Oezguen, Numan; Zhou, Bin; Negi, Surendra S.; Ivanciuc, Ovidiu; Schein, Catherine H.; Labesse, Gilles; Braun, Werner
2008-01-01
Similarities in sequences and 3D structures of allergenic proteins provide vital clues to identify clinically relevant IgE cross-reactivities. However, experimental 3D structures are available in the Protein Data Bank for only 5% (45/829) of all allergens catalogued in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP). Here, an automated procedure was used to prepare 3D-models of all allergens where there was no experimentally determined 3D structure or high identity (95%) to another protein of known 3D structure. After a final selection by quality criteria, 433 reliable 3D models were retained and are available from our SDAP Website. The new 3D models extensively enhance our knowledge of allergen structures. As an example of their use, experimentally derived “continuous IgE epitopes” were mapped on 3 experimentally determined structures and 13 of our 3D-models of allergenic proteins. Large portions of these continuous sequences are not entirely on the surface and therefore cannot interact with IgE or other proteins. Only the surface exposed residues are constituents of “conformational IgE epitopes” which are not in all cases continuous in sequence. The surface exposed parts of the experimental determined continuous IgE epitopes showed a distinct statistical distribution as compared to their presence in typical protein-protein interfaces. The amino acids Ala, Ser, Asn, Gly and particularly Lys have a high propensity to occur in IgE binding sites. The 3D-models will facilitate further analysis of the common properties of IgE binding sites of allergenic proteins. PMID:18621419
Dal Palù, Alessandro; Pontelli, Enrico; He, Jing; Lu, Yonggang
2007-01-01
The paper describes a novel framework, constructed using Constraint Logic Programming (CLP) and parallelism, to determine the association between parts of the primary sequence of a protein and alpha-helices extracted from 3D low-resolution descriptions of large protein complexes. The association is determined by extracting constraints from the 3D information, regarding length, relative position and connectivity of helices, and solving these constraints with the guidance of a secondary structure prediction algorithm. Parallelism is employed to enhance performance on large proteins. The framework provides a fast, inexpensive alternative to determine the exact tertiary structure of unknown proteins.
Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter
2016-03-01
Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Yahua; Feng, Hai L.; Shi, Youguo; Tsujimoto, Yoshihiro; Belik, Alexei A.; Matsushita, Yoshitaka; Arai, Masao; He, Jianfeng; Tanaka, Masahiko; Yamaura, Kazunari
2014-12-01
5d Solid-state oxides K0.84OsO3 (Os5.16+; 5d 2.84) and Bi2.93Os3O11 (Os4.40+; 5d 3.60) were synthesized under high-pressure and high-temperature conditions (6 GPa and 1500-1700 °C). Their crystal structures were determined by synchrotron x-ray diffraction and their 5d electronic properties and tunnel-like structure motifs were investigated. A KSbO3-type structure with a space group of Im-3 and Pn-3 was determined for K0.84OsO3 and Bi2.93Os3O11, respectively. The magnetic and electronic transport properties of the polycrystalline compounds were compared with those obtained theoretically. It was revealed that the 5d tunnel-like structures are paramagnetic with metallic charge conduction at temperatures above 2 K. This was similar to what was observed for structurally relevant 5d oxides, including Bi3Re3O11 (Re4.33+; 5d 2.66) and Ba2Ir3O9 (Ir4.66+; 5d 4.33). The absence of long-range magnetic order seems to be common among 5d KSbO3-like oxides, regardless of the number of 5d electrons (between 2.6 and 4.3 per 5d atom).
2011-10-11
developed a method for determining the structure (component logs and their 3D place- ment) of a LINCOLN LOG assembly from a single image from an uncalibrated...small a class of components. Moreover, we focus on determining the precise pose and structure of an assembly, including the 3D pose of each...medial axes are parallel to the work surface. Thus valid structures Fig. 1. The 3D geometric shape parameters of LINCOLN LOGS. have logs on
Protein secondary structure determination by constrained single-particle cryo-electron tomography.
Bartesaghi, Alberto; Lecumberry, Federico; Sapiro, Guillermo; Subramaniam, Sriram
2012-12-05
Cryo-electron microscopy (cryo-EM) is a powerful technique for 3D structure determination of protein complexes by averaging information from individual molecular images. The resolutions that can be achieved with single-particle cryo-EM are frequently limited by inaccuracies in assigning molecular orientations based solely on 2D projection images. Tomographic data collection schemes, however, provide powerful constraints that can be used to more accurately determine molecular orientations necessary for 3D reconstruction. Here, we propose "constrained single-particle tomography" as a general strategy for 3D structure determination in cryo-EM. A key component of our approach is the effective use of images recorded in tilt series to extract high-resolution information and correct for the contrast transfer function. By incorporating geometric constraints into the refinement to improve orientational accuracy of images, we reduce model bias and overrefinement artifacts and demonstrate that protein structures can be determined at resolutions of ∼8 Å starting from low-dose tomographic tilt series. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chan, Hsiu-Chien; Zhu, Yueming; Hu, Yumei; Ko, Tzu-Ping; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Ma, Yanhe; Guo, Rey-Ting; Sun, Yuanxia
2012-02-01
D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Xiao-Ping; Lian, Ting-Ting; Chen, Shu-Mei, E-mail: csm@fzu.edu.cn
Seven new metal-1,3,5-benzenetricarboxylate coordination polymers have been synthesized by modification of auxiliary components during the assembly reactions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by XRD and TGA. Interestingly, they show fascinating topological structures. Compounds 1 and 2 possess the undulating layer structure with 3-connected hcb network and (3,6)-connected kgd network. Compound 3 possesses three-dimensional (3D) pillared-layer structure with 3-connected 2-fold interpenetrating srs net. Compound 4 also has the 3D 2-fold interpenetrating pillared-layer structure; however, it has (3,5)-connected hms topology because the Cd(II) center is 5-connected. Compound 5 possess 3D structure through hydrogen bondingmore » interactions between ladder-like layers. Compounds 6 and 7 have the similar 3D frameworks with 4-connected umc net and (3,7)-connected (3.4.5)(3{sup 2}.4{sup 6}.5{sup 5}.6{sup 8}) topology, respectively. The photoluminescent properties of compounds 2–7 were also investigated. - Graphical abstract: Presented here are seven new metal-1,3,5-benzenetricarboxylate coordination polymers with diverse structures from 2D layers to 3D open frameworks. The synthesis and structural diversity of these compounds are determined by the additional amino acids as unusual buffering agents. - Highlights: • Structural diversity of metal-1,3,5-benzenetricarboxylate frameworks. • Tuning structural topologies of MOFs via the assistance of amino acids. • Amino acids as unusual buffering agents for the synthesis of MOFs.« less
3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xing; Zhang, Lei; Tong, Huimin
2015-05-05
Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalska, Karolina; Cuff, Marianne E.; Structural Biology Center, Biosciences Division, Argonne National Laboratory
The crystal structure of 2-oxo-3-deoxygalactonate kinase from the De Ley–Doudoroff pathway of galactose metabolism has been determined at 2.1 Å resolution. In most organisms, efficient d-galactose utilization requires the highly conserved Leloir pathway that converts d-galactose to d-glucose 1-phosphate. However, in some bacterial and fungal species alternative routes of d-galactose assimilation have been identified. In the so-called De Ley–Doudoroff pathway, d-galactose is metabolized into pyruvate and d-glyceraldehyde 3-phosphate in five consecutive reactions carried out by specific enzymes. The penultimate step in this pathway involves the phosphorylation of 2-oxo-3-deoxygalactonate to 2-oxo-3-deoxygalactonate 6-phosphate catalyzed by 2-oxo-3-deoxygalactonate kinase, with ATP serving as amore » phosphoryl-group donor. Here, a crystal structure of 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae determined at 2.1 Å resolution is reported, the first structure of an enzyme from the De Ley–Doudoroff pathway. Structural comparison indicates that the enzyme belongs to the ASKHA (acetate and sugar kinases/hsc70/actin) family of phosphotransferases. The protein is composed of two α/β domains, each of which contains a core common to all family members. Additional elements introduced between conserved structural motifs define the unique features of 2-oxo-3-deoxygalactonate kinase and possibly determine the biological function of the protein.« less
Wu, Jiajun; Yin, Ningbei
2016-01-01
This study aims to investigate the 3-dimensional (3D) anatomical structure of the orbicularis oris and nasalis, which are closely associated with the appearance of the upper lip and lower part of the nose. The relationship of the complicated 3D anatomical structure with the outline shape was also determined. Microcomputed tomography combined with iodine staining was used to scan the nasolabial tissues of 3 aborted fetuses. The strictly aligned, corrected, full-capacity, 2-dimensional (2D) grayscale images obtained were then used to reconstruct 3D structures using a 3D reconstruction software. 2D grayscale slices and a 3D anatomical model of the orbicularis oris and nasalis of the specimens were obtained. The 2D images and the 3D model confirmed the orbicularis oris anatomical structure reported in previous studies and also provided new insights (such as the close association of the formation of the philtral dimple, lip peak, philtral ridge, and nasal sill with the orbicularis oris). In addition, the results show that the nasolabial muscle consists of muscle fibers from different sources and is divided into four distinct parts: pars marginalis, pars peripheralis, muscle fibers of the levator labii superioris, and nasalis muscle fibers. The 3D anatomical structures indicate that the orbicularis oris and nasalis are closely associated with the appearances of the upper lip and lower part of the nose. The results may aid plastic surgeons in performing cleft-lip correction surgery.
Three-dimensional imaging of nanoscale materials by using coherent x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Jianwei
X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less
Improved in-cell structure determination of proteins at near-physiological concentration
Ikeya, Teppei; Hanashima, Tomomi; Hosoya, Saori; Shimazaki, Manato; Ikeda, Shiro; Mishima, Masaki; Güntert, Peter; Ito, Yutaka
2016-01-01
Investigating three-dimensional (3D) structures of proteins in living cells by in-cell nuclear magnetic resonance (NMR) spectroscopy opens an avenue towards understanding the structural basis of their functions and physical properties under physiological conditions inside cells. In-cell NMR provides data at atomic resolution non-invasively, and has been used to detect protein-protein interactions, thermodynamics of protein stability, the behavior of intrinsically disordered proteins, etc. in cells. However, so far only a single de novo 3D protein structure could be determined based on data derived only from in-cell NMR. Here we introduce methods that enable in-cell NMR protein structure determination for a larger number of proteins at concentrations that approach physiological ones. The new methods comprise (1) advances in the processing of non-uniformly sampled NMR data, which reduces the measurement time for the intrinsically short-lived in-cell NMR samples, (2) automatic chemical shift assignment for obtaining an optimal resonance assignment, and (3) structure refinement with Bayesian inference, which makes it possible to calculate accurate 3D protein structures from sparse data sets of conformational restraints. As an example application we determined the structure of the B1 domain of protein G at about 250 μM concentration in living E. coli cells. PMID:27910948
Structure of a polysaccharide from Urtica fissa determined by NMR spectra.
Wang, Yan-Liang; Li, Li; Cheng, Xiao-Chen; Lu, Yu-Xin; Zhang, Qing-Lin
2012-01-01
A polysaccharide, isolated and purified from the aqueous extract of nettle plant Urtica fissa, was found to consist of D-glucose and D-arabinose. Molecular weight was determined to be Mn 4140. The NMR experiments (¹H, ¹³C, ¹H--¹H COSY, TOCSY, HSQC, NOESY, and HMBC) revealed the structure as the following repeating unit: -->6)-α-D-Glcp-(1-->6)-α-D-Glcp-(1-->6)-β-D-Glcp--(1-->5)-β-D-Araf-(1-->3)-β-D-Glcp-(1-->
3D structure of individual nanocrystals in solution by electron microscopy
NASA Astrophysics Data System (ADS)
Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul
2015-07-01
Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.
NASA Astrophysics Data System (ADS)
Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.
2018-04-01
The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.
Ganesan, K; Parthasarathy, S
2011-12-01
Annotation of any newly determined protein sequence depends on the pairwise sequence identity with known sequences. However, for the twilight zone sequences which have only 15-25% identity, the pair-wise comparison methods are inadequate and the annotation becomes a challenging task. Such sequences can be annotated by using methods that recognize their fold. Bowie et al. described a 3D1D profile method in which the amino acid sequences that fold into a known 3D structure are identified by their compatibility to that known 3D structure. We have improved the above method by using the predicted secondary structure information and employ it for fold recognition from the twilight zone sequences. In our Protein Secondary Structure 3D1D (PSS-3D1D) method, a score (w) for the predicted secondary structure of the query sequence is included in finding the compatibility of the query sequence to the known fold 3D structures. In the benchmarks, the PSS-3D1D method shows a maximum of 21% improvement in predicting correctly the α + β class of folds from the sequences with twilight zone level of identity, when compared with the 3D1D profile method. Hence, the PSS-3D1D method could offer more clues than the 3D1D method for the annotation of twilight zone sequences. The web based PSS-3D1D method is freely available in the PredictFold server at http://bioinfo.bdu.ac.in/servers/ .
Sergeyev, Ivan; Moyna, Guillermo
2005-05-02
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6.
Yamaguchi, Akihiro; Go, Mitiko
2006-01-01
We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617
Teuben, J M; Bauer, C; Wang, A H; Reedijk, J
1999-09-21
The platinum 1,3-d(GXG) intrastrand cross-link is one of the adducts formed in the reaction of the antitumor drug cisplatin with DNA, and in fact the major adduct found in cells treated with the cisplatin analogue carboplatin. To determine the 3D structure of this adduct, the duplex d(CTCTGTGTCTC).d(GAGACACAGAG)], where GTG denotes a platinum 1,3-intrastrand cross-link, was prepared and studied with high-resolution (1)H NMR. The solution structure was determined using the SPEDREF protocol, which includes an iterative NOE-restrained refinement procedure. Calculated and recorded NOE spectra were found to be in good agreement (NMR R factor 22%). The studied duplex is more distorted from B-DNA than previously determined structures of the 1,2-d(GG) intrastrand adducts. The base pairing is lost for the 5'G-C and the central T-A base pair in the GTG lesion, and the central thymine is extruded from the minor groove. To accommodate this lesion, the minor groove is widened, and the 5'-guanine ribose adopts an N-type conformation. The helix is unwound locally and is significantly bent toward the major groove. Significant difference between the structural distortion of the 1, 3-d(GTG) cross-link and other Pt-DNA cross-links sheds new light on the observed differences in protein recognition of these lesions, and thus on the possible differences in mechanisms of action of the various Pt-DNA adducts formed in treatment with platinum anticancer complexes.
3D structure of individual nanocrystals in solution by electron microscopy
Park, Jungwok; Elmlund, Hans; Ercius, Peter; ...
2015-07-17
Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less
Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.
Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul
2015-07-17
Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.
3D structure of individual nanocrystals in solution by electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jungwok; Elmlund, Hans; Ercius, Peter
Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less
Beyond small molecule SAR – using the dopamine D3 receptor crystal structure to guide drug design
Keck, Thomas M.; Burzynski, Caitlin; Shi, Lei; Newman, Amy Hauck
2016-01-01
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This review will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small molecule SAR to improve the selectivity and directed efficacy profiles are examined. PMID:24484980
3D structure of the influenza virus polymerase complex: Localization of subunit domains
Area, Estela; Martín-Benito, Jaime; Gastaminza, Pablo; Torreira, Eva; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan
2004-01-01
The 3D structure of the influenza virus polymerase complex was determined by electron microscopy and image processing of recombinant ribonucleoproteins (RNPs). The RNPs were generated by in vivo amplification using cDNAs of the three polymerase subunits, the nucleoprotein, and a model virus-associated RNA containing 248 nt. The polymerase structure obtained is very compact, with no apparent boundaries among subunits. The position of specific regions of the PB1, PB2, and PA subunits was determined by 3D reconstruction of either RNP–mAb complexes or tagged RNPs. This structural model is available for the polymerase of a negative-stranded RNA virus and provides a general delineation of the complex and its interaction with the template-associated nucleoprotein monomers in the RNP. PMID:14691253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Carl R.
Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less
Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium
NASA Astrophysics Data System (ADS)
Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.
2014-09-01
High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.
Lee, Woonghee; Kim, Jin Hae; Westler, William M; Markley, John L
2011-06-15
PONDEROSA (Peak-picking Of Noe Data Enabled by Restriction of Shift Assignments) accepts input information consisting of a protein sequence, backbone and sidechain NMR resonance assignments, and 3D-NOESY ((13)C-edited and/or (15)N-edited) spectra, and returns assignments of NOESY crosspeaks, distance and angle constraints, and a reliable NMR structure represented by a family of conformers. PONDEROSA incorporates and integrates external software packages (TALOS+, STRIDE and CYANA) to carry out different steps in the structure determination. PONDEROSA implements internal functions that identify and validate NOESY peak assignments and assess the quality of the calculated three-dimensional structure of the protein. The robustness of the analysis results from PONDEROSA's hierarchical processing steps that involve iterative interaction among the internal and external modules. PONDEROSA supports a variety of input formats: SPARKY assignment table (.shifts) and spectrum file formats (.ucsf), XEASY proton file format (.prot), and NMR-STAR format (.star). To demonstrate the utility of PONDEROSA, we used the package to determine 3D structures of two proteins: human ubiquitin and Escherichia coli iron-sulfur scaffold protein variant IscU(D39A). The automatically generated structural constraints and ensembles of conformers were as good as or better than those determined previously by much less automated means. The program, in the form of binary code along with tutorials and reference manuals, is available at http://ponderosa.nmrfam.wisc.edu/.
Kato, Azusa; Hirata, Haruhisa; Ohashi, Yoshitami; Fujii, Kiyonaga; Mori, Kenji; Harada, Ken-ichi
2011-05-01
The anti-MRSA antibiotic, WAP-8294A, was isolated from the fermentation broth of Lysobacter sp. The major component, WAP-8294A2, is composed of 1 mol of Gly, L-Leu, L-Glu, D-Asn, D-Trp, D-threo-β-hydroxyasparagine, N-Me-D-Phe and N-Me-L-Val, and 2 mol of L-Ser, D-Orn and D-3-hydroxy-7-Me-octanoic acid. The structure of the WAP-8294A2 was mainly determined as a cyclic depsipeptide by 2D NMR experiments. However, it was difficult to use the NMR experiment to determine the minor components, A1, A4 and Ax13, isolated in small amounts. In the present study, ESI MS/MS was applied to the structure elucidation of these minor components. The structures of these minor components were determined on the basis of the fragmentation pattern of the product ions of WAP-8294A2 in the ESI MS/MS. As a result, it was confirmed that A1 and A4 had the same amino acid sequence as A2, while A1 and A4 had the 3-OH-octanoic acid and 3-OH-8-Me-nonanoic acid, respectively, in the place of the 3-OH-7-Me-octanoic acid in A2. In the structure of Ax13, it was found that Gly of A2 was changed to β-Ala of Ax13. © 2011 Japan Antibiotics Research Association All rights reserved
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-01-01
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented. PMID:26348797
Stacked 3D RRAM Array with Graphene/CNT as Edge Electrodes.
Bai, Yue; Wu, Huaqiang; Wang, Kun; Wu, Riga; Song, Lin; Li, Tianyi; Wang, Jiangtao; Yu, Zhiping; Qian, He
2015-09-08
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge electrodes. A two-layer 3D RRAM with monolayer graphene as edge electrode is demonstrated. The electrical results reveal that the RRAM devices could switch normally with this very thin edge electrode at nanometer scale. Meanwhile, benefited from the asymmetric carrier transport induced by Schottky barrier at metal/CNT and oxide/CNT interfaces, a selector built-in 3D RRAM structure using CNT as edge electrode is successfully fabricated and characterized. Furthermore, the discussion of high array density potential is presented.
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.
Cryo-electron microscopy and cryo-electron tomography of nanoparticles.
Stewart, Phoebe L
2017-03-01
Cryo-transmission electron microscopy (cryo-TEM or cryo-EM) and cryo-electron tomography (cryo-ET) offer robust and powerful ways to visualize nanoparticles. These techniques involve imaging of the sample in a frozen-hydrated state, allowing visualization of nanoparticles essentially as they exist in solution. Cryo-TEM grid preparation can be performed with the sample in aqueous solvents or in various organic and ionic solvents. Two-dimensional (2D) cryo-TEM provides a direct way to visualize the polydispersity within a nanoparticle preparation. Fourier transforms of cryo-TEM images can confirm the structural periodicity within a sample. While measurement of specimen parameters can be performed with 2D TEM images, determination of a three-dimensional (3D) structure often facilitates more spatially accurate quantization. 3D structures can be determined in one of two ways. If the nanoparticle has a homogeneous structure, then 2D projection images of different particles can be averaged using a computational process referred to as single particle reconstruction. Alternatively, if the nanoparticle has a heterogeneous structure, then a structure can be generated by cryo-ET. This involves collecting a tilt-series of 2D projection images for a defined region of the grid, which can be used to generate a 3D tomogram. Occasionally it is advantageous to calculate both a single particle reconstruction, to reveal the regular portions of a nanoparticle structure, and a cryo-electron tomogram, to reveal the irregular features. A sampling of 2D cryo-TEM images and 3D structures are presented for protein based, DNA based, lipid based, and polymer based nanoparticles. WIREs Nanomed Nanobiotechnol 2017, 9:e1417. doi: 10.1002/wnan.1417 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.
2017-01-01
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.
Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi
2014-09-18
Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2018-05-10
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
X-ray structure determination at low resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunger, Axel T., E-mail: brunger@stanford.edu; Department of Molecular and Cellular Physiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University
2009-02-01
Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alonemore » was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible.« less
PubChem3D: Conformer generation
2011-01-01
Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall average accuracy of reproduction of bioactive conformations was remarkably linear with respect to both non-hydrogen atom count ("size") and effective rotor count ("flexibility"). Using these as independent variables, a regression equation was developed to predict the RMSD accuracy of a theoretical ensemble to reproduce bioactive conformations. The equation was modified to give a minimum RMSD conformer sampling value to help ensure that 90% of the sampled theoretical models should contain at least one conformer within the RMSD sampling value to a "bioactive" conformation. Conclusion Optimal parameters for conformer generation using OMEGA were explored and determined. An equation was developed that provides an RMSD sampling value to use that is based on the relative accuracy to reproduce bioactive conformations. The optimal conformer generation parameters and RMSD sampling values determined are used by the PubChem3D project to generate theoretical conformer models. PMID:21272340
Determining the 3-D structure and motion of objects using a scanning laser range sensor
NASA Technical Reports Server (NTRS)
Nandhakumar, N.; Smith, Philip W.
1993-01-01
In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.
Cabra, Vanessa; Samsó, Montserrat
2015-01-09
Cryo-electron microscopy (cryoEM) entails flash-freezing a thin layer of sample on a support, and then visualizing the sample in its frozen hydrated state by transmission electron microscopy (TEM). This can be achieved with very low quantity of protein and in the buffer of choice, without the use of any stain, which is very useful to determine structure-function correlations of macromolecules. When combined with single-particle image processing, the technique has found widespread usefulness for 3D structural determination of purified macromolecules. The protocol presented here explains how to perform cryoEM and examines the causes of most commonly encountered problems for rational troubleshooting; following all these steps should lead to acquisition of high quality cryoEM images. The technique requires access to the electron microscope instrument and to a vitrification device. Knowledge of the 3D reconstruction concepts and software is also needed for computerized image processing. Importantly, high quality results depend on finding the right purification conditions leading to a uniform population of structurally intact macromolecules. The ability of cryoEM to visualize macromolecules combined with the versatility of single particle image processing has proven very successful for structural determination of large proteins and macromolecular machines in their near-native state, identification of their multiple components by 3D difference mapping, and creation of pseudo-atomic structures by docking of x-ray structures. The relentless development of cryoEM instrumentation and image processing techniques for the last 30 years has resulted in the possibility to generate de novo 3D reconstructions at atomic resolution level.
RNA Bricks—a database of RNA 3D motifs and their interactions
Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.
2014-01-01
The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091
SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
Boniecki, Michal J; Lach, Grzegorz; Dawson, Wayne K; Tomala, Konrad; Lukasz, Pawel; Soltysinski, Tomasz; Rother, Kristian M; Bujnicki, Janusz M
2016-04-20
RNA molecules play fundamental roles in cellular processes. Their function and interactions with other biomolecules are dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. Here, we present SimRNA: a new method for computational RNA 3D structure prediction, which uses a coarse-grained representation, relies on the Monte Carlo method for sampling the conformational space, and employs a statistical potential to approximate the energy and identify conformations that correspond to biologically relevant structures. SimRNA can fold RNA molecules using only sequence information, and, on established test sequences, it recapitulates secondary structure with high accuracy, including correct prediction of pseudoknots. For modeling of complex 3D structures, it can use additional restraints, derived from experimental or computational analyses, including information about secondary structure and/or long-range contacts. SimRNA also can be used to analyze conformational landscapes and identify potential alternative structures. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Doo Ri; Kim, Hyoun Sook; Seoul National University, Seoul 151 742
2015-03-01
H. pylori Csd3 (HP0506), together with other peptidoglycan hydrolases, plays an important role in determining cell shape. Its crystal structure in the latent state is reported. Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by themore » trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its d, d-endopeptidase activity cleaves the d-Ala{sup 4}-mDAP{sup 3} peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a d, d-carboxypeptidase that cleaves off the terminal d-Ala{sup 5} from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn{sup 2+} ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.« less
Frequency measurement of the 2 S10-3 D12 two-photon transition in atomic 4He
NASA Astrophysics Data System (ADS)
Huang, Yi-Jan; Guan, Yu-Chan; Huang, Yao-Chin; Suen, Te-Hwei; Peng, Jin-Long; Wang, Li-Bang; Shy, Jow-Tsong
2018-03-01
We present precise frequency measurement of the 2 S10-3 D12 two-photon transition in 4He at 1009 nm. The laser source at 1009 nm is stabilized on an optical frequency comb to perform the absolute frequency measurement. The absolute frequency of 2 S10-3 D12 transition is experimentally determined to be 594 414 291.803(13) MHz with a relative uncertainty of 1.6 ×10-11 , which is more precise than previous determinations by a factor of 25. In combination with the theoretical ionization energy of the 3 D12 state, the ionization energy of the 2 S10 state is determined to be 960 332 040.823(24) MHz. In addition, the deduced 2 S10 and 2 S31 Lamb shifts are 2806.864(24) MHz and 4058.130(24) MHz, respectively, which are 1.6 times better than previous determinations, and the fine structure 3 D31-3 D12 is determined to be 101 143.889(29) MHz, improving the precedent determination by a factor of 11.
Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas
2017-03-07
Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-10-21
lases.11,30,31 The first bound structure of CapD [Protein Data Bank ( PDB ) entry 3G9K] was determined with a di-α-L-Glu ligand.29 The di-α-L-Glu ligand...Article dx.doi.org/10.1021/bi500623c | Biochemistry 2014, 53, 6954−69676956 into the CapD structure ( PDB entry 3G9K29) identified two principal...in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known
Impact of genetic variation on three dimensional structure and function of proteins
Bhattacharya, Roshni; Rose, Peter W.; Burley, Stephen K.
2017-01-01
The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation. PMID:28296894
Étude de la structure des alliages vitreux Ag-As2S3 par diffraction de rayons X
NASA Astrophysics Data System (ADS)
Popescu, M.; Sava, F.; Cornet, A.; Broll, N.
2002-07-01
The structure of several silver alloyed arsenic chalocgenide has been determined by X-ray diffraction. For low silver doping the disordered layer structure, characteristic to the glassy AS2S3 is retained as demonstrated by the well developed first sharp diffraction peak in the X-ray diffraction pattern. For high amount of silver introduced in the As2S3 matrix, the disoredered layer configurations disappear, as shown by the diminishing and even disappearance of the first sharp diffraction peak in the X-ray patterns. A three-dimensional structure based on Ag2S -type configuration is formed. La structure de quelques alliages sulfure d'arsenic - argent a été determinée par diffraction de rayons X. Pour de faibles dopages à l'argent on conserve la structure desordonnées caractéristique des couches atomique d'As2S3 vitreux ; ceci est prouvé par la forte intensité du premier pic étroit de diffraction. Pour des plus grandes proportions d'argent la structure de l'alliage vitreux fait apparaître des unités structurales caractéristiques du cristal d'Ag2S et la configuration atomique avec des couches desordonnées disparaît (le premier pic étroit de diffraction s'évanouit) en faisant place à une structure tridimensionelle.
Commensurability and stability in nonperiodic systems
Fasano, Y.; De Seta, M.; Menghini, M.; Pastoriza, H.; de la Cruz, F.
2005-01-01
We have investigated the response of 3D Bi2Sr2CaCu2O8 vortex structures to a weak perturbation induced by 2D Fe pinning structures acting on one extremity of vortex lines. The pinning patterns were nano-engineered at the sample surface by means of either a Bitter decoration of the vortex lattice or electron-beam lithography. The commensurability conditions between 2D rigid pinning potentials and 3D elastic structures with short-range positional and long-range orientational correlation have been experimentally determined. When the 2D potential is a replica of the nonperiodic vortex structure an amplification of its interaction with the vortex structure takes place. This effect is detected only for the first matching field, becoming negligible for other matching fields. On the other hand, a periodic 2D perturbation is shown to transform the nonperiodic Bragg glass-like structure into an Abrikosov crystal with an effective Debye–Waller factor. PMID:16576763
Malet, C; Jiménez-Barbero, J; Bernabé, M; Brosa, C; Planas, A
1993-01-01
The stereochemical course of the reaction catalysed by endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase (EC 3.2.1.73) has been determined by 1H n.m.r. The enzyme-catalysed hydrolysis of barley beta-glucan proceeds with overall retention of the anomeric configuration, indicating that the enzyme operates through a double-displacement mechanism. The structures of the final oligosaccharide products, 3-beta-O-cellobiosyl D-glucopyranoside and 3-beta-O-cellotriosyl D-glucopyranoside, have been completely assigned by 1H- and 13C-n.m.r. spectroscopy. PMID:8280073
AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures
Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador
2015-01-01
Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. PMID:25883144
NASA Astrophysics Data System (ADS)
Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.
2017-04-01
The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.
Fujimoto, H; Nakamura, E; Kim, Y P; Okuyama, E; Ishibashi, M; Sassa, T
2001-09-01
Fractionation guided by immunomodulatory activity of the EtOAc extract of the Ascomycete Eupenicillium crustaceum has afforded two new naturally occurring products, 4'-oxomacrophorin D (1) and 4'-oxomacrophorin A (2), as the immunosuppressive components of this fungus [1: 3-hydroxy-3-methylglutaryl (HMG) conjugate of 2]. The structures including the absolute configurations of 1 and 2 have been determined on the basis of chemical correlation of 1 with macrophorin D (3). The absolute configuration of the HMG moiety in 3 has been revised from 3R to 3S.
Lee, Woonghee; Kim, Jin Hae; Westler, William M.; Markley, John L.
2011-01-01
Summary: PONDEROSA (Peak-picking Of Noe Data Enabled by Restriction of Shift Assignments) accepts input information consisting of a protein sequence, backbone and sidechain NMR resonance assignments, and 3D-NOESY (13C-edited and/or 15N-edited) spectra, and returns assignments of NOESY crosspeaks, distance and angle constraints, and a reliable NMR structure represented by a family of conformers. PONDEROSA incorporates and integrates external software packages (TALOS+, STRIDE and CYANA) to carry out different steps in the structure determination. PONDEROSA implements internal functions that identify and validate NOESY peak assignments and assess the quality of the calculated three-dimensional structure of the protein. The robustness of the analysis results from PONDEROSA's hierarchical processing steps that involve iterative interaction among the internal and external modules. PONDEROSA supports a variety of input formats: SPARKY assignment table (.shifts) and spectrum file formats (.ucsf), XEASY proton file format (.prot), and NMR-STAR format (.star). To demonstrate the utility of PONDEROSA, we used the package to determine 3D structures of two proteins: human ubiquitin and Escherichia coli iron-sulfur scaffold protein variant IscU(D39A). The automatically generated structural constraints and ensembles of conformers were as good as or better than those determined previously by much less automated means. Availability: The program, in the form of binary code along with tutorials and reference manuals, is available at http://ponderosa.nmrfam.wisc.edu/. Contact: whlee@nmrfam.wisc.edu; markley@nmrfam.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21511715
Protein structure database search and evolutionary classification.
Yang, Jinn-Moon; Tung, Chi-Hua
2006-01-01
As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
The ER in 3D: a multifunctional dynamic membrane network.
Friedman, Jonathan R; Voeltz, Gia K
2011-12-01
The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contacts with nearly every other organelle and with the plasma membrane. The 3D structure of the ER is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. In this review, we describe some of the factors that are known to regulate ER structure and discuss how this structural organization and the dynamic nature of the ER membrane network allow it to perform its many different functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Sesquiterpenoids of Coniogramme maxima].
Chen, Yunfei; Liu, Shoujin; Wang, Fei
2012-04-01
To study sesquiterpenoids of Coniogramme maxima. Chemical constituents were separated by chromatography and their structures were identified according to physicochemical property and spectrum data. Fifteen compounds were separated by chromatography technique. Their structures were determined by spectral data, including 10 sesquiterpenoids as (3S)-pteroside D (1), epi-pterosin L (2), pterosin D (3), onitin (4), pterosin Z (5), onitisin (6), onitisin-glucopyranoside (7), onitin-15-O-beta-D-glucopyranoside (8), (2S,3R)-pterosin-L-2'-O-beta-D-glucopyranoside (9) and (3R)-peterosin D-3-O-beta-D-glucopyranoside (10). The other compounds were uracil (11), 3,4-dihydroxybenzaldehyde (12), 5-hydroxymethyl-2-furancarboxaldehyde (13), beta-sitosterol (14) and daucosterol (15). The above 15 compounds are separated from C. maxima for the first time, including 9 compounds being first separated from genus Coniogramme.
Mustoe, Anthony M.; Brooks, Charles L.; Al-Hashimi, Hashim M.
2014-01-01
Recent studies have shown that basic steric and connectivity constraints encoded at the secondary structure level are key determinants of 3D structure and dynamics in simple two-way RNA junctions. However, the role of these topological constraints in higher order RNA junctions remains poorly understood. Here, we use a specialized coarse-grained molecular dynamics model to directly probe the thermodynamic contributions of topological constraints in defining the 3D architecture and dynamics of transfer RNA (tRNA). Topological constraints alone restrict tRNA's allowed conformational space by over an order of magnitude and strongly discriminate against formation of non-native tertiary contacts, providing a sequence independent source of folding specificity. Topological constraints also give rise to long-range correlations between the relative orientation of tRNA's helices, which in turn provides a mechanism for encoding thermodynamic cooperativity between distinct tertiary interactions. These aspects of topological constraints make it such that only several tertiary interactions are needed to confine tRNA to its native global structure and specify functionally important 3D dynamics. We further show that topological constraints are conserved across tRNA's different naturally occurring secondary structures. Taken together, our results emphasize the central role of secondary-structure-encoded topological constraints in defining RNA 3D structure, dynamics and folding. PMID:25217593
Rapid measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides.
Barnwal, Ravi Pratap; Rout, Ashok K; Chary, Kandala V R; Atreya, Hanudatta S
2007-12-01
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.
Application of 3D Laser Scanner to Forensic Engineering.
Park, Chan-Seong; Jeon, Hong-Pil; Choi, Kwang-Soo; Kim, Jin-Pyo; Park, Nam-Kyu
2018-05-01
In the case of building collapses and overturned structures, a three-dimensional (3D) collapse or overturn model is required to reconstruct the accident. As construction sites become increasingly complex and large, 3D laser scanning is sometimes the best tool to accurately document and store the site conditions. This case report presents one case of a structure collapse and one case of an overturned crane reconstructed by a 3D laser scanner. In the case of structural collapse of a prefabricated shoring system, a 3D model reconstructed all the members successfully, a task that is nearly impossible using a scale such as a tape measure. The reconstructed prefabricated shoring system was verified through a structural analysis through comparison with the construction drawings to investigate faults in construction. In the case of the overturned crane, the jib angle and other major dimensions were successfully acquired through 3D laser scanning and used to estimate the working radius. As a result, the propriety of the working radius with the given lifting load was successfully determined. © 2017 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Smith, Jarrod Anson
2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.
NASA Astrophysics Data System (ADS)
Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao
2016-11-01
3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.
Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao
2016-01-01
3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata.
Liu, Xin; Ye, Wencai; Yu, Biao; Zhao, Shouxun; Wu, Houming; Che, Chuntao
2004-03-15
Two new flavonol glycosides, namely kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and quercetin 3-O-6"-(3-hydroxyl-3-methylglutaryl)-beta-D-glucopyranoside (2), have been isolated from the aerial parts of Gymnema sylvestre and Euphorbia ebracteolata, respectively. Their structures were determined on the basis of chemical and spectroscopic methods.
Resource for structure related information on transmembrane proteins
NASA Astrophysics Data System (ADS)
Tusnády, Gábor E.; Simon, István
Transmembrane proteins are involved in a wide variety of vital biological processes including transport of water-soluble molecules, flow of information and energy production. Despite significant efforts to determine the structures of these proteins, only a few thousand solved structures are known so far. Here, we review the various resources for structure-related information on these types of proteins ranging from the 3D structure to the topology and from the up-to-date databases to the various Internet sites and servers dealing with structure prediction and structure analysis. Abbreviations: 3D, three dimensional; PDB, Protein Data Bank; TMP, transmembrane protein.
Pawar, Sunayna S; Koorbanally, Neil A
2014-06-01
A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2. Copyright © 2014 John Wiley & Sons, Ltd.
Shamata, Awatif; Thompson, Tim
2018-05-10
Non-contact three-dimensional (3D) surface scanning has been applied in forensic medicine and has been shown to mitigate shortcoming of traditional documentation methods. The aim of this paper is to assess the efficiency of structured light 3D surface scanning in recording traumatic injuries of live cases in clinical forensic medicine. The work was conducted in Medico-Legal Centre in Benghazi, Libya. A structured light 3D surface scanner and ordinary digital camera with close-up lens were used to record the injuries and to have 3D and two-dimensional (2D) documents of the same traumas. Two different types of comparison were performed. Firstly, the 3D wound documents were compared to 2D documents based on subjective visual assessment. Additionally, 3D wound measurements were compared to conventional measurements and this was done to determine whether there was a statistical significant difference between them. For this, Friedman test was used. The study established that the 3D wound documents had extra features over the 2D documents. Moreover; the 3D scanning method was able to overcome the main deficiencies of the digital photography. No statistically significant difference was found between the 3D and conventional wound measurements. The Spearman's correlation established strong, positive correlation between the 3D and conventional measurement methods. Although, the 3D surface scanning of the injuries of the live subjects faced some difficulties, the 3D results were appreciated, the validity of 3D measurements based on the structured light 3D scanning was established. Further work will be achieved in forensic pathology to scan open injuries with depth information. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures.
Zambrano, Rafael; Jamroz, Michal; Szczasiuk, Agata; Pujols, Jordi; Kmiecik, Sebastian; Ventura, Salvador
2015-07-01
Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
An, Doo Ri; Im, Ha Na; Jang, Jun Young; Kim, Hyoun Sook; Kim, Jieun; Yoon, Hye Jin; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Kim, Soon-Jong; Suh, Se Won
2016-01-01
Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides. H. pylori Csd1, Csd2, and Csd3/HdpA are M23B metallopeptidase family members and may act as d,d-endopeptidases to cleave the d-Ala4-mDAP3 peptide bond of cross-linked dimer muropeptides. Csd3 functions also as the d,d-carboxypeptidase to cleave the d-Ala4-d-Ala5 bond of the muramyl pentapeptide. To provide a basis for understanding molecular functions of Csd1 and Csd2, we have carried out their structural characterizations. We have discovered that (i) Csd2 exists in monomer-dimer equilibrium and (ii) Csd1 and Csd2 form a heterodimer. We have determined crystal structures of the Csd2121-308 homodimer and the heterodimer between Csd1125-312 and Csd2121-308. Overall structures of Csd1125-312 and Csd2121-308 monomers are similar to each other, consisting of a helical domain and a LytM domain. The helical domains of both Csd1 and Csd2 play a key role in the formation of homodimers or heterodimers. The Csd1 LytM domain contains a catalytic site with a Zn2+ ion, which is coordinated by three conserved ligands and two water molecules, whereas the Csd2 LytM domain has incomplete metal ligands and no metal ion is bound. Structural knowledge of these proteins sheds light on the events that regulate the cell wall in H. pylori.
An, Doo Ri; Im, Ha Na; Jang, Jun Young; Kim, Hyoun Sook; Kim, Jieun; Yoon, Hye Jin; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Kim, Soon-Jong
2016-01-01
Colonization of the human gastric mucosa by Helicobacter pylori requires its high motility, which depends on the helical cell shape. In H. pylori, several genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5, and csd6) play key roles in determining the cell shape by alteration of cross-linking or by trimming of peptidoglycan stem peptides. H. pylori Csd1, Csd2, and Csd3/HdpA are M23B metallopeptidase family members and may act as d,d-endopeptidases to cleave the d-Ala4-mDAP3 peptide bond of cross-linked dimer muropeptides. Csd3 functions also as the d,d-carboxypeptidase to cleave the d-Ala4-d-Ala5 bond of the muramyl pentapeptide. To provide a basis for understanding molecular functions of Csd1 and Csd2, we have carried out their structural characterizations. We have discovered that (i) Csd2 exists in monomer-dimer equilibrium and (ii) Csd1 and Csd2 form a heterodimer. We have determined crystal structures of the Csd2121–308 homodimer and the heterodimer between Csd1125–312 and Csd2121–308. Overall structures of Csd1125–312 and Csd2121–308 monomers are similar to each other, consisting of a helical domain and a LytM domain. The helical domains of both Csd1 and Csd2 play a key role in the formation of homodimers or heterodimers. The Csd1 LytM domain contains a catalytic site with a Zn2+ ion, which is coordinated by three conserved ligands and two water molecules, whereas the Csd2 LytM domain has incomplete metal ligands and no metal ion is bound. Structural knowledge of these proteins sheds light on the events that regulate the cell wall in H. pylori. PMID:27711177
NASA Astrophysics Data System (ADS)
Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung
2016-02-01
Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.
Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA
NASA Technical Reports Server (NTRS)
Lietzke, Susan E; Barnes, Cindy L.
1998-01-01
3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.
Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.
Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie; Michaelsen, Maria Høtoft; Müllertz, Anette; Rantanen, Jukka; Rades, Thomas; Bøtker, Johan
2017-05-01
A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.
Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei
2017-01-01
To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rapid and reliable protein structure determination via chemical shift threading.
Hafsa, Noor E; Berjanskii, Mark V; Arndt, David; Wishart, David S
2018-01-01
Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality protein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method (called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or threading-based structure determination methods (in terms of top template model accuracy)-with an average TM-score performance of 0.68 (vs. 0.50-0.62 for other methods). Coupled with recent developments in chemical shift refinement, these results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and reliable. E-Thrifty is available as a web server at http://ethrifty.ca .
Automatic analysis for neuron by confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko
2005-12-01
The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.
All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.
Hayat, Sikander; Sander, Chris; Marks, Debora S; Elofsson, Arne
2015-04-28
Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand-strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-06-01
Prior work by Zeltmann, et al. has demonstrated the impact of small defects and other irregularities on the structural integrity of 3D printed objects. It posited that such defects could be introduced intentionally. The current work looks at the impact of changing the fill level on object structural integrity. It considers whether the existence of an appropriate level of fill can be determined through visible light imagery-based assessment of a 3D printed object. A technique for assessing the quality and sufficiency of quantity of 3D printed fill material is presented. It is assessed experimentally and results are presented and analyzed.
