    2015-02-01

    In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u - g, 3 mmag in g - r, and 2 mmag in r - i and i - z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.

  1. Biological damage of UV radiation in environments of F-type stars

    NASA Astrophysics Data System (ADS)

    Sato, Satoko

    I investigate the general astrobiological significance of F-type main-sequence stars with special consideration to stellar evolutionary aspects due to nuclear evolution. DNA is taken as a proxy for carbon-based macromolecules following the assumption that exobiology is most likely based on hydrocarbons. The DNA action spectrum is utilized to represent the relative damage of the stellar UV radiation. Planetary atmospheric attenuation is taken into account in the form of parameterized attenuation functions. My work is motivated by previous studies indicating that the UV environment of solar-like stars is one of the most critical elements in determining the habitability of exoplanets and exomoons. It contributes further to the exploration of the exobiological suitability of stars that are hotter and emit much higher photospheric UV fluxes than the Sun. I found that the damage inflicted on DNA for planets at Earth-equivalent positions is between 2.5 and 7.1 times higher than for solar-like stars, and there are intricate relations for the time-dependence of damage during stellar main-sequence evolution. If atmospheric attenuation is included, however, less damage is obtained in alignment to the attenuation parameters. Also, the outer part of late F-type stars have similar UV conditions to Earth. Therefore, F-type circumstellar environments should not be excluded from candidates for habitable places on the grounds of higher stellar UV emission than the Sun. Besides the extensive theoretical component of this study, emphasis is furthermore placed on applications to observed planetary systems including CoRoT-3, WASP-14, HD 197286, HD 179949, upsilon And, and HD 86264.

  2. Environmental dependence of the galaxy stellar mass function in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Etherington, J.; Thomas, D.; Maraston, C.; ...

    2016-01-04

    Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their environments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolutemore » magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15 < z < 1.05. For z < 0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z ~ 1.0 where the shapes of the mass function components are indistinguishable. As a result, our study shows how high density structures build up around massive galaxies through cosmic time.« less

  3. Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422

    NASA Astrophysics Data System (ADS)

    Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.

    2018-04-01

    We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.

  4. Research of autonomous celestial navigation based on new measurement model of stellar refraction

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo

    2014-09-01

    Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.

  5. Effects of binary stellar populations on direct collapse black hole formation

    NASA Astrophysics Data System (ADS)

    Agarwal, Bhaskar; Cullen, Fergus; Khochfar, Sadegh; Klessen, Ralf S.; Glover, Simon C. O.; Johnson, Jarrett

    2017-06-01

    The critical Lyman-Werner (LW) flux required for direct collapse blackholes (DCBH) formation, or Jcrit, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the LW radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of Jcrit can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub-critical rate of H- photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H- plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H2-H- photodestruction rate parameter space, rather than a single value of LW flux.

  6. Non-radial pulsations and large-scale structure in stellar winds

    NASA Astrophysics Data System (ADS)

    Blomme, R.

    2009-07-01

    Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.

  7. Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars

    NASA Astrophysics Data System (ADS)

    Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria

    2018-04-01

    The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.

  8. Uncertainties in Galactic Chemical Evolution Models

    DOE PAGES

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...

    2016-06-15

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  9. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    NASA Astrophysics Data System (ADS)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar nucleosynthesis with far more complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, Benoit; Ritter, Christian; Oshea, Brian W.

    Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less

  11. Stellar Companions of Exoplanet Host Stars in K2

    NASA Astrophysics Data System (ADS)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  12. Asteroseismology with FRESIP: A meter class space telescope

    NASA Technical Reports Server (NTRS)

    Milford, Peter

    1994-01-01

    The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.

  13. New method to design stellarator coils without the winding surface

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2017-11-06

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less

  14. New method to design stellarator coils without the winding surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less

  15. Astrophysical properties of star clusters in the Magellanic Clouds homogeneously estimated by ASteCA

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Piatti, A. E.; Vázquez, R. A.

    2017-06-01

    Aims: We seek to produce a homogeneous catalog of astrophysical parameters of 239 resolved star clusters, located in the Small and Large Magellanic Clouds, observed in the Washington photometric system. Methods: The cluster sample was processed with the recently introduced Automated Stellar Cluster Analysis (ASteCA) package, which ensures both an automatized and a fully reproducible treatment, together with a statistically based analysis of their fundamental parameters and associated uncertainties. The fundamental parameters determined for each cluster with this tool, via a color-magnitude diagram (CMD) analysis, are metallicity, age, reddening, distance modulus, and total mass. Results: We generated a homogeneous catalog of structural and fundamental parameters for the studied cluster sample and performed a detailed internal error analysis along with a thorough comparison with values taken from 26 published articles. We studied the distribution of cluster fundamental parameters in both Clouds and obtained their age-metallicity relationships. Conclusions: The ASteCA package can be applied to an unsupervised determination of fundamental cluster parameters, which is a task of increasing relevance as more data becomes available through upcoming surveys. A table with the estimated fundamental parameters for the 239 clusters analyzed is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A89

  16. Cheetah: Starspot modeling code

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam

    2014-12-01

    Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

  17. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, Edward F.; Finkbeiner, Douglas P.

    2011-08-20

    We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u - g, g - r, r - i, and i - z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm ourmore » earlier 'blue tip' reddening measurements, finding reddening coefficients different by -3%, 1%, 1%, and 2% in u - g, g - r, r - i, and i - z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an R{sub V} = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B - V) to extinction in 88 bandpasses for four values of R{sub V} , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.« less

  18. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  19. A non-local mixing-length theory able to compute core overshooting

    NASA Astrophysics Data System (ADS)

    Gabriel, M.; Belkacem, K.

    2018-04-01

    Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.

  20. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.

    2017-07-01

    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  1. Winds in hot main-sequence stars near the static limit

    NASA Technical Reports Server (NTRS)

    Morrison, Nancy D.

    1995-01-01

    This project began with the acquisition of short-wavelength, high-dispersion IUE spectra of selected late O- and early B-type stars that are near the main sequence in open clusters and associations. The profiles of the resonance lines of N(V), Si(IV), and C(IV) were studied, and we found that the C(IV) lines are the most sensitive indicators of mass loss (stellar winds) in stars of this type. The mass loss manifests itself as an extension of the short-wavelength absorption wing of the doublet, while there is no P Cygni-type emission on the long-wavelength side of the line profile. We investigated whether the short-wavelength extension could be caused by blended lines of other ionic species formed in the photosphere. Although blending is present and introduces uncertainty into the estimation of the precise location on the main sequence of the onset of the mass-loss signature, it is a crucial issue only in a few marginal cases. Mass loss certainly overwhelms blending in its influence on the spectrum between spectral types B0 and B1 (effective temperatures in the range 25,000-27,000 K). We defined a parameter called P(sub w), to describe the degree of asymmetry of the C(IV) resonance-line profile, and we studied the dependence of this parameter on the fundamental stellar parameters. For this purpose, we derived new estimates of the stellar T(eff) and log g from a non-LTE, line-blanketed model-atmosphere analysis of these stars (Grigsby, Morrison, and Anderson 1992). In order to estimate the stellar luminosities, we performed an exhaustive search of the literature for the most reliable available estimates of the distances of the clusters and associations to which the program stars belong. The dependence of P(sub w) on stellar temperature and luminosity is also studied.

