Science.gov

Sample records for determines cell susceptibility

  1. Determinism and divergence of apoptosis susceptibility in mammalian cells.

    PubMed

    Bhola, Patrick D; Simon, Sanford M

    2009-12-01

    Although the cellular decision to commit to apoptosis is important for organism homeostasis, there is considerable variability in the onset of apoptosis between cells, even in clonal populations. Using live single-cell imaging, we observed that the onset of apoptotic proteolytic activity was tightly synchronized between nearby cells. This synchrony was not a consequence of secreted factors and was not correlated to the cell cycle. The synchrony was only seen amongst related cells and was lost over successive generations. The times of apoptosis also diverged within a generation, but this was blocked by inhibiting protein synthesis before triggering apoptosis. These results suggest that the cell-cell variability of apoptosis times is due to the divergence of the molecular composition of the cell, and that the decision to commit to apoptosis at the time of drug addition is a deterministic decision.

  2. Abscisic acid signalling determines susceptibility of bundle sheath cells to photoinhibition in high light-exposed Arabidopsis leaves

    PubMed Central

    Gorecka, Magdalena; Alvarez-Fernandez, Ruben; Slattery, Katie; McAusland, Lorna; Davey, Phillip A.; Karpinski, Stanislaw; Lawson, Tracy; Mullineaux, Philip M.

    2014-01-01

    The rapid induction of the bundle sheath cell (BSC)-specific expression of ASCORBATE PEROXIDASE2 (APX2) in high light (HL)-exposed leaves of Arabidopsis thaliana is, in part, regulated by the hormone abscisic acid (ABA) produced by vascular parenchyma cells. In this study, we provide more details of the ABA signalling that regulates APX2 expression and consider its importance in the photosynthetic responses of BSCs and whole leaves. This was done using a combination of analyses of gene expression and chlorophyll a fluorescence of both leaves and individual BSCs and mesophyll cells. The regulation of APX2 expression occurs by the combination of the protein kinase SnRK2.6 (OST1):protein phosphatase 2C ABI2 and a Gα (GPA1)-regulated signalling pathway. The use of an ost1-1/gpa1-4 mutant established that these signalling pathways are distinct but interact to regulate APX2. In HL-exposed leaves, BSC chloroplasts were more susceptible to photoinhibition than those of mesophyll cells. The activity of the ABA-signalling network determined the degree of susceptibility of BSCs to photoinhibition by influencing non-photochemical quenching. By contrast, in HL-exposed whole leaves, ABA signalling did not have any major influence on their transcriptomes nor on their susceptibility to photoinhibition, except where guard cell responses were observed. PMID:24591719

  3. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib.

    PubMed

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy.

  4. Endoplasmic reticulum stress-induced autophagy determines the susceptibility of melanoma cells to dabrafenib

    PubMed Central

    Ji, Chao; Zhang, Ziping; Chen, Lihong; Zhou, Kunli; Li, Dongjun; Wang, Ping; Huang, Shuying; Gong, Ting; Cheng, Bo

    2016-01-01

    Melanoma is one of the deadliest skin cancers and accounts for most skin-related deaths due to strong resistance to chemotherapy drugs. In the present study, we investigated the mechanisms of dabrafenib-induced drug resistance in human melanoma cell lines A375 and MEL624. Our studies support that both endoplasmic reticulum (ER) stress and autophagy were induced in the melanoma cells after the treatment with dabrafenib. In addition, ER stress-induced autophagy protects melanoma cells from the toxicity of dabrafenib. Moreover, inhibition of both ER stress and autophagy promote the sensitivity of melanoma cells to dabrafenib. Taken together, the data suggest that ER stress-induced autophagy determines the sensitivity of melanoma cells to dabrafenib. These results provide us with promising evidence that the inhibition of autophagy and ER stress could serve a therapeutic effect for the conventional dabrafenib chemotherapy. PMID:27536070

  5. NeuAc alpha 2,3gal-glycoconjugate expression determines cell susceptibility to the porcine rubulavirus LPMV.

    PubMed

    Reyes-Leyva, J; Espinosa, B; Hernandez, J; Zenteno, R; Vallejo, V; Hernández-Jáuregui, P; Zenteno, E

    1997-10-01

    Relevance of membrane sialoglycoconjugates as receptors for infection by the porcine rubulavirus has been determined in vitro by sugar and lectin competition assays and by inhibition of glycosylation. Our results show that NeuAc alpha 2,3Gal but not NeuAc alpha 2,6Gal inhibits the virus infectivity of Vero cells, and the virus was effectively blocked with the lectin Maackia amurensis, specific for NeuAc alpha 2,3Gal. Inhibition of the cellular glycosylation with tunicamycin, deoxinojirimycin as well as neuraminidase treatment diminishes the viral capacity to bind and infect this cell line. Dexamethasone, which promotes the activity of sialyl alpha 2,6 glycosyltransferase, also diminishes the cell susceptibility for infection. This is the first report confirming that NeuAc alpha-2,3Gal recognition is determinant in the pathogenesis of the porcine rubulavirus.

  6. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.

  7. T-Cell Responses to Immunodominant LACK Antigen Do Not Play a Critical Role in Determining Susceptibility of BALB/c Mice to Leishmania mexicana

    PubMed Central

    Torrentera, Fabiola Aguilar; Glaichenhaus, Nicolas; Laman, Jon D.; Carlier, Yves

    2001-01-01

    Although BALB/c mice develop lesions when infected with Leishmania mexicana, the mechanisms which are responsible for susceptibility to this parasite have not been elucidated. In contrast, susceptibility of BALB/c mice to Leishmania major has been shown to depend on the early production of interleukin-4 (IL-4) by T cells which react to the parasitic LACK antigen. Here, we demonstrate that the lesions induced by L. mexicana are delayed compared to those induced by L. major but rapidly develop at later time points. Interestingly, while LACK-tolerant BALB/c-derived IE-LACK transgenic mice were resistant to L. major, they were susceptible to L. mexicana and developed lesions similar to those observed in wild-type BALB/c mice. The latter result was observed despite the fact that (i) LACK was expressed by L. mexicana, (ii) splenocytes from BALB/c mice were able to stimulate LACK-specific T-cell hybridoma cells when incubated with live L. mexicana promastigotes, and (iii) LACK-specific T cells contributed to IL-4 production in L. mexicana-infected BALB/c mice. Thus, in contrast to what was observed for L. major-infected mice, LACK-specific T cells do not play a critical role in determining susceptibility to L. mexicana. Although BALB/c mice are susceptible to both L. major and L. mexicana, the mechanisms which are responsible for susceptibility to these parasites are likely to be different. PMID:11119565

  8. CADM1/TSLC1 Identifies HTLV-1-Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis.

    PubMed

    Manivannan, Kiruthika; Rowan, Aileen G; Tanaka, Yuetsu; Taylor, Graham P; Bangham, Charles R M

    2016-04-01

    Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax-at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax-HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax-CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1- cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax-CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus.

  9. CADM1/TSLC1 Identifies HTLV-1-Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis

    PubMed Central

    Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.

    2016-01-01

    Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax–at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax–HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax−CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1– cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax–CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus. PMID:27105228

  10. Basal-subtype and MEK-Pl3K feedback signaling determine susceptibility of breast cancer cells to MEK inhibition

    SciTech Connect

    Mirzoeva, Olga K.; Das, Debopriya; Heiser, Laura M.; Bhattacharya, Sanchita; Siwak, Doris; Gendelman, Rina; Bayani, Nora; Wang, Nicholas J.; Neve, Richard M.; Knight, Zachary; Feiler, Heidi S.; Gascard, Philippe; Parvin, Bahram; Spellman, Paul T.; Shokat, Kevan M.; Wyrobek, Andrew J.; Bissell, Mina J.; McCormick, Frank; Kuo, Wen-Lin; Mills, Gordon B.; Gray, Joe W.; Korn, W. Michael

    2009-01-23

    Specific inhibitors of MEK have been developed that efficiently inhibit the oncogenic RAF-MEK-ERK pathway. We employed a systems-based approach to identify breast cancer subtypes particularly susceptible to MEK inhibitors and to understand molecular mechanisms conferring resistance to such compounds. Basal-type breast cancer cells were found to be particularly susceptible to growth-inhibition by small-molecule MEK inhibitors. Activation of the PI3 kinase pathway in response to MEK inhibition through a negative MEK-EGFR-PI3 kinase feedback loop was found to limit efficacy. Interruption of this feedback mechanism by targeting MEK and PI3 kinase produced synergistic effects, including induction of apoptosis and, in some cell lines, cell cycle arrest and protection from apoptosis induced by proapoptotic agents. These findings enhance our understanding of the interconnectivity of oncogenic signal transduction circuits and have implications for the design of future clinical trials of MEK inhibitors in breast cancer by guiding patient selection and suggesting rational combination therapies.

  11. A Role of Influenza Virus Exposure History in Determining Pandemic Susceptibility and CD8+ T Cell Responses

    PubMed Central

    Quiñones-Parra, Sergio M.; Clemens, E. Bridie; Wang, Zhongfang; Croom, Hayley A.; Kedzierski, Lukasz; McVernon, Jodie; Vijaykrishna, Dhanasekaran

    2016-01-01

    ABSTRACT Novel influenza viruses often cause differential infection patterns across different age groups, an effect that is defined as heterogeneous demographic susceptibility. This occurred during the A/H2N2 pandemic, when children experienced higher influenza attack rates than adults. Since the recognition of conserved epitopes across influenza subtypes by CD8+ cytotoxic T lymphocytes (CTLs) limit influenza disease, we hypothesized that conservation of CTL antigenic peptides (Ag-p) in viruses circulating before the pH2N2-1957 may have resulted in differential CTL immunity. We compared viruses isolated in the years preceding the pandemic (1941 to 1957) to which children and adults were exposed to viruses circulating decades earlier (1918 to 1940), which could infect adults only. Consistent with phylogenetic models, influenza viruses circulating from 1941 to 1957, which infected children, shared with pH2N2 the majority (∼89%) of the CTL peptides within the most immunogenic nucleoprotein, matrix 1, and polymerase basic 1, thus providing evidence for minimal pH2N2 CTL escape in children. Our study, however, identified potential CTL immune evasion from pH2N2 irrespective of age, within HLA-A*03:01+ individuals for PB1471-L473V/N476I variants and HLA-B*15:01+ population for NP404–414-V408I mutant. Further experiments using the murine model of B-cell-deficient mice showed that multiple influenza infections resulted in superior protection from influenza-induced morbidity, coinciding with accumulation of tissue-resident memory CD8+ T cells in the lung. Our study suggests that protection against H2N2-1957 pandemic influenza was most likely linked to the number of influenza virus infections prior to the pandemic challenge rather than differential preexisting CTL immunity. Thus, the regimen of a CTL-based vaccine/vaccine-component may benefit from periodic boosting to achieve fully protective, asymptomatic influenza infection. IMPORTANCE Due to a lack of cross

  12. Human genetic determinants of dengue virus susceptibility.

    PubMed

    Coffey, Lark L; Mertens, Eva; Brehin, Anne-Claire; Fernandez-Garcia, Maria Dolores; Amara, Ali; Després, Philippe; Sakuntabhai, Anavaj

    2009-02-01

    Dengue virus (DENV) is an emerging mosquito-borne pathogen that produces significant morbidity worldwide resulting in an estimated 50-100 million infections annually. DENV causes a spectrum of illness ranging from inapparent infection to life-threatening hemorrhagic fever and shock. The varied DENV disease outcome is determined by complex interactions between immunopathologic, viral, and human genetic factors. This review summarizes these interactions with a focus on human genetic determinants of DENV susceptibility, including human leukocyte antigens, blood type, and single nucleotide polymorphisms in immune response genes that have been associated with DENV disease. We also discuss other factors related to DENV outcome including viral genetic determinants, age, ethnicity, and nutritional status as they relate to DENV susceptibility. We emphasize the need for functional genetics studies to complement association-based data and we call for controlled study designs and standard clinical DENV disease definitions that will strengthen conclusions based on human genetic DENV studies.

  13. Crystallographic texture determinations from inverse susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Lewis, L. H.; Welch, D. O.

    1997-04-01

    Determination of the quantitative relationship between crystallographic texture and magnetic properties in advanced permanent magnets may be hampered by complex microstructures, which complicate methods that rely on diffraction, or by interparticulate interactions, which adversely affect methods based on magnetic remanence measurements. To this end, new techniques in the determination of texture of bulk permanent magnets are being explored to overcome these inherent experimental difficulties. The analysis of inverse paramagnetic susceptibility measurements constitutes a new method to investigate crystallographic texture. Such measurements also provide Curie temperature data, which are sensitive to chemical changes that may have occurred in the magnetic phase during processing. The mathematical formalism underlying the analysis of inverse susceptibility measurements is outlined, and is used to evaluate magnetic measurements taken from a series of Nd2Fe14B magnets that have been processed by different means, and thus contain different degrees of texture. While this method does provide qualitative information concerning the relative crystallographic alignment of magnet samples, it needs calibration to obtain an explicit value for a texture order parameter.

  14. Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus.

    PubMed

    Wilden, Holger; Fournier, Philippe; Zawatzky, Rainer; Schirrmacher, Volker

    2009-04-01

    Newcastle Disease Virus (NDV) is an avian paramyxovirus with anti-neoplastic and immune-stimulatory properties which has raised considerable interest for cancer therapy. To better understand the molecular nature of the tumor selective replication of NDV, we investigated the cellular responses of murine normal and tumor cells after infection by NDV. To this end, we compared the basal expression of different antiviral proteins as well as the expression induced by the addition of NDV to the cells in vitro and in vivo. Primary macrophages were found to be resistant to NDV infection and exhibited a high basal and induced expression of various antiviral genes. In contrast, macrophage-derived RAW tumor cells were highly susceptible to NDV infection and displayed a low expression of several antiviral genes. Macrophage-derived J774 tumor cells were intermediate with regard to NDV replication and antiviral gene expression. The responsiveness to exogenously added IFN-alpha was found highest in normal macrophages, lowest in the RAW cells, and intermediate in the J774 cells. We also analysed dendritic cells as well as additional normal and tumor cell types. A strong inverse correlation was obeserved between the susceptibility to infection and the basal expression of the antiviral genes RIG-I, IRF3, IRF7 and IFN-beta. A strong expression of these genes can explain the resistance of normal cells to NDV infection and a weak antiviral gene expression the broad susceptibility of tumor cells.

  15. Human immunodeficiency virus type 1 drug susceptibility determination by using recombinant viruses generated from patient sera tested in a cell-killing assay.

    PubMed Central

    Boucher, C A; Keulen, W; van Bommel, T; Nijhuis, M; de Jong, D; de Jong, M D; Schipper, P; Back, N K

    1996-01-01

    A simple approach for the determination of drug susceptibilities by using human immunodeficiency virus type 1 (HIV-1) RNA from the sera of patients is described. HIV-1 RNA was extracted from patient sera, and the 5' part of the reverse transcriptase (RT) gene was transcribed into DNA and amplified in a nested PCR. The amplified fragment covers the 3' part of the protease gene and amino acids 1 to 304 of the RT gene. This fragment can be introduced through homologous recombination, as described previously, into a novel HIV-1 reference strain (pHXB2 delta 2-261RT) from which amino acids 2 to 261 of RT have been deleted. The resulting recombinant virus expresses all properties of the HXB2 reference strain except for those encoded by the introduced part of the patient RT gene. Recombinant viruses were subsequently tested for drug susceptibility in a microtiter format killing assay [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay] as well as in the standard HeLa CD4+ plaque reduction assay. Similar susceptibility profiles were obtained by each assay with recombinant viruses derived from patients receiving alternating nevirapine and zidovudine treatment or lamivudine-zidovudine combination therapy. In conclusion, this approach enables high-through-put determination of the drug susceptibilities of serum RNA-derived RT genes, independent of the patient's viral background, and generates the possibility of relating changes in susceptibility to changes in viral genotypes. PMID:8891152

  16. T cell receptor (TCR) usage determines disease susceptibility in experimental autoimmune encephalomyelitis: studies with TCR V beta 8.2 transgenic mice

    PubMed Central

    1994-01-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease that can be induced in laboratory animals by immunization with the major myelin proteins, myelin basic protein (MBP) and proteolipid protein (PLP). We analyzed the role of the T cell receptor (TCR) repertoire in susceptibility to EAE induced by these two autoantigens. Autoreactive T cells induced after immunization with MBP use a limited set of TCR. In contrast, we demonstrate that T cell clones that recognize the encephalitogenic PLP epitope (PLP 139-151) use diverse TCR genes. When the TCR repertoire is limited by introduction of a novel rearranged TCR V beta 8.2 chain in transgenic SJL mice, EAE could be induced in the transgenic mice by immunization with the encephalitogenic epitopes of PLP, but not with the encephalitogenic epitope of MBP. Thus, skewing the TCR repertoire affects the susceptibility to EAE by immunization with MBP but not with PLP. These data demonstrate the biological consequences of the usage of a more diverse T cell repertoire in the development of an autoimmune disease. PMID:8163944

  17. Imaging of VSOP Labeled Stem Cells in Agarose Phantoms with Susceptibility Weighted and T2* Weighted MR Imaging at 3T: Determination of the Detection Limit

    PubMed Central

    Lobsien, Donald; Dreyer, Antje Y.; Stroh, Albrecht; Boltze, Johannes; Hoffmann, Karl-Titus

    2013-01-01

    Objectives This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). Materials and Methods We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0–100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. Results Group A: 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. Conclusion 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models. PMID:23667503

  18. Imaging of VSOP labeled stem cells in agarose phantoms with susceptibility weighted and T2* weighted MR Imaging at 3T: determination of the detection limit.

    PubMed

    Lobsien, Donald; Dreyer, Antje Y; Stroh, Albrecht; Boltze, Johannes; Hoffmann, Karl-Titus

    2013-01-01

    This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0-100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the number of cells, and rated for detectability according to a four-step scale. Images of Group B were subject to a ROI-based analysis of signal intensities. Signal deviations of more than the 0.95 confidence interval in cell containing layers as compared to the mean of the signal intensity of non cell bearing layers were considered significant. 500 or more labeled cells were judged as confidently visible when examined with a SWI-sequence with 0.15 mm slice thickness. Group B: 500 or more labeled cells showed a significant signal reduction in SWI sequences with a slice thickness of 0.25 mm. Slice thickness and cell number per layer had a significant influence on the amount of detected signal reduction. 500 VSOP labeled stem cells could be detected with SWI imaging at 3 Tesla using an experimental design suitable for large animal models.

  19. Telomere Length Is a Determinant of Emphysema Susceptibility

    PubMed Central

    Alder, Jonathan K.; Guo, Nini; Kembou, Frant; Parry, Erin M.; Anderson, Collin J.; Gorgy, Amany I.; Walsh, Michael F.; Sussan, Thomas; Biswal, Shyam; Mitzner, Wayne; Tuder, Rubin M.

    2011-01-01

    Rationale: Germline mutations in the enzyme telomerase cause telomere shortening, and have their most common clinical manifestation in age-related lung disease that manifests as idiopathic pulmonary fibrosis. Short telomeres are also a unique heritable trait that is acquired with age. Objectives: We sought to understand the mechanisms by which telomerase deficiency contributes to lung disease. Methods: We studied telomerase null mice with short telomeres. Measurements and Main Results: Although they have no baseline histologic defects, when mice with short telomeres are exposed to chronic cigarette smoke, in contrast with controls, they develop emphysematous air space enlargement. The emphysema susceptibility did not depend on circulating cell genotype, because mice with short telomeres developed emphysema even when transplanted with wild-type bone marrow. In lung epithelium, cigarette smoke exposure caused additive DNA damage to telomere dysfunction, which limited their proliferative recovery, and coincided with a failure to down-regulate p21, a mediator of cellular senescence, and we show here, a determinant of alveolar epithelial cell cycle progression. We also report early onset of emphysema, in addition to pulmonary fibrosis, in a family with a germline deletion in the Box H domain of the RNA component of telomerase. Conclusions: Our data indicate that short telomeres lower the threshold of cigarette smoke–induced damage, and implicate telomere length as a genetic susceptibility factor in emphysema, potentially contributing to its age-related onset in humans. PMID:21757622

  20. Susceptibility of irradiated bovine aortic endothelial cells to injury

    SciTech Connect

    Zhou, M.H.; Dong, Q.; Ts'ao, C.

    1988-11-01

    Using cultured bovine aortic endothelial cells (BAEC), the authors attempted to determine whether prior irradiation would alter the susceptibility of these cells to three known injurious stimuli and, if so, whether the alteration would be related to radiation dose. BAEC were irradiated with 0, 5, or 10 Gy of gamma rays and, on the third postirradiation day, exposed to fibrin, nicotine, or bacterial endotoxin (lipopolysaccharide, LPS). Release of prelabeled 51Cr, representing cell lysis, cell detachment, or a combination of the two, was determined. Significant differences between irradiated and control cells were determined by using paired Student's t-tests. Irradiation did not appear to have altered the sensitivity of BAEC to fibrin-induced injury. Cells irradiated with 10 Gy of gamma rays, but generally not those irradiated with half this dose, showed a heightened susceptibility to nicotine. Contrary to the nicotine results, irradiated cells showed less cell detachment and lysis after exposure to LPS. These results suggest that the susceptibility of irradiated BAEC to harmful stimuli depends largely on the nature of the stimulus as well as the radiation dose.

  1. Evaluation of a rapid Bauer-Kirby antibiotic susceptibility determination.

    PubMed

    Liberman, D F; Robertson, R G

    1975-03-01

    To reduce the incubation time requirement in the Bauer-Kirby antibiotic susceptibility test, comparisons were made of the test results at 18 to 20 h (standard) and 7 to 8 h (rapid) utilizing 100 recent clinical isolates. The zone diameters for 664 disks were monitored by using the standard classification: resistant, intermediate, or susceptible. The susceptibility determination was unchanged in 558 out of 664 instances (84.0%). An analysis of the remaining 106 sets revealed that an initial interpretation of intermediate in zone size, subsequently determined resistant or susceptible, accounted for 49 of the observed differences. The reverse changes, initial resistant or susceptible subsequently classified as intermediate, accounted for 20 of the changes. In five instances the interpretation changed from susceptible to resistant; in two cases the interpretation changed from resistant to susceptible. The remaining 30 determinations were classified as indeterminant due to (i) insufficient growth at the early (7 to 8 h) determination, and to (ii) zones which were so large that they could not be measured accurately. The data indicate that zone sizes when measured to the nearest 0.1 mm can be interpreted with reasonable accuracy and the results can be available 10 to 14 h sooner.

  2. Determination of antimicrobial susceptibilities on infected urines without isolation

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Deming, J. W.; Shrock, C. G.; Vellend, H.; Barza, M. J.; Weinstein, L. (Inventor)

    1979-01-01

    A method is described for the quick determination of the susceptibilities of various unidentified bacteria contained in an aqueous physiological fluid sample, particularly urine, to one or more antibiotics. A bacterial adenosine triphosphate (ATP) assay is carried out after the elimination of non-bacterial ATP to determine whether an infection exists. If an infection does exist, a portion of the sample is further processed, including subjecting parts of the portion to one or more antibiotics. Growth of the bacteria in the parts are determined, again by an ATP assay, to determine whether the unidentified bacteria in the sample are susceptible to the antibiotic or antibiotics under test.

  3. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  4. Methods for determining the antimicrobial susceptibility of mycobacteria.

    PubMed

    Alcaide, Fernando; Esteban, Jaime; González-Martin, Julià; Palacios, Juan-José

    2017-10-01

    Mycobacteria are a large group of microorganisms, multiple species of which are major causes of morbidity and mortality, such as tuberculosis and leprosy. At present, the emergence and spread of multidrug-resistant strains of Mycobacterium tuberculosis complex are one of the most serious health problems worldwide. Furthermore, in contrast to M. tuberculosis and Mycobacterium leprae, non-tuberculous mycobacteria (NTM) are more frequently isolated and, in many cases, treatment is based on drug susceptibility testing. This article is a review of the different methods to determine the in vitro drug susceptibility of M. tuberculosis complex and the most relevant NTM isolates. The molecular techniques currently used for rapid detection of resistance of clinical specimens are also analysed. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  5. New basal cell carcinoma susceptibility loci.

    PubMed

    Stacey, Simon N; Helgason, Hannes; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Zink, Florian; Sigurdsson, Asgeir; Kehr, Birte; Gudmundsson, Julius; Sulem, Patrick; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Fuentelsaz, Victoria; Corredera, Cristina; Gilaberte, Yolanda; Grasa, Matilde; Planelles, Dolores; Sanmartin, Onofre; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Nexø, Bjørn A; Tjønneland, Anne; Overvad, Kim; Jonasson, Jon G; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M; Stefansson, Hreinn; Masson, Gisli; Magnusson, Olafur T; Halldorsson, Bjarni V; Kong, Augustine; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Vogel, Ulla; Kumar, Rajiv; Nagore, Eduardo; Mayordomo, José I; Gudbjartsson, Daniel F; Olafsson, Jon H; Stefansson, Kari

    2015-04-09

    In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10(-12)), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10(-9)), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10(-12)) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10(-16)). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained.

  6. New basal cell carcinoma susceptibility loci

    PubMed Central

    Stacey, Simon N.; Helgason, Hannes; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Zink, Florian; Sigurdsson, Asgeir; Kehr, Birte; Gudmundsson, Julius; Sulem, Patrick; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R.; Thorisdottir, Kristin; Ragnarsson, Rafn; Fuentelsaz, Victoria; Corredera, Cristina; Gilaberte, Yolanda; Grasa, Matilde; Planelles, Dolores; Sanmartin, Onofre; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Nexø, Bjørn A.; Tjønneland, Anne; Overvad, Kim; Jonasson, Jon G.; Tryggvadottir, Laufey; Johannsdottir, Hrefna; Kristinsdottir, Anna M.; Stefansson, Hreinn; Masson, Gisli; Magnusson, Olafur T.; Halldorsson, Bjarni V.; Kong, Augustine; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Vogel, Ulla; Kumar, Rajiv; Nagore, Eduardo; Mayordomo, José I.; Gudbjartsson, Daniel F.; Olafsson, Jon H.; Stefansson, Kari

    2015-01-01

    In an ongoing screen for DNA sequence variants that confer risk of cutaneous basal cell carcinoma (BCC), we conduct a genome-wide association study (GWAS) of 24,988,228 SNPs and small indels detected through whole-genome sequencing of 2,636 Icelanders and imputed into 4,572 BCC patients and 266,358 controls. Here we show the discovery of four new BCC susceptibility loci: 2p24 MYCN (rs57244888[C], OR=0.76, P=4.7 × 10−12), 2q33 CASP8-ALS2CR12 (rs13014235[C], OR=1.15, P=1.5 × 10−9), 8q21 ZFHX4 (rs28727938[G], OR=0.70, P=3.5 × 10−12) and 10p14 GATA3 (rs73635312[A], OR=0.74, P=2.4 × 10−16). Fine mapping reveals that two variants correlated with rs73635312[A] occur in conserved binding sites for the GATA3 transcription factor. In addition, expression microarrays and RNA-seq show that rs13014235[C] and a related SNP rs700635[C] are associated with expression of CASP8 splice variants in which sequences from intron 8 are retained. PMID:25855136

  7. Subtle variations in Pten dose determine cancer susceptibility.

    PubMed

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  8. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  9. Expression of HSV-1 receptors in EBV-associated lymphoproliferative disease determines susceptibility to oncolytic HSV.

    PubMed

    Wang, P-Y; Currier, M A; Hansford, L; Kaplan, D; Chiocca, E A; Uchida, H; Goins, W F; Cohen, J B; Glorioso, J C; van Kuppevelt, T H; Mo, X; Cripe, T P

    2013-07-01

    Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disease (LPD) after hematopoietic stem cell or solid organ transplantation remains a life-threatening complication. Expression of the virus-encoded gene product, EBER, has been shown to prevent apoptosis via blockade of PKR activation. As PKR is a major cellular defense against Herpes simplex virus (HSV), and oncolytic HSV-1 (oHSV) mutants have shown promising antitumor efficacy in preclinical models, we sought to determine whether EBV-LPD cells are susceptible to infection by oHSVs. We tested three primary EBV-infected lymphocyte cell cultures from neuroblastoma (NB) patients as models of naturally acquired EBV-LPD. NB12 was the most susceptible, NB122R was intermediate and NB88R2 was essentially resistant. Despite EBER expression, PKR was activated by oHSV infection. Susceptibility to oHSV correlated with the expression of the HSV receptor, nectin-1. The resistance of NB88R2 was reversed by exogenous nectin-1 expression, whereas downregulation of nectin-1 on NB12 decreased viral entry. Xenografts derived from the EBV-LPDs exhibited only mild (NB12) or no (NB88R2) response to oHSV injection, compared with a NB cell line that showed a significant response. We conclude that EBV-LPDs are relatively resistant to oHSV virotherapy, in some cases, due to low virus receptor expression but also due to intact antiviral PKR signaling.