Foti, M; Marshalko, S; Schurter, E; Kumar, S; Beardsley, G P; Schweitzer, B I
1997-05-06
The nucleoside analog 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (ganciclovir, DHPG) is an antiviral drug that is used in the treatment of a variety of herpes viruses in immunocompromised patients and in a gene therapy protocol that has shown promising activity for the treatment of cancer. To probe the structural effects of ganciclovir when incorporated into DNA, we determined and compared the solution structure of a modified ganciclovir-containing decamer duplex [d(CTG)(ganciclovir)d(ATCCAG)]2 and a control duplex d[(CTGGATCCAG)]2 using nuclear magnetic resonance techniques. 1H and 31P resonances in both duplexes were assigned using a combination of 2-D 1H and 31P NMR experiments. Proton-proton distances determined from NOESY data and dihedral angles determined from DQF-COSY data were used in restrained molecular dynamics simulations starting from canonical A- and B-form DNA models. Both the control and ganciclovir sets of simulations converged to B-type structures. These structures were subjected to full relaxation matrix refinement to produce final structures that were in excellent agreement with the observed NOE intensities. Examination of the final ganciclovir-containing structures reveals that the base of the ganciclovir residue is hydrogen bonded to its complementary dC and is stacked in the helix; in fact, the base of ganciclovir exhibits increased stacking with the 5' base relative to the control. Interestingly, some of the most significant distortions in the structures occur 3' to the lesion site, including a noticeable kink in the sugar-phosphate backbone at this position. Further examination reveals that the backbone conformation, sugar pucker, and glycosidic torsion angle of the residue 3' to the lesion site all indicate an A-type conformation at this position. A possible correlation of these structural findings with results obtained from earlier biochemical studies will be discussed.
ERIC Educational Resources Information Center
Cutchins, M. A.
1982-01-01
Presents programmable calculator solutions to selected problems, including area moments of inertia and principal values, the 2-D principal stress problem, C.G. and pitch inertia computations, 3-D eigenvalue problems, 3 DOF vibrations, and a complex flutter determinant. (SK)
Membrane proteins structures: A review on computational modeling tools.
Almeida, Jose G; Preto, Antonio J; Koukos, Panagiotis I; Bonvin, Alexandre M J J; Moreira, Irina S
2017-10-01
Membrane proteins (MPs) play diverse and important functions in living organisms. They constitute 20% to 30% of the known bacterial, archaean and eukaryotic organisms' genomes. In humans, their importance is emphasized as they represent 50% of all known drug targets. Nevertheless, experimental determination of their three-dimensional (3D) structure has proven to be both time consuming and rather expensive, which has led to the development of computational algorithms to complement the available experimental methods and provide valuable insights. This review highlights the importance of membrane proteins and how computational methods are capable of overcoming challenges associated with their experimental characterization. It covers various MP structural aspects, such as lipid interactions, allostery, and structure prediction, based on methods such as Molecular Dynamics (MD) and Machine-Learning (ML). Recent developments in algorithms, tools and hybrid approaches, together with the increase in both computational resources and the amount of available data have resulted in increasingly powerful and trustworthy approaches to model MPs. Even though MPs are elementary and important in nature, the determination of their 3D structure has proven to be a challenging endeavor. Computational methods provide a reliable alternative to experimental methods. In this review, we focus on computational techniques to determine the 3D structure of MP and characterize their binding interfaces. We also summarize the most relevant databases and software programs available for the study of MPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction
Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried
2010-01-01
HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957
Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn.
Matsuda, Keisuke; Gotoh, Hiroki; Tajika, Yuki; Sushida, Takamichi; Aonuma, Hitoshi; Niimi, Teruyuki; Akiyama, Masakazu; Inoue, Yasuhiro; Kondo, Shigeru
2017-10-24
The external organs of holometabolous insects are generated through two consecutive processes: the development of imaginal primordia and their subsequent transformation into the adult structures. During the latter process, many different phenomena at the cellular level (e.g. cell shape changes, cell migration, folding and unfolding of epithelial sheets) contribute to the drastic changes observed in size and shape. Because of this complexity, the logic behind the formation of the 3D structure of adult external organs remains largely unknown. In this report, we investigated the metamorphosis of the horn in the Japanese rhinoceros beetle Trypoxylus dichotomus. The horn primordia is essentially a 2D epithelial cell sheet with dense furrows. We experimentally unfolded these furrows using three different methods and found that the furrow pattern solely determines the 3D horn structure, indicating that horn formation in beetles occurs by two distinct processes: formation of the furrows and subsequently unfolding them. We postulate that this developmental simplicity offers an inherent advantage to understanding the principles that guide 3D morphogenesis in insects.
Glycosides from Bougainvillea glabra.
Simon, András; Tóth, Gábor; Duddeck, Helmut; Soliman, Hesham S M; Mahmoud, Ibrahim I; Samir, Hanan
2006-01-01
Three glycosides were isolated from Bougainvillea glabra and their structures were determined by extensive use of 1D and 2D NMR spectroscopy ((1)H and (13)C). First compound was identical to momordin IIc (quinoside D) [beta-D-glucopyranosyl 3-O-[beta-D-xylopyranosyl-(1 --> 3)-O-(beta-D-glucopyranosyluronic acid)] oleanolate], second compound was quercetin 3-O-alpha-L-(rhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopy-ranosyl(1 --> 2)]-beta-D-galactopyranoside and third compound was its derivative quercetin 3-O-alpha-L-(4-caffeoylrhamnopyranosyl)(1 --> 6)-[alpha-L-rhamnopyranosyl (1 --> 2)]-beta-D-galactopyranoside, a new natural product.
Hu, Youcai; Potts, Malia B.; Colosimo, Dominic; Herrera-Herrera, Mireya L.; Legako, Aaron G.; Yousufuddin, Muhammed; White, Michael A.; MacMillan, John B.
2013-01-01
Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase involved in a variety of cellular response pathways, including regulation of cell growth, proliferation and motility. Using a newly developed platform to identify the signaling pathway/molecular target of natural products, we identified a family of alkaloid natural products, discoipyrroles A–D (1–4), from Bacillus hunanensis that inhibit the DDR2 signaling pathway. The structure of 1–4, determined by detailed 2D NMR methods and confirmed by X-ray crystallographic analysis has an unusual 3H-benzo[ d]pyrrolo][1,3]oxazine-3,5-dione core. Discoipyrroles A–D potently inhibit DDR2 dependent migration of BR5 fibroblasts and show selective cytotoxicity to DDR2 mutant cell lung cancer cell lines (IC50 120–400 nM). Examination of the biosynthesis has led to the conclusion that the discoipyrroles are formed through a non-enzymatic process, leading to a one-pot total synthesis of 1. PMID:23984625
Alignment-independent technique for 3D QSAR analysis
NASA Astrophysics Data System (ADS)
Wilkes, Jon G.; Stoyanova-Slavova, Iva B.; Buzatu, Dan A.
2016-04-01
Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test 2 = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test 2 = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test 2 = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.
NMR, symmetry elements, structure and phase transitions in the argyrodite family
NASA Astrophysics Data System (ADS)
Gaudin, E.; Taulelle, F.; Boucher, F.; Evain, M.
1998-02-01
Cu7PSe6 belongs to a family of structures known as the argyrodites. It undergoes two phases transitions. The high temperature phase has been determined by X-ray diffraction. It has a Foverline{4}3m space group. Medium temperature phases have been refined using a non-harmonic technique and the space group proposed is P213. The low temperature phase had an apparent space group of Foverline{4}3m also. Use of X-ray diffraction and NMR together has allowed to determine the space groups of all phases as being respectively Foverline{4}3m, P213 and Pmn21. Positioning of disordered coppers in the structure is therefore possible and the structure can be described by connex polyhedra of PSe3-4 and SeCux-2_x. The phase transitions can be understood by an ordered motion of SeCux-2x polyhedra. If these polyhedra set in motion independently two transitions are to be observed, if they are coupled only one is observed. Cu7PSe6 appartient à une famille de composés connus sous le nom d'argyrodites. Cu7PSe6 possède deux transitions de phase. La structure de haute température a été déterminée par diffraction des rayons X. Elle se décrit par le groupe d'espace Foverline{4}3m. La phase de moyenne température a été raffinée en utilisant une technique non-harmonique et le groupe d'espace proposé est P213. La phase de basse température possède également un groupe d'espace apparent Foverline{4}3m. En utilisant ensemble la diffraction des rayons X et la RMN, il a été possible de déterminer les groupes d'espace de toutes les phases comme étant respectivement Foverline{4}3m, P213 et Pmn21. Placer les atomes de cuivre, désordonnés, dans la structure devient alors possible et la structure peut se décrire comme un ensemble de polyèdres connexes de PSe3-4 et SeCux-2_x. Les transitions de phases se décrivent alors comme des mouvements ordonnés des polyèdres SeCux-2_x. Si ces polyèdres se mettent en mouvement indépendamment, deux transitions de phases sont attendues, si leur mise en mouvement est couplée, une seule est observée.
Moiré-reduction method for slanted-lenticular-based quasi-three-dimensional displays
NASA Astrophysics Data System (ADS)
Zhuang, Zhenfeng; Surman, Phil; Zhang, Lei; Rawat, Rahul; Wang, Shizheng; Zheng, Yuanjin; Sun, Xiao Wei
2016-12-01
In this paper we present a method for determining the preferred slanted angle for a lenticular film that minimizes moiré patterns in quasi-three-dimensional (Q3D) displays. We evaluate the preferred slanted angles of the lenticular film for the stripe-type sub-pixel structure liquid crystal display (LCD) panel. Additionally, the sub-pixels mapping algorithm of the specific angle is proposed to assign the images to either the right or left eye channel. A Q3D display prototype is built. Compared with the conventional SLF, this newly implemented Q3D display can not only eliminate moiré patterns but also provide 3D images in both portrait and landscape orientations. It is demonstrated that the developed slanted lenticular film (SLF) provides satisfactory 3D images by employing a compact structure, minimum moiré patterns and stabilized 3D contrast.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Guan, H.; Gao, K.
2018-02-01
We present for the first time a direct measurement of the lifetime ratio between the 3d{}2{D}3/2 and 3d{}2{D}5/2 metastable states in a single trapped 40Ca+. A high-efficiency quantum state detection technique is adopted to monitor the quantum jumps, and a high precision and synchronized measurement sequence is used for laser control to study the rule of spontaneous decay. Our method shows that the lifetime ratio is a constant and is irrelevant to the dwell time; it is only determined by the spontaneous decay probabilities of the two metastable states at one random decay time, independent of the lifetimes of the two metastable states. Systematic errors such as collisions with background gases, heating effects, impurity components, the shelving and pumping rates and the photon counts are analyzed, and the lifetime ratio between the 3d{}2{D}3/2 and 3d{}2{D}5/2 states is directly measured to be 1.0257(43) with an uncertainty of 0.42%. Our result is in good agreement with the most precise many-body atomic structure calculations. Our method can be used to obtain the lifetime of a state which is usually difficult to measure and can be used to determine the magnetic dipole transition matrix elements in heavy ions such as Ba+ and Ra+, and can also be universally applied to lifetime ratio measurements of other single atoms and ions with a similar structure.
Determination of scattering structures from spatial coherence measurements.
Zarubin, A M
1996-03-01
A new method of structure determination and microscopic imaging with short-wavelength radiations (charged particles, X-rays, neutrons), based on measurements of the modulus and the phase of the degree of spatial coherence of the scattered radiation, is developed. The underlying principle of the method--transfer of structural information about the scattering potential via spatial coherence of the secondary (scattering) source of radiation formed by this potential--is expressed by the generalization of the van Cittert-Zernike theorem to wave and particle scattering [A.M. Zarubin, Opt. Commun. 100 (1993) 491; Opt. Commun. 102 (1993) 543]. Shearing interferometric techniques are proposed for implementing the above measurements; the limits of spatial resolution attainable by reconstruction of the absolute square of a 3D scattering potential and its 2D projections from the measurements are analyzed. It is shown theoretically that 3D imaging with atomic resolution can be realized in a "synthetic aperture" electron or ion microscope and that a 3D resolution of about 6 nm can be obtained with a "synthetic aperture" X-ray microscope. A proof-of-principle optical experiment is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Robert A.; Maegley, Karen A.; Yu, Xiu
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3D{sup pol}, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3D{sup pol} have been determined. The three structures are very similar to one another, and tomore » the closely related poliovirus (PV) 3D{sup pol} enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3D{sup pol} provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3D{sup pol} also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.« less
One-dimensional coordination polymers of whole row rare earth tris-pivalates
NASA Astrophysics Data System (ADS)
Tsymbarenko, Dmitry; Martynova, Irina; Grebenyuk, Dimitry; Shegolev, Vsevolod; Kuzmina, Natalia
2018-02-01
Fourteen 1D coordination polymers of rare earth pivalates [Ln(Piv)3]∞ (Ln = Y, La, Pr, Nd, Sm-Lu) were synthesized and characterized by powder X-ray diffraction, IR spectroscopy, TGA, and conventional elemental analysis. Crystal structures of [La(Piv)3]∞, [Yb(Piv)3]∞, [Lu(Piv)3]∞ were determined by means of single crystal X-ray analysis at 120 K, those of [Y(Piv)3]∞ and [Ho(Piv)3]∞ - from powder XRD data at 293 K. Transformation of [Ln(Piv)3]∞ structure and Piv- anions coordination mode along the whole row has been derived from powder XRD and IR spectroscopy results, and shown to crucially affect the relative location of 1D chains in the crystal structure, as well as the Ln···Ln distance within the single chain. Negative thermal expansion along 1D [Ln(Piv)3]∞ chain was revealed for Ln = Tm, Yb, Lu. Enforcement of 1D polymeric structure with the decrease of Ln ionic radius has been established from solid-state DFT calculations.
Two new cucurbitane triterpenoids from the seeds of Momordica charantia.
Ma, Lin; Yu, Ai-Hua; Sun, Li-Li; Gao, Wan; Zhang, Meng-Meng; Su, Ya-Lun; Liu, Hua; Ji, Teng-Fei; Li, Di-Zao
2014-01-01
Two new cucurbitane triterpenoids 1 and 2 were isolated, together with six known compounds, from the seeds of Momordica charantia L. The structures of new compounds were determined to be 3-O-{[β-d-galactopyranosyl(1 → 6)]-O-β-d-galactopyranosyl}-23(R), 24(R), 25-trihydroxycucur-bit-5-ene (1), 3-O-[β-d-galactopyranosyl]-25-O-β-d-galactopyranosyl-7(R), 22(S), 23(R), 24(R), 25-pentahydroxycucurbit-5-ene (2), respectively. Their structures were elucidated by the combination of mass spectrometry, one- and two-dimensional NMR experiments and chemical reactions.
A new lignan glycoside from the rhizomes of Imperata cylindrica.
Lee, Dae-Young; Han, Kyung-Min; Song, Myoung-Chong; Lee, Do-Gyeong; Rho, Yeong-Deok; Baek, Nam-In
2008-01-01
A new lignan glycoside, 6-acetyl-1-[1,3-(4,4'-dihydroxy-3,3'-dimethoxy-beta-truxinyl)-beta-d-fructofuranosyl]-alpha-d-glucopyranoside (1), named impecyloside, was isolated from the rhizomes of Imperata cylindrica. The structure of the compound was determined by spectroscopic data including FABMS, UV, IR, 1H NMR and 13C NMR (DEPT) and 2D NMR (COSY, HSQC, HMBC).
Structure of synaptophysin: a hexameric MARVEL-domain channel protein.
Arthur, Christopher P; Stowell, Michael H B
2007-06-01
Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.
NASA Astrophysics Data System (ADS)
Sun, Qiao-Zhen; Yin, Yi-Biao; Pan, Jun-Qiao; Chai, Li-Yuan; Su, Nan; Liu, Hui; Zhao, Yi-Lin; Liu, Xing-Tao
2016-02-01
Two novel heteronuclear coordination polymers, namely, [CuSr2(BTC)2]·10H2O (1) and [Cu2Sr(H4TMA)2]·4H2O (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, H4TMA = 2-hydroxytrimesic acid) were hydrothermally synthesized as pH-dependent products and characterized by elemental analysis (EA), infrared spectroscopy (IR) and single crystal X-ray diffraction. For compound 1, it displays a 3D structure with (2,5,6)-connected net topology. For 2, the H3BTC ligand is oxidized into H4TMA and compound 2 features a 2D layer structure, which is further linked by Cu⋯Cu and Cu⋯O supramolecular interactions into a 3D structure. The results show that the pH plays a crucial role in determining the structure of the compounds. In addition, thermalgravimetric analysis of compounds 1-2 and luminescence property of 1 are also investigated.
Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N
2017-11-14
Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.
New applications of a model of electromechanical impedance for SHM
NASA Astrophysics Data System (ADS)
Pavelko, Vitalijs
2014-03-01
The paper focuses on the further development of the model of the electromechanical impedance (EMI) of the piezoceramics transducer (PZT) and its application for aircraft structural health monitoring (SHM). There was obtained an expression of the electromechanical impedance common to any dimension of models (1D, 2D, 3D), and directly independent from imposed constraints. Determination of the dynamic response of the system "host structure - PZT", which is crucial for the practical application supposes the use of modal analysis. This allows to get a general tool to determine EMI regardless of the specific features of a particular application. Earlier there was considered the technology of separate determination of the dynamic response for the PZT and the structural element". Here another version that involves the joint modal analysis of the entire system "host structure - PZT" is presented. As a result, the dynamic response is obtained in the form of modal decomposition of transducer mechanical strains. The use of models for the free and constrained transducer, analysis of the impact of the adhesive layer to the EMI is demonstrated. In all cases there was analyzed the influence of the dimension of the model (2D and 3D). The validity of the model is confirmed by experimental studies. Correlation between the fatigue crack length in a thin-walled Al plate and EMI of embedded PZT was simulated and compared with test result.
NASA Astrophysics Data System (ADS)
Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.
2016-12-01
Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.
Three-scale analysis of the permeability of a natural shale
NASA Astrophysics Data System (ADS)
Davy, C. A.; Adler, P. M.
2017-12-01
The macroscopic permeability of a natural shale is determined by using structural measurements on three different scales. Transmission electron microscopy yields two-dimensional (2D) images with pixels smaller than 1 nm; these images are used to reconstruct 3D nanostructures. Three-dimensional focused ion beam-scanning electron microscopy (5.95- to 8.48-nm voxel size) provides 3D mesoscale pores of limited relative volume (1.71-5.9%). Micro-computed tomography (700-nm voxel size) provides information on the mineralogy of the shale, including the pores on this scale which do not percolate; synthetic 3D media are derived on the macroscopic scale by a training image technique. Permeability of the nanoscale, of the mesoscale structures and of their superposition is determined by solving the Stokes equation and this enables us to estimate the permeabilities of the 700-nm voxels located within the clay matrix. Finally, the Darcy equation is solved on synthetic 3D macroscale media to obtain the macroscopic permeability which is found in good agreement with experimental results obtained on the centimetric scale.
Physically motivated global alignment method for electron tomography
Sanders, Toby; Prange, Micah; Akatay, Cem; ...
2015-04-08
Electron tomography is widely used for nanoscale determination of 3-D structures in many areas of science. Determining the 3-D structure of a sample from electron tomography involves three major steps: acquisition of sequence of 2-D projection images of the sample with the electron microscope, alignment of the images to a common coordinate system, and 3-D reconstruction and segmentation of the sample from the aligned image data. The resolution of the 3-D reconstruction is directly influenced by the accuracy of the alignment, and therefore, it is crucial to have a robust and dependable alignment method. In this paper, we develop amore » new alignment method which avoids the use of markers and instead traces the computed paths of many identifiable ‘local’ center-of-mass points as the sample is rotated. Compared with traditional correlation schemes, the alignment method presented here is resistant to cumulative error observed from correlation techniques, has very rigorous mathematical justification, and is very robust since many points and paths are used, all of which inevitably improves the quality of the reconstruction and confidence in the scientific results.« less
Park, Tae-Joon; Lee, Sang-Hyun
2012-01-01
Objective The purpose of this study was to develop superimposition method on the lower arch using 3-dimensional (3D) cone beam computed tomography (CBCT) images and orthodontic 3D digital modeling. Methods Integrated 3D CBCT images were acquired by substituting the dental portion of 3D CBCT images with precise dental images of an orthodontic 3D digital model. Images were acquired before and after treatment. For the superimposition, 2 superimposition methods were designed. Surface superimposition was based on the basal bone structure of the mandible by surface-to-surface matching (best-fit method). Plane superimposition was based on anatomical structures (mental and lingual foramen). For the evaluation, 10 landmarks including teeth and anatomic structures were assigned, and 30 times of superimpositions and measurements were performed to determine the more reproducible and reliable method. Results All landmarks demonstrated that the surface superimposition method produced relatively more consistent coordinate values. The mean distances of measured landmarks values from the means were statistically significantly lower with the surface superimpositions method. Conclusions Between the 2 superimposition methods designed for the evaluation of 3D changes in the lower arch, surface superimposition was the simpler, more reproducible, reliable method. PMID:23112948
Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed
2015-01-01
This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299
Structural characterisation of some vanillic Mannich bases: Experimental and theoretical study
NASA Astrophysics Data System (ADS)
Petrović, Vladimir P.; Simijonović, Dušica; Novaković, Sladjana B.; Bogdanović, Goran A.; Marković, Svetlana; Petrović, Zorica D.
2015-10-01
In this paper, synthesis and structural determination of 2-[1-(N-4-fluorophenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (MB-F) is presented. To determine the structure of this new compound, IR and NMR spectral characterisation was performed experimentally and theoretically. Simulation of spectral data was carried out using three functionals: B3LYP, B3LYP-D2, and M06-2X. The results obtained for MB-F were compared to those attained for similar, known compound 2-[1-(N-phenylamino)-1-(4-hydroxy-3-methoxyphenyl)]methylcyclohexanone (MB-H), whose crystal structure is presented here. Taking into account all experimental and theoretical findings, the structure of MB-F was proposed.
Gourdon, Olivier; Izaola, Zunbeltz; Elcoro, Luis; Petricek, Vaclav; Miller, Gordon J
2009-10-19
The structure determination of two composite compounds in the Zn-Pd system with close relationships to the cubic gamma-brass structure Zn(11-delta)Pd(2+delta) is reported. Their structures have been solved from single crystal X-ray diffraction data within a (3 + 1)-dimensional [(3 + 1)D] formalism. Zn(75.7(7))Pd(24.3) and Zn(78.8(7))Pd(21.2) crystallize with orthorhombic symmetry, superspace group Xmmm(00gamma)0s0 (X = [(1/2,1/2,0,0); (0,1/2,1/2,1/2); (1/2,0,1/2,1/2)]), with the following lattice parameters, respectively: a(s) = 12.929(3) A, b(s) = 9.112(4) A, c(s) = 2.5631(7) A, q = 8/13 c* and V(s) = 302.1(3) A(3) and a(s) = 12.909(3) A, b(s) = 9.115(3) A, c(s) = 2.6052(6) A, q = 11/18 c* and V(s) = 306.4(2) A(3). Their structures may be considered as commensurate because they can be refined in the conventional 3D space groups (Cmce and Cmcm, respectively) using supercells, but they also refined within the (3 + 1)D formalism to residual factors R = 3.14% for 139 parameters and 1184 independent reflections for Zn(75.7(7))Pd(24.3) and R = 3.16% for 175 parameters and 1804 independent reflections for Zn(78.8(7))Pd(21.2). The use of the (3 + 1)D formalism improves the results of the refinement and leads to a better understanding of the complexity of the atomic arrangement through the various modulations (occupation waves and displacive waves). Our refinements emphasize a unique Pd/Zn occupancy modulation at the center of distorted icosahedra, a modulation which correlates with the distortion of these polyhedra.
Unraveling the meaning of chemical shifts in protein NMR.
Berjanskii, Mark V; Wishart, David S
2017-11-01
Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Di Tullio, Maurizio; Maccallini, Cristina; Ammazzalorso, Alessandra; Giampietro, Letizia; Amoroso, Rosa; De Filippis, Barbara; Fantacuzzi, Marialuigia; Wiczling, Paweł; Kaliszan, Roman
2012-07-01
A series of 27 analogues of clofibric acid, mostly heteroarylalkanoic derivatives, have been analyzed by a novel high-throughput reversed-phase HPLC method employing combined gradient of eluent's pH and organic modifier content. The such determined hydrophobicity (lipophilicity) parameters, log kw , and acidity constants, pKa , were subjected to multiple regression analysis to get a QSRR (Quantitative StructureRetention Relationships) and a QSPR (Quantitative Structure-Property Relationships) equation, respectively, describing these pharmacokinetics-determining physicochemical parameters in terms of the calculation chemistry derived structural descriptors. The previously determined in vitro log EC50 values - transactivation activity towards PPARα (human Peroxisome Proliferator-Activated Receptor α) - have also been described in a QSAR (Quantitative StructureActivity Relationships) equation in terms of the 3-D-MoRSE descriptors (3D-Molecule Representation of Structures based on Electron diffraction descriptors). The QSAR model derived can serve for an a priori prediction of bioactivity in vitro of any designed analogue, whereas the QSRR and the QSPR models can be used to evaluate lipophilicity and acidity, respectively, of the compounds, and hence to rational guide selection of structures of proper pharmacokinetics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roushdy, Alaa; Fiky, Azza El; Din, Dina Ezz El
2012-07-01
To determine the feasibility and accuracy of real time 3D echocardiography (RT3DE) in determining the dimensions and anatomical type of the patent ductus arteriosus (PDA). The study included 42 pediatric patients with a mean age of 3.6 years (ranging from 2 months to 14 years) who were referred for elective percutaneous PDA closure. All patients underwent full 2D echocardiogram as well as RT3DE with off line analysis using Q lab software within 6 h from their angiograms. The PDA was studied as regard the anatomical type, length of the duct as well as the ampulla and the pulmonary end of the PDA. Data obtained by RT3DE was compared against 2D echocardiogram and the gold standard angiography. Offline analysis of the PDA was feasible in 97.6% of the cases while determination of the anatomical type using gated color flow 3D acquisitions was achieved in 78.5% of the cases. The pulmonary end of the duct was rather elliptical using 3D echocardiogram. There was significant difference between the pulmonary end measured by 3D echocardiogram and angiography (P < 0.001). There was no significant difference between either the length or the ampulla of the PDA measured by 3D echocardiogram and that measured by angiography (P value = 0.325 and 0.611, respectively). There was a good agreement between both 2D or 3D echocardiogram and angiography in determining the anatomical type of the PDA (K = 0.744 and 0.773, respectively). However 3D echocardiogram could more accurately determine type A and type E ductus compared to 2D echocardiogram. 3D echocardiogram was more accurate than 2D echocardiogram in determining the length and the ampulla of the PDA. The morphologic assessment of the PDA using gated 3D color flow was achieved in 78.5% of the patients. Nevertheless the use of 3D echocardiogram in assessment of small vascular structures like PDA in children with rapid heart rates is still of limited clinical value.
NASA Astrophysics Data System (ADS)
Matsubara, M.; Sato, H.
2015-12-01
1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity structure D10 deepens, D90 shallows, and the thickness of the seismogenic layer becomes thinner. The thickness of the seismogenic layer is thick beneath the northern Honshu, however, that is very thin beneath southwestern Japan on the Japan Sea side.
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2011-01-01
Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…
Lando, David; Stevens, Tim J; Basu, Srinjan; Laue, Ernest D
2018-01-01
Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.
3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography
Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun
2012-01-01
Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
NASA Astrophysics Data System (ADS)
Jójárt, Balázs; Martinek, Tamás A.; Márki, Árpád
2005-05-01
Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated Δ G bind and the p K i values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models q CoMFA 2 = 0.653, q CoMSA 2 = 0.630 and r pred,CoMFA 2 = 0.852 , r pred,CoMSIA 2 = 0.815) confirmed the scoring function results. The structural features of the receptor-ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor-ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.
Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams
NASA Astrophysics Data System (ADS)
Shen, Zhiqiang; Ye, Huilin; Zhou, Chi; Kröger, Martin; Li, Ying
2018-03-01
Graphene is recognized as an emerging 2D nanomaterial for many applications. Assembly of graphene sheets into 3D structures is an attractive way to enable their macroscopic applications and to preserve the exceptional mechanical and physical properties of their constituents. In this study, we develop a coarse-grained (CG) model for 3D graphene foams (GFs) based on the CG model for a 2D graphene sheet by Ruiz et al (2015 Carbon 82 103-15). We find that the size of graphene sheets plays an important role in both the structural and mechanical properties of 3D GFs. When their size is smaller than 10 nm, the graphene sheets can easily stack together under the influence of van der Waals interactions (vdW). These stacks behave like building blocks and are tightly packed together within 3D GFs, leading to high density, small pore radii, and a large Young’s modulus. However, if the sheet sizes exceed 10 nm, they are staggered together with a significant amount of deformation (bending). Therefore, the density of 3D GFs has been dramatically reduced due to the loosely packed graphene sheets, accompanied by large pore radii and a small Young’s modulus. Under uniaxial compression, rubber-like stress-strain curves are observed for all 3D GFs. This material characteristic is dominated by the vdW interactions between different graphene layers and slightly affected by the out-of-plane deformation of the graphene sheets. We find a simple scaling law E˜ {ρ }4.2 between the density ρ and Young’s modulus E for a model of 3D GFs. The simulation results reveal structure-property relations of 3D GFs, which can be applied to guide the design of 3D graphene assemblies with exceptional properties.
NASA Astrophysics Data System (ADS)
Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. Chen; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, J. J.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration
2015-11-01
A neutral structure in the D D¯* system around the D D¯* mass threshold is observed with a statistical significance greater than 10 σ in the processes e+e-→D+D*-π0+c . c . and e+e-→D0D¯ *0π0+c . c . at √{s }=4.226 and 4.257 GeV in the BESIII experiment. The structure is denoted as Zc(3885 )0. Assuming the presence of a resonance, its pole mass and width are determined to be [3885. 7-5.7+4.3 (stat )±8.4 (syst )] MeV /c2 and [3 5-12+11(stat )±15 (syst )] MeV , respectively. The Born cross sections are measured to be σ [e+e-→Zc(3885 )0π0,Zc(3885 )0→D D¯ *]=[77 ±13 (stat )±17 (syst )] pb at 4.226 GeV and [47 ±9 (stat )±10 (syst )] pb at 4.257 GeV. The ratio of decay rates B [Zc(3885 )0→D+D*-+c .c .] /B [Zc(3885 )0→D0D¯ *0+c .c .] is determined to be 0.96 ±0.18 (stat )±0.12 (syst ) , consistent with no isospin violation in the process, Zc(3885 )0→D D¯*.
[2D correlation spectral study of a coordination polymer [Eu(PCPOA)3 (H2O)]n].
Sun, Rui-qing; Zhang, Han-hui; Cao, Yan-ning; Chen, Yi-ping; Yang, Qi-yu; Wang, Zhi-yang
2007-05-01
A novel two dimensional coordination polymer [Eu(PCPOA)3 (H2O)], was synthesized under hydrothermal condition. Based on the determination of the structure, the 2D correlation FTIR spectra with the perturbation of magnetism and the 2D correlation fluorescence spectra with the perturbation of temperature were investigated. The energy bonds were calculated using CASTEP Program of Material studio. The Europium ions are nine-coordinated and the ligands adopted two different modes to connect the Eu3+ ions to 2D layer structure. The study of the 2D-FTIR reveals that the carboxylates coordinate with the center ions not only as monodentate, but also as bidentate chelate. The 2D fluorescence spectra indicates that the transition of (5)D0-->(7)F2 is influenced intensively by the perturbation of temperature.
Inagaki, M; Shibai, M; Isobe, R; Higuchi, R
2001-12-01
Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species.
Investigating fold structures of 2D materials by quantitative transmission electron microscopy.
Wang, Zhiwei; Zhang, Zengming; Liu, Wei; Wang, Zhong Lin
2017-04-01
We report an approach developed for deriving 3D structural information of 2D membrane folds based on the recently-established quantitative transmission electron microscopy (TEM) in combination with density functional theory (DFT) calculations. Systematic multislice simulations reveal that the membrane folding leads to sufficiently strong electron scattering which enables a precise determination of bending radius. The image contrast depends also on the folding angles of 2D materials due to the variation of projection potentials, which however exerts much smaller effect compared with the bending radii. DFT calculations show that folded edges are typically characteristic of (fractional) nanotubes with the same curvature retained after energy optimization. Owing to the exclusion of Stobbs factor issue, numerical simulations were directly used in comparison with the experimental measurements on an absolute contrast scale, which results in a successful determination of bending radius of folded monolayer MoS 2 films. The method should be applicable to characterizing all 2D membranes with 3D folding features. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Richard, Pierre; Zhang, W.-L.; Wu, S.-F.; van Roekeghem, A.; Zhang, P.; Miao, H.; Qian, T.; Nie, S.-M.; Chen, G.-F.; Ding, H.; Xu, N.; Biermann, S.; Capan, C.; Fisk, Z.; Saparov, B. I.; Sefat, A. S.
2015-03-01
It is widely believed that the key ingredients for high-temperature superconductivity are already present in the non-superconducting parent compounds. With its ability to probe the single-particle electronic structure directly in the momentum space, ARPES is a very powerful tool to determine which parameters of the electronic structure are possibly relevant for promoting superconductivity. Here we report ARPES studies on the parent compounds of the 122 family of Fe-based superconductors and their 3 d transition metal pnictide cousins. In particular, we show that the Fe-compound exhibits the largest electronic correlations, possibly a determining factor for unconventional superconductivity.
Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension
NASA Astrophysics Data System (ADS)
Tritsis, Aris; Tassis, Konstantinos
2018-05-01
Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology.
Solving the nanostructure problem: exemplified on metallic alloy nanoparticles
NASA Astrophysics Data System (ADS)
Petkov, Valeri; Prasai, Binay; Ren, Yang; Shan, Shiyao; Luo, Jin; Joseph, Pharrah; Zhong, Chuan-Jian
2014-08-01
With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modeling results. See DOI: 10.1039/c4nr01633e
Solution structure of the C-terminal domain of Ole e 9, a major allergen of olive pollen
Treviño, Miguel Á.; Palomares, Oscar; Castrillo, Inés; Villalba, Mayte; Rodríguez, Rosalía; Rico, Manuel; Santoro, Jorge; Bruix, Marta
2008-01-01
Ole e 9 is an olive pollen allergen belonging to group 2 of pathogenesis-related proteins. The protein is composed of two immunological independent domains: an N-terminal domain (NtD) with 1,3-β-glucanase activity, and a C-terminal domain (CtD) that binds 1,3-β-glucans. We have determined the three-dimensional structure of CtD-Ole e 9 (101 amino acids), which consists of two parallel α-helices forming an angle of ∼55°, a small antiparallel β-sheet with two short strands, and a 3–10 helix turn, all connected by long coil segments, resembling a novel type of folding among allergens. Two regions surrounded by aromatic residues (F49, Y60, F96, Y91 and Y31, H68, Y65, F78) have been localized on the protein surface, and a role for sugar binding is suggested. The epitope mapping of CtD-Ole e 9 shows that B-cell epitopes are mainly located on loops, although some of them are contained in secondary structural elements. Interestingly, the IgG and IgE epitopes are contiguous or overlapped, rather than coincident. The three-dimensional structure of CtD-Ole e 9 might help to understand the underlying mechanism of its biochemical function and to determine possible structure–allergenicity relationships. PMID:18096638
SimRNAweb: a web server for RNA 3D structure modeling with optional restraints.
Magnus, Marcin; Boniecki, Michał J; Dawson, Wayne; Bujnicki, Janusz M
2016-07-08
RNA function in many biological processes depends on the formation of three-dimensional (3D) structures. However, RNA structure is difficult to determine experimentally, which has prompted the development of predictive computational methods. Here, we introduce a user-friendly online interface for modeling RNA 3D structures using SimRNA, a method that uses a coarse-grained representation of RNA molecules, utilizes the Monte Carlo method to sample the conformational space, and relies on a statistical potential to describe the interactions in the folding process. SimRNAweb makes SimRNA accessible to users who do not normally use high performance computational facilities or are unfamiliar with using the command line tools. The simplest input consists of an RNA sequence to fold RNA de novo. Alternatively, a user can provide a 3D structure in the PDB format, for instance a preliminary model built with some other technique, to jump-start the modeling close to the expected final outcome. The user can optionally provide secondary structure and distance restraints, and can freeze a part of the starting 3D structure. SimRNAweb can be used to model single RNA sequences and RNA-RNA complexes (up to 52 chains). The webserver is available at http://genesilico.pl/SimRNAweb. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pampa, K.J., E-mail: sagarikakj@gmail.com; Lokanath, N.K.; Girish, T.U.
Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme bymore » X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.« less
Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné.
Park, SeonJu; Kim, Yun Na; Kwak, Hee Jae; Jeong, Eun Ju; Kim, Seung Hyun
2018-02-15
Stilbenes have been reported to be phytoestrogen compounds owing to its structural similarity to the estrogenic agent diethylstilbestrol. To find new stilbene-derivative phytoestrogens, isolation of stilbene-rich R. undulatum was performed and led to identify six new compounds (1-5 and 28), one newly determined absolute configurations compound (27) together with 21 previously reported compounds (6-26). The structures of compounds were determined on the basis of extensive spectroscopic methods including 1D and 2D NMR and CD spectra data. All the isolated compounds were tested for their estrogenic activities in HepG2 cells transiently transfected with ERα, ERβ and ERE-reporter plasmid. Among them, stilbene-derivatives, piceatannol 3'-O-β-d-xylopyranoside (12), cis-rhaponticin (16) and rhapontigenin 3'-O-β-d-glucopyranoside (17), showed the more potent binding affinity for estrogen receptors than 17β-estrodiol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tako, Masakuni; Dobashi, Yahiko; Shimabukuro, Junpei; Yogi, Takuya; Uechi, Keiko; Tamaki, Yukihiro; Konishi, Teruko
2013-02-15
A novel α-glucan substituted rare 6-deoxy-D-altropyranose was isolated from edible fruiting bodies of a mushroom (Lactarius lividatus) grown in Okinawa, Japan. The polysaccharide consists of D-glucose, D-galactose and 6-deoxy-D-altrose in a molar ratio of 3.0:1.0:1.0. The specific rotation [α](589) was estimated as +64.3° (0.2% in water) at 25 °C. Based on results of IR, NMR ((1)H, (13)C, 2D-COSY, 2D-HMQC, 2D-ROESY and 2D-HMBC), and methylation analyses, the structure of the polysaccharide was determined as [formula, see text] This work is the first demonstration of rare 6-deoxy-D-altropyranose moiety on polysaccharides. Copyright © 2012 Elsevier Ltd. All rights reserved.
A novel camera localization system for extending three-dimensional digital image correlation
NASA Astrophysics Data System (ADS)
Sabato, Alessandro; Reddy, Narasimha; Khan, Sameer; Niezrecki, Christopher
2018-03-01
The monitoring of civil, mechanical, and aerospace structures is important especially as these systems approach or surpass their design life. Often, Structural Health Monitoring (SHM) relies on sensing techniques for condition assessment. Advancements achieved in camera technology and optical sensors have made three-dimensional (3D) Digital Image Correlation (DIC) a valid technique for extracting structural deformations and geometry profiles. Prior to making stereophotogrammetry measurements, a calibration has to be performed to obtain the vision systems' extrinsic and intrinsic parameters. It means that the position of the cameras relative to each other (i.e. separation distance, cameras angle, etc.) must be determined. Typically, cameras are placed on a rigid bar to prevent any relative motion between the cameras. This constraint limits the utility of the 3D-DIC technique, especially as it is applied to monitor large-sized structures and from various fields of view. In this preliminary study, the design of a multi-sensor system is proposed to extend 3D-DIC's capability and allow for easier calibration and measurement. The suggested system relies on a MEMS-based Inertial Measurement Unit (IMU) and a 77 GHz radar sensor for measuring the orientation and relative distance of the stereo cameras. The feasibility of the proposed combined IMU-radar system is evaluated through laboratory tests, demonstrating its ability in determining the cameras position in space for performing accurate 3D-DIC calibration and measurements.
NASA Astrophysics Data System (ADS)
Haghiashtiani, Ghazaleh; Greminger, Michael A.
2015-04-01
The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.
Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.
Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho
2013-04-21
The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.
Diamond and diamond-like carbon MEMS
NASA Astrophysics Data System (ADS)
Luo, J. K.; Fu, Y. Q.; Le, H. R.; Williams, J. A.; Spearing, S. M.; Milne, W. I.
2007-07-01
To generate complex cartilage/bone tissues, scaffolds must possess several structural features that are difficult to create using conventional scaffold design/fabrication technologies. Successful cartilage/bone regeneration depends on the ability to assemble chondrocytes/osteoblasts into three-dimensional (3D) scaffolds. Therefore, we developed a 3D scaffold fabrication system that applies the axiomatic approach to our microstereolithography system. The new system offers a reduced machine size by minimizing the optical components, and shows that the design matrix is decoupled. This analysis identified the key factors affecting microstructure fabrication and an improved scaffold fabrication system was constructed. The results demonstrate that precise, predesigned 3D structures can be fabricated. Using this 3D scaffold, cell adhesion behavior was observed. The use of 3D scaffolds might help determine key factors in the study of cell behavior in complex environments and could eventually lead to the optimal design of scaffolds for the regeneration of various tissues, such as cartilage and bone.
A model of the complex between human {beta}-microseminoprotein and CRISP-3 based on NMR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasriani, Houman; Fernlund, Per; Udby, Lene
2009-01-09
{beta}-Microseminoprotein (MSP), a 10 kDa seminal plasma protein, forms a tight complex with cysteine-rich secretory protein 3 (CRISP-3) from granulocytes. The 3D structure of human MSP has been determined but there is as yet no 3D structure for CRISP-3. We have now studied the complex between human MSP and CRISP-3 with multidimensional NMR. {sup 15}N-HSQC spectra show substantial differences between free and complexed hMSP. Using several 3D-NMR spectra of triply labeled hMSP in complex with a recombinant N-terminal domain of CRISP-3, most of the backbone of hMSP could be assigned. The data show that only one side of hMSP, comprisingmore » {beta}-strands 1, 4, 5, and 8 are affected by the complex formation, indicating that {beta}-strands 1 and 8 form the main binding surface. Based on this we present a tentative structure for the hMSP-CRISP-3 complex using the known crystal structure of triflin as a model of CRISP-3.« less
Sereda, Valentin; Ralbovsky, Nicole M; Vasudev, Milana C; Naik, Rajesh R; Lednev, Igor K
2016-09-01
Self-assembly of short peptides into nanostructures has become an important strategy for the bottom-up fabrication of nanomaterials. Significant interest to such peptide-based building blocks is due to the opportunity to control the structure and properties of well-structured nanotubes, nanofibrils, and hydrogels. X-ray crystallography and solution NMR, two major tools of structural biology, have significant limitations when applied to peptide nanotubes because of their non-crystalline structure and large weight. Polarized Raman spectroscopy was utilized for structural characterization of well-aligned D-Diphenylalanine nanotubes. The orientation of selected chemical groups relative to the main axis of the nanotube was determined. Specifically, the C-N bond of CNH 3 + groups is oriented parallel to the nanotube axis, the peptides' carbonyl groups are tilted at approximately 54° from the axis and the COO - groups run perpendicular to the axis. The determined orientation of chemical groups allowed the understanding of the orientation of D-diphenylalanine molecule that is consistent with its equilibrium conformation. The obtained data indicate that there is only one orientation of D-diphenylalanine molecules with respect to the nanotube main axis.
Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating
Chen, Bo; Guizar-Sicairos, Manuel; Xiong, Gang; Shemilt, Laura; Diaz, Ana; Nutter, John; Burdet, Nicolas; Huo, Suguo; Mancuso, Joel; Monteith, Alexander; Vergeer, Frank; Burgess, Andrew; Robinson, Ian
2013-01-01
Artificially structured coatings are widely employed to minimize materials deterioration and corrosion, the annual direct cost of which is over 3% of the gross domestic product (GDP) for industrial countries. Manufacturing higher performance anticorrosive coatings is one of the most efficient approaches to reduce this loss. However, three-dimensional (3D) structure of coatings, which determines their performance, has not been investigated in detail. Here we present a quantitative nano-scale analysis of the 3D spatial structure of an anticorrosive aluminium epoxy barrier marine coating obtained by serial block-face scanning electron microscopy (SBFSEM) and ptychographic X-ray computed tomography (PXCT). We then use finite element simulations to demonstrate how percolation through this actual 3D structure impedes ion diffusion in the composite materials. We found the aluminium flakes align within 15° of the coating surface in the material, causing the perpendicular diffusion resistance of the coating to be substantially higher than the pure epoxy. PMID:23378910
Comparison of two structured illumination techniques based on different 3D illumination patterns
NASA Astrophysics Data System (ADS)
Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.
2017-02-01
Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.
National Institute of Standards and Technology Data Gateway
SRD 102 HIV Structural Database (Web, free access) The HIV Protease Structural Database is an archive of experimentally determined 3-D structures of Human Immunodeficiency Virus 1 (HIV-1), Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) Proteases and their complexes with inhibitors or products of substrate cleavage.