  2. VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)

    NASA Astrophysics Data System (ADS)

    Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.

    2016-07-01

    The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzoori, Davood

    Solutions of standard VR light curves for the eclipsing binary RT And were obtained using the PHOEBE program (ver. 0.3a). Absolute parameters of the stellar components were then determined, enabling them to be positioned on the mass-luminosity diagram. Times of minima data ({sup O} - C curve) were analyzed using the method of Kalimeris et al. A cyclic variation in the orbital period and brightness, with timescales of about 11.89 and 12.50 yr were found, respectively. This is associated with a magnetic activity cycle modulating the orbital period of RT And via the Applegate mechanism. To check the consistency ofmore » the Applegate model, we have estimated some related parameters of the RT And system. The calculated parameters were in accordance with those estimated by Applegate for other similar systems, except B, the subsurface magnetic field of which shows a rather high value for RT And.« less

  4. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  5. Homogeneous Characterization of Transiting Exoplanet Systems

    NASA Astrophysics Data System (ADS)

    Gomez Maqueo Chew, Yilen; Faedi, Francesca; Hebb, Leslie; Pollacco, Don; Stassun, Keivan; Ghezzi, Luan; Cargile, Phillip; Barros, Susana; Smalley, Barry; Mack, Claude

    2012-02-01

    We aim to obtain a homogeneous set of high resolution, high signal- to-noise (S/N) spectra for a large and diverse sample of stars with transiting planets, using the Kitt Peak 4-m echelle spectrograph for bright Northern targets (7.7150) in combination with high precision light curves shows an improvement in the precision of the stellar parameters of 60% in Teff, 75% in FeH, 82% in mstar, and 73% in rstar, which translates into a 64% improvement in the precision of rpl, and more than 2% on mpl, relative to the discovery paper's values.

  6. A NLTE line formation for neutral and singly ionized calcium in model atmospheres of B-F stars

    NASA Astrophysics Data System (ADS)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2018-07-01

    We present non-local thermodynamic equilibrium (NLTE) line formation calculations for Ca I and Ca II in B-F stars. The sign and the magnitude of NLTE abundance corrections depend on line and stellar parameters. We determine calcium abundances for nine stars with reliable stellar parameters. For all stars, where the lines of both species could be measured, the NLTE abundances are found to be consistent within the error bars. We obtain consistent NLTE abundances from Ca II lines in the visible and near infra-red (IR, 8912-27, 9890 Å) spectrum range, in contrast with LTE, where the discrepancy between the two groups of lines ranges from -0.5 to 0.6 dex for different stars. Our NLTE method reproduces the Ca II 8912-27, 9890 Å lines observed in emission in the late B-type star HD 160762 with the classical plane-parallel and LTE model atmosphere. NLTE abundance corrections for lines of Ca I and Ca II were calculated in a grid of model atmospheres with 7000 ≤ Teff ≤ 13 000 K, 3.2 ≤ log g ≤ 5.0, -0.5 ≤ [Fe/H] ≤0.5, ξt = 2.0 km s-1. Our NLTE results can be applied for calcium NLTE abundance determination from Gaia spectra, given that accurate continuum normalization and proper treatment of the hydrogen Paschen lines are provided. The NLTE method can be useful to refine calcium underabundances in Am stars and to provide accurate observational constraints on the models of diffusion.

  7. Using Smartphone Camera Technology to Explore Stellar Parallax: Method, Results, and Reactions

    ERIC Educational Resources Information Center

    Fitzgerald, Michael T.; McKinnon, David H.; Danaia, Lena; Woodward, Sandra

    2011-01-01

    Stellar parallax is a concept that is dealt with infrequently in the high school classroom other than by qualitative consideration of stereoscopic parallax and argument by analogy. Use of stellar parallax for distance determination can be difficult for students to understand without some type of hands-on experience to explore the concept. Thus,…

  8. Multi-epoch observations with high spatial resolution of multiple T Tauri systems

    NASA Astrophysics Data System (ADS)

    Csépány, Gergely; van den Ancker, Mario; Ábrahám, Péter; Köhler, Rainer; Brandner, Wolfgang; Hormuth, Felix; Hiss, Hector

    2017-07-01

    Context. In multiple pre-main-sequence systems the lifetime of circumstellar discs appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims: We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine whether the components are gravitationally bound and orbital motion is visible, derive orbital parameters, and investigate possible correlations between the binary parameters and disc states. Methods: We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16 + 2 × 2 = 20 binary pairs) in the Taurus-Auriga star-forming region from a previous survey, with spectral types from K1 to M5 and separations from 0.22″ (31 AU) to 5.8″ (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results: We found ten pairs to orbit each other, five pairs that may show orbital motion, and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μm infra-red excess varies between 0.1 and 7.2 mag (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disc. Conclusions: We have detected orbital motion in young T Tauri systems over a timescale of ≈ 20 yr. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.

  9. Unbound Young Stellar Systems: Star Formation on the Loose

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2018-07-01

    Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.

  10. VizieR Online Data Catalog: The Cannon: a new approach to determine masses (Ness+, 2016)

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, D. W.; Rix, H.-W.; Martig, M.; Pinsonneault, M. H.; Ho, A. Y. Q.

    2016-08-01

    We make use of The Cannon (Ness et al. 2015, J/ApJ/808/16), which is a data-driven method for determining stellar parameters and abundances (see section 2.1 for further explanations). APOGEE is a Sloan Digital Sky Survey (SDSS) (Eisenstein et al. 2011AJ....142...72E) infrared survey of the Milky Way disk, bulge, and halo and has provided H-band spectra (1500-1700nm) of about 150000 stars in the public data release DR12. The three labels of Teff, logg, and [Fe/H] delivered with The Cannon were demonstrated in Ness et al. (2015, J/ApJ/808/16). In this work we train on and then determine two additional labels: [α/Fe] and mass. (1 data file).

  11. On the optically thick winds of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Owocki, S. P.; Grassitelli, L.; Langer, N.