  10. Expression of HSV-1 Receptors in EBV-Associated Lymphoproliferative Disease Determines Susceptibility to Oncolytic HSV

    PubMed Central

    Wang, Pin-Yi; Currier, Mark A; Hansford, Loen; Kaplan, David; Chiocca, E. Antonio; Uchida, Hiroaki; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.; van Kuppevelt, Toin H.; Mo, Xiaokui; Cripe, Timothy P

    2012-01-01

    Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (LPD) after hematopoietic stem cell or solid organ transplantation remains a life-threatening complication. Expression of the virus-encoded gene product, EBER, has been shown to prevent apoptosis via blockade of PKR activation. Because PKR is a major cellular defense against Herpes simplex virus, and oncolytic HSV-1 (oHSV) mutants have shown promising anti-tumor efficacy in preclinical models, we sought to determine whether EBV-LPD cells are susceptible to infection by oHSVs. We tested three primary EBV-infected lymphocyte cell cultures from neuroblastoma (NB) patients as models of naturally acquired EBV-LPD. NB12 was most susceptible, NB122R was intermediate, and NB88R2 was essentially resistant. Despite EBER expression, PKR was activated by oHSV infection. Susceptibility to oHSV correlated with the expression of the HSV receptor, nectin-1. The resistance of NB88R2 was reversed by exogenous nectin-1 expression, whereas down-regulation of nectin-1 on NB12 decreased viral entry. Xenografts derived from the EBV-LPDs exhibited only mild (NB12) or no (NB88R2) response to oHSV injection, compared with a neuroblastoma cell line that showed a significant response. We conclude that EBV-LPDs are relatively resistant to oHSV virotherapy, in some cases due to low virus receptor expression but also due to intact anti-viral PKR signaling. PMID:23254370

  11. Subtle variations in Pten dose determine cancer susceptibility

    PubMed Central

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  12. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine.

    PubMed

    Cadwell, Ken; Patel, Khushbu K; Maloney, Nicole S; Liu, Ta-Chiang; Ng, Aylwin C Y; Storer, Chad E; Head, Richard D; Xavier, Ramnik; Stappenbeck, Thaddeus S; Virgin, Herbert W

    2010-06-25

    It is unclear why disease occurs in only a small proportion of persons carrying common risk alleles of disease susceptibility genes. Here we demonstrate that an interaction between a specific virus infection and a mutation in the Crohn's disease susceptibility gene Atg16L1 induces intestinal pathologies in mice. This virus-plus-susceptibility gene interaction generated abnormalities in granule packaging and unique patterns of gene expression in Paneth cells. Further, the response to injury induced by the toxic substance dextran sodium sulfate was fundamentally altered to include pathologies resembling aspects of Crohn's disease. These pathologies triggered by virus-plus-susceptibility gene interaction were dependent on TNFalpha and IFNgamma and were prevented by treatment with broad spectrum antibiotics. Thus, we provide a specific example of how a virus-plus-susceptibility gene interaction can, in combination with additional environmental factors and commensal bacteria, determine the phenotype of hosts carrying common risk alleles for inflammatory disease.

  13. [Susceptibility of immunocompetent cells to animal viruses].

    PubMed

    López-Guerrero, J A

    1990-06-01

    The infection of several cell lines of the immune system by animal viruses has been studied. In general, those cell lines derived either from the myeloid or from the lymphoid differentiation pathways were poorly affected by these viruses. Only Semliki Forest Virus (SFV) and poliovirus were able to replicate in most of the cell lines assayed, inhibiting the cellular protein synthesis. However, this inhibition was not accompanied by a significant expression of viral proteins. These effects were not observed with UV irradiated virus suggesting that intact viral particles were required to interfere with the host macromolecular synthesis.

  14. [Antimicrobial susceptibility of Neisseria gonorrhoeae strains determined by disk diffusion].

    PubMed

    Llanes Caballero, R; Acosta Giraldo, J C; Sosa Puente, J; Guzmán Hernández, D; Gutiérrez González, O; Llop Hernández, A

    1999-01-01

    The Gonoccocus Laboratory of "Pedro Kourí" Tropical Medicine Institute carried out a study of in vitro susceptibility of Neisseria gonorrhoeae to penicillin, tetracycline, cefuroxime ceftriaxone, cefotaxine and ciprofoxacin by means of a disk diffusion method with the culture medium agar base GC plus supplement. In the first phase, the method was standardized and the reference N. gonorrhoeae ATCC 49226 strain was used whereas in the second phase, 50 gonococcal strains isolated in 8 provinces during 1995 and 1996 were examined. The results of such standardization confirmed that the antimicrobial susceptibility values were within the allowable limits. 52 and 34% of strains were resistant to penicillin and tetracycline respectively and all of them showed susceptibility to the rest of evaluated antimicrobial drugs. We recommend the use of the disk diffusion method for surveillance of gonococci resistance to these drugs in our country.

  15. Genetic Induction of Cytolytic Susceptibility in Breast Cancer Cells

    DTIC Science & Technology

    1999-07-01

    Street, Fort Detrick, MD 21702-5012 AUTHORITY USAMRMC ltr, dtd 28 July 2003 THIS PAGE IS UNCLASSIFIED AD GRANT NUMBER DAMD17-98-1-8324 TITLE: Genetic ...FUNDING NUMBERS Genetic Induction of Cytolytic Susceptibility in Breast Cancer Cells DAMD17-98-1-8324 6. AUTHOR(S) James L. Cook, M.D. 7. PERFORMING...gene expression in breast cancer cells. The objective of these studies is to obtain genetic information to complement the biological data presented

  16. Susceptibility to basal cell carcinoma: associations with PTCH polymorphisms.

    PubMed

    Strange, R C; El-Genidy, N; Ramachandran, S; Lovatt, T J; Fryer, A A; Smith, A G; Lear, J T; Wong, C; Jones, P W; Ichii-Jones, F; Hoban, P R

    2004-11-01

    Loss of function of the human patched gene (PTCH) is common and critical in basal cell carcinoma (BCC) development. Indirect evidence suggests polymorphism in PTCH mediates BCC risk. We studied 659 BCC cases and 300 controls to determine if exon 2(318), 3(429), 11(1552), 12(1665), 12(1686), 14(2199) and 23(3944) and intron 9(1336-135) and 15(2560+9)PTCH variants were sufficiently common for use in case-control studies, and if selected markers were associated with risk. Intron 15(2560+9) and exon 23(3944) variants were studied further. Their genotype frequencies were not significantly different in controls and cases, though frequency of the G(2560+9)-C(3944) haplotype was lower in all cases (odds ratio=0.44, p=0.009) and those stratified by BCC site and rate of development of further tumours. This association was not mediated by the extent of UVR exposure. We confirmed the robustness of these findings by showing these associations demonstrated similar odds ratios in two groups of randomly selected cases and controls, and using the false positive report probability (FPRP) approach described by Wacholder et al. (2004). The FPRP value (0.168) was in the noteworthy category. These data, showing for the first time that PTCH polymorphism mediates susceptibility, are compatible with reports showing that PTCH haploinsufficiency influences development of BCC precursor lesions.

  17. Innate immunity and genetic determinants of urinary tract infection susceptibility

    PubMed Central

    Godaly, Gabriela; Ambite, Ines; Svanborg, Catharina

    2015-01-01

    Purpose of review Urinary tract infections (UTIs) are common, dangerous and interesting. Susceptible individuals experience multiple, often clustered episodes, and in a subset of patients, infections progress to acute pyelonephritis (APN), sometimes accompanied by uro-sepsis. Others develop asymptomatic bacteriuria (ABU). Here, we review the molecular basis for these differences, with the intention to distinguish exaggerated host responses that drive disease from attenuated responses that favour protection and to highlight the genetic basis for these extremes, based on knock-out mice and clinical studies. Recent findings The susceptibility to UTI is controlled by specific innate immune signalling and by promoter polymorphisms and transcription factors that modulate the expression of genes controlling these pathways. Gene deletions that disturb innate immune activation either favour asymptomatic bacteriuria or create acute morbidity and disease. Promoter polymorphisms and transcription factor variants affecting those genes are associated with susceptibility in UTI-prone patients. Summary It is time to start using genetics in UTI-prone patients, to improve diagnosis and to assess the risk for chronic sequels such as renal malfunction, hypertension, spontaneous abortions, dialysis and transplantation. Furthermore, the majority of UTI patients do not need follow-up, but for lack of molecular markers, they are unnecessarily investigated. PMID:25539411

  18. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    PubMed Central

    Sehgal, Anuj; Rios, Daniel

    2016-01-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

  19. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility.

    PubMed

    Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A

    2016-12-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.

  20. The importance of growth kinetic analysis in determining bacterial susceptibility against antibiotics and silver nanoparticles.

    PubMed

    Theophel, Karsten; Schacht, Veronika J; Schlüter, Michael; Schnell, Sylvia; Stingu, Catalina-Suzana; Schaumann, Reiner; Bunge, Michael

    2014-01-01

    Routine antibiotics susceptibility testing still relies on standardized cultivation-based analyses, including measurement of inhibition zones in conventional agar diffusion tests and endpoint turbidity-based measurements. Here, we demonstrate that common off-line monitoring and endpoint determination after 18-24 h could be insufficient for reliable growth-dependent evaluation of antibiotic susceptibility. Different minimal inhibitory concentrations were obtained in 20- and 48 h microdilution plate tests using an Enterococcus faecium clinical isolate (strain UKI-MB07) as a model organism. Hence, we used an on-line kinetic assay for simultaneous cultivation and time-resolved growth analysis in a 96-well format instead of off-line susceptibility testing. Growth of the Enterococcus test organism was delayed up to 30 h in the presence of 0.25 μg mL(-1) of vancomycin and 8 μg mL(-1) of fosfomycin, after which pronounced growth was observed. Despite the delayed onset of growth, treatment with fosfomycin, daptomycin, fusidic acid, cefoxitin, or gentamicin resulted in higher maximum growth rates and/or higher final optical density values compared with antibiotic-free controls, indicating that growth stimulation and hormetic effects may occur with extended exposure to sublethal antibiotic concentrations. Whereas neither maximum growth rate nor final cell density correlated with antibiotic concentration, the lag phase duration for some antibiotics was a more meaningful indicator of dose-dependent growth inhibition. Our results also reveal that non-temporal growth profiles are only of limited value for cultivation-based antimicrobial silver nanoparticle susceptibility testing. The exposure to Ag(0) nanoparticles led to plasma membrane damage in a concentration-dependent manner and induced oxidative stress in Enterococcus faecium UKI-MB07, as shown by intracellular ROS accumulation.

  1. CELL STATE AS AFFECTING SUSCEPTIBILITY TO A VIRUS

    PubMed Central

    Friedewald, William F.

    1942-01-01

    Rabbit skin can be rendered abnormally susceptible to papilloma virus infection by preliminary treatments with a variety of agents. The most effective agents thus far found are 0.3 per cent methylcholanthrene in benzene and a mixture in equal parts of turpentine and acetone, applied four or five times at 2 day intervals. When virus is inoculated into skin altered by these agents, either intradermally or by inunction after scarification, papillomas appear earlier and in greater number than on normal skin, and much higher dilutions give rise to growths. The method provides a means of detecting amounts of virus which cause no papillomas upon inoculation into normal skin. Papilloma virus material which is rubbed into scarified normal or hyperplastic skin is largely lost in the scabbing which ensues, and nearly all of it fails to reach susceptible cells. The preparatory agents which increase the effectiveness of the virus bring about marked epidermal hyperplasia, and the hyperplastic tissue regenerates with greater rapidity when scarified. The agents evidently act in large part by providing young epidermal cells in quantity to the virus, as also by inducing a richer vascularization than ordinary in support of the papillomatous proliferation. It is possible that they also act by providing especially susceptible cells. The implications of the findings are discussed. PMID:19871177

  2. Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline.

    PubMed

    Fluit, Ad C; Florijn, Alice; Verhoef, Jan; Milatovic, Dana

    2005-04-01

    No relation between the presence of tetracycline resistance determinants tet(A) to tet(E) and the MICs of tigecycline was observed for Enterobacteriaceae, although tetracycline-susceptible isolates were more susceptible overall to tigecycline, whereas the presence of tet(M) in Staphylococcus aureus was associated with higher MICs of minocycline.

  3. Mechanistic insights into ectodomain shedding: susceptibility of CADM1 adhesion molecule is determined by alternative splicing and O-glycosylation

    PubMed Central

    Shirakabe, Kyoko; Omura, Takuya; Shibagaki, Yoshio; Mihara, Emiko; Homma, Keiichi; Kato, Yukinari; Yoshimura, Akihiko; Murakami, Yoshinori; Takagi, Junichi; Hattori, Seisuke; Ogawa, Yoshihiro

    2017-01-01

    Ectodomain shedding (shedding) is a post-translational modification, which liberates the extracellular domain of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Because shedding alters characteristics of cells in a rapid and irreversible manner, it should be strictly regulated. However, the molecular mechanisms determining membrane protein susceptibility to shedding (shedding susceptibility) are largely unknown. Here we report that alternative splicing can give rise to both shedding-susceptible and shedding-resistant CADM1 (cell adhesion molecule 1) variant proteins. We further show that O-glycans adjacent to the shedding cleavage site interfere with CADM1 shedding, and the only 33-bp alternative exon confers shedding susceptibility to CADM1 by inserting five non-glycosylatable amino acids between interfering O-glycans and the shedding cleavage site. These results demonstrate that shedding susceptibility of membrane protein can be determined at two different levels of its biosynthesis pathway, alternative splicing and O-glycosylation. PMID:28393893

  4. Determining magnetic susceptibilities of everyday materials using an electronic balance

    NASA Astrophysics Data System (ADS)

    Laumann, Daniel; Heusler, Stefan

    2017-05-01

    The magnetic properties of an object and its interaction with an external magnetic field can be described through the magnetic (volume) susceptibility χV, which divides nearly all kinds of matter into diamagnetic, paramagnetic, and ferromagnetic substances. Quantitative measurements of χV are usually technically sophisticated or require the investigation of substances with high values of χV to reveal meaningful results. Here, we show that both diamagnetic and paramagnetic effects in everyday materials can be measured using only an electronic balance and a neodymium magnet, both of which are within the reach of typical introductory college and high school physics classrooms. The experimental results match related literature values remarkably well.

  5. Susceptibilities of 14 cell lines to bluetongue virus infection.

    PubMed Central

    Wechsler, S J; McHolland, L E

    1988-01-01

    The effect of bluetongue virus (BTV) infection was investigated in 14 cell lines. The cell lines included the following vertebrate cells: baby hamster kidney, African green monkey kidney (Vero), rabbit kidney, bovine kidney, canine kidney, bovine turbinate, bovine endothelium (CPAE), bighorn sheep tongue, equine dermis, gekko lung, rainbow trout gonad, and mouse fibroblast (L929); they also included the following invertebrate lines: mosquito and biting midge. Comparisons between the cell lines were made on the basis of time to observed cytopathic effects, titer in 50% tissue culture infectious doses, and titer in plaque-forming units. The CPAE cell line produced the highest BTV 50% tissue culture infectious dose of all cell lines tested. The Vero and L929 cells gave the most discrete plaques in plaque assays. Of the 14 cell lines tested, the CPAE cells were the most susceptible to both cell culture-adapted and animal source BTV. Bovine endothelial cells demonstrate significant potential as a cell culture system for BTV investigations. PMID:2853175

  6. Ethnoepidemiology of HTLV-1 related diseases: ethnic determinants of HTLV-1 susceptibility and its worldwide dispersal.

    PubMed

    Sonoda, Shunro; Li, Hong Chuan; Tajima, Kazuo

    2011-02-01

    Human T-cell lymphotropic virus type 1 is vertically transmitted in neonatal life and is causatively associated with adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in adults. Persistence of HTLV-1 in host T cells, clonal expansion of the HTLV-1 carrying T cells, and emergence of malignantly transformed T cells are in accord with the multistep model of human cancer and roles for continuous interaction between host genes and environmental factors. This article reviews two lines of HTLV-1 investigation, one regarding worldwide surveillance of HTLV-1 infection foci by serological testing and molecular analysis of HTLV-1 isolates, and the other focusing on genetics of the human leukocyte antigen (HLA) that determines the ethnic background of HTLV-1 permissiveness and susceptibility to ATL or HAM/TSP. The serological surveillance revealed transcontinental dispersal of HTLV-1 in the prehistoric era that started out of Africa, spread to Austro-Melanesia and the Asian continent, then moved to North America and through to the southern edge of South America. This was highlighted by an Andean mummy study that proved ancient migration of paleo-mongoloid HTLV-1 from Asia to South America. Phylogenetic analysis of HLA alleles provided a basis for ethnic susceptibility to HTLV-1 infection and associated diseases, both ATL and HAM/TSP. Ethnicity-based sampling of peripheral blood lymphocytes has great potential for genome-wide association studies to illuminate ethnically defined host factors for viral oncogenesis with reference to HTLV-1 and other pathogenic elements causatively associated with chronic disease and malignancies.

  7. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects.

    PubMed

    Yu, C G; Mullins, M A; Warren, G W; Koziel, M G; Estruch, J J

    1997-02-01

    The Vip3A protein is a member of a newly discovered class of vegetative insecticidal proteins with activity against a broad spectrum of lepidopteran insects. Histopathological observations indicate that Vip3A ingestion by susceptible insects such as the black cutworm (Agrotis ipsilon) and fall armyworm (Spodoptera frugiperda) causes gut paralysis at concentrations as low as 4 ng/cm2 of diet and complete lysis of gut epithelium cells resulting in larval death at concentrations above 40 ng/cm2. The European corn borer (Ostrinia nubilalis), a nonsusceptible insect, does not develop any pathology upon ingesting Vip3A. While proteolytic processing of the Vip3A protein by midgut fluids obtained from susceptible and nonsusceptible insects is comparable, in vivo immunolocalization studies show that Vip3a binding is restricted to gut cells of susceptible insects. Therefore, the insect host range for Vip3A seems to be determined by its ability to bind gut cells. These results indicate that midgut epithelium cells of susceptible insects are the primary target for the Vip3A insecticidal protein and that their subsequent lysis is the primary mechanism of lethality. Disruption of gut cells appears to be the strategy adopted by the most effective insecticidal proteins.

  8. Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses

    PubMed Central

    Travanty, Emily; Zhou, Bin; Zhang, Hongbo; Di, Y. Peter; Alcorn, John F.; Wentworth, David E.; Mason, Robert

    2015-01-01

    ABSTRACT Human alveolar epithelial cells (AECs) and alveolar macrophages (AMs) are the first lines of lung defense. Here, we report that AECs are the direct targets for H1N1 viruses that have circulated since the 2009 pandemic (H1N1pdm09). AMs are less susceptible to H1N1pdm09 virus, but they produce significantly more inflammatory cytokines than AECs from the same donor. AECs form an intact epithelial barrier that is destroyed by H1N1pdm09 infection. However, there is significant variation in the cellular permissiveness to H1N1pdm09 infection among different donors. AECs from obese donors appear to be more susceptible to H1N1pdm09 infection, whereas gender, smoking history, and age do not appear to affect AEC susceptibility. There is also a difference in response to different strains of H1N1pdm09 viruses. Compared to A/California04/09 (CA04), A/New York/1682/09 (NY1682) is more infectious and causes more epithelial barrier injury, although it stimulates less cytokine production. We further determined that a single amino acid residue substitution in NY1682 hemagglutinin is responsible for the difference in infectivity. In conclusion, this is the first study of host susceptibility of human lung primary cells and the integrity of the alveolar epithelial barrier to influenza. Further elucidation of the mechanism of increased susceptibility of AECs from obese subjects may facilitate the development of novel protection strategies against influenza virus infection. IMPORTANCE Disease susceptibility of influenza is determined by host and viral factors. Human alveolar epithelial cells (AECs) form the key line of lung defenses against pathogens. Using primary AECs from different donors, we provided cellular level evidence that obesity might be a risk factor for increased susceptibility to influenza. We also compared the infections of two closely related 2009 pandemic H1N1 strains in AECs from the same donor and identified a key viral factor that affected host susceptibility

  9. Genetic diversity of cell-invasive erythromycin-resistant and -susceptible group A streptococci determined by analysis of the RD2 region of the prtF1 gene.

    PubMed

    Spinaci, Cinzia; Magi, Gloria; Zampaloni, Claudia; Vitali, Luca A; Paoletti, Claudia; Catania, Maria R; Prenna, Manuela; Ferrante, Luigi; Ripa, Sandro; Varaldo, Pietro E; Facinelli, Bruna

    2004-02-01

    The RD2 region of the internalization-associated gene prtF1, which encodes the fibronectin-binding repeat domain type 2 of protein F1, plays a crucial role in the entry of group A streptococci (GAS) into epithelial cells. A molecular study of the variability of the RD2 region was carried out with 77 independent Italian GAS, 66 erythromycin resistant (ER) and 11 erythromycin susceptible (ES), which had previously been investigated for the association between erythromycin resistance and ability to enter human respiratory cells. The amplicons obtained from PCR analysis of the RD2 region were consistent with a number of RD2 repeats ranging from one to five, more frequently four (n = 30), three (n = 27), and one (n = 18). A new method to type cell-invasive GAS (RD2 typing) was developed by combining PCR analysis of the RD2 region and restriction analysis of PCR products with endonucleases HaeIII, DdeI, and HinfI. Overall, 10 RD2 types (a to j) were distinguished (all detected among the 66 ER isolates, four detected among the 11 ES isolates). Comparison and correlation of RD2 typing data with the genotype and phenotype of macrolide resistance and with data from PCR M typing and SmaI macrorestriction analysis allowed us to identify 41 different clones (31 among the 66 ER isolates and 10 among the 11 ES isolates). Three major clones accounted for 40% of the isolates (47% of ER strains). Some ES isolates appeared to be related to ER isolates with identical combinations of RD2 type and emm type. While simultaneous use of different typing methods is essential for a thorough investigation of GAS epidemiology, RD2 typing may be especially helpful in typing cell-invasive GAS.

  10. Genetic Diversity of Cell-Invasive Erythromycin-Resistant and -Susceptible Group A Streptococci Determined by Analysis of the RD2 Region of the prtF1 Gene

    PubMed Central

    Spinaci, Cinzia; Magi, Gloria; Zampaloni, Claudia; Vitali, Luca A.; Paoletti, Claudia; Catania, Maria R.; Prenna, Manuela; Ferrante, Luigi; Ripa, Sandro; Varaldo, Pietro E.; Facinelli, Bruna

    2004-01-01

    The RD2 region of the internalization-associated gene prtF1, which encodes the fibronectin-binding repeat domain type 2 of protein F1, plays a crucial role in the entry of group A streptococci (GAS) into epithelial cells. A molecular study of the variability of the RD2 region was carried out with 77 independent Italian GAS, 66 erythromycin resistant (ER) and 11 erythromycin susceptible (ES), which had previously been investigated for the association between erythromycin resistance and ability to enter human respiratory cells. The amplicons obtained from PCR analysis of the RD2 region were consistent with a number of RD2 repeats ranging from one to five, more frequently four (n = 30), three (n = 27), and one (n = 18). A new method to type cell-invasive GAS (RD2 typing) was developed by combining PCR analysis of the RD2 region and restriction analysis of PCR products with endonucleases HaeIII, DdeI, and HinfI. Overall, 10 RD2 types (a to j) were distinguished (all detected among the 66 ER isolates, four detected among the 11 ES isolates). Comparison and correlation of RD2 typing data with the genotype and phenotype of macrolide resistance and with data from PCR M typing and SmaI macrorestriction analysis allowed us to identify 41 different clones (31 among the 66 ER isolates and 10 among the 11 ES isolates). Three major clones accounted for 40% of the isolates (47% of ER strains). Some ES isolates appeared to be related to ER isolates with identical combinations of RD2 type and emm type. While simultaneous use of different typing methods is essential for a thorough investigation of GAS epidemiology, RD2 typing may be especially helpful in typing cell-invasive GAS. PMID:14766830

  11. INCREASED LEVELS OF SUPEROXIDE AND HYDROGEN PEROXIDE MEDIATE THE DIFFERENTIAL SUSCEPTIBILITY OF CANCER CELLS VS. NORMAL CELLS TO GLUCOSE DEPRIVATION

    PubMed Central

    Aykin-Burns, Nùkhet; Ahmad, Iman M.; Zhu, Yueming; Oberley, Larry W.; Spitz, Douglas R.

    2009-01-01

    Cancer cells, relative to normal cells, demonstrate increased sensitivity to glucose deprivation-induced cytotoxicity. To determine if oxidative stress mediated by O2•− and hydroperoxides contributed to the differential susceptibility of human epithelial cancer cells to glucose deprivation, oxidation of dihydroethidine (DHE; for O2•−) and 5-(and-6)-carboxy-2', 7'-dichlorodihydrofluorescein diacetate (CDCFH2; for hydroperoxides) were measured in human colon and breast cancer cells (HT29, HCT116, SW480, MB231) and compared to normal human cells (FHC, 33Co, HMEC). Cancer cells showed significant increases in DHE (2–20 fold) and CDCFH2 (1.8–10 fold) oxidation, relative to normal cells that were more pronounced in the presence of the mitochondrial electron transport chain blocker, antimycin A. Furthermore, HCT116 and MB231 cells were more susceptible to glucose deprivation-induced cytotoxicity and oxidative stress, relative to 33Co and HMEC. HT-29 cells were also more susceptible to 2-deoxyglucose-(2DG)-induced cytotoxicity, relative to FHC. Over expression of manganese superoxide dismutase and mitochondrially targeted catalase significantly protected HCT116 and MB231 cells from glucose deprivation-induced cytotoxicity and oxidative stress, as well as protecting HT-29 cells from 2DG-induced cytotoxicity. These results show cancer cells (relative to normal cells) demonstrate increased steady-state levels of reactive oxygen species (ROS, i.e. O2•− and H2O2) that contribute to differential susceptibility to glucose deprivation-induced cytotoxicity and oxidative stress. These studies support the hypotheses that cancer cells increase glucose metabolism to compensate for excess metabolic production of ROS as well as that inhibition of glucose and hydroperoxide metabolism may provide a biochemical target for selectively enhancing cytotoxicity and oxidative stress in human cancer cells. PMID:18937644

  12. Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax

    PubMed Central

    Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile

    2013-01-01

    Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621

  13. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Lacko, Martin; Braakhuis, Boudewijn J.M.; Sturgis, Erich M.; Boedeker, Carsten C.; Suárez, Carlos; Rinaldo, Alessandra; Ferlito, Alfio; Takes, Robert P.

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives of research on genetic susceptibility in HNSCC are discussed.

  14. Assessment of oxidant susceptibility of red blood cells in various species based on cell deformability.

    PubMed

    Simmonds, Michael J; Meiselman, Herbert J; Marshall-Gradisnik, Sonya M; Pyne, Michael; Kakanis, Michael; Keane, James; Brenu, Ekua; Christy, Rhys; Baskurt, Oguz K

    2011-01-01

    The present study was designed to investigate the oxidant susceptibility of red blood cells (RBC) from four species (echidna, human, koala, Tasmanian devil) based on changes in cellular deformability. These species were specifically chosen based on differences in lifestyle and/or biology associated with varied levels of oxidative stress. The major focus was the influence of superoxide radicals generated within the cell (phenazine methosulfate, PMS, 50 μM) or in the extracellular medium (xanthine oxidase-hypoxanthine, XO-HX, 0.1 U/ml XO) on RBC deformability at various shear stresses (SS). RBC deformability was assessed by laser-diffraction analysis using a "slit-flow ektacytometer". Both superoxide-generating treatments resulted in significant increases of methemoglobin for all species (p < 0.01), with Tasmanian devil RBC demonstrating the most sensitivity to either treatment. PMS caused impaired RBC deformability for all species, but vast interspecies variations were observed: human and koala cells exhibited a similar sigmoid-like response to SS, short-beaked echidna values were markedly lower and only increased slightly with SS, while Tasmanian devil RBC were extremely rigid. The effect of XO-HX on RBC deformability was less when compared with PMS (i.e., smaller increase in rigidity) with the exception of Tasmanian devil RBC which exhibited essentially no deformation even at the highest SS; Tasmanian devil RBC response to XO-HX was thus comparable to that observed with PMS. Our findings indicate that ektacytometry can be used to determine the oxidant susceptibility of RBC from different species which varies significantly among mammals representing diverse lifestyles and evolutionary histories. These differences in susceptibility are consistent with species-specific discrepancies between observed and allometrically-predicted life spans and are compatible with the oxidant theory of aging.