Uversky, Vladimir N
2015-03-01
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ueda, Shigenori; Hamada, Ikutaro
2017-12-01
The X-ray polarization dependent valence band HAXPES spectra of 3d transition metals (TMs) of Ti-Zn were measured to investigate the orbital resolved electronic structures by utilizing that the fact the photoionization cross-section of the atomic orbitals strongly depends on the experimental geometry. We have calculated the HAXPES spectra, which correspond to the cross-section weighted densities of states (CSW-DOSs), where the DOSs were obtained by the density functional theory calculations, and we have determined the relative photoionization cross-sections of the 4s and 4p orbitals to the 3d orbital in the 3d TMs. The experimentally obtained bulk-sensitive 3d and 4s DOSs were good agreement with the calculated DOSs in Ti, V, Cr, and Cu. In contrast, the deviations between the experimental and calculated 3d DOSs for Mn, Fe, Co, Ni were found, suggesting that the electron correlation plays an important role in the electronic structures for these materials.
NASA Astrophysics Data System (ADS)
Senthilkumar, Kabali; Thirumoorthy, Krishnan; Vinitha, G.; Soni, Kiran; Bhuvanesh, Nattamai S. P.; Palanisami, Nallasamy
2017-01-01
The d10 metal complexes based on 3-methyl-5-ferrocenyl-1H-pyrazole (L = 3-Me-5-FcPz) ligand [M(L)4(NO3)2] Zn=(1) and Cd=(2), [Hg(L)4(NO3)2].dmf (3) have been synthesized and characterized by FT-IR, NMR, UV-Vis and elemental analysis. The molecular structure of compound 2 and its crystal packing were determined by single crystal X-ray diffraction. The nitrate anions are also involved in intermolecular hydrogen bonding with adjacent ferrocene units and it forms zig-zag one-dimensional polymeric structure. UV-Vis investigations on the positive solvatochromic behavior of 1-3 revealed that the solvation of the push-pull character increases with increasing polarity. The third-order nonlinear optical (NLO) properties of 1-3 have been determined by Z-scan technique and the results indicate that compounds 1-3 exhibits the strong self-defocusing effect. The nonlinear susceptibility χ(3) values are calculated in the order of 10-6 esu.
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
NASA Astrophysics Data System (ADS)
Budai, J. D.; Yang, W.; Tischler, J. Z.; Liu, W.; Larson, B. C.; Ice, G. E.
2004-03-01
We describe a new polychromatic x-ray microdiffraction technique providing 3D measurements of lattice structure, orientation and strain with submicron point-to-point spatial resolution. The instrument is located on the UNI-CAT II undulator beamline at the Advanced Photon Source and uses Kirkpatrick-Baez focusing mirrors, differential aperture CCD measurements and automated analysis of spatially-resolved Laue patterns. 3D x-ray structural microscopy is applicable to a wide range of materials investigations and here we describe 3D thermal grain growth studies in polycrystalline aluminum ( ˜1% Fe,Si) from Alcoa. The morphology and orientations of the grains in a hot-rolled aluminum sample were initially mapped. The sample was then annealed to induce grain growth, cooled to room temperature, and the same volume region was re-mapped to determine the thermal migration of all grain boundaries. Significant grain growth was observed after annealing above ˜350^oC where both low-angle and high-angle boundaries were mobile. These measurements will provide the detailed 3D experimental input needed for testing theories and computer models of 3D grain growth in bulk materials.
Dual-Doppler lidar observation of horizontal convective rolls and near-surface streaks
NASA Astrophysics Data System (ADS)
Iwai, Hironori; Ishii, Shoken; Tsunematsu, Nobumitsu; Mizutani, Kohei; Murayama, Yasuhiro; Itabe, Toshikazu; Yamada, Izumi; Matayoshi, Naoki; Matsushima, Dai; Weiming, Sha; Yamazaki, Takeshi; Iwasaki, Toshiki
2008-07-01
Dual-Doppler lidar and heliborne sensors were used to investigate the three-dimensional (3D) structure of the wind field over Sendai Airport in June 2007. The 3D structures of several-hundred-meter-scale horizontal convective rolls (HCRs) in the sea-breeze layer were observed by the dual-Doppler lidar. The scale of the HCRs determined by the heliborne sensors roughly agreed with that determined by the dual-Doppler lidar. Analysis of the dual-Doppler lidar data showed that the region of upward flow in the HCRs originated in near-surface low-speed streaks. This structure is consistent with the results of large-eddy simulations of the atmospheric boundary layer. The aspect ratios of the HCRs were close to those predicted by linear theories.
Withanolides derived from Physalis peruviana (Poha) with potential anti-inflammatory activity
USDA-ARS?s Scientific Manuscript database
Three new withanolides, physaperuvin G (1), physaperuvin I (2), physaperuvin J (3), along with seven known derivatives (4-10), were isolated from the aerial parts of Physalis peruviana. The structures of 1-3 were determined by spectroscopic methods, including, 1D and 2D NMR, and mass spectrometry. T...
Recent progress in heteronuclear long-range NMR of complex carbohydrates: 3D H2BC and clean HMBC.
Meier, Sebastian; Petersen, Bent O; Duus, Jens Ø; Sørensen, Ole W
2009-11-02
The new NMR experiments 3D H2BC and clean HMBC are explored for challenging applications to a complex carbohydrate at natural abundance of (13)C. The 3D H2BC experiment is crucial for sequential assignment as it yields heteronuclear one- and two-bond together with COSY correlations for the (1)H spins, all in a single spectrum with good resolution and non-informative diagonal-type peaks suppressed. Clean HMBC is a remedy for the ubiquitous problem of strong coupling induced one-bond correlation artifacts in HMBC spectra of carbohydrates. Both experiments work well for one of the largest carbohydrates whose structure has been determined by NMR, not least due to the enhanced resolution offered by the third dimension in 3D H2BC and the improved spectral quality due to artifact suppression in clean HMBC. Hence these new experiments set the scene to take advantage of the sensitivity boost achieved by the latest generation of cold probes for NMR structure determination of even larger and more complex carbohydrates in solution.
RAPID COMMUNICATION: Study of superstructure II in multiferroic BiMnO3
NASA Astrophysics Data System (ADS)
Ge, Bing-Hui; Li, Fang-Hua; Li, Xue-Ming; Wang, Yu-Mei; Chi, Zhen-Hua; Jin, Chang-Qing
2008-09-01
The crystal structure of the minor phase, named superstructure II, existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy. Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images. The unit cell of minor phase was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskite subcell. The [111] and [10bar 1] projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing. A possible rough three-dimensional (3D) structure model was proposed based on the 3D structural information extracted from the two projected structure maps. Since there is no inversion centre in the proposed model, the minor phase may contribute to the ferroelectric property of BiMnO3.
NASA Astrophysics Data System (ADS)
Bark, Chung W.; Ryu, Sangwoo; Koo, Yang M.; Jang, Hyun M.; Youn, Hwa S.
2007-01-01
An in situ method, called synchrotron x-ray microdiffraction, was introduced to examine the electric-field-induced structural modulation of the epitaxially grown pseudotetragonal BiFeO3 thin film. To evaluate the d spacing (d001) from the measured intensity contour in the 2θ-χ space, the peak position in each diffraction profile was determined by applying two-dimensional Lorentzian fitting. By tracing the change of d spacing as a function of the applied electric field and by examining the Landau free energy function for P4mm symmetry, the authors were able to estimate the two important parameters that characterize the field-induced structural modulation. The estimated linear piezoelectric coefficient (d33) at zero-field limit is 15pm /V, and the effective nonlinear electrostrictive coefficient (Qeff) is as low as ˜8.0×10-3m4/C2.
Antioxidant chalcone glycosides and flavanones from Maclura (Chlorophora) tinctoria.
Cioffi, Giuseppina; Morales Escobar, Luis; Braca, Alessandra; De Tommasi, Nunziatina
2003-08-01
Four chalcone glycosides (1-4), including three new natural products, and three flavanones (5-7) were isolated from the methanol extract of stem bark of Maclura tinctoria. The new compounds have been characterized as 4'-O-beta-D-(2' '-p-coumaroyl)glucopyranosyl-4,2',3'-trihydroxychalcone (1), 4'-O-beta-D-(2' '-p-coumaroyl-6' '-acetyl)glucopyranosyl-4,2',3'-trihydroxychalcone (2), and 3'-(3-methyl-2-butenyl)-4'-O-beta-D-glucopyranosyl-4,2'-dihydroxychalcone (3); the known derivatives were elucidated as 4'-O-beta-D-(2' '-acetyl-6' '-cinnamoyl)glucopyranosyl-4,2',3'-trihydroxychalcone (4), eriodictyol 7-O-beta-D-glucopyranoside (5), naringenin (6), and naringenin 4'-O-beta-D-glucopyranoside (7). Their structures were determined by 1D and 2D NMR and ESIMS. The antioxidant activity of all the isolated compounds was determined by measuring free-radical-scavenging effects using two different assays, namely, the Trolox Equivalent Antioxidant Capacity (TEAC) assay and the coupled oxidation of beta-carotene and linoleic acid (autoxidation assay). The results showed that compound 3 was the most active in both antioxidant assays.
Comparative Protein Structure Modeling Using MODELLER.
Webb, Benjamin; Sali, Andrej
2014-09-08
Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Copyright © 2014 John Wiley & Sons, Inc.
3D engineered fiberboard : finite element analysis of a new building product
John F. Hunt
2004-01-01
This paper presents finite element analyses that are being used to analyze and estimate the structural performance of a new product called 3D engineered fiberboard in bending and flat-wise compression applications. A 3x3x2 split-plot experimental design was used to vary geometry configurations to determine their effect on performance properties. The models are based on...
Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.
Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti
2016-04-05
Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6% success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μM. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zero Launch Mass Three Dimensional Print Head
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.
2018-01-01
NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.
NASA Astrophysics Data System (ADS)
Urban, Rolf-Dieter; Jones, Harold
1991-03-01
The infrared spectrum of the manganese deuteride radical has been observed in its ground electronic state ( 7Σ) using a diode-laser spectrometer. The hyperfine structure of a number of infrared transitions in the bands ν=1←0, ν=2←1 and ν=3←2 were measured with a nominal accuracy of ±0.001 cm -1. In all cases, the complete structure was easily resolved. Dunham parameters, spin—rotation and spin—spin coupling parameters were determined from the MnD data. A simultaneous fit of these data with those determined previously for MnH was carried out to determine mass-independent parameters and mass-scaling coefficients.
3D toroidal physics: Testing the boundaries of symmetry breakinga)
NASA Astrophysics Data System (ADS)
Spong, Donald A.
2015-05-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.
Gerasimenko, I; Sheludko, Y; Stöckigt, J
2001-01-01
A new monoterpenoid indole alkaloid, 3-oxo-rhazinilam (1), was isolated from intergeneric somatic hybrid cell cultures of Rauvolfia serpentina and Rhazya stricta, and the structure was determined by detailed 1D and 2D NMR analysis. It was also proved that 3-oxo-rhazinilam (1) is a natural constituent of the hybrid cells.
Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.
Wang, Xiao-Ting; Zhu, Zhen-Yuan; Zhao, Liang; Sun, Hui-Qing; Meng, Meng; Zhang, Jin-Yu; Zhang, Yong-Min
2016-11-20
In the present study, the crude polysaccharide was extracted from Fagopyrum tartaricum and purified by Sephadex G-25 and G-75 column to produce a polysaccharide fraction termed TBP-II. Its average molecular weight was 26kDa. The structural characterization of TBP-II was investigated by gas chromatography, periodate oxidation-Smith degradation, Methylation and NMR. Congo red was applied to explore its advanced structures. The results revealed that chemical composition and structural characteristic of TBP-II was mainly consisted of galactose, arabinose, xylose and glucose with a molar ratio of 0.7:1:6.3:74.2. The backbone of TBP-II was composed of (1→4)-linked α-d-glucopyranosyl (Glcp), while the branches comprised of (1→3)-linked α-d-glucopyranosyl (Glcp), (1→6)-linked α-d-galactopyranosyl (Galp) and (1→2,4)-linked α-d-rhamnopyranosyl (Rhap). The structure of TBP-II was 1,3 and 1,6-branched-galactorhamnoglucan that had a linear backbone of (1→4)-linked α-d-glucopyranose (Glcp). Using Congo red assay showed that it was absent of triple helix structure. The α-d-glucosidase inhibitory activity of TBP-II was determined using acarbose as positive control. The result showed that the inhibition rate depended on the concentration of polysaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, Jackson; Lee, Jesi; Halavaty, Andrei S.
L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), fromBacillus anthraciswas determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs.more » However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.« less
3D toroidal physics: testing the boundaries of symmetry breaking
NASA Astrophysics Data System (ADS)
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and under the US DOE SciDAC GSEP Center.
NASA Astrophysics Data System (ADS)
González-Montiel, Simplicio; Valdez-Calderón, Alejandro; Vásquez-Pérez, J. Manuel; Torres-Valencia, J. Martín; Martínez-Otero, Diego; López, Jorge A.; Cruz-Borbolla, Julián
2017-10-01
A new series of chrysin derivatives containing the di-(2-picolyl)amine (2a-d) moiety have been designed, synthesized, and treated with PdCl2·2CH3CN allowing the preparation of new cationic Palladium(II) complexes (3a-d). Solution-phase studies by 1H NMR spectroscopy of 3a-d revealed that the protons of the methylene groups of the di(2-picolyl)amine fragment are diasterotopic. GIAO/DFT studies were performed to predict the molecular structures of 3a-d by comparing the experimental and theoretical 1H-NMR chemical shifts. The molecular structure of 3c was determined by X-ray crystallographic analysis revealing that di-(2-picolyl)amine fragment is coordinated to the palladium center in a κ3-N,N,N-tridentate fashion in an overall square-planar geometry completed with a chloride atom.
Cescutti, Paola; Cuzzi, Bruno; Herasimenka, Yury; Rizzo, Roberto
2013-04-15
Burkholderia vietnamiensis belongs to the Burkholderia cepacia complex and is an opportunistic pathogen for cystic fibrosis patients. As many other Burkholderia species, it has a mucoide phenotype, producing abundant exopolysaccharide. In general, polysaccharides contribute to bacterial survival in a hostile environment, are recognised as virulence factors and as important components in biofilm formation. The primary structure of the exopolysaccharide produced by B. vietnamiensis LMG 10929 was determined mainly by use of 1D and 2D NMR spectroscopy and ESI mass spectrometry. The polymer consists of the trisaccharidic backbone 3)-β-D-Glcp-(1→4)-α-D-Glcp-(1→3)-α-L-Fucp-(1→ with the side chain α-D-Glcp-(1→4)-α-D-GlcAp-(1→3)-α-L-Fucp-(1→ linked to C-3 of the α-D-Glcp residue. The polysaccharide also bears acetyl substituents on about 20% of its repeating units and on at least two different positions. The presence of fucose residues is a novel structural feature among the exopolysaccharides produced by species of the B. cepacia complex. Copyright © 2013 Elsevier Ltd. All rights reserved.
Structural and Kinetic Properties of Graphite Intercalation Compounds
1982-08-21
the case of FeCI3 , and Dowel2 for Br2, HNO3 and PdC 2 have investigated rates of intercalation to determine diffusion coefficients. Bardhan et al.18...Chim. 21, 1312 (1954). 17. T. Sasa, Y. Takahashi and T. Mukaibo, Carbon 9, 407 (1971). 18. K. K. Bardhan and D. D. L. Chung, Carbon 18, 313 (1980). 19...S. H. Anderson and D. D. L. Chung, Ext. Abst. Program -- Bienn. Conf. Carbon 15, 361 (1981). 20. K. K. Bardhan and D. D. L. Chung, Carbon 18, 303
NASA Astrophysics Data System (ADS)
Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.
2016-06-01
The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.
Viana, Adriano G; Noseda, Miguel D; Gonçalves, Alan G; Duarte, Maria Eugênia R; Yokoya, Nair; Matulewicz, Maria C; Cerezo, Alberto S
2011-06-01
Xylans from five seaweeds belonging to the order Nemaliales (Galaxaura marginata, Galaxaura obtusata, Tricleocarpacylindrica, Tricleocarpa fragilis, and Scinaia halliae) and one of the order Palmariales (Palmaria palmata) collected on the Brazilian coasts were extracted with hot water and purified from acid xylomannans and/or xylogalactans through Cetavlon precipitation of the acid polysaccharides. The β-D-(1→4), β-D-(1→3) 'mixed linkage' structures were determined using methylation analysis and 1D and 2D NMR spectroscopy. The presence of large sequences of β-(1→4)-linked units suggests transient aggregates of ribbon- or helical-ordered structures that would explain the low optical rotations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Structural studies of a polysaccharide from Vibrio parahaemolyticus strain AN-16000.
Fontana, Carolina; Zaccheus, Mona; Weintraub, Andrej; Ansaruzzaman, Mohammad; Widmalm, Göran
2016-09-02
The structure of a polysaccharide from Vibrio parahaemolyticus strain AN-16000 has been investigated. The sugar and absolute configuration analysis revealed d-Glc, d-GalN, d-QuiN and l-FucN as major components. The PS was subjected to dephosphorylation with aqueous 40% HF to obtain an oligosaccharide that was analyzed by (1)H and (13)C NMR spectroscopy. The HR-MS spectrum of the oligosaccharide revealed a pentasaccharide composed of two Glc residues, one QuiNAc and one GalNAc, one FucNAc, as well as a glycerol moiety. The structure of the PS was determined using (1)H, (13)C, (15)N and (31)P NMR spectroscopy; inter-residue correlations were identified by (1)H,(13)C-heteronuclear multiple-bond correlation, (1)H,(1)H-NOESY and (1)H,(31)P-hetero-TOCSY experiments. The PS backbone has the following teichoic acid-like structure: →3)-d-Gro-(1-P-6)-β-d-Glcp-(1→4)-α-l-FucpNAc-(1→3)-β-d-QuipNAc-(1→ with a side-chain consisting of α-d-Glcp-(1→6)-α-d-GalpNAc-(1→ linked to the O3 position of the FucNAc residue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reinvestigation of structure of porritoxin, a phytotoxin of Alternaria porri.
Horiuchi, Masayuki; Maoka, Takashi; Iwase, Noriyasu; Ohnishi, Keiichiro
2002-08-01
The structure of porritoxin, a phytotoxin of Alternaria porri, was reinvestigated by detailed 2D NMR analysis including (1)H-(13)C and (1)H-(15)N HMBC experiments. The structure of porritoxin was determined to be 2-(2'-hydroxyethyl)-4-methoxy-5-methyl-6-(3' '-methyl-2' '-butenyloxy)-2,3-dihydro-1H-isoindol-1-one (1). Thus our previous proposed structure, 8-(3',3'-dimethylallyloxy)-10-methoxy-9-methyl-1H-3,4-dihydro-2,5-benzoxazocin-6(5H)-one (2), is incorrect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yazhen; Musser, Sarah K.; Saleh, Sam
1,N{sup 2}-Propanodeoxyguanosine (PdG) is a stable structural analogue for the 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-?]purin-10(3H)-one (M{sub 1}dG) adduct derived from exposure of DNA to base propenals and to malondialdehyde. The structures of ternary polymerase-DNA-dNTP complexes for three template-primer DNA sequences were determined, with the Y-family Sulfolobus solfataricus DNA polymerase IV (Dpo4), at resolutions between 2.4 and 2.7 {angstrom}. Three template 18-mer-primer 13-mer sequences, 5'-d(TCACXAAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTT)-3' (template I), 5'-d(TCACXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template II), and 5'-d(TCATXGAATCCTTCCCCC)-3'{center_dot}5'-d(GGGGGAAGGATTC)-3' (template III), where X is PdG, were analyzed. With templates I and II, diffracting ternary complexes including dGTP were obtained. The dGTP did not pair with PdG, but instead with the 5'-neighboring templatemore » dC, utilizing Watson-Crick geometry. Replication bypass experiments with the template-primer 5?-TCACXAAATCCTTACGAGCATCGCCCCC-3'{center_dot}5'-GGGGGCGATGCTCGTAAGGATTT-3', where X is PdG, which includes PdG in the 5'-CXA-3' template sequence as in template I, showed that the Dpo4 polymerase inserted dGTP and dATP when challenged by the PdG adduct. For template III, in which the template sequence was 5'-TXG-3', a diffracting ternary complex including dATP was obtained. The dATP did not pair with PdG, but instead with the 5'-neighboring T, utilizing Watson-Crick geometry. Thus, all three ternary complexes were of the 'type II' structure described for ternary complexes with native DNA [Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2001) Cell 107, 91--102]. The PdG adduct remained in the anti conformation about the glycosyl bond in each of these threee ternary complexes. These results provide insight into how -1 frameshift mutations might be generated for the PdG adduct, a structural model for the exocylic M{sub 1}dG adduct formed by malondialdehyde.« less
Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco
2017-08-01
More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.
Optical 3D printing: bridging the gaps in the mesoscale
NASA Astrophysics Data System (ADS)
Jonušauskas, Linas; Juodkazis, Saulius; Malinauskas, Mangirdas
2018-05-01
Over the last decade, optical 3D printing has proved itself to be a flexible and capable approach in fabricating an increasing variety of functional structures. One of the main reasons why this technology has become so prominent is the fact that it allows the creation of objects in the mesoscale, where structure dimensions range from nanometers to centimeters. At this scale, the size and spatial configuration of produced single features start to influence the characteristics of the whole object, enabling an array of new, exotic and otherwise unachievable properties and structures (i.e. metamaterials). Here, we present the advantages of this technology in creating mesoscale structures in comparison to subtractive manufacturing techniques and to other branches of 3D printing. Differences between stereolithography, sintering, laser-induced forward transfer and femtosecond laser 3D multi-photon polymerization are highlighted. Attention is given to the discussion of applicable light sources, as well as to an ongoing analysis of the light–matter interaction mechanisms, as they determine the processable materials, required technological steps and the fidelity of feature sizes in fabricated patterns and workpieces. Optical 3D printing-enabled functional structures in micromechanics, medicine, microfluidics, micro-optics and photonics are discussed, with an emphasis on how this particular technology benefits advances in those fields. 4D printing, achieved by varying both the architecture and spatial material composition of the 3D structure, feature-size reduction via stimulated emission depletion-inspired nanolithography or thermal post-treatment, as well as plasmonic nanoparticle-polymer nanocomposites, are presented among examples of the newest trends in the development of this technology. Finally, an outlook is given, examining further scientific frontiers in the field as well as possibilities and challenges in transferring laboratory-level know-how to industrial-scale production.
2016-01-01
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [3H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [3H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy. PMID:27035329
NASA Astrophysics Data System (ADS)
Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang
2015-11-01
Hydrothermal reactions of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn2(μ2-OH)(μ4-O)0.5(L)]·0.5H2O (1), [Zn(L)(2,2‧-bipy)(H2O)] (2), [Zn3(L)3(phen)2]·H2O (3) and [Zn2(L)2(4,4‧-bipy)] (4) (2,2‧-bipy=2,2‧-bipyridine; 4,4‧-bipy=4,4‧-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn4(μ4-O)(μ2-OH)2]4+ clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}2{34·44·52·66·710·82}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {44·62} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {44·62} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1-4 have been investigated.
Electron coherent diffraction tomography of a nanocrystal
NASA Astrophysics Data System (ADS)
Dronyak, Roman; Liang, Keng S.; Tsai, Jin-Sheng; Stetsko, Yuri P.; Lee, Ting-Kuo; Chen, Fu-Rong
2010-05-01
Coherent diffractive imaging (CDI) with electron or x-ray sources is a promising technique for investigating the structure of nanoparticles down to the atomic scale. In electron CDI, a two-dimensional reconstruction is demonstrated using highly coherent illumination from a field-emission gun as a source of electrons. In a three-dimensional (3D) electron CDI, we experimentally determine the morphology of a single MgO nanocrystal using the Bragg diffraction geometry. An iterative algorithm is applied to invert the 3D diffraction pattern about a (200) reflection of the nanoparticle measured at an angular range of 1.8°. The results reveal a 3D image of the sample at ˜8 nm resolution, and agree with a simulation. Our work demonstrates an alternative approach to obtain the 3D structure of nanocrystals with an electron microscope.
NASA Astrophysics Data System (ADS)
Bräuer-Burchardt, Christian; Ölsner, Sandy; Kühmstedt, Peter; Notni, Gunther
2017-06-01
In this paper a new evaluation strategy for optical 3D scanners based on structured light projection is introduced. It can be used for the characterization of the expected measurement accuracy. Compared to the procedure proposed in the VDI/VDE guidelines for optical 3D measurement systems based on area scanning it requires less effort and provides more impartiality. The methodology is suitable for the evaluation of sets of calibration parameters, which mainly determine the quality of the measurement result. It was applied to several calibrations of a mobile stereo camera based optical 3D scanner. The performed calibrations followed different strategies regarding calibration bodies and arrangement of the observed scene. The results obtained by the different calibration strategies are discussed and suggestions concerning future work on this area are given.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
NASA Astrophysics Data System (ADS)
Zhang, Mei-Na; Fan, Ting-Ting; Wang, Qiu-Shuang; Han, Hong-Liang; Li, Xia
2018-02-01
Three metal-organic frameworks (MOFs), [M(dpdc)(btb)0.5]n (M = Zn 1, Cd 2; dpdc = 3,3‧-diphenyldicarboxylate and btb = 1,4-bis(1,2,4-triazol-1-yl)butane) and [Cu3(dpdc)3(btb)2]n (3) were prepared and structurally determined. 1 is a 2D structure with the topology of {33·47·54·6}, while 2 possesses a 3D framework with the {312·429·514} topology. Complex 3 displays a 3D framework with the topology of {315.435.55}2{36.48.512.6.7}. 1-2 exhibit intense blue luminescence and high stability in water, which make them highly promising candidates as sensors using in aqueous medium. Complex 1 is a potential bi-functional chemosensor for Fe3+ and Al3+ ions while 2 displays a selective sensing ability to Fe3+ ion. Quenching mechanism of Fe3+ on the luminescence of 1-2 is attributed to the charge transfer process LMCT. 1 and 2 have same compositions but have different structures, thermally stabilities and different luminescence sensing functions. The relationship between MOF structures and luminescence sensing toward metal ions are further discussed.
PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides.
Sarkar, Anita; Pérez, Serge
2012-11-14
Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s) and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s) (when applicable), experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI). It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available via the web-interface utilizing the search engine and can be accessed at http://polysac3db.cermav.cnrs.fr.
Atomic electron tomography: 3D structures without crystals
Miao, Jianwei; Ercius, Peter; Billinge, S. J. L.
2016-09-23
Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3Dmore » coordinates of individual atoms in materials without assuming crystallinity. In this work, we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.« less
Liu, Li; Guoa, Fujiang; Crain, Sheila; Quilliam, Michael A.; Wang, Xiaotang; Rein, Kathleen S.
2012-01-01
Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A. PMID:22608922
Sequence co-evolution gives 3D contacts and structures of protein complexes
Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S
2014-01-01
Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashchenko, A. V., E-mail: alpash@mail.ru; Pashchenko, V. P.; Prokopenko, V. K.
2017-01-15
The structure, the structure imperfection, and the magnetoresistance, magnetotransport, and microstructure properties of rare-earth perovskite La{sub 0.3}Ln{sub 0.3}Sr{sub 0.3}Mn{sub 1.1}O{sub 3–δ} manganites are studied by X-ray diffraction, thermogravimetry, electrical resistivity measurement, magnetic, {sup 55}Mn NMR, magnetoresistance measurement, and scanning electron microscopy. It is found that the structure imperfection increases, and the symmetry of a rhombohedrally distorted R3̅c perovskite structure changes into its pseudocubic type during isovalent substitution for Ln = La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, or Eu{sup 3+} when the ionic radius of an A cation decreases. Defect molar formulas are determined for a real perovskite structure,more » which contains anion and cation vacancies. The decrease in the temperatures of the metal–semiconductor (T{sub ms}) and ferromagnet–paramagnet (T{sub C}) phase transitions and the increase in electrical resistivity ρ and activation energy E{sub a} with increasing serial number of Ln are caused by an increase in the concentration of vacancy point defects, which weaken the double exchange 3d{sup 4}(Mn{sup 3+})–2p{sup 6}(O{sup 2–})–3d{sup 3}(Mn{sup 4+})–V{sup (a)}–3d{sup 4}(Mn{sup 3+}). The crystal structure of the compositions with Ln = La contains nanostructured planar clusters, which induce an anomalous magnetic hysteresis at T = 77 K. Broad and asymmetric {sup 55}Mn NMR spectra support the high-frequency electronic double exchange Mn{sup 3+}(3d{sup 4}) ↔ O{sup 2–}(2p{sup 6}) ↔ Mn{sup 4+}(3d{sup 3}) and indicate a heterogeneous surrounding of manganese by other ions and vacancies. A correlation is revealed between the tunneling magnetoresistance effect and the crystallite size. A composition–structure imperfection–property experimental phase diagram is plotted. This diagram supports the conclusion about a strong influence of structure imperfection on the formation of the magnetic, magnetotransport, and magnetoresistance properties of rare-earth perovskite manganites.« less
Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.
1994-01-01
The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597
Geoelectric Characterization of Thermal Water Aquifers Using 2.5D Inversion of VES Measurements
NASA Astrophysics Data System (ADS)
Gyulai, Á.; Szűcs, P.; Turai, E.; Baracza, M. K.; Fejes, Z.
2017-03-01
This paper presents a short theoretical summary of the series expansion-based 2.5D combined geoelectric weighted inversion (CGWI) method and highlights the advantageous way with which the number of unknowns can be decreased due to the simultaneous characteristic of this inversion. 2.5D CGWI is an approximate inversion method for the determination of 3D structures, which uses the joint 2D forward modeling of dip and strike direction data. In the inversion procedure, the Steiner's most frequent value method is applied to the automatic separation of dip and strike direction data and outliers. The workflow of inversion and its practical application are presented in the study. For conventional vertical electrical sounding (VES) measurements, this method can determine the parameters of complex structures more accurately than the single inversion method. Field data show that the 2.5D CGWI which was developed can determine the optimal location for drilling an exploratory thermal water prospecting well. The novelty of this research is that the measured VES data in dip and strike direction are jointly inverted by the 2.5D CGWI method.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2018-04-01
The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.
Lee, Jiyeon; Kim, Hye-Jin; Roh, Jooho; Seo, Youngsil; Kim, Minjae; Jun, Hye-Ryeong; Pham, Chuong D.; Kwon, Myung-Hee
2013-01-01
Many murine monoclonal anti-DNA antibodies (Abs) derived from mice models for systemic lupus erythematosus have additional cell-penetration and/or nucleic acid-hydrolysis properties. Here, we examined the influence of deactivating each complementarity-determining region (CDR) within a multifunctional anti-nucleic acid antibody (Ab) that possesses these activities, the catalytic 3D8 single chain variable fragment (scFv). CDR-deactivated 3D8 scFv variants were generated by replacing all of the amino acids within each CDR with Gly/Ser residues. The structure of 3D8 scFv accommodated single complete CDR deactivations. Different functional activities of 3D8 scFv were affected differently depending on which CDR was deactivated. The only exception was CDR1, located within the light chain (LCDR1); deactivation of LCDR1 abolished all of the functional activities of 3D8 scFv. A hybrid Ab, HW6/3D8L1, in which the LCDR1 from an unrelated Ab (HW6) was replaced with the LCDR1 from 3D8, acquired all activities associated with the 3D8 scFv. These results suggest that the activity of a multifunctional 3D8 scFv Ab can be modulated by single complete CDR deactivation and that the LCDR1 plays a crucial role in maintaining Ab properties. This study presents a new approach for determining the role of individual CDRs in multifunctional Abs with important implications for the future of Ab engineering. PMID:24155236
Navigating 3D electron microscopy maps with EM-SURFER.
Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke
2015-05-30
The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.
Maskey, Rajendra P; Li, Fuchao; Qin, Song; Fiebig, Heinz H; Laatsch, Hartmut
2003-07-01
In our screening of marine actinomycetes for bioactive principles, three novel antibiotics designated as chandrananimycin A (3c), B (3d) and C (4) were isolated from the culture broth of a marine Actinomadura sp. isolate M045. The structures of the new antibiotics were determined by detailed interpretation of mass, 1D and 2D NMR spectra.
ModeRNA server: an online tool for modeling RNA 3D structures.
Rother, Magdalena; Milanowska, Kaja; Puton, Tomasz; Jeleniewicz, Jaroslaw; Rother, Kristian; Bujnicki, Janusz M
2011-09-01
The diverse functional roles of non-coding RNA molecules are determined by their underlying structure. ModeRNA server is an online tool for RNA 3D structure modeling by the comparative approach, based on a template RNA structure and a user-defined target-template sequence alignment. It offers an option to search for potential templates, given the target sequence. The server also provides tools for analyzing, editing and formatting of RNA structure files. It facilitates the use of the ModeRNA software and offers new options in comparison to the standalone program. ModeRNA server was implemented using the Python language and the Django web framework. It is freely available at http://iimcb.genesilico.pl/modernaserver. iamb@genesilico.pl.
Hydrophobic core malleability of a de novo designed three-helix bundle protein.
Walsh, S T; Sukharev, V I; Betz, S F; Vekshin, N L; DeGrado, W F
2001-01-12
De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. Copyright 2001 Academic Press.
Lead discovery and in silico 3D structure modeling of tumorigenic FAM72A (p17).
Pramanik, Subrata; Kutzner, Arne; Heese, Klaus
2015-01-01
FAM72A (p17) is a novel neuronal protein that has been linked to tumorigenic effects in non-neuronal tissue. Using state of the art in silico physicochemical analyses (e.g., I-TASSER, RaptorX, and Modeller), we determined the three-dimensional (3D) protein structure of FAM72A and further identified potential ligand-protein interactions. Our data indicate a Zn(2+)/Fe(3+)-containing 3D protein structure, based on a 3GA3_A model template, which potentially interacts with the organic molecule RSM ((2s)-2-(acetylamino)-N-methyl-4-[(R)-methylsulfinyl] butanamide). The discovery of RSM may serve as potential lead for further anti-FAM72A drug screening tests in the pharmaceutical industry because interference with FAM72A's activities via RSM-related molecules might be a novel option to influence the tumor suppressor protein p53 signaling pathways for the treatment of various types of cancers.
Exciton management in organic photovoltaic multidonor energy cascades.
Griffith, Olga L; Forrest, Stephen R
2014-05-14
Multilayer donor regions in organic photovoltaics show improved power conversion efficiency when arranged in decreasing exciton energy order from the anode to the acceptor interface. These so-called "energy cascades" drive exciton transfer from the anode to the dissociating interface while reducing exciton quenching and allowing improved overlap with the solar spectrum. Here we investigate the relative importance of exciton transfer and blocking in a donor cascade employing diphenyltetracene (D1), rubrene (D2), and tetraphenyldibenzoperiflanthene (D3) whose optical gaps monotonically decrease from D1 to D3. In this structure, D1 blocks excitons from quenching at the anode, D2 accepts transfer of excitons from D1 and blocks excitons at the interface between D2 and D3, and D3 contributes the most to the photocurrent due to its strong absorption at visible wavelengths, while also determining the open circuit voltage. We observe singlet exciton Förster transfer from D1 to D2 to D3 consistent with cascade operation. The power conversion efficiency of the optimized cascade OPV with a C60 acceptor layer is 7.1 ± 0.4%, which is significantly higher than bilayer devices made with only the individual donors. We develop a quantitative model to identify the dominant exciton processes that govern the photocurrent generation in multilayer organic structures.
Leopold, David A.; Humphreys, Glyn W.; Welchman, Andrew E.
2016-01-01
The posterior parietal cortex (PPC) is understood to be active when observers perceive three-dimensional (3D) structure. However, it is not clear how central this activity is in the construction of 3D spatial representations. Here, we examine whether PPC is essential for two aspects of visual depth perception by testing patients with lesions affecting this region. First, we measured subjects' ability to discriminate depth structure in various 3D surfaces and objects using binocular disparity. Patients with lesions to right PPC (N = 3) exhibited marked perceptual deficits on these tasks, whereas those with left hemisphere lesions (N = 2) were able to reliably discriminate depth as accurately as control subjects. Second, we presented an ambiguous 3D stimulus defined by structure from motion to determine whether PPC lesions influence the rate of bistable perceptual alternations. Patients' percept durations for the 3D stimulus were generally within a normal range, although the two patients with bilateral PPC lesions showed the fastest perceptual alternation rates in our sample. Intermittent stimulus presentation reduced the reversal rate similarly across subjects. Together, the results suggest that PPC plays a causal role in both inferring and maintaining the perception of 3D structure with stereopsis supported primarily by the right hemisphere, but do not lend support to the view that PPC is a critical contributor to bistable perceptual alternations. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269606
LeBoff, Meryl S; Yue, Amy Y; Copeland, Trisha; Cook, Nancy R; Buring, Julie E; Manson, JoAnn E
2015-03-01
Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through a detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. Copyright © 2015 Elsevier Inc. All rights reserved.
LeBoff, Meryl S.; Yue, Amy Y.; Copeland, Trisha; Cook, Nancy R.; Buring, Julie E.; Manson, JoAnn E.
2015-01-01
Rationale Although vitamin D is widely used to promote skeletal health, definitive data on benefits and risks of supplemental vitamin D alone on bone are lacking. Results from large, randomized controlled trials in the general population are sparse. Data on the effects of supplemental omega-3 fatty acids (FAs) on bone are also limited. Design The VITamin D and OmegA-3 TriaL (VITAL) is a double-blind, placebo-controlled trial assessing the role of vitamin D3 (2000 IU/d) and omega-3 FA (1 g/d) supplements in reducing risks of cancer and cardiovascular disease among U.S. men aged ≥50 and women aged ≥55. To comprehensively test effects of supplemental vitamin D and/or omega-3 FAs on skeletal health, the VITAL: Effects on Fractures ancillary study is determining the effects of these supplements on incident fractures among 25,875 participants enrolled in the parent trial. Study investigators adjudicate fractures through detailed review of medical records and radiological images (hip and femur). In a complementary ancillary, VITAL: Effects on Structure and Architecture is determining the effects of supplemental vitamin D and/or omega-3 FAs on bone with detailed phenotyping during in-person visits. Comprehensive assessments of bone density, turnover, structure/architecture, body composition, and physical performance are being performed at baseline and 2 years post-randomization. Conclusion Results from these studies will clarify the relationship between supplemental vitamin D and/or omega-3 FAs on bone health outcomes, and inform clinical care and public health guidelines on the use of supplemental vitamin D for the primary prevention of fractures in women and men. PMID:25623291
Diattenuation of brain tissue and its impact on 3D polarized light imaging
Menzel, Miriam; Reckfort, Julia; Weigand, Daniel; Köse, Hasan; Amunts, Katrin; Axer, Markus
2017-01-01
3D-polarized light imaging (3D-PLI) reconstructs nerve fibers in histological brain sections by measuring their birefringence. This study investigates another effect caused by the optical anisotropy of brain tissue – diattenuation. Based on numerical and experimental studies and a complete analytical description of the optical system, the diattenuation was determined to be below 4 % in rat brain tissue. It was demonstrated that the diattenuation effect has negligible impact on the fiber orientations derived by 3D-PLI. The diattenuation signal, however, was found to highlight different anatomical structures that cannot be distinguished with current imaging techniques, which makes Diattenuation Imaging a promising extension to 3D-PLI. PMID:28717561
Zhang, Gaihua; Su, Zhen
2012-01-01
Work on protein structure prediction is very useful in biological research. To evaluate their accuracy, experimental protein structures or their derived data are used as the 'gold standard'. However, as proteins are dynamic molecular machines with structural flexibility such a standard may be unreliable. To investigate the influence of the structure flexibility, we analysed 3,652 protein structures of 137 unique sequences from 24 protein families. The results showed that (1) the three-dimensional (3D) protein structures were not rigid: the root-mean-square deviation (RMSD) of the backbone Cα of structures with identical sequences was relatively large, with the average of the maximum RMSD from each of the 137 sequences being 1.06 Å; (2) the derived data of the 3D structure was not constant, e.g. the highest ratio of the secondary structure wobble site was 60.69%, with the sequence alignments from structural comparisons of two proteins in the same family sometimes being completely different. Proteins may have several stable conformations and the data derived from resolved structures as a 'gold standard' should be optimized before being utilized as criteria to evaluate the prediction methods, e.g. sequence alignment from structural comparison. Helix/β-sheet transition exists in normal free proteins. The coil ratio of the 3D structure could affect its resolution as determined by X-ray crystallography.
NASA Astrophysics Data System (ADS)
Wawerzinek, B.; Ritter, J. R. R.; Roy, C.
2013-08-01
We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.
X-ray spectra and electronic structure of the Ca3Ga2Ge3О12 compound
NASA Astrophysics Data System (ADS)
Shcherba, I. D.; Kostyk, L. V.; Noga, H.; Bekenov, L. V.; Uskokovich, D.; Jatsyk, B. M.
2017-09-01
The band structure of Ca3Ga2Ge3О12 with the garnet structure has been determined for the first time by X-ray emission and photoelectron spectroscopy. It has been established that the bottom of the valence band is formed by Ge d states, which are not dominant in the chemical bonding. Strong hybridization of oxygen 2s states with 4p states of Ga and Ge revealed by the presence of an extra structure in the X-ray emission spectra has been found. The middle of the valence band has been demonstrated to be occupied by d states of Ga, while Ga and Ge 4рstates with a considerable admixture of oxygen 2p states form the top of the valence band.
Bao, Yunhe; White, Cindy L; Luger, Karolin
2006-08-25
Poly(dA.dT) DNA sequence elements are thought to promote transcription by either excluding nucleosomes or by altering their structural or dynamic properties. Here, the stability and structure of a defined nucleosome core particle containing a 16 base-pair poly(dA.dT) element (A16 NCP) was investigated. The A16 NCP requires a significantly higher temperature for histone octamer sliding in vitro compared to comparable nucleosomes that do not contain a poly(dA.dT) element. Fluorescence resonance energy transfer showed that the interactions between the nucleosomal DNA ends and the histone octamer were destabilized in A16 NCP. The crystal structure of A16 NCP was determined to a resolution of 3.2 A. The overall structure was maintained except for local deviations in DNA conformation. These results are consistent with previous in vivo and in vitro observations that poly(dA.dT) elements cause only modest changes in DNA accessibility and modest increases in steady-state transcription levels.
NASA Astrophysics Data System (ADS)
Krokhotin, Andrey; Dokholyan, Nikolay V.
2017-07-01
Most proteins fold into unique three-dimensional (3D) structures that determine their biological functions, such as catalytic activity or macromolecular binding. Misfolded proteins can pose a threat through aberrant interactions with other proteins leading to a number of diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis [1,2]. What does determine 3D structure of proteins? The first clue to this question came more than fifty years ago when Anfinsen demonstrated that unfolded proteins can spontaneously fold to their native 3D structures [3,4]. Anfinsen's experiments lead to the conclusion that proteins fold to unique native structure corresponding to the stable and kinetically accessible free energy minimum, and protein native structure is solely determined by its amino acid sequence. The question of how exactly proteins find their free energy minimum proved to be a difficult problem. One of the puzzles, initially pointed out by Levinthal, was an inconsistency between observed protein folding times and theoretical estimates. A self-avoiding polymer model of a globular protein of 100-residues length on a cubic lattice can sample at least 1047 states. Based on the assumption that conformational sampling occurs at the highest vibrational mode of proteins (∼picoseconds), predicted folding time by searching among all the possible conformations leads to ∼1027 years (much larger than the age of the universe) [5]. In contrast, observed protein folding time range from microseconds to minutes. Due to tremendous theoretical progress in protein folding field that has been achieved in past decades, the source of this inconsistency is currently understood that is thoroughly described in the review by Finkelstein et al. [6].
Prediction of the bottomonium D-wave spectrum from full lattice QCD.