    2017-12-01

    Context. The classical Wolf-Rayet (WR) phase is believed to mark the end stage of the evolution of massive stars with initial masses higher than 25M⊙. Stars in this phase expose their stripped cores with the products of H- or He-burning at their surface. They develop strong, optically thick stellar winds that are important for the mechanical and chemical feedback of massive stars, and that determine whether the most massive stars end their lives as neutron stars or black holes. The winds of WR stars are currently not well understood, and their inclusion in stellar evolution models relies on uncertain empirical mass-loss relations. Aims: We investigate theoretically the mass-loss properties of H-free WR stars of the nitrogen sequence (WN stars). Methods: We connected stellar structure models for He stars with wind models for optically thick winds and assessed the degree to which these two types of models can simultaneously fulfil their respective sonic-point conditions. Results: Fixing the outer wind law and terminal wind velocity ν∞, we obtain unique solutions for the mass-loss rates of optically thick, radiation-driven winds of WR stars in the phase of core He-burning. The resulting mass-loss relations as a function of stellar parameters agree well with previous empirical relations. Furthermore, we encounter stellar mass limits below which no continuous solutions exist. While these mass limits agree with observations of WR stars in the Galaxy, they contradict observations in the LMC. Conclusions: While our results in particular confirm the slope of often-used empirical mass-loss relations, they imply that only part of the observed WN population can be understood in the framework of the standard assumptions of a smooth transonic flow and compact stellar core. This means that alternative approaches such as a clumped and inflated wind structure or deviations from the diffusion limit at the sonic point may have to be invoked. Qualitatively, the existence of mass limits for the formation of WR-type winds may be relevant for the non-detection of low-mass WR stars in binary systems, which are believed to be progenitors of Type Ib/c supernovae. The sonic-point conditions derived in this work may provide a possibility to include optically thick winds in stellar evolution models in a more physically motivated form than in current models.

  12. Participación científica del Nodo La Plata en el Proyecto VVV

    NASA Astrophysics Data System (ADS)

    Baume, G.; Fernández Lajús, E.; Feinstein, C.; Gamen, R.; Fariña, C.

    We present here the main research lines related to the survey Vista Variables in the Vía Láctea (VVV) being carried out at "Node La Plata". These lines involve the study of stellar clusters and eclipsing systems. In this frame- work raises the following studies: a) An preliminar analysis of a group of embedded stellar clusters located in the fourth Galactic quadrant by estimat- ing their fundamental parameters using VVV data supplemented with data from other published catalogs. b) The provided methodology for the deter- mination of the eclipsing binary stars parameters for those ones detected in the survey from their light curves, including also extrasolar planets transits. FULL TEXT IN SPANISH

  13. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotter, Aaron; Conroy, Charlie; Cargile, Phillip

    2017-05-10

    In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current,more » surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.« less

  14. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  15. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  16. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less

  17. Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2018-05-01

    We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.

  18. VizieR Online Data Catalog: 231 transiting planets eccentricity and mass (Bonomo+, 2017)

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hebrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-04-01

    We carried out a homogeneous determination of the orbital parameters of 231 TGPs by analysing with our Bayesian DEMCMC tool both the literature RVs and the new high-accuracy and high-precision HARPS-N data we acquired for 45 TGPs orbiting relatively bright stars over ~3 years. We thus produced the largest uniform catalogue of giant planet orbital and physical parameters. For several systems we combined for the first time RV datasets collected with different spectrographs by different groups thus improving the orbital solution. In general, we fitted a separate jitter term for each dataset by allowing for different values of extra noise caused by instrumental effects and/or changing levels of stellar activity in different observing seasons. This way, we uniformly derived the orbital eccentricities of (8 data files).

  19. Dynamics of ultraharmonic resonances in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Artymowicz, Pawel; Lubow, Stephen H.

    1992-01-01

    The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.

  20. Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1994-01-01

    The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.

  1. White dwarfs in the Gaia era

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.

    2018-04-01

    The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.

  2. Minerva exoplanet detection sensitivity from simulated observations

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Nava, C.

    2014-01-01

    Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.

  3. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  4. A Numerical Method for Calculating Stellar Occultation Light Curves from an Arbitrary Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Chamberlain, D. M.; Elliot, J. L.

    1997-01-01

    We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.

  5. A Double Zone Dynamical Model For The Tidal Evolution Of The Obliquity

    NASA Astrophysics Data System (ADS)

    Damiani, Cilia

    2017-10-01

    It is debated wether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration. One of the observable tests for migration theories is the current value of the obliquity. But after the main migration mechanism has ended, the combined effects of tidal dissipation and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation between effective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play. Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves in time. The model also includes the effect of magnetic braking in the framework of the double zone model. This results in the estimation of different tidal evolution timescales for the evolution of the planet's semi-major axis and obliquity depending on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of stellar radii, masses and ages can be obtained.

  6. Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.

    2004-05-01

    We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.

  7. A numerical investigation of wind accretion in persistent supergiant X-ray binaries - I. Structure of the flow at the orbital scale

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2017-05-01

    Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).

  8. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less

  9. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  10. MAPPING THE DYNAMICS OF COLD GAS AROUND SGR A* THROUGH 21 cm ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu

    2015-11-20

    The presence of a circumnuclear stellar disk around Sgr A* and megamaser systems near other black holes indicates that dense neutral disks can be found in galactic nuclei. We show that depending on their inclination angle, optical depth, and spin temperature, these disks could be observed spectroscopically through 21 cm absorption. Related spectroscopic observations of Sgr A* can determine its HI disk parameters and the possible presence of gaps in the disk. Clumps of dense gas similar to the G2 could could also be detected in 21 cm absorption against Sgr A* radio emission.

  11. Estado evolutivo de estrellas con fenómeno B[e

    NASA Astrophysics Data System (ADS)

    Aidelman, Y. J.; Cidale, L.; Borges Fernandes, M.; Kraus, M.

    The B[e] phenomenon is related to certain peculiar features observed in the spectrum of some B stars, which are mainly linked to the physical conditions of their circumstellar medium. As these stars are embedded in dense and optically thick circumstellar media, the determination of the spectral type and luminosity class of the central objects is quite difficult. As a consequence, their evolutionary stage and distances present huge uncertainties. In this work we study 4 B[e] stars and discuss their stellar fundamental parameters and evolutionary stages using the BCD spectrophotometric system. FULL TEXT IN SPANISH

  12. Large and Small Magellanic Clouds age-metallicity relationships

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Piatti, A. E.; Vázquez, R. A.