  15. Genetically determined inflammatory-response related cytokine and chemokine transcript profiles between mammary carcinoma resistant and susceptible rat strains

    PubMed Central

    Devapatla, Bharat; Sanders, Jennifer; Samuelson, David J.

    2012-01-01

    Multiple human breast and rat mammary carcinoma susceptibility (Mcs) alleles have been identified. Wistar Kyoto (WKY) rats are resistant to developing mammary carcinomas, while Wistar Furth (WF) females are susceptible. Gene transcripts at Mcs5a1, Mcs5a2, and Mcs5c are differentially expressed between resistant WKY and susceptible WF alleles in immune-system tissues. We hypothesized that immune-related gene transcript profiles are genetically determined in mammary carcinoma resistant and susceptible mammary glands. Low-density QPCR arrays were used to compare inflammation related genes between mammary carcinoma resistant WKY and susceptible WF females. Mammary gland gene transcript levels predicted to be different based on arrays were tested in independent samples. In total, twenty females per strain were exposed to 7,12-dimethylbenz(a)anthracene (DMBA) to induce mammary carcinogenesis. Twelve age-matched controls per strain without DMBA were included to determine main effects of DMBA-exposure. Significant (ANOVA P ≤ 0.01) effects of strain on mammary gland transcript level were observed for Cx3cl1, Il11ra, Il4, C3, Ccl20, Ccl11, Itgb2, Cxcl12, and Cxcr7. Significant effects of DMBA-exposure were observed for Cx3cl1, Il11ra, Cxcr4, Il4ra, and Il4. Strain and DMBA-exposure interaction effects were significant for Cx3cl1. Transcript levels of Cxcr7 relative to Cxcr4 were modified differently by DMBA in mammary carcinoma resistant and susceptible strains. In conclusion, several genetically-determined differences in cytokine, chemokine, and receptor gene transcript levels were identified between mammary carcinoma susceptible and resistant mammary glands, which may be indicative of cell populations and activities that suppress mammary carcinogenesis in resistant genotypes. PMID:22609213

  16. The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis

    PubMed Central

    Heissigerova, Jarmila; Seidler Stangova, Petra; Klimova, Aneta; Svozilkova, Petra; Hrncir, Tomas; Stepankova, Renata; Kverka, Miloslav; Tlaskalova-Hogenova, Helena; Forrester, John V.

    2016-01-01

    The microbiota is a crucial modulator of the immune system. Here, we evaluated how its absence or reduction modifies the inflammatory response in the murine model of experimental autoimmune uveoretinitis (EAU). We induced EAU in germ-free (GF) or conventionally housed (CV) mice and in CV mice treated with a combination of broad-spectrum antibiotics either from the day of EAU induction or from one week prior to induction of disease. The severity of the inflammation was assessed by fundus biomicroscopy or by histology, including immunohistology. The immunophenotyping of T cells in local and distant lymph nodes was performed by flow cytometry. We found that GF mice and mice where the microbiota was reduced one week before EAU induction were protected from severe autoimmune inflammation. GF mice had lower numbers of infiltrating macrophages and significantly less T cell infiltration in the retina than CV mice with EAU. GF mice also had reduced numbers of IFN-γ and IL-17-producing T cells and increased numbers of regulatory T cells in the eye-draining lymph nodes. These data suggest that the presence of microbiota during autoantigen recognition regulates the inflammatory response by influencing the adaptive immune response. PMID:27294159

  17. The variability of autophagy and cell death susceptibility

    PubMed Central

    Loos, Ben; Engelbrecht, Anna-Mart; Lockshin, Richard A.; Klionsky, Daniel J; Zakeri, Zahra

    2013-01-01

    Impaired autophagic machinery is implicated in a number of diseases such as heart disease, neurodegeneration and cancer. A common denominator in these pathologies is a dysregulation of autophagy that has been linked to a change in susceptibility to cell death. Although we have progressed in understanding the molecular machinery and regulation of the autophagic pathway, many unanswered questions remain. How does the metabolic contribution of autophagy connect with the cell’s history and how does its current autophagic flux affect metabolic status and susceptibility to undergo cell death? How does autophagic flux operate to switch metabolic direction and what are the underlying mechanisms in metabolite and energetic sensing, metabolite substrate provision and metabolic integration during the cellular stress response? In this article we focus on unresolved questions that address issues around the role of autophagy in sensing the energetic environment and its role in actively generating metabolite substrates. We attempt to provide answers by explaining how and when a change in autophagic pathway activity such as primary stress response is able to affect cell viability and when not. By addressing the dynamic metabolic relationship between autophagy, apoptosis and necrosis we provide a new perspective on the parameters that connect autophagic activity, severity of injury and cellular history in a logical manner. Last, by evaluating the cell’s condition and autophagic activity in a clear context of regulatory parameters in the intra- and extracellular environment, this review provides new concepts that set autophagy into an energetic feedback loop, that may assist in our understanding of autophagy in maintaining healthy cells or when it controls the threshold between cell death and cell survival. PMID:23846383

  18. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    PubMed Central

    Sánchez-Puig, Juana M; Sánchez, Laura; Roy, Garbiñe; Blasco, Rafael

    2004-01-01

    Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP), and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines. PMID:15555076

  19. Virus-Plus-Susceptibility Gene Interaction Determines Crohn’s Disease Gene Atg16L1 Phenotypes in Intestine

    PubMed Central

    Cadwell, Ken; Patel, Khushbu K.; Maloney, Nicole S.; Liu, Ta-Chiang; Ng, Aylwin C.Y.; Storer, Chad E.; Head, Richard D.; Xavier, Ramnik; Stappenbeck, Thaddeus S.; Virgin, Herbert W.

    2010-01-01

    SUMMARY It is unclear why disease occurs in only a small proportion of persons carrying common risk alleles of disease susceptibility genes. Here we demonstrate that an interaction between a specific virus infection and a mutation in the Crohn’s disease susceptibility gene Atg16L1 induces intestinal pathologies in mice. This virus-plus-susceptibility gene interaction generated abnormalities in granule packaging and unique patterns of gene expression in Paneth cells. Further, the response to injury induced by the toxic substance dextran sodium sulfate was fundamentally altered to include pathologies resembling aspects of Crohn’s disease. These pathologies triggered by virus-plus-susceptibility gene interaction were dependent on TNFα and IFNγ and were prevented by treatment with broad spectrum antibiotics. Thus, we provide a specific example of how a virus-plus-susceptibility gene interaction can, in combination with additional environmental factors and commensal bacteria, determine the phenotype of hosts carrying common risk alleles for inflammatory disease. PMID:20602997

  20. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma

    PubMed Central

    Chahal, Harvind S.; Lin, Yuan; Ransohoff, Katherine J.; Hinds, David A.; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A.; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y.; Han, Jiali; Sarin, Kavita Y.

    2016-01-01

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7–11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10−8) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma. PMID:27424798

  1. In Vitro Antibiotic Susceptibilities of Francisella tularensis Determined by Broth Microdilution following CLSI Methods.

    PubMed

    Heine, Henry S; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K

    2017-09-01

    In vitro susceptibilities for 47 antibiotics were determined in 30 genetic diverse strains of Francisella tularensis by the broth microdilution method following Clinical and Laboratory Standards Institute (CLSI) methods. The F. tularensis strains demonstrated susceptibility to aminoglycosides, fluoroquinolones, and tetracyclines. There was a distinct difference in macrolide susceptibilities between A and B type strains, as has been noted previously. The establishment and comparison of antibiotic susceptibilities of a diverse but specific set of F. tularensis strains by standardized methods and the establishment of population ranges and MIC50/90 values provide reference information for assessing new antibiotic agents and a baseline to monitor any future emergence of resistance, whether natural or intentional. Copyright © 2017 American Society for Microbiology.

  2. In Vitro Antibiotic Susceptibilities of Burkholderia mallei (Causative Agent of Glanders) Determined by Broth Microdilution and E-Test

    PubMed Central

    Heine, Henry S.; England, Marilyn J.; Waag, David M.; Byrne, W. Russell

    2001-01-01

    In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents. PMID:11408233

  3. Rapid Screening Tests for Determining In Vitro Susceptibility of Herpes Simplex Virus Clinical Isolates

    PubMed Central

    de la Iglesia, Pedro; Melón, Santiago; López, Beatriz; Rodriguez, Mercedes; Blanco, Maria I.; Mellado, Purificación; de Oña, Maria

    1998-01-01

    The susceptibility of human herpes simplex virus (HSV) to acyclovir (ACV) was determined with the use of a single dose of the drug (1 and 2 μg of ACV per ml for HSV-1 and HSV-2, respectively) in two rapid assays: a rapid cytopathic effect inhibitory assay (Rapid CIA) and a rapid dye uptake assay (Rapid DUA). These tests allow the simultaneous determination of virus titer and susceptibility to ACV at a determined viral concentration (100 50% tissue culture infective doses and 100 50% dye uptake units). These tests were compared with a conventional susceptibility assay (dye uptake assay) and showed similar results. Indeterminate results with the Rapid CIA appeared in 3 of 30 samples. With the use of both Rapid CIA and Rapid DUA, we were able to determine the susceptibility of 100% of the isolates. The rapid tests, unlike conventional assays, are able to provide susceptibility results within 3 days after the virus has been isolated from a clinical specimen and could thus play a direct role in therapeutic decisions. PMID:9666034

  4. Rapid screening tests for determining in vitro susceptibility of herpes simplex virus clinical isolates.

    PubMed

    de la Iglesia, P; Melón, S; López, B; Rodriguez, M; Blanco, M I; Mellado, P; de Oña, M

    1998-08-01

    The susceptibility of human herpes simplex virus (HSV) to acyclovir (ACV) was determined with the use of a single dose of the drug (1 and 2 micrograms of ACV per ml for HSV-1 and HSV-2, respectively) in two rapid assays: a rapid cytopathic effect inhibitory assay (Rapid CIA) and a rapid dye uptake assay (Rapid DUA). These tests allow the simultaneous determination of virus titer and susceptibility to ACV at a determined viral concentration (100 50% tissue culture infective doses and 100 50% dye uptake units). These tests were compared with a conventional susceptibility assay (dye uptake assay) and showed similar results. Indeterminate results with the Rapid CIA appeared in 3 of 30 samples. With the use of both Rapid CIA and Rapid DUA, we were able to determine the susceptibility of 100% of the isolates. The rapid tests, unlike conventional assays, are able to provide susceptibility results within 3 days after the virus has been isolated from a clinical specimen and could thus play a direct role in therapeutic decisions.

  5. Rapid Antimicrobial Susceptibility Determination of Uropathogens in Clinical Urine Specimens by Use of ATP Bioluminescence▿

    PubMed Central

    Ivančić, Vesna; Mastali, Mitra; Percy, Neil; Gornbein, Jeffrey; Babbitt, Jane T.; Li, Yang; Landaw, Elliot M.; Bruckner, David A.; Churchill, Bernard M.; Haake, David A.

    2008-01-01

    We describe the first direct testing of the antimicrobial susceptibilities of bacterial pathogens in human clinical fluid samples by the use of ATP bioluminescence. We developed an ATP bioluminescence assay that eliminates somatic sources of ATP to selectively quantify the bacterial load in clinical urine specimens with a sensitivity of <1,000 CFU per milliliter. There was a log-log relationship between light emission and the numbers of CFU in clinical urine specimens. A clinical study was performed to evaluate the accuracy of the ATP bioluminescence assay for determination of the antimicrobial susceptibilities of uropathogens in clinical urine specimens tested in a blinded manner. ATP bioluminescent bacterial density quantitation was used to determine the inoculation volume in growth medium with and without antibiotics. After incubation at 37°C for 120 min, the ATP bioluminescence assay was repeated to evaluate the uropathogen response to antibiotics. The ability of the ATP bioluminescence assay to discriminate between antimicrobial susceptibility and resistance was determined by comparison of the results obtained by the ATP bioluminescence assay with the results obtained by standard clinical microbiology methods. Receiver operator characteristic curves were used to determine the optimal threshold for discriminating between susceptibility and resistance. Susceptibility and resistance were correctly predicted in 87% and 95% of cases, respectively, for an overall unweighted accuracy of 91%, when the results were stratified by antibiotic. For samples in which the pathogen was susceptible, the accuracy improved to 95% when the results for samples with less than a 25-fold increase in the amount of bacterial ATP in the medium without antibiotics were excluded. These data indicate that a rapid bioluminescent antimicrobial susceptibility assay may be useful for the management of urinary tract infections. PMID:18272708

  6. Rapid antimicrobial susceptibility determination of uropathogens in clinical urine specimens by use of ATP bioluminescence.

    PubMed

    Ivancic, Vesna; Mastali, Mitra; Percy, Neil; Gornbein, Jeffrey; Babbitt, Jane T; Li, Yang; Landaw, Elliot M; Bruckner, David A; Churchill, Bernard M; Haake, David A

    2008-04-01

    We describe the first direct testing of the antimicrobial susceptibilities of bacterial pathogens in human clinical fluid samples by the use of ATP bioluminescence. We developed an ATP bioluminescence assay that eliminates somatic sources of ATP to selectively quantify the bacterial load in clinical urine specimens with a sensitivity of <1,000 CFU per milliliter. There was a log-log relationship between light emission and the numbers of CFU in clinical urine specimens. A clinical study was performed to evaluate the accuracy of the ATP bioluminescence assay for determination of the antimicrobial susceptibilities of uropathogens in clinical urine specimens tested in a blinded manner. ATP bioluminescent bacterial density quantitation was used to determine the inoculation volume in growth medium with and without antibiotics. After incubation at 37 degrees C for 120 min, the ATP bioluminescence assay was repeated to evaluate the uropathogen response to antibiotics. The ability of the ATP bioluminescence assay to discriminate between antimicrobial susceptibility and resistance was determined by comparison of the results obtained by the ATP bioluminescence assay with the results obtained by standard clinical microbiology methods. Receiver operator characteristic curves were used to determine the optimal threshold for discriminating between susceptibility and resistance. Susceptibility and resistance were correctly predicted in 87% and 95% of cases, respectively, for an overall unweighted accuracy of 91%, when the results were stratified by antibiotic. For samples in which the pathogen was susceptible, the accuracy improved to 95% when the results for samples with less than a 25-fold increase in the amount of bacterial ATP in the medium without antibiotics were excluded. These data indicate that a rapid bioluminescent antimicrobial susceptibility assay may be useful for the management of urinary tract infections.

  7. Susceptibility of neuroblastoma cells to rabies virus may be affected by passage number.

    PubMed

    Pouliott, Craig; Dupuis, Michelle; Appler, Kim; Brunt, Scott; Rudd, Robert; Davis, April

    2017-09-01

    Maintaining a healthy, continuous immortalized cell line is essential for rabies laboratories that perform virus isolation assays and test for the presence of viral neutralizing antibodies. Individuals who routinely work with rabies virus, such as rabies laboratory employees, or those who may have a high potential for exposure to rabies virus, including veterinarians, should be tested for the presence of anti-rabies viral neutralizing antibodies (VNA) every 6-24 months, depending on potential exposure level. The gold standard for serum neutralization assays require the use of live rabies virus and cells that are sensitive to rabies virus infection. Additionally, virus isolation assays are routinely performed in rabies laboratories as a back-up for the direct fluorescent antibody test (dFAT). Currently there are no guidelines or publications recommending the use of low, intermediate, or high passage cell lines in rabies assays. In this study, we compared the sensitivity of intermediate, high, and extremely high passaged neuroblastomas to rabies virus using virus isolation, serum neutralization, and real time RT-PCR techniques. Additionally, cells were examined microscopically to determine changes in morphology and dissemination of rabies virus antigen between intermediate, high, and extremely high passage cells. No significant difference was found between cell passage numbers and viral susceptibility between intermediate and high passaged cells. However, extremely high passaged cells (≥1200 passages) were less susceptible to viral infection and/or produced less virus following inoculation. As a result, rabies laboratories that use viral isolation and serum neutralization assays should regularly assess cell susceptibility to ensure the integrity and repeatability of the test. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome

    PubMed Central

    Young, Lisa R.; Gulleman, Peter M.; Short, Chelsi W.; Tanjore, Harikrishna; Sherrill, Taylor; Qi, Aidong; McBride, Andrew P.; Zaynagetdinov, Rinat; Benjamin, John T.; Lawson, William E.; Novitskiy, Sergey V.; Blackwell, Timothy S.

    2016-01-01

    Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling. PMID:27777976

  9. THE SUSCEPTIBILITY OF BABOON (PAPIO DOGUERA) KIDNEY CELLS TO HUMAN ENTEROVIRUSES

    DTIC Science & Technology

    Studies were made to learn if baboon kidney cells are as susceptible as monkey kidney cells to human enteroviruses . Since the baboon (Papio doguera...kidney cells showed high susceptibility to most human enteroviruses . Their usefulness is inhanced in that they indicated the presence of contaminating SV40 virus. (Author)

  10. Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease.

    PubMed

    Murtaza, M; Shan, J; Matigian, N; Todorovic, M; Cook, A L; Ravishankar, S; Dong, L F; Neuzil, J; Silburn, P; Mackay-Sim, A; Mellick, G D; Wood, S A

    2016-01-01

    Parkinson's disease is a complex age-related neurodegenerative disorder. Approximately 90% of Parkinson's disease cases are idiopathic, of unknown origin. The aetiology of Parkinson's disease is not fully understood but increasing evidence implies a failure in fundamental cellular processes including mitochondrial dysfunction and increased oxidative stress. To dissect the cellular events underlying idiopathic Parkinson's disease, we use primary cell lines established from the olfactory mucosa of Parkinson's disease patients. Previous metabolic and transcriptomic analyses identified deficiencies in stress response pathways in patient-derived cell lines. The aim of this study was to investigate whether these deficiencies manifested as increased susceptibility, as measured by cell viability, to a range of extrinsic stressors. We identified that patient-derived cells are more sensitive to mitochondrial complex I inhibition and hydrogen peroxide induced oxidative stress, than controls. Exposure to low levels (50 nM) of rotenone led to increased apoptosis in patient-derived cells. We identified an endogenous deficit in mitochondrial complex I in patient-derived cells, but this did not directly correlate with rotenone-sensitivity. We further characterized the sensitivity to rotenone and identified that it was partly associated with heat shock protein 27 levels. Finally, transcriptomic analysis following rotenone exposure revealed that patient-derived cells express a diminished response to rotenone-induced stress compared with cells from healthy controls. Our cellular model of idiopathic Parkinson's disease displays a clear susceptibility phenotype to mitochondrial stress. The determination of molecular mechanisms underpinning this susceptibility may lead to the identification of biomarkers for either disease onset or progression.

  11. A rapid antimicrobial susceptibility test based on single-cell morphological analysis.

    PubMed

    Choi, Jungil; Yoo, Jungheon; Lee, Mincheol; Kim, Eun-Geun; Lee, Ji Soo; Lee, Seungok; Joo, Seik; Song, Sang Hoon; Kim, Eui-Chong; Lee, Jung Chan; Kim, Hee Chan; Jung, Yong-Gyun; Kwon, Sunghoon

    2014-12-17

    A rapid antibiotic susceptibility test (AST) is desperately needed in clinical settings for fast and appropriate antibiotic administration. Traditional ASTs, which rely on cell culture, are not suitable for urgent cases of bacterial infection and antibiotic resistance owing to their relatively long test times. We describe a novel AST called single-cell morphological analysis (SCMA) that can determine antimicrobial susceptibility by automatically analyzing and categorizing morphological changes in single bacterial cells under various antimicrobial conditions. The SCMA was tested with four Clinical and Laboratory Standards Institute standard bacterial strains and 189 clinical samples, including extended-spectrum β-lactamase-positive Escherichia coli and Klebsiella pneumoniae, imipenem-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococci from hospitals. The results were compared with the gold standard broth microdilution test. The SCMA results were obtained in less than 4 hours, with 91.5% categorical agreement and 6.51% minor, 2.56% major, and 1.49% very major discrepancies. Thus, SCMA provides rapid and accurate antimicrobial susceptibility data that satisfy the recommended performance of the U.S. Food and Drug Administration. Copyright © 2014, American Association for the Advancement of Science.

  12. Susceptibility of Human Embryonic Stem Cell-Derived Neural Cells to Japanese Encephalitis Virus Infection

    PubMed Central

    Shen, Shih-Cheng; Shen, Ching-I; Lin, Ho; Chen, Chun-Jung; Chang, Chia-Yu; Chen, Sheng-Mei; Lee, Hsiu-Chin; Lai, Ping-Shan; Su, Hong-Lin

    2014-01-01

    Pluripotent human embryonic stem cells (hESCs) can be efficiently directed to become immature neuroepithelial precursor cells (NPCs) and functional mature neural cells, including neurotransmitter-secreting neurons and glial cells. Investigating the susceptibility of these hESCs-derived neural cells to neurotrophic viruses, such as Japanese encephalitis virus (JEV), provides insight into the viral cell tropism in the infected human brain. We demonstrate that hESC-derived NPCs are highly vulnerable to JEV infection at a low multiplicity of infection (MOI). In addition, glial fibrillary acid protein (GFAP)-expressing glial cells are also susceptible to JEV infection. In contrast, only a few mature neurons were infected at MOI 10 or higher on the third day post-infection. In addition, functional neurotransmitter-secreting neurons are also resistant to JEV infection at high MOI. Moreover, we discover that vimentin intermediate filament, reported as a putative neurovirulent JEV receptor, is highly expressed in NPCs and glial cells, but not mature neurons. These results indicate that the expression of vimentin in neural cells correlates to the cell tropism of JEV. Finally, we further demonstrate that membranous vimentin is necessary for the susceptibility of hESC-derived NPCs to JEV infection. PMID:25517725

  13. Quantitative Microplate-Based Growth Assay for Determination of Antifungal Susceptibility of Histoplasma capsulatum Yeasts

    PubMed Central

    Goughenour, Kristie D.; Balada-Llasat, Joan-Miquel

    2015-01-01

    Standardized methodologies for determining the antifungal susceptibility of fungal pathogens is central to the clinical management of invasive fungal disease. Yeast-form fungi can be tested using broth macrodilution and microdilution assays. Reference procedures exist for Candida species and Cryptococcus yeasts; however, no standardized methods have been developed for testing the antifungal susceptibility of yeast forms of the dimorphic systemic fungal pathogens. For the dimorphic fungal pathogen Histoplasma capsulatum, susceptibility to echinocandins differs for the yeast and the filamentous forms, which highlights the need to employ Histoplasma yeasts, not hyphae, in antifungal susceptibility tests. To address this, we developed and optimized methodology for the 96-well microtiter plate-based measurement of Histoplasma yeast growth in vitro. Using optical density, the assay is quantitative for fungal growth with a dynamic range greater than 30-fold. Concentration and assay reaction time parameters were also optimized for colorimetric (MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reduction) and fluorescent (resazurin reduction) indicators of fungal vitality. We employed this microtiter-based assay to determine the antifungal susceptibility patterns of multiple clinical isolates of Histoplasma representing different phylogenetic groups. This methodology fulfills a critical need for the ability to monitor the effectiveness of antifungals on Histoplasma yeasts, the morphological form present in mammalian hosts and, thus, the form most relevant to disease. PMID:26246483

  14. Increased apoptosis susceptibility in mesangial cells from spontaneously hypertensive rats.

    PubMed

    Rodríguez-López, A M; Flores, O; Martínez-Salgado, C; Eleno, N; López-Novoa, J M; Arévalo, M

    2000-01-01

    We have examined the susceptibility to apoptosis in mesangial cells from spontaneously hypertensive rats (SHR) or from normotensive rats (WKY) and the possible involvement of nitric oxide in this process. Mesangial cells monolayers from either SHR or normal rats were incubated for 12 h in medium with or without fetal calf serum (FCS) and with or without thapsigargin (Tg, 10(-6) M). A series of cultures from rats of both groups was treated with N(G)-nitro-l-arginine methyl ester (l-NAME, 10(-4) M). We assessed apoptosis by propidium iodide staining, by TUNEL nitrite production (Griess reaction), by inducible nitric oxide synthase (iNOS) and Bcl-2 and Bax by Western blot. Incubated with a FCS-free medium, cells from SHR showed a significantly higher apoptotic rate (10.7 +/- 2.0) than with 10% FCS (10% FCS, 4.7 +/- 0.3), while WKY cells did not show this increment (10% FCS, 4.7 +/- 0.3; 0% FCS, 5.9 +/- 0. 3). Apoptosis in cells from WKY increased when incubated with thapsigargin in FCS-free medium (0% FCS+ Tg, 17.7 +/- 2.9%) and increased even more in SHR cells (0% FCS+ Tg, 19.7 +/- 2.9%). Treatment with l-NAME decreased thapsigargin-induced apoptosis in both SHR (8.2 +/- 2.4%) and WKY cells (9.3 +/- 2.4%). An increase in nitrite production and iNOS expression was detected in groups in which the apoptosis rate was elevated. A high rate of apoptosis was also associated with a decrease in the Bcl-2/Bax ratio. Our results indicate that in SHR cells, short-term serum deprivation and the increase in intracellular free calcium concentration with thapsigargin are able to enhance the apoptosis rate in primary cultures and that the expression of iNOS, and hence NO production, is involved in this effect. Copyright 2000 Academic Press.

  15. Application of Real-Time PCR for Determination of Antiviral Drug Susceptibility of Herpes Simplex Virus

    PubMed Central

    Stránská, Růŏzena; van Loon, Anton M.; Polman, Merjo; Schuurman, Rob

    2002-01-01

    A quantitative real-time PCR (TaqMan) assay was developed for determination of antiviral drug susceptibility of herpes simplex virus (HSV). After short-time culture of the virus, the antiviral drug susceptibility of HSV isolates for acyclovir (ACV) was determined by measuring the reduction of the HSV type 1 (HSV-1) DNA levels in culture supernatants using real-time PCR. The 50% inhibitory concentration was reported as the concentration of antiviral drug that reduced the number of HSV-1 DNA copies by 50%. A total of 15 well-characterized ACV-sensitive or -resistant strains and clinical isolates were used for assay evaluation. The new assay with real-time PCR readout permitted rapid (3 days), objective, and reproducible determination of HSV-1 drug susceptibilities with no need for stringent control of initial multiplicity of infection. Furthermore, the real-time PCR assay results showed good correlation (r = 0.86) with those for the plaque reduction assay. In conclusion, the real-time PCR assay described here is a suitable quantitative method for determination of antiviral susceptibility of HSV-1, amenable for use in the routine diagnostic virology laboratory. PMID:12183251

  16. A general method for rapid determination of antibiotic susceptibility and species in bacterial infections.

    PubMed

    Mezger, Anja; Gullberg, Erik; Göransson, Jenny; Zorzet, Anna; Herthnek, David; Tano, Eva; Nilsson, Mats; Andersson, Dan I

    2015-02-01

    To ensure correct antibiotic treatment and reduce the unnecessary use of antibiotics, there is an urgent need for new rapid methods for species identification and determination of antibiotic susceptibility in infectious pathogenic bacteria. We have developed a general method for the rapid identification of the bacterial species causing an infection and the determination of their antibiotic susceptibility profiles. An initial short cultivation step in the absence and presence of different antibiotics was combined with sensitive species-specific padlock probe detection of the bacterial target DNA to allow a determination of growth (i.e., resistance) and no growth (i.e., susceptibility). A proof-of-concept was established for urinary tract infections in which we applied the method to determine the antibiotic susceptibility profiles of Escherichia coli for two drugs with 100% accuracy in 3.5 h. The short assay time from sample to readout enables fast appropriate treatment with effective drugs and minimizes the need to prescribe broad-spectrum antibiotics due to unknown resistance profiles of the treated infection.

  17. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.; Husain, A.; Al-Hazza, A.

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rps) to the polarization resistance of the OPV cell in air (Rpair). In other words, the criterion lim(Rps/Rpair) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rpair became equal (increased) to Rps as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rps were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  18. A Novel Technique for Performing PID Susceptibility Screening during the Solar Cell Fabrication Process

    SciTech Connect

    Oh, Jaewon; Dahal, Som; Dauksher, Bill; Bowden, Stuart; Tamizhmani, Govindasamy; Hacke, Peter

    2016-11-21

    Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.