Daldrop, J O; Davies, C T H; Dowdall, R J
2012-03-09
We calculate the full spectrum of D-wave states in the Υ system in lattice QCD for the first time, by using an improved version of nonrelativistic QCD on coarse and fine "second-generation" gluon field configurations from the MILC Collaboration that include the effect of up, down, strange, and charm quarks in the sea. By taking the 2S-1S splitting to set the lattice spacing, we determine the (3)D2-1S splitting to 2.3% and find agreement with experiment. Our prediction of the fine structure relative to the (3)D2 gives the (3)D3 at 10.181(5) GeV and the (3)D1 at 10.147(6) GeV. We also discuss the overlap of (3)D1 operators with (3)S1 states.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
Stiffness analysis of glued connection of the timber-concrete structure
NASA Astrophysics Data System (ADS)
Daňková, Jana; Mec, Pavel; Majstríková, Tereza
2016-01-01
This paper presents results of experimental and mathematical analysis of stiffness characteristics of a composite timber-concrete structure. The composite timberconcrete structure presented herein is non-typical compared to similar types of building structures. The interaction between the timber and concrete part of the composite cross-section is not based on metal connecting elements, but it is ensured by a glued-in perforated mesh made of plywood. The paper presents results of experimental and mathematical analysis for material alternatives of the solution of the glued joint. The slip modulus values were determined experimentally. Data obtained from the experiment evaluated by means of regression analysis. Test results were also used as input data for the compilation of a 3D model of a composite structure by means of the 3D finite element model. On the basis of result evaluation, it can be stated that the stress-deformation behaviour at shear loading of this specific timber-concrete composite structure can be affected by the type of glue used. Parameters of the 3D model of both alternative of the structure represent well the behaviour of the composite structure and the model can be used for predicting design parameters of a building structure.
Vahedi-Faridi, Ardeschir; Jastrzebska, Beata; Palczewski, Krzysztof; Engel, Andreas
2013-01-01
Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin. PMID:23267047
Generation of 3-D surface maps in waste storage silos using a structured light source
NASA Technical Reports Server (NTRS)
Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.
1992-01-01
Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.
Flavonoids and terpenoids from Helichrysum forskahlii.
Al-Rehaily, Adnan J; Albishi, Omar A; El-Olemy, Mahmoud M; Mossa, Jaber S
2008-06-01
Three new flavonoids, namely helichrysone A (1), helichrysone B (2) and helichrysone C (3) were isolated from the aerial parts of Helichrysum forskahlii, together with 10 known flavonoids, three triterpenes, and one sesquiterpene. The structures of the new flavonoids 1-3 were established by 1D and 2D NMR spectral data. In addition, the antimicrobial activities of the isolated compounds were determined.
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J
2014-12-10
Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .
Korotkov, Konstantin V.; Pardon, Els
2009-01-01
Summary Secretins are among the largest bacterial outer membrane proteins known. Here we report the crystal structure of the periplasmic N-terminal domain of GspD (peri-GspD) from the type 2 secretion system (T2SS) secretin in complex with a “nanobody”, the VHH domain of a “heavy-chain” camelid antibody. Two different crystal forms contained the same compact peri-GspD:nanobody heterotetramer. The nanobody contacts peri-GspD mainly via CDR3 and framework residues. The peri-GspD structure reveals three subdomains with the second and third subdomains exhibiting the KH-fold which also occurs in ring-forming proteins of the type 3 secretion system. The first subdomain of GspD is related to domains in phage tail proteins and outer membrane TonB-dependent receptors. A dodecameric peri-GspD model is proposed in which a solvent-accessible β-strand of the first subdomain interacts with secreted proteins and/or T2SS partner proteins by β-strand complementation. PMID:19217396
Zhang, Peijun; Meng, Xin; Zhao, Gongpu
2013-01-01
Helical structures are important in many different life forms and are well-suited for structural studies by cryo-EM. A unique feature of helical objects is that a single projection image contains all the views needed to perform a three-dimensional (3D) crystallographic reconstruction. Here, we use HIV-1 capsid assemblies to illustrate the detailed approaches to obtain 3D density maps from helical objects. Mature HIV-1 particles contain a conical- or tubular-shaped capsid that encloses the viral RNA genome and performs essential functions in the virus life cycle. The capsid is composed of capsid protein (CA) oligomers which are helically arranged on the surface. The N-terminal domain (NTD) of CA is connected to its C-terminal domain (CTD) through a flexible hinge. Structural analysis of two- and three-dimensional crystals provided molecular models of the capsid protein (CA) and its oligomer forms. We determined the 3D density map of helically assembled HIV-1 CA hexamers at 16 Å resolution using an iterative helical real-space reconstruction method. Docking of atomic models of CA-NTD and CA-CTD dimer into the electron density map indicated that the CTD dimer interface is retained in the assembled CA. Furthermore, molecular docking revealed an additional, novel CTD trimer interface. PMID:23132072
Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium
NASA Astrophysics Data System (ADS)
Adhikari, Rajendra; Fu, Huaxiang
2013-07-01
Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.
Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M
2016-01-01
RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled software package at http://genesilico.pl/software/stand-alone/simrna and as a web server at http://genesilico.pl/SimRNAweb . For model optimization we use QRNAS, available at http://genesilico.pl/qrnas .
Developing a Near Real-time System for Earthquake Slip Distribution Inversion
NASA Astrophysics Data System (ADS)
Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen
2016-04-01
Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.
Rates of E1, E2, M1, and M2 transitions in Ni II
NASA Astrophysics Data System (ADS)
Cassidy, C. M.; Hibbert, A.; Ramsbottom, C. A.
2016-03-01
Aims: We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation. Methods: The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation. Results: Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive. Conclusions: We believe that the present transition data are the best currently available. Full Table 4 and Tables 5-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A107
Aortic root segmentation in 4D transesophageal echocardiography
NASA Astrophysics Data System (ADS)
Chechani, Shubham; Suresh, Rahul; Patwardhan, Kedar A.
2018-02-01
The Aortic Valve (AV) is an important anatomical structure which lies on the left side of the human heart. The AV regulates the flow of oxygenated blood from the Left Ventricle (LV) to the rest of the body through aorta. Pathologies associated with the AV manifest themselves in structural and functional abnormalities of the valve. Clinical management of pathologies often requires repair, reconstruction or even replacement of the valve through surgical intervention. Assessment of these pathologies as well as determination of specific intervention procedure requires quantitative evaluation of the valvular anatomy. 4D (3D + t) Transesophageal Echocardiography (TEE) is a widely used imaging technique that clinicians use for quantitative assessment of cardiac structures. However, manual quantification of 3D structures is complex, time consuming and suffers from inter-observer variability. Towards this goal, we present a semiautomated approach for segmentation of the aortic root (AR) structure. Our approach requires user-initialized landmarks in two reference frames to provide AR segmentation for full cardiac cycle. We use `coarse-to-fine' B-spline Explicit Active Surface (BEAS) for AR segmentation and Masked Normalized Cross Correlation (NCC) method for AR tracking. Our method results in approximately 0.51 mm average localization error in comparison with ground truth annotation performed by clinical experts on 10 real patient cases (139 3D volumes).
Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ping; Mueller, Steffen; Morais, Marc C.
2010-11-02
When poliovirus (PV) recognizes its receptor, CD155, the virus changes from a 160S to a 135S particle before releasing its genome into the cytoplasm. CD155 is a transmembrane protein with 3 Ig-like extracellular domains, D1-D3, where D1 is recognized by the virus. The crystal structure of D1D2 has been determined to 3.5-{angstrom} resolution and fitted into {approx}8.5-{angstrom} resolution cryoelectron microscopy reconstructions of the virus-receptor complexes for the 3 PV serotypes. These structures show that, compared with human rhinoviruses, the virus-receptor interactions for PVs have a greater dependence on hydrophobic interactions, as might be required for a virus that can inhabitmore » environments of different pH. The pocket factor was shown to remain in the virus during the first recognition stage. The present structures, when combined with earlier mutational investigations, show that in the subsequent entry stage the receptor moves further into the canyon when at a physiological temperature, thereby expelling the pocket factor and separating the viral subunits to form 135S particles. These results provide a detailed analysis of how a nonenveloped virus can enter its host cell.« less
Casillo, Angela; Ståhle, Jonas; Parrilli, Ermenegilda; Sannino, Filomena; Mitchell, Daniel E.; Pieretti, Giuseppina; Gibson, Matthew I.; Marino, Gennaro; Lanzetta, Rosa; Parrilli, Michelangelo; Widmalm, Göran; Tutino, Maria L.; Corsaro, Maria M.
2017-01-01
Colwellia psychrerythraea strain 34H, a Gram-negative bacterium isolated from Arctic marine sediments, is considered a model to study the adaptation to cold environments. Recently, we demonstrated that C. psychrerythraea 34H produces two different extracellular polysaccharides, a capsular polysaccharide and a medium released polysaccharide, which confer cryoprotection to the bacterium. In this study, we report the structure of an additional capsular polysaccharide produced by Colwellia grown at a different temperature. The structure was determined using chemical methods, and one- and two-dimensional NMR spectroscopy. The results showed a trisaccharide repeating unit made up of only amino-sugar residues: N-acetyl-galactosamine, 2,4-diacetamido-2,4,6-trideoxy-glucose (bacillosamine), and 2-acetamido-2-deoxyglucuronic acid with the following structure: →4)-β-d-GlcpNAcA-(1→3)-β-d-QuipNAc4NAc-(1→3)-β-d-GalpNAc-(1→. The 3D model, generated in accordance with 1H,1H-NOE NMR correlations and consisting of ten repeating units, shows a helical structure. In contrast with the other extracellular polysaccharides produced from Colwellia at 4 °C, this molecule displays only a low ice recrystallization inhibition activity. PMID:28161737
Visibility of Prominences Using the He i D3 Line Filter on the PROBA-3/ASPIICS Coronagraph
NASA Astrophysics Data System (ADS)
Jejčič, S.; Heinzel, P.; Labrosse, N.; Zhukov, A. N.; Bemporad, A.; Fineschi, S.; Gunár, S.
2018-02-01
We determine the optimal width and shape of the narrow-band filter centered on the He i D3 line for prominence and coronal mass ejection (CME) observations with the ASPIICS ( Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun) coronagraph onboard the PROBA-3 ( Project for On-board Autonomy) satellite, to be launched in 2020. We analyze He i D3 line intensities for three representative non-local thermal equilibrium prominence models at temperatures 8, 30, and 100 kK computed with a radiative transfer code and the prominence visible-light (VL) emission due to Thomson scattering on the prominence electrons. We compute various useful relations at prominence line-of-sight velocities of 0, 100, and 300 km s-1 for 20 Å wide flat filter and three Gaussian filters with a full-width at half-maximum (FWHM) equal to 5, 10, and 20 Å to show the relative brightness contribution of the He i D3 line and the prominence VL to the visibility in a given narrow-band filter. We also discuss possible signal contamination by Na i D1 and D2 lines, which otherwise may be useful to detect comets. Our results mainly show that i) an optimal narrow-band filter should be flat or somewhere between flat and Gaussian with an FWHM of 20 Å in order to detect fast-moving prominence structures, ii) the maximum emission in the He i D3 line is at 30 kK and the minimal at 100 kK, and iii) the ratio of emission in the He i D3 line to the VL emission can provide a useful diagnostic for the temperature of prominence structures. This ratio is up to 10 for hot prominence structures, up to 100 for cool structures, and up to 1000 for warm structures.
de Lourdes Corradi da Silva, Maria; Fukuda, Eliane K; Vasconcelos, Ana Flora D; Dekker, Robert F H; Matias, Andreza C; Monteiro, Nilson K; Cardoso, Marilsa S; Barbosa, Aneli M; Silveira, Joana L M; Sassaki, Guilherme L; Carbonero, Elaine R
2008-03-17
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text
Roh, Jooho; Byun, Sung June; Seo, Youngsil; KIm, Minjae; Lee, Jae-Ho; Kim, Songmi; Lee, Yuno; Lee, Keun Woo; Kim, Jin-Kyoo; Kwon, Myung-Hee
2015-02-01
In contrast to a number of studies on the humanization of non-human antibodies, the reshaping of a non-human antibody into a chicken antibody has never been attempted. Therefore, nothing is known about the animal species-dependent compatibility of the framework regions (FRs) that sustain the appropriate conformation of the complementarity-determining regions (CDRs). In this study, we attempted the reshaping of the variable domains of the mouse catalytic anti-nucleic acid antibody 3D8 (m3D8) into the FRs of a chicken antibody (“chickenization”) by CDR grafting, which is a common method for the humanization of antibodies. CDRs of the acceptor chicken antibody that showed a high homology to the FRs of m3D8 were replaced with those of m3D8, resulting in the chickenized antibody (ck3D8). ck3D8 retained the biochemical properties (DNA binding, DNA hydrolysis, and cellular internalizing activities) and three-dimensional structure of m3D8 and showed reduced immunogenicity in chickens. Our study demonstrates that CDR grafting can be applied to the chickenization of a mouse antibody, probably due to the interspecies compatibility of the FRs.
3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.
Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho
2017-01-01
Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.
Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.
NASA Astrophysics Data System (ADS)
Vásquez, A. M.; Frazin, R. A.
We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.
NASA Astrophysics Data System (ADS)
Zhao, Dongning; Rasool, Shafqat; Forde, Micheal; Weafer, Bryan; Archer, Edward; McIlhagger, Alistair; McLaughlin, James
2017-04-01
Recently, there has been increasing demand in developing low-cost, effective structure health monitoring system to be embedded into 3D-woven composite wind turbine blades to determine structural integrity and presence of defects. With measuring the strain and temperature inside composites at both in-situ blade resin curing and in-service stages, we are developing a novel scheme to embed a resistive-strain-based thin-metal-film sensory into the blade spar-cap that is made of composite laminates to determine structural integrity and presence of defects. Thus, with fiberglass, epoxy, and a thinmetal- film sensing element, a three-part, low-cost, smart composite laminate is developed. Embedded strain sensory inside composite laminate prototype survived after laminate curing process. The internal strain reading from embedded strain sensor under three-point-bending test standard is comparable. It proves that our proposed method will provide another SHM alternative to reduce sensing costs during the renewable green energy generation.
Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension.
Tritsis, Aris; Tassis, Konstantinos
2018-05-11
Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Determining Tooth Occlusal Surface Relief Indicator by Means of Automated 3d Shape Analysis
NASA Astrophysics Data System (ADS)
Gaboutchian, A. V.; Knyaz, V. A.
2017-05-01
Determining occlusal surface relief indicator plays an important role in odontometric tooth shape analysis. An analysis of the parameters of surface relief indicators provides valuable information about closure of dental arches (occlusion) and changes in structure of teeth in lifetime. Such data is relevant for dentistry or anthropology applications. Descriptive techniques commonly used for surface relief evaluation have limited precision which, as a result, does not provide for reliability of conclusions about structure and functioning of teeth. Parametric techniques developed for such applications need special facilities and are time-consuming which limits their spread and ease to access. Nevertheless the use of 3D models, obtained by photogrammetric techniques, allows attaining required measurements accuracy and has a potential for process automation. We introduce new approaches for determining tooth occlusal surface relief indicator and provide data on efficiency in use of different indicators in natural attrition evaluation.
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2011-01-01
Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…
ATOMIC RESOLUTION CRYO ELECTRON MICROSCOPY OF MACROMOLECULAR COMPLEXES
ZHOU, Z. HONG
2013-01-01
Single-particle cryo electron microscopy (cryoEM) is a technique for determining three-dimensional (3D) structures from projection images of molecular complexes preserved in their “native,” noncrystalline state. Recently, atomic or near-atomic resolution structures of several viruses and protein assemblies have been determined by single-particle cryoEM, allowing ab initio atomic model building by following the amino acid side chains or nucleic acid bases identifiable in their cryoEM density maps. In particular, these cryoEM structures have revealed extended arms contributing to molecular interactions that are otherwise not resolved by the conventional structural method of X-ray crystallography at similar resolutions. High-resolution cryoEM requires careful consideration of a number of factors, including proper sample preparation to ensure structural homogeneity, optimal configuration of electron imaging conditions to record high-resolution cryoEM images, accurate determination of image parameters to correct image distortions, efficient refinement and computation to reconstruct a 3D density map, and finally appropriate choice of modeling tools to construct atomic models for functional interpretation. This progress illustrates the power of cryoEM and ushers it into the arsenal of structural biology, alongside conventional techniques of X-ray crystallography and NMR, as a major tool (and sometimes the preferred one) for the studies of molecular interactions in supramolecular assemblies or machines. PMID:21501817
Volta phase plate data collection facilitates image processing and cryo-EM structure determination.
von Loeffelholz, Ottilie; Papai, Gabor; Danev, Radostin; Myasnikov, Alexander G; Natchiar, S Kundhavai; Hazemann, Isabelle; Ménétret, Jean-François; Klaholz, Bruno P
2018-06-01
A current bottleneck in structure determination of macromolecular complexes by cryo electron microscopy (cryo-EM) is the large amount of data needed to obtain high-resolution 3D reconstructions, including through sorting into different conformations and compositions with advanced image processing. Additionally, it may be difficult to visualize small ligands that bind in sub-stoichiometric levels. Volta phase plates (VPP) introduce a phase shift in the contrast transfer and drastically increase the contrast of the recorded low-dose cryo-EM images while preserving high frequency information. Here we present a comparative study to address the behavior of different data sets during image processing and quantify important parameters during structure refinement. The automated data collection was done from the same human ribosome sample either as a conventional defocus range dataset or with a Volta phase plate close to focus (cfVPP) or with a small defocus (dfVPP). The analysis of image processing parameters shows that dfVPP data behave more robustly during cryo-EM structure refinement because particle alignments, Euler angle assignments and 2D & 3D classifications behave more stably and converge faster. In particular, less particle images are required to reach the same resolution in the 3D reconstructions. Finally, we find that defocus range data collection is also applicable to VPP. This study shows that data processing and cryo-EM map interpretation, including atomic model refinement, are facilitated significantly by performing VPP cryo-EM, which will have an important impact on structural biology. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Yaochuan; Jiang, Yihua; Liu, Dajun; Wang, Yizhuo; Wang, Guiqiu; Hua, Jianli
2018-06-01
To study the effect of the conjugated structural configuration on the two-photon absorption (TPA) properties of V-shaped compounds, two 1,3,5-triazine-based compounds with the same electron donor (D) and acceptor (A) connected in a reverse-conjugated structural configuration ( T02: D-π-A-π-D; R02: A-π-D-π-A) were systematically investigated using steady-state and transient absorption spectroscopy, open-aperture Z-scan measurements, and two-photon fluorescence measurements. The TPA cross-section of compound R02 connected in a A-π-D-π-A-conjugated structural configuration with triphenylamine as the central core was 203 GM, which showed a 2.3-fold enhancement compared with compound T02 connected in a reverse D-π-A-π-D-conjugated structural configuration (90 GM, with 1,3,5-triazine as the central core). This result indicates that the conjugated structural configuration plays an important role in the TPA properties. A two-color pump-probe experiment was used to investigate the effect of the conjugated structural configuration on the excited state and intra-molecular charge transfer (ICT) properties of these V-shaped compounds. The formation and relaxation lifetimes of the ICT state were determined. The results indicate that the electron-donating/accepting strength of the central group, which serves as a communal group for two D-π-A subunits, was confirmed to be a key role to the overall effect of the ICT for V-shaped compounds. These ultrafast dynamic results are in agreement with the TPA properties.
John; Krohn; Florke; Aust; Draeger; Schulz
1999-09-01
Two known (1 and 2) and four new (3-6) diterpenes named oidiolactones A-F, respectively, and the antibiotic cladosporin were isolated from the fungus Oidiodendron truncata. The structure determination was mainly based on 1D and 2D NMR spectroscopy. The structures of compound 4, displaying an equilibrium between open-chain and cyclized form, and of cladosporin were confirmed by X-ray analysis.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant; Harris, Bryan
2009-06-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.
Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin
Laganowsky, A; Eisenberg, D
2010-01-01
In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta-stranded immunoglobulin-like domain, with its conserved C-terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C-terminal extensions in a non three-dimensional (3D) domain swapped, “closed” state. The extension is quasi-palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C-terminal extension of alpha crystallin proteins can be either 3D domain swapped or non-3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency. PMID:20669149
NASA Astrophysics Data System (ADS)
Ferro, Carlo Giovanni; Brischetto, Salvatore; Torre, Roberto; Maggiore, Paolo
2016-07-01
The Fused Deposition Modelling (FDM) technology is widely used in rapid prototyping. 3D printers for home desktop applications are usually employed to make non-structural objects. When the mechanical stresses are not excessive, this technology can also be successfully employed to produce structural objects, not only in prototyping stage but also in the realization of series pieces. The innovative idea of the present work is the application of this technology, implemented in a desktop 3D printer, to the realization of components for aeronautical use, especially for unmanned aerial systems. For this purpose, the paper is devoted to the statistical study of the performance of a desktop 3D printer to understand how the process performs and which are the boundary limits of acceptance. Mechanical and geometrical properties of ABS (Acrylonitrile Butadiene Styrene) specimens, such as tensile strength and stiffness, have been evaluated. ASTM638 type specimens have been used. A capability analysis has been applied for both mechanical and dimensional performances. Statistically stable limits have been determined using experimentally collected data.
NASA Technical Reports Server (NTRS)
Mcrae, Glenn A.; Cohen, Edward A.; Sponsler, Michael B.; Dougherty, Dennis A.
1986-01-01
The microwave spectra of five isotopic species of bicyclo (1.1.1) pentanone have been investigated. The rotational constants along with various centrifugal distortion constants for each species have been determined. From the rotational constants, a complete r(s) structure has been determined for the heavy atoms. Analysis of Stark effect measurements has shown the dipole moment to be along the a principal inertial axis with a magnitude of 3.164 (5) D. These results are compared with those obtained by four current theoretical methods: molecular mechanics (MM2), MNDO, and Hartree-Fock ab initio theory with STO-3G and 3-21G basis sets.
Coarse-grained modeling of RNA 3D structure.
Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M
2016-07-01
Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi
2017-12-01
Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.
NASA Astrophysics Data System (ADS)
Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi
2017-12-01
Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.
RAG-3D: A search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...
2015-08-24
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less
RAG-3D: a search tool for RNA 3D substructures
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar
2015-01-01
To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547
RAG-3D: A search tool for RNA 3D substructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef
In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less
NASA Astrophysics Data System (ADS)
Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong
2018-02-01
Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.
Kabashima, Hiroaki; Mizobe, Kunitaka; Nakamuta, Hiroyoshi; Fujiwara, Hiroaki; Okamura, Kazutoshi; Unemori, Masako; Akamine, Akifumi; Yoshiura, Kazunori; Maeda, Katsumasa
2011-06-01
We evaluated and treated a 54-year-old woman with gingival swelling. Conventional intraoral and panoramic radiography did not provide sufficient information for either determining the cause of gingival swelling or planning treatment of clinical symptoms. The 3D Accuitomo XYZ Slice View Tomograph (3DX) is a compact dental computed tomography device that allowed for accurate identification and optimal treatment of the causes of gingival swelling. At four years after treatment, 3DX radiographs showed no abnormalities in treated teeth or healing of surrounding structures. We conclude that high-resolution 3D images obtained with 3DX promise to be very effective for diagnosing oral diseases and determining effective treatment.
Satoh, Mamoru; Ishige, Takayuki; Ogawa, Shoujiro; Nishimura, Motoi; Matsushita, Kazuyuki; Higashi, Tatsuya; Nomura, Fumio
2016-11-01
The quantification of serum 25-hydroxyvitamin D [25(OH)D] as an indicator of vitamin D status is currently primarily conducted by immunoassays, yet LC-MS/MS would allow more accurate determination. Furthermore, LC-MS/MS would allow simultaneous measurement of multiple analytes. The aim of this study was to develop and validate an LC-MS/MS method to simultaneously measure four vitamin D metabolites (25(OH)D 3 , 3-epi-25(OH)D 3 , 25(OH)D 2 , and 24,25(OH) 2 D 3 ) in serum for clinical laboratory applications. Serum samples were first prepared in a 96-well supported liquid extraction plate and the eluate was derivatized using the Cookson-type reagent 4-(4'-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), which rapidly and quantitatively reacts with the s-cis-diene structure of vitamin D metabolites. The derivatized samples were subjected to LC-MS/MS, ionized by electrospray ionization (positive-ion mode), and detected by selected reaction monitoring. The lower limits of quantification for 25(OH)D 3 , 3-epi-25(OH)D 3 , 25(OH)D 2 , and 24,25(OH) 2 D 3 were 0.091, 0.020, 0.013, and 0.024 ng/mL, respectively. The accuracy values and the extraction recoveries for these four metabolites were satisfactory. Serum 25(OH)D levels determined by our LC-MS/MS were compared with those obtained by conventional radioimmunoassay (RIA) that cannot distinguish 25(OH)D 3 and 25(OH)D 2 . The values obtained by the RIA method exhibited a mean bias of about 8.35 ng/mL, most likely as a result of cross reaction of the antibody with low-abundance metabolites, including 24,25(OH) 2 D 3 . Various preanalytical factors, such as long sample sitting prior to serum separation, repeated freeze-thaw cycles, and the presence of anticoagulants, had no significant effects on these determinations. This high-throughput LC-MS/MS simultaneous assay of the four vitamin D metabolites 25(OH)D 3 , 3-epi-25(OH)D 3 , 25(OH)D 2 , and 24,25(OH) 2 D 3 required as little as 20 μL serum. This method will aid further understanding of low-abundance vitamin D metabolites, as well as the accurate determination of 25(OH)D 3 and 25(OH)D 2 .
NASA Astrophysics Data System (ADS)
Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua
2016-05-01
By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.
Determination of CME 3D parameters based on a new full ice-cream cone model
NASA Astrophysics Data System (ADS)
Na, Hyeonock; Moon, Yong-Jae
2017-08-01
In space weather forecast, it is important to determine three-dimensional properties of CMEs. Using 29 limb CMEs, we examine which cone type is close to a CME three-dimensional structure. We find that most CMEs have near full ice-cream cone structure which is a symmetrical circular cone combined with a hemisphere. We develop a full ice-cream cone model based on a new methodology that the full ice-cream cone consists of many flat cones with different heights and angular widths. By applying this model to 12 SOHO/LASCO halo CMEs, we find that 3D parameters from our method are similar to those from other stereoscopic methods (i.e., a triangulation method and a Graduated Cylindrical Shell model). In addition, we derive CME mean density (ρmean=Mtotal/Vcone) based on the full ice-cream cone structure. For several limb events, we determine CME mass by applying the Solarsoft procedure (e.g., cme_mass.pro) to SOHO/LASCO C3 images. CME volumes are estimated from the full ice-cream cone structure. From the power-law relationship between CME mean density and its height, we estimate CME mean densities at 20 solar radii (Rs). We will compare the CME densities at 20 Rs with their corresponding ICME densities.
NASA Astrophysics Data System (ADS)
Nield, G.; Whitehouse, P. L.; Blank, B.; van der Wal, W.; O'Donnell, J. P.; Stuart, G. W.; Lloyd, A. J.; Wiens, D.
2017-12-01
Accurate models of Glacial Isostatic Adjustment (GIA) are required for correcting satellite measurements of ice-mass change and for interpretation of geodetic data at the location of present and former ice sheets. Global models of GIA tend to adopt a 1-D representation of Earth structure, varying in the radial direction only. In some regions rheological parameters may differ significantly from this global average leading to bias in model predictions of present-day deformation, geoid change rates and sea-level change. The advancement of 3-D GIA modelling techniques in recent years has led to improvements in the representation of the Earth via the incorporation of laterally varying structure. This study investigates the influence of 3-D Earth structure on deformation rates in West Antarctica using a finite element GIA model with power-law rheology. We utilise datasets of seismic velocity and temperature for the crust and upper mantle with the aim of determining a data-driven Earth model, and consider the differences when compared to deformation predicted from an equivalent 1-D Earth structure.
RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA.
Martinez, Hugo M; Maizel, Jacob V; Shapiro, Bruce A
2008-06-01
Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.
Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa
2009-03-01
The crystal structure of a D-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 A. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of D-tagatose 3-epimerase from Pseudomonas cichorii and D-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an alpha-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other D-tagatose 3-epimerase family enzymes.
Sakuraba, Haruhiko; Yoneda, Kazunari; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa
2009-01-01
The crystal structure of a d-tagatose 3-epimerase-related protein (TM0416p) encoded by the hypothetical open reading frame TM0416 in the genome of the hyperthermophilic bacterium Thermotoga maritima was determined at a resolution of 2.2 Å. The asymmetric unit contained two homologous subunits and a dimer was generated by twofold symmetry. The main-chain coordinates of the enzyme monomer proved to be similar to those of d-tagatose 3-epimerase from Pseudomonas cichorii and d-psicose 3-epimerase from Agrobacterium tumefaciens; however, TM0416p exhibited a unique solvent-accessible substrate-binding pocket that reflected the absence of an α-helix that covers the active-site cleft in the two aforementioned ketohexose 3-epimerases. In addition, the residues responsible for creating a hydrophobic environment around the substrate in TM0416p differ entirely from those in the other two enzymes. Collectively, these findings suggest that the substrate specificity of TM0416p is likely to differ substantially from those of other d-tagatose 3-epimerase family enzymes. PMID:19255464
Ishii, Yuji; Okamura, Toshiya; Inoue, Tomoki; Fukuhara, Kiyoshi; Umemura, Takashi; Nishikawa, Akiyoshi
2010-01-01
Lucidin-3-O- primeveroside (LuP) is one of the components of madder root (Rubia tinctorum L.; MR) which is reported to be carcinogenic in the kidney and liver of rats. Since metabolism of LuP generates genotoxic compounds such as lucidin (Luc) and rubiadin (Rub), it is likely that LuP plays a key role in MR carcinogenesis. In the present study, the chemical structures of Luc-specific 2'-deoxyguanosine (dG) and 2'-deoxyadenosine (dA) adducts following the reactions of dG and dA with a Luc carbocation or quinone methide intermediate derived from Acetoxy-Luc were determined by liquid chromatography with photodiode array and electron spray ionizaion-mass spectrometry (LC-PDA-ESI/MS). The identification of the two measurable adducts as Luc-N(2)-dG and Luc-N(6)-dA was confirmed by NMR analysis. Subsequently, using a newly developed quantitative analytical method using LC-ESI/MS, the formation of Luc-N(2)-dG and Luc-N(6)-dA from the reaction of calf thymus DNA with Luc in the presence of S9 mixture was observed. The fact that this reaction with Rub also gave rise to the same dG and dA adducts strongly suggests that Rub genotoxicity involves a metabolic conversion to Luc. The precise determination of the modified DNA bases generated by LuP and the method for their analysis may contribute to further comprehension of the mode of action underlying carcinogenesis by MR and related anthraquinones.
3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.
Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun
2016-08-01
Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing.
Li, Qijun; Guan, Xiaoying; Cui, Mengsuo; Zhu, Zhihong; Chen, Kai; Wen, Haoyang; Jia, Danyang; Hou, Jian; Xu, Wenting; Yang, Xinggang; Pan, Weisan
2018-01-15
Three dimensional (3D) extrusion-based printing is a paste-based rapid prototyping process, which is capable of building complex 3D structures. The aim of this study was to explore the feasibility of 3D extrusion-based printing as a pharmaceutical manufacture technique for the fabrication of gastro-floating tablets. Novel low-density lattice internal structure gastro-floating tablets of dipyridamole were developed to prolong the gastric residence time in order to improve drug release rate and consequently, improve bioavailability and therapeutic efficacy. Excipients commonly employed in the pharmaceutical study could be efficiently applied in the room temperature 3D extrusion-based printing process. The tablets were designed with three kinds of infill percentage and prepared by hydroxypropyl methylcellulose (HPMC K4M) and hydroxypropyl methylcellulose (HPMC E15) as hydrophilic matrices and microcrystalline cellulose (MCC PH101) as extrusion molding agent. In vitro evaluation of the 3D printed gastro-floating tablets was performed by determining mechanical properties, content uniformity, and weight variation. Furthermore, re-floating ability, floating duration time, and drug release behavior were also evaluated. Dissolution profiles revealed the relationship between infill percentage and drug release behavior. The results of this study revealed the potential of 3D extrusion-based printing to fabricate gastro-floating tablets with more than 8h floating process with traditional pharmaceutical excipients and lattice internal structure design. Copyright © 2017. Published by Elsevier B.V.
Ngameni, Barthelemy; Ngadjui, Bonaventure T; Folefoc, Gabriel N; Watchueng, Jean; Abegaz, Berhanu M
2004-02-01
The twigs of Dorstenia barteri var. subtriangularis yielded three diprenylated chalcones: (-)-3-(3,3-dimethylallyl)-5'-(2-hydroxy-3-methylbut-3-enyl)-4,2',4'-trihydroxychalcone, (+)-3-(3,3-dimethylallyl)-4',5'-[2'''-(1-hydroxy-1-methylethyl)-dihydrofurano]-4,2'-dihydroxychalcone and 3,4-(6",6"-dimethyldihydropyrano)-4',5'-[2''',-(1-hydroxy-1-methylethyl)-dihydrofurano]-2'-hydroxychalcone for which the names bartericins A, B and C, respectively, are proposed. Stipulin, beta-sitosterol and its 3-beta-D-glucopyranosyl derivative were also isolated. The structures of these secondary metabolites were determined on the basis of spectroscopic analysis, especially, NMR spectra in conjunction with 2D experiments, COSY, HMQC and HMBC. The structural relationship of bartericins B and C was further established by the chemical cyclization of one to the other.
Practical computational toolkits for dendrimers and dendrons structure design.
Martinho, Nuno; Silva, Liana C; Florindo, Helena F; Brocchini, Steve; Barata, Teresa; Zloh, Mire
2017-09-01
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.
Practical computational toolkits for dendrimers and dendrons structure design
NASA Astrophysics Data System (ADS)
Martinho, Nuno; Silva, Liana C.; Florindo, Helena F.; Brocchini, Steve; Barata, Teresa; Zloh, Mire
2017-09-01
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures. Herein we describe two novel graphical user interface toolkits written in Python that provide an improved degree of automation for rapid assembly of dendrimers and generation of their 2D and 3D structures. Our first toolkit uses the RDkit library, SMILES nomenclature of monomers and SMARTS reaction nomenclature to generate SMILES and mol files of dendrimers without 3D coordinates. These files are used for simple graphical representations and storing their structures in databases. The second toolkit assembles complex topology dendrimers from monomers to construct 3D dendrimer structures to be used as starting points for simulation using existing and widely available software and force fields. Both tools were validated for ease-of-use to prototype dendrimer structure and the second toolkit was especially relevant for dendrimers of high complexity and size.
Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae
2017-01-01
ABSTRACT There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima. We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn2+. In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries. PMID:28258150
Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo
2017-05-15
There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the characterization and functional annotation of a putative nonphosphorylated sugar 3-epimerase from a hyperthermophilic bacterium. Furthermore, we determined its crystal structures in complex with divalent metal ions and l-erythrulose, highlighting its metal-dependent, bifunctional, sugar-isomerizing activity. This hyperthermophilic R3E exhibited d-erythrose/d-threose isomerase activity, with structural features near the substrate-binding site distinct from those of its mesophilic counterparts. Moreover, this metalloenzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose at 70°C. Therefore, TM0416 can be functionally classified as a novel type of promiscuous R3E with a potential for the production of rare sugars for the food and pharmaceutical industries. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuemket, Nipawan; Tanaka, Yoshikazu; Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810
2011-07-29
Highlights: {yields} We determined the crystal structure of the receptor binding domain of BoNT in complex with 3'-sialyllactose. {yields} An electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. {yields} Alanine site-directed mutagenesis showed that GBS and GBL are important for ganglioside binding. {yields} A cell binding mechanism, which involves cooperative contribution of two sites, was proposed. -- Abstract: Clostridium botulinum type D strain OFD05, which produces the D/C mosaic neurotoxin, was isolated from cattle killed by the recent botulism outbreak in Japan. The D/C mosaic neurotoxin is the most toxic of the botulinummore » neurotoxins (BoNT) characterized to date. Here, we determined the crystal structure of the receptor binding domain of BoNT from strain OFD05 in complex with 3'-sialyllactose at a resolution of 3.0 A. In the structure, an electron density derived from the 3'-sialyllactose was confirmed at the cleft in the C-terminal subdomain. Alanine site-directed mutagenesis showed the significant contribution of the residues surrounding the cleft to ganglioside recognition. In addition, a loop adjoining the cleft also plays an important role in ganglioside recognition. In contrast, little effect was observed when the residues located around the surface previously identified as the protein receptor binding site in other BoNTs were substituted. The results of cell binding analysis of the mutants were significantly correlated with the ganglioside binding properties. Based on these observations, a cell binding mechanism of BoNT from strain OFD05 is proposed, which involves cooperative contribution of two ganglioside binding sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplova, M.; Wilds, C.J.; Wawrzak, Z.
2010-03-08
Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U{sub Se}). The X-ray crystal structure of the duplex d(GCGTA)U{sub Se}d(ACGC){sub 2} was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 {angstrom}, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-{alpha}-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to themore » commonly used halogenated pyrimidines.« less
Li, Jing; Zhong, Yi-sheng; Yuan, Jie; Zhu, Xun; Lu, Yong-jun; Lin, Yong-cheng; Liu, Lan
2015-09-01
A new benzodiazepine alkaloid containing terminal cyano group has been isolated from a mangrove endophytic fungus, Penicillium 299#. Structure elucidation was determined by 1D and 2D NMR spectroscopy and the absolute configuration was determined by electronic circular dichroism (ECD). The new compound showed no cytotoxic activities in vitro against human cancer lines MDA-MB-435, HepG2, HCT-116, and Calu-3.
NASA Astrophysics Data System (ADS)
Kamalraj, Devaraj; Yuvaraj, Selvaraj; Yoganand, Coimbatore Paramasivam; Jaffer, Syed S.
2018-01-01
Here, we propose a new synthetic methodology for silver nanocluster preparation by using a double stranded-DNA (ds-DNA) template which no one has reported yet. A new calculative method was formulated to determine the size of the nanocluster and their band gaps by using steady state 3D contour fluorescence technique with Brus model. Generally, the structure and size of the nanoclusters determine by using High Resolution Transmission Electron Microscopy (HR-TEM). Before imaging the samples by using HR-TEM, they are introduced to drying process which causes aggregation and forms bigger polycrystalline particles. It takes long time duration and expensive methodology. In this current methodology, we found out the size and band gap of the nanocluster in the liquid form without any polycrystalline aggregation for which 3D contour fluorescence technique was used as an alternative approach to the HR-TEM method.
Matsuda, H; Morikawa, T; Ueda, H; Yoshikawa, M
2001-10-01
Ursane- and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, were isolated from the aerial parts of Centella asiatica (L.) Urban cultivated in Sri Lanka together with madecassoside, asiaticoside, asiaticoside B, and sceffoleoside A. The chemical structures of centellasaponins B, C, and D were determined on the basis of chemical and physicochemical evidence to be madecassic acid 28-O-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, madasiatic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, and 3beta,6beta,23-trihydroxyolean-12-en-28-oic acid 28-O-alpha-L-rhamnopyranosyl(1-->4)-beta-D-glucopyranosyl(1-->6)-beta-D-glucopyranoside, respectively.
Methodology of the determination of the uncertainties by using the biometric device the broadway 3D
NASA Astrophysics Data System (ADS)
Jasek, Roman; Talandova, Hana; Adamek, Milan
2016-06-01
The biometric identification by face is among one of the most widely used methods of biometric identification. Due to it provides a faster and more accurate identification; it was implemented into area of security 3D face reader by Broadway manufacturer was used to measure. It is equipped with the 3D camera system, which uses the method of structured light scanning and saves the template into the 3D model of face. The obtained data were evaluated by software Turnstile Enrolment Application (TEA). The measurements were used 3D face reader the Broadway 3D. First, the person was scanned and stored in the database. Thereafter person has already been compared with the stored template in the database for each method. Finally, a measure of reliability was evaluated for the Broadway 3D face reader.
NASA Astrophysics Data System (ADS)
Tanış, Emine; Babur Sas, Emine; Kurban, Mustafa; Kurt, Mustafa
2018-02-01
The experimental and theoretical study of 4-Formyl Phenyl Boronic Acid Pinacol Ester (4FPBAPE) molecule were performed in this work. 1H, 13C NMR and UV-Vis spectra were tested in dimethyl sulfoxide (DMSO). The structural, spectroscopic properties and energies of 4FPBAPE were obtained for two potential conformers from density functional theory (DFT) with B3LYP/6-311G (d, p) and CAM-B3LYP/6-311G (d, p) basis sets. The optimal geometry of those structures was obtained according to the position of oxygen atom upon determining the scan coordinates for each conformation. The most stable conformer was found as the A2 form. The fundamental vibrations were determined based on optimized structure in terms of total energy distribution. Electronic properties such as oscillator strength, wavelength, excitation energy, HOMO, LUMO and molecular electrostatic potential and structural properties such as radial distribution functions (RDF) and probability density depending on coordination number are presented. Theoretical results of 4-FPBAPE spectra were found to be compatible with observed spectra.
Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars
NASA Astrophysics Data System (ADS)
Munegumi, Toratane
2015-06-01
Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.
Eigenvector synchronization, graph rigidity and the molecule problemR
Cucuringu, Mihai; Singer, Amit; Cowburn, David
2013-01-01
The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend the previous work and propose the 3D-As-Synchronized-As-Possible (3D-ASAP) algorithm, for the graph realization problem in ℝ3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch, there corresponds an element of the Euclidean group, Euc(3), of rigid transformations in ℝ3, and the goal was to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-spectral-partitioning (SP)-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a pre-processing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably with similar state-of-the-art localization algorithms. PMID:24432187
Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.
Prasad, G. S.; Stura, E. A.; McRee, D. E.; Laco, G. S.; Hasselkus-Light, C.; Elder, J. H.; Stout, C. D.
1996-01-01
We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein. PMID:8976551
Thermal perturbation correlation of calcium binding Human centrin 3 and its structural changes
NASA Astrophysics Data System (ADS)
Pastrana-Rios, Belinda
2014-07-01
Perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied for the determination of the individual transition temperatures of different vibrational modes located within structural components of a calcium binding protein known as Human centrin 3. This crucial information served to understand the contribution individual calcium binding sites made towards the stability of the EF-hand and therefore the protein without the use of probes. We are convinced that the general application of PCMW2D correlation spectroscopy can be applied to the study of proteins in general to ascertain the differences in the stability of structural motifs within proteins and its relationship to the actual transition temperature of unfolding.
Wang, Mengcheng; Armour, Cherie; Wu, Yan; Ren, Fen; Zhu, Xiongzhao; Yao, Shuqiao
2013-09-01
The primary aim was to examine the depressive symptom structure of Mainland China adolescents using the Center for Epidemiologic Studies Depression Scale (CES-D). Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were simultaneously conducted to determine the structure of the CES-D in a large scale, representative adolescent samples recruited from Mainland China. Multigroup CFA (N = 5059, 48% boys, mean = 16.55±1.06) was utilized to test the factorial invariance of the depressive symptom structure, which was generated by EFA and confirmed by CFA across gender. The CES-D can be interpreted in terms of 3 symptom dimensions. Additionally, factorial invariance of the new proposed model across gender was supported at all assuming different degrees of invariance. Mainland Chinese adolescents have specific depressive symptom structure, which is consistent across gender. © 2013 Wiley Periodicals, Inc.
Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp
Um, Soohyun; Pyee, Yuna; Kim, Eun-Hee; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan
2013-01-01
In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (2–3), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA), 4-amino-3,5-dihydroxy-pentanoic acid (ADPA), and unique 2-amino-1-(1H-indol-3-yl)ethanone (AIEN), was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3), including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA), was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively. PMID:23442790
Thalassospiramide G, a new γ-amino-acid-bearing peptide from the marine bacterium Thalassospira sp.
Um, Soohyun; Pyee, Yuna; Kim, Eun-Hee; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan
2013-02-26
In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (2-3), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA), 4-amino-3,5-dihydroxy-pentanoic acid (ADPA), and unique 2-amino-1-(1H-indol-3-yl) ethanone (AIEN), was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3), including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA), was rigorously determined by 1H-1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2-3) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells, with IC(50) values of 16.4 and 4.8 μM, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Hong-Yan; Lu, Huizhe; Le, Mao
2015-03-15
Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){submore » 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology. • Complex 2 is a 1D “cage+cage”-like chain. • Complex 3 is a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology. • The fluorescent, electrochemical and magnetic properties of 1–3 were reported.« less
Synthesis, molecular structure and magnetic properties of a rhenium(IV) compound with catechol
NASA Astrophysics Data System (ADS)
Cuevas, A.; Geis, L.; Pintos, V.; Chiozzone, R.; Sanchíz, J.; Hummert, M.; Schumann, H.; Kremer, C.