    2017-10-01

    We present a new determination of the age-metallicity relation for both Magellanic Clouds, estimated through the homogeneous analysis of 239 observed star clusters. All clusters in our set were observed with the filters of the Washington photometric system. The Automated Stellar cluster Analysis package (ASteCA) was employed to derive the cluster's fundamental parameters, in particular their ages and metallicities, through an unassisted process. We find that our age-metallicity relations (AMRs) can not be fully matched to any of the estimations found in twelve previous works, and are better explained by a combination of several of them in different age intervals.

  13. Chemical Compositions of Kinematically Selected Outer Halo Stars

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Ishigaki, Miho; Aoki, Wako; Zhao, Gang; Chiba, Masashi

    2009-12-01

    Chemical abundances of 26 metal-poor dwarfs and giants are determined from high-resolution and high signal-to-noise ratio spectra obtained with the Subaru/High Dispersion Spectrograph. The sample is selected so that most of the objects have outer-halo kinematics. Self-consistent atmospheric parameters were determined by an iterative procedure based on spectroscopic analysis. Abundances of 13 elements, including α-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc), iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements (Y, Ba), are determined by two independent data reduction and local thermodynamic equillibrium analysis procedures, confirming the consistency of the stellar parameters and abundances results. We find a decreasing trend of [α/Fe] with increasing [Fe/H] for the range of -3.5< [Fe/H] <-1, as found by Stephens & Boesgaard. [Zn/Fe] values of most objects in our sample are slightly lower than the bulk of halo stars previously studied. These results are discussed as possible chemical properties of the outer halo in the Galaxy. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. Stars and Nuclei. Part II

    ERIC Educational Resources Information Center

    Ames, Oakes

    1972-01-01

    A brief review of the evidence that nuclear reactions are the main source of stellar energy, how nuclear reactions synthesize the elements, and how nuclear reactions determine the course of stellar evolution. (Author/CP)

  15. Observational properties of massive black hole binary progenitors

    NASA Astrophysics Data System (ADS)

    Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.

    2018-01-01

    Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.

  16. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  17. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  18. α Centauri A as a potential stellar model calibrator: establishing the nature of its core

    NASA Astrophysics Data System (ADS)

    Nsamba, B.; Monteiro, M. J. P. F. G.; Campante, T. L.; Cunha, M. S.; Sousa, S. G.

    2018-05-01

    Understanding the physical process responsible for the transport of energy in the core of α Centauri A is of the utmost importance if this star is to be used in the calibration of stellar model physics. Adoption of different parallax measurements available in the literature results in differences in the interferometric radius constraints used in stellar modelling. Further, this is at the origin of the different dynamical mass measurements reported for this star. With the goal of reproducing the revised dynamical mass derived by Pourbaix & Boffin, we modelled the star using two stellar grids varying in the adopted nuclear reaction rates. Asteroseismic and spectroscopic observables were complemented with different interferometric radius constraints during the optimisation procedure. Our findings show that best-fit models reproducing the revised dynamical mass favour the existence of a convective core (≳ 70% of best-fit models), a result that is robust against changes to the model physics. If this mass is accurate, then α Centauri A may be used to calibrate stellar model parameters in the presence of a convective core.

  19. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the latest results on stellar activity versus planet surface gravity correlation. We finally describe methods with which it would be possible to account for ISM absorption in activity measurements and provide a code to roughly estimate the magnitude of the bias. Correcting for the ISM absorption bias may allow one to identify the origin of the anomaly in the activity measured for some planet-hosting stars.

  20. AN EMPIRICAL CALIBRATION TO ESTIMATE COOL DWARF FUNDAMENTAL PARAMETERS FROM H-BAND SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan

    Interferometric radius measurements provide a direct probe of the fundamental parameters of M dwarfs. However, interferometry is within reach for only a limited sample of nearby, bright stars. We use interferometrically measured radii, bolometric luminosities, and effective temperatures to develop new empirical calibrations based on low-resolution, near-infrared spectra. We find that H-band Mg and Al spectral features are good tracers of stellar properties, and derive functions that relate effective temperature, radius, and log luminosity to these features. The standard deviations in the residuals of our best fits are, respectively, 73 K, 0.027 R {sub ☉}, and 0.049 dex (an 11% error on luminosity).more » Our calibrations are valid from mid K to mid M dwarf stars, roughly corresponding to temperatures between 3100 and 4800 K. We apply our H-band relationships to M dwarfs targeted by the MEarth transiting planet survey and to the cool Kepler Objects of Interest (KOIs). We present spectral measurements and estimated stellar parameters for these stars. Parallaxes are also available for many of the MEarth targets, allowing us to independently validate our calibrations by demonstrating a clear relationship between our inferred parameters and the stars' absolute K magnitudes. We identify objects with magnitudes that are too bright for their inferred luminosities as candidate multiple systems. We also use our estimated luminosities to address the applicability of near-infrared metallicity calibrations to mid and late M dwarfs. The temperatures we infer for the KOIs agree remarkably well with those from the literature; however, our stellar radii are systematically larger than those presented in previous works that derive radii from model isochrones. This results in a mean planet radius that is 15% larger than one would infer using the stellar properties from recent catalogs. Our results confirm the derived parameters from previous in-depth studies of KOIs 961 (Kepler-42), 254 (Kepler-45), and 571 (Kepler-186), the latter of which hosts a rocky planet orbiting in its star's habitable zone.« less

  1. The Belgian repository of fundamental atomic data and stellar spectra (BRASS). I. Cross-matching atomic databases of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Laverick, M.; Lobel, A.; Merle, T.; Royer, P.; Martayan, C.; David, M.; Hensberge, H.; Thienpont, E.

    2018-04-01

    Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims: The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods: Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results: We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that 2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different retrieved literature log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transition pairs are available to download at http://brass.sdf.org

  2. Stellar parametrization from Gaia RVS spectra

    NASA Astrophysics Data System (ADS)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, I.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are found for A-type stars, while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at GRVS = 12.6 and 13.4, respectively). For the faintest stars, with GRVS≳ 13-14, a Teff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions: The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.

  3. Deep optical survey of the stellar content of Sh2-311 region

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Kesh; Pandey, A. K.; Sharma, Saurabh; Jose, J.; Ogura, K.; Kobayashi, N.; Samal, M. R.; Eswaraiah, C.; Chandola, H. C.

    2015-01-01

    The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attempt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 ± 0.4 kpc and 5.7 ± 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 ± 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR (J-H)/(H-K) two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the V/(V-I) colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are ≲1 Myr and ∼0.4-3.5 M⊙, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the HII region Sh2-311, suggesting a triggered star formation at its periphery.