  19. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    PubMed Central

    2011-01-01

    Background The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. Results The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Conclusions Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards Staphylococcus

  20. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus.

    PubMed

    Bonnefont, Cécile M D; Toufeer, Mehdi; Caubet, Cécile; Foulon, Eliane; Tasca, Christian; Aurel, Marie-Rose; Bergonier, Dominique; Boullier, Séverine; Robert-Granié, Christèle; Foucras, Gilles; Rupp, Rachel

    2011-04-28

    The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility towards Staphylococcus infections, and opens new fields for

  1. Susceptibility of ATM-deficient pancreatic cancer cells to radiation.

    PubMed

    Ayars, Michael; Eshleman, James; Goggins, Michael

    2017-05-19

    Ataxia telangiectasia mutated (ATM) is inactivated in a significant minority of pancreatic ductal adenocarcinomas and may be predictor of treatment response. We determined if ATM deficiency renders pancreatic cancer cells more sensitive to fractionated radiation or commonly used chemotherapeutics. ATM expression was knocked down in three pancreatic cancer cell lines using ATM-targeting shRNA. Isogenic cell lines were tested for sensitivity to several chemotherapeutic agents and radiation. DNA repair kinetics were analyzed in irradiated cells using the comet assay. We find that while rendering pancreatic cancer cells ATM-deficient did not significantly change their sensitivity to several chemotherapeutics, it did render them exquisitely sensitized to radiation. Pancreatic cancer ATM status may help predict response to radiotherapy.

  2. In Vitro Antibiotic Susceptibilities of Yersinia pestis Determined by Broth Microdilution following CLSI Methods

    PubMed Central

    Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K.; Worsham, Patricia L.

    2015-01-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. PMID:25583720

  3. In vitro antibiotic susceptibilities of Yersinia pestis determined by broth microdilution following CLSI methods.

    PubMed

    Heine, Henry S; Hershfield, Jeremy; Marchand, Charles; Miller, Lynda; Halasohoris, Stephanie; Purcell, Bret K; Worsham, Patricia L

    2015-04-01

    In vitro susceptibilities to 45 antibiotics were determined for 30 genetically and geographically diverse strains of Yersinia pestis by the broth microdilution method at two temperatures, 28°C and 35°C, following Clinical and Laboratory Standards Institute (CLSI) methods. The Y. pestis strains demonstrated susceptibility to aminoglycosides, quinolones, tetracyclines, β-lactams, cephalosporins, and carbapenems. Only a 1-well shift was observed for the majority of antibiotics between the two temperatures. Establishing and comparing antibiotic susceptibilities of a diverse but specific set of Y. pestis strains by standardized methods and establishing population ranges and MIC50 and MIC90 values provide reference information for assessing new antibiotic agents and also provide a baseline for use in monitoring any future emergence of resistance. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility

    SciTech Connect

    Aw, Tak Yee . E-mail: taw@lsuhsc.edu

    2005-05-01

    The intestine is a primary site of nutrient absorption and a critical defense barrier against dietary-derived mutagens, carcinogens, and oxidants. Accumulation of oxidants like peroxidized lipids in the gut lumen can contribute to impairment of mucosal metabolic pathways, enterocyte dysfunction independent of cell injury, and development of gut pathologies, such as inflammation and cancer. Despite this recognition, we know little of the pathways of intestinal transport, metabolism, and luminal disposition of dietary peroxides in vivo or of the underlying mechanisms of lipid peroxide-induced genesis of intestinal disease processes. This chapter summarizes our current understanding of the determinants of intestinal absorption and metabolism of peroxidized lipids. I will review experimental evidence from our laboratory and others (Table 1) supporting the pivotal role that glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) play in mucosal transport and metabolism of lipid hydroperoxides and how reductant availability can be compromised under chronic stress such as hypoxia, and the influence of GSH on oxidative susceptibility, and redox contribution to genesis of gut disorders. The discussion is pertinent to understanding dietary lipid peroxides and GSH redox balance in intestinal physiology and pathophysiology and the significance of luminal GSH in preserving the integrity of the intestinal epithelium.

  5. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms

    PubMed Central

    Ceri, H.; Olson, M. E.; Stremick, C.; Read, R. R.; Morck, D.; Buret, A.

    1999-01-01

    Determination of the MIC, based on the activities of antibiotics against planktonic bacteria, is the standard assay for antibiotic susceptibility testing. Adherent bacterial populations (biofilms) present with an innate lack of antibiotic susceptibility not seen in the same bacteria grown as planktonic populations. The Calgary Biofilm Device (CBD) is described as a new technology for the rapid and reproducible assay of biofilm susceptibilities to antibiotics. The CBD produces 96 equivalent biofilms for the assay of antibiotic susceptibilities by the standard 96-well technology. Biofilm formation was followed by quantitative microbiology and scanning electron microscopy. Susceptibility to a standard group of antibiotics was determined for National Committee for Clinical Laboratory Standards (NCCLS) reference strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC 29213. Growth curves demonstrated that biofilms of a predetermined size could be formed on the CBD at specific time points and, furthermore, that no significant difference (P > 0.1) was seen between biofilms formed on each of the 96 pegs. The antibiotic susceptibilities for planktonic populations obtained by the NCCLS method or from the CBD were similar. Minimal biofilm eradication concentrations, derived by using the CBD, demonstrated that for biofilms of the same organisms, 100 to 1,000 times the concentration of a certain antibiotic were often required for the antibiotic to be effective, while other antibiotics were found to be effective at the MICs. The CBD offers a new technology for the rational selection of antibiotics effective against microbial biofilms and for the screening of new effective antibiotic compounds. PMID:10325322

  6. COMPARISON OF SUSCEPTIBILITY TO INFLUENZA INFECTION IN NASAL EPITHELIAL CELLS OBTAINED FROM SMOKERS AND NON-SMOKERS

    EPA Science Inventory

    Several studies have demonstrated that individuals who smoke have greater susceptibility to influenza infections, as well as other respiratory virus infections, than non-smokers, yet the role of airway epithelial cells in this response is not clear. To determine whether in vivo t...

  7. COMPARISON OF SUSCEPTIBILITY TO INFLUENZA INFECTION IN NASAL EPITHELIAL CELLS OBTAINED FROM SMOKERS AND NON-SMOKERS

    EPA Science Inventory

    Several studies have demonstrated that individuals who smoke have greater susceptibility to influenza infections, as well as other respiratory virus infections, than non-smokers, yet the role of airway epithelial cells in this response is not clear. To determine whether in vivo t...

  8. Developmental maturation of innate immune cell function correlates with susceptibility to central nervous system autoimmunity.

    PubMed

    Hertzenberg, Deetje; Lehmann-Horn, Klaus; Kinzel, Silke; Husterer, Veronika; Cravens, Petra D; Kieseier, Bernd C; Hemmer, Bernhard; Brück, Wolfgang; Zamvil, Scott S; Stüve, Olaf; Weber, Martin S

    2013-08-01

    MS is an inflammatory CNS disorder, which typically occurs in early adulthood and rarely in children. Here we tested whether functional maturation of innate immune cells may determine susceptibility to CNS autoimmune disease in EAE. Two-week-old mice were resistant to active EAE, which causes fulminant paralysis in adult mice; this resistance was associated with an impaired development of Th1 and Th17 cells. Resistant, young mice had higher frequencies of myeloid-derived suppressor cells and plasma-cytoid DCs. Furthermore, myeloid APCs and B cells from young mice expressed lower levels of MHC class II and CD40, produced decreased amounts of proinflammatory cytokines, and released enhanced levels of anti-inflammatory IL-10. When used as APCs, splenocytes from 2-week-old mice failed to differentiate naive T cells into Th1 and Th17 cells irrespective of the T-cell donor's age, and promoted development of Treg cells and Th2 cells instead. Adoptive transfer of adult APCs restored the ability of 2-week-old mice to generate encephalitogenic T cells and develop EAE. Collectively, these findings indicate that the innate immune compartment functionally matures during development, which may be a prerequisite for development of T-cell-mediated CNS autoimmune disease.

  9. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens

    PubMed Central

    Reem, Nathan T.; Pogorelko, Gennady; Lionetti, Vincenzo; Chambers, Lauran; Held, Michael A.; Bellincampi, Daniela; Zabotina, Olga A.

    2016-01-01

    The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens. PMID:27242834

  10. Susceptibility of a minipig kidney cell line (MPK) to hog cholera virus.

    PubMed

    Buonavoglia, C; Falcone, E; Pestalozza, S; Iovane, G; Rivero, V B

    1988-07-01

    A comparitive study on the different susceptibility of MPK cells (Minipig Kidney cell line) and PK15 cells (Pig Kidney cell line) to the Hog Cholera Virus (HCV) was conducted. Higher HCV titres (3 log10) were reached on MPK cells compared with PK15 cells.

  11. Genomic loci susceptible to replication errors in cancer cells.

    PubMed Central

    Krajinovic, M.; Richer, C.; Gorska-Flipot, I.; Gaboury, L.; Novakovic, I.; Labuda, D.; Sinnett, D.

    1998-01-01

    Microsatellite instability due to a deficiency in DNA mismatch repair is characteristic of a replication error (RER) phenotype. This widespread genomic instability is well documented in hereditary non-polyposis colon cancer (HNPCC) as well as subsets of sporadic carcinomas. Features of the RER phenotype such as the early appearance in tumour development and better prognosis of RER+ colorectal tumours render its examination important for cancer patients. Recently, we identified four loci that were shown to be highly susceptible to RER in cancer cells. Here, we used these loci to detect the RER phenotype in sporadic carcinomas of colon, breast, lung, endometrium and ovary. Replication errors revealed by these four markers followed the same tumour specificity as observed in HNPCC patients. In particular, 24% (6/25) of colorectal, 33% (4/12) of endometrial and 17% (2/12) of ovarian cancers displayed the RER phenotype characterized by an increased allelic mobility, whereas none of the breast (n = 22) and the lung (n = 27) carcinomas were found to be unstable. Assaying RERs sensitive loci provides us with a useful diagnostic tool for HNPCC-like sporadic tumours. Images Figure 1 PMID:9792139

  12. Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection

    PubMed Central

    Guthrie, Brandon S.; Schmidt, Rebecca L.; Jamieson, Amanda; Merkel, Patricia; Knight, Vijaya; Cole, Caroline M.; Raulet, David H.; Lenz, Laurel L.

    2016-01-01

    Natural killer (NK) cells produce interferon (IFN)-γ and thus have been suggested to promote type I immunity during bacterial infections. Yet, Listeria monocytogenes (Lm) and some other pathogens encode proteins that cause increased NK cell activation. Here, we show that stimulation of NK cell activation increases susceptibility during Lm infection despite and independent from robust NK cell production of IFNγ. The increased susceptibility correlated with IL-10 production by responding NK cells. NK cells produced IL-10 as their IFNγ production waned and the Lm virulence protein p60 promoted induction of IL-10 production by mouse and human NK cells. NK cells consequently exerted regulatory effects to suppress accumulation and activation of inflammatory myeloid cells. Our results reveal new dimensions of the role played by NK cells during Lm infection and demonstrate the ability of this bacterial pathogen to exploit the induction of regulatory NK cell activity to increase host susceptibility. PMID:27295349

  13. Morphological Characteristics of Motor Neurons Do Not Determine Their Relative Susceptibility to Degeneration in a Mouse Model of Severe Spinal Muscular Atrophy

    PubMed Central

    Mutsaers, Chantal A.; Thomson, Derek; Hamilton, Gillian; Parson, Simon H.; Gillingwater, Thomas H.

    2012-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA. PMID:23285108

  14. Determination of Receiver Susceptibility to Radio Frequency Interference from Portable Electronic Devices

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.

    2002-01-01

    With the increasing pressures to allow wireless devices on aircraft, the susceptibility of aircraft receivers to interference from Portable Electronic Devices (PEDs) becomes an increasing concern. Many investigations were conducted in the past, with limited success, to quantify device emissions, path loss, and receiver interference susceptibility thresholds. This paper outlines the recent effort in determining the receiver susceptibility thresholds for ILS, VOR and GPS systems. The effort primarily consists of analysis of data available openly as reported in many RTCA and ICAO documents as well as manufacturers data on receiver sensitivity. Shortcomings with the susceptibility threshold data reported in the RTCA documents are presented, and an approach for an in-depth study is suggested. In addition, intermodulation products were observed and demonstrated in a laboratory experiment when multiple PEDs were in the proximity of each other. These intermodulation effects generate spurious frequencies that may fall within aircraft communication or navigation bands causing undesirable effects. Results from a preliminary analysis are presented that show possible harmful combinations of PEDs and the potentially affected aircraft bands.

  15. Antimicrobial susceptibility of Brazilian Clostridium difficile strains determined by agar dilution and disk diffusion.

    PubMed

    Fraga, Edmir Geraldo; Nicodemo, Antonio Carlos; Sampaio, Jorge Luiz Mello

    2016-01-01

    Clostridium difficile is a leading cause of diarrhea in hospitalized patients worldwide. While metronidazole and vancomycin are the most prescribed antibiotics for the treatment of this infection, teicoplanin, tigecycline and nitazoxanide are alternatives drugs. Knowledge on the antibiotic susceptibility profiles is a basic step to differentiate recurrence from treatment failure due to antimicrobial resistance. Because C. difficile antimicrobial susceptibility is largely unknown in Brazil, we aimed to determine the profile of C. difficile strains cultivated from stool samples of inpatients with diarrhea and a positive toxin A/B test using both agar dilution and disk diffusion methods. All 50 strains tested were sensitive to metronidazole according to CLSI and EUCAST breakpoints with an MIC90 value of 2μg/mL. Nitazoxanide and tigecycline were highly active in vitro against these strains with an MIC90 value of 0.125μg/mL for both antimicrobials. The MIC90 were 4μg/mL and 2μg/mL for vancomycin and teicoplanin, respectively. A resistance rate of 8% was observed for moxifloxacin. Disk diffusion can be used as an alternative to screen for moxifloxacin resistance, nitazoxanide, tigecycline and metronidazole susceptibility, but it cannot be used for testing glycopeptides. Our results suggest that C. difficile strains from São Paulo city, Brazil, are susceptible to metronidazole and have low MIC90 values for most of the current therapeutic options available in Brazil.

  16. Antimicrobial susceptibility of anaerobic bacteria in Belgium as determined by E-test methodology.

    PubMed

    Glupczynski, Y; Berhin, C; Nizet, H

    2009-03-01

    The objective was to collect recent data on the antibiotic susceptibility of clinically significant anaerobes in Belgium. A total of 333 anaerobic clinical isolates from various body sites were prospectively collected between 2005 and 2007 at two tertiary care hospitals in Belgium. The minimal inhibitory concentrations (MICs) were determined using the E-test method for nine anti-anaerobic antibiotics. Sixty-one percent of the isolates were beta-lactamase producers, which explains the poor activity of penicillin. Amoxicillin/clavulanic acid, piperacillin/tazobactam, metronidazole and meropenem were very active against most anaerobes, but around 10% of the Bacteroides fragilis group strains were non-susceptible to the two beta-lactam/beta-lactamase inhibitors. No resistance was observed to metronidazole, while 3% of the Bacteroides spp. had decreased susceptibility to meropenem (MIC > or = 4 mg/L). Cefoxitin, clindamycin and moxifloxacin were less active, with 33%, 52% and 57% of the B. fragilis group being non-susceptible respectively. Tigecycline showed consistently good activity against most anaerobes with MIC(50) and MIC(90) of 0.25 and 2 mg/L. Metronidazole, amoxicillin/clavulanate, piperacillin/tazobactam and meropenem remain good empirical choices when anaerobes are expected in our setting. Because of the occurrence of resistance to most classes of current anti-anaerobic antibiotics, it is recommended that the antimicrobial resistance patterns be monitored regularly in order to guide empirical therapy.

  17. Determination of antifungal susceptibility patterns among the clinical isolates of Candida species.

    PubMed

    Zomorodian, Kamiar; Rahimi, Mohammad Javad; Pakshir, Kayvan; Motamedi, Marjan; Ghiasi, Moosa Rahimi; Rezashah, Hasanein

    2011-10-01

    Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6%) and Candida albicans (3.2%). Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2%) yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure.

  18. In vitro endothelial cell susceptibility to xenobiotics: comparison of three cell types.

    PubMed

    L'Azou, B; Fernandez, P; Bareille, R; Beneteau, M; Bourget, C; Cambar, J; Bordenave, L

    2005-03-01

    In three different endothelial cell (EC) cultures (primary human umbilical cord vein, so-called HUVEC; and immortalized cell lines HBMEC and EA-hy-926), the effects of different xenobiotics were studied in order to standardize vascular EC models for in vitro pharmacotoxicological studies. Cell characteristics were first investigated by the production and the mRNA levels of known endothelial markers in the three EC culture models. EC secretory products, tissue plasminogen activator (tPA) and von Willebrand factor (vWF), were present in the supernatant of the immortalized cell lines. The mRNA levels of vWF, tPA, platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), and beta -integrin subunit, which are involved in the control of platelet function, coagulation, and fibrinolysis as well as in cell-matrix interactions, were investigated in all EC types. For at least three parameters, cultured cells provided marked characteristics of EC phenotype, in HUVEC and in immortalized cell lines, regardless of their origin from the macro- or microcirculation. Toxicity experiments were assessed after 24 h exposure to cadmium, cyclosporin A and cisplatin by MTT assay. These experiments show nonsignificant difference in susceptibility to cyclosporin A and cadmium on HUVEC, HBMEC, and EA-hy-926. However, HBMEC, seems to be highly susceptible to cisplatin compared to HUVEC, the latter being more sensitive than EA-hy-926. For experiments conducted with cyclosporin and cadmium, cell lines could constitute an alternative material for routine cytotoxicity studies.

  19. Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition

    PubMed Central

    Bosson, Andrew D.; Zamudio, Jesse R.; Sharp, Phillip A.

    2016-01-01

    SUMMARY Target competition (ceRNA crosstalk) within miRNA-regulated gene networks has been proposed to influence biological systems. To assess target competition, we characterize and quantitate miRNA networks in two cell types. Argonaute iCLIP reveals that hierarchical binding of high- to low-affinity miRNA targets is a key characteristic of in vivo activity. Quantification of cellular miRNA and mRNA/ncRNA target pool levels indicates that miRNA:target pool ratios and an affinity partitioned target pool accurately predict in vivo Ago binding profiles and miRNA susceptibility to target competition. Using single-cell reporters, we directly test predictions and estimate that ~3,000 additional high-affinity target sites can affect active miRNA families with low endogenous miRNA:target ratios, such as miR-92/25. In contrast, the highly expressed miR-294 and let-7 families are not susceptible to increases of nearly 10,000 sites. These results show differential susceptibility based on endogenous miRNA:target pool ratios and provide a physiological context for ceRNA competition in vivo. PMID:25449132

  20. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury.

    PubMed

    Pressly, Jeffrey D; Hama, Taketsugu; Brien, Shannon O'; Regner, Kevin R; Park, Frank

    2017-03-03

    Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia-reperfusion injury (IRI), a common type of renal stressor. In Trip13(Gt/Gt)hypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co-factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death.

  1. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury

    PubMed Central

    Pressly, Jeffrey D.; Hama, Taketsugu; Brien, Shannon O’; Regner, Kevin R.; Park, Frank

    2017-01-01

    Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia‐reperfusion injury (IRI), a common type of renal stressor. In Trip13Gt/Gthypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co‐factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death. PMID:28256593

  2. A Cell Phone-Based Microphotometric System for Rapid Antimicrobial Susceptibility Testing.

    PubMed

    Kadlec, Meichei Wang; You, David; Liao, Joseph C; Wong, Pak Kin

    2014-06-01

    This study demonstrates a low-cost, portable diagnostic system for rapid antimicrobial susceptibility testing in resource-limited settings. To determine the antimicrobial resistance phenotypically, the growth of pathogens in microwell arrays is detected under different antibiotic conditions. The use of a colorimetric cell viability reagent is shown to significantly improve the sensitivity of the assay compared with standard absorbance spectroscopy. Gas-permeable microwell arrays are incorporated for facilitating rapid bacterial growth and eliminating the requirement of bulky supporting equipment. Antibiotics can also be precoated in the microwell array to simplify the assay protocol toward point-of-care applications. Furthermore, a low-cost cell phone-based microphotometric system is developed for detecting the bacterial growth in the microwell array. By optimizing the operating conditions, the system allows antimicrobial susceptibility testing for samples with initial concentrations from 10(1) to 10(6) cfu/mL. Using urinary tract infection as the model system, we demonstrate rapid antimicrobial resistance profiling for uropathogens in both culture media and urine. With its simplicity and cost-effectiveness, the cell phone-based microphotometric system is anticipated to have broad applicability in resource-limited settings toward the management of infectious diseases caused by multidrug-resistant pathogens. © 2013 Society for Laboratory Automation and Screening.

  3. Differential susceptibility of equine and mouse brain microvascular endothelial cells to equine herpesvirus 1 infection.

    PubMed

    Hasebe, R; Kimura, T; Nakamura, K; Ochiai, K; Okazaki, K; Wada, R; Umemura, T

    2006-04-01

    Equine herpesvirus 1 (EHV-1) shows endotheliotropism in the central nervous system (CNS) of infected horses. However, infection of endothelial cells has not been observed in the CNS of infected mice. To explore the basis for this difference in endotheliotropism, we compared the susceptibility of equine brain microvascular endothelial cells (EBMECs) and mouse brain microvascular endothelial cells (MBMECs) to EHV-1 infection. The kinetics of viral growth in EBMECs was typical of a fully productive infection whereas viral infection in MBMECs seemed to be nonproductive. Immunofluorescence microscopy using anti-EHV-1 polyclonal antibody demonstrated viral antigen in infected EBMECs, but not infected MBMECs. EHV-1 immediate early (IE), early (ICP0), and late (gB, gD and gK) transcripts were expressed in infected EBMECs. However, none of these genes was detected in infected MBMECs by reverse transcription-polymerase chain reaction. Electron microscopic examination at the stage of viral entry showed that viral particles were present within uncoated vesicles in the cytoplasm of EBMECs, but absent from those of MBMECs. These results suggest that viral entry is an important determinant of the susceptibility of EBMECs and MBMECs to EHV-1 infection.

  4. Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage.

    PubMed

    Zhang, Hui; Zhou, Yan; Bao, Hongduo; Zhang, Lili; Wang, Ran; Zhou, Xiaohui

    2015-03-01

    Listeria monocytogenes is an intracellular pathogen causing gastroenteritis, central nervous system infections and abortions. Chromosomal virulence determinants have been extensively investigated. However, the function of genes encoded by plasmids in L. monocytogenes has not been fully understood. In this study, we determined the prevalence and molecular profile of plasmids in food isolates of L. monocytogenes and examined the contribution of four plasmid-borne cadmium-resistant genes to the susceptibility of L. monocytogenes to bacteriophage infection. The results showed that plasmids were isolated from 55% (11/20) of the isolates and the plasmids exhibited 10 molecular types as determined by restriction enzyme digestion. Furthermore, 65% and 15% of the isolates were tolerant to cadmium and benzalkonium chloride (BC), respectively. All the BC-resistant isolates were resistant to cadmium. The prevalence of predicted cadmium resistance determinants (cadA1, cadA2, cadA3 and cadC) was determined and the results showed that cadA1 (35%) in isolates of serotypes 1/2a and 1/2b was much more prevalent than cadC (15%). As expected, both cadA and cadC mutants had reduced resistance to cadmium, while the resistance to BC was not significantly affected. Interestingly, both cadA and cadC mutants showed significantly higher susceptibility against L. monocytogenes phage LipG2-5 and FWLLm3 compared with the wide-type strain. Based on these results, we concluded that plasmids from L. monocytogenes encoded important functional determinants that are not only associated with cadmium resistance, but also phage susceptibility. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Determination of tolerance to antibiotic bactericidal activity on Kirby-Bauer susceptibility plates.

    PubMed

    Peterson, L R; Denny, A E; Gerding, D N; Hall, W H

    1980-11-01

    A rapid method utilizing Kirby-Bauer susceptibility plates was developed to determine bacterial tolerance to antibiotic bactericidal activity. After completion of initial antibiotic disk susceptibility testing, the disks containing cephalothin, cefazolin, nafcillin, oxacillin, and methicillin were removed and replaced with disks containing a potent beta-lactamase. The plates were reincubated for 18-24 hours and examined for regrowth of organisms within the original zone of inhibition. For 15 of 16 patients who had serious Staphylococcus aureus infections, the method correlated with clinical outcome of antibiotic chemotherapy. Broth dilution tests for bactericidal activity only correlated with clinical response for 11 of 16 patients. One hundred consecutive clinical S. aureus isolates tested with the new method demonstrated tolerance in 27% of strains to cephalothin, 15% to cefazolin, 1% to oxacillin, and 2% of nafcillin.

  6. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  7. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  8. Memory B cell compartment constitution and susceptibility to recurrent lower respiratory tract infections in young children.

    PubMed

    Siebert, Johan N; L'huillier, Arnaud G; Grillet, Stéphane; Delhumeau, Cécile; Siegrist, Claire-Anne; Posfay-Barbe, Klara M

    2013-06-01

    A proportion of children have recurrent LRTIs, mostly as a result of Spn, which persist after 2 years of age. Here, we investigate, by flow cytofluorometry, the constitution of the memory B cell compartment in 90 healthy children and 49 children with recurrent LRTIs to determine if an increased susceptibility to recurrent LRTIs results from a delayed or abnormal ontogeny with poor antibody-mediated protection. Total IgA, IgM, IgG, and IgG subclasses were measured by nephelometry, as well as antipneumococcal antibodies by ELISA. Pneumococcal vaccination status was obtained. We show that the memory B cells increase between birth and 2 years of age (1.6% vs. 21.1%, P<0.001) without further significant increase noted per additional years (3-4 years old: 23.3%; 4-5 years old: 22.2%, P>0.40) to reach adult-like values (31.8±11.8%, P=0.08). Proportions of switched and IgM memory B cells were similar in children and adults. Comparatively, LRTI children had no delay in the constitution of their memory B cell compartment (2-3 years old: 26.9%; 3-4 years old: 18.2%; 4-5 years old: 26.8%, P>0.05). Their switched and IgM memory B cells were similar among age categories, and the distribution was overall similar to that of healthy controls. LRTI children had normal total and pneumococcal serotype-specific antibody values but showed a rapid waning of antipneumococcal antibody levels after vaccination. In summary, our results show that the memory B cell compartment is already similarly constituted at 2 years of age in healthy and LRTI children and thus, cannot explain the increased susceptibility to bacterial pneumonia. However, the waning of antibodies might predispose children to recurrent infections in the absence of revaccination.

  9. Wolbachia pipientis Growth Kinetics and Susceptibilities to 13 Antibiotics Determined by Immunofluorescence Staining and Real-Time PCR

    PubMed Central

    Fenollar, Florence; Maurin, Max; Raoult, Didier

    2003-01-01

    Wolbachia spp. are strict intracellular bacteria that infect a wide range of arthropods and filarial nematodes. Filarial nematodes are important causes of human diseases. There is increasing evidence that Wolbachia spp. influence important functions in the biology of the hosts, specifically, infertility. Preliminary experiments with humans and animals have suggested that antibiotics with activity against Wolbachia may help to treat filariasis. In this study, we determined using a real-time quantitative PCR assay the growth kinetics of a strain of Wolbachia pipientis from a mosquito grown in Aa23 cells. The doubling time was estimated to be 14 h. We then determined the susceptibilities of this strain to 13 antibiotics by two methods: an immunofluorescent-antibody test and a real-time quantitative PCR assay. Both techniques gave similar results. Doxycycline and rifampin were the most effective compounds, with MICs of 0.125 and 0.06 to 0.125 μg/ml, respectively. Fluoroquinolones were less effective, with MICs of 2 to 4 μg/ml for ciprofloxacin, 2 μg/ml for ofloxacin, and 1 μg/ml for levofloxacin. β-Lactams (penicillin G, amoxicillin, ceftriaxone) were not effective at concentrations up to 128 μg/ml. The MIC of erythromycin was >32 μg/ml, whereas that of telithromycin was 8 μg/ml. Other antibiotic compounds were bacteriostatic only at high concentrations, including gentamicin, co-trimoxazole, and thiamphenicol. The real-time PCR assay was a convenient and reliable technique for determination of the antibiotic susceptibilities of Wolbachia. It may help in the future to simplify antibiotic susceptibility testing of strict intracellular pathogens. PMID:12709338

  10. Antibiotic Susceptibility of Biofilm Cells and Molecular Characterisation of Staphylococcus hominis Isolates from Blood.