2009-03-01
A novel Re(IV) complex containing catechol as ligand has been prepared and characterized. The crystal structure of (HNEt 3)(NBu 4)[ReCl 4(cat)]·H 2cat was determined. The rhenium ion presents a distorted octahedral geometry, being bonded to a bidentate catecholate group and four chloride anions. The magnetic properties of the complex were studied, a /2 D/ (the energy gap between ±3/2 and ±1/2 Kramers doublets) value of 190(10) cm -1. This is the largest /2 D/ value reported for Re(IV) up to now.
The architecture of the DNA replication origin recognition complex in Saccharomyces cerevisiae
Chen, Zhiqiang; Speck, Christian; Wendel, Patricia; Tang, Chunyan; Stillman, Bruce; Li, Huilin
2008-01-01
The origin recognition complex (ORC) is conserved in all eukaryotes. The six proteins of the Saccharomyces cerevisiae ORC that form a stable complex bind to origins of DNA replication and recruit prereplicative complex (pre-RC) proteins, one of which is Cdc6. To further understand the function of ORC we recently determined by single-particle reconstruction of electron micrographs a low-resolution, 3D structure of S. cerevisiae ORC and the ORC–Cdc6 complex. In this article, the spatial arrangement of the ORC subunits within the ORC structure is described. In one approach, a maltose binding protein (MBP) was systematically fused to the N or the C termini of the five largest ORC subunits, one subunit at a time, generating 10 MBP-fused ORCs, and the MBP density was localized in the averaged, 2D EM images of the MBP-fused ORC particles. Determining the Orc1–5 structure and comparing it with the native ORC structure localized the Orc6 subunit near Orc2 and Orc3. Finally, subunit–subunit interactions were determined by immunoprecipitation of ORC subunits synthesized in vitro. Based on the derived ORC architecture and existing structures of archaeal Orc1–DNA structures, we propose a model for ORC and suggest how ORC interacts with origin DNA and Cdc6. The studies provide a basis for understanding the overall structure of the pre-RC. PMID:18647841
NASA Astrophysics Data System (ADS)
Maesano, Francesco E.; D'Ambrogi, Chiara
2017-02-01
We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.
NASA Technical Reports Server (NTRS)
1975-01-01
The NASA Refan Program included full-scale performance and noise ground tests of both a current production (JT8D-15) and a refanned (JT8D-115) engine. A description of the two ground tests including detailed propulsion, noise, and structural test results is presented. The primary objectives of the total test program were comparison of JT8D-15 and JT8D-115 overall propulsion system performance and noise characteristics and determination of incremental component noise levels. Other objectives of the test program included: (1) determination of acoustic treatment effectiveness; (2) measurement of internal sound pressure levels; (3) measurement of inlet and exhaust hardware performance; (4) determination of center-engine surge margin; and (5) evaluation of certain structural characteristics associated with the 727 refan center-engine inlet duct and JT8D refan engine exhaust system. The JT8D-15 and -115 tests were conducted during September 1974 and January to March 1975, respectively. Analyses of the test data indicated that the JT8D-115, as compared to the JT8D-15, demonstrates a 12.5 percent to 13.2 percent reduction in static specific fuel consumption, and a reduction of 6 to 7 PNdB in a weighted average value of static tone corrected perceived noise level. Separated into noise components, a significant reduction was shown for the inlet fan, aft fan, exhaust duct flow, turbine, and jet noises. However, core noise was increased. Photographs of test stands and test equipment are shown.
Six new C21 steroidal glycosides from Asclepias curassavica L.
Li, Jun-Zhu; Liu, Hai-Yang; Lin, Yi-Ju; Hao, Xiao-Jiang; Ni, Wei; Chen, Chang-Xiang
2008-07-01
Six new C(21) steroidal glycosides, named curassavosides A-F (3-8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (4), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (5), sarcostin 3-O-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-D-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-canaropyranosyl-(1-->4)-beta-d-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-beta-D-glucopyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-d-canaropyranosyl-(1-->4)-beta-D-oleandropyranosyl-(1-->4)-beta-D-digitoxopyranoside (8), respectively. All compounds (1-8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.
Rodríguez-Carvajal, M A; Tejero-Mateo, P; Espartero, J L; Ruiz-Sainz, J E; Buendía-Clavería, A M; Ollero, F J; Yang, S S; Gil-Serrano, A M
2001-01-01
We have determined the structure of a polysaccharide from strain B33, a fast-growing bacterium that forms nitrogen-fixing nodules with Asiatic and American soya bean cultivars. On the basis of monosaccharide analysis, methylation analysis, one-dimensional 1H- and 13C-NMR and two-dimensional NMR experiments, the structure was shown to consist of a polymer having the repeating unit -->6)-4-O-methyl-alpha-D-Glcp-(1-->4)-3-O-methyl-beta-D-GlcpA-(1--> (where GlcpA is glucopyranuronic acid and Glcp is glucopyranose). Strain B33 produces a K-antigen polysaccharide repeating unit that does not have the structural motif sugar-Kdx [where Kdx is 3-deoxy-D-manno-2-octulosonic acid (Kdo) or a Kdo-related acid] proposed for different Sinorhizobium fredii strains, all of them being effective with Asiatic soya bean cultivars but unable to form nitrogen-fixing nodules with American soya bean cultivars. Instead, it resembles the K-antigen of S. fredii strain HH303 (rhamnose, galacturonic acid)n, which is also effective with both groups of soya bean cultivars. Only the capsular polysaccharide from strains B33 and HH303 have monosaccharide components that are also present in the surface polysaccharide of Bradyrhizobium elkanii strains, which consists of a 4-O-methyl-D-glucurono-L-rhamnan. PMID:11439101
Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.
1996-12-17
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.
Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei
1996-01-01
The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
New isoflavone glycosides from the stems of Dalbergia vietnamensis.
Loan, Pham Thanh; Le Anh, Hoang Tuan; Cuc, Nguyen Thi; Yen, Duong Thi Hai; Hang, Dan Thi Thuy; Ha, Tran Minh; Nhiem, Nguyen Xuan; Van Du, Nguyen; Thai, Tran Huy; Van Minh, Chau; Van Kiem, Phan
2014-06-01
Two new isoflavone glycosides, dalspinosin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (1) and caviunin 7-O-(5-O-trans-p-coumaroyl)-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (2), and two known compounds, caviunin 7-O-beta-D-apiofuranosyl-(1-->6)-beta-D-glucopyranoside (3) and caviunin (4) were isolated from the stems of Dalbergia vietnamensis. Their structures were determined by the combination of spectroscopic and chemical methods, including 1D- and 2D-NMR spectroscopy, as well as by comparing with the NMR data reported in the literature.
Cell wall teichoic acids of actinomycetes of three genera of the order actinomycetales.
Streshinskaya, G M; Shashkov, A S; Usov, A I; Evtushenko, L I; Naumova, I B
2002-07-01
The structures of cell wall teichoic acids of the members of newly recognized genera of the order Actinomycetales were studied. Planotetraspora mira VKM Ac-2000T contains two types of teichoic acids: 2,3-poly(glycerol phosphate) substituted with alpha-D-Galp at C-1 of glycerol and 1,3-poly(glycerol phosphate) substituted with alpha-L-Rhap at OH-2 of glycerol (60%). Herbidospora cretacea VKM Ac-1997T contains the chains of 1,3-poly(glycerol phosphate) partially substituted with alpha-D-Galp and alpha-D-GalpNAc at C-2 of glycerol. The majority of alpha-D-galactopyranosyl residues are substituted at OH-3 with a sulfate. The aforementioned teichoic acids have not been found in bacteria thus far. Actinocorallia herbida VKM Ac-1994T contains poly(galactosylglycerol phosphate), with the beta-Galp-(1-->2)-Gro-P repeating units being linked via the phosphodiester bonds between the OH-3 of glycerol and OH-6 of galactose. Earlier, this structure was found in the cell wall of Actinomadura madura. The polymer structures were determined by chemical analysis and using 13C-NMR spectroscopy. The results show that teichoic acids are widespread in the order Actinomycetales.
The formation of Colloidal 2D/3D MoS2 Nanostructures in Organic Liquid Environment
NASA Astrophysics Data System (ADS)
Durgun, Engin; Sen, H. Sener; Oztas, Tugba; Ortac, Bulend
2015-03-01
2D MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in methanol. Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, SEM, TEM, XRD, Raman and UV/VIS/NIR absorption spectroscopy techniques. Results of structural analysis show that the obtained MoS2 NS mainly present layered morphology from micron to nanometer surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown that it is correlated with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from UV region to NIR region. Investigations of MoS2 NS show that the one step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of ``two scales'' micron- and nanometer-sized layered and fullerene-like morphology MoS2 structures. This work was partially supported by TUBITAK under the Project No. 113T050 and Bilim Akademisi - The Science Academy, Turkey under the BAGEP program.
Conrad, A R; Teumelsan, N H; Wang, P E; Tubergen, M J
2010-01-14
Rotational spectra were recorded in natural abundance for the (13)C isotopomers of two conformers of glycidol. Moments of inertia from the (13)C isotopomers were used to calculate the substitution coordinates and C-C bond lengths of two glycidol monomer conformations. The structures of seven different conformational minima were found from ab initio (MP2/6-311++G(d,p)) optimizations of glycidol-water. The rotational spectrum of glycidol-water was recorded using microwave spectroscopy, and the rotational constants were determined to be A = 3902.331 (11) MHz, B = 2763.176 (3) MHz, and C = 1966.863 (3) MHz. Rotational spectra were also recorded for glycidol-H(2)(18)O, glycidol-D(b)OH, and glycidol-d(O)-D(2)O. The rotational spectra were assigned to the lowest-energy ab initio structure, and the structure was improved by fitting to the experimental moments of inertia. The best-fit structure shows evidence for structural changes in glycidol to accommodate formation of the intermolecular hydrogen bonding network: the O-C-C-O torsional angle in glycidol was found to increase from 40.8 degrees for the monomer to 49.9 degrees in the water complex.
D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer
NASA Astrophysics Data System (ADS)
Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.
2010-06-01
Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).
Takesada, H; Matsuda, K; Ohtake, R; Mihara, R; Ono, I; Tanaka, K; Naito, M; Yatagai, M; Suzuki, E
1996-10-01
Molecular structures of 10 metabolites, which were isolated from urine (M1-M8) or bile (M9 and M10) after administration of AY4166 (N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine), a novel amino acid derivative with hypoglycemic activity, have been elucidated by mass spectrometry and nuclear magnetic resonance. Four of these (M1, M2, M3 and M8) were determined to be hydroxyl derivatives of AY4166, two (M9 and M10) were carboxylate derivatives via oxidization of M2 and M3, three (M4, M5 and M6) were glucronic acid conjugates and the other (M7) was a dehydro derivative. The estimated structures for M1, M2, M3, M7, M8, M9 and M10 were confirmed by the coincidence of the retention time of HPLC, MS and 1H NMR spectra between the isolated metabolites and authentic synthesized substances. For three glucronic acid conjugates, M4, M5 and M6, structural confirmation was performed by a selective enzymatic digestion with beta-glucronidase. M1 and M2/3 were about 5-6 and 3 times less potent than AY4166, respectively, and M7 was almost as potent as AY4166.
NASA Astrophysics Data System (ADS)
Açıkgöz, Muhammed; Rudowicz, Czesław; Gnutek, Paweł
2017-11-01
Theoretical investigations are carried out to determine the temperature dependence of the local structural parameters of Cr3+ and Mn2+ ions doped into RAl3(BO3)4 (RAB, R = Y, Eu, Tm) crystals. The zero-field splitting (ZFS) parameters (ZFSPs) obtained from the spin Hamiltonian (SH) analysis of EMR (EPR) spectra serve for fine-tuning the theoretically predicted ZFSPs obtained using the semi-empirical superposition model (SPM). The SPM analysis enables to determine the local structure changes around Cr3+ and Mn2+ centers in RAB crystals and explain the observed temperature dependence of the ZFSPs. The local monoclinic C2 site symmetry of all Al sites in YAB necessitates consideration of one non-zero monoclinic ZFSP (in the Stevens notation, b21) for Cr3+ ions. However, the experimental second-rank ZFSPs (D =b20 , E = 1 / 3b22) were expressed in a nominal principal axis system. To provide additional insight into low symmetry aspects, the distortions (ligand's distances ΔRi and angular distortions Δθi) have been varied while preserving monoclinic site symmetry, in such way as to obtain the calculated values (D, E) close to the experimental ones, while keeping b21 close to zero. This procedure yields good matching of the calculated ZFSPs and the experimental ones, and enables determination of the corresponding local distortions. The present results may be useful in future studies aimed at technological applications of the Huntite-type borates with the formula RM3(BO3)4. The model parameters determined here may be utilized for ZFSP calculations for Cr3+ and Mn2+ ions at octahedral sites in single-molecule magnets and single-chain magnets.
Prathiviraj, R; Prisilla, A; Chellapandi, P
2016-06-01
Clostridium botulinum is anaerobic pathogenic bacterium causing food-born botulism in human and animals by producing botulinum neurotoxins A-H, C2, and C3 cytotoxins. Physiological group III strains (type C and D) of this bacterium are capable of producing C2 and C3 toxins in cattle and avian. Herein, we have revealed the structure-function disparity of C3 toxins from two different C. botulinum type C phage (CboC) and type D phage (CboD) to design avirulent toxins rationally. Structure-function discrepancy of the both toxins was computationally evaluated from their homology models based on the conservation in sequence-structure-function relationships upon covariation and point mutations. It has shown that 8 avirulent mutants were generated from CboC of 34 mutants while 27 avirulent mutants resulted from CboD mutants. No major changes were found in tertiary structure of these toxins; however, some structural variations appeared in the coiled and loop regions. Correlated mutation on the first residue would disorder or revolutionize the hydrogen bonding pattern of the coevolved pairs. It suggested that the residues coupling in the local structural environments were compensated with coevolved pairs so as to preserve a pseudocatalytic function in the avirulent mutants. Avirulent mutants of C3 toxins have shown a stable structure with a common blue print of folding process and also attained a near-native backrub ensemble. Thus, we concluded that selecting the site-directed mutagenesis sites are very important criteria for designing avirulent toxins, in development of rational subunit vaccines, to cattle and avian, but the vaccine specificity can be determined by the C3 toxins of C. botulinum harboring phages.
NASA Astrophysics Data System (ADS)
Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.
2012-01-01
Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.
Kono, Hiroyuki; Kondo, Nobuhiro; Hirabayashi, Katsuki; Ogata, Makoto; Totani, Kazuhide; Ikematsu, Shinya; Osada, Mitsumasa
2017-12-01
This article contains two-dimensional (2D) NMR experimental data, obtained by the Bruker BioSpin 500 MHz NMR spectrometer (Germany) which can used for the determination of primary structures of schizophyllan from Schizophyllum commune (SPG) and a water-soluble β-(1→3, 1→6)-glucan from Aureobasidium pullulans . Data include analyzed the 2D NMR spectra of these β-glucans, which are related to the subject of an article in Carbohydrate Polymers , entitled "NMR spectroscopic structural characterization of a water-soluble β-(1→3, 1→6)-glucan from A. pullulans " (Kono et al., 2017) [1]. Data can help to assign the 1 H and 13 C chemical shifts of the structurally complex polysaccharides.
Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro
2016-12-01
Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.
Identification of a new tadalafil analogue, N-3-hydroxypropylnortadalafil, in a supplement product.
Lee, Hui-Chun; Lin, Yun-Lian; Huang, Yen-Chun; Tsai, Chia-Fen; Wang, Der-Yuan
2018-06-01
A novel tadalafil analogue, which exhibits similarity to 2-hydroxypropylnortadalafil, was found in dietary supplements using adulterants screening and isolated using column chromatography. By using extensive 1D- and 2D-NMR and MS spectral analyses, the structure was determined as 6-(1,3-Benzodioxol-5-yl)-2,3,6,7,12,12a-hexahydro-2-(3-hydroxypropyl)pyrazino(1',2':1,6)pyrido(3,4-b)indole-1,4-dione, and the analogue was named N-3-hydroxypropylnortadalafil. Copyright © 2018 Elsevier B.V. All rights reserved.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...
2015-07-01
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less
Yoshida, Hiromi; Yamada, Mitsugu; Nishitani, Takeyori; Takada, Goro; Izumori, Ken; Kamitori, Shigehiro
2007-11-23
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 A, respectively. A subunit of P. cichoriid-TE adopts a (beta/alpha)(8) barrel structure, and a metal ion (Mn(2+)) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the beta-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn(2+), and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Raj, Arushma; Santhanam, R.; Marchewka, M. K.; Mohan, S.
2013-02-01
Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. 1H and 13C NMR chemical shifts and the electronic transitions of the molecule are also discussed.
NASA Astrophysics Data System (ADS)
Khajehzadeh, Mostafa; Moghadam, Majid
2017-06-01
Structural and molecular properties of antidepressants 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile were examined using quantum mechanics of Density Functional Theory (DFT)/B3LYP and PBEPBE methods with 6-311 ++ G(d,2p) and LanL2DZ basis sets to study the therapeutic properties of the drug. For this, the structure of desired material was optimized by the computer calculation method and with the use of powerful Gaussian 09 software. Then the lowest energy value and the bond length, bond angle and dihedral angle between its constituent atoms in the crystal structure of the desired material were measured from the optimized values. Then the amount of positive and negative charges, polarizability and dipole moment of its atoms using Mulliken charge and Natural atomic charges, DFT/B3LYP and PBEPBE methods with 6-311 ++ G(d,2p) and LanL2DZ basis sets were determined and the results were compared with each other for individual atoms and by mentioned methods. Also the type of stretching vibrations and bending vibrations between the constituent atoms of the molecule were specified using mentioned computational methods and FT IR vibrational spectra. The experimental spectrum of this material was taken to determine the functional groups and the computational and experimental values were compared to each other and Nuclear Magnetic Resonance (NMR) was used to specify the isomer shift between the carbons and protons in the presence of polar and nonpolar solvents. Also Natural Bond Orbital (NBO) was used to determine the type of electron transfers in σ → σ ∗ and π → π ∗ and LP(1) → σ ∗ and LP(2) → σ ∗ and the amount of hardness and softness in molecule was determined using the difference between ionization energy and electron affinity energy in constituent atoms of that molecule in the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and in the presence of solvents H2O, CH3CN and C6H12. UV-Vis spectrum of the drug was taken using DFT/B3LYP and PBEPBE methods with 6-311 ++ G(d,2p) and LanL2DZ basis sets as well as solvents H2O, CH3CN and C6H12 and the associated transmissions were examined.
Perera, Wilmer H; Ghiviriga, Ion; Rodenburg, Douglas L; Alves, Kamilla; Bowling, John J; Avula, Bharathi; Khan, Ikhlas A; McChesney, James D
2017-03-01
Two diterpene glycosides were isolated from a commercial Stevia rebaudiana leaf extract. One was found to be 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid-(2-O-β-d-xylopyranosyl-3-O-β-d-glucopyranosyl- β-d-glucopyranosyl) ester (rebaudioside T), whereas the other was determined to be 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid-(6-O-α-l-arabinopyranosyl-β-d-glucopyranosyl) ester (rebaudioside U). In addition, five C-19 sugar free derivatives were prepared and identified as follows: 13-[(2-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)]oxy]kaur-16-en-19-oic acid (dulcoside A 1 ); 13-[(2-O-β-d-xylopyranosy-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]kaur-16-en-19-oic acid; 13-[(2-O-β-d-xylopyranosyl-β-d-glucopyranosyl-)oxy]kaur-16-en-19-oic acid; 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-xylopyranosyl-)oxy]kaur-16-en-19-oic acid (rebaudioside R 1 ) and 13-[(2-O-6-deoxy-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]kaur-16-en-19-oic acid, respectively. Chemical structures were determined by NMR experiments. HPLC analyses were also useful to differentiate different steviol-C13 sugar substituent patterns by elution position. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Röska, B.; Park, S.-H.; Behal, D.; Hess, K.-U.; Günther, A.; Benka, G.; Pfleiderer, C.; Hoelzel, M.; Kimura, T.
2018-06-01
Applying neutron powder diffraction, four unique hydrogen positions were determined in a rockbridgeite-type compound, . Its honeycomb-like H-bond network running without interruption along the crystallographic axis resembles those in alkali sulphatic and arsenatic oxyhydroxides. They provide the so-called dynamically disordered H-bond network over which protons are superconducting in a vehicle mechanism. This is indicated by dramatic increases of dielectric constant and loss factor at room temperature. The relevance of static and dynamic disorder of OH and HOH groups are explained in terms of a high number of structural defects at octahedral chains alternatingly half-occupied by cations. The structure is built up by unusual octahedral doublet, triplet, and quartet clusters of aliovalent 3d transition metal cations, predicting complicate magnetic ordering and interaction. The ferrimagnetic structure below the Curie temperature –83 K could be determined from the structure analysis with neutron diffraction data at 25 K.
A novel dimeric flavonol glycoside from Cynanchum acutum subsp. sibiricum.
Yuan, Si-Wen; Dai, Wei; Pan, Xin-Hui; Lu, Yan; Chen, Dao-Feng; Wang, Qi
2018-06-11
A novel dimeric flavonol glycoside, Cynanflavoside A (1), together with six analogues, kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (2), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (3), kaempferol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (4), quercetin-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside (5), kaempferol-3-O-β-D-glucopyranosyl-7-O-α-L-rhamnopyranoside (6), and quercetin-3-O-galactoside (7) were isolated from the n-butyl alcohol extract of Cynanchum acutum subsp. sibiricum. Their structures were determined spectroscopically and compared with previously reported spectral data. All compounds were evaluated for their anti-complementary activity in vitro, and only compound 5 exhibited anti-complement effects with CH 50 value of 0.33 mM.
Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.
Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt
2015-08-24
High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu
2015-05-15
A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N)more » analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal structure of 1D metastable phase was also determined. • Thermal behavior of 2D compound is strongly dependent on the selected heating rate. • Magnetic measurements show no magnetic ordering down to 4 K.« less
Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent; ...
2017-09-04
Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chonghang; Wada, Takeshi; De Andrade, Vincent
Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloyingmore » and aqueous dealloying methods were also discussed. Here, we concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performance-determining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.« less
Pavarini, E; Andreani, L C
2002-09-01
The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties.
Characterization of a novel qepA3 variant in Enterobacter aerogenes.
Wang, Dongguo; Huang, Xitian; Chen, Jiayu; Mou, Yonghua; Qi, Yongxiao
2017-04-01
Five isolates harboring qepA were studied by polymerase chain reaction (PCR) amplification and relevant methods. One was determined to be a novel qepA3 from Enterobacter aerogenes, and four involved three qepA1 and one qepA2 determinants from Escherichia coli; the qepA3 changed five amino acids. These results characterized genetic structures A, B, C, D, and E. Copyright © 2016. Published by Elsevier B.V.
Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg
2017-12-26
The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.
The Crystal Structure of Thorium and Zirconium Dihydrides by X-ray and Neutron Diffraction
DOE R&D Accomplishments Database
Rundle, R.E.; Shull, C.G.; Wollan, E.O.
1951-04-20
Thorium forms a tetragonal lower hydride of composition ThH{sub 2}. The hydrides ThH{sub 2}, ThD{sub 2}, and ZrD{sub 2} have been studied by neutron diffraction in order that hydrogen positions could be determined. The hydrides are isomorphous, and have a deformed fluorite structure. Metal-hydrogen distances in thorium hydride are unusually large, as in UH{sub 3}. Thorium and zirconium scattering amplitudes and a revised scattering amplitude for deuterium are reported.
Van Calsteren, Marie-Rose; Gagnon, Fleur; Nishimura, Junko; Makino, Seiya
2015-09-02
The neutral exopolysaccharide (NPS) of Lactobacillus delbrueckii subsp. bulgaricus strain OLL1073R-1 was purified and characterized. The molecular mass was 5.0×10(6) g/mol. Sugar and absolute configuration analyses gave the following composition: d-Glc, 1; d-Gal, 1.5. The NPS was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the NPS or of its specifically modified products allowed determining the repeating unit sequence: {2)Glc(α1-3)Glc(β1-3)[Gal(β1-4)]Gal(β1-4)Gal(α1-}n. The structure is compared to that of exopolysaccharides produced by other Lactobacillus bulgaricus strains. Copyright © 2015. Published by Elsevier Ltd.
Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.
Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso
2018-07-01
There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.
Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A
2010-05-01
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoden, James B.; Holden, Hazel M.
2010-09-08
2,3-Diacetamido-2,3-dideoxy-D-mannuronic acid (ManNAc3NAcA) is an unusual dideoxy sugar first identified nearly 30 years ago in the lipopolysaccharide of Pseudomonas aeruginosa O:3a,d. It has since been observed in other organisms, including Bordetella pertussis, the causative agent of whooping cough. Five enzymes are required for the biosynthesis of UDP-ManNAc3NAcA starting from UDP-N-acetyl-D-glucosamine. Here we describe a structural study of WlbA, the NAD-dependent dehydrogenase that catalyzes the second step in the pathway, namely, the oxidation of the C-3{prime} hydroxyl group on the UDP-linked sugar to a keto moiety and the reduction of NAD{sup +} to NADH. This enzyme has been shown to usemore » {alpha}-ketoglutarate as an oxidant to regenerate the oxidized dinucleotide. For this investigation, three different crystal structures were determined: the enzyme with bound NAD(H), the enzyme in a complex with NAD(H) and {alpha}-ketoglutarate, and the enzyme in a complex with NAD(H) and its substrate (UDP-N-acetyl-D-glucosaminuronic acid). The tetrameric enzyme assumes an unusual quaternary structure with the dinucleotides positioned quite closely to one another. Both {alpha}-ketoglutarate and the UDP-linked sugar bind in the WlbA active site with their carbon atoms (C-2 and C-3{prime}, respectively) abutting the re face of the cofactor. They are positioned {approx}3 {angstrom} from the nicotinamide C-4. The UDP-linked sugar substrate adopts a highly unusual curved conformation when bound in the WlbA active site cleft. Lys 101 and His 185 most likely play key roles in catalysis.« less
Asahara, Haruyasu; Koizumi, Takuya; Mochizuki, Eiko; Oshima, Takumi
2006-03-01
The crystal structures of the two thermally equilibrated conformational isomers of the epoxide 1',5'-dimethylspiro[10,11-dihydro-5H-dibenzo[a,d]cycloheptene-5,8'-4'-oxatricyclo[5.1.0.0(3,5)]octane]-2',6'-dione, C23H20O3, have been determined by X-ray diffraction. In the tricyclic dione skeleton, the oxirane and cyclopropane rings adopt an anti structure with respect to the conjunct quinone frame. The spiro-linked 10,11-dihydro-5H-dibenzo[a,d]cycloheptene ring of the major isomer has a fairly twisted boat form, folding opposite to the adjoining cyclopropane methyl substituent, whereas the seven-membered ring of the minor isomer has an almost ideal twist-boat form, inversely folding to the side of the relevant methyl group. The conformational structures of these isomers have been compared with those of the corresponding isomers of the unepoxidized homobenzoquinone.
Ceramic Fiber Structures for Cryogenic Load-Bearing Applications
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eckel, Andrew J.
2009-01-01
This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.
NASA Astrophysics Data System (ADS)
Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael
2015-05-01
A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100-250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation.
Li, Da-Wei; Meng, Dan; Brüschweiler, Rafael
2015-01-01
A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins. Chemical shifts of sequential residue pairs are predicted from static protein structures using PPM_One, which are then compared with the corresponding experimental shifts. Globally optimized weighted matching identifies the assignments that are robust with respect to small changes in NMR cross-peak positions. The method, termed PASSPORT, is demonstrated for 4 proteins with 100 – 250 amino acids using 3D NHCA and a 3D CBCA(CO)NH experiments as input producing correct assignments with high reliability for 22% of the residues. The method, which works best for Gly, Ala, Ser, and Thr residues, provides assignments that serve as anchor points for additional assignments by both manual and semi-automated methods or they can be directly used for further studies, e.g. on ligand binding, protein dynamics, or post-translational modification, such as phosphorylation. PMID:25863893
Electronic structure of LiGaS 2
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Isaenko, L. I.; Kesler, V. G.; Lobanov, S.; Huang, H.; Lin, Z. S.
2009-04-01
X-ray photoelectron spectroscopy (XPS) measurement has been performed to determine the valence band structure of LiGaS 2 crystals. The experimental measurement is compared with the electronic structure obtained from the density functional calculations. It is found that the Ga 3d states in the XPS spectrum are much higher than the calculated results. In order to eliminate this discrepancy, the LDA+ U method is employed and reasonable agreement is achieved. Further calculations show that the difference of the linear and nonlinear optical coefficients between LDA and LDA+ U calculations is negligibly small, indicating that the Ga 3d states are actually independent of the excited properties of LiGaS 2 crystals since they are located at a very deep position in the valence bands.
R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures.
Rahrig, Ryan R; Petrov, Anton I; Leontis, Neocles B; Zirbel, Craig L
2013-07-01
The R3D Align web server provides online access to 'RNA 3D Align' (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.
NASA Astrophysics Data System (ADS)
Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.
2004-01-01
Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.
Yoshikawa, Kazuko; Okahuji, Mariko; Iseki, Kanako; Ito, Takuya; Asakawa, Yoshinori; Kawano, Sachiko; Hashimoto, Toshihiro
2014-04-01
Two novel aromatic glucosides, named marylaurencinosides D (1) and E (2), were isolated from the fresh flowers of Cymbidium Great Flower 'Marylaurencin'. In addition, eight known aromatic compounds (3-10) were isolated. These structures were determined on the basis of NMR experiments as well as chemical evidence.
Photogrammetry Toolbox Reference Manual
NASA Technical Reports Server (NTRS)
Liu, Tianshu; Burner, Alpheus W.
2014-01-01
Specialized photogrammetric and image processing MATLAB functions useful for wind tunnel and other ground-based testing of aerospace structures are described. These functions include single view and multi-view photogrammetric solutions, basic image processing to determine image coordinates, 2D and 3D coordinate transformations and least squares solutions, spatial and radiometric camera calibration, epipolar relations, and various supporting utility functions.
Lan, Hongxiang; Teeter, Martha M; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.
Determining integral density distribution in the mach reflection of shock waves
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Golubev, M. P.; Pavlov, A. A.; Pavlov, Al. A.; Khotyanovsky, D. V.; Shmakov, A. S.
2017-05-01
We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.
2D virtual texture on 3D real object with coded structured light
NASA Astrophysics Data System (ADS)
Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick
2008-02-01
Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.
Efficient and accurate approach to modeling the microstructure and defect properties of LaCoO3
NASA Astrophysics Data System (ADS)
Buckeridge, J.; Taylor, F. H.; Catlow, C. R. A.
2016-04-01
Complex perovskite oxides are promising materials for cathode layers in solid oxide fuel cells. Such materials have intricate electronic, magnetic, and crystalline structures that prove challenging to model accurately. We analyze a wide range of standard density functional theory approaches to modeling a highly promising system, the perovskite LaCoO3, focusing on optimizing the Hubbard U parameter to treat the self-interaction of the B-site cation's d states, in order to determine the most appropriate method to study defect formation and the effect of spin on local structure. By calculating structural and electronic properties for different magnetic states we determine that U =4 eV for Co in LaCoO3 agrees best with available experiments. We demonstrate that the generalized gradient approximation (PBEsol +U ) is most appropriate for studying structure versus spin state, while the local density approximation (LDA +U ) is most appropriate for determining accurate energetics for defect properties.
Mechanical properties of 2D and 3D braided textile composites
NASA Technical Reports Server (NTRS)
Norman, Timothy L.
1991-01-01
The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.
MMDB: Entrez’s 3D-structure database
Wang, Yanli; Anderson, John B.; Chen, Jie; Geer, Lewis Y.; He, Siqian; Hurwitz, David I.; Liebert, Cynthia A.; Madej, Thomas; Marchler, Gabriele H.; Marchler-Bauer, Aron; Panchenko, Anna R.; Shoemaker, Benjamin A.; Song, James S.; Thiessen, Paul A.; Yamashita, Roxanne A.; Bryant, Stephen H.
2002-01-01
Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrez’s 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrez’s search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrez’s Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure. PMID:11752307
NASA Astrophysics Data System (ADS)
Volpon, Laurent; Tsan, Pascale; Majer, Zsuzsa; Vass, Elemer; Hollósi, Miklós; Noguéra, Valérie; Lancelin, Jean-Marc; Besson, Françoise
2007-08-01
Iturins are a group of antifungal produced by Bacillus subtilis. All are cyclic lipopeptides with seven α-amino acids of configuration LDDLLDL and one β-amino fatty acid. The bacillomycin L is a member of this family and its NMR structure was previously resolved using the sequence Asp-Tyr-Asn-Ser-Gln-Ser-Thr. In this work, we carefully examined the NMR spectra of this compound and detected an error in the sequence. In fact, Asp1 and Gln5 need to be changed into Asn1 and Glu5, which therefore makes it identical to bacillomycin Lc. As a consequence, it now appears that all iturinic peptides with antibiotic activity share the common β-amino fatty acid 8- L-Asn1- D-Tyr2- D-Asn3 sequence. To better understand the conformational influence of the acidic residue L-Asp1, present, for example in the inactive iturin C, the NMR structure of the synthetic analogue SCP [cyclo ( L-Asp1- D-Tyr2- D-Asn3- L-Ser4- L-Gln5- D-Ser6- L-Thr7-β-Ala8)] was determined and compared with bacillomycin Lc recalculated with the corrected sequence. In both cases, the conformers obtained were separated into two families of similar energy which essentially differ in the number and type of turns. A detailed analysis of both cyclopeptide structures is presented here. In addition, CD and FTIR spectra were performed and confirmed the conformational differences observed by NMR between both cyclopeptides.
Challenges in NMR-based structural genomics
NASA Astrophysics Data System (ADS)
Sue, Shih-Che; Chang, Chi-Fon; Huang, Yao-Te; Chou, Ching-Yu; Huang, Tai-huang
2005-05-01
Understanding the functions of the vast number of proteins encoded in many genomes that have been completely sequenced recently is the main challenge for biologists in the post-genomics era. Since the function of a protein is determined by its exact three-dimensional structure it is paramount to determine the 3D structures of all proteins. This need has driven structural biologists to undertake the structural genomics project aimed at determining the structures of all known proteins. Several centers for structural genomics studies have been established throughout the world. Nuclear magnetic resonance (NMR) spectroscopy has played a major role in determining protein structures in atomic details and in a physiologically relevant solution state. Since the number of new genes being discovered daily far exceeds the number of structures determined by both NMR and X-ray crystallography, a high-throughput method for speeding up the process of protein structure determination is essential for the success of the structural genomics effort. In this article we will describe NMR methods currently being employed for protein structure determination. We will also describe methods under development which may drastically increase the throughput, as well as point out areas where opportunities exist for biophysicists to make significant contribution in this important field.
Structure of the Kπ=4+ bands in Os186,188
NASA Astrophysics Data System (ADS)
Phillips, A. A.; Garrett, P. E.; Lo Iudice, N.; Sushkov, A. V.; Bettermann, L.; Braun, N.; Burke, D. G.; Demand, G. A.; Faestermann, T.; Finlay, P.; Green, K. L.; Hertenberger, R.; Leach, K. G.; Krücken, R.; Schumaker, M. A.; Svensson, C. E.; Wirth, H.-F.; Wong, J.
2010-09-01
The (He3,d) single-proton stripping reaction has been performed on targets of Re185,187 to investigate the structures of the 43+ states in Os186,188. The experiment employed 30 MeV He3 beams, and the reaction products were analyzed with a Q3D spectrograph. Absolute cross sections were determined at nine angles between 5° and 50° for states up to approximately 3 MeV in excitation energy. Large (5)/(2)+[402]π+(3)/(2)+[402]π two-quasiparticle components are deduced for the 43+ levels of both isotopes. Their magnitudes are in agreement with calculations performed using the quasiparticle phonon model, which predicts a coexistence of a large hexadecapole with a smaller, but sizable, γ-γ component in the 43+.
Turning limited experimental information into 3D models of RNA.
Flores, Samuel Coulbourn; Altman, Russ B
2010-09-01
Our understanding of RNA functions in the cell is evolving rapidly. As for proteins, the detailed three-dimensional (3D) structure of RNA is often key to understanding its function. Although crystallography and nuclear magnetic resonance (NMR) can determine the atomic coordinates of some RNA structures, many 3D structures present technical challenges that make these methods difficult to apply. The great flexibility of RNA, its charged backbone, dearth of specific surface features, and propensity for kinetic traps all conspire with its long folding time, to challenge in silico methods for physics-based folding. On the other hand, base-pairing interactions (either in runs to form helices or isolated tertiary contacts) and motifs are often available from relatively low-cost experiments or informatics analyses. We present RNABuilder, a novel code that uses internal coordinate mechanics to satisfy user-specified base pairing and steric forces under chemical constraints. The code recapitulates the topology and characteristic L-shape of tRNA and obtains an accurate noncrystallographic structure of the Tetrahymena ribozyme P4/P6 domain. The algorithm scales nearly linearly with molecule size, opening the door to the modeling of significantly larger structures.
PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES
NASA Technical Reports Server (NTRS)
Lawrence, C.
1994-01-01
PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.
NASA Astrophysics Data System (ADS)
Roscow, James I.; Topolov, Vitaly Yu; Taylor, John T.; Bowen, Christopher R.
2017-10-01
This paper presents a detailed modelling and experimental study of the piezoelectric and dielectric properties of novel ferroelectric sandwich layer BaTiO3 structures that consist of an inner porous layer and dense outer layers. The dependencies of the piezoelectric coefficients {d}3j* and dielectric permittivity {\\varepsilon }33* σ of the sandwich structure on the bulk relative density α are analysed by taking into account an inner layer with a porosity volume fraction of 0.5-0.6. The observed changes in {d}3j* and {\\varepsilon }33* σ are interpreted within the framework of a model of a laminar structure whereby the electromechanical interaction of the inner porous layer and outer dense layers have an important role in determining the effective properties of the system. The porous layer is represented as a piezocomposite with a 1-3-0 connectivity pattern, and the composite is considered as a system of long poled ceramic rods with 1-3 connectivity which are surrounded by an unpoled ceramic matrix that contains a system of oblate air pores (3-0 connectivity). The outer monolithic is considered as a dense poled ceramic, however its electromechanical properties differ from those of the ceramic rods in the porous layer due to different levels of mobility of 90° domain walls in ceramic grains. A large anisotropy of {d}3j* at α = 0.64-0.86 is achieved due to the difference in the properties of the porous and monolithic layers and the presence of highly oblate air pores. As a consequence, high energy-harvesting figures of merit {d}3j* {g}3j* are achieved that obey the condition {d}33* {g}33* /({d}31* {g}31* )˜ {10}2 at {d}33* {g}33* ˜ {10}-12 {{{Pa}}}-1, and values of the hydrostatic piezoelectric coefficients {d}h* ≈ 100 {{pC}} {{{N}}}-1 and {g}h* ≈ 20 {{mV}} {{m}} {{{N}}}-1 are achieved at α= 0.64-0.70. The studied BaTiO3-based sandwich structures has advantages over highly anisotropic PbTiO3-type ceramics as a result of the higher piezoelectric activity of ceramic BaTiO3 and can be used in piezoelectric sensor, energy-harvesting and related applications.
Xiao, Bin; Langer, Eike; Dellen, Jakob; Schlenz, Hartmut; Bosbach, Dirk; Suleimanov, Evgeny V; Alekseev, Evgeny V
2015-03-16
While extensive success has been gained in the structural chemistry of the U-Se system, the synthesis and characterization of Th-based Se structures are widely unexplored. Here, four new Th-Se compounds, α-Th(SeO3)2, β-Th(SeO3)2, Th(Se2O5)2, and Th3O2(OH)2(SeO4)3, have been obtained from mild hydrothermal or low-temperature (180-220 °C) flux conditions and were subsequently structurally and spectroscopically characterized. The crystal structures of α-Th(SeO3)2 and β-Th(SeO3)2 are based on ThO8 and SeO3 polyhedra, respectively, featuring a three-dimensional (3D) network with selenite anions filling in the Th channels along the a axis. Th(Se2O5)2 is a 3D framework composed of isolated ThO8 polyhedra interconnected by [Se2O5](2-) dimers. Th3O2(OH)2(SeO4)3 is also a 3D framework constructed by octahedral hexathorium clusters [Th6(μ3-O)4(μ3-OH)4](12+), which are interlinked by selenate groups SeO4(2-). The positions of the vibrational modes associated with both Se(IV)O3(2-) and Se(VI)O4(2-) units, respectively, were determined for four compounds, and the Raman spectra of α- and β-Th(SeO3)2 are compared and discussed in detail.
76 FR 70410 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... prepared from diverse cell types such as mammalian tissues, invertebrate cells, plant cells, bacterial..., invertebrate cells, plant cells, bacterial cells, and fungal cells. To determine the 3D structures of isolated...
Single atom visibility in STEM optical depth sectioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.
The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided amore » cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.« less
Multi-camera digital image correlation method with distributed fields of view
NASA Astrophysics Data System (ADS)
Malowany, Krzysztof; Malesa, Marcin; Kowaluk, Tomasz; Kujawinska, Malgorzata
2017-11-01
A multi-camera digital image correlation (DIC) method and system for measurements of large engineering objects with distributed, non-overlapping areas of interest are described. The data obtained with individual 3D DIC systems are stitched by an algorithm which utilizes the positions of fiducial markers determined simultaneously by Stereo-DIC units and laser tracker. The proposed calibration method enables reliable determination of transformations between local (3D DIC) and global coordinate systems. The applicability of the method was proven during in-situ measurements of a hall made of arch-shaped (18 m span) self-supporting metal-plates. The proposed method is highly recommended for 3D measurements of shape and displacements of large and complex engineering objects made from multiple directions and it provides the suitable accuracy of data for further advanced structural integrity analysis of such objects.
Single atom visibility in STEM optical depth sectioning
Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; ...
2016-10-19
The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided amore » cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.« less
Calculations of the Low-Lying Structures in the Even-Even Nd/Sm/Gd/Dy Isotopes
NASA Astrophysics Data System (ADS)
Lee, Su Youn; Lee, J. H.; Lee, Young Jun
2018-05-01
The nuclear structure of deformed nuclei has been studied using the interacting boson model (IBM). In this study, energy levels and E2 transition probabilities were determined for even nuclei in the Nd/Sm/Gd/Dy chains which have a transition characteristic between the rotational, SU(3) and vibrational, U(5) limits. The structure of the nuclei exhibits a slight breaking of the SU(3) symmetry in the direction of U(5), and therefore, we add the d-boson number operator n d , which is the main term of the U(5) symmetric Hamiltonian, to the SU(3) Hamiltonian of the IBM. The calculated results for low-lying energy levels and E2 transition rates in Nd/Sm/Gd/Dy isotopes are in reasonably good agreement with known experimental results.
High-Speed, Three Dimensional Object Composition Mapping Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, M Y
2001-02-14
This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials andmore » the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roll, Mark F.; Kampf, Jeffrey W.; Laine, Richard M.
2011-05-10
We report here the Diels–Alder reaction of octa(diphenylacetylene)silsesquioxane [DPA₈OS] with tetraphenylcyclopentadienone or tetra(p-tolyl)cyclopentadienone to form octa(hexaphenylbenzene)octasilsesquioxane, (Ph₆C₆)₈OS, or octa(tetratolyldiphenylbenzene)octasilsesquioxane, (p-Tolyl₄Ph₂C₆)₈OS. Likewise, tetra(p-tolyl)cyclopentadienone reacts with octa(p-tolylethynylphenyl)OS to form octa(pentatolylphenylbenzene)octasilsesquioxane (p-Tolyl₅PhC₆)₈OS. These compounds, with molecular weights of 4685–5245 Da, were isolated and characterized using a variety of analytical methods. The crystal structure of DPA₈OS offers a 3 nm³ unit cell with Z = 1. The crystal structure of (Ph₆C₆)₈OS was determined to have a triclinic unit cell of 11 nm³ with Z = 1. The latter structure is believed to be the largest discrete molecular structure reported with 330 carbons. Efforts tomore » dehydrogenatively cyclize (Scholl reaction) the hexaarylbenzene groups to form 3-D octgraphene compounds are described.« less
Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan
2014-01-01
Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates. PMID:24748752
Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan
2014-01-01
The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.