  4. ORBITAL AND PHYSICAL PROPERTIES OF THE σ Ori Aa, Ab, B TRIPLE SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simón-Díaz, S.; Caballero, J. A.; Apellániz, J. Maíz

    2015-02-01

    We provide a complete characterization of the astrophysical properties of the σ Ori Aa, Ab, B hierarchical triple system and an improved set of orbital parameters for the highly eccentric σ Ori Aa, Ab spectroscopic binary. We compiled a spectroscopic data set comprising 90 high-resolution spectra covering a total time span of 1963 days. We applied the Lehman-Filhés method for a detailed orbital analysis of the radial velocity curves and performed a combined quantitative spectroscopic analysis of the σ Ori Aa, Ab, B system by means of the stellar atmosphere code FASTWIND. We used our own plus other available information onmore » photometry and distance to the system for measuring the radii, luminosities, and spectroscopic masses of the three components. We also inferred evolutionary masses and stellar ages using the Bayesian code BONNSAI. The orbital analysis of the new radial velocity curves led to a very accurate orbital solution of the σ Ori Aa, Ab pair. We provided indirect arguments indicating that σ Ori B is a fast-rotating early B dwarf. The FASTWIND+BONNSAI analysis showed that the Aa, Ab pair contains the hottest and most massive components of the triple system while σ Ori B is a bit cooler and less massive. The derived stellar ages of the inner pair are intriguingly younger than the one widely accepted for the σ Orionis cluster, at 3 ± 1 Ma. The outcome of this study will be of key importance for a precise determination of the distance to the σ Orionis cluster, the interpretation of the strong X-ray emission detected for σ Ori Aa, Ab, B, and the investigation of the formation and evolution of multiple massive stellar systems and substellar objects.« less

  5. STELLAR COLOR REGRESSION: A SPECTROSCOPY-BASED METHOD FOR COLOR CALIBRATION TO A FEW MILLIMAGNITUDE ACCURACY AND THE RECALIBRATION OF STRIPE 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng

    In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the smallmore » but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u – g, 3 mmag in g – r, and 2 mmag in r – i and i – z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.« less

  6. The AB Doradus system revisited: The dynamical mass of AB Dor A/C

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.; Tognelli, E.; Jauncey, D. L.; Lestrade, J.-F.; Reynolds, J. E.

    2017-10-01

    Context. The study of pre-main-sequence (PMS) stars with model-independent measurements of their masses is essential to check the validity of theoretical models of stellar evolution. The well-known PMS binary AB Dor A/C is an important benchmark for this task, since it displays intense and compact radio emission, which makes possible the application of high-precision astrometric techniques to this system. Aims: We aim to revisit the dynamical masses of the components of AB Dor A/C to refine earlier comparisons between the measurements of stellar parameters and the predictions of stellar models. Methods: We observed in phase-reference mode the binary AB Dor A/C, 0.2'' separation, with the Australian Long Baseline Array at 8.4 GHz. The astrometric information resulting from our observations was analyzed along with previously reported VLBI, optical (Hipparcos), and infrared measurements. Results: The main star AB Dor A is clearly detected in all the VLBI observations, which allowed us to analyze the orbital motion of the system and to obtain model-independent dynamical masses of 0.90 ± 0.08 M⊙ and 0.090 ± 0.008 M⊙, for AB Dor A and AB Dor C, respectively. Comparisons with PMS stellar evolution models favor and age of 40-50 Myr for AB Dor A and of 25-120 Myr for AB Dor C. Conclusions: We show that the orbital motion of the AB Dor A/C system is remarkably well determined, leading to precise estimates of the dynamical masses. Comparison of our results with the prediction of evolutionary models support the observational evidence that theoretical models tend to slightly underestimate the mass of the low-mass stars.

  7. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a samplemore » of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.« less

  8. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; hide

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  9. The Sixth Data Release of the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Adelman-McCarthy, Jennifer K.; Agüeros, Marcel A.; Allam, Sahar S.; Allende Prieto, Carlos; Anderson, Kurt S. J.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bailer-Jones, C. A. L.; Baldry, Ivan K.; Barentine, J. C.; Bassett, Bruce A.; Becker, Andrew C.; Beers, Timothy C.; Bell, Eric F.; Berlind, Andreas A.; Bernardi, Mariangela; Blanton, Michael R.; Bochanski, John J.; Boroski, William N.; Brinchmann, Jarle; Brinkmann, J.; Brunner, Robert J.; Budavári, Tamás; Carliles, Samuel; Carr, Michael A.; Castander, Francisco J.; Cinabro, David; Cool, R. J.; Covey, Kevin R.; Csabai, István; Cunha, Carlos E.; Davenport, James R. A.; Dilday, Ben; Doi, Mamoru; Eisenstein, Daniel J.; Evans, Michael L.; Fan, Xiaohui; Finkbeiner, Douglas P.; Friedman, Scott D.; Frieman, Joshua A.; Fukugita, Masataka; Gänsicke, Boris T.; Gates, Evalyn; Gillespie, Bruce; Glazebrook, Karl; Gray, Jim; Grebel, Eva K.; Gunn, James E.; Gurbani, Vijay K.; Hall, Patrick B.; Harding, Paul; Harvanek, Michael; Hawley, Suzanne L.; Hayes, Jeffrey; Heckman, Timothy M.; Hendry, John S.; Hindsley, Robert B.; Hirata, Christopher M.; Hogan, Craig J.; Hogg, David W.; Hyde, Joseph B.; Ichikawa, Shin-ichi; Ivezić, Željko; Jester, Sebastian; Johnson, Jennifer A.; Jorgensen, Anders M.; Jurić, Mario; Kent, Stephen M.; Kessler, R.; Kleinman, S. J.; Knapp, G. R.; Kron, Richard G.; Krzesinski, Jurek; Kuropatkin, Nikolay; Lamb, Donald Q.; Lampeitl, Hubert; Lebedeva, Svetlana; Lee, Young Sun; French Leger, R.; Lépine, Sébastien; Lima, Marcos; Lin, Huan; Long, Daniel C.; Loomis, Craig P.; Loveday, Jon; Lupton, Robert H.; Malanushenko, Olena; Malanushenko, Viktor; Mandelbaum, Rachel; Margon, Bruce; Marriner, John P.; Martínez-Delgado, David; Matsubara, Takahiko; McGehee, Peregrine M.; McKay, Timothy A.; Meiksin, Avery; Morrison, Heather L.; Munn, Jeffrey A.; Nakajima, Reiko; Neilsen, Eric H., Jr.; Newberg, Heidi Jo; Nichol, Robert C.; Nicinski, Tom; Nieto-Santisteban, Maria; Nitta, Atsuko; Okamura, Sadanori; Owen, Russell; Oyaizu, Hiroaki; Padmanabhan, Nikhil; Pan, Kaike; Park, Changbom; Peoples, John, Jr.; Pier, Jeffrey R.; Pope, Adrian C.; Purger, Norbert; Raddick, M. Jordan; Re Fiorentin, Paola; Richards, Gordon T.; Richmond, Michael W.; Riess, Adam G.; Rix, Hans-Walter; Rockosi, Constance M.; Sako, Masao; Schlegel, David J.; Schneider, Donald P.; Schreiber, Matthias R.; Schwope, Axel D.; Seljak, Uroš; Sesar, Branimir; Sheldon, Erin; Shimasaku, Kazu; Sivarani, Thirupathi; Allyn Smith, J.; Snedden, Stephanie A.; Steinmetz, Matthias; Strauss, Michael A.; SubbaRao, Mark; Suto, Yasushi; Szalay, Alexander S.; Szapudi, István; Szkody, Paula; Tegmark, Max; Thakar, Aniruddha R.; Tremonti, Christy A.; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Daniel E.; Vandenberg, Jan; Vidrih, S.; Vogeley, Michael S.; Voges, Wolfgang; Vogt, Nicole P.; Wadadekar, Yogesh; Weinberg, David H.; West, Andrew A.; White, Simon D. M.; Wilhite, Brian C.; Yanny, Brian; Yocum, D. R.; York, Donald G.; Zehavi, Idit; Zucker, Daniel B.