    PubMed

    Mendoza-Olazarán, Soraya; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Rodríguez-Noriega, Eduardo; Llaca-Díaz, Jorge; Camacho-Ortiz, Adrián; González, Gloria M; Casillas-Vega, Néstor; Garza-González, Elvira

    2015-01-01

    We aimed to characterise the staphylococcal cassette chromosome mec (SCCmec) type, genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus hominis isolates from blood. The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with the cefoxitin disk test. mecA gene and SCCmec were detected by multiplex PCR. Genetic relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and composition were evaluated by staining with crystal violet and by detachment assay, respectively; and the biofilm index (BI) was determined. Detection and expression of icaADBC genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic susceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells (minimum biofilm eradication concentration, MBEC) were determined by the broth dilution method. Eighty-five percent (57/67) of isolates were methicillin resistant and mecA positive. Of the mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones were detected, with two to five isolates each. Among all isolates, 91% (61/67) were categorised as strong biofilm producers. Biofilm biomass composition was heterogeneous (polysaccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15) isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol. S. hominis isolates were highly resistant to methicillin and other antimicrobials. Most of the detected SCCmec types were different than those described for S. aureus. Isolates indicated low clonality. The results indicate that S. hominis is a strong biofilm producer with an extracellular matrix with similar composition of

  11. Susceptibility to CD8 T-cell-mediated killing influences the reservoir of latently HIV-1-infected CD4 T cells.

    PubMed

    Buzon, Maria J; Yang, Yue; Ouyang, Zhengyu; Sun, Hong; Seiss, Katherine; Rogich, Jerome; Le Gall, Sylvie; Pereyra, Florencia; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2014-01-01

    HIV-1 establishes a lifelong infection in the human body, but host factors that influence viral persistence remain poorly understood. Cell-intrinsic characteristics of CD4 T cells, the main target cells for HIV-1, may affect the composition of the latent viral reservoir by altering the susceptibility to CD8 T-cell-mediated killing. We observed that susceptibilities of CD4 T cells to CD8 T-cell-mediated killing, as determined in direct ex vivo assays, were significantly higher in persons with natural control of HIV-1 (elite controllers) than in individuals effectively treated with antiretroviral therapy. These differences were most pronounced in naive and in terminally differentiated CD4 T cells and corresponded to a reduced viral reservoir size in elite controllers. Interestingly, the highest susceptibility to CD8 T-cell-mediated killing and lowest reservoirs of cell-associated HIV-1 DNA was consistently observed in elite controllers expressing the protective HLA class I allele B57. These data suggest that the functional responsiveness of host CD4 T cells to cytotoxic effects of HIV-1-specific CD8 T cells can contribute to shaping the structure and composition of the latently infected CD4 T-cell pool.

  12. [Susceptibility of induced sickle in samples of heterozygous hemoglobin S patients (sickle cell trait) suffering diabetes mellitus type 2].

    PubMed

    Díaz-Piedra, Pablo; Cervantes-Villagrana, Alberto Rafael; Ramos-Jiménez, Raúl; Presno-Bernal, José Miguel; Cervantes-Villagrana, Rodolfo Daniel

    2015-01-01

    Hemoglobin S is an abnormal protein that induces morphological changes in erythrocyte in low-oxygen conditions. In Mexico, it is reported that up to 13.7% of the population with mutation in one allele are considered asymptomatic (sickle cell trait). The sickle cell trait and diabetes mellitus are conditions that occur together in more than one million patients worldwide. Both diseases possibly produce microvascular changes in retinopathy and acute chest syndrome. The aim of this study was to evaluate the induction of sickle cells in samples of diabetic patients with sickle cell trait to identify altered red cell parameters. We obtained samples of diabetic patients to determine hemoglobin A1c and S; furthermore, red blood cell biometrics data were analyzed. We found that older men with diabetes were susceptible to generate sickle cells and this correlated with reduced red blood cell count and an increase in media cell volume. In samples of women diabetes, there were no differences. We conclude that samples from patients with sickle cell trait and diabetes can cause sickle cells with high frequency in men, with lower red blood cells count and increased mean corpuscular volume as susceptibility parameters.

  13. Technique for magnetic susceptibility determination in the highly doped semiconductors by electron spin resonance

    SciTech Connect

    Veinger, A. I.; Zabrodskii, A. G.; Tisnek, T. V.; Goloshchapov, S. I.; Semenikhin, P. V.

    2014-08-20

    A method for determining the magnetic susceptibility in the highly doped semiconductors is considered. It is suitable for the semiconductors near the metal - insulator transition when the conductivity changes very quickly with the temperature and the resonance line form distorts. A procedure that is based on double integration of the positive part of the derivative of the absorption line having a Dyson shape and takes into account the depth of the skin layer is described. Analysis is made for the example of arsenic-doped germanium samples at a rather high concentration corresponding to the insulator-metal phase transition.

  14. Effects of culture media on the susceptibility of cells to apoptotic cell death.

    PubMed

    Anai, Chikara; Kawaguchi, Masatoshi; Eto, Ko

    2014-09-01

    Whether responses of cells to extracellular environments affect the induction of apoptotic cell death is poorly understood. The current study aimed to unravel the different effects of culture media employed in vitro as extracellular environments on the susceptibility of cells to apoptosis. We found that apoptosis is stimulated to the higher levels by culturing human HeLa cells in Opti-MEM with unknown components, a medium that is specifically used for transfections, than by culturing cells in Dulbecco's modified Eagle's medium, a medium that is generally used for maintenance of cells. We showed that apoptosis is suppressed partially by culturing cells in heat-treated Opti-MEM, implicating a heat-sensitive component(s) in stimulating the apoptotic response of cells. Thus, different extracellular environments may contribute to different responses of cells to apoptosis, and this should be considered to evaluate the incidences of apoptotic cell death and could be applied to develop an efficient treatment for curing diseases such as cancer.

  15. Determination of disk diffusion susceptibility testing interpretive criteria using model-based analysis: development and implementation.

    PubMed

    DePalma, Glen; Turnidge, John; Craig, Bruce A

    2017-02-01

    The determination of diffusion test breakpoints has become a challenging issue due to the increasing resistance of microorganisms to antibiotics. Currently, the most commonly-used method for determining these breakpoints is the modified error-rate bounded method. Its use has remained widespread despite the introduction of several model-based methods that have been shown superior in terms of precision and accuracy. However, the computational complexities associated with these new approaches has been a significant barrier for clinicians. To remedy this, we developed and examine the utility of a free online software package designed for the determination of diffusion test breakpoints: dBETS (diffusion Breakpoint Estimation Testing Software). This software package allows clinicians to easily analyze data from susceptibility experiments through visualization, error-rate bounded, and model-based approaches. We analyze four publicly available data sets from the Clinical and Laboratory Standards Institute using dBETS.

  16. Susceptibility to cytotoxic T cell lysis of cancer stem cells derived from cervical and head and neck tumor cell lines.

    PubMed

    Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E

    2013-01-01

    To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.

  17. Quantifying susceptibility of CD4+ stem memory T-cells to infection by laboratory adapted and clinical HIV-1 strains.

    PubMed

    Flynn, Jacqueline K; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R; Churchill, Melissa J; Gorry, Paul R

    2014-02-10

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs.

  18. Quantifying Susceptibility of CD4+ Stem Memory T-Cells to Infection by Laboratory Adapted and Clinical HIV-1 Strains

    PubMed Central

    Flynn, Jacqueline K.; Paukovics, Geza; Cashin, Kieran; Borm, Katharina; Ellett, Anne; Roche, Michael; Jakobsen, Martin R.; Churchill, Melissa J.; Gorry, Paul R.

    2014-01-01

    CD4+ T cells are principal targets for human immunodeficiency virus type 1 (HIV-1) infection. CD4+ T cell subsets are heterogeneous cell populations, divided by functional and phenotypic differences into naïve and memory T cells. The memory CD4+ T cells are further segregated into central, effector and transitional memory cell subsets by functional, phenotypic and homeostatic characteristics. Defining the distribution of HIV-1 infection in different T cell subsets is important, as this can play a role in determining the size and composition of the viral reservoir. Both central memory and transitional memory CD4+ T cells have been described as long-lived viral reservoirs for HIV. Recently, the newly described stem memory T cell subset has also been implicated as a long-lived HIV reservoir. Using green fluorescent protein (GFP) reporter strains of HIV-1 and multi parameter flow cytometry, we developed an assay to simultaneously quantify the susceptibility of stem memory (TSCM), central memory, effector memory, transitional memory and naïve CD4+ T cell subsets, to HIV-1 infection in vitro. We show that TSCM are susceptible to infection with laboratory adapted and clinical HIV-1 strains. Our system facilitates the quantitation of HIV-1 infection in alternative T cell subsets by CCR5- and CXCR4-using viruses across different HIV-1 subtypes, and will be useful for studies of HIV-1 pathogenesis and viral reservoirs. PMID:24517971

  19. Combination treatment with decitabine and ionizing radiation enhances tumor cells susceptibility of T cells

    PubMed Central

    Son, Cheol-Hun; Lee, Hong-Rae; Koh, Eun-Kyoung; Shin, Dong-Yeok; Bae, Jae-Ho; Yang, Kwangmo; Park, You-Soo

    2016-01-01

    Decitabine has been found to have anti-metabolic and anti-tumor activities in various tumor cells. Recently, the use of decitabine in combination with other conventional therapies reportedly resulted in improved anti-tumor activity against various tumors. Ionizing radiation (IR) is widely used as a cancer treatment. Decitabine and IR improve immunogenicity and susceptibility of tumor cells to immune cells by up-regulating the expression of various molecules such as major histocompatibility complex (MHC) class I; natural-killer group 2, member D (NKG2D) ligands; and co-stimulatory molecules. However, the effects of combining decitabine and IR therapies are largely unknown. Our results indicate that decitabine or IR treatment upregulates MHC class I, along with various co-stimulatory molecules in target tumor cells. Furthermore, decitabine and IR combination treatment further upregulates MHC class I, along with the co-stimulatory molecules, when compared to the effect of each treatment alone. Importantly, decitabine treatment further enhanced T cell-mediated cytotoxicity and release of IFN- γ against target tumor cells which is induced by IR. Interestingly, decitabine did not affect NKG2D ligand expression or NK cell-mediated cytotoxicity in target tumor cells. These observations suggest that decitabine may be used as a useful immunomodulator to sensitize tumor cells in combination with other tumor therapies. PMID:27671170

  20. Establishment of Stable, Cell-Mediated Immunity that Makes "Susceptible" Mice Resistant to Leishmania major

    NASA Astrophysics Data System (ADS)

    Bretscher, Peter A.; Wei, Guojian; Menon, Juthika N.; Bielefeldt-Ohmann, Helle

    1992-07-01

    Cell-mediated, but not antibody-mediated, immune responses protect humans against certain pathogens that produce chronic diseases such as leishmaniasis. Effective vaccination against such pathogens must therefore produce an immunological "imprint" so that stable, cell-mediated immunity is induced in all individuals after natural infection. BALB/c mice "innately susceptible" to Leishmania major produce antibodies after substantial infection. In the present study, "susceptible" mice injected with a small number of parasites mounted a cell-mediated response and acquired resistance to a larger, normally pathogenic, challenge. This vaccination strategy may be applicable in diseases in which protection is dependent on cell-mediated immunity.

  1. Susceptibility of nonprimate cell lines to hepatitis A virus infection.

    PubMed Central

    Dotzauer, A; Feinstone, S M; Kaplan, G

    1994-01-01

    Hepatitis A virus (HAV) has been adapted to grow in primate cell cultures. We investigated replication of HAV in nonprimate cells by inoculating 20 cell lines from different species with the tissue culture-adapted HM175 strain. Slot blot hybridization and immunofluorescence analysis revealed that HAV replicated in GPE, SP 1K, and IB-RS-2 D10 cells of guinea pig, dolphin, and pig origin, respectively. Studies in IB-RS-2 D10 cells were discontinued because cultures were contaminated with classical swine fever virus. A growth curve showed that HAV grew poorly in GPE cells and intermediately in SP 1K cells compared with growth in FRhK-4 cells. Therefore, the cell surface receptor(s) and other host factor(s) required for HAV replication are present in nonprimate as well as primate cells. Images PMID:8057483

  2. Expression of phosphoenolpyruvate carboxykinase linked to chemoradiation susceptibility of human colon cancer cells

    PubMed Central

    2014-01-01

    Background Resistance to 5-fluorouracil (5-FU) in patients with colorectal cancer prevents effective treatment and leads to unnecessary and burdensome chemotherapy. Therefore, prediction of 5-FU resistance is imperative. Methods To identify the proteins linked to 5-FU resistance, two-dimensional gel electrophoresis-based proteomics was performed using the human colon cancer cell line SNU-C4R with induced 5-FU resistance. Proteins showing altered expression in SNU-C4R were identified by matrix-associated laser desorption/ionization–time-of-flight analysis, and their roles in susceptibility to 5-FU or radiation were evaluated in various cell lines by transfection of specific siRNA or creation of overexpression constructs. Changes in cellular signaling and expression of mitochondrial apoptotic factors were investigated by Western Blot analysis. A mitochondrial membrane potential probe (JC-1 dye) and a flow cytometry system were employed to determine the mitochondrial membrane potential. Finally, protein levels were determined by Western Blot analysis in tissues from 122 patients with rectal cancer to clarify whether each identified protein is a useful predictor of a chemoradiation response. Results We identified mitochondrial phosphoenolpyruvate carboxykinase (mPEPCK) as a candidate predictor of 5-FU resistance. PEPCK was downregulated in SNU-C4R compared with its parent cell line SNU-C4. Overexpression of mPEPCK did not significantly alter the susceptibility to either 5-FU or radiation. Suppression of mPEPCK led to a decrease in both the cellular level of phosphoenolpyruvate and the susceptibility to 5-FU and radiation. Furthermore, the cellular levels of phosphoenolpyruvate (an end product of PEPCK and a substrate of pyruvate kinase), phosphorylated AKT, and phosphorylated 4EBP1 were decreased significantly secondary to the mPEPCK suppression in SNU-C4. However, mPEPCK siRNA transfection induced changes in neither the mitochondrial membrane potential nor the

  3. A cell line that secretes inducibly a reporter protein for monitoring herpes simplex virus infection and drug susceptibility.

    PubMed

    Wang, Yu-Chun; Kao, Chuan-Liang; Liu, Wu-Tse; Sun, Jun-Ren; Tai, Yi-Er; Kung, Szu-Hao

    2002-12-01

    A cell line modified genetically (Vero-ICP10-SEAP) that responds to infection by herpes simplex virus (HSV) was established. The cell line was constructed by stable transfection of Vero cell with a plasmid encoding the secreted alkaline phosphatase (SEAP) driven by the promoter of the HSV-2 ICP10 gene. Following infection with HSV, the stable line secretes a high level of the SEAP in the supernatants as measured by a chemiluminescence-based assay. The detection system is sensitive to an HSV titer as low as a single plaque-forming unit (PFU), with a linear range up to the equivalent of 2.5 x 10(4) PFU inoculum after infection for 24 h. There was no detectable enhancement in SEAP activities following inoculations with several viruses other than HSV. The Vero-ICP10-SEAP cell line was also utilized to develop an assay for determination of antiviral susceptibility given that the induced SEAP activity appeared to reflect the numbers of plaque. Evaluations of the stable line with representative acyclovir (ACV)-sensitive and-resistant HSV isolates demonstrated that their drug susceptibilities were determined accurately. In summary, this novel SEAP reporter system is a sensitive means for rapid diagnosis, quantitation, and drug susceptibility testing for HSV, with potential to the development of an automated assay. Copyright 2002 Wiley-Liss, Inc.

  4. A Rapid Molecular Test for Determining Yersinia pestis Susceptibility to Ciprofloxacin by the Quantification of Differentially Expressed Marker Genes

    PubMed Central

    Steinberger-Levy, Ida; Shifman, Ohad; Zvi, Anat; Ariel, Naomi; Beth-Din, Adi; Israeli, Ofir; Gur, David; Aftalion, Moshe; Maoz, Sharon; Ber, Raphael

    2016-01-01

    Standard antimicrobial susceptibility tests used to determine bacterial susceptibility to antibiotics are growth dependent and time consuming. The long incubation time required for standard tests may render susceptibility results irrelevant, particularly for patients infected with lethal bacteria that are slow growing on agar but progress rapidly in vivo, such as Yersinia pestis. Here, we present an alternative approach for the rapid determination of antimicrobial susceptibility, based on the quantification of the changes in the expression levels of specific marker genes following exposure to growth-inhibiting concentrations of the antibiotic, using Y. pestis and ciprofloxacin as a model. The marker genes were identified by transcriptomic DNA microarray analysis of the virulent Y. pestis Kimberley53 strain after exposure to specific concentrations of ciprofloxacin for various time periods. We identified several marker genes that were induced following exposure to growth-inhibitory concentrations of ciprofloxacin, and we confirmed the marker expression profiles at additional ciprofloxacin concentrations using quantitative RT-PCR. Eleven candidate marker transcripts were identified, of which four mRNA markers were selected for a rapid quantitative RT-PCR susceptibility test that correctly determined the Minimal Inhibitory Concentration (MIC) values and the categories of susceptibility of several Y. pestis strains and isolates harboring various ciprofloxacin MIC values. The novel molecular susceptibility test requires just 2 h of antibiotic exposure in a 7-h overall test time, in contrast to the 24 h of antibiotic exposure required for a standard microdilution test. PMID:27242774

  5. [Species-identification and antimicrobial susceptibility tests by the fully automated RAISUS using an early-harvested cell suspension].

    PubMed

    Nakasone, Isamu; Kisanuki, Kyoko; Higa, Miyako; Kinjo, Tohru; Yamane, Nobuhisa

    2006-01-01

    We evaluated the usefulness of an early-harvested bacterial cell suspension to the fully automated RAISUS (Nissui Pharmaceuticals Co., Ltd., Tokyo) to provide the results of species-identification and antimicrobial susceptibility testings within a day after overnight-incubation of the primary cultures. A single, well-separated colony appeared on the primary culture plate was transferred onto a blood agar or chocolate agar plates, then incubated for 3 to 6 hours. The cell suspension to the RAISUS was properly prepared to the McFarland 0.5 turbidity from the early-harvested bacterial cells. When the five ATCC reference strains, consisting of Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Streptococcus pneumoniae ATCC 49619, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853, were repeatedly tested for the species-identification, all the identification results were acceptable. Antimicrobial susceptibility tests were evaluated with the above five strains and Haemophilus influenzae ATCC 49247. The results obtained indicated that the most susceptibility test results were comparable to those MICs obtained by the standard test procedure, but some strains, in particular, H. influenzae and P. aeruginosa gave significantly discrepant MICs for certain antimicrobial agents. The significant discrepancy in MIC determinations regarded the difference of viable cell concentrations in the cell suspension prepared respectively. Through the analysis of laboratory workflow, it became to apparent that 18S to 20S of the tests were completed by 5:00 p.m., and it required to wait until 3:00 a.m. to complete 90S of the tests. With these results, the early-harvested bacterial cell suspension is applicable to species-identification by RAISUS, but it is necessary to adjust viable cell concentrations to antimicrobial susceptibility test. Also, it is urgent to reconstitute a daily workflow to improve the rapidity of RAISUS test function.

  6. Uptake and metabolism of clomazone in tolerant-soybean and susceptible-cotton photomixotrophic cell suspension cultures

    SciTech Connect

    Norman, M.A.; Liebl, R.A.; Widholm, J.M. )

    1990-03-01

    Studies were conducted to determine the uptake and metabolism of the pigment synthesis inhibiting herbicide clomazone in tolerant-soybean (Glycine max (L.) Merr. cv Corsoy) and susceptible-cotton (Gossypium hirsutum (L.) cv Stoneville 825) photomixotrophic cell suspensions. Soybean and cotton on a whole plant level are tolerant and susceptible to clomazone, respectively. Preliminary studies indicated that I{sub 50} values for growth, chlorophyll (Chl), {beta}-carotene, and lutein were, respectively, >22, 14, 19, and 23 times greater for the soybean cell line (SB-M) 8 days after treatment (DAT) compared to the cotton cell line (COT-M) 16 DAT. Differences in ({sup 14}C)clomazone uptake cannot account for selectivity since there were significantly greater levels of domazone absorbed by the SB-M cells compared to the COT-M cells for each treatment. The percentage of absorbed clomazone converted to more polar metabolite(s) was significantly greater by the SB-M cells relative to COT-M cells at 6 and 24 hours after treatment, however, only small differences existed between the cell lines by 48 hours after treatment. Nearly identical levels of parental clomazone was recovered from both cell lines for all treatments. A pooled metabolite fraction isolated from SB-M cells had no effect on the leaf pigment content of susceptible velvetleaf or soybean seedlings. Conversely, a pooled metabolite fraction from COT-M cells reduced the leaf Chl content of velvetleaf. Soybean tolerance to clomazone appears to be due to differential metabolism (bioactivation) and/or differences at the site of action.

  7. Iron increases the susceptibility of multiple myeloma cells to bortezomib

    PubMed Central

    Campanella, Alessandro; Santambrogio, Paolo; Fontana, Francesca; Frenquelli, Michela; Cenci, Simone; Marcatti, Magda; Sitia, Roberto; Tonon, Giovanni; Camaschella, Clara

    2013-01-01

    Multiple myeloma is a malignant still incurable plasma cell disorder. Pharmacological treatment based on proteasome inhibition has improved patient outcome; however, bortezomib-resistance remains a major clinical problem. Inhibition of proteasome functionality affects cellular iron homeostasis and iron is a potent inducer of reactive oxygen species and cell death, unless safely stored in ferritin. We explored the potential role of iron in bortezomib-resistance. We analyzed iron proteins, oxidative status and cell viability in 7 multiple myeloma cell lines and in plasma cells from 5 patients. Cells were treated with increasing bortezomib concentrations with or without iron supplementation. We reduced ferritin levels by both shRNA technology and by drug-induced iron starvation. Multiple myeloma cell lines are characterized by distinct ferritin levels, which directly correlate with bortezomib resistance. We observed that iron supplementation upon bortezomib promotes protein oxidation and cell death, and that iron toxicity inversely correlates with basal ferritin levels. Bortezomib prevents ferritin upregulation in response to iron, thus limiting the ability to buffer reactive oxygen species. Consequently, reduction of basal ferritin levels increases both bortezomib sensitivity and iron toxicity. In patients’ cells, we confirmed that bortezomib prevents ferritin increase, that iron supplementation upon bortezomib increases cell death and that ferritin reduction overcomes bortezomib resistance. Bortezomib affects iron homeostasis, sensitizing cells to oxidative damage. Modulation of iron status is a strategy worth exploring to improve the efficacy of proteasome inhibition therapies. PMID:23242599

  8. Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility

    PubMed Central

    Behmoaras, Jacques; Bhangal, Gurjeet; Smith, Jennifer; McDonald, Kylie; Mutch, Brenda; Lai, Ping Chin; Domin, Jan; Game, Laurence; Salama, Alan; Foxwell, Brian M; Pusey, Charles D; Cook, H Terence; Aitman, Timothy J

    2009-01-01

    Crescentic glomerulonephritis is an important cause of human kidney failure for which the underlying molecular basis is largely unknown. In previous studies, we mapped several susceptibility loci, Crgn1–Crgn7, for crescentic glomerulonephritis in the Wistar Kyoto (WKY) rat1. Here we show by combined congenic, linkage and microarray studies that the activator protein-1 (AP-1) transcription factor JunD is a major determinant of macrophage activity and is associated with glomerulonephritis susceptibility. Introgression of Crgn2 from the nonsusceptible Lewis strain onto the WKY background leads to significant reductions in crescent formation, macrophage infiltration, Fc receptor–mediated macrophage activation and cytokine production. Haplotype analysis restricted the Crgn2 linkage interval to a 430-kb interval containing Jund, which is markedly overexpressed in WKY macrophages and glomeruli. Jund knockdown in rat and human primary macrophages led to significantly reduced macrophage activity and cytokine secretion, indicating conservation of JunD function in macrophage activation in rats and humans and suggesting in vivo inhibition of Jund as a possible new therapeutic strategy for diseases characterized by inflammation and macrophage activation. PMID:18443593

  9. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia.

    PubMed

    Aguilar-Salinas, Carlos A; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-07-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explain the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia.

  10. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia

    PubMed Central

    Aguilar-Salinas, Carlos A.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-01-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explains the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia. PMID:24768220

  11. In vitro susceptibility of Sporothrix schenckii to six antifungal agents determined using three different methods.

    PubMed

    Alvarado-Ramírez, Eidi; Torres-Rodríguez, Josep M

    2007-07-01

    The in vitro susceptibility of Sporothrix schenckii to antifungal drugs has been determined with three different methods. Nineteen Peruvian clinical isolates of S. schenckii were tested against amphotericin B (AB), flucytosine (FC), fluconazole (FZ), itraconazole (IZ), voriconazole (VZ), and ketoconazole (KZ). Modified NCCLS M38-A, Sensititre YeastOne (SYO), and ATB Fungus 2 (ATBF2) methods were used to determine the MICs. ATCC isolates of Candida parapsilosis, Candida krusei, and Aspergillus flavus were used for quality control. Sporothrix inocula were prepared with the mycelial form growing on potato dextrose agar at 28 +/- 2 degrees C. MICs of AB, FC, FZ, and IZ were determined with all three methods, VZ with M38-A and SYO, and KZ with only SYO. The three methods showed high MICs of FZ and FC (MIC(90) of 0.5 microg/ml), being homogeneously lower than those of IZ and KZ. The M38-A method showed a variable MIC range of VZ (4.0 to 16 microg/ml); the geometric mean (GM) was 9.3 mug/ml. The MIC range of AB was wide (0.06 to 16 microg/ml), but the GM was 1.2 microg/ml, suggesting that the MIC is strain dependent. Agreement (two log(2) dilutions) between commercial techniques and the modified M38-A method was very high with FZ, IZ, and FC. In AB and VZ, the agreement was lower, being related to the antifungal concentrations of each method. The highest activity against S. schenckii was found with IZ and KZ. Lack of activity was observed with FZ, VZ, and FC. When AB is indicated for sporotrichosis, the susceptibility of the strain must be analyzed. Commercial quantitative antifungal methods have a limited usefulness in S. schenckii.

  12. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity.

    PubMed

    Bearoff, F; Del Rio, R; Case, L K; Dragon, J A; Nguyen-Vu, T; Lin, C-Y; Blankenhorn, E P; Teuscher, C; Krementsov, D N

    2016-12-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naive immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific and sex-specific. Bioinformatic analysis of the genetically controlled transcript networks reveals reduced cell type specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS (genome-wide association study candidate genes for MS susceptibility) genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared with PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T-cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease.

  13. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  14. Recent Development in Determining Spontaneous Heating Susceptibility of Indian Coals and Its Correlation with Intrinsic Parameters of Coal

    NASA Astrophysics Data System (ADS)

    Ray, Santosh Kumar; Panigrahi, Durga Charan

    2015-10-01

    The paper describes a new electro-chemical method called wet oxidation potential technique for determining the susceptibility of coal to spontaneous combustion. Altogether 78 coal samples collected from thirteen different mining companies spreading over most of the Indian coalfields have been used for this experimental investigation. Experiments have also been carried out for proximate and ultimate analyses of coal. Susceptibility index obtained from wet oxidation potential was correlated with intrinsic parameters of coal. It has been found that susceptibility index bears a good correlation with moisture content, volatile matter, oxygen, hydrogen and carbon content of coal.