NASA Astrophysics Data System (ADS)
Monga, Olivier; Ayache, Nicholas; Sander, Peter T.
1991-09-01
Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.
Lee, Woonghee; Stark, Jaime L; Markley, John L
2014-11-01
Peak-picking Of Noe Data Enabled by Restriction Of Shift Assignments-Client Server (PONDEROSA-C/S) builds on the original PONDEROSA software (Lee et al. in Bioinformatics 27:1727-1728. doi: 10.1093/bioinformatics/btr200, 2011) and includes improved features for structure calculation and refinement. PONDEROSA-C/S consists of three programs: Ponderosa Server, Ponderosa Client, and Ponderosa Analyzer. PONDEROSA-C/S takes as input the protein sequence, a list of assigned chemical shifts, and nuclear Overhauser data sets ((13)C- and/or (15)N-NOESY). The output is a set of assigned NOEs and 3D structural models for the protein. Ponderosa Analyzer supports the visualization, validation, and refinement of the results from Ponderosa Server. These tools enable semi-automated NMR-based structure determination of proteins in a rapid and robust fashion. We present examples showing the use of PONDEROSA-C/S in solving structures of four proteins: two that enable comparison with the original PONDEROSA package, and two from the Critical Assessment of automated Structure Determination by NMR (Rosato et al. in Nat Methods 6:625-626. doi: 10.1038/nmeth0909-625 , 2009) competition. The software package can be downloaded freely in binary format from http://pine.nmrfam.wisc.edu/download_packages.html. Registered users of the National Magnetic Resonance Facility at Madison can submit jobs to the PONDEROSA-C/S server at http://ponderosa.nmrfam.wisc.edu, where instructions, tutorials, and instructions can be found. Structures are normally returned within 1-2 days.
Synthesis and Crystal Structure Study of 2’-Se-Adenosine-Derivatized DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, J.; Salon, J; Gan, J
2010-01-01
The selenium derivatization of nucleic acids is a novel and promising strategy for 3D structure determination of nucleic acids. Selenium can serve as an excellent anomalous scattering center to solve the phase problem, which is one of the two major bottlenecks in macromolecule X-ray crystallography. The other major bottleneck is crystallization. It has been demonstrated that the incorporated selenium functionality at the 2'-positions of the nucleosides and nucleotides is stable and does not cause significant structure perturbation. Furthermore, it was observed that the 2'-Se-derivatization could facilitate crystallization of oligonucleotides with fast crystal growth and high diffraction quality. Herein, we describemore » a convenient synthesis of the 2'-Se-adenosine phosphoramidite, and report the first synthesis and X-ray crystal structure determination of the DNA containing the 2'-Se-A derivatization. The 3D structure of 2'-Se-A-DNA decamer [5'-GTACGCGT(2'-Se-A)C-3']{sub 2} was determined at 1.75 {angstrom} resolution, the 2'-Se-functionality points to the minor groove, and the Se-modified and native structures are virtually identical. Moreover, we have observed that the 2'-Se-A modification can greatly facilitate the crystal growth with high diffraction quality. In conjunction with the crystallization facilitation by the 2'-Se-U and 2'-Se-T, this novel observation on the 2'-Se-A functionality suggests that the 2'-Se moiety is sole responsible for the crystallization facilitation and the identity of nucleobases does not influence the crystal growth significantly.« less
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
Polyhydroxylated spirostanol saponins from the tubers of Dioscorea polygonoides.
Osorio, Jaime Niño; Mosquera Martinez, Oscar M; Correa Navarro, Yaned M; Watanabe, Kazuki; Sakagami, Hiroshi; Mimaki, Yoshihiro
2005-07-01
Three new polyhydroxylated spirostanol saponins (1-3) were isolated from the tubers of Dioscorea polygonoides. The structures of these new compounds were determined on the basis of extensive spectroscopic analysis and the results of acid or enzymatic hydrolysis as (23S,24R,25S)-23,24-dihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (1), (23S,25R)-12alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (2), and (23S,25R)-14alpha,17alpha,23-trihydroxyspirost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-glucopyranoside (3), respectively.
Structure of D-tagatose 3-epimerase-like protein from Methanocaldococcus jannaschii.
Uechi, Keiko; Takata, Goro; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko
2014-07-01
The crystal structure of a D-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the D-tagatose 3-epimerase from Pseudomonas cichorii and the D-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit-subunit interface differed substantially from that in D-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of D-tagatose 3-epimerase family enzymes and endonuclease IV.
Structure of d-tagatose 3-epimerase-like protein from Methanocaldococcus jannaschii
Uechi, Keiko; Takata, Goro; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko
2014-01-01
The crystal structure of a d-tagatose 3-epimerase-like protein (MJ1311p) encoded by a hypothetical open reading frame, MJ1311, in the genome of the hyperthermophilic archaeon Methanocaldococcus jannaschii was determined at a resolution of 2.64 Å. The asymmetric unit contained two homologous subunits, and the dimer was generated by twofold symmetry. The overall fold of the subunit proved to be similar to those of the d-tagatose 3-epimerase from Pseudomonas cichorii and the d-psicose 3-epimerases from Agrobacterium tumefaciens and Clostridium cellulolyticum. However, the situation at the subunit–subunit interface differed substantially from that in d-tagatose 3-epimerase family enzymes. In MJ1311p, Glu125, Leu126 and Trp127 from one subunit were found to be located over the metal-ion-binding site of the other subunit and appeared to contribute to the active site, narrowing the substrate-binding cleft. Moreover, the nine residues comprising a trinuclear zinc centre in endonuclease IV were found to be strictly conserved in MJ1311p, although a distinct groove involved in DNA binding was not present. These findings indicate that the active-site architecture of MJ1311p is quite unique and is substantially different from those of d-tagatose 3-epimerase family enzymes and endonuclease IV. PMID:25005083
Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S
2016-01-01
High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.
NASA Astrophysics Data System (ADS)
Zhang, Mei; Lin, Han; Wang, Yilong; Yang, Guang; Zhao, He; Sun, Dahui
2017-08-01
Electrospunnanofibers are used as three-dimensional (3D) scaffold materials that can alter cell attachment and cell proliferation, change the antibacterial properties of materials, and can be used as wound dressings. But the fabrication of porous 3D scaffold structure and the antibacterial properties enhancing are challenges remained to improve. With the states here, a Ranachensinensis skin collagen (RCSC)/poly(ɛ-caprolactone) (PCL)AgNP-loaded3D nanofiber scaffold is fabricated as a wound dressing material by using an improved wet electrospinning method (blending). The nanoscale of the AgNPs is proved. The 3D porous morphologies of the materials with different AgNP loadings, are determined with field emission scanning electron microscopy (FESEM) and the presence and uniformity distribution of AgNPs is confirmed by Energy dispersive X-ray (EDX) spectroscopy. The silver-ion release rates, antibacterial properties, and cytotoxicities of dressing materials with different AgNP contents are evaluated using ICP-AES, the zone inhibition method, and MTT testing. These results showed that the improved wet electrospun is an effective way to fabricate AgNP loaded 3D scaffold materials with porous structure and nearly 90% porosity and the presence of AgNPs in dressing materials strengthen the antibacterial properties. The RCSC/PCL 3D scaffold materials containing 2.0%AgNP would be promising for dressing materials application nearly without cytotoxicities.
Structural Basis of TLR5-Flagellin Recognition and Signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Sung-il; Kurnasov, Oleg; Natarajan, Venkatesh
2012-03-01
Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates signaling through the transcription factor NF-{kappa}B and triggers an innate immune response to the invading pathogen. To elucidate the structural basis and mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of zebrafish TLR5 (as a variable lymphocyte receptor hybrid protein) in complex with the D1/D2/D3 fragment of Salmonella flagellin, FliC, at 2.47 angstrom resolution. TLR5 interacts primarily with the three helices of the FliC D1 domain using its lateral side. Two TLR5-FliC 1:1 heterodimers assemble into a 2:2 tail-to-tail signaling complex that is stabilized by quaternary contacts of themore » FliC D1 domain with the convex surface of the opposing TLR5. The proposed signaling mechanism is supported by structure-guided mutagenesis and deletion analyses on CBLB502, a therapeutic protein derived from FliC.« less
Karthikeyan, S; Park, Mina; Shin, Ilgyou; Kim, Kwang S
2008-10-16
We investigated various two-dimensional (2D) and three-dimensional (3D) structures of H (+)(H 2O) 8, using density functional theory (DFT), Moller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations (CCSD(T)). The 3D structure is more stable than the 2D structure at all levels of theory on the Born-Oppenheimer surface. With the zero-point energy (ZPE) correction, the predicted structure varies depending on the level of theory. The DFT employing Becke's three parameters with Lee-Yang-Parr functionals (B3LYP) favors the 2D structure. At the complete basis set (CBS) limit, the MP2 calculation favors the 3D structure by 0.29 kcal/mol, and the CCSD(T) calculation favors the 3D structure by 0.27 kcal/mol. It is thus expected that both 2D and 3D structures are nearly isoenergetic near 0 K. At 100 K, all the calculations show that the 2D structure is much more stable in free binding energy than the 3D structure. The DFT and MP2 vibrational spectra of the 2D structure are consistent with the experimental spectra. First-principles Car-Parrinello molecular dynamics (CPMD) simulations show that the 2D Zundel-type vibrational spectra are in good agreement with the experiment.
Mega-pockmarks surrounding IODP Site U1414: Insights from the CRISP 3D seismic survey
NASA Astrophysics Data System (ADS)
Nale, S. M.; Kluesner, J. W.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.; Ranero, C. R.
2013-12-01
Visualization of neural network meta-attribute analyses reveals fluid migration pathways associated with mega-pockmarks within the CRISP 3D seismic volume offshore southern Costa Rica, near site U1414 of IODP Expedition 344. A 245km2 field of mega-pockmarks was imaged on the Cocos Ridge using EM122 multibeam bathymetry, backscatter and 3D seismic reflection aboard R/V Marcus G. Langseth during the 2011 CRISP seismic survey. We utilize the OpendTect software package to calculate supervised neural network meta-attributes within the 3D seismic volume, in order to detect and visualize probable faults and fluid-migration pathways within the sedimentary section of the incoming Cocos plate [see Kluesner et al., this meeting]. Pockmarks imaged within the 3D volume near the trench commonly show a two-tier structure with upper pockmarks located above the steep walls of deeper, older pockmarks. The latter appear to truncate surrounding strata, including widespread high-amplitude reverse polarity reflectors (RPRs), interpreted as trapping horizons. In addition, RPRs are also truncated by positive polarity crosscutting reflections (CCRs), most of which form the base and sides of lens-like structures below the RPRs that are frequently located next to imaged pockmarks. Site U1414 intersects one of these lens-like structures and this appears to correlate to a sharp density and porosity swing observed at ~255 mbsf. In addition, preliminary geochemical analyses from site U1414 show evidence of lateral fluid flow through sediments below the RPR [Expedition 344 Scientists, 2013]. Thus, we interpret the 3D lens-like structures to be pockets of trapped gas and/or over-pressured fluid. Based on 3D imaging we propose a 3-stage pockmark evolution: (1) Overpressure and blowout along RPRs, resulting in pockmark formation, (2) sustained seepage along pockmark walls, resulting in preferential deposition near the center of the pockmark, and (3) rapid burial as pockmarks near the trench axis. On the seafloor, small high-backscatter mounds are found near the walls of a subset of pockmarks, suggesting recent or active seafloor seepage. Further geochemical analyses are needed to determine the source of fluid/gas migration associated with the pockmark structures.
Luyen, Bui Thi Thuy; Tai, Bui Huu; Thao, Nguyen Phuong; Yang, Seo Young; Cuong, Nguyen Manh; Kwon, Young In; Jang, Hae Dong; Kim, Young Ho
2014-09-01
Two new compounds, piperoside (1) and isoheptanol 2(S)-O-β-D-xylopyranosyl (1→6)-O-β-D-glucopyranoside (11), along with 10 known compounds 3,4-dihydroxyallylbenzene (2), 1,2-di-O-β-D-glucopyranosyl-4-allylbenzene (3), tachioside (4), benzyl-O-β-D-glucopyranoside (5), icariside F2 (6), dihydrovomifoliol-3'-O-β-D-glucopyranoside (7), isopropyl O-β-D-glucopyranoside (8), isopropyl primeveroside (9), n-butyl O-β-D-glucopyranoside (10), isoheptanol 2(S)-O-β-D-apiofuranosyl-(1→6)-O-β-D-glucopyranoside (12), were isolated from the leaves of Piper retrofractum. Their structures were determined from 1D-NMR, 2D-NMR, and HR-ESI-MS spectral, a modified Mosher's method, and comparisons with previous reports. All of the isolated compounds showed modest α-glucosidase inhibitory (4.60±1.74% to 11.97±3.30%) and antioxidant activities under the tested conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Harish, Kikkeri P; Mohana, Kikkeri N; Mallesha, Lingappa; Veeresh, Bantal
2014-04-01
A series of new 2-methyl-2-[3-(5-piperazin-1-yl-[1,3,4]oxadiazol-2-yl)-phenyl]-propionitrile derivatives 8a-o, 9a-c, 10a-d, and 11a-d were synthesized to meet the structural requirements essential for anticonvulsant property. The structures of all the synthesized compounds were confirmed by means of (1)H NMR, (13)C NMR, and mass spectral studies. The purity of the novel compounds was confirmed by elemental analyses. All the compounds were screened for their anticonvulsant activity against maximal electroshock (MES) seizure method and their neurotoxic effects were determined by rotorod test. Compounds 8d, 8e, and 8f were found to be the most potent of this series. The same compounds showed no neurotoxicity at the maximum dose administered (100 mg/kg). The efforts were also made to establish the structure-activity relationships among the synthesized compounds. The pharmacophore model was used to validate the anticonvulsant activity of the synthesized molecules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Single-Crystal Structure of a Covalent Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, YB; Su, J; Furukawa, H
2013-11-06
The crystal structure of a new covalent organic framework, termed COF-320, is determined by single-crystal 3D electron diffraction using the rotation electron diffraction (RED) method for data collection. The COF crystals are prepared by an imine condensation of tetra-(4-anilyl)methane and 4,4'-biphenyldialdehyde in 1,4-dioxane at 120 degrees C to produce a highly porous 9-fold interwoven diamond net. COF-320 exhibits permanent porosity with a Langmuir surface area of 2400 m(2)/g and a methane total uptake of 15.0 wt % (176 cm(3)/cm(3)) at 25 degrees C and 80 bar. The successful determination of the structure of COF-320 directly from single-crystal samples is anmore » important advance in the development of COF chemistry.« less
Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Chad R.; Zhang, Fei; MacCulloch, Tara
The foundational goal of structural DNA nanotechnology—the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems—was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing amore » sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest–DNA conjugates with a specified crystalline hand.« less
NASA Astrophysics Data System (ADS)
Barakat, Assem; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Islam, Mohammad Shahidul; Ghawas, Hussain Mansur; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul
2017-08-01
Barbiturate derivatives are privileged structures with a broad range of pharmaceutical applications. We prepared a series of 5-monoalkylated barbiturate derivatives (3a-l) and evaluated, in vitro, their antioxidant (DPPH assay), and α-glucosidase inhibitory activities. Compounds 3a-l were synthesized via Michael addition. The structure of compound 3k was determined using X-ray single-crystal diffraction, and geometric parameters were calculated using density functional theory at the B3LYP/6-311G(d,p) level of theory. Further, the structural analysis of 3k were also investigated. Biological studies revealed that compounds 3b (IC50 = 133.1 ± 3.2 μM), 3d (IC50 = 305 ± 7.7 μM), and 3e (IC50 = 184 ± 2.3 μM) have potent α-glucosidase enzyme inhibitors and showed greater activity than the standard drug acarbose (IC50 = 841 ± 1.73 μM). Compounds 3a-3i were found to show weak antioxidant activity against 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals (IC50 = 91 ± 0.75 to 122 ± 1.0 μM) when tested against a standard antioxidant, gallic acid (IC50 = 23 ± 0.43 μM).
Consistent global structures of complex RNA states through multidimensional chemical mapping
Cheng, Clarence Yu; Chou, Fang-Chieh; Kladwang, Wipapat; Tian, Siqi; Cordero, Pablo; Das, Rhiju
2015-01-01
Accelerating discoveries of non-coding RNA (ncRNA) in myriad biological processes pose major challenges to structural and functional analysis. Despite progress in secondary structure modeling, high-throughput methods have generally failed to determine ncRNA tertiary structures, even at the 1-nm resolution that enables visualization of how helices and functional motifs are positioned in three dimensions. We report that integrating a new method called MOHCA-seq (Multiplexed •OH Cleavage Analysis with paired-end sequencing) with mutate-and-map secondary structure inference guides Rosetta 3D modeling to consistent 1-nm accuracy for intricately folded ncRNAs with lengths up to 188 nucleotides, including a blind RNA-puzzle challenge, the lariat-capping ribozyme. This multidimensional chemical mapping (MCM) pipeline resolves unexpected tertiary proximities for cyclic-di-GMP, glycine, and adenosylcobalamin riboswitch aptamers without their ligands and a loose structure for the recently discovered human HoxA9D internal ribosome entry site regulon. MCM offers a sequencing-based route to uncovering ncRNA 3D structure, applicable to functionally important but potentially heterogeneous states. DOI: http://dx.doi.org/10.7554/eLife.07600.001 PMID:26035425
NASA Astrophysics Data System (ADS)
Cruzan, Jeff D.; Viant, Mark R.; Brown, Mac G.; Lucas, Don D.; Liu, Kun; Saykally, Richard J.
1998-08-01
The vibration-rotation-tunneling (VRT) spectrum of a low-frequency intermolecular vibration of (D 2O) 5 was recorded near 0.9 THz (30.2 cm -1). From an analysis of the relative intensities in the compact Q-branch region, the ground-state C-rotational constant is estimated to be 975±60 MHz, consistent with ab initio structural predictions. The precisely determined B-rotational constant ( B=1750.96±0.20 MHz) agrees well with previous results. Efforts to resolve possible bifurcation tunneling fine structure, such as that observed in VRT spectra of (D 2O) 3, revealed no such effects. This constrains the splittings to be less than 450 kHz, or roughly 3 times smaller than required by previous results.
Zhang, Lei; Sob, M; Wu, Zhe; Zhang, Ying; Lu, Guang-Hong
2014-02-26
We present a comprehensive study of the relationship between the ferromagnetism and the structural properties of Fe systems from three-dimensional ones to isolated atoms based on the spin-density functional theory. We have found a relation between the magnetic moment and the volume of the Voronoi polyhedron, determining, in most cases, the value of the total magnetic moment as a function of this volume with an average accuracy of ±0.28 μ(B) and of the 3d magnetic moment with an average accuracy of ±0.07 μ(B) when the atomic volume is larger than 22 ų. It is demonstrated that this approach is applicable for many three-dimensional systems, including high-symmetry structures of perfect body-centered cubic (bcc), face-centered cubic (fcc), hexagonal close-packed (hcp), double hexagonal close-packed (dhcp), and simple cubic (sc) crystals, as well as for lower-symmetry ones, for example atoms near a grain boundary (GB) or a surface, around a vacancy or in a linear chain (for low-dimensional cases, we provide a generalized definition of the Voronoi polyhedron). Also, we extend the validity of the Stoner model to low-dimensional structures, such as atomic chains, free-standing monolayers and surfaces, determining the Stoner parameter for these systems. The ratio of the 3d-exchange splitting to the magnetic moment, corresponding to the Stoner parameter, is found to be I(3d) = (0.998 ± 0.006) eV /μ(B) for magnetic moments up to 3.0 μ(B). Further, the 3d exchange splitting changes nearly linearly in the region of higher magnetic moments (3.0-4.0 μ(B)) and the corresponding Stoner exchange parameter equals I(h)(3d) = (0.272 ± 0.006) eV /μ(B). The existence of these two regions reflects the fact that, with increasing Voronoi volume, the 3d bands separate first and, consequently, the 3d magnetic moment increases. When the Voronoi volume is sufficiently large (≥22 ų), the separation of the 3d bands is complete and the magnetic moment reaches a value of 3.0 μ(B). Then, when the volume further increases, the 4s bands start to separate, increasing thus the 4s magnetic moment. Surprisingly, in the region of higher magnetic moments (≥3.0 μ(B)), there is also a linear relationship between the 4s exchange splitting and the total magnetic moment with a slope of I(h)(4s) = (1.053 ± 0.016) eV /μ(B), which is nearly identical to I(3d) for magnetic moments up to 3.0 μB. These linear relations can be considered as an extension of the Stoner model for low-dimensional systems.
Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.
Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian
2011-12-01
To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.
Chen, Shaoxia; McMullan, Greg; Faruqi, Abdul R; Murshudov, Garib N; Short, Judith M; Scheres, Sjors H W; Henderson, Richard
2013-12-01
Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an unbiased FSC from the two curves, even when a substantial amount of overfitting is present. The approach is software independent. The user is therefore completely free to use any established method or novel combination of methods, provided the HR-noise test is carried out in parallel. Applying this procedure to cryoEM images of beta-galactosidase shows how overfitting varies greatly depending on the procedure, but in the best case shows no overfitting and a resolution of ~6 Å. (382 words). © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Synthesis, fluorescence, TGA and crystal structure of thiazolyl-pyrazolines derived from chalcones
NASA Astrophysics Data System (ADS)
Suwunwong, T.; Chantrapromma, S.; Fun, H.-K.
2015-04-01
Thiazolyl-pyrazolines 3a-3d were synthesized in a three step procedure using chalcones as starting materials and characterized by FT-IR, UV-Vis, and 1H NMR techniques. The crystal structure of compound 3a was also determined by X-ray diffraction analysis. Compound 3a crystallized out in the orthorhombic P212121 space group with the unit cell dimensions: a = 5.2106(2) Å, b = 12.4341(5) Å, c = 33.3254(13) Å, α = β = γ = 90°, V = 2159.12(15) Å3, Z = 4, D cald = 1.372 M gm-3 and F(000) = 928. Fluorescence of 3a-3d were studied in solid state and acetonitrile solution. It was found that, these compounds exhibit the green fluorescence light (506-508 nm) in both solid and solution states. The pH stability on fluorescence property and the thermal gravimetric analysis of compound 3a were specifically carried out. It was revealed that 3a shows high thermal stability up to around 250°C and presenting high stability in various pH ranges in the acetonitrilewater matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN
2017-01-15
Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge themore » adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.« less
Photoluminescent lanthanide-organic bilayer networks with 2,3-pyrazinedicarboxylate and oxalate.
Soares-Santos, Paula C R; Cunha-Silva, Luís; Paz, Filipe A Almeida; Ferreira, Rute A S; Rocha, João; Carlos, Luís D; Nogueira, Helena I S
2010-04-05
The hydrothermal reaction between lanthanide nitrates and 2,3-pyrazinedicarboxylic acid led to a new series of two-dimensional (2D) lanthanide-organic frameworks: [Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)](n) [where 2,3-pzdc(2-) = 2,3-pyrazinedicarboxylate, ox(2-) = oxalate, and Ln(III) = Ce, Nd, Sm, Eu, Gd, Tb, or Er]. The structural details of these materials were determined by single-crystal X-ray diffraction (for Ce(3+) and Nd(3+)) that revealed the formation of a layered structure. Cationic monolayers of {(infinity)(2)[Ln(2,3-pzdc)(H(2)O)](+)} are interconnected via the ox(2-) ligand leading to the formation of neutral (infinity)(2)[Ln(2)(2,3-pzdc)(2)(ox)(H(2)O)(2)] bilayer networks; structural cohesion of the crystalline packing is reinforced by the presence of highly directional O-H...O hydrogen bonds between adjacent bilayers. Under the employed hydrothermal conditions 2,3-pyrazinedicarboxylic acid can be decomposed into ox(2-) and 2-pyrazinecarboxylate (2-pzc(-)), as unequivocally proved by the isolation of the discrete complex [Tb(2)(2-pzc)(4)(ox)(H(2)O)(6)].10H(2)O. Single-crystal X-ray diffraction of this latter complex revealed its co-crystallization with an unprecedented (H(2)O)(16) water cluster. Photoluminescence measurements were performed for the Nd(3+), Sm(3+), Eu(3+), and Tb(3+) compounds which show, under UV excitation at room temperature, the Ln(3+) characteristic intra-4f(N) emission peaks. The energy level of the triplet states of 2,3-pyrazinedicarboxylic acid (18939 cm(-1)) and oxalic acid (24570 cm(-1)) was determined from the 12 K emission spectrum of the Gd(3+) compound. The (5)D(0) and (5)D(4) lifetime values (0.333 +/- 0.006 and 0.577 +/- 0.017 ms) and the absolute emission quantum yields (0.13 +/- 0.01 and 0.05 +/- 0.01) were determined for the Eu(3+) and Tb(3+) compounds, respectively. For the Eu(3+) compound the energy transfer efficiency arising from the ligands' excited states was estimated (0.93 +/- 0.01).
Microenvironmental Stiffness of 3D Polymeric Structures to Study Invasive Rates of Cancer Cells.
Lemma, Enrico Domenico; Spagnolo, Barbara; Rizzi, Francesco; Corvaglia, Stefania; Pisanello, Marco; De Vittorio, Massimo; Pisanello, Ferruccio
2017-11-01
Cells are highly dynamic elements, continuously interacting with the extracellular environment. Mechanical forces sensed and applied by cells are responsible for cellular adhesion, motility, and deformation, and are heavily involved in determining cancer spreading and metastasis formation. Cell/extracellular matrix interactions are commonly analyzed with the use of hydrogels and 3D microfabricated scaffolds. However, currently available techniques have a limited control over the stiffness of microscaffolds and do not allow for separating environmental properties from biological processes in driving cell mechanical behavior, including nuclear deformability and cell invasiveness. Herein, a new approach is presented to study tumor cell invasiveness by exploiting an innovative class of polymeric scaffolds based on two-photon lithography to control the stiffness of deterministic microenvironments in 3D. This is obtained by fine-tuning of the laser power during the lithography, thus locally modifying both structural and mechanical properties in the same fabrication process. Cage-like structures and cylindric stent-like microscaffolds are fabricated with different Young's modulus and stiffness gradients, allowing obtaining new insights on the mechanical interplay between tumor cells and the surrounding environments. In particular, cell invasion is mostly driven by softer architectures, and the introduction of 3D stiffness "weak spots" is shown to boost the rate at which cancer cells invade the scaffolds. The possibility to modulate structural compliance also allowed estimating the force distribution exerted by a single cell on the scaffold, revealing that both pushing and pulling forces are involved in the cell-structure interaction. Overall, exploiting this method to obtain a wide range of 3D architectures with locally engineered stiffness can pave the way for unique applications to study tumor cell dynamics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per
2018-04-01
For NCS in the X ˜ 2 Π electronic ground state, three-dimensional potential energy surfaces (3D PESs) have been calculated ab initio at the core-valence, full-valence MR-SDCI+Q/[aug-cc-pCVQZ (N, C, S)] level of theory. The ab initio 3D PESs are employed in second-order-perturbation-theory and DVR3D calculations to obtain various molecular constants and ro-vibrationally averaged structures. The 3D PESs show that the X ˜ 2 Π NCS has its potential minimum at a linear configuration, and hence it is a "linear molecule." The equilibrium structure has re (N-C) = 1.1778 Å, re (C-S) = 1.6335 Å, and ∠e (N-C-S) = 180°. The ro-vibrationally averaged structure, determined as expectation values over DVR3D wavefunctions, has 〈 r (N-C)〉0 = 1.1836 Å, 〈 r (C-S)〉0 = 1.6356 Å, and 〈 ∠ (N-C-S)〉0 = 172.5°. Using these expectation values as the initial guess, a bent r0 structure having an 〈 ∠ (N-C-S)〉0 of 172.2° is deduced from the experimentally reported B0 values for NC32S and NC34S. Our previous prediction that a linear molecule, in any ro-vibrational state including the ro-vibrational ground state, is to be "observed" as being bent on ro-vibrational average, has been confirmed here theoretically through the expectation value for the bond-angle deviation from linearity, 〈 ρ bar 〉 , and experimentally through the interpretation of the experimentally derived rotational-constant values.
Beamer, B A; Negri, C; Yen, C J; Gavrilova, O; Rumberger, J M; Durcan, M J; Yarnall, D P; Hawkins, A L; Griffin, C A; Burns, D K; Roth, J; Reitman, M; Shuldiner, A R
1997-04-28
We determined the chromosomal localization and partial genomic structure of the coding region of the human PPAR gamma gene (hPPAR gamma), a nuclear receptor important for adipocyte differentiation and function. Sequence analysis and long PCR of human genomic DNA with primers that span putative introns revealed that intron positions and sizes of hPPAR gamma are similar to those previously determined for the mouse PPAR gamma gene[13]. Fluorescent in situ hybridization localized hPPAR gamma to chromosome 3, band 3p25. Radiation hybrid mapping with two independent primer pairs was consistent with hPPAR gamma being within 1.5 Mb of marker D3S1263 on 3p25-p24.2. These sequences of the intron/exon junctions of the 6 coding exons shared by hPPAR gamma 1 and hPPAR gamma 2 will facilitate screening for possible mutations. Furthermore, D3S1263 is a suitable polymorphic marker for linkage analysis to evaluate PPAR gamma's potential contribution to genetic susceptibility to obesity, lipoatrophy, insulin resistance, and diabetes.
NASA Astrophysics Data System (ADS)
Brain, Paul T.; Irving, Iain A.; Rankin, David W. H.; Robertson, Heather E.; Leung, Wing-Por; Bühl, Michael
1997-09-01
The gas-phase molecular structure of tetrakis(trimethylsily)hydrazine, N 2(SiMe 3) 4, in the gas phase has been determined by electron diffraction. The skeleton consists of two planar NSi 2 fragments which are not coplanar, but twisted 86.9(38)° relative to one another. This conformation, combined with the arrangements of the trimethylsilyl groups, gives the molecule overall D2 symmetry, and ensures that there are no major steric interactions between the groups. Ab initio calculations at the {SCF}/{6-31 G∗ } level confirm that D2 symmetry is favoured. The bond lengths ( ra) of 143.3(16) pm for NN. 175.9(5) pm for SiN and 187.5(2) pm for SiC, and the SiNSi and CSiC angles of 124.1(15)° and 108.8(7) respectively, also indicate that this is not a severely strained molecule, although the SiN distance is quite long, being comparable to that observed in N(SiMe 3) 3.
Synthesis, structure and optical properties of two isotypic crystals, Na{sub 3}MO{sub 4}Cl (M=W, Mo)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Shujuan; Bai, Chunyan; Zhang, Bingbing
Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na{sub 3}WO{sub 4}Cl and a=7.4942(12), c=5.3409(18) for Na{sub 3}MoO{sub 4}Cl. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. The structural similarities and differences between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Sr{sub 3}MO{sub 4}F (M=Al, Ga) havemore » been discussed. Meanwhile, detailed structure comparison analyses between Na{sub 3}MO{sub 4}Cl (M=W, Mo) and Na{sub 3}MO{sub 4}F (M=W, Mo) indicate that the different connection modes of ClNa{sub 6} and FNa{sub 6} make Na{sub 3}MO{sub 4}Cl and Na{sub 3}MO{sub 4}F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na{sub 3}WO{sub 4}Cl and Na{sub 3}MoO{sub 4}Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na{sub 3}MO{sub 4}Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa{sub 6} groups, and the MO{sub 4} groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na{sub 3}MO{sub 4}Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa{sub 6}, and WO{sub 4} lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.« less
A 3D human tissue-engineered lung model to study influenza A infection.
Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather
2018-05-05
Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Pestalactams A-C: novel caprolactams from the endophytic fungus Pestalotiopsis sp.
Davis, Rohan A; Carroll, Anthony R; Andrews, Katherine T; Boyle, Glen M; Tran, Truc Linh; Healy, Peter C; Kalaitzis, John A; Shivas, Roger G
2010-04-21
Chemical investigations of a fermentation culture from the endophytic fungus Pestalotiopsis sp. yielded three novel caprolactams, pestalactams A-C (). The structures of were determined by analysis of 1D and 2D-NMR, UV, IR, and MS data. The structure of pestalactam A was confirmed following single crystal X-ray diffraction analysis. Pestalactams A-C are the first C-7 alkylated caprolactam natural products to be reported. Pestalactams A () and B () were tested against two different strains of the malaria parasite Plasmodium falciparum (3D7 and Dd2), and the mammalian cell lines, MCF-7 and NFF, and showed modest in vitro activity in all assays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lin; Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn; Yang, Gao-Shan
2015-11-15
Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, andmore » contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.« less
Stenmark, Pål; Moche, Martin; Gurmu, Daniel; Nordlund, Pär
2007-10-12
We have determined the crystal structure of the bi-functional deaminase/reductase enzyme from Escherichia coli (EcRibD) that catalyzes two consecutive reactions during riboflavin biosynthesis. The polypeptide chain of EcRibD is folded into two domains where the 3D structure of the N-terminal domain (1-145) is similar to cytosine deaminase and the C-terminal domain (146-367) is similar to dihydrofolate reductase. We showed that EcRibD is dimeric and compared our structure to tetrameric RibG, an ortholog from Bacillus subtilis (BsRibG). We have also determined the structure of EcRibD in two binary complexes with the oxidized cofactor (NADP(+)) and with the substrate analogue ribose-5-phosphate (RP5) and superposed these two in order to mimic the ternary complex. Based on this superposition we propose that the invariant Asp200 initiates the reductive reaction by abstracting a proton from the bound substrate and that the pro-R proton from C4 of the cofactor is transferred to C1 of the substrate. A highly flexible loop is found in the reductase active site (159-173) that appears to control cofactor and substrate binding to the reductase active site and was therefore compared to the corresponding Met20 loop of E. coli dihydrofolate reductase (EcDHFR). Lys152, identified by comparing substrate analogue (RP5) coordination in the reductase active site of EcRibD with the homologous reductase from Methanocaldococcus jannaschii (MjaRED), is invariant among bacterial RibD enzymes and could contribute to the various pathways taken during riboflavin biosynthesis in bacteria and yeast.
Antioxidant constituents of the aerial parts of Globularia alypum growing in Morocco.
Es-Safi, Nour-Eddine; Khlifi, Samira; Kerhoas, Lucien; Kollmann, Albert; El Abbouyi, Ahmed; Ducrot, Paul-Henri
2005-08-01
Three new phenolic compounds were isolated from the aerial parts of Globularia alypum. Their structures were determined as 6-hydroxyluteolin 7-O-laminaribioside (1), eriodictyol 7-O-sophoroside (2), and 6'-O-coumaroyl-1'-O-[2-(3,4-dihydroxyphenyl)ethyl]-beta-D-glucopyranoside (3). In addition, three phenylethanoid glycosides (acteoside, isoacteoside, and forsythiaside) and two flavonoid glycosides (6-hydroxyluteolin 7-O-beta-D-glucopyranoside and luteolin 7-O-sophoroside) were also isolated and are reported here for the first time in this plant. The structures of compounds 1-3 were established on the basis of their spectroscopic data analysis. Evaluation of the antioxidative activity, conducted in vitro, showed that the isolated phenylethanoids and flavonoid glycosides possess strong effects of this type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso
2015-05-15
Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively.more » Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of reagents. • Dimensionality and crystalline structure is a function of the zinc environments. • New coordination modes for 2-carboxyethylphosphonic acid are reported. • 3D-compound presents three different coordination environments for the zinc atoms. • Fluorescence properties are related to the structural dimensionality.« less
Yamada, Koji; Tanabe, Kaoru; Miyamoto, Tomofumi; Kusumoto, Toshihide; Inagaki, Masanori; Higuchi, Ryuichi
2008-05-01
A new monomethylated ganglioside, DSG-A (3), was obtained, together with four known gangliosides, compounds (1, 2, 4, 5), from the lipid fraction of the chloroform/methanol extract of the ovary of the sea urchin Diadema setosum. The structures of the new ganglioside was determined on the basis of chemical and spectroscopic evidence to be 1-O-[9-O-methyl-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moiety of 3 was composed of C18-phytosphingosine base, and 2-hydroxy and nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor, in which compound 3 showed the most potent activity.
Oleanane-type triterpene saponins from Calendula stellata.
Lehbili, Meryem; Alabdul Magid, Abdulmagid; Kabouche, Ahmed; Voutquenne-Nazabadioko, Laurence; Abedini, Amin; Morjani, Hamid; Sarazin, Thomas; Gangloff, Sophie C; Kabouche, Zahia
2017-12-01
Five previously undescribed bisdesmosidic triterpenoid saponins named calendustellatosides A-E, along with fifteen known compounds were isolated from the 70% ethanol whole plant extract of Calendula stellata Cav. (Asteraceae). Their structures were determined by 1D- and 2D-NMR spectroscopy as well as high resolution mass spectrometry and acid hydrolysis. The saponins comprised oleanolic acid, echinocystic acid, morolic acid or mesembryanthemoidigenic acid as the aglycones and saccharide moieties at C-3 and C-28. Like most Calendula saponins, the sugar moiety linked at C-3 was either β-d-glucose or β-d-glucuronic acid which could be substituted at C-3 by a β-d-galactose and/or C-2 by a supplementary β-d-galactose or a β-d-glucose. The sugar moiety linked to C-28 was determined as β-d-glucose. The antibacterial evaluation of compounds 1-20 by bioautography on Staphylococcus aureus followed by the determination of MIC values of active compounds by serial dilution technique against 5 bacteria revealed that; calendustellatoside D was the most active against Enterococcus faecalis with an antibacterial effect comparable to antibiotics. The cytotoxic activities of isolated compounds were evaluated against fibrosarcoma cell line (HT1080) and human lung cancer cell line (A549). Calendustellatosides B and D exhibited a low cytotoxic activity against HT1080 cell line with IC 50 values of 47 ± 0.6 and 39 ± 0.5 μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, R R; Yang, Bo; Frieler, C E; Berden, G; Oomens, J; Rodgers, M T
2015-05-07
Infrared multiple photon dissociation action spectra of the protonated forms of the cytidyl nucleosides, 2'-deoxycytidine, [dCyd+H](+), and cytidine, [Cyd+H](+), are acquired over the IR fingerprint and hydrogen-stretching regions. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level to determine the stable low-energy tautomeric conformations of these species generated upon electrospray ionization (ESI) and to generate the linear IR absorption spectra of these protonated nucleosides. Comparison between the experimental and theoretical spectra allows the tautomeric conformations of [dCyd+H](+) and [Cyd+H](+) populated by ESI to be determined. B3LYP predicts N3 as the preferred protonation site for both [dCyd+H](+) and [Cyd+H](+), whereas MP2 suggests that protonation at O2 is more favorable. The 2'-hydroxyl substituent does not significantly alter the structures of the B3LYP N3 and MP2 O2 protonated ground tautomeric conformations of [dCyd+H](+) vs [Cyd+H](+). [dCyd+H](+) and [Cyd+H](+) exhibit very similar spectral signatures in both regions. Nonetheless, the 2'-hydroxyl does affect the relative intensities of the IRMPD bands of [dCyd+H](+) vs [Cyd+H](+). The spectral features observed in the hydrogen-stretching region complement those of the fingerprint region and allow the N3 and O2 protonated tautomeric conformations to be readily distinguished. Comparison between the measured and computed spectra indicates that both N3 and O2 protonated tautomeric conformations coexist in the experiments, and the populations are dominated by the most stable N3 and O2 protonated tautomeric conformations. Least-squares fitting of the IRMPD spectra to the IR spectra for these most stable conformers suggests relative populations of ∼55% N3 vs 45% O2 protonated conformers of [dCyd+H](+), whereas ∼47% N3 vs 53% O2 protonated conformers of [Cyd+H](+). This change in the preferred site of protonation indicates that the 2'-hydroxyl substituent plays an important role in controlling the reactivity of the cytidyl nucleosides.
1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax.
Cysne, Juliana de Brito; Braz-Filho, Raimundo; Assunção, Marcus Vinícius; Uchoa, Daniel E de Andrade; Silveira, Edilberto R; Pessoa, Otília Deusdênia L
2006-06-01
The phytochemical investigation of carnauba wax led to the isolation of three new dammarane triterpenoids 1, 2 and 4, together with the known triterpene 3. The structures of the new compounds were determined by 1D and 2D NMR spectroscopy and by comparison with published data for closely related compounds. 2006 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Clem, Douglas Wayne
2012-01-01
Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and…
Zhao, Xiao-Qing; Zhao, Bin; Wei, Shi; Cheng, Peng
2009-12-07
A series of Ln-Ag heterometal-organic frameworks based on 4-hydroxylpyridine-2,6-dicarboxylic acid (H(3)CAM) with formulas {LaAg(2)(CAM)(HCAM)(H(2)O)(2)}(n) (1), {LnAg(HCAM)(2)(H(2)O)(3)}(n) (Ln = Pr, 2; Nd, 3; Sm, 4; Eu, 5), and {LnAg(3)(CAM)(2)(H(2)O)}(n) (Ln = Gd, 6; Tb, 7; Dy, 8; Tm, 9; Yb, 10), have been synthesized with the hydrothermal reaction of Ln(OH)(3), Ag(2)O, and H(3)CAM at 160 degrees C. The single-crystal X-ray diffraction analyses reveal that three kinds of structures are exclusively governed by the size of lanthanide ions and the progression of structures is mainly ascribed to the lanthanide contraction effect. Compound 1 consists of a 3D network with an alpha-polonium-like Ag(+)-homometallic net and helical La(3+) chain. Compounds 2-5 display a 2D honeycomb-like structure with 18-membered Ln(3)Ag(3)O(12) motifs, and compounds 6-10 can be described as a sandwich-like 3D framework built of a 3D Ag(+)-homometallic net and 2D Ln(3+)-4(4) layer. In 4 (Sm), 5 (Eu), 7 (Tb), and 8 (Dy) samples, the efficient energy transfer from CAM to Ln(III) ions was observed, which results in the typical intense emissions of corresponding Ln(III) ions in the visible region, and the strongest emissions are (4)G(5/2) --> (6)H(7/2) (602 nm), (5)D(0) --> (7)F(2) (614 nm), (5)D(4) --> (7)F(5) (548 nm), and (4)F(9/2) --> (6)H(13/2) (576 nm) transitions. Variable-temperature magnetic susceptibility measurements of 6-10 show that the ferromagnetic interaction between gadolinium(III) ions appears in 6, whereas the mu(eff) values of 7-10 smoothly decrease on cooling. For the orbital contribution of Ln(III) ions, it is very difficult to determine the intrinsic magnetic interactions between Ln(III) ions.
Naka, Maiko; Kanamori, Akiyasu; Tatsumi, Yasuko; Fujioka, Miyuki; Nagai-Kusuhara, Azusa; Nakamura, Makoto; Negi, Akira
2009-01-01
To evaluate which of the 3 clinically used visual field indices including mean deviation (MD), Advanced Glaucoma Intervention Study (AGIS) score, and Collaborative Initial Glaucoma Treatment Study (CIGTS) score are best in evaluating functional damage of glaucomatous optic neuropathy. In 213 glaucomatous eyes, peripapillary retinal nerve fiber layer thickness (RNFLT) and optic disc configuration were measured with Stratus optical coherence tomography and Heidelberg Retina Tomograph-2, respectively. Visual field was measured with standard automated perimetry 30-2. Correlations of the structural parameters compared with the 3 VF indices using second polynomial regression were calculated. In addition, these correlations were analyzed among eyes of 3 different stages of glaucoma, as defined by MD score (early, MD> or =-6 dB; moderate, -12 dB< or =MD<-6 dB; advanced, MD<-12 dB). Among structure-function relationships in all subjects, the highest correlation determination (R) was MD with RNFLT (=0.298). CIGTS score showed better R than MD or AGIS score with rim area, but these values were not higher than any R with RNFLT. In analyses of 3 groups depending on MD, statistically significant structure-function correlations were observed only in patients with an advanced stage. No clear difference was found among MD and AGIS/CIGTS scores in expressing functional damage of glaucomatous eyes. MD is suggested to be no worse than others in monitoring glaucoma in clinical setting.