    2008-04-01

    This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg2, including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky (for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and redshifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

  10. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.

    Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less

  11. THE INFLUENCE OF THE EXTREME ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTION ON THE STRUCTURE AND COMPOSITION OF THE UPPER ATMOSPHERE OF EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr

    2016-02-20

    By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less

  12. Properties of interstellar wind leading to shape morphology of the dust surrounding HD 61005

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2017-08-01

    Aims: A structure formed by dust particles ejected from the debris ring around HD 61005 is observed in the scattered light. The main aim here is to constrain interstellar wind parameters that lead to shape morphology in the vicinity of HD 61005 using currently available observational data for the debris ring. Methods: Equation of motion of 2 × 105 dust particles ejected from the debris ring under the action of the electromagnetic radiation, stellar wind, and interstellar wind is solved. A two-dimensional (2D) grid is placed in a given direction for accumulation of the light scattered on the dust particles in order to determine the shape morphology. The interaction of the interstellar wind and the stellar wind is considered. Results: Groups of unknown properties of the interstellar wind that create the observed morphology are determined. A relation between number densities of gas components in the interstellar wind and its relative velocity is found. Variations of the shape morphology caused by the interaction with the interstellar clouds of various temperatures are studied. When the interstellar wind velocity is tilted from debris ring axis a simple relation between the properties of the interstellar wind and an angle between the line of sight and the interstellar wind velocity exists. Dust particles that are most significantly influenced by stellar radiation move on the boundary of observed structure. Conclusions: Observed structure at HD 61005 can be explained as a result of dust particles moving under the action of the interstellar wind. Required number densities or velocities of the interstellar wind are much higher than that of the interstellar wind entering the solar system.

  13. Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Redfield, Seth

    2017-01-01

    Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be modified if the active regions of HD 189733 b have drastically different characteristics than solar active regions. Further observations of transits across active stars will aid in disentangling the planetary signals from the stellar.

  14. Spectroscopic and Interferometric Measurements of Nine K Giant Stars

    NASA Astrophysics Data System (ADS)

    Baines, Ellyn K.; Döllinger, Michaela P.; Guenther, Eike W.; Hatzes, Artie P.; Hrudkovu, Marie; van Belle, Gerard T.

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  15. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that at this distance, it does not accrete enough mass to surpass the mass limit for hydrogen fusion. Finally, we apply this method to brown dwarfs orbiting a 15 solar mass star at Jupiter's distance. It is found that a significantly smaller amount of mass is accreted when compared to the same brown dwarfs orbiting our Sun at the same distance.

  16. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto

    2013-08-01

    Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.« less

  17. Bayesian inference of galaxy formation from the K-band luminosity function of galaxies: tensions between theory and observation

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Mo, H. J.; Katz, Neal; Weinberg, Martin D.

    2012-04-01

    We conduct Bayesian model inferences from the observed K-band luminosity function of galaxies in the local Universe, using the semi-analytic model (SAM) of galaxy formation introduced in Lu et al. The prior distributions for the 14 free parameters include a large range of possible models. We find that some of the free parameters, e.g. the characteristic scales for quenching star formation in both high-mass and low-mass haloes, are already tightly constrained by the single data set. The posterior distribution includes the model parameters adopted in other SAMs. By marginalizing over the posterior distribution, we make predictions that include the full inferential uncertainties for the colour-magnitude relation, the Tully-Fisher relation, the conditional stellar mass function of galaxies in haloes of different masses, the H I mass function, the redshift evolution of the stellar mass function of galaxies and the global star formation history. Using posterior predictive checking with the available observational results, we find that the model family (i) predicts a Tully-Fisher relation that is curved; (ii) significantly overpredicts the satellite fraction; (iii) vastly overpredicts the H I mass function; (iv) predicts high-z stellar mass functions that have too many low-mass galaxies and too few high-mass ones and (v) predicts a redshift evolution of the stellar mass density and the star formation history that are in moderate disagreement. These results suggest that some important processes are still missing in the current model family, and we discuss a number of possible solutions to solve the discrepancies, such as interactions between galaxies and dark matter haloes, tidal stripping, the bimodal accretion of gas, preheating and a redshift-dependent initial mass function.

  18. Comprehensive stellar population models and the disentanglement of age and metallicity effects

    NASA Technical Reports Server (NTRS)