  15. The V3 Loop of HIV-1 Env Determines Viral Susceptibility to IFITM3 Impairment of Viral Infectivity.

    PubMed

    Wang, Yimeng; Pan, Qinghua; Ding, Shilei; Wang, Zhen; Yu, Jingyou; Finzi, Andrés; Liu, Shan-Lu; Liang, Chen

    2017-04-01

    Interferon-inducible transmembrane proteins (IFITMs) inhibit a broad spectrum of viruses, including HIV-1. IFITM proteins deter HIV-1 entry when expressed in target cells and also impair HIV-1 infectivity when expressed in virus producer cells. However, little is known about how viruses resist IFITM inhibition. In this study, we have investigated the susceptibilities of different primary isolates of HIV-1 to the inhibition of viral infectivity by IFITMs. Our results demonstrate that the infectivity of different HIV-1 primary isolates, including transmitted founder viruses, is diminished by IFITM3 to various levels, with strain AD8-1 exhibiting strong resistance. Further mutagenesis studies revealed that HIV-1 Env, and the V3 loop sequence in particular, determines the extent of inhibition of viral infectivity by IFITM3. IFITM3-sensitive Env proteins are also more susceptible to neutralization by soluble CD4 or the 17b antibody than are IFITM3-resistant Env proteins. Together, data from our study suggest that the propensity of HIV-1 Env to sample CD4-bound-like conformations modulates viral sensitivity to IFITM3 inhibition.IMPORTANCE Results of our study have revealed the key features of the HIV-1 envelope protein that are associated with viral resistance to the IFITM3 protein. IFITM proteins are important effectors in interferon-mediated antiviral defense. A variety of viruses are inhibited by IFITMs at the virus entry step. Although it is known that envelope proteins of several different viruses resist IFITM inhibition, the detailed mechanisms are not fully understood. Taking advantage of the fact that envelope proteins of different HIV-1 strains exhibit different degrees of resistance to IFITM3 and that these HIV-1 envelope proteins share the same domain structure and similar sequences, we performed mutagenesis studies and determined the key role of the V3 loop in this viral resistance phenotype. We were also able to associate viral resistance to IFITM3

  16. Virus-induced diabetes mellitus. VI. Genetically determined host differences in the replicating of encephalomyocarditis virus in pancreatic beta cells

    PubMed Central

    1976-01-01

    Beta cells were isolated from strains of mice that were susceptible and resistant to encephalomyocarditis (EMC) viral-induced diabetes mellitus. Beta cells from susceptible mice that were infected in vivo with EMC virus showed higher viral titers, more severe degranulation, and lower concentrations of immunoreactive insulin than beta cells from resistant mice. Immunofluorescence and infectious center assays revealed that pancreas from susceptible mice contained at least 10 times more infected cells than pancreas from resistant mice. Beta cell cultures prepared from susceptible mice and infected in vitro also showed higher viral titers and more severe cytopathologic changes than beta cell cultures from resistant mice. In contrast to beta cell cultures, virus replicated equally well in primary embryo and kidney cell cultures from susceptible and resistant strains of mice. It is concluded that the development of EMC virus-induced diabetes is related to genetically determined host differences in the capacity of the virus to infect beta cells. PMID:177713

  17. Streptococcus agalactiae in Brazil: serotype distribution, virulence determinants and antimicrobial susceptibility.

    PubMed

    Dutra, Vanusa G; Alves, Valéria M N; Olendzki, André N; Dias, Cicero A G; de Bastos, Alessandra F A; Santos, Gianni O; de Amorin, Efigênia L T; Sousa, Meireille  B; Santos, Rosemary; Ribeiro, Patricia C S; Fontes, Cleuber F; Andrey, Marco; Magalhães, Kedma; Araujo, Ana A; Paffadore, Lilian F; Marconi, Camila; Murta, Eddie F C; Fernandes, Paulo C; Raddi, Maria S G; Marinho, Penélope S; Bornia, Rita B G; Palmeiro, Jussara K; Dalla-Costa, Libera M; Pinto, Tatiana C A; Botelho, Ana Caroline N; Teixeira, Lúcia M; Fracalanzza, Sérgio Eduardo L

    2014-06-12

    Group B Streptococcus (GBS) remains a major cause of neonatal sepsis and is also associated with invasive and noninvasive infections in pregnant women and non-pregnant adults, elderly and patients with underlying medical conditions. Ten capsular serotypes have been recognized, and determination of their distribution within a specific population or geographical region is important as they are major targets for the development of vaccine strategies. We have evaluated the characteristics of GBS isolates recovered from individuals with infections or colonization by this microorganism, living in different geographic regions of Brazil. A total of 434 isolates were identified and serotyped by conventional phenotypic tests. The determination of antimicrobial susceptibility was performed by the disk diffusion method. Genes associated with resistance to erythromycin (ermA, ermB, mefA) and tetracycline (tetK, tetL, tetM, tetO) as well as virulence-associated genes (bac, bca, lmb, scpB) were investigated using PCR. Pulsed-field gel electrophoresis (PFGE) was used to examine the genetic diversity of macrolide-resistant and of a number of selected macrolide-susceptible isolates. Overall, serotypes Ia (27.6%), II (19.1%), Ib (18.7%) and V (13.6%) were the most predominant, followed by serotypes IV (8.1%) and III (6.7%). All the isolates were susceptible to the beta-lactam antimicrobials tested and 97% were resistant to tetracycline. Resistance to erythromycin and clindamycin were found in 4.1% and 3% of the isolates, respectively. Among the resistance genes investigated, tetM (99.3%) and tetO (1.8%) were detected among tetracycline-resistant isolates and ermA (39%) and ermB (27.6%) were found among macrolide-resistant isolates. The lmb and scpB virulence genes were detected in all isolates, while bac and bca were detected in 57 (13.1%) and 237 (54.6%) isolates, respectively. Molecular typing by PFGE showed that resistance to erythromycin was associated with a variety of clones

  18. Determination of Isavuconazole Susceptibility of Aspergillus and Candida Species by the EUCAST Method

    PubMed Central

    Howard, Susan J.; Lass-Flörl, Cornelia; Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia

    2013-01-01

    Isavuconazole is a novel expanded-spectrum triazole, which has recently been approved by the FDA as an orphan drug to treat invasive aspergillosis and is currently being studied in phase III clinical trials for invasive candidiasis. The susceptibility of relatively few clinical isolates has been reported. In this study, the isavuconazole susceptibilities of 1,237 Aspergillus and 2,010 Candida geographically diverse clinical isolates were determined by EUCAST methodology at four European mycology laboratories, producing the largest multicenter data set thus far for this compound. In addition, a blinded collection of 30 cyp51A mutant Aspergillus fumigatus clinical isolates and 10 wild-type isolates was tested. From these two data sets, the following preliminary epidemiological cutoff (ECOFF) values were suggested: 2 mg/liter for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavus; 4 mg/liter for Aspergillus niger; 0.25 mg/liter for Aspergillus nidulans; and 0.03 mg/liter for Candida albicans, Candida parapsilosis, and Candida tropicalis. Unfortunately, ECOFFs could not be determined for Candida glabrata or Candida krusei due to an unexplained interlaboratory MIC variation. For the blinded collection of A. fumigatus isolates, all MICs were ≤2 mg/liter for wild-type isolates. Differential isavuconazole MICs were observed for triazole-resistant A. fumigatus isolates with different cyp51A alterations: TR34/L98H mutants had elevated isavuconazole MICs, whereas isolates with G54 and M220 alterations had MICs in the wild-type range, suggesting that the efficacy of isavuconazole may not be affected by these alterations. This study will be an aid in interpreting isavuconazole MICs for clinical care and an important step in the future process of setting official clinical breakpoints. PMID:23959309

  19. Establishment and implications of a characterization method for magnetic nanoparticle using cell tracking velocimetry and magnetic susceptibility modified solutions.

    PubMed

    Zhang, Huading; Moore, Lee R; Zborowski, Maciej; Williams, P Stephen; Margel, Shlomo; Chalmers, Jeffrey J

    2005-04-01

    Magnetic micro and nanoparticles conjugated to affinity labels have become a significant, commercial reagent. It has been demonstrated that the performance of cell separation systems using magnetic labels is a function of the magnitude of the magnetic force that can be generated through labeling. This magnetic force is proportional to the number of magnetic particles bound to the cell, the magnetic energy gradient, and the particle-field interaction parameter. This particle-field interaction parameter, which is the product of the relative volumetric, magnetic susceptibility and the volume of the micro or nanoparticle, is a fundamental parameter which can be used to characterize the magnetic particles. An experimental technique is presented which measures the volumetric magnetic susceptibility of particles through the use of susceptibility modified solutions and an experimental instrument, Cell Tracking Velocimetry, CTV. Experimental studies were conducted on polystyrene microspheres alone and those bound to four different magnetic nanoparticles. The experimentally determined values of the magnetic susceptibility of the polystyrene microspheres are consistent with values found from literature. Consequently, magnetic susceptibility measurements of these polystyrene microspheres bound with the magnetic nanoparticles combined with particle size measurements using commercial dynamic light scattering instrument allowed estimates of the particle-field interaction parameter to be made for four commercial, magnetic nanoparticles. The value found for MACS beads is close to what is reported from an independent study. The values for MACS beads and Imag beads are found to agree with what is observed from experiments. Finally, an experimental demonstration of the impact that differences in this field interaction parameter has on the labeling of human lymphocytes is presented.

  20. Antibiotic Susceptibility of Biofilm Cells and Molecular Characterisation of Staphylococcus hominis Isolates from Blood

    PubMed Central

    Mendoza-Olazarán, Soraya; Morfín-Otero, Rayo; Villarreal-Treviño, Licet; Rodríguez-Noriega, Eduardo; Llaca-Díaz, Jorge; Camacho-Ortiz, Adrián; González, Gloria M.; Casillas-Vega, Néstor; Garza-González, Elvira

    2015-01-01

    Objectives We aimed to characterise the staphylococcal cassette chromosome mec (SCCmec) type, genetic relatedness, biofilm formation and composition, icaADBC genes detection, icaD expression, and antibiotic susceptibility of planktonic and biofilm cells of Staphylococcus hominis isolates from blood. Methods The study included 67 S. hominis blood isolates. Methicillin resistance was evaluated with the cefoxitin disk test. mecA gene and SCCmec were detected by multiplex PCR. Genetic relatedness was determined by pulsed-field gel electrophoresis. Biofilm formation and composition were evaluated by staining with crystal violet and by detachment assay, respectively; and the biofilm index (BI) was determined. Detection and expression of icaADBC genes were performed by multiplex PCR and real-time PCR, respectively. Antibiotic susceptibilities of planktonic cells (minimum inhibitory concentration, MIC) and biofilm cells (minimum biofilm eradication concentration, MBEC) were determined by the broth dilution method. Results Eighty-five percent (57/67) of isolates were methicillin resistant and mecA positive. Of the mecA-positive isolates, 66.7% (38/57) carried a new putative SCCmec type. Four clones were detected, with two to five isolates each. Among all isolates, 91% (61/67) were categorised as strong biofilm producers. Biofilm biomass composition was heterogeneous (polysaccharides, proteins and DNA). All isolates presented the icaD gene, and 6.66% (1/15) isolates expressed icaD. This isolate presented the five genes of ica operon. Higher BI and MBEC values than the MIC values were observed for amikacin, vancomycin, linezolid, oxacillin, ciprofloxacin, and chloramphenicol. Conclusions S. hominis isolates were highly resistant to methicillin and other antimicrobials. Most of the detected SCCmec types were different than those described for S. aureus. Isolates indicated low clonality. The results indicate that S. hominis is a strong biofilm producer with an extracellular

  1. The Type I Interferon Response Determines Differences in Choroid Plexus Susceptibility between Newborns and Adults in Herpes Simplex Virus Encephalitis.

    PubMed

    Wilcox, Douglas R; Folmsbee, Stephen S; Muller, William J; Longnecker, Richard

    2016-04-12

    Newborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/β) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis. Compared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe

  2. New rapid and simple methods for detection of bacteria and determination of their antibiotic susceptibility by using phage mutants.

    PubMed

    Ulitzur, Nirit; Ulitzur, Shimon

    2006-12-01

    Three new methods applying a novel approach for rapid and simple detection of specific bacteria, based on plaque formation as the end point of the phage lytic cycle, are described. Different procedures were designed to ensure that the resulting plaques were derived only from infected target bacteria ("infectious centers"). (i) A pair of amber mutants that cannot form plaques at concentrations lower than their reversion rate underwent complementation in the tested bacteria; the number of plaques formed was proportional to the concentration of the bacteria that were coinfected by these phage mutants. (ii) UV-irradiated phages were recovered by photoreactivation and/or SOS repair mediated by target bacteria and plated on a recA uvrA bacterial lawn in the dark to avoid recovery of noninfecting phages. (iii) Pairs of temperature-sensitive mutants were allowed to coinfect their target bacteria at the permissive temperature, followed by incubation of the plates at the restrictive temperature to avoid phage infection of the host cells. This method allowed the omission of centrifuging and washing the infected cells. Only phages that recovered by recombination or complementation were able to form plaques. The detection limit was 1 to 10 living Salmonella or Escherichia coli O157 cells after 3 to 5 h. The antibiotic susceptibility of the target bacteria could also be determined in each of these procedures by preincubating the target bacteria with antibiotic prior to phage infection. Bacteria sensitive to the antibiotic lost the ability to form infectious centers.

  3. Enterococci from Tolminc cheese: population structure, antibiotic susceptibility and incidence of virulence determinants.

    PubMed

    Canzek Majhenic, Andreja; Rogelj, Irena; Perko, Bogdan

    2005-07-15

    Microbiological analysis of ripened artisanal Tolminc cheese revealed the presence of an enterococcal population in numbers of up to 10(6) per g. All colonies, isolated from the citrate azide tween carbonate (CATC) enterococcal selective medium were Gram positive and coccal-shaped and were analysed with PhenePlate FS system. This system discriminated 10 PhP clusters among the 90 enterococcal isolates. From each cluster the most representative isolate for that particular type was selected for further study. The 10 representative enterococci were catalase negative and grew in the presence of NaCl (2%, 4% and 6.5%) and bile salts (0.06%). Genus specific primers confirmed all 10 enterococcal representatives as Enterococcus members, while species specific primers determined them further as strains of Enterococcus faecalis species. PCR for vanA and vanB genes detection, respectively, amplified no PCR products. The absence of van genes was confirmed with both disc and E-test, as isolates were susceptible to vancomycin according to the National Committee for Clinical Laboratory Standards (NCCLS). The results of disc tests with other antimicrobial agents (ampicillin, vancomycin, kanamycin, penicillin, erythromycin, neomycin, chloramphenicol, clindamycin, rifampin) did not differ much among the tested enterococci: they were all very resistant to clindamycin only. The incidence of enterococcus virulence determinants was as expected: all of the 10 E. faecalis strains tested possessed multiple determinants (between 7 and 11).

  4. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI.

    PubMed

    Digernes, Ingrid; Bjørnerud, Atle; Vatnehol, Svein Are S; Løvland, Grete; Courivaud, Frédéric; Vik-Mo, Einar; Meling, Torstein R; Emblem, Kyrre E

    2017-06-01

    Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.

  5. In situ measurement of alternating current magnetic susceptibility of Pd-hydrogen system for determination of hydrogen concentration in bulk.

    PubMed

    Akamaru, Satoshi; Hara, Masanori; Matsuyama, Masao

    2012-07-01

    An alternating current magnetic susceptometer for use as a hydrogen gauge for hydrogen-storage materials was designed and developed. The experimental system can simultaneously measure the hydrogen equilibrium pressure and the magnetic susceptibility of metal hydrides. The background voltage of the susceptometer was stabilized for a long period of time, without any adjustments, by attaching an efficient compensation circuit. The performance of the susceptometer at a static hydrogen concentration was demonstrated by measuring the magnetic susceptibility of a Pd-hydrogen system under equilibrium conditions. The in situ measurement of the magnetic susceptibility of Pd during hydrogen absorption was carried out using the susceptometer. Since the in situ magnetic susceptibility obtained at a lower initial hydrogen pressure agreed with the magnetic susceptibility measured at a static hydrogen concentration, the susceptometer could be used to determine the hydrogen concentration in Pd in situ. At a higher initial hydrogen pressure, enhancement of the magnetic susceptibility was observed at the beginning of hydrogen absorption because the magnetic moments induced by the large temporary strain generated in the Pd affected the magnetic susceptibility.

  6. Distinct temporal programming of naive CD4+ T cells for cell division versus TCR-dependent death susceptibility by antigen-presenting macrophages.

    PubMed

    Schrum, Adam G; Palmer, Ed; Turka, Laurence A

    2005-02-01

    Naive T cells become programmed for clonal expansion and contraction during the early hours of antigenic signaling. Recent studies support an 'autopilot' model, wherein the commitment to proliferate and the magnitude of the proliferative response are simultaneously determined during a single, brief period of antigen exposure. Here, we have examined whether the proliferation of naive CD4+ T cells must occur on 'autopilot', or whether extended periods of antigenic signaling can impact primary proliferative responses to antigen-presenting macrophages (macrophage APC). We found that a single exposure to antigen (18 h) simultaneously committed T cells to (1) up-regulate surface TCR above the level expressed on naive T cells, (2) undergo minimal cell division, and (3) acquire susceptibility to TCR-dependent activation-induced cell death. However, continued antigenic signaling between 18 and 72 h was required to amplify the number of daughter cells derived from the already committed T cells. Thus, a discrete commitment time was followed by a 'tuning' period, where extended antigenic signaling determined the volume of the proliferative response. We conclude that T cell commitment to full clonal expansion versus TCR-dependent death susceptibility represent two separate programming events whose timing can be segregated by macrophage APC.

  7. Cellular Source of Apolipoprotein E4 Determines Neuronal Susceptibility to Excitotoxic Injury in Transgenic Mice

    PubMed Central

    Buttini, Manuel; Masliah, Eliezer; Yu, Gui-Qiu; Palop, Jorge J.; Chang, Shengjun; Bernardo, Aubrey; Lin, Carol; Wyss-Coray, Tony; Huang, Yadong; Mucke, Lennart

    2010-01-01

    The lipid transport protein apolipoprotein E (apoE) is abundantly expressed in the brain. Its main isoforms in humans are apoE2, apoE3, and apoE4. ApoE4 is the major known genetic risk factor for Alzheimer’s disease and also contributes to the pathogenesis of various other neurological conditions. In the central nervous system, apoE is synthesized by glial cells and neurons, but it is unclear whether the cellular source affects its biological activities. To address this issue, we induced excitotoxic injury by systemic kainic acid injection in transgenic Apoe knockout mice expressing human apoE isoforms in astrocytes or neurons. Regardless of its cellular source, apoE3 expression protected neuronal synapses and dendrites against the excitotoxicity seen in apoE-deficient mice. Astrocyte-derived apoE4, which has previously been shown to have detrimental effects in vitro, was as excitoprotective as apoE3 in vivo. In contrast, neuronal expression of apoE4 was not protective and resulted in loss of cortical neurons after excitotoxic challenge, indicating that neuronal apoE4 promotes excitotoxic cell death. Thus, an imbalance between astrocytic (excitoprotective) and neuronal (neurotoxic) apoE4 expression may increase susceptibility to diverse neurological diseases involving excitotoxic mechanisms. PMID:20595630

  8. Cellular source of apolipoprotein E4 determines neuronal susceptibility to excitotoxic injury in transgenic mice.

    PubMed

    Buttini, Manuel; Masliah, Eliezer; Yu, Gui-Qiu; Palop, Jorge J; Chang, Shengjun; Bernardo, Aubrey; Lin, Carol; Wyss-Coray, Tony; Huang, Yadong; Mucke, Lennart

    2010-08-01

    The lipid transport protein apolipoprotein E (apoE) is abundantly expressed in the brain. Its main isoforms in humans are apoE2, apoE3, and apoE4. ApoE4 is the major known genetic risk factor for Alzheimer's disease and also contributes to the pathogenesis of various other neurological conditions. In the central nervous system, apoE is synthesized by glial cells and neurons, but it is unclear whether the cellular source affects its biological activities. To address this issue, we induced excitotoxic injury by systemic kainic acid injection in transgenic Apoe knockout mice expressing human apoE isoforms in astrocytes or neurons. Regardless of its cellular source, apoE3 expression protected neuronal synapses and dendrites against the excitotoxicity seen in apoE-deficient mice. Astrocyte-derived apoE4, which has previously been shown to have detrimental effects in vitro, was as excitoprotective as apoE3 in vivo. In contrast, neuronal expression of apoE4 was not protective and resulted in loss of cortical neurons after excitotoxic challenge, indicating that neuronal apoE4 promotes excitotoxic cell death. Thus, an imbalance between astrocytic (excitoprotective) and neuronal (neurotoxic) apoE4 expression may increase susceptibility to diverse neurological diseases involving excitotoxic mechanisms.

  9. Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson’s Disease

    PubMed Central

    Matigian, N.; Todorovic, M.; Cook, A. L.; Ravishankar, S.; Dong, L. F.; Neuzil, J.; Silburn, P.; Mackay-Sim, A.; Mellick, G. D.; Wood, S. A.

    2016-01-01

    Parkinson’s disease is a complex age-related neurodegenerative disorder. Approximately 90% of Parkinson’s disease cases are idiopathic, of unknown origin. The aetiology of Parkinson’s disease is not fully understood but increasing evidence implies a failure in fundamental cellular processes including mitochondrial dysfunction and increased oxidative stress. To dissect the cellular events underlying idiopathic Parkinson’s disease, we use primary cell lines established from the olfactory mucosa of Parkinson’s disease patients. Previous metabolic and transcriptomic analyses identified deficiencies in stress response pathways in patient-derived cell lines. The aim of this study was to investigate whether these deficiencies manifested as increased susceptibility, as measured by cell viability, to a range of extrinsic stressors. We identified that patient-derived cells are more sensitive to mitochondrial complex I inhibition and hydrogen peroxide induced oxidative stress, than controls. Exposure to low levels (50 nM) of rotenone led to increased apoptosis in patient-derived cells. We identified an endogenous deficit in mitochondrial complex I in patient-derived cells, but this did not directly correlate with rotenone-sensitivity. We further characterized the sensitivity to rotenone and identified that it was partly associated with heat shock protein 27 levels. Finally, transcriptomic analysis following rotenone exposure revealed that patient-derived cells express a diminished response to rotenone-induced stress compared with cells from healthy controls. Our cellular model of idiopathic Parkinson’s disease displays a clear susceptibility phenotype to mitochondrial stress. The determination of molecular mechanisms underpinning this susceptibility may lead to the identification of biomarkers for either disease onset or progression. PMID:27123847

  10. Prevalence and determinants of susceptibility to cigarette smoking among school students in Pakistan: secondary analysis of Global Youth Tobacco Survey.

    PubMed

    Aslam, Syeda Kanwal; Zaheer, Sidra; Rao, Saadiyah; Shafique, Kashif

    2014-02-21

    Susceptibility to smoke has been recognized as a strong predictor of smoking experimentation and taking up regular smoking habit. The identification of smoking susceptible individuals and its determinants is important in the efforts to reduce future smoking prevalence. The aims of this study are to estimate prevalence of susceptibility to smoke among adolescents, and identify factors associated with it. Cross sectional data was obtained from Global Youth Tobacco Survey conducted in three cities of Pakistan in year 2004. Study population consisted of students in grades, 8th, 9th, and 10th; aged 13 to 15 years. Secondary analysis using univariate and multivariate logistic regression analyses were performed to estimate the associations between smoking susceptibility and co-variates. Descriptive statistics were reported in proportions, and adjusted odds ratios with 95% confidence interval were used to report logistic regression analyses. Approximately 12% of nonsmoking students were found susceptible to smoking. Students, who were females (OR = 1.53, 95% CI [1.24-1.89]); whose parents (OR = 1.64, 95% CI [1.35-1.99]); or close friend smoked (OR = 2.77, 95% CI [2.27- 3.40]) were more susceptible to cigarette smoking. Students who had good knowledge about harmful effects of smoking (OR = 0.54, 95% CI [0.43-0.69]); and had access to anti-smoking media (OR = 0.73, 95% CI [0.59-0.89]) were less likely to be susceptible to smoking. Students who were females, had smoking parents, friends or exposure to newspaper/magazines cigarette marketing, were more susceptible to cigarette smoking among Pakistani adolescents. While knowledge of harmful effects of smoking and access to anti-smoking media served as protective factors against susceptibility to smoking.

  11. Influence of oxygen concentration on T cell proliferation and susceptibility to apoptosis in healthy men and women.

    PubMed

    Waskowska, Agnieszka; Lisowska, Katarzyna A; Daca, Agnieszka; Henc, Izabella; Brandberg, Fredrik; Mazurek, Paula; Brzustewicz, Edyta; Witkowski, Jacek M; Bryl, Ewa

    2017-01-01

    Much of what we know about the functioning of human T lymphocytes is based on the experiments carried out in atmospheric oxygen (O₂) concentrations, which are significantly higher than those maintained in blood. Interestingly, the gender differences in the activity of T cells and their susceptibility to apoptosis under different O₂ conditions have not yet been described. The aim of the study was to compare two main markers of lymphocyte function: proliferation capacity and ability to produce cytokines as well as their susceptibility to apoptosis under two different O₂ concentrations, between men and women. 25 healthy volunteers, both males (13) and females (12) were recruited to the study (mean age 25.48 ± 5.51). By using cytometry proliferation parameters of human CD4+ CD28+ cells or CD8+CD28+ cells in response to polyclonal stimulation of the TCR/CD3 complex at atmospheric (21%) and physiological (10%) O₂ concentrations using our modified dividing cell tracking technique (DCT) were analyzed as well as the percentages of apoptotic cells. We also determined the levels of IFN-γ, IL-2, IL-10 and IL-17A using Cytometric Bead Array Flex system in cell culture supernatants. CD4+CD28+ and CD8+CD28+ cells from the whole study group were characterized by shorter time required to enter the first (G1) phase of the first cell cycle at 21% compared to 10% O₂. Both T cell populations performed significantly more divisions at 21% O₂. The percentages of dividing cells were also significantly higher at atmospheric O₂. Interestingly, data analysis by gender showed that male lymphocytes had similar proliferative parameters at both O₂ concentrations while female lymphocytes proliferate more efficiently (note from the author: we cannot say that lymphocytes proliferate faster, rather more effectively, because cells perform more divisions, which gives more percentage of offspring cells) at 21% oxygen. Compared to males, the female CD4+ cells showed increased

  12. Antimicrobial susceptibility testing of pneumococci: determination of Kirby-Bauer breakpoints for penicillin G, erythromycin, clindamycin, tetracycline, chloramphenicol, and rifampin.

    PubMed

    Jacobs, M R; Mithal, Y; Robins-Browne, R M; Gaspar, M N; Koornhof, H J

    1979-08-01

    Antimicrobial susceptibility testing of pneumococci is now essential to monitor for the presence of resistance to agents such as the penicillins, macrolides, lincomycins, chloramphenicol, and tetracycline. In this study, clinical isolates of a selection of resistant South African strains were tested for antimicrobial susceptibility by minimal inhibitory concentration (MIC) determination and by a modified Kirby-Bauer disk diffusion technique, using Mueller-Hinton medium supplemented with 5% horse blood. Disk diffusion breakpoints were determined for penicillin G, erythromycin, clindamycin, tetracycline, chloramphenicol, and rifampin. Reliable results were obtained on disk diffusion for all these agents except for penicillin G. With 6-mug penicillin G disks, zones of strains with intermediate penicillin susceptibility overlapped those of sensitive and resistant strains. With 5-mug methicillin disks, clearer separation of strains based on susceptibility to penicillin G occurred. Strains with zones of <35 mm around penicillin G disks and <25 mm around methicillin disks should have penicillin G MICs determined to confirm their resistance to penicillin G. In view of the potential for pneumococci to be resistant to the agents used in this study, antimicrobial susceptibility of all clinically significant isolates should be determined.

  13. Viral susceptibility of newly established cell lines from the Hawaiian monk seal Monachus schauinslandi.

    PubMed

    Lu, Yuanan; Aguirre, A Alonso; Wang, Yun; Zeng, Lingbing; Loh, Philip C; Yanagihara, Richard

    2003-12-29

    Ten of 11 cell lines, recently established from the snout (MS-SN), periorbital soft tissue (MS-EY), liver (MS-LV), kidney (MS-KD), lung (MS-LG), spleen (MS-SP), heart (MS-HT), thyroid (MS-TY), brain (MS-BR) and urinary bladder (MS-UB) of a juvenile Hawaiian monk seal Monachus schauinslandi, were evaluated in vitro for their susceptibility to 5 mammalian viruses: herpes simplex virus type 1 (HSV-1), vesicular stomatitis virus (VSV), reovirus type 3 (Reo-3), poliovirus type 1 (Polio-1) and vaccinia virus (Vac); 5 fish viruses: channel catfish herpesvirus (CCV), infectious hematopoietic necrosis virus (IHNV), infectious pancreatic necrosis virus (IPNV), fish rhabdovirus carpio (RC) and viral hemorrhagic septicemia virus (VHSV); and 2 marine mammal morbilliviruses: phocine distemper virus (PDV) and dolphin distemper virus (DMV). Four well-established continuous cell-lines of nonhuman primate (Vero) and fish (EPC, CHSE-214 and BB) origin served as controls to standardize the virus infectivity assays. Virus yields were quantified as 50% tissue culture infectious dose (TCID50) ml(-1) on Day 7 post-inoculation. Results of the viral challenge assays revealed that the monk seal cell lines shared a similar pattern of susceptibility to the mammalian viruses. Despite their different tissue origins, all monk seal cells were sensitive to HSV-1, Vac, VSV and Reo-3, but were refractory to Polio-1. A characteristic viral-induced cytopathic effect was noted with VSV and Reo-3, and distinct plaques were observed for HSV-1 and Vac. Monk seal cell lines were also susceptible to PDV and DMV, 2 morbilliviruses isolated from seals and dolphins, respectively. By contrast, these cell lines were generally resistant to VHSV, IHNV and IPNV, with varying susceptibility to RC and CCV. The wide range of viral susceptibility of these monk seal cell lines suggests their potential value in studying viruses of monk seals and other marine mammals.