Data-driven sampling method for building 3D anatomical models from serial histology
NASA Astrophysics Data System (ADS)
Salunke, Snehal Ulhas; Ablove, Tova; Danforth, Theresa; Tomaszewski, John; Doyle, Scott
2017-03-01
In this work, we investigate the effect of slice sampling on 3D models of tissue architecture using serial histopathology. We present a method for using a single fully-sectioned tissue block as pilot data, whereby we build a fully-realized 3D model and then determine the optimal set of slices needed to reconstruct the salient features of the model objects under biological investigation. In our work, we are interested in the 3D reconstruction of microvessel architecture in the trigone region between the vagina and the bladder. This region serves as a potential avenue for drug delivery to treat bladder infection. We collect and co-register 23 serial sections of CD31-stained tissue images (6 μm thick sections), from which four microvessels are selected for analysis. To build each model, we perform semi-automatic segmentation of the microvessels. Subsampled meshes are then created by removing slices from the stack, interpolating the missing data, and re-constructing the mesh. We calculate the Hausdorff distance between the full and subsampled meshes to determine the optimal sampling rate for the modeled structures. In our application, we found that a sampling rate of 50% (corresponding to just 12 slices) was sufficient to recreate the structure of the microvessels without significant deviation from the fullyrendered mesh. This pipeline effectively minimizes the number of histopathology slides required for 3D model reconstruction, and can be utilized to either (1) reduce the overall costs of a project, or (2) enable additional analysis on the intermediate slides.
[Expression and Preliminary Research on the Soluble Domain of EV-D68 3A Protein].
Li, Ting; Kong, Jia; Yu, Xiao-fang; Han, Xue
2015-11-01
To understand the structure of the soluble region of Enterovirus 68 3A protein, we construct a prokaryotic expression vector expressing the soluble region of EV-D68 3A protein, and identify the forms of expression product after purification. The EV-D68 3A(1-61) gene was amplified by PCR and then cloned into the expression vector pET-28a-His-SUMO. The recombinant plasmid was transformed into Escherichia coli BL21 induced by IPTG to express the fusion protein His-SUMO-3A(1-61). The recombinant protein was purified by Ni-NTA Agarose and cleaved by ULP Protease to remove His-SUMO tag. After that, the target protein 3A(1-61) was purified by a series of purification methods such as Ni-NTA, anion exchange chromatography and gel filtration chromato- graphy. Chemical cross-linking reaction assay was taken to determine the multiple polymerization state of the 3A soluble region. A prokaryotic expression vector pET28a-His-SUMO-3A(1-61) expressing the solution region of EV-D68 3A was successfully constructed and plenty of highly pure target proteins were obtained by multiple purification steps . The total protein amount was about 5 mg obtained from 1L Escherichia coli BL21 with purity > 95%. At the same time, those results determined the homomultimer form of soluble 3A construct. These data demonstrated that the expression and purification system of the soluble region of 3A were successfully set up and provide some basic konwledge for the research about 3A crystal structure and the development of antiviral drugs targeted at 3A to block viral replication.
NASA Astrophysics Data System (ADS)
Quiroga, Jairo; Romo, Pablo E.; Ortiz, Alejandro; Isaza, José Hipólito; Insuasty, Braulio; Abonia, Rodrigo; Nogueras, Manuel; Cobo, Justo
2016-09-01
The synthesis of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids 3 from the reaction of 6-aminopyrimidines 1 with arylidene derivatives of pyruvic acid 2 under microwave and ultrasound irradiation is described. The orientation of cyclization process was determined by NMR measurements. The methodology provides advantages such as high yields and friendly to the environment without the use of solvents. The antioxidant properties, DPPH free radical scavenging, ORAC, and anodic potential oxidation of the new pyridopyrimidines were studied.
1987-04-01
Volume D3 - Part I Structural Analysis of System DTIC ELECTE a MApril 1987 SE 03 O0 Contract Number DAAA21-86-C-0047 FMC CORPORATION Northern Ordnance... system , In turn. facilitated crew reductilon via hydraulic emplacement, .four-way Joystick tube- lay, and _power ralming. . MC completed C;oncep)t...D3 Structural Analysis of System PART I D3/050 Table of Contents D3/100 Structural Analysis of SystemUD3/110 CXL Memo: October 3, 1986 D3/120 o
Chatake, Toshiyuki; Fujiwara, Satoru
2016-01-01
A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.
NASA Astrophysics Data System (ADS)
Wu, Juan; Melo, Lis G. A.; Zhu, Xiaohui; West, Marcia M.; Berejnov, Viatcheslav; Susac, Darija; Stumper, Juergen; Hitchcock, Adam P.
2018-03-01
4D imaging - the three-dimensional distributions of chemical species determined using multi-energy X-ray tomography - of cathode catalyst layers of polymer electrolyte membrane fuel cells (PEM-FC) has been measured by scanning transmission x-ray microscopy (STXM) spectro-tomography at the C 1s and F 1s edges. In order to monitor the effects of radiation damage on the composition and 3D structure of the perfluorosulfonic acid (PFSA) ionomer, the same volume was measured 3 times sequentially, with spectral characterization of that same volume at several time points during the measurements. The changes in the average F 1s spectrum of the ionomer in the cathode as the measurements progressed gave insights into the degree of chemical modification, fluorine mass loss, and changes in the 3D distributions of ionomer that accompanied the spectro-tomographic measurement. The PFSA ionomer-in-cathode is modified both chemically and physically by radiation damage. The 3D volume decreases anisotropically. By reducing the incident flux, partial defocusing (50 nm spot size), limiting the number of tilt angles to 14, and using compressed sensing reconstruction, we show it is possible to reproducibly measure the 3D structure of ionomer in PEM-FC cathodes at ambient temperature while causing minimal radiation damage.
Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman
2017-06-16
The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong
2018-07-01
Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.
NASA Astrophysics Data System (ADS)
Ghannadpour, Seyyed Saeed; Hezarkhani, Ardeshir
2016-03-01
The U-statistic method is one of the most important structural methods to separate the anomaly from the background. It considers the location of samples and carries out the statistical analysis of the data without judging from a geochemical point of view and tries to separate subpopulations and determine anomalous areas. In the present study, to use U-statistic method in three-dimensional (3D) condition, U-statistic is applied on the grade of two ideal test examples, by considering sample Z values (elevation). So far, this is the first time that this method has been applied on a 3D condition. To evaluate the performance of 3D U-statistic method and in order to compare U-statistic with one non-structural method, the method of threshold assessment based on median and standard deviation (MSD method) is applied on the two example tests. Results show that the samples indicated by U-statistic method as anomalous are more regular and involve less dispersion than those indicated by the MSD method. So that, according to the location of anomalous samples, denser areas of them can be determined as promising zones. Moreover, results show that at a threshold of U = 0, the total error of misclassification for U-statistic method is much smaller than the total error of criteria of bar {x}+n× s. Finally, 3D model of two test examples for separating anomaly from background using 3D U-statistic method is provided. The source code for a software program, which was developed in the MATLAB programming language in order to perform the calculations of the 3D U-spatial statistic method, is additionally provided. This software is compatible with all the geochemical varieties and can be used in similar exploration projects.
Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris
2011-12-08
The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.
Webster, G D; Sanderson, M R; Skelly, J V; Neidle, S; Swann, P F; Li, B F; Tickle, I J
1990-01-01
The crystal structure of the dodecanucleotide d(CGCAAGCTGGCG) has been determined to a resolution of 2.5 A and refined to an R factor of 19.3% for 1710 reflections. The sequence crystallizes as a B-type double helix, with two G(anti).A(syn) base pairs. These are stabilized by three-center hydrogen bonds to pyrimidines that induce perturbations in base-pair geometry. The central AGCT region of the helix has a wide (greater than 6 A) minor groove. PMID:2395870
Strained multilayer structures with pseudomorphic GeSiSn layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, V. A., E-mail: Vyacheslav.t@isp.nsc.ru; Nikiforov, A. I.; Tuktamyshev, A. R.
2016-12-15
The temperature and composition dependences of the critical thickness of the 2D–3D transition for a GeSiSn film on Si(100) have been studied. The regularities of the formation of multilayer structures with pseudomorphic GeSiSn layers directly on a Si substrate, without relaxed buffer layers, were investigated for the first time. The possibility of forming multilayer structures based on pseudomorphic GeSiSn layers has been shown and the lattice parameters have been determined using transmission electron microscopy. The grown structures demonstrate photoluminescence for Sn contents from 3.5 to 5% in GeSiSn layers.
Arjunan, V; Raj, Arushma; Santhanam, R; Marchewka, M K; Mohan, S
2013-02-01
Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. (1)H and (13)C NMR chemical shifts and the electronic transitions of the molecule are also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fan, Le-Qing; Chen, Yuan; Wu, Ji-Huai; Huang, Yun-Fang
2011-04-01
Two new 4 d-4 f Ln-Ag heterometallic coordination polymers, {[ Ln3Ag 5(IN) 10(H 2O) 7]·4(ClO 4)·4(H 2O)} n ( Ln=Eu ( 1) and Sm ( 2), HIN=isonicotinic acid), have been synthesized under hydrothermal conditions by reactions of Ln2O 3, AgNO 3, HIN and HClO 4, and characterized by elemental analysis, IR, thermal analysis and single-crystal X-ray diffraction. It is proved that HClO 4 not only adjusts the pH value of the reaction mixture, but also acts as anion template. The structure determination reveals that 1 and 2 are isostructural and feature a novel two-dimensional (2D) layered hetrometallic structure constructed from one-dimensional Ln-carboxylate chains and pillared Ag(IN) 2 units. The 2D layers are further interlinked through Ag⋯Ag and Ag⋯O(ClO 4-) multiple weak interactions, which form a rare Ag-ClO 4 ribbon in lanthanide-transition metal coordination polymers, to give rise to a three-dimensional supramolecular architecture. Moreover, the luminescent properties of these two compounds have also been investigated at room temperature.
Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine
2013-01-01
Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Single-particle cryo-EM-Improved ab initio 3D reconstruction with SIMPLE/PRIME.
Reboul, Cyril F; Eager, Michael; Elmlund, Dominika; Elmlund, Hans
2018-01-01
Cryogenic electron microscopy (cryo-EM) and single-particle analysis now enables the determination of high-resolution structures of macromolecular assemblies that have resisted X-ray crystallography and other approaches. We developed the SIMPLE open-source image-processing suite for analysing cryo-EM images of single-particles. A core component of SIMPLE is the probabilistic PRIME algorithm for identifying clusters of images in 2D and determine relative orientations of single-particle projections in 3D. Here, we extend our previous work on PRIME and introduce new stochastic optimization algorithms that improve the robustness of the approach. Our refined method for identification of homogeneous subsets of images in accurate register substantially improves the resolution of the cluster centers and of the ab initio 3D reconstructions derived from them. We now obtain maps with a resolution better than 10 Å by exclusively processing cluster centers. Excellent parallel code performance on over-the-counter laptops and CPU workstations is demonstrated. © 2017 The Protein Society.
Microfabricating 3D Structures by Laser Origami
2011-11-09
10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com...materials Figure 1. (A–C) Schematic illustrating the steps in the laser origami process and (D) a resulting folded out-of-plane 3D structure. that can
Platania, Chiara Bianca Maria; Salomone, Salvatore; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio
2012-01-01
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D3 (hD3) receptor has been recently solved. Based on the hD3 receptor crystal structure we generated dopamine D2 and D3 receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD3 and hD2L receptors was differentiated by means of MD simulations and D3 selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental Ki was obtained for hD3 and hD2L receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands. PMID:22970199
Genetic algorithm prediction of two-dimensional group-IV dioxides for dielectrics
NASA Astrophysics Data System (ADS)
Singh, Arunima K.; Revard, Benjamin C.; Ramanathan, Rohit; Ashton, Michael; Tavazza, Francesca; Hennig, Richard G.
2017-04-01
Two-dimensional (2D) materials present a new class of materials whose structures and properties can differ from their bulk counterparts. We perform a genetic algorithm structure search using density-functional theory to identify low-energy structures of 2D group-IV dioxides A O2 (A =Si , Ge, Sn, Pb). We find that 2D SiO2 is most stable in the experimentally determined bi-tetrahedral structure, while 2D SnO2 and PbO2 are most stable in the 1 T structure. For 2D GeO2, the genetic algorithm finds a new low-energy 2D structure with monoclinic symmetry. Each system exhibits 2D structures with formation energies ranging from 26 to 151 meV/atom, below those of certain already synthesized 2D materials. The phonon spectra confirm their dynamic stability. Using the HSE06 hybrid functional, we determine that the 2D dioxides are insulators or semiconductors, with a direct band gap of 7.2 eV at Γ for 2D SiO2, and indirect band gaps of 4.8-2.7 eV for the other dioxides. To guide future applications of these 2D materials in nanoelectronic devices, we determine their band-edge alignment with graphene, phosphorene, and single-layer BN and MoS2. An assessment of the dielectric properties and electrochemical stability of the 2D group-IV dioxides shows that 2D GeO2 and SnO2 are particularly promising candidates for gate oxides and 2D SnO2 also as a protective layer in heterostructure nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Jones, Christopher W.; O’Connor, Daniel
2018-07-01
Dimensional surface metrology is required to enable advanced manufacturing process control for products such as large-area electronics, microfluidic structures, and light management films, where performance is determined by micrometre-scale geometry or roughness formed over metre-scale substrates. While able to perform 100% inspection at a low cost, commonly used 2D machine vision systems are insufficient to assess all of the functionally relevant critical dimensions in such 3D products on their own. While current high-resolution 3D metrology systems are able to assess these critical dimensions, they have a relatively small field of view and are thus much too slow to keep up with full production speeds. A hybrid 2D/3D inspection concept is demonstrated, combining a small field of view, high-performance 3D topography-measuring instrument with a large field of view, high-throughput 2D machine vision system. In this concept, the location of critical dimensions and defects are first registered using the 2D system, then smart routing algorithms and high dynamic range (HDR) measurement strategies are used to efficiently acquire local topography using the 3D sensor. A motion control platform with a traceable position referencing system is used to recreate various sheet-to-sheet and roll-to-roll inline metrology scenarios. We present the artefacts and procedures used to calibrate this hybrid sensor system for traceable dimensional measurement, as well as exemplar measurement of optically challenging industrial test structures.
Khajehzadeh, Mostafa; Moghadam, Majid
2017-06-05
Structural and molecular properties of antidepressants 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile were examined using quantum mechanics of Density Functional Theory (DFT)/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets to study the therapeutic properties of the drug. For this, the structure of desired material was optimized by the computer calculation method and with the use of powerful Gaussian 09 software. Then the lowest energy value and the bond length, bond angle and dihedral angle between its constituent atoms in the crystal structure of the desired material were measured from the optimized values. Then the amount of positive and negative charges, polarizability and dipole moment of its atoms using Mulliken charge and Natural atomic charges, DFT/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets were determined and the results were compared with each other for individual atoms and by mentioned methods. Also the type of stretching vibrations and bending vibrations between the constituent atoms of the molecule were specified using mentioned computational methods and FT IR vibrational spectra. The experimental spectrum of this material was taken to determine the functional groups and the computational and experimental values were compared to each other and Nuclear Magnetic Resonance (NMR) was used to specify the isomer shift between the carbons and protons in the presence of polar and nonpolar solvents. Also Natural Bond Orbital (NBO) was used to determine the type of electron transfers in σ→σ∗ and π→π∗ and LP(1)→σ∗ and LP(2)→σ∗ and the amount of hardness and softness in molecule was determined using the difference between ionization energy and electron affinity energy in constituent atoms of that molecule in the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and in the presence of solvents H 2 O, CH 3 CN and C 6 H 12 . UV-Vis spectrum of the drug was taken using DFT/B3LYP and PBEPBE methods with 6-311++G(d,2p) and LanL2DZ basis sets as well as solvents H 2 O, CH 3 CN and C 6 H 12 and the associated transmissions were examined. Copyright © 2017 Elsevier B.V. All rights reserved.
Foster, R A; Carlin, N I A; Majcher, M; Tabor, H; Ng, L-K; Widmalm, G
2011-05-01
The structure of the repeating unit of the O-antigen polysaccharide from Shigella flexneri provisional serotype 88-893 has been determined. (1)H and (13)C NMR spectroscopy as well as 2D NMR experiments were employed to elucidate the structure. The carbohydrate part of the hexasaccharide repeating unit is identical to the previously elucidated structure of the O-polysaccharide from S. flexneri prov. serotype Y394. The O-antigen of S. flexneri prov. serotype 88-893 carries 0.7 mol O-acetyl group per repeating unit located at O-2 of the 3-substituted rhamnosyl residue, as identified by H2BC and BS-CT-HMBC NMR experiments. The O-antigen polysaccharide is composed of hexasaccharide repeating units with the following structure: →2)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap2Ac-(1→3)[α-D-Glcp-(1→2)-α-D-Glcp-(1→4)]-β-D-GlcpNAc-(1→. Serological studies showed that type antigens for the two provisional serotypes are identical; in addition 88-893 expresses S. flexneri group factor 6 antigen. We propose that provisional serotypes Y394 and 88-893 be designated as two new serotypes 7a and 7b, respectively, in the S. flexneri typing scheme. Copyright © 2011 Elsevier Ltd. All rights reserved.
Minor diterpene glycosides from the leaves of Stevia rebaudiana.
Ibrahim, Mohamed A; Rodenburg, Douglas L; Alves, Kamilla; Fronczek, Frank R; McChesney, James D; Wu, Chongming; Nettles, Brian J; Venkataraman, Sylesh K; Jaksch, Frank
2014-05-23
Two new diterpene glycosides in addition to five known glycosides have been isolated from a commercial extract of the leaves of Stevia rebaudiana. Compound 1 (rebaudioside KA) was shown to be 13-[(O-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid 2-O-β-d-glucopyranosyl-β-d-glucopyranosyl ester and compound 2, 12-α-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]ent-kaur-16-en-19-oic acid β-d-glucopyranosyl ester. Five additional known compounds were identified, rebaudioside E, rebaudioside M, rebaudioside N, rebaudioside O, and stevioside, respectively. Enzymatic hydrolysis of stevioside afforded the known ent-kaurane aglycone 13-hydroxy-ent-kaur-16-en-19-oic acid (steviol) (3). The isolated metabolite 1 possesses the ent-kaurane aglycone steviol (3), while compound 2 represents the first example of the isomeric diterpene 12-α-hydroxy-ent-kaur-16-en-19-oic acid existing as a glycoside in S. rebaudiana. The structures of the isolated metabolites 1 and 2 were determined based on comprehensive 1D- and 2D-NMR (COSY, HSQC, and HMBC) studies. A high-quality crystal of compound 3 has formed, which allowed the acquisition of X-ray diffraction data that confirmed its structure. The structural similarities between the new metabolites and the commercially available stevioside sweeteners suggest the newly isolated metabolites should be examined for their organoleptic properties. Accordingly rebaudiosides E, M, N, O, and KA have been isolated in greater than gram quantities.
Perlikowska, Renata; Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Cerlesi, Maria Camilla; Calo, Girolamo; Artali, Roberto; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna
2016-02-15
Cyclic pentapeptide Tyr-c[D-Lys-Phe-Phe-Asp]NH2, based on the structure of endomorphin-2 (EM-2), which shows high affinity to the μ-opioid receptor (MOR) and a very strong antinociceptive activity in mice was used as a parent compound for the structure-activity relationship studies. In this report we synthesized analogs of a general sequence Dmt-c[D-Lys-Xaa-Yaa-Asp]NH2, with D-1- or D-2-naphthyl-3-alanine (D-1-Nal or D-2-Nal) in positions 3 or 4. In our earlier papers we have indicated that replacing a phenylalanine residue by the more extended aromatic system of naphthylalanines may result in increased bioactivities of linear analogs. The data obtained here showed that only cyclopeptides modified in position 4 retained the sub-nanomolar MOR and nanomolar κ-opioid receptor (KOR) affinity, similar but not better than that of a parent cyclopeptide. In the in vivo mouse hot-plate test, the most potent analog, Dmt-c[D-Lys-Phe-D-1-Nal-Asp]NH2, exhibited higher than EM-2 but slightly lower than the cyclic parent peptide antinociceptive activity after peripheral (ip) and also central administration (icv). Conformational analyses in a biomimetic environment and molecular docking studies disclosed the structural determinants responsible for the different pharmacological profiles of position 3- versus position 4-modified analogs. Copyright © 2015. Published by Elsevier Masson SAS.
Heptyl vicianoside and methyl caramboside from sour star fruit.
Yang, Dan; Jia, Xuchao; Xie, Haihui
2018-04-23
Two new alkyl glycosides, heptyl vicianoside (1) and methyl 2-O-β-d-fucopyranosyl-α-l-arabinofuranoside (methyl caramboside, 4), were isolated from the sour fruit of Averrhoa carambola L. (Oxalidaceae), along with octyl vicianoside (2), cis-3-hexenyl rutinoside (3), and methyl α-d-fructofuranoside (5). Their structures were determined by spectroscopic and chemical methods. Compounds 2, 3, and 5 were obtained from the genus Averrhoa for the first time. All the compounds were evaluated for in vitro α-glucosidase, pancreatic lipase, and acetylcholinesterase inhibitory activities, but none of them were potent.
Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki
2011-12-07
Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.
Crystal structure of human esterase D: a potential genetic marker of retinoblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Dong; Li, Yang; Song, Gaojie
2009-07-10
Retinoblastoma (RB), a carcinoma of the retina, is caused by mutations in the long arm of chromosome 13, band 13q14. The esterase D (ESD) gene maps at a similar location as the RB gene locus and therefore serves as a potential marker for the prognosis of retinoblastoma. Because very little is known about the structure and function of ESD, we determined the 3-dimensional structure of the enzyme at 1.5 {angstrom} resolution using X-ray crystallography. ESD shows a single domain with an {alpha}/{beta}-hydrolase fold. A number of insertions are observed in the canonical {alpha}/{beta}-hydrolase fold. The active site is located inmore » a positively charged, shallow cleft on the surface lined by a number of aromatic residues. Superimposition studies helped identify the typical catalytic triad residues -- Ser-153, His264, and Asp230 -- involved in catalysis. Mutagenesis of any of the catalytic triad residues to alanine abolished the enzyme activity. Backbone amides of Leu54 and Met150 are involved in the formation of the oxyanion hole. Interestingly, a M150A mutation increased the enzyme activity by 62%. The structure of human ESD determined in this study will aid the elucidation of the physiological role of the enzyme in the human body and will assist in the early diagnosis of retinoblastoma. Wu, D., Li, Y., Song, G., Zhang, D., Shaw, N., Liu, Z. J. Crystal structure of human esterase D: a potential genetic marker of retinoblastoma.« less
Structure and dynamics of cyclic amides: The rotational spectrum of 1,3-dimethyl-2-imidazolidinone
NASA Astrophysics Data System (ADS)
Vigorito, Annalisa; Paoloni, Lorenzo; Calabrese, Camilla; Evangelisti, Luca; Favero, Laura B.; Melandri, Sonia; Maris, Assimo
2017-12-01
The structure and the internal dynamics of the lactam 1,3-dimethyl-2-imidazolidinone, also known as N,N‧-dimethylethyleneurea, have been investigated through the analysis of its free-jet absorption rotational spectrum. One conformer has been assigned. The pure μb-type spectrum, recorded in the 59.6-74.4 GHz frequency range entails an inertial defect Δc = -16.39 uÅ2, indicating that the molecule has C2 symmetry with a twisted arrangement of the ring. The methyl internal rotation barrier V3 = 7.181 (3) kJ mol-1 and the 14N diagonal nuclear quadrupole coupling constants χaa = 2.14 (14) and (χbb-χcc) = 7.26 (6) MHz were determined from the analysis of the hyperfine structure. They are in good agreement with the ab initio MP2/6-311++G(d,p) calculations which also estimate the electric dipole moment value as 3.9 D.
NASA Astrophysics Data System (ADS)
Defonsi Lestard, María E.; Tuttolomondo, María E.; Varetti, Eduardo L.; Wann, Derek A.; Robertson, Heather E.; Rankin, David W. H.; Altabef, Aida Ben
2010-12-01
The molecular structure of trimethylsilyl trifluoromethanesulfonate, CF 3SO 2OSi(CH 3) 3, has been determined in the gas phase from electron-diffraction data supplemented by ab initio (MP2) and DFT calculations using 6-31G(d), 6-311++G(d,p) and 6-311G++(3df,3pd) basis sets. Both experimental and theoretical data indicate that only one gauche conformer is possible by rotating about the O-S bond. The anomeric effect is a fundamental stereoelectronic interaction and presents a profound influence on the electronic geometry. We have investigated the origin of the anomeric effect by means of NBO and AIM analysis. A natural bond orbital analysis showed that the lpπ[O bonded to Si)] → σ *[C-S] hyperconjugative interaction favors the gauche conformation. In addition, comparison of the structural and stereoelectronic properties of the title molecule with those of silyl trifluoromethanesulfonate and methyl trifluoromethanesulfonate has been carried out.
An extensive photometric catalogue of CALIFA galaxies
NASA Astrophysics Data System (ADS)
Gilhuly, Colleen; Courteau, Stéphane
2018-06-01
We present an extensive compendium of photometrically determined structural properties for all Calar Alto Legacy Integral Field spectroscopy Area (CALIFA) galaxies in the third data release (DR3). We exploit Sloan Digital Sky Survey (SDSS) images in order to extract one-dimensional (1D) gri surface brightness profiles for all CALIFA DR3 galaxies. We also derive a variety of non-parametric quantities and parametric models fitted to 1D i-band profiles. The galaxy images are decomposed using the 2D bulge-disc decomposition programs IMFIT and GALFIT. The relative performance and merit of our 1D and 2D modelling approaches are assessed. Where possible, we compare and augment our photometry with existing measurements from the literature. Close agreement is generally found with the studies of Walcher et al. and Méndez-Abreu et al., though some significant differences exist. Various structural metrics are also highlighted on account of their tight dispersion against an independent variable, such as the circular velocity.
Jamróz, Marta K; Jamróz, Michał H; Dobrowolski, Jan Cz; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona
2011-01-01
A new triterpene xyloside, designated cimipodocarpaside was isolated from a Black Cohosh (Actea racemosa L.) extract and its structure was elucidated by means of 1H, 13C NMR, IR and Raman spectroscopy supported by B3LYP/6-31G** calculations. The vibrational spectra were interpreted using the PED analysis of 273 fundamentals. Its structure comprises four condensed rings A-D which are 6, 7, 6, and 5-membered, respectively. An oxiirane ring is located in the side chain and a xylose moiety is attached to the A-ring. Comparison of the experimental 13C NMR data with the theoretical chemical shifts of 24S- and 24R-cimipodocarpaside isomers revealed that the isolated compound has the 24S-configuration. Combined spectroscopic and computational studies enabled the determination of the structure of cimipodocarpaside as (24S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10-seco-9,19-cyclolanost-7(8),9(11),10(19)-trien-3-O-β-D-xylopyranoside. Triterpenes with 7-membered ring were thus far isolated from only Actea podocarpa DC. plants. This is the first report on the isolation of such a compound from Black Cohosh. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jamróz, Marta K.; Jamróz, Michał H.; Dobrowolski, Jan Cz.; Gliński, Jan A.; Davey, Matthew H.; Wawer, Iwona
2011-01-01
A new triterpene xyloside, designated cimipodocarpaside was isolated from a Black Cohosh ( Actea racemosa L.) extract and its structure was elucidated by means of 1H, 13C NMR, IR and Raman spectroscopy supported by B3LYP/6-31G** calculations. The vibrational spectra were interpreted using the PED analysis of 273 fundamentals. Its structure comprises four condensed rings A-D which are 6, 7, 6, and 5-membered, respectively. An oxiirane ring is located in the side chain and a xylose moiety is attached to the A-ring. Comparison of the experimental 13C NMR data with the theoretical chemical shifts of 24 S- and 24 R-cimipodocarpaside isomers revealed that the isolated compound has the 24 S-configuration. Combined spectroscopic and computational studies enabled the determination of the structure of cimipodocarpaside as (24 S)-3β-hydroxy-24,25-oxiirane-16,23-dione-9,10- seco-9,19-cyclolanost-7(8),9(11),10(19)-trien-3-O-β- D-xylopyranoside. Triterpenes with 7-membered ring were thus far isolated from only Actea podocarpa DC. plants. This is the first report on the isolation of such a compound from Black Cohosh.
Options in virtual 3D, optical-impression-based planning of dental implants.
Reich, Sven; Kern, Thomas; Ritter, Lutz
2014-01-01
If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.
A crustal seismic velocity model for the UK, Ireland and surrounding seas
Kelly, A.; England, R.W.; Maguire, Peter K.H.
2007-01-01
A regional model of the 3-D variation in seismic P-wave velocity structure in the crust of NW Europe has been compiled from wide-angle reflection/refraction profiles. Along each 2-D profile a velocity-depth function has been digitised at 5 km intervals. These 1-D velocity functions were mapped into three dimensions using ordinary kriging with weights determined to minimise the difference between digitised and interpolated values. An analysis of variograms of the digitised data suggested a radial isotropic weighting scheme was most appropriate. Horizontal dimensions of the model cells are optimised at 40 ?? 40 km and the vertical dimension at 1 km. The resulting model provides a higher resolution image of the 3-D variation in seismic velocity structure of the UK, Ireland and surrounding areas than existing models. The construction of the model through kriging allows the uncertainty in the velocity structure to be assessed. This uncertainty indicates the high density of data required to confidently interpolate the crustal velocity structure, and shows that for this region the velocity is poorly constrained for large areas away from the input data. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard
2018-03-29
The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.
Multizone Paper Platform for 3D Cell Cultures
Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.
2011-01-01
In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103
Amann, Michael; Andělová, Michaela; Pfister, Armanda; Mueller-Lenke, Nicole; Traud, Stefan; Reinhardt, Julia; Magon, Stefano; Bendfeldt, Kerstin; Kappos, Ludwig; Radue, Ernst-Wilhelm; Stippich, Christoph; Sprenger, Till
2015-01-01
Brain atrophy has been identified as an important contributing factor to the development of disability in multiple sclerosis (MS). In this respect, more and more interest is focussing on the role of deep grey matter (DGM) areas. Novel data analysis pipelines are available for the automatic segmentation of DGM using three-dimensional (3D) MRI data. However, in clinical trials, often no such high-resolution data are acquired and hence no conclusions regarding the impact of new treatments on DGM atrophy were possible so far. In this work, we used FMRIB's Integrated Registration and Segmentation Tool (FIRST) to evaluate the possibility of segmenting DGM structures using standard two-dimensional (2D) T1-weighted MRI. In a cohort of 70 MS patients, both 2D and 3D T1-weighted data were acquired. The thalamus, putamen, pallidum, nucleus accumbens, and caudate nucleus were bilaterally segmented using FIRST. Volumes were calculated for each structure and for the sum of basal ganglia (BG) as well as for the total DGM. The accuracy and reliability of the 2D data segmentation were compared with the respective results of 3D segmentations using volume difference, volume overlap and intra-class correlation coefficients (ICCs). The mean differences for the individual substructures were between 1.3% (putamen) and -25.2% (nucleus accumbens). The respective values for the BG were -2.7% and for DGM 1.3%. Mean volume overlap was between 89.1% (thalamus) and 61.5% (nucleus accumbens); BG: 84.1%; DGM: 86.3%. Regarding ICC, all structures showed good agreement with the exception of the nucleus accumbens. The results of the segmentation were additionally validated through expert manual delineation of the caudate nucleus and putamen in a subset of the 3D data. In conclusion, we demonstrate that subcortical segmentation of 2D data are feasible using FIRST. The larger subcortical GM structures can be segmented with high consistency. This forms the basis for the application of FIRST in large 2D MRI data sets of clinical trials in order to determine the impact of therapeutic interventions on DGM atrophy in MS.
Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A
2018-02-01
Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.
Study on embedding fiber Bragg grating sensor into the 3D printing structure for health monitoring
NASA Astrophysics Data System (ADS)
Li, Ruiya; Tan, Yuegang; Zhou, Zude; Fang, Liang; Chen, Yiyang
2016-10-01
3D printing technology is a rapidly developing manufacturing technology, which is known as a core technology in the third industrial revolution. With the continuous improvement of the application of 3D printing products, the health monitoring of the 3D printing structure is particularly important. Fiber Bragg grating (FBG) sensing technology is a new type of optical sensing technology with unique advantages comparing to traditional sensing technology, and it has great application prospects in structural health monitoring. In this paper, the FBG sensors embedded in the internal structure of the 3D printing were used to monitor the static and dynamic strain variation of 3D printing structure during loading process. The theoretical result and experimental result has good consistency and the characteristic frequency detected by FBG sensor is consistent with the testing results of traditional accelerator in the dynamic experiment. The results of this paper preliminary validate that FBG embedded in the 3D printing structure can effectively detecting the static and dynamic stain change of the 3D printing structure, which provide some guidance for the health monitoring of 3D printing structure.
Suntharos, Patcharapong; Setser, Randolph M; Bradley-Skelton, Sharon; Prieto, Lourdes R
2017-10-01
To validate the feasibility and spatial accuracy of pre-procedural 3D images to 3D rotational fluoroscopy registration to guide interventional procedures in patients with congenital heart disease and acquired pulmonary vein stenosis. Cardiac interventions in patients with congenital and structural heart disease require complex catheter manipulation. Current technology allows registration of the anatomy obtained from 3D CT and/or MRI to be overlaid onto fluoroscopy. Thirty patients scheduled for interventional procedures from 12/2012 to 8/2015 were prospectively recruited. A C-arm CT using a biplane C-arm system (Artis zee, VC14H, Siemens Healthcare) was acquired to enable 3D3D registration with pre-procedural images. Following successful image fusion, the anatomic landmarks marked in pre-procedural images were overlaid on live fluoroscopy. The accuracy of image registration was determined by measuring the distance between overlay markers and a reference point in the image. The clinical utility of the registration was evaluated as either "High", "Medium" or "None". Seventeen patients with congenital heart disease and 13 with acquired pulmonary vein stenosis were enrolled. Accuracy and benefit of registration were not evaluated in two patients due to suboptimal images. The distance between the marker and the actual anatomical location was 0-2 mm in 18 (64%), 2-4 mm in 3 (11%) and >4 mm in 7 (25%) patients. 3D3D registration was highly beneficial in 18 (64%), intermediate in 3 (11%), and not beneficial in 7 (25%) patients. 3D3D registration can facilitate complex congenital and structural interventions. It may reduce procedure time, radiation and contrast dose.
Cytotoxic hydrolyzable tannins from Balanophora japonica.
Jiang, Zhi-Hong; Wen, Xiao-Yun; Tanaka, Takashi; Wu, Shao-Yu; Liu, Zhongqiu; Iwata, Hiromi; Hirose, Yoko; Wu, Shuguang; Kouno, Isao
2008-04-01
Four hydrolyzable tannins named balanophotannins D-G ( 1- 4) were isolated from the aerial parts of the parasitic plant Balanophora japonica. Their structures were characterized on the basis of spectroscopic and chemical evidence. Balanophotannins D-G contain an oxidized hexahydroxydiphenoyl (HHDP) group. The absolute configurations of balanophotannins D ( 1) and F ( 3) were determined via the PGME method. Balanophotannin E ( 2) showed cytotoxicity to Hep G2 cancer cells with an IC 50 value of 4.22 microM.
FP-LAPW investigation of Al3(Sc1‑xTix) alloys properties in L12 and D022 structures
NASA Astrophysics Data System (ADS)
Khenioui, Youcef; Boulechfar, Rahima; Maazi, Noureddine; Ghemid, Sebti
2018-06-01
The ab-initio calculations based on the density functional theory (DFT) have been performed to study the structural, mechanical, electronic, thermal and thermodynamic properties of Al3Sc and Al3Ti binary compounds and their ternary mixture Al3(Sc1‑xTix) in L12 and D022 structures. The total energy calculations show that the L12 structure is the more stable one. The Al3Sc0.25Ti0.75 undergoes a martensitic transformation and the formation enthalpies and the lattice parameters decrease with increasing concentration x. The elastic constants are determined and the results show that all compounds are mechanically stable and the cubic cells are more easily deformed by shearing than by unidirectional compression. The elastic modulus indicates that the addition of Ti atoms to Al3Sc improves its ductility. The densities of states (DOSs) calculations show the strong spd hybridization which leads to the formation of a pseudo-gap near the Fermi level in ternary alloys. The densities of states at the Fermi level N(EF) confirm the phase stability. The quasi-harmonic Debye model is used to predict the thermal properties such as heat capacity, Debye temperature, Grüneisen parameter and thermal expansion coefficient of the considered alloys. The determination of Gibbs free mixing energy at different concentrations has been used to calculate the T-x diagram.
Fujihara, Koji; Takahashi, Kunio; Koyama, Kiyotaka; Kinoshita, Kaoru
2017-10-01
Five new oleanane-type saponins 1-5 together with a known saponin 6 and a steroidal glycoside 7 were isolated from Polaskia chichipe Backbg., and their structures were determined from their 1D and 2D NMR and HRFABMS spectral data. The six isolated saponins 1-6 were tested for their effects on the melanogenesis of B16 melanoma 4A5 cells. Compound 1 exerted an inhibitory effect at 100 μM whereas compound 3 promoted melanogenesis at the same concentration, even though these two compounds contain the same aglycon structure. The dose-dependent activities of compounds 1 and 3 on melanin synthesis were investigated.
Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars
NASA Astrophysics Data System (ADS)
Bran, C.; Ivanov, Yu P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M.
2017-03-01
Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.
Mote, Kaustubh R.; Gopinath, T.; Veglia, Gianluigi
2013-01-01
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments (POE), for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ∼ 0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional O-ssNMR and MAS-ssNMR. PMID:23963722
Gangjee, Aleem; Li, Wei; Lin, Lu; Zeng, Yibin; Ihnat, Michael; Warnke, Linda A.; Green, Dixy W.; Cody, Vivian; Pace, Jim; Queener, Sherry F.
2009-01-01
To optimize dual receptor tyrosine kinase (RTK) and dihydrofolate reductase (DHFR) inhibition, the E- and Z-isomers of 5-[2-(2-methoxyphenyl)prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines (1a and 1b) were separated by HPLC and the X-ray crystal structures (2.0 Å and 1.4 Å respectively) with mouse DHFR and NADPH as well as 1b with human DHFR (1.5 Å) were determined. The E- and Z-isomers adopt different binding modes when bound to mouse DHFR. A series of 2,4-diaminofuro[2,3-d]pyrimidines 2–13 were designed and synthesized using the X-ray crystal structures of 1a and 1b with DHFR to increase their DHFR inhibitory activity. Wittig reactions of appropriate 2-methoxyphenyl ketones with 2,4-diamino-6-chloromethyl furo[2,3-d]pyrimidine afforded the C8–C9 unsaturated compounds 2–7 and catalytic reduction gave the saturated 8–13. Homologation of the C9-methyl analog maintains DHFR inhibitory activity. In addition, inhibition of EGFR and PDGFR-β were discovered for saturated C9-homologated analogs 9 and 10 that were absent in the saturated C9-methyl analogs. PMID:19748785
Kuang, Ce; Jing, Shu-Xi; Liu, Yan; Luo, Shi-Hong; Li, Sheng-Hong
2016-06-01
Three new drimane sesquiterpenoids (1-3) together with the known 2α-hydroxyisodrimeninol (4), and a new isochromone derivative (5), were obtained from the solid cultures of fungal strain Pestalotiopsis sp. M-23, an endophytic fungus isolated from the leaves of Leucosceptrum canum (Labiatae). Their structures were determined by comprehensive 1D and 2D NMR, and MS analyses. The metabolites were evaluated for their antibacterial activities, and compound 3 showed weak inhibitory activity against Bacillus subtilis.
Three New Cytotoxic Withanolides from the Chinese Folk Medicine Physalis angulata.
Gao, Cai-Yun; Ma, Ting; Luo, Jun; Kong, Ling-Yi
2015-12-01
Physagulides M-O, three new withanolides (1-3), were isolated from the aerial parts of Physalis angulata L. Their structures were elucidated through extensive spectroscopic techniques, including 1D and 2D NMR, and HRESIMS. The absolute configurations (22-R) of these new compounds were determined by CD analysis. Compounds 1 and 3 showed significant selective cytotoxic activities on the MG-63 cell line, with IC50 values of 4.28 and 5.44 μM, respectively.
Simplexins P–S, Eunicellin-Based Diterpenes from the Soft Coral Klyxum simplex
Wu, Shwu-Li; Su, Jui-Hsin; Huang, Chiung-Yao; Tai, Chi-Jen; Sung, Ping-Jyun; Liaw, Chih-Chung; Sheu, Jyh-Horng
2012-01-01
Four new eunicellin-based diterpenes, simplexins P–S (1–4), and the known compound simplexin A (5), have been isolated from the soft coral Klyxum simplex. The structures of the new metabolites were determined on the basis of extensive spectroscopic analysis, particularly 1D and 2D NMR experiments. Compounds 1 and 3–5 were shown to exhibit cytotoxicity against a limited panel of cancer cell lines, 3 being the most cytotoxic. PMID:22822367
Global, 4D Differential Emission Measure Analysis of EIT 17.1, 19.5 and 28.4 nm Images
NASA Astrophysics Data System (ADS)
Frazin, R. A.; Vasquez, A. M.; Kamalabadi, F.
2007-12-01
We present for the first time the results of a method that combines 3D tomography and differential emission measure (DEM) analysis to determine the 3D local differential measure (LDEM), which is a measure of the amount of plasma as a function of electron temperature within each volume element of the computation grid. The volume elements are (3 deg X 3 deg X 0.02 Rs). The input data are a time series of EUV images taken in the 17.1, 19.5 and 28.4 nm bands. The method, developed theoretically in a previous paper [Frazin et al. 2005, ApJ v. 628, p. 1070], involves a combination of solar rotational tomography (SRT) and classical differential emission measure (DEM) analysis. SRT uses solar rotation to "undo" the line-of-sight integrals, while DEM analysis determines the temperature distribution (LDEM) in each voxel. Temporal variations of the solar corona limit the applicability of SRT to structures that remain relatively stable on the two-week time scale. We show results for certain structures that were judged to be stable by watching the EIT movies. We anticipate dramatic increases in the temperature resolution of this technique with the XRT instrument.
NASA Astrophysics Data System (ADS)
An, Zhiguo; Di, Qingyun
2016-12-01
The Alxa area in Inner Mongolia has been selected as a possible site for geological disposal of high-level radioactive waste (HLRW). Based on results of a previous study on crustal stability, the Tamusu rock mass has been chosen as the target. To determine the geological structure of this rock mass, aeromagnetic and gravity data are collected and inverted. Three-dimensional (3D) inversion horizontal slices show that the internal density of the rock mass and the distribution of magnetic properties are not uniform, with fractures and fragmentation being present. To confirm this result, the controlled source audio-frequency magnetotelluric method (CSAMT) was applied to explore the geological structures, the typical CSAMT sounding curve was analyzed, and the response characteristics of the geological structure and surrounding rock are distinguished. The original data were processed and interpreted in combination with data from surface geology and drilling and logging data. It is found that the CSAMT results were consistent with those from 3D inversion of the gravity and magnetic data, confirming the existence of fractures and fragmentation in the exploration area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arıcı, Mürsel, E-mail: marici@ogu.edu.tr; Yeşilel, Okan Zafer; Taş, Murat
Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the raremore » sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. - Highlights: • Three new Cd(II)-coordination polymers with azobenzenetetracarboxylic acid and diverse bis(imidazole) linkers. • Complex 1 is 2D structure with 3,6L18 topology. • 3D pillar-layered framework of 2 with the rare sqc27 topology. • 3D framework of 3 with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type SBU.« less
Magnetic order and electronic structure of 5d 3 double perovskite Sr 2ScOsO 6
Taylor, A. E.; Morrow, R.; Singh, D. J.; ...