    Worthey, Guy

    1994-01-01

    The construction of detailed models for intermediate and old stellar populations is described. Input parameters include metallicity (-2 less than (Fe/H) less than 0.5), single-burst age (between 1.5 and 17 Gyr), and initial mass function (IMF) exponent. Quantities output include broadband magnitudes, spectral energy distributions, surface brightness fluctuation magnitudes, and a suite of 21 absorption feature indices. The models are checked against a wide variety of available observations. Examinations of model output yield the following conclusions. (1) If the percentage change delta age/delta Z approximately equals 3/2 for two populations, they will appear almost identical in most indices. A few indices break this degeneracy by being either more abundance sensitive (Fe4668, Fe5015, Fe5709, and Fe5782) or more age sensitive (G4300, H beta, and presumably higher order Balmer lines) than usual. (2) Present uncertainties in stellar evolution are of the same magnitude as the effects of IMF and Y in the indices studied. (3) Changes in abundance ratios (like (Mg/Fe)) are predicted to be readily apparent in the spectra of old stellar populations. (4) The I-band flux of a stellar population is predicted to be nearly independent of metallicity and only modestly sensitive to age. The I band is therefore recommended for standard candle work or studies of M/L in galaxies. Other conclusions stem from this work. (1) Intercomparison of models and observations of two TiO indices seem to indicate variation of the (V/Ti) ratio among galaxies, but it is not clear how this observation ties into the standard picture of chemical enrichment. (2) Current estimates of (Fe/H) for the most metal-rich globulars that are based on integrated indices are probably slightly too high. (3) Colors of population models from different authors exhibit a substantial range. At solar metallicity and 13 Gyr, this range corresponds to an age error of roughly +/- 7 Gyr. Model colors from different authors applied in a differential sense have smaller uncertainties. (4) In the present models the dominant error for colors is probably the transformation from stellar atmospheric parameters to stellar colors. (5) Stellar B - V is difficult to model, and current spreads among different authors can reach 0.2 mag. (6) If known defects in the stellar flux library are corrected, the population model colors of this work in passbands redder than U would be accurate to roughly 0.03 mag in an absolute sense. These corrections are not made in the tables of model output.

  19. Galactic Surveys in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary F. G.

    2018-04-01

    The final astrometric data from the Gaia mission will transform our view of the stellar content of the Galaxy, particularly when complemented with spectroscopic surveys providing stellar parameters, line-of-sight kinematics and elemental abundances. Analyses with Gaia DR1 are already demonstrating the insight gained and the promise of what is to come with future Gaia releases. I present a brief overview of results and puzzles from recent Galactic Archaeology surveys for context, focusing on the Galactic discs.

  20. Disruption of circumstellar discs by large-scale stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  1. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches formore » companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.« less

  2. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  3. From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator

    NASA Astrophysics Data System (ADS)

    Warmer, F.; Beidler, C. D.; Dinklage, A.; Wolf, R.; The W7-X Team

    2016-07-01

    As a starting point for a more in-depth discussion of a research strategy leading from Wendelstein 7-X to a HELIAS power plant, the respective steps in physics and engineering are considered from different vantage points. The first approach discusses the direct extrapolation of selected physics and engineering parameters. This is followed by an examination of advancing the understanding of stellarator optimisation. Finally, combining a dimensionless parameter approach with an empirical energy confinement time scaling, the necessary development steps are highlighted. From this analysis it is concluded that an intermediate-step burning-plasma stellarator is the most prudent approach to bridge the gap between W7-X and a HELIAS power plant. Using a systems code approach in combination with transport simulations, a range of possible conceptual designs is analysed. This range is exemplified by two bounding cases, a fast-track, cost-efficient device with low magnetic field and without a blanket and a device similar to a demonstration power plant with blanket and net electricity power production.

  4. Algorithms for Stellar Perturbation Computations on Oort Cloud Comets

    NASA Astrophysics Data System (ADS)

    Rickman, Hans; Fouchard, Marc; Valsecchi, Giovanni B.; Froeschlé, Christiane

    2005-12-01

    We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330 1338) method and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.

  5. Chromospheric Activity in Cool Luminous Stars

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea

    2018-04-01

    Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triana, S. A.; Moravveji, E.; Pápics, P. I.

    The internal angular momentum distribution of a star is the key to determining its evolution. Fortunately, stellar internal rotation can be probed through studies of rotationally split nonradial oscillation modes. In particular, the detection of nonradial gravity modes (g modes) in massive young stars has recently become feasible thanks to the Kepler space mission. Our goal is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels.more » We show that these kernels can resolve differential rotation within the radiative envelope if a smooth rotational profile is assumed and if the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to 163 ± 89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to determine the physical conditions that control the internal rotation profile of young massive stars, with the aim of improving the input physics of their models.« less

  7. Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Sozzetti, A.; Santerne, A.; Deleuil, M.; Almenara, J.-M.; Bruno, G.; Díaz, R. F.; Hébrard, G.; Moutou, C.

    2015-03-01

    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities and Kepler short-cadence (SC) data that provide a much better sampling of the transits; ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, after improving our procedure for selecting and co-adding the SOPHIE spectra of faint stars (Kp ≳ 14); and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible, by using all the available LC data up to quarter Q17. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag< 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper, as a consequence of the slightly shorter transit duration found with SC data; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. Tables 2-8 are available in electronic form at http://www.aanda.org

  8. Kepler-91b: a planet at the end of its life. Planet and giant host star properties via light-curve variations

    NASA Astrophysics Data System (ADS)

    Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T.

    2014-02-01

    Context. The evolution of planetary systems is intimately linked to the evolution of their host stars. Our understanding of the whole planetary evolution process is based on the wide planet diversity observed so far. Only a few tens of planets have been discovered orbiting stars ascending the red giant branch. Although several theories have been proposed, the question of how planets die remains open owing to the small number statistics, making it clear that the sample of planets around post-main sequence stars needs to be enlarged. Aims: In this work we study the giant star Kepler-91 (KOI-2133) in order to determine the nature of a transiting companion. This system was detected by the Kepler Space Telescope, which identified small dims in its light curve with a period of 6.246580 ± 0.000082 days. However, its planetary confirmation is needed due to the large pixel size of the Kepler camera, which can hide other stellar configurations able to mimic planet-like transit events. Methods: We analysed Kepler photometry to 1) re-calculate transit parameters; 2) study the light-curve modulations; and 3) to perform an asteroseismic analysis (accurate stellar parameter determination) by identifying solar-like oscillations on the periodogram. We also used a high-resolution and high signal-to-noise ratio spectrum obtained with the Calar Alto Fiber-fed Échelle spectrograph (CAFE) to measure stellar properties. Additionally, false-positive scenarios were rejected by obtaining high-resolution images with the AstraLux lucky imaging camera on the 2.2 m telescope at the Calar Alto Observatory. Results: We confirm the planetary nature of the object transiting the star Kepler-91 by deriving a mass of Mp=0.88+0.17-0.33 MJup and a planetary radius of Rp=1.384+0.011-0.054 RJup. Asteroseismic analysis produces a stellar radius of R⋆ = 6.30 ± 0.16 R⊙ and a mass of M⋆ = 1.31 ± 0.10 M⊙. We find that its eccentric orbit (e=0.066+0.013-0.017) is just 1.32+0.07-0.22 R⋆ away from the stellar atmosphere at the pericentre. We also detected three small dims in the phase-folded light curve. The combination of two of them agrees with the theoretical characteristics expected for secondary eclipse. Conclusions: Kepler-91b could be the previous stage of the planet engulfment, which has recently been detected for BD+48 740. Our estimations show that Kepler-91b will be swallowed by its host star in less than 55 Myr. Among the confirmed planets around giant stars, this is the closest to its host star. At pericentre, the star subtends an angle of 48°, covering around 10% of the sky as seen from the planet. The planetary atmosphere seems to be inflated probably due to the high stellar irradiation. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut fur Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Appendix A is available in electronic form at http://www.aanda.org

  9. \\Space: A new code to estimate \\temp, \\logg, and elemental abundances

    NASA Astrophysics Data System (ADS)

    Boeche, C.