  14. Application of a Microcalorimetric Method for Determining Drug Susceptibility in Mycobacterium Species

    PubMed Central

    Howell, M.; Wirz, D.; Daniels, A. U.

    2012-01-01

    Mycobacterium tuberculosis is a global public health concern, particularly with the emergence of drug-resistant strains. Immediate identification of drug-resistant strains is crucial to administering appropriate treatment before the bacteria are allowed to spread. However, developing countries, which are most affected by drug resistance, are struggling to combat the disease without the facilities or funds for expensive diagnostics. Recent studies have emphasized the suitability of isothermal microcalorimetry (IMC) for the rapid detection of mycobacteria. In this study, we investigate its suitability for rapid and reliable M. tuberculosis drug susceptibility testing. Specifically, IMC was used to determine the MICs of three drugs, namely, isoniazid, ethambutol, and moxifloxacin, against three mycobacteria, namely, Mycobacterium smegmatis, Mycobacterium avium, and Mycobacterium tuberculosis. The Richards growth model was used to calculate growth parameters, namely, the maximum bacterial growth rate and the lag phase duration from integrated heat flow-versus-time results. For example, MICs of isoniazid, ethambutol, and moxifloxacin were determined to be 1.00, 8.00, and 0.25 μg/ml, respectively. IMC, as described here, could be used not just in industrialized countries but also in developing countries because inexpensive and sensitive microcalorimeters are now available. PMID:22090404

  15. PARAOXONASE 1 (PON1) AS A GENETIC DETERMINANT OF SUSCEPTIBILITY TO ORGANOPHOSPHATE TOXICITY

    PubMed Central

    Costa, Lucio G.; Giordano, Gennaro; Cole, Toby B.; Marsillach, Judit; Furlong, Clement E.

    2012-01-01

    Paraoxonase (PON1) is an A-esterase capable of hydrolyzing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and in plasma. Human PON1 displays two polymorphisms in the coding region (Q192R and L55M) and several polymorphisms in the promoter and the 3’-UTR regions. The Q192R polymorphism imparts differential catalytic activity toward some OP substrates, while the polymorphism at position –108 (C/T) is the major contributor of differences in the levels of PON1 expression. Both contribute to determining an individual's PON1 “status”. Animal studies have shown that PON1 is an important determinant of OP toxicity. Administration of exogenous PON1 to rats or mice protects them from the toxicity of specific OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not of paraoxon. In vitro catalytic efficiencies of purified PON192 alloforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Evidence is slowly emerging that a low PON1 status may increase susceptibility to OP toxicity in humans. Low PON1 activity may also contribute to the developmental toxicity and neurotoxicity of OPs, as shown by animal and human studies. PMID:22884923

  16. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity.

    PubMed

    Costa, Lucio G; Giordano, Gennaro; Cole, Toby B; Marsillach, Judit; Furlong, Clement E

    2013-05-10

    Paraoxonase (PON1) is an A-esterase capable of hydrolyzing the active metabolites (oxons) of a number of organophosphorus (OP) insecticides such as parathion, diazinon and chlorpyrifos. PON1 activity is highest in liver and in plasma. Human PON1 displays two polymorphisms in the coding region (Q192R and L55M) and several polymorphisms in the promoter and the 3'-UTR regions. The Q192R polymorphism imparts differential catalytic activity toward some OP substrates, while the polymorphism at position -108 (C/T) is the major contributor of differences in the levels of PON1 expression. Both contribute to determining an individual's PON1 "status". Animal studies have shown that PON1 is an important determinant of OP toxicity. Administration of exogenous PON1 to rats or mice protects them from the toxicity of specific OPs. PON1 knockout mice display a high sensitivity to the toxicity of diazoxon and chlorpyrifos oxon, but not of paraoxon. In vitro catalytic efficiencies of purified PON192 alloforms for hydrolysis of specific oxon substrates accurately predict the degree of in vivo protection afforded by each isoform. Evidence is slowly emerging that a low PON1 status may increase susceptibility to OP toxicity in humans. Low PON1 activity may also contribute to the developmental toxicity and neurotoxicity of OPs, as shown by animal and human studies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

    PubMed Central

    Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.

    2016-01-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816

  18. Mammary Stem/Progenitor Cells and Cancer Susceptibility

    DTIC Science & Technology

    2012-06-01

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person...compartment as evidenced by co-staining with antibodies to cytokeratin 8 and BrdU, a thymidine analog that was injected 4 hours prior to euthanasia to...Degrees supported: one doctoral student support, training in progress Cell lines, tissue repositories, animal models, etc.: none Funding applied for

  19. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals

    PubMed Central

    Mani, Bharath K.; Osborne-Lawrence, Sherri; Vijayaraghavan, Prasanna; Hepler, Chelsea; Zigman, Jeffrey M.

    2016-01-01

    Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction–associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell–expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker–associated hypoglycemia in susceptible individuals, such as young children. PMID:27548523

  20. Differences in irradiation susceptibility and turnover between mucosal and connective tissue-type mast cells of mice

    SciTech Connect

    Fukuzumi, T.; Waki, N.; Kanakura, Y.; Nagoshi, J.; Hirota, S.; Yoshikawa, K.; Kitamura, Y. )

    1990-08-01

    Although precursors of mast cells are derived from the bone marrow, phenotypes of mast cells are influenced by the tissues in which final differentiation occurs. Connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC) are different in morphological, biochemical, immunological, and functional criteria. The purpose of the present study was to obtain information about the differentiation process of MMC. First, we compared changes in irradiation susceptibility in mice during the differentiation process of CTMC and MMC. The decrease in irradiation susceptibility was remarkable in the CTMC differentiation process, but it was moderate in that of MMC. Some morphologically identifiable CTMC in the peritoneal cavity had proliferative potential and were highly radioresistant, whereas such a radioresistant population of MMC was not detectable in the gastric mucosa. Second, we estimated the turnover of CTMC and MMC by determining the proportion of mast cells that were labeled with continuously administered bromodeoxyuridine. The turnover of MMC was significantly faster than that of CTMC. The absence of the radioresistant mast cell population in the gastric mucosa appeared to be related to the short life span of MMC.

  1. Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility.

    Treesearch

    Richard Cobb; Ross Meentemeyer; David Rizzo

    2010-01-01

    Epidemiological theory predicts that asymmetric transmission, susceptibility, and mortality within a community will drive pathogen and disease dynamics. These epidemiological asymmetries can result in apparent competition, where a highly infectious host reduces the abundance of less infectious or more susceptible members in a community via a shared pathogen. We show...

  2. Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome.

    PubMed

    Jessen, Birthe; Maul-Pavicic, Andrea; Ufheil, Heike; Vraetz, Thomas; Enders, Anselm; Lehmberg, Kai; Längler, Alfred; Gross-Wieltsch, Ute; Bay, Ali; Kaya, Zuhre; Bryceson, Yenan T; Koscielniak, Ewa; Badawy, Sherif; Davies, Graham; Hufnagel, Markus; Schmitt-Graeff, Annette; Aichele, Peter; Zur Stadt, Udo; Schwarz, Klaus; Ehl, Stephan

    2011-10-27

    Perforin-mediated cytotoxicity is important for controlling viral infections, but also for limiting immune reactions. Failure of this cytotoxic pathway leads to hemophagocytic lymphohistiocytosis (HLH), a life-threatening disorder of uncontrolled T-cell and macrophage activation. We studied susceptibility to HLH in 2 mouse strains (souris and beige(J)) and a cohort of patients with partial defects in perforin secretion resulting from different mutations in the LYST gene. Although both strains lacked NK-cell cytotoxicity, only souris mice developed all clinical and histopathologic signs of HLH after infection with lymphocytic choriomeningitis virus. The 2 strains showed subtle differences in CTL cytotoxicity in vitro that had a large impact on virus control in vivo. Whereas beige(J) CTLs eliminated lymphocytic choriomeningitis virus infection, souris CTLs failed to control the virus, which was associated with the development of HLH. In LYST-mutant patients with Chediak-Higashi syndrome, CTL cytotoxicity was reduced in patients with early-onset HLH, whereas it was retained in patients who later or never developed HLH. Thus, the risk of HLH development is set by a threshold that is determined by subtle differences in CTL cytotoxicity. Differences in the cytotoxic capacity of CTLs may be predictive for the risk of Chediak-Higashi syndrome patients to develop HLH.

  3. Expression of sulfotransferase SULT1A1 in cancer cells predicts susceptibility to the novel anticancer agent NSC-743380.

    PubMed

    Huang, Xiao; Cao, Mengru; Wang, Li; Wu, Shuhong; Liu, Xiaoying; Li, Hongyu; Zhang, Hui; Wang, Rui-Yu; Sun, Xiaoping; Wei, Caimiao; Baggerly, Keith A; Roth, Jack A; Wang, Michael; Swisher, Stephen G; Fang, Bingliang

    2015-01-01

    The small molecule anticancer agent NSC-743380 modulates functions of multiple cancer-related pathways and is highly active in a subset of cancer cell lines in the NCI-60 cell line panel. It also has promising in vivo anticancer activity. However, the mechanisms underlying NSC-743380's selective anticancer activity remain uncharacterized. To determine biomarkers that may be used to identify responders to this novel anticancer agent, we performed correlation analysis on NSC-743380's anticancer activity and the gene expression levels in NCI-60 cell lines and characterized the functions of the top associated genes in NSC-743380-mediated anticancer activity. We found sulfotransferase SULT1A1 is causally associated with NSC-743380's anticancer activity. SULT1A1 was expressed in NSC-743380-sensitive cell lines but was undetectable in resistant cancer cells. Ectopic expression of SULT1A1 in NSC743380 resistant cancer cells dramatically sensitized the resistant cells to NSC-743380. Knockdown of the SULT1A1 in the NSC-743380 sensitive cancer cell line rendered it resistance to NSC-743380. The SULT1A1 protein levels in cell lysates from 18 leukemia cell lines reliably predicted the susceptibility of the cell lines to NSC-743380. Thus, expression of SULT1A1 in cancer cells is required for NSC-743380's anticancer activity and can be used as a biomarker for identification of NSC-743380 responders.

  4. Mast cells have no impact on cutaneous leishmaniasis severity and related Th2 differentiation in resistant and susceptible mice.

    PubMed

    Paul, Christoph; Wolff, Svenja; Zapf, Thea; Raifer, Hartmann; Feyerabend, Thorsten B; Bollig, Nadine; Camara, Bärbel; Trier, Claudia; Schleicher, Ulrike; Rodewald, Hans-Reimer; Lohoff, Michael

    2016-01-01

    The genus leishmania comprises different protozoan parasites which are causative agents of muco-cutaneous and systemic, potentially lethal diseases. After infection with the species Leishmania major, resistant mice expand Th1 cells which stimulate macrophages for Leishmania destruction. In contrast, susceptible mice generate Th2 cells which deactivate macrophages, leading to systemic spread of the pathogens. Th-cell differentiation is determined within the first days, and Th2 cell differentiation requires IL-4, whereby the initial IL-4 source is often unknown. Mast cells are potential sources of IL-4, and hence their role in murine leishmaniasis has previously been studied in mast cell-deficient Kit mutant mice, although these mice display immunological phenotypes beyond mast cell deficiency. We therefore readdressed this question by infecting Kit-independent mast cell-deficient mice that are Th1 (C57BL/6 Cpa(Cre) ) or Th2 (BALB/c Cpa(Cre) ) prone with L. major. Using different parasite doses and intra- or subcutaneous infection routes, the results demonstrate no role of mast cells on lesion size development, parasite load, immune cell phenotypes expanding in draining lymph nodes, and cytokine production during murine cutaneous leishmaniasis. Thus, other cell types such as ILCs or T cells have to be considered as primary source of Th2-driving IL-4.

  5. Determination of Blastoderm Cells in Drosophila melanogaster

    PubMed Central

    Chan, L.-N.; Gehring, W.

    1971-01-01

    A method for culturing blastoderm cells of Drosophila in vivo has been developed that allows these cells to differentiate into larval or adult structures. By intermixture of genetically marked cells from bisected and whole embryos, it was shown that blastoderm cells are restricted in their potential for forming adult epidermal structures. Cells isolated from anterior-half embryos are determined for forming head and thoracic structures, whereas cells from posterior-half embryos are determined for forming thoracic and abdominal structures. The specificity of determination and the localization of determinative factors is discussed. Images PMID:5002429

  6. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES.

    PubMed

    Bokori-Brown, Monika; Petrov, Peter G; Khafaji, Mawya A; Mughal, Muhammad K; Naylor, Claire E; Shore, Angela C; Gooding, Kim M; Casanova, Francesco; Mitchell, Tim J; Titball, Richard W; Winlove, C Peter

    2016-05-06

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.

  7. Shape determination in motile cells

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex

    2010-03-01

    Flat, simple shaped, rapidly gliding fish keratocyte cell is the model system of choice to study cell motility. The cell motile appendage, lamellipod, has a characteristic bent-rectangular shape. Recent experiments showed that the lamellipodial geometry is tightly correlated with cell speed and with actin dynamics. These quantitative data combined with computational modeling suggest that a model for robust actin treadmill inside the 'unstretchable membrane bag'. According to this model, a force balance between membrane tension and growing and pushing actin network distributed unevenly along the cell periphery can explain the cell shape and motility. However, when adhesion of the cell to the surface weakens, the actin dynamics become less regular, and myosin-powered contraction starts playing crucial role in stabilizing the cell shape. I will illustrate how the combination of theoretical and experimental approaches helped to unravel the keratocyte motile behavior.

  8. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  9. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics.

    PubMed

    Boedicker, James Q; Li, Liang; Kline, Timothy R; Ismagilov, Rustem F

    2008-08-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as 'stochastic confinement'. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  10. FT-IR spectrometry utilization for determining changes in erythrocyte susceptibility to oxidative stress

    NASA Astrophysics Data System (ADS)

    Petibois, Cyril; Deleris, Gdrard Y. R.

    2004-07-01

    We tested the hypothesis that FT-IR spectrometry was useful for determining oxidative stress damage on erythrocytes. Endurance-trained subjects performed a standardized endurance-training session at 75% of maximal oxygen consumption each week over 19 consecutive weeks. Capillary blood samples were taken before and after test-sessions and plasma and erythrocytes were separately analyzed using Fourier-transform infrared spectrometry. Exercise-induced change in plasma concentrations and erythrocyte IR absorptivities (vC-Hn of fatty acyl moieties, vC=O and δN-H of proteins, vP=O of phospholipids, vCOO- of amino-acids, and vC-O of lactate) were monitored and compared to training level. First training weeks induced normalization of plasma concentration changes during exercise (unchanged for glucose, moderately increased for lactate, high increases for triglycerides, glycerol, and fatty acids) while erythrocyte phospholipids alteration remained elevated (P < 0.05). Further, training reduced the exercise-induced erythrocyte lactate content increase (vC-O; P < 0.05) and phospholipids alteration (vC-Hn and vP=O; P < 0.05) during exercise. These changes paralleled the lowering of exercise-induced hemoconcentration (P < 0.05) and plasma lactate concentration increase during exercise (P < 0.05). These correlated changes between plasma and erythrocyte parameters suggest that hemoconcentration and lactate acidosis (plasmatic and intracellular) are important factors contributing to reduce erythrocyte susceptibility to oxidative stress during chronic endurance training.

  11. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections.

    PubMed

    Schreiber, Henry L; Conover, Matt S; Chou, Wen-Chi; Hibbing, Michael E; Manson, Abigail L; Dodson, Karen W; Hannan, Thomas J; Roberts, Pacita L; Stapleton, Ann E; Hooton, Thomas M; Livny, Jonathan; Earl, Ashlee M; Hultgren, Scott J

    2017-03-22

    Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in their urovirulence, that is, their ability to infect the bladder in a mouse model of cystitis. We found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and metabolism, could be used to predict subsequent colonization of the mouse bladder. Together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains.

  12. Glutamate carboxypeptidase II (GCPII) genetic variants as determinants of hyperhomocysteinemia: implications in stroke susceptibility.

    PubMed

    Divyya, Shree; Naushad, Shaik Mohammad; Kaul, Subhash; Anusha, Vuppala; Subbarao, Sreedhar Amere; Kutala, Vijay Kumar

    2012-10-01

    The rationale of this case-control study is to ascertain whether glutamate carboxypeptidase II (GCPII) variants serve as determinants of hyperhomocysteinemia and contribute to the etiology of stroke. Hyperhomocysteinemia was observed in stroke cases compared to controls (14.09 +/- 7.62 micromol/L vs. 8.71 +/- 4.35, P < 0.0001). GCPII sequencing revealed two known variants (R190W and H475Y) and six novel variants (V108A, P160S, Y176H, G206R, G245S and D520E). Among the haplotypes of GCPII, all wild-haplotype H0 showed independent association with stroke risk (OR: 9.89, 95% CI: 4.13-23.68), while H2 representing P160S variant showed reduced risk (OR: 0.17, 95% CI: 0.06-0.50). When compared to subjects with H2 haplotype, H0 haplotype showed elevated homocysteine levels (18.26 +/- 4.31 micromol/L vs. 13.66 +/- 3.72 micromol/L, P = 0.002) and reduced plasma folate levels (7.09 +/- 1.19 ng/ml vs. 8.21 +/- 1.14 ng/ml, P = 0.007). Using GCPII genetic variants, dietary folate and gender as predictor variables and homocysteine as outcome variable, a multiple linear regression model was developed. This model explained 36% variability in plasma homocysteine levels. To conclude, GCPII haplotypes influenced susceptibility to stroke by influencing homocysteine levels.

  13. Bacillus anthracis diagnostic detection and rapid antibiotic susceptibility determination using 'bioluminescent' reporter phage.

    PubMed

    Schofield, David A; Sharp, Natasha J; Vandamm, Joshua; Molineux, Ian J; Spreng, Krista A; Rajanna, Chythanya; Westwater, Caroline; Stewart, George C

    2013-11-01

    Genetically modified phages have the potential to detect pathogenic bacteria from clinical, environmental, or food-related sources. Herein we assess an engineered 'bioluminescent' reporter phage (Wß::luxAB) as a clinical diagnostic tool for Bacillus anthracis, the etiological agent of anthrax. Wß::luxAB is able to rapidly (within minutes) detect a panel of B. anthracis strains by transducing a bioluminescent phenotype. The reporter phage displays species specificity by its inability, or significantly reduced ability, to detect members of the closely related Bacillus cereus group and other common bacterial pathogens. Using spiked clinical specimens, Wß::luxAB detects B. anthracis within 5 h at clinically relevant concentrations, and provides antibiotic susceptibility information that mirrors the CLSI method, except that data are obtained at least 5-fold faster. Although anthrax is a treatable disease, a positive patient prognosis is dependent on timely diagnosis and appropriate therapy. Wß::luxAB rapidly detects B. anthracis and determines antibiotic efficacy, properties that will help patient outcome.

  14. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci

    PubMed Central

    Coetzee, Simon G.; Shen, Howard C.; Hazelett, Dennis J.; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K.; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J.; Couch, Fergus J.; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N.A.; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A.; Pharoah, Paul D.P.; Noushmehr, Houtan; Gayther, Simon A.

    2015-01-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10−30), OSECs (P = 2.4 × 10−23) and HMECs (P = 6.7 × 10−15) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. PMID:25804953

  15. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma

    PubMed Central

    Conteduca, Giuseppina; Fenoglio, Daniela; Parodi, Alessia; Battaglia, Florinda; Kalli, Francesca; Negrini, Simone; Tardito, Samuele; Ferrera, Francesca; Salis, Annalisa; Millo, Enrico; Pasquale, Giuseppe; Barra, Giusi; Damonte, Gianluca; Indiveri, Francesco

    2016-01-01

    AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains. The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma. PMID:27563821

  17. AIRE polymorphism, melanoma antigen-specific T cell immunity, and susceptibility to melanoma.

    PubMed

    Conteduca, Giuseppina; Fenoglio, Daniela; Parodi, Alessia; Battaglia, Florinda; Kalli, Francesca; Negrini, Simone; Tardito, Samuele; Ferrera, Francesca; Salis, Annalisa; Millo, Enrico; Pasquale, Giuseppe; Barra, Giusi; Damonte, Gianluca; Indiveri, Francesco; Ferrone, Soldano; Filaci, Gilberto

    2016-09-20

    AIRE is involved in susceptibility to melanoma perhaps regulating T cell immunity against melanoma antigens (MA). To address this issue, AIRE and MAGEB2 expressions were measured by real time PCR in medullary thymic epithelial cells (mTECs) from two strains of C57BL/6 mice bearing either T or C allelic variant of the rs1800522 AIRE SNP. Moreover, the extent of apoptosis induced by mTECs in MAGEB2-specific T cells and the susceptibility to in vivo melanoma B16F10 cell challenge were compared in the two mouse strains.The C allelic variant, protective in humans against melanoma, induced lower AIRE and MAGEB2 expression in C57BL/6 mouse mTECs than the T allele. Moreover, mTECs expressing the C allelic variant induced lower extent of apoptosis in MAGEB2-specific syngeneic T cells than mTECs bearing the T allelic variant (p < 0.05). Vaccination against MAGEB2 induced higher frequency of MAGEB2-specific CTL and exerted higher protective effect against melanoma development in mice bearing the CC AIRE genotype than in those bearing the TT one (p < 0.05). These findings show that allelic variants of one AIRE SNP may differentially shape the MA-specific T cell repertoire potentially influencing susceptibility to melanoma.

  18. Cell wall alterations in the leaves of fusariosis-resistant and susceptible pineapple cultivars.

    PubMed

    de Farias Viégas Aquije, Glória Maria; Zorzal, Poliana Belisário; Buss, David Shaun; Ventura, José Aires; Fernandes, Patricia Machado Bueno; Fernandes, Antonio Alberto Ribeiro

    2010-10-01

    Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant-pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.

  19. Ultraviolet light-induced chromosomal aberrations in cultured cells from Cockayne syndrome and complementation group C xeroderma pigmentosum patients: lack of correlation with cancer susceptibility

    SciTech Connect

    Seguin, L.R.; Tarone, R.E.; Liao, K.H.; Robbins, J.H.

    1988-03-01

    Both Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are inherited diseases with defective repair of damage induced in DNA by UV. Patients with XP, but not those with CS, have an increased susceptibility to formation of sunlight-induced skin tumors. We determined the frequency of UV-induced chromosomal aberrations in cultured lymphoblastoid cell lines from five CS patients and three complementation-group-C XP patients to determine whether such aberrations were abnormally increased only in the XP cells. We found that CS cells had the same abnormally increased number of induced aberrations as the XP cells, indicating that the number of UV-induced aberrations in XP group C cells does not account for the susceptibility of these XP patients to sunlight-induced skin cancer.

  20. Low SAMHD1 expression following T-cell activation and proliferation renders CD4+ T cells susceptible to HIV-1

    PubMed Central

    Ruffin, Nicolas; Brezar, Vedran; Ayinde, Diana; Lefebvre, Cécile; Wiesch, Julian Schulze Zur; van Lunzen, Jan; Bockhorn, Maximilian; Schwartz, Olivier; Hocini, Hakim; Lelievre, Jean-Daniel; Banchereau, Jacques; Levy, Yves; Seddiki, Nabila

    2015-01-01

    Objectives: HIV-1 replication depends on the state of cell activation and division. It is established that SAMHD1 restricts HIV-1 infection of resting CD4+ T cells. The modulation of SAMHD1 expression during T-cell activation and proliferation, however, remains unclear, as well as a role for SAMHD1 during HIV-1 pathogenesis. Methods: SAMHD1 expression was assessed in CD4+ T cells after their activation and in-vitro HIV-1 infection. We performed phenotype analyzes using flow cytometry on CD4+ T cells from peripheral blood and lymph nodes from cohorts of HIV-1-infected individuals under antiretroviral treatment or not, and controls. Results: We show that SAMHD1 expression decreased during CD4+ T-cell proliferation in association with an increased susceptibility to in-vitro HIV-1 infection. Additionally, circulating memory CD4+ T cells are enriched in cells with low levels of SAMHD1. These SAMHD1low cells are highly differentiated, exhibit a large proportion of Ki67+ cycling cells and are enriched in T-helper 17 cells. Importantly, memory SAMHD1low cells were depleted from peripheral blood of HIV-infected individuals. We also found that follicular helper T cells present in secondary lymphoid organs lacked the expression of SAMHD1, which was accompanied by a higher susceptibility to HIV-1 infection in vitro. Conclusion: We demonstrate that SAMHD1 expression is decreased during CD4+ T-cell activation and proliferation. Also, CD4+ T-cell subsets known to be more susceptible to HIV-1 infection, for example, T-helper 17 and follicular helper T cells, display lower levels of SAMHD1. These results pin point a role for SAMHD1 expression in HIV-1 infection and the concomitant depletion of CD4+ T cells. PMID:25715102

  1. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Crozier, M. J.

    2017-10-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity

  2. Transgenerational epigenetic effects of the Apobec1 cytidine deaminase deficiency on testicular germ cell tumor susceptibility and embryonic viability.

    PubMed

    Nelson, Vicki R; Heaney, Jason D; Tesar, Paul J; Davidson, Nicholas O; Nadeau, Joseph H

    2012-10-09

    Environmental agents and genetic variants can induce heritable epigenetic changes that affect phenotypic variation and disease risk in many species. These transgenerational effects challenge conventional understanding about the modes and mechanisms of inheritance, but their molecular basis is poorly understood. The Deadend1 (Dnd1) gene enhances susceptibility to testicular germ cell tumors (TGCTs) in mice, in part by interacting epigenetically with other TGCT modifier genes in previous generations. Sequence homology to A1cf, the RNA-binding subunit of the ApoB editing complex, raises the possibility that the function of Dnd1 is related to Apobec1 activity as a cytidine deaminase. We conducted a series of experiments with a genetically engineered deficiency of Apobec1 on the TGCT-susceptible 129/Sv inbred background to determine whether dosage of Apobec1 modifies susceptibility, either alone or in combination with Dnd1, and either in a conventional or a transgenerational manner. In the paternal germ-lineage, Apobec1 deficiency significantly increased susceptibility among heterozygous but not wild-type male offspring, without subsequent transgenerational effects, showing that increased TGCT risk resulting from partial loss of Apobec1 function is inherited in a conventional manner. By contrast, partial deficiency in the maternal germ-lineage led to suppression of TGCTs in both partially and fully deficient males and significantly reduced TGCT risk in a transgenerational manner among wild-type offspring. These heritable epigenetic changes persisted for multiple generations and were fully reversed after consecutive crosses through the alternative germ-lineage. These results suggest that Apobec1 plays a central role in controlling TGCT susceptibility in both a conventional and a transgenerational manner.

  3. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice

    PubMed Central

    Heaney, Jason D.; Anderson, Ericka L.; Michelson, Megan V.; Zechel, Jennifer L.; Conrad, Patricia A.; Page, David C.; Nadeau, Joseph H.

    2012-01-01

    Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19MOLF/Ei), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation. PMID:22438569

  4. A genomics approach to identify susceptibilities of breast cancer cells to "fever-range" hyperthermia.

    PubMed

    Amaya, Clarissa; Kurisetty, Vittal; Stiles, Jessica; Nyakeriga, Alice M; Arumugam, Arunkumar; Lakshmanaswamy, Rajkumar; Botez, Cristian E; Mitchell, Dianne C; Bryan, Brad A

    2014-02-11

    Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to "fever range" hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock.

  5. A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia

    PubMed Central

    2014-01-01

    Background Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to “fever range” hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. Methods To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. Results Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. Conclusion These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock. PMID:24511912

  6. Diabetes increases susceptibility of primary cultures of rat proximal tubular cells to chemically induced injury

    SciTech Connect

    Zhong Qing; Terlecky, Stanley R.; Lash, Lawrence H.