2015-03-01
The magnetic susceptibility, crystal and magnetic structures, and electronic structure of double perovskite Sr 2ScOsO 6 are reported. Using both neutron and x-ray powder diffraction we find that the crystal structure is monoclinic P21/n from 3.5 to 300 K. Magnetization measurements indicate an antiferromagnetic transition at TN=92 K, one of the highest transition temperatures of any double perovskite hosting only one magnetic ion. Type I antiferromagnetic order is determined by neutron powder diffraction, with an Os moment of only 1.6(1) muB, close to half the spin-only value for a crystal field split 5d electron state with t2g^3 ground state. Densitymore » functional calculations show that this reduction is largely the result of strong Os-O hybridization, with spin-orbit coupling responsible for only a ~0.1 muB reduction in the moment.« less
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadbane, Hemza; Brown, Alistair K.; Kremer, Laurent
2007-10-01
Binding of Ni{sup 2+} ions to the uncleaved affinity tag facilitated de novo phasing of the crystal structure of M. tuberculosis mtFabD to 3.0 Å resolution. Mycobacteria display a unique and unusual cell-wall architecture, central to which is the membrane-proximal mycolyl-arabinogalactan-peptidoglycan core (mAGP). The biosynthesis of mycolic acids, which form the outermost layer of the mAGP core, involves malonyl-CoA:acyl carrier protein transacylase (MCAT). This essential enzyme catalyses the transfer of malonyl from coenzyme A to acyl carrier protein AcpM, thus feeding these two-carbon units into the chain-elongation cycle of the type II fatty-acid synthase. The crystal structure of M. tuberculosismore » mtFabD, the mycobacterial MCAT, has been determined to 3.0 Å resolution by multi-wavelength anomalous dispersion. Phasing was facilitated by Ni{sup 2+} ions bound to the 20-residue N-terminal affinity tag, which packed between the two independent copies of mtFabD.« less
Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Kumbar, Sangamesh G.; Jiang, Tao; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.
2011-01-01
Synthetic biodegradable polymers serve as temporary substrates that accommodate cell infiltration and tissue in-growth in regenerative medicine. To allow tissue in-growth and nutrient transport, traditional three-dimensional (3D) scaffolds must be prefabricated with an interconnected porous structure. Here we demonstrated for the first time a unique polymer erosion process through which polymer matrices evolve from a solid coherent film to an assemblage of microspheres with an interconnected 3D porous structure. This polymer system was developed on the highly versatile platform of polyphosphazene-polyester blends. Co-substituting a polyphosphazene backbone with both hydrophilic glycylglycine dipeptide and hydrophobic 4-phenylphenoxy group generated a polymer with strong hydrogen bonding capacity. Rapid hydrolysis of the polyester component permitted the formation of 3D void space filled with self-assembled polyphosphazene spheres. Characterization of such self-assembled porous structures revealed macropores (10-100 μm) between spheres as well as micro- and nanopores on the sphere surface. A similar degradation pattern was confirmed in vivo using a rat subcutaneous implantation model. 12 weeks of implantation resulted in an interconnected porous structure with 82-87% porosity. Cell infiltration and collagen tissue in-growth between microspheres observed by histology confirmed the formation of an in situ 3D interconnected porous structure. It was determined that the in situ porous structure resulted from unique hydrogen bonding in the blend promoting a three-stage degradation mechanism. The robust tissue in-growth of this dynamic pore forming scaffold attests to the utility of this system as a new strategy in regenerative medicine for developing solid matrices that balance degradation with tissue formation. PMID:21789036
Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.
Ogiegło, Joanna M; Zych, Aleksander; Ivanovskikh, Konstantin V; Jüstel, Thomas; Ronda, Cees R; Meijerink, Andries
2012-08-23
Lu(3)Al(5)O(12) (LuAG) doped with Ce(3+) is a promising scintillator material with a high density and a fast response time. The light output under X-ray or γ-ray excitation is, however, well below the theoretical limit. In this paper the influence of codoping with Tb(3+) is investigated with the aim to increase the light output. High resolution spectra of singly doped LuAG (with Ce(3+) or Tb(3+)) are reported and provide insight into the energy level structure of the two ions in LuAG. For Ce(3+) zero-phonon lines and vibronic structure are observed for the two lowest energy 5d bands and the Stokes' shift (2 350 cm(-1)) and Huang-Rhys coupling parameter (S = 9) have been determined. Tb(3+) 4f-5d transitions to the high spin (HS) and low spin (LS) states are observed (including a zero-phonon line and vibrational structure for the high spin state). The HS-LS splitting of 5400 cm(-1) is smaller than usually observed and is explained by a reduction of the 5d-4f exchange coupling parameter J by covalency. Upon replacing the smaller Lu(3+) ion with the larger Tb(3+) ion, the crystal field splitting for the lowest 5d states increases, causing the lowest 5d state to shift below the (5)D(4) state of Tb(3+) and allowing for efficient energy transfer from Tb(3+) to Ce(3+) down to the lowest temperatures. Luminescence decay measurements confirm efficient energy transfer from Tb(3+) to Ce(3+) and provide a qualitative understanding of the energy transfer process. Co-doping with Tb(3+) does not result in the desired increase in light output, and an explanation based on electron trapping in defects is discussed.
Structural insights into the interaction of IL-33 with its receptors.
Liu, Xi; Hammel, Michal; He, Yanfeng; Tainer, John A; Jeng, U-Ser; Zhang, Linqi; Wang, Shuying; Wang, Xinquan
2013-09-10
Interleukin (IL)-33 is an important member of the IL-1 family that has pleiotropic activities in innate and adaptive immune responses in host defense and disease. It signals through its ligand-binding primary receptor ST2 and IL-1 receptor accessory protein (IL-1RAcP), both of which are members of the IL-1 receptor family. To clarify the interaction of IL-33 with its receptors, we determined the crystal structure of IL-33 in complex with the ectodomain of ST2 at a resolution of 3.27 Å. Coupled with structure-based mutagenesis and binding assay, the structural results define the molecular mechanism by which ST2 specifically recognizes IL-33. Structural comparison with other ligand-receptor complexes in the IL-1 family indicates that surface-charge complementarity is critical in determining ligand-binding specificity of IL-1 primary receptors. Combined crystallography and small-angle X-ray-scattering studies reveal that ST2 possesses hinge flexibility between the D3 domain and D1D2 module, whereas IL-1RAcP exhibits a rigid conformation in the unbound state in solution. The molecular flexibility of ST2 provides structural insights into domain-level conformational change of IL-1 primary receptors upon ligand binding, and the rigidity of IL-1RAcP explains its inability to bind ligands directly. The solution architecture of IL-33-ST2-IL-1RAcP complex from small-angle X-ray-scattering analysis resembles IL-1β-IL-1RII-IL-1RAcP and IL-1β-IL-1RI-IL-1RAcP crystal structures. The collective results confer IL-33 structure-function relationships, supporting and extending a general model for ligand-receptor assembly and activation in the IL-1 family.
Liu, Yayue; Yang, Qin; Xia, Guoping; Huang, Hongbo; Li, Hanxiang; Ma, Lin; Lu, Yongjun; He, Lei; Xia, Xuekui; She, Zhigang
2015-08-28
Five new compounds, pinazaphilones A and B (1, 2), two phenolic compounds (4, 5), and penicidone D (6), together with the known Sch 1385568 (3), (±)-penifupyrone (7), 3-O-methylfunicone (8), 5-methylbenzene-1,3-diol (9), and 2,4-dihydroxy-6-methylbenzoic acid (10) were obtained from the culture of the endophytic fungus Penicillium sp. HN29-3B1, which was isolated from a fresh branch of the mangrove plant Cerbera manghas collected from the South China Sea. Their structures were determined by analysis of 1D and 2D NMR and mass spectroscopic data. Structures of compounds 4 and 7 were further confirmed by a single-crystal X-ray diffraction experiment using Cu Kα radiation. The absolute configurations of compounds 1-3 were assigned by quantum chemical calculations of the electronic circular dichroic spectra. Compounds 2, 3, 5, and 7 inhibited α-glucosidase with IC50 values of 28.0, 16.6, 2.2, and 14.4 μM, respectively, and are thus more potent than the positive control, acarbose.
3-D Flow Visualization with a Light-field Camera
NASA Astrophysics Data System (ADS)
Thurow, B.
2012-12-01
Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.
NASA Astrophysics Data System (ADS)
Sang, Xiahan
Intermetallics offer unique property combinations often superior to those of more conventional solid solution alloys of identical composition. Understanding of bonding in intermetallics would greatly accelerate development of intermetallics for advanced and high performance engineering applications. Tetragonal intermetallics L10 ordered TiAl, FePd and FePt are used as model systems to experimentally measure their electron densities using quantitative convergent beam electron diffraction (QCBED) method and then compare details of the 3d-4d (FePd) and 3d-5d (FePt) electron interactions to elucidate their role on properties of the respective ferromagnetic L10-ordered intermetallics FePd and FePt. A new multi-beam off-zone axis condition QCBED method has been developed to increase sensitivity of CBED patterns to change of structure factors and the anisotropic Debye-Waller (DW) factors. Unprecedented accuracy and precision in structure and DW factor measurements has been achieved by acquiring CBED patterns using beam-sample geometry that ensures strong dynamical interaction between the fast electrons and the periodic potential in the crystalline samples. This experimental method has been successfully applied to diamond cubic Si, and chemically ordered B2 cubic NiAl, tetragonal L10 ordered TiAl and FePd. The accurate and precise experimental DW and structure factors for L10 TiAl and FePd allow direct evaluation of computer calculations using the current state of the art density functional theory (DFT) based electron structure modeling. The experimental electron density difference map of L1 0 TiAl shows that the DFT calculations describe bonding to a sufficient accuracy for s- and p- electrons interaction, e. g., the Al-layer. However, it indicate significant quantitative differences to the experimental measurements for the 3d-3d interactions of the Ti atoms, e.g. in the Ti layers. The DFT calculations for L10 FePd also show that the current DFT approximations insufficiently describe the interaction between Fe-Fe (3d-3d), Fe-Pd (3d-4d) and Pd-Pd (4d-4d) electrons, which indicates the necessity to evaluate applicability of different DFT approximations, and also provides experimental data for the development of new DFT approximation that better describes transition metal based intermetallic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eoff, Robert L.; Stafford, Jennifer B.; Szekely, Jozsef
2010-01-12
Oxidative stress can induce the formation of reactive electrophiles, such as DNA peroxidation products, e.g., base propenals, and lipid peroxidation products, e.g., malondialdehyde. Base propenals and malondialdehyde react with DNA to form adducts, including 3-(2'-deoxy-{beta}-d-erythro-pentofuranosyl)pyrimido[1,2-{alpha}]purin-10(3H)-one (M{sub 1}dG). When paired opposite cytosine in duplex DNA at physiological pH, M{sub 1}dG undergoes ring opening to form N{sup 2}-(3-oxo-1-propenyl)-dG (N{sup 2}-OPdG). Previous work has shown that M{sub 1}dG is mutagenic in bacteria and mammalian cells and that its mutagenicity in Escherichia coli is dependent on induction of the SOS response, indicating a role for translesion DNA polymerases in the bypass of M{sub 1}dG.more » To probe the mechanism by which translesion polymerases bypass M{sub 1}dG, kinetic and structural studies were conducted with a model Y-family DNA polymerase, Dpo4 from Sulfolobus solfataricus. The level of steady-state incorporation of dNTPs opposite M{sub 1}dG was reduced 260-2900-fold and exhibited a preference for dATP incorporation. Liquid chromatography-tandem mass spectrometry analysis of the full-length extension products revealed a spectrum of products arising principally by incorporation of dC or dA opposite M{sub 1}dG followed by partial or full-length extension. A greater proportion of -1 deletions were observed when dT was positioned 5' of M{sub 1}dG. Two crystal structures were determined, including a 'type II' frameshift deletion complex and another complex with Dpo4 bound to a dC-M{sub 1}dG pair located in the postinsertion context. Importantly, M{sub 1}dG was in the ring-closed state in both structures, and in the structure with dC opposite M{sub 1}dG, the dC residue moved out of the Dpo4 active site, into the minor groove. The results are consistent with the reported mutagenicity of M{sub 1}dG and illustrate how the lesion may affect replication events.« less
Novel Real-Time Facial Wound Recovery Synthesis Using Subsurface Scattering
Chin, Seongah
2014-01-01
We propose a wound recovery synthesis model that illustrates the appearance of a wound healing on a 3-dimensional (3D) face. The H3 model is used to determine the size of the recovering wound. Furthermore, we present our subsurface scattering model that is designed to take the multilayered skin structure of the wound into consideration to represent its color transformation. We also propose a novel real-time rendering method based on the results of an analysis of the characteristics of translucent materials. Finally, we validate the proposed methods with 3D wound-simulation experiments using shading models. PMID:25197721
Cholinesterase inhibitors from Cleistocalyx operculatus buds.
Min, Byung Sun; Cuong, To Dao; Lee, Joo-Sang; Shin, Beom-Soo; Woo, Mi Hee; Hung, Tran Manh
2010-10-01
Five flavonoids, myricetin-3'-methylether 3-O-β-D: -galactopyranoside (1), myricetin-3',5'-dimethylether 3-O-β-D: -galactopyranoside (2), quercetin (3), kaempferol (4), and tamarixetin (5) were isolated from the buds of Cleistocalyx operculatus (Myrtaceae). The chemical structures of these compounds were determined on the basis of spectroscopic analyses, including 2D NMR. Their anti-Alzheimer effects were evaluated via acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. All five compounds 1-5 showed potential inhibitory activities against AChE with IC(50) values of 19.9, 37.8, 25.9, 30.4 and 22.3 μM, respectively, while compounds 1, 3, 4 and 5 also possessed BChE inhibitory activity with IC(50) values of 152.5, 177.8, 62.5, and 160.6 μM, respectively.
Octacyanoniobate(IV)-based molecular magnets revealing 3D long-range order
NASA Astrophysics Data System (ADS)
Pełka, R.; Pinkowicz, D.; Drath, O.; Bałanda, M.; Rams, M.; Majcher, A.; Nitek, W.; Sieklucka, B.
2011-07-01
Isostructural series of chemical formula {[MII(pirazol)4]2[NbIV(CN)8]· 4H2O}n (MII = Mn (1), Fe (2), Co (3), Ni (4)) has been obtained by the self-assembly technique. Its unique crystallographic structure consists in the formation of a 3D extended network of magnetic centers braced by geometrically identical cyanido bridges. Magnetic measurements reveal the transitions to the 3D order at temperatures 23.7, 8.3, 5.9, 13.4 K for 1, 2, 3, and 4, respectively. The character of order is demonstrated to be ferrimagnetic for 1 and 2 and ferromagnetic for 3 and 4. The mean-field approach is used to determine the corresponding exchange coupling constants. The observed interactions are discussed within the magnetic orbital model.
NASA Astrophysics Data System (ADS)
Gong, An-Weng; Wu, Hong-Yan; Lian, Zhao-Xun; Dong, Hai-Jun; Li, Hao-Hong; Chen, Zhi-Rong
2013-03-01
A 3-D supramolecular hybrid {[La(EPC)3(H2O)3]2(Pb6I18)}n (EPC+ = N-ethyl-pyridium-4-carboxylate) (1) has been structurally determined, which assume significance for its incorporating lanthanide metal-carboxylic coordination polycation into polymeric iodoplumbate to get heterometallics. 1 consists of 1-D (PbI)n6n- zigzag-like anion chains with lanthanide metalcarboxylic [La(EPC)3(HO)3]n3n+ polycations, which arrange in a criss-cross configuration. C-H⋯I and C-H⋯O hydrogen bonds among inorganic anions and polycations contribute to the formation of a 3-D supramolecular framework. Moreover, the framework displays an absorption edge at 2.46 eV which is comparable to PbI2's absorption edge.
Seifert, Nathan A; Steber, Amanda L; Neill, Justin L; Pérez, Cristóbal; Zaleski, Daniel P; Pate, Brooks H; Lesarri, Alberto
2013-07-21
The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.
Hayashi, Kouichi
2014-11-01
Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
3D Polarized Imaging of Coronal Mass Ejections: Chirality of a CME
NASA Astrophysics Data System (ADS)
DeForest, C. E.; de Koning, C. A.; Elliott, H. A.
2017-12-01
We report on a direct polarimetric determination of the chirality of a coronal mass ejection (CME), using the physics of Thomson scattering applied to synoptic polarized images from the Solar Terrestrial Relations Observatories/COR2 coronagraph. We confirmed the determination using in situ magnetic field measurements of the same CME with the ACE spacecraft. CME chirality is related to the helicity ejected from the solar corona along with the mass and field entrained in the CME. It is also important to prediction of the space-weather-relevant Z component of the CME magnetic field. Hence, remote measurement of CME chirality is an important step toward both understanding CME physics and predicting geoeffectiveness of individual CMEs. The polarimetric properties of Thomson scattering are well known and can, in principle, be used to measure the 3D structure of imaged objects in the solar corona and inner heliosphere. However, reduction of that principle to practice has been limited by the twin difficulties of background subtraction and the signal-to-noise ratio in coronagraph data. Useful measurements of the 3D structure require relative photometry at a few percent precision level in each linear polarization component of the K corona. This corresponds to a relative photometric precision of order 10-4 in direct images of the sky before subtraction of the F corona and related signal. Our measurement was enabled by recent developments in signal processing, which enable a better separation of the photometric signal from noise in the synoptic COR2 data. We discuss the relevance of this demonstration measurement to future instrument requirements, and to the future measurements of 3D structures in CMEs and other solar wind features.
NASA Astrophysics Data System (ADS)
Portier-Fozzani, F.; Noens, J.-C.
In this presentation, I will present different techniques for 3D coronal structures reconstructions. Multiscale vision model (MVM, collaboration with A. Bijaoui) based on wavelet decomposition were used to prepare data. With SOHO/EIT, geometrical constraints were added to be able to measure by stereovision loop size parameters. Thus from these parameters, while including information of several observation wavelenghts, it has been possible by using the CHIANTI code to derive temperature and density along and across the loops, and thus to determine loops physical properties. During the emergence of a new active region, a more sophisticated method, was made to measure the twist degree variations. Loops appear twisted and detwist as expand. The magnetic helicity conservation gives thus important criteria to derive the limit of the stability for a non forced phenomena. Sigmoids, twisted ARLs, sheared filament are related with flares and CMEs. In that case 3D measurement can say upon which level of twist the structure will become unstable. With basic geometrical measures, it has been seen that a new active region reconnected a sigmoide leading to a flare. Also, for CMEs, the measure of the filament ejection angle from stereo EUV images, and the following of temporal evolution from coronagraphic measurement such as done by HACO at the Pic Du Midi Observatory, gives possibility to determine if the CME is coming toward the Earth, and when eventually would be the impact with the magnetosphere. The input of new missions such as STEREO/SECCHI would allow us to better understood the coronal dynamic. Such joined observations GBO-space, used simultaneously together with 3D methods, will allow to develop efficiently forecasting for Space Weather.
Computer system for definition of the quantitative geometry of musculature from CT images.
Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava
2005-02-01
The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.
Surface similarity-based molecular query-retrieval
Singh, Rahul
2007-01-01
Background Discerning the similarity between molecules is a challenging problem in drug discovery as well as in molecular biology. The importance of this problem is due to the fact that the biochemical characteristics of a molecule are closely related to its structure. Therefore molecular similarity is a key notion in investigations targeting exploration of molecular structural space, query-retrieval in molecular databases, and structure-activity modelling. Determining molecular similarity is related to the choice of molecular representation. Currently, representations with high descriptive power and physical relevance like 3D surface-based descriptors are available. Information from such representations is both surface-based and volumetric. However, most techniques for determining molecular similarity tend to focus on idealized 2D graph-based descriptors due to the complexity that accompanies reasoning with more elaborate representations. Results This paper addresses the problem of determining similarity when molecules are described using complex surface-based representations. It proposes an intrinsic, spherical representation that systematically maps points on a molecular surface to points on a standard coordinate system (a sphere). Molecular surface properties such as shape, field strengths, and effects due to field super-positioningcan then be captured as distributions on the surface of the sphere. Surface-based molecular similarity is subsequently determined by computing the similarity of the surface-property distributions using a novel formulation of histogram-intersection. The similarity formulation is not only sensitive to the 3D distribution of the surface properties, but is also highly efficient to compute. Conclusion The proposed method obviates the computationally expensive step of molecular pose-optimisation, can incorporate conformational variations, and facilitates highly efficient determination of similarity by directly comparing molecular surfaces and surface-based properties. Retrieval performance, applications in structure-activity modeling of complex biological properties, and comparisons with existing research and commercial methods demonstrate the validity and effectiveness of the approach. PMID:17634096
PDB explorer -- a web based algorithm for protein annotation viewer and 3D visualization.
Nayarisseri, Anuraj; Shardiwal, Rakesh Kumar; Yadav, Mukesh; Kanungo, Neha; Singh, Pooja; Shah, Pratik; Ahmed, Sheaza
2014-12-01
The PDB file format, is a text format characterizing the three dimensional structures of macro molecules available in the Protein Data Bank (PDB). Determined protein structure are found in coalition with other molecules or ions such as nucleic acids, water, ions, Drug molecules and so on, which therefore can be described in the PDB format and have been deposited in PDB database. PDB is a machine generated file, it's not human readable format, to read this file we need any computational tool to understand it. The objective of our present study is to develop a free online software for retrieval, visualization and reading of annotation of a protein 3D structure which is available in PDB database. Main aim is to create PDB file in human readable format, i.e., the information in PDB file is converted in readable sentences. It displays all possible information from a PDB file including 3D structure of that file. Programming languages and scripting languages like Perl, CSS, Javascript, Ajax, and HTML have been used for the development of PDB Explorer. The PDB Explorer directly parses the PDB file, calling methods for parsed element secondary structure element, atoms, coordinates etc. PDB Explorer is freely available at http://www.pdbexplorer.eminentbio.com/home with no requirement of log-in.
Uemura, Yuka; Sugimoto, Sachiko; Matsunami, Katsuyoshi; Otsuka, Hideaki; Takeda, Yoshio; Kawahata, Masatoshi; Yamaguchi, Kentaro
2013-03-01
From the branches of Microtropis japonica (Celastraceae), nine aliphatic glucosides, named microtropins A-I, were isolated. The 6-position of glucose was esterified with (2S,3R)-2-ethyl-2,3-dihydroxybutyric acid. Microtropins A-D contained a rare natured product nitrile functional group in their aglycones. The absolute structures of the (2S,3R)-2-ethyl-2,3-dihydroxybutyric acid moiety and aglycone of microtropin A were determined by an X-ray crystallographic method. Copyright © 2012 Elsevier Ltd. All rights reserved.
4D imaging of transient structures and morphologies in ultrafast electron microscopy.
Barwick, Brett; Park, Hyun Soon; Kwon, Oh-Hoon; Baskin, J Spencer; Zewail, Ahmed H
2008-11-21
With advances in spatial resolution reaching the atomic scale, two-dimensional (2D) and 3D imaging in electron microscopy has become an essential methodology in various fields of study. Here, we report 4D imaging, with in situ spatiotemporal resolutions, in ultrafast electron microscopy (UEM). The ability to capture selected-area-image dynamics with pixel resolution and to control the time separation between pulses for temporal cooling of the specimen made possible studies of fleeting structures and morphologies. We demonstrate the potential for applications with two examples, gold and graphite. For gold, after thermally induced stress, we determined the atomic structural expansion, the nonthermal lattice temperature, and the ultrafast transients of warping/bulging. In contrast, in graphite, striking coherent transients of the structure were observed in both image and diffraction, directly measuring, on the nanoscale, the longitudinal resonance period governed by Young's elastic modulus. The success of these studies demonstrates the promise of UEM in real-space imaging of dynamics.
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
Creating computer aided 3D model of spleen and kidney based on Visible Human Project.
Aldur, Muhammet M
2005-01-01
To investigate the efficacy of computer aided 3-dimensional (3D) reconstruction technique on visualization and modeling of gross anatomical structures with an affordable methodology applied on the spleen and kidney. From The Visible Human Project Dataset cryosection images, developed by the National Library of Medicine, the spleen and kidney sections were preferred to be used due to their highly distinct contours. The software used for the reconstruction were SurfDriver 3.5.3 for Mac and Cinema 4D XL version 7.1 for Mac OS X. This study was carried out in May 2004 at the Department of Anatomy, Hacettepe University, Ankara, Turkey. As a result of this study, it is determined that these 2 programs could be effectively used both for 3D modeling of the mentioned organs and volumetric analyses on these models. It is also seen that it is possible to hold the physical models of these gross anatomical digital ones with stereolithography technique by means of the data exchange file format provided by the program and present such images as anaglyph. SurfDriver 3.5.3 for Mac OS and Cinema 4 DXL version 7.1 for Mac OS X can be used effectively for reconstruction of gross anatomical structures from serial parallel sections with distinct contours such as spleen and kidney and the animation of models. These software constitute a highly effective way of getting volumetric calculations, spatial relations and morphometrical measurements of reconstructed structures.
NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat, Phase 2
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Roman, Monserrate C.; Kim, Hong S.
2017-01-01
The NASA Centennial Challenges: 3D-Printed Habitat Challenge seeks to develop the fundamental technologies necessary to manufacture an off-world habitat using mission recycled materials andor local indigenous materials. The vision is that autonomous habitat manufacturing machines will someday be deployed to the Moon or Mars to construct shelters for human habitation.NASA and Bradley University, are holding a new US$ 2.5 million competition to design and build a 3-D printed habitat for deep space exploration, including the agencys journey to Mars.The multi-phase 3-D Printed Habitat Challenge, part of NASA's Centennial Challenges program, is designed to advance the additive construction technology needed to create sustainable housing solutions for Earth and beyond.The first phase of the competition ran through Sept. 27, 2015. This phase, a design competition, called on participants to develop state-of-the-art architectural concepts that take advantage of the unique capabilities 3-D printing offers. The top 3 prizes with a prize purse of $40,000 were awarded at the 2015 World Maker Faire in New York.The second phase of the competition is called the Structural Member Competition and it is divided into three levels happening in the spring and summer of 2017. The Compression Test Competition (Level 1) focuses on the fabrication technologies needed to manufacture structural components from a combination of indigenous materials and recyclables, or indigenous materials alone. For Level 1, teams will develop 3D printable materials, build a 3D printing machine, and print two specimens: a truncated cone and a cylinder. The Level 2 Beam Member Competition is the second of three sub-competitions within the overall Structural Member Competition. For Level 2, teams will print a beam that will be tested.The Level 3 Head to Head Competition is the third of three sub-competitions within the overall Structural Member Competition. For Level 3, teams will develop 3D printable materials, use a 3D printing machine, and print three compression specimens of the elected material, three flexural specimens of the elected material, and one dome structure. Tests conducted on the specimens and the dome structure will determine Level 3 scores and awards. On Earth these same habitat manufacturing capabilities could be used to produce housing wherever affordable housing is needed and access to conventional building materials and skills is limited. Terrestrially, it is envisioned that local indigenous materials (dirt, clay, sand, etc.) could be combined with readily available recyclable materials and used to construct semi-permanent shelters against environmental elements for human habitation. The goal of the 3D-Printed Habitat Challenge is to foster the development of new technologies necessary to additively manufacture a habitat using local indigenous materials with, or without, recyclable materials. This paper will summarize the Level 2 results of this NASA Centennial Challenge competition and it will discuss related technology advancement.
[Density functional theory studies on structure and spectrum of Cu3 Ti cluster].
Wei, Yong-Hui; Cheng, Jian-Bo; Zhao, Bing; Lombardi, John R
2008-07-01
Bulk intermetallic Ti-Cu compounds have been found to possess special properties, including increased hardness, as well as displaying enhanced sound absorption and e shape memory. Since only one Raman progression is observed, there is not sufficient information to determine the structure of TiCu3. The different structures and vibrational frequencies of the Cu3 Ti cluster were studied by means of the density functional theory with SVWN5, B3LYP and BPW91 methods at basis sets of lanl2dz, 6-31g, 6-311g, 6-311g(d), 6-311 +/- g(2df) and 6-311 +/- g(3d2f). The calculated results show that the ground state of the Cu3 Ti cluster is a e-type structure with the C2v point group symmetry, and the bond lengths and vibrational frequencies of Cu3 T are considerably dependent on the variation of basis sets. We observed only a single Raman progression in approximately 300 cm(-1). This progression is most likely the totally symmetric stretch. The computed and observed Raman spectra were also compared with each other.
2D/3D fetal cardiac dataset segmentation using a deformable model.
Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew
2011-07-01
To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.
Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain
Yang, Chao-Yie; Delproposto, James; Chinnaswamy, Krishnapriya; Brown, William Clay; Wang, Shuying; Stuckey, Jeanne A.; Wang, Xinquan
2016-01-01
Suppression of Tumorigenicity 2 (ST2), a member of the interleukin-1 receptor (IL-1R) family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC) analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD) models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains) in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery. PMID:26735493
Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo; Aoki, Ikuo
2003-12-01
The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 degrees) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm3. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in visualizing the enhancement of small structures in the temporal bone; however, enhancement of the cochlear fluid space could not be visualized even with 3D rIR, triple-dose contrast, and dedicated coils at 1.5 T.
Liu, Qingxi; Zhang, Zijiang; Liu, Yupeng; Cui, Zhanfeng; Zhang, Tongcun; Li, Zhaohui; Ma, Wenjian
2018-03-01
Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.
Malo, Marcus; Persson, Ronnie; Svensson, Peder; Luthman, Kristina; Brive, Lars
2013-03-01
Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.
Three new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus.
Wang, Xu-Li; Gao, Jie; Li, Jing; Long, Hong-Ping; Xu, Ping-Sheng; Xu, Kang-Ping; Tan, Gui-Shan
2017-02-01
Three new isobenzofuranone derivatives erinaceolactones D-F (1-3), together with four known ones (4-7), were isolated from the fruiting bodies of Hericium erinaceus. Their structures were determined on the basis of comprehensive spectroscopic analyses including UV, 1D, 2D NMR and HR-TOF-MS. The absolute configuration of erinaceolactone D (1) and erinaceolactone E (2) were assigned by comparing their specific rotation with those of analogs in literatures. The four known compounds were isomers with each other and were isolated simultaneously for the first time.
Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk
2012-01-01
We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.
2007-12-01
system can only be precisely determined by examining all the materials used in the mat, their structure , orientation, dimensions, etc. and determining...ER D C/ G SL T R- 07 -3 3 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad...ERDC/GSL TR-07-33 December 2007 Full-Scale Instrumented Testing and Analysis of Matting Systems for Airfield Parking Ramps and Taxiways Chad A
NASA Astrophysics Data System (ADS)
Łodyga, Wiesław; Makarewicz, Jan
2012-05-01
Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Møller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state rav structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm-1 and 3454 cm-1, respectively, are in reasonable agreement with the empirical estimates of 2072 cm-1 and 3312 cm-1, respectively [W. Łodyga et al. J. Mol. Spectrosc. 183, 374 (1997), 10.1006/jmsp.1997.7271]. However, the empirical torsion barrier of 934 cm-1 appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm-1 and 2706 cm-1, respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.
Distortion of Magnetic Fields in a Starless Core II: 3D Magnetic Field Structure of FeSt 1-457
NASA Astrophysics Data System (ADS)
Kandori, Ryo; Tamura, Motohide; Tomisaka, Kohji; Nakajima, Yasushi; Kusakabe, Nobuhiko; Kwon, Jungmi; Nagayama, Takahiro; Nagata, Tetsuya; Tatematsu, Ken'ichi
2017-10-01
Three-dimensional (3D) magnetic field information on molecular clouds and cores is important for revealing their kinematical stability (magnetic support) against gravity, which is fundamental for studying the initial conditions of star formation. In the present study, the 3D magnetic field structure of the dense starless core FeSt 1-457 is determined based on the near-infrared polarimetric observations of the dichroic polarization of background stars and simple 3D modeling. With an obtained angle of line-of-sight magnetic inclination axis {θ }{inc} of 45^\\circ +/- 10^\\circ and previously determined plane-of-sky magnetic field strength {B}{pol} of 23.8 ± 12.1 μ {{G}}, the total magnetic field strength for FeSt 1-457 is derived to be 33.7 ± 18.0 μ {{G}}. The critical mass of FeSt 1-457, evaluated using both magnetic and thermal/turbulent support is {M}{cr}=3.70+/- 0.92 {M}⊙ , which is identical to the observed core mass, {M}{core}=3.55+/- 0.75 {M}⊙ . We thus conclude that the stability of FeSt 1-457 is in a condition close to the critical state. Without infalling gas motion and no associated young stars, the core is regarded to be in the earliest stage of star formation, I.e., the stage just before the onset of dynamical collapse following the attainment of a supercritical condition. These properties could make FeSt 1-457 one of the best starless cores for future studies of the initial conditions of star formation.
Arjunan, V; Devi, L; Remya, P; Mohan, S
2013-09-01
The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed. The structural parameters, energies, thermodynamic properties, vibrational frequencies and the NBO charges of 34DMBN were determined. The (1)H and (13)C chemical shifts with respect to TMS were investigated and also calculated theoretically using the gauge independent atomic orbital method and compared with the experimental data. The delocalisation energy of different types of bonding interactions was investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Identification of new pyrrole alkaloids from the fruits of Lycium chinense.
Youn, Ui Joung; Lee, Joo Yun; Kil, Yun-Seo; Han, Ah-Reum; Chae, Chong Hak; Ryu, Shi Yong; Seo, Eun-Kyoung
2016-03-01
Three new minor pyrrole alkaloids, 3-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]pentanedioic acid (1), (2R)-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl]-1-methoxy-1-oxobutanoic acid (2), and methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-4-methylpentanoate (3) were isolated from the fruits of Lycium chinense Miller (Solanaceae), along with the known compound, methyl (2R)-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]-3-(phenyl)propanoate (4). The structures of 1-4 were elucidated by analysis of their 1D- and 2D-NMR and HRMS data. The absolute configurations of 2-4, possessing a stereogenic center in each structure, were determined by comparison of their experimental electronic circular dichroism (ECD) with those of calculated ECD values.
Self-rolling up micro 3D structures using temperature-responsive hydrogel sheet
NASA Astrophysics Data System (ADS)
Iwata, Y.; Miyashita, S.; Iwase, E.
2017-12-01
This paper proposes a micro self-folding using a self-rolling up deformation. In the fabrication method at micro scale, self-folding is an especially useful method of easily fabricating complex three-dimensional (3D) structures from engineered two-dimensional (2D) sheets. However, most self-folded structures are limited to 3D structures with a hollow region. Therefore, we made 3D structures with a small hollow region by self-rolling up a 2D sheet consisting of SU-8 and a temperature-responsive hybrid hydrogel of poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc). The temperature-responsive hydrogel can provide repetitive deformation, which is a good feature for micro soft robots or actuators, using hydrogel shrinking and swelling. Our micro self-rolling up method is a self-folding method for a 3D structure performed by rolling up a 2D flat sheet, like making a croissant, through continuous self-folding. We used our method to fabricate 3D structures with a small hollow region, such as cylindrical, conical, and croissant-like ellipsoidal structures, and 3D structures with a hollow region, such as spiral shapes. All the structures showed repetitive deformation, forward rolling up in 20 °C cold water and backward rolling up in 40 °C hot water. The results demonstrate that self-rolling up deformation can be useful in the field of micro soft devices.
[Chemical constituents from Vaccinium bracteatum].
Qu, Jing; Chen, Xia; Niu, Chang-Shan; Yu, Shi-Shan
2014-02-01
The chemical constituents of Vaccinium bracteatum were studied by means of macroporous resin, ODS column chromatography and preparative HPLC. Eleven compounds were isolated from this plant. By using ESI-MS and NMR, the structures of the eleven compounds were determined as 10-O-trans-p-coumaroyl-6alpha-hydroxyl-dihydromonotropein (1), 10-O-cis-p-coumaroyl -6alpha-hydroxyl-dihydromonotropein (2), vaccinoside (3), 10-O-cis-p-coumaroyl monotropein (4), isolariciresinol-9-O-beta-D-xyloside (5), tectoridin (6), vicenin-3 (7), quercetin-3-O-alpha-L-rhamnoside (8), quercetin-3-O-alpha-L-arabinopyranoside (9), quercetin-3-O-beta-D-galactopyranoside (10), and quercetin-3-O-beta-D-glucuronide (11), respectively. Compounds 1 and 2 are new, and compounds 4, 6 and 7 are isolated from the genus Vaccinium for the first time.
D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie
2015-01-01
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.
Predictive and comparative analysis of Ebolavirus proteins
Cong, Qian; Pei, Jimin; Grishin, Nick V
2015-01-01
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus. PMID:26158395
Predictive and comparative analysis of Ebolavirus proteins.
Cong, Qian; Pei, Jimin; Grishin, Nick V
2015-01-01
Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.
Plenoptic Imaging of a Three Dimensional Cold Atom Cloud
NASA Astrophysics Data System (ADS)
Lott, Gordon
2017-04-01
A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.
Development of the Improving Process for the 3D Printed Structure
NASA Astrophysics Data System (ADS)
Takagishi, Kensuke; Umezu, Shinjiro
2017-01-01
The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.
Development of the Improving Process for the 3D Printed Structure
Takagishi, Kensuke; Umezu, Shinjiro
2017-01-01
The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics. PMID:28054558
Development of the Improving Process for the 3D Printed Structure.
Takagishi, Kensuke; Umezu, Shinjiro
2017-01-05
The authors focus on the Fused Deposition Modeling (FDM) 3D printer because the FDM 3D printer can print the utility resin material. It can print with low cost and therefore it is the most suitable for home 3D printer. The FDM 3D printer has the problem that it produces layer grooves on the surface of the 3D printed structure. Therefore the authors developed the 3D-Chemical Melting Finishing (3D-CMF) for removing layer grooves. In this method, a pen-style device is filled with a chemical able to dissolve the materials used for building 3D printed structures. By controlling the behavior of this pen-style device, the convex parts of layer grooves on the surface of the 3D printed structure are dissolved, which, in turn, fills the concave parts. In this study it proves the superiority of the 3D-CMF than conventional processing for the 3D printed structure. It proves utilizing the evaluation of the safety, selectively and stability. It confirms the improving of the 3D-CMF and it is confirmed utilizing the data of the surface roughness precision and the observation of the internal state and the evaluation of the mechanical characteristics.
Beenken, Andrew; Eliseenkova, Anna V; Ibrahimi, Omar A; Olsen, Shaun K; Mohammadi, Moosa
2012-01-27
Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1-3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the "universal FGFR ligand" because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the "b" and "c" splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.
NASA Astrophysics Data System (ADS)
Monir, M. El Amine.; Baltache, H.; Murtaza, G.; Khenata, R.; Ahmed, Waleed K.; Bouhemadou, A.; Omran, S. Bin; Seddik, T.
2015-01-01
Based on first principles spin-polarized density functional theory, the structural, elastic electronic and magnetic properties of Zn1-xVxSe (for x=0.25, 0.50, 0.75) in zinc blende structure have been studied. The investigation was done using the full-potential augmented plane wave method as implemented in WIEN2k code. The exchange-correlation potential was treated with the generalized gradient approximation PBE-GGA for the structural and elastic properties. Moreover, the PBE-GGA+U approximation (where U is the Hubbard correlation terms) is employed to treat the "d" electrons properly. A comparative study between the band structures, electronic structures, total and partial densities of states and local moments calculated within both GGA and GGA+U schemes is presented. The analysis of spin-polarized band structure and density of states shows the half-metallic ferromagnetic character and are also used to determine s(p)-d exchange constants N0α (conduction band) and N0β (valence band) due to Se(4p)-V(3d) hybridization. It has been clearly evidence that the magnetic moment of V is reduced from its free space change value of 3 μB and the minor atomic magnetic moment on Zn and Se are generated.
2013-01-01
Background We set out to examine whether structured professional judgement instruments DUNDRUM-3 programme completion (D-3) and DUNDRUM-4 recovery (D-4) scales along with measures of risk, mental state and global function could distinguish between those forensic patients detained in a secure forensic hospital (not guilty by reason of insanity or unfit to stand trial) who were subsequently discharged by a mental health review board. We also examined the interaction between these measures and risk, need for therapeutic security and eventual conditional discharge. Methods A naturalistic observational cohort study was carried out for 56 patients newly eligible for conditional discharge. Patients were rated using the D-3, D-4 and other scales including HCR-20, S-RAMM, START, SAPROF, PANSS and GAF and then observed over a period of twenty three months during which they were considered for conditional discharge by an independent Mental Health Review Board. Results The D-3 distinguished which patients were subsequently discharged by the Mental Health Review board (AUC = 0.902, p < 0.001) as did the D-4 (AUC = 0.848, p < 0.001). Item to outcome analysis showed each item of the D-3 and D-4 scales performed significantly better than random. The HCR-20 also distinguished those later discharged (AUC = 0.838, p < 0.001) as did the S-RAMM, START, SAPROF, PANSS and GAF. The D-3 and D-4 scores remained significantly lower (better) for those discharged even when corrected for the HCR-20 total score. Item to outcome analyses and logistic regression analysis showed that the strongest antecedents of discharge were the GAF and the DUNDRUM-3 programme completion scores. Conclusions Structured professional judgement instruments should improve the quality, consistency and transparency of clinical recommendations and decision making at mental health review boards. Further research is required to determine whether the DUNDRUM-3 programme completion and DUNDRUM-4 recovery instruments predict those who are or are not recalled or re-offend after conditional discharge. PMID:23837697
NASA Astrophysics Data System (ADS)
Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.
2018-02-01
A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.
The simulation of 3D structure of groundwater system based on Java/Java3D
NASA Astrophysics Data System (ADS)
Yang, Xiaodong; Cui, Weihong; Wang, Peifa; Huang, Yongqi
2007-06-01
With the singular development of Internet technique and 3DGIS as well as VR and the imminence demand of 3D visualization from Groundwater information management field, how to display, roam, anatomize and analyze of 3D structure of Groundwater system on Internet have become a research hotspot in hydrogeology field. We simulated the 3D Groundwater resource structure of Taiyuan basin and implemented displaying, roaming, anatomizing and analyzing functions on Internet by Java 3D.
NASA Technical Reports Server (NTRS)
Fleming, J. L.; Simpson, R. L.
1997-01-01
Laser Doppler velocimetry (LDV) measurements and hydrogen bubble flow visualization techniques were used to examine the near-wall flow structure of 2D and 3D turbulent boundary layers (TBLs) over a range of low Reynolds numbers. The goals of this research were (1) an increased understanding of the flow physics in the near wall region of turbulent boundary layers,(2) to observe and quantify differences between 2D and 3D TBL flow structures, and (3) to document Reynolds number effects for 3D TBLs. The LDV data have provided results detailing the turbulence structure of the 2D and 3D TBLs. These results include mean Reynolds stress distributions, flow skewing results, and U and V spectra. Effects of Reynolds number for the 3D flow were also examined. Comparison to results with the same 3D flow geometry but at a significantly higher Reynolds number provided unique insight into the structure of 3D TBLs. While the 3D mean and fluctuating velocities were found to be highly dependent on Reynolds number, a previously defined shear stress parameter was discovered to be invariant with Reynolds number. The hydrogen bubble technique was used as a flow visualization tool to examine the near-wall flow structure of 2D and 3D TBLs. Both the quantitative and qualitative results displayed larger turbulent fluctuations with more highly concentrated vorticity regions for the 2D flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Totrov; X Jiang; X Kong
2011-12-31
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boostingmore » with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.« less
NASA Astrophysics Data System (ADS)
Bittner, Dror M.; Zaleski, Daniel P.; Stephens, Susanna L.; Walker, Nick; Legon, Anthony
2015-06-01
The pure rotational spectra of 8 isotopologues of H3N\\cdot\\cdot\\cdotAgI and 6 isotopologues of (C{H3})3N\\cdot\\cdot\\cdotAgI were measured in a chirped pulse Fourier-transform microwave spectrometer. The complexes were synthesized in a molecular beam from a gas sample containing H3N or (C{H3})3N and CF3I precursors diluted in argon. Laser ablation was used to introduce silver atoms to the gas phase. The rotational constant B0, centrifugal distortion constants DJ and DJK, and the nuclear quadrupole coupling constant χaa(I) have been determined for (C{H3})314/15N\\cdot\\cdot\\cdot107/109AgI, (C{D3})3N\\cdot\\cdot\\cdot107/109AgI, H314/15N\\cdot\\cdot\\cdot107/109AgI and D3N\\cdot\\cdot\\cdot107/109AgI by fitting the measured transitions to a symmetric top Hamiltonian. The spectroscopic constants (B0+ C0), ΔJ and χaa(I) have been determined for D2HN\\cdot\\cdot\\cdot107/109AgI through fits that employed a Hamiltonian appropriate for a very near prolate asymmetric rotor. Partial effective (r0) and substitution (rs) structures have been determined.
Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination
Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom
2017-01-01
We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897