    2016-09-01

    \\Space is a FORTRAN95 code that derives stellar parameters and elemental abundances from stellar spectra. To derive these parameters, \\Space does not measure equivalent widths of lines nor it uses templates of synthetic spectra, but it employs a new method based on a library of General Curve-Of-Growths. To date \\Space works on the wavelength range 5212-6860 Å and 8400-8921 Å, and at the spectral resolution R=2000-20000. Extensions of these limits are possible. \\Space is a highly automated code suitable for application to large spectroscopic surveys. A web front end to this service is publicly available at http://dc.g-vo.org/SP_ACE together with the library and the binary code.

  10. An LTE effective temperature scale for red supergiants in the Magellanic clouds

    NASA Astrophysics Data System (ADS)

    Tabernero, H. M.; Dorda, R.; Negueruela, I.; González-Fernández, C.

    2018-05-01

    We present a self-consistent study of cool supergiants (CSGs) belonging to the Magellanic clouds. We calculated stellar atmospheric parameters using LTE KURUCZ and MARCS atmospheric models for more than 400 individual targets by fitting a careful selection of weak metallic lines. We explore the existence of a Teff scale and its implications in two different metallicity environments (each Magellanic cloud). Critical and in-depth tests have been performed to assess the reliability of our stellar parameters (i.e. internal error budget, NLTE systematics). In addition, several Monte Carlo tests have been carried out to infer the significance of the Teff scale found. Our findings point towards a unique Teff scale that seems to be independent of the environment.

  11. Galaxy structure from multiple tracers - III. Radial variations in M87's IMF

    NASA Astrophysics Data System (ADS)

    Oldham, Lindsay; Auger, Matthew

    2018-03-01

    We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.

  12. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  13. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  14. The VLT-FLAMES survey of massive stars: mass loss and rotation of early-type stars in the SMC

    NASA Astrophysics Data System (ADS)

    Mokiem, M. R.; de Koter, A.; Evans, C. J.; Puls, J.; Smartt, S. J.; Crowther, P. A.; Herrero, A.; Langer, N.; Lennon, D. J.; Najarro, F.; Villamariz, M. R.; Yoon, S.-C.

    2006-09-01

    We have studied the optical spectra of a sample of 31 O-and early B-type stars in the Small Magellanic Cloud, 21 of which are associated with the young massive cluster NGC 346. Stellar parameters are determined using an automated fitting method (Mokiem et al. 2005, A&A, 441, 711), which combines the stellar atmosphere code FASTWIND (Puls et al. 2005, A&A, 435, 669) with the genetic algorithm based optimisation routine PIKAIA (Charbonneau 1995, ApJS, 101, 309). Comparison with predictions of stellar evolution that account for stellar rotation does not result in a unique age, though most stars are best represented by an age of 1-3 Myr. The automated method allows for a detailed determination of the projected rotational velocities. The present day v_r sin i distribution of the 21 dwarf stars in our sample is consistent with an underlying rotational velocity (v_r) distribution that can be characterised by a mean velocity of about 160 - 190 km s-1 and an effective half width of 100 - 150 km s-1. The vr distribution must include a small percentage of slowly rotating stars. If predictions of the time evolution of the equatorial velocity for massive stars within the environment of the SMC are correct (Maeder & Meynet 2001, A&A, 373, 555), the young age of the cluster implies that this underlying distribution is representative for the initial rotational velocity distribution. The location in the Hertzsprung-Russell diagram of the stars showing helium enrichment is in qualitative agreement with evolutionary tracks accounting for rotation, but not for those ignoring v_r. The mass loss rates of the SMC objects having luminosities of log L*/L⊙ ≳ 5.4 are in excellent agreement with predictions by Vink et al. (2001, A&A, 369, 574). However, for lower luminosity stars the winds are too weak to determine dot{M} accurately from the optical spectrum. Three targets were classifiedas Vz stars, two of which are located close to the theoretical zero-age main sequence. Three lower luminosity targets that were not classified as Vz stars are also found to lie near the ZAMS. We argue that this is related to a temperature effect inhibiting cooler from displaying the spectral features required for the Vz luminosity class.

  15. A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars {sup ,} {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.

    2014-10-01

    We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M {sub ☉} and treat the zeropointmore » of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77« less

  16. Deriving stellar inclination of slow rotators using stellar activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less

  17. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  18. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  19. The TESS-HERMES survey data release 1: high-resolution spectroscopy of the TESS southern continuous viewing zone

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Bland-Hawthorn, Joss; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Huber, Daniel; Zwitter, Tomaz; Traven, Gregor; Hon, Marc; Kafle, Prajwal R.; Khanna, Shourya; Saddon, Hafiz; Anguiano, Borja; Casey, Andrew R.; Freeman, Ken; Martell, Sarah; De Silva, Gayandhi M.; Simpson, Jeffrey D.; Wittenmyer, Rob A.; Zucker, Daniel B.

    2018-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will provide high-precision time series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12° radius centred around the ecliptic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics or Galactic archaeology. Here, we present spectroscopic stellar parameters (Teff, log g, [Fe/H], v sin i, vmicro) for about 16 000 dwarf and subgiant stars in TESS' southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8500 red giants. All our target stars are in the range 10 < V < 13.1. Among them, we identify and list 227 stars belonging to the Large Magellanic Cloud. The data were taken using the High Efficiency and Resolution Multi-Element Spectrograph (HERMES; R ∼ 28 000) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalogue (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than 100 cool dwarfs (Teff < 4800 K) as giants, which ought to be high-priority targets for the exoplanet search. The catalogue can be accessed via http://www.physics.usyd.edu.au/tess-hermes/, or at Mikulski Archive for Space Telescopes (MAST).

  20. Know the Star, Know the Planet. V. Characterization of the Stellar Companion to the Exoplanet Host Star HD 177830

    NASA Astrophysics Data System (ADS)

    Roberts, Lewis C., Jr.; Oppenheimer, Rebecca; Crepp, Justin R.; Baranec, Christoph; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G.; Nilsson, Ricky; Parry, Ian R.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Rémi; Rice, Emily L.; Veicht, Aaron; Vasisht, Gautam; Zhai, Chengxing; Zimmerman, Neil T.

    2015-10-01

    HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.

Top