    2009-11-15

    Diabetic nephropathy is characterized by increased oxidative stress and mitochondrial dysfunction. In the present study, we prepared primary cultures of proximal tubular (PT) cells from diabetic rats 30 days after an ip injection of streptozotocin and compared their susceptibility to oxidants (tert-butyl hydroperoxide, methyl vinyl ketone) and a mitochondrial toxicant (antimycin A) with that of PT cells isolated from age-matched control rats, to test the hypothesis that PT cells from diabetic rats exhibit more cellular and mitochondrial injury than those from control rats when exposed to these toxicants. PT cells from diabetic rats exhibited higher basal levels of reactive oxygen species (ROS) and higher mitochondrial membrane potential, demonstrating that the PT cells maintain the diabetic phenotype in primary culture. Incubation with either the oxidants or mitochondrial toxicant resulted in greater necrotic and apoptotic cell death, greater evidence of morphological damage, greater increases in ROS, and greater decreases in mitochondrial membrane potential in PT cells from diabetic rats than in those from control rats. Pretreatment with either the antioxidant N-acetyl-L-cysteine or a catalase mimetic provided equivalent protection of PT cells from both diabetic and control rats. Despite the greater susceptibility to oxidative and mitochondrial injury, both cytoplasmic and mitochondrial glutathione concentrations were markedly higher in PT cells from diabetic rats, suggesting an upregulation of antioxidant processes in diabetic kidney. These results support the hypothesis that primary cultures of PT cells from diabetic rats are a valid model in which to study renal cellular function in the diabetic state.

  7. Susceptibility of fish to Chattonella marina is determined by its tolerance to hypoxia.

    PubMed

    Shen, Min; Xu, Jingliang; Chan, Alice K Y; Au, Doris W T

    2011-01-01

    The harmful alga Chattonella marina has caused massive fish kills and economic losses worldwide. However, the fish kill mechanisms by C. marina have not been identified. The present study has confirmed that a significant elevation of blood osmolality is the universal response in moribund fish exposed to C. marina and the possible reasons leading to contradictory reports were identified. Both osmotic distress and respiratory impairment are important mechanisms leading to fish kill by C. marina. The susceptibility of marine fish to C. marina appears to be inversely related to their tolerance to hypoxia, with the hypoxia intolerant goldlined seabream being the most susceptible, and the hypoxia tolerant green grouper being the most tolerant to C. marina. Further studies in the marine medaka (Oryzias melastigma) showed that fish susceptibility to C. marina is directly related to susceptibility of the fish to hypoxia, but not related to its tolerance to hypersalinity stress.

  8. Free amino acids - determinant of sugarcane resistance/susceptibility to stalk borer and sap feeders

    USDA-ARS?s Scientific Manuscript database

    Two relatively new key species in Louisiana that conform to the plant stress hypothesis are the Mexican rice borer, Eoreuma loftini (Dyar) and the sugarcane aphid, Melanaphis sacchari (Zehntner). High performance liquid chromatography differentiated insect resistant and susceptible sugarcane cultiva...

  9. Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV.

    PubMed

    Lorenzen, E; Carstensen, B; Olesen, N J

    1999-07-30

    Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV); infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well and had higher sensitivity compared to the other cell lines. For IHNV, EPC and FHM cells gave the best results, and for IPNV it was BF-2 and CHSE-214 cells. FHM cells showed the largest variability among laboratories, whereas EPC was the cell line showing the smallest variability.

  10. The susceptibility of Aire(-/-) mice to experimental myasthenia gravis involves alterations in regulatory T cells.

    PubMed

    Aricha, Revital; Feferman, Tali; Scott, Hamish S; Souroujon, Miriam C; Berrih-Aknin, Sonia; Fuchs, Sara

    2011-02-01

    The autoimmune regulator (Aire) is involved in the prevention of autoimmunity by promoting thymic expression of tissue restricted antigens which leads to elimination of self-reactive T cells. We found that Aire knockout (KO) mice as well as mouse strains that are susceptible to experimental autoimmune myasthenia gravis (EAMG) have lower thymic expression of acetylcholine receptor (AChR- the main autoantigen in MG), compared to wild type (WT) mice and EAMG-resistant mouse strains, respectively. We demonstrated that Aire KO mice have a significant and reproducible lower frequency of CD4+Foxp3+ cells and a higher expression of Th17 markers in their thymus, compared to wild type (WT) mice. These findings led us to expect that Aire KO mice would display increased susceptibility to EAMG. Surprisingly, when EAMG was induced in young (2 month-old) mice, EAMG was milder in Aire KO than in WT mice for several weeks until the age of about 5 months. However, when EAMG was induced in relatively aged (6 month-old) mice, Aire KO mice presented higher disease severity than WT controls. This age-related change in susceptibility to EAMG correlated with an elevated proportion of Treg cells in the spleens of young but not old KO, compared to WT mice, suggesting a role for peripheral Treg cells in the course of disease. Our observations point to a possible link between Aire and Treg cells and suggest an involvement for both in the pathogenesis of myasthenia.

  11. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    PubMed Central

    Kim, Samuel C.; Cestellos-Blanco, Stefano; Inoue, Keisuke; Zare, Richard N.

    2015-01-01

    Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST) is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm) that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922) treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method. PMID:27025635

  12. Biofilm formation and antibiotic susceptibility in dispersed cells versus planktonic cells from clinical, industry and environmental origins.

    PubMed

    Berlanga, Mercedes; Gomez-Perez, Laura; Guerrero, Ricardo

    2017-08-02

    We examined the cell-surface physicochemical properties, the biofilm formation capability and the antibiotic susceptibility in dispersed cells (from an artificial biofilm of alginate beads) and compared with their planktonic (free-swimming) counterparts. The strains used were from different origins, such as clinical (Acinetobacter baumannii AB4), cosmetic industry (Klebsiella oxytoca EU213, Pseudomonas aeruginosa EU190), and environmental (Halomonas venusta MAT28). In general, dispersed cells adhered better to surfaces (measured as the "biofilm index") and had a greater hydrophobicity [measured as the microbial affinity to solvents (MATS)] than planktonic cells. The susceptibility to two antibiotics (ciprofloxacin and tetracycline) of dispersed cells was higher compared with that of their planktonic counterparts (tested by the "bactericidal index"). Dispersed and planktonic cells exhibited differences in cell permeability, especially in efflux pump activity, which could be related to the differences observed in susceptibility to antibiotics. At 1 h of biofilm formation in microtiter plates, dispersed cells treated with therapeutic concentration of ciprofloxacin yielded a lower biofilm index than the control dispersed cells without ciprofloxacin. With respect to the planktonic cells, the biofilm index was similar with and without the ciprofloxacin treatment. In both cases there were a reduction of the number of bacteria measured as viable count of the supernatant. The lower biofilm formation in dispersed cells with ciprofloxacin treatment may be due to a significant increase of biofilm disruption with respect to the biofilm from planktonic cells. From a clinical point of view, biofilms formed on medical devices such as catheters, cells that can be related to an infection were the dispersed cells. Our results showed that early treatment with ciprofloxacin of dispersed cells could diminishe bacterial dispersion and facilitate the partial elimination of the new

  13. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  14. Susceptibility to caspofungin and fluconazole and Als1/Als3 gene expression in biofilm and dispersal cells of Candida albicans.

    PubMed

    Bujdáková, Helena; Kulková, Nad'a; Černáková, Lucia

    2012-12-01

    The biofilm of Candida albicans has been implicated as a source of bloodstream infections. Dispersal cells, as the final biofilm stage, are responsible for its spread. The aim of this study was to compare the susceptibility of biofilm and dispersal cells vs. planktonic cells (overnight liquid culture) of C. albicans to caspofungin (CAS) and fluconazole (FLU) when the drugs were added: i) at the beginning of the experiment; ii) after 1.5 h (adherence stage); iii) after 24 h (early mature biofilm). The findings were evaluated after 48 h (mature biofilm) using the XTT reduction assay. Later administration of the drug increased biofilm sessile minimal inhibitory concentration (SMIC(80)) of both FLU and CAS from 1 μg mL(-1) to over 64 μg mL(-1) and from 0.125 μg mL(-1) to over 16 μg mL(-1), respectively. Susceptibility of dispersal cells also decreased with time of administration. We also determined the expression of the Als1 and Als3 genes in 48-h sessile biofilm and dispersal cells of C. albicans SC5314 and compared it to planktonic cells. The expression was normalised to the standard Act1 gene in every condition tested. Quantitative real-time PCR revealed a strong up-regulation of the Als1 gene in the dispersal cells but not in biofilm and high expression of the Als3 gene in both biofilm and dispersal cells. High expression of both Als1 and Als3 genes supports the hypothesis that dispersal cells pose a high-risk of infection.

  15. Light availability determines susceptibility of reef building corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Suggett, D. J.; Dong, L. F.; Lawson, T.; Lawrenz, E.; Torres, L.; Smith, D. J.

    2013-06-01

    Elevated seawater pCO2, and in turn ocean acidification (OA), is now widely acknowledged to reduce calcification and growth of reef building corals. As with other environmental factors (e.g., temperature and nutrients), light availability fundamentally regulates calcification and is predicted to change for future reef environments alongside elevated pCO2 via altered physical processes (e.g., sea level rise and turbidity); however, any potential role of light in regulating the OA-induced reduction of calcification is still unknown. We employed a multifactorial growth experiment to determine how light intensity and pCO2 together modify calcification for model coral species from two key genera, Acropora horrida and Porites cylindrica, occupying similar ecological niches but with different physiologies. We show that elevated pCO2 (OA)-induced losses of calcification in the light ( G L) but not darkness ( G D) were greatest under low-light growth conditions, in particular for A. horrida. High-light growth conditions therefore dampened the impact of OA upon G L but not G D. Gross photosynthesis ( P G) responded in a reciprocal manner to G L suggesting OA-relieved pCO2 limitation of P G under high-light growth conditions to effectively enhance G L. A multivariate analysis of past OA experiments was used to evaluate whether our test species responses were more widely applicable across their respective genera. Indeed, the light intensity for growth was identified as a significant factor influencing the OA-induced decline of calcification for species of Acropora but not Porites. Whereas low-light conditions can provide a refuge for hard corals from thermal and light stress, our study suggests that lower light availability will potentially increase the susceptibility of key coral species to OA.

  16. Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces.

    PubMed

    Das, J R; Bhakoo, M; Jones, M V; Gilbert, P

    1998-05-01

    Differences in opacity between wells of a microtitre plate containing different volumes of inoculated growth medium reflected planktonic growth without any contribution from cells attached at the well surface. Simple algebra and a knowledge of the dependence of optical density upon sample path length (volume) for suspensions of differing cell density enables the generation of growth curves for attached populations (biofilms). In this manner, minimum inhibitory concentrations (MICs) were determined at various stages of growth (0-20 h), both for cells growing attached to the bases of the plate wells and, simultaneously, for cells growing in suspension above them. Biocides included cetrimide, polyhexamethylene biguanide, peracetic acid, phenoxyethanol and chloroxylenol. Results, expressed as planktonic:biofilm MIC ratios, showed susceptibility to change, not only as a function of attachment and biofilm formation, but also with respect to the nature of the chemical agent. In some instances, changes in susceptibility greater than twofold occurred immediately on attachment and could occur in the presence of biocide concentrations which exceeded the MIC.

  17. Helicobacter pylori susceptible/resistant to antibiotic eradication therapy differ in the maturation and activation of dendritic cells.

    PubMed

    Kopitar, Andreja N; Skvarc, Miha; Tepes, Bojan; Kos, Janko; Ihan, Alojz

    2013-12-01

    The natural course of Helicobacter pylori infection, as well as the success of antibiotic eradication is determined by the immune response to bacteria. The aim of the study is to investigate how different Helicobacter pylori isolates influence the dendritic cells maturation and antigen-presenting function in order to elucidate the differences between Helicobacter pylori strains, isolated from the patients with successful antibiotic eradication therapy or repeated eradication failure. Dendritic cells maturation and antigen presentation were monitored by flow cytometry analysis of the major histocompatibility complex class II (MHC-II), Toll-like receptor (TLR) and costimulatory molecules expression, and by determining cytokine secretion. Dendritic cells stimulated with Helicobacter pylori isolated from patients with repeated antibiotic eradication failure expressed less human leukocyte antigen (HLA-DR), CD86, TLR-2, and interleukin-8 (IL-8) compared to Helicobacter pylori strains susceptible to antibiotic therapy; the latter expressed lower production of IL-10. Polymyxin B inhibition of lipopolysaccharide reduces IL-8 secretion in the group of Helicobacter pylori strains susceptible to antibiotic therapy. The differences in IL-8 secretion between both groups are lipopolysaccharide dependent, while the differences in secretion of IL-10 remain unchanged after lipopolysaccharide inhibition. Inhibitor of cathepsin X Mab 2F12 reduced the secretion of IL-6, and the secretion was significantly lower in the group of Helicobacter pylori strains isolated from patients with repeated antibiotic eradication failure. Helicobacter pylori strains, susceptible/resistant to antibiotic eradication therapy, differ in their capability to induce DCs maturation and antigen-presenting function. © 2013 John Wiley & Sons Ltd.

  18. Estradiol Reduces Susceptibility of CD4+ T Cells and Macrophages to HIV-Infection

    PubMed Central

    Rodriguez-Garcia, Marta; Biswas, Nabanita; Patel, Mickey V.; Barr, Fiona D.; Crist, Sarah G.; Ochsenbauer, Christina; Fahey, John V.; Wira, Charles R.

    2013-01-01

    The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms. PMID:23614015

  19. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection.

    PubMed

    Rodriguez-Garcia, Marta; Biswas, Nabanita; Patel, Mickey V; Barr, Fiona D; Crist, Sarah G; Ochsenbauer, Christina; Fahey, John V; Wira, Charles R

    2013-01-01

    The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4(+) T-cells and macrophages. Purified CD4(+) T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4(+) T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4(+) T-cell infection. Reduction of HIV-infection induced by E2 in CD4(+) T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2-treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.

  20. Leishmania amazonensis: participation of regulatory T and B cells in the in vitro priming (PIV) of CBA/J spleen cells susceptible response.

    PubMed

    Veras, Patrícia Sampaio Tavares; Welby-Borges, Marcus; de Santana, Cláudia Dias; Nihei, Jorge; Cardillo, Fabiola; de Freitas, Luiz Antônio Rodrigues

    2006-07-01

    CBA/J mice are resistant to Leishmania major and susceptible to Leishmania amazonensis. Early events determine infection outcome. Until now, PIV (in vitro priming) immune response to L. amazonensis has not been assessed. Herein, we have shown that compared to L. major, L. amazonensis induced higher parasite burden associated to similar IL-4, IFN-gamma, and TNF-alpha mRNA expressions and IFN-gamma and IL-10 levels. Although similar amounts of IL-10 were detected, the frequency of intracellular IL-10 positive B cells was enhanced in spleen cells stimulated with anti-CD3/anti-CD28, or anti-CD3/anti-CD28 and L. amazonensis, compared to L. major-stimulation. Interestingly, IL-10- producing B cells were reduced in response to anti-CD3/anti-CD28 stimulation combined with L. major compared to the other groups. L. amazonensis may favor T regulatory cell development, since 40% of all the CD4+CD25+ were CD25(high) cells. These data suggest that in PIV, susceptibility to L. amazonensis is not related to Th cell polarization, but to the presence and activity of regulatory T and B cells.

  1. Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans.

    PubMed

    Cuda, Carla M; Li, Shiwu; Liang, Shujuan; Yin, Yiming; Potula, Hari Hara S K; Xu, Zhiwei; Sengupta, Mayami; Chen, Yifang; Butfiloski, Edward; Baker, Henry; Chang, Lung-Ji; Dozmorov, Igor; Sobel, Eric S; Morel, Laurence

    2012-01-15

    Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. In this study, we show that Sle1a.1 results in the production of activated and autoreactive CD4(+) T cells. Additionally, Sle1a.1 expression reduces the peripheral regulatory T cell pool, as well as induces a defective response of CD4(+) T cells to the retinoic acid expansion of TGF-β-induced regulatory T cells. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d overexpression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells and to decrease their apoptotic response to retinoic acid. PBX1-d is expressed more frequently in the CD4(+) T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance.

  2. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus

    PubMed Central

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-01-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh. RACB is required for positioning of the nucleus near the site of attack from Bgh. We therefore suggest that Bgh profits from RACB’s function in cell polarity rather than from immunity-regulating functions of RACB. PMID:27056842

  3. Role of the Alpha/Beta Interferon Response in the Acquisition of Susceptibility to Poliovirus by Kidney Cells in Culture

    PubMed Central

    Yoshikawa, Tomoki; Iwasaki, Takuya; Ida-Hosonuma, Miki; Yoneyama, Mitsutoshi; Fujita, Takashi; Horie, Hitoshi; Miyazawa, Miwako; Abe, Shinobu; Simizu, Bunsiti; Koike, Satoshi

    2006-01-01

    Replication of poliovirus (PV) is restricted to a few sites, including the brain and spinal cord. However, this neurotropism is not conserved in cultured cells. Monkey kidney cells become susceptible to PV infection after cultivation in vitro, and cell lines of monolayer cultures from almost any tissue of primates are susceptible to PV infection. These observations suggest that cellular changes during cultivation are required for acquisition of susceptibility. The molecular basis for the cellular changes during this process is not known. We investigated the relationship between PV susceptibility and interferon (IFN) response in primary cultured kidney and liver cells derived from transgenic mice expressing human PV receptor and in several primate cell lines. Both kidneys and liver in vivo showed rapid IFN response within 6 h postinfection. However, monkey and mouse kidney cells in culture and primate cell lines, which were susceptible to PV, did not show such rapid response or showed no response at all. On the other hand, primary cultured liver cells, which were partially resistant to infection, showed rapid IFN induction. The loss of IFN inducibility in kidney cells was associated with a decrease in expression of IFN-stimulated genes involved in IFN response. Mouse kidney cells pretreated with a small dose of IFN, in turn, restored IFN inducibility and resistance to PV. These results strongly suggest that the cells in culture acquire PV susceptibility during the process of cultivation by losing rapid IFN response that has been normally maintained in extraneural tissues in vivo. PMID:16611890

  4. A Multilaboratory, Multicountry Study To Determine Bedaquiline MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing.

    PubMed

    Kaniga, Koné; Cirillo, Daniela M; Hoffner, Sven; Ismail, Nazir A; Kaur, Devinder; Lounis, Nacer; Metchock, Beverly; Pfyffer, Gaby E; Venter, Amour

    2016-12-01

    The aim of this study was to establish standardized drug susceptibility testing (DST) methodologies and reference MIC quality control (QC) ranges for bedaquiline, a diarylquinoline antimycobacterial, used in the treatment of adults with multidrug-resistant tuberculosis. Two tier-2 QC reproducibility studies of bedaquiline DST were conducted in eight laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Agar dilution and broth microdilution methods were evaluated. Mycobacterium tuberculosis H37Rv was used as the QC reference strain. Bedaquiline MIC frequency, mode, and geometric mean were calculated. When resulting data occurred outside predefined CLSI criteria, the entire laboratory data set was excluded. For the agar dilution MIC, a 4-dilution QC range (0.015 to 0.12 μg/ml) centered around the geometric mean included 95.8% (7H10 agar dilution; 204/213 observations with one data set excluded) or 95.9% (7H11 agar dilution; 232/242) of bedaquiline MICs. For the 7H9 broth microdilution MIC, a 3-dilution QC range (0.015 to 0.06 μg/ml) centered around the mode included 98.1% (207/211, with one data set excluded) of bedaquiline MICs. Microbiological equivalence was demonstrated for bedaquiline MICs determined using 7H10 agar and 7H11 agar but not for bedaquiline MICs determined using 7H9 broth and 7H10 agar or 7H9 broth and 7H11 agar. Bedaquiline DST methodologies and MIC QC ranges against the H37Rv M. tuberculosis reference strain have been established: 0.015 to 0.12 μg/ml for the 7H10 and 7H11 agar dilution MICs and 0.015 to 0.06 μg/ml for the 7H9 broth microdilution MIC. These methodologies and QC ranges will be submitted to CLSI and EUCAST to inform future research and provide guidance for routine clinical bedaquiline DST in laboratories worldwide.

  5. Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death.

    PubMed

    Lantéri, Marion; Giordanengo, Valérie; Hiraoka, Nobuyoshi; Fuzibet, Jean-Gabriel; Auberger, Patrick; Fukuda, Minoru; Baum, Linda G; Lefebvre, Jean-Claude

    2003-12-01

    The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.

  6. Th1, Th2 and Th17 Effector T Cell-Induced Autoimmune Gastritis Differs in Pathological Pattern and in Susceptibility to Suppression by Regulatory T Cells

    PubMed Central

    Stummvoll, Georg H.; DiPaolo, Richard J.; Huter, Eva N.; Davidson, Todd S.; Glass, Deborah; Ward, Jerrold M.; Shevach, Ethan M.

    2008-01-01

    Th cells can be subdivided into IFNγ-secreting Th1, IL-4/IL-5 secreting Th2, and IL-17 secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H/K ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, moderately suppress Th2 cells, but could only suppress Th17 induced disease at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in man. PMID:18641328

  7. Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells.

    PubMed

    Stummvoll, Georg H; DiPaolo, Richard J; Huter, Eva N; Davidson, Todd S; Glass, Deborah; Ward, Jerrold M; Shevach, Ethan M

    2008-08-01

    Th cells can be subdivided into IFN-gamma-secreting Th1, IL-4/IL-5-secreting Th2, and IL-17-secreting Th17 cells. We have evaluated the capacity of fully differentiated Th1, Th2, and Th17 cells derived from a mouse bearing a transgenic TCR specific for the gastric parietal cell antigen, H(+)K(+)-ATPase, to induce autoimmune gastritis after transfer to immunodeficient recipients. We have also determined the susceptibility of the disease induced by each of the effector T cell types to suppression by polyclonal regulatory T cells (Treg) in vivo. Each type of effector cell induced autoimmune gastritis with distinct histological patterns. Th17 cells induced the most destructive disease with cellular infiltrates composed primarily of eosinophils accompanied by high levels of serum IgE. Polyclonal Treg could suppress the capacity of Th1 cells, could moderately suppress Th2 cells, but could suppress Th17-induced disease only at early time points. The major effect of the Treg was to inhibit the expansion of the effector T cells. However, effector cells isolated from protected animals were not anergic and were fully competent to proliferate and produce effector cytokines ex vivo. The strong inhibitory effect of polyclonal Treg on the capacity of some types of differentiated effector cells to induce disease provides an experimental basis for the clinical use of polyclonal Treg in the treatment of autoimmune disease in humans.

  8. CD8 Co-receptor promotes susceptibility of CD8+ T cells to transforming growth factor-β (TGF-β)-mediated suppression

    PubMed Central

    Zloza, Andrew; Jagoda, Michael C.; Lyons, Gretchen E.; Graves, Michael C.; Kohlhapp, Frederick J.; O’Sullivan, Jeremy A.; Lacek, Andrew T.; Nishimura, Michael I.

    2015-01-01

    CD8+ T cell function depends on a finely orchestrated balance of activation/suppression signals. While the stimulatory role of the CD8 co-receptor and pleiotropic capabilities of TGF-β have been studied individually, the influence of CD8 co-receptor on TGF-β function in CD8+ T cells is unknown. Here, we show that while CD8 enhances T cell activation, it also enhances susceptibility to TGF-β-mediated immune suppression. Using Jurkat cells expressing a full-length, truncated or no αβCD8 molecule, we demonstrate that cells expressing full-length αβCD8 were highly susceptible, αβCD8-truncated cells were partially susceptible, and CD8-deficient cells were completely resistant to suppression by TGF-β. Additionally, we determined that inhibition of Lck rendered mouse CD8+ T cells highly resistant to TGF-β suppression. Resistance was not associated with TGF-β receptor expression but did correlate with decreased Smad3 and increased Smad7 levels. These findings highlight a previously unrecognized third role for CD8 co-receptor which appears to prepare activated CD8+ T cells for response to TGF-β. Based on the important role which TGF-β-mediated suppression plays in tumor immunology, these findings unveil necessary considerations in formulation of CD8+ T cell-related cancer immunotherapy strategies. PMID:21193909

  9. Gamma-ray susceptibility of immature and mature hippocampal cultured cells.

    PubMed

    Song, Myoung-Sub; Kim, Joong-Sun; Yang, Miyoung; Kim, Sung-Ho; Kim, Jong-Choon; Park, Soo Hyun; Shin, Taekyun; Moon, Changjong

    2010-05-01

    Ionizing radiation suppresses neurogenesis in the mammalian brain. This in vitro study compared the detrimental effect of acute gamma-irradiation on immature hippocampal cells with mature cells. Both rat immature (0.5 day in vitro (DIV)) and mature hippocampal cells (14 DIV) were irradiated with 0-4 Gy gamma-rays. Cell viability was analyzed by using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. DNA fragmentation study was performed by extracting intracellular DNA. Morphological features of apoptosis were characterized by 4',6-diamidine-2'-phenylindole, dihydrochloride (DAPI) staining. MTT assay revealed that the survival rate of immature hippocampal cells declined in a dose-dependent manner within the range of irradiation applied, but was not changed in mature cells. Intranucleosomal DNA fragmentation in a ladder like pattern was dose-dependently increased in immature cells, but not in mature cells. The number of apoptotic nuclei in immature cells increased significantly in a dose-dependent manner within the range of irradiation applied. Active caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) expressions in immature hippocampal cells at 6 hr after 2 Gy exposure were markedly higher than control levels. The significantly greater radiosensitivity of immature hippocampal cells than that of the mature cells, indicates that the susceptibility of such hippocampal cells depends on their maturation. In addition, gamma-irradiation may induce caspase-dependent apoptosis in immature hippocampal cells.

  10. Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells.

    PubMed

    Price, Connie S; Kon, Shelley E; Metzger, Steven

    2014-03-01

    Staphylococcus aureus remains a leading, virulent pathogen capable of expressing complex drug resistance that requires up to 2-4 days for laboratory analysis. In this study, we evaluate the ability of automated microscopy of immobilized live bacterial cells to differentiate susceptible from non-susceptible responses of S. aureus isolates (MRSA/MSSA, clindamycin resistance/susceptibility and VSSA/hVISA/VISA) to an antibiotic based on the characterization of as few as 10 growing clones after 4 h of growth, compared to overnight growth required for traditional culture based methods. Isolates included 131 characterized CDC isolates, 3 clinical isolates and reference strains. MRSA phenotype testing used 1 h of 1 μg/mL cefoxitin induction followed by 3 h of 6 μg/mL cefoxitin. Clindamycin susceptibility testing used 1h of induction by 0.1 μg/mL erythromycin followed by 3h of 0.5 μg/mL clindamycin. An automated microscopy system acquired time-lapse dark-field images, and then computed growth data for individual immobilized progenitor cells and their progeny clones while exposed to different test conditions. Results were compared to concurrent cefoxitin disk diffusion and D-test references. For CDC organisms, microscopy detected 77/77 MRSA phenotypes and 54/54 MSSA phenotypes, plus 53/56 clindamycin-resistant and 75/75 clindamycin susceptible strains. Automated microscopy was used to characterize heterogeneous and inducible resistance, and perform population analysis profiles. Microscopy-based hVISA population analysis profiles (PAPs) were included as an extended proof of concept, and successfully differentiated VSSA from hVISA and VISA phenotypes compared to plate-based PAP. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Comparison of different methods for determining beta-lactam susceptibility in Pseudomonas aeruginosa.

    PubMed

    Sapino, Barbara; Mazzuccato, Sandra; Solinas, Maria; Gion, Massimo; Grandesso, Stefano

    2012-10-01

    This study compared the results of antimicrobial susceptibility testing of 77 clinical strains isolated for Pseudomonas aeruginosa to five beta-lactam agents: aztreonam, ceftazidime, imipenem, meropenem and piperacillin+tazobactam. Four different methods were employed: two automated systems (VITEK 2 and Sensititre) and two standardized manual methods (Kirby-Bauer and E-test). The concordances for the susceptibility categories were better for Kirby-Bauer (medium value =89.6%), followed by Sensititre (medium value =87.0%) and VITEK 2 (medium value =82.8%). The disk diffusion method did not present very major errors in comparison to the two automated systems.

  12. Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes

    PubMed Central

    Alper, Chester A.; Husain, Zaheed; Larsen, Charles E.; Dubey, Devendra P.; Stein, Rosanne; Day, Caitlin; Baker, Alissa; Beyan, Huriya; Hawa, Mohammed; Ola, Thomas O.; Leslie, R. David

    2006-01-01

    Incomplete intrinsic penetrance is the failure of some genetically susceptible individuals (e.g., monozygotic twins of those who have a trait) to exhibit that trait. For the first time, we examine penetrance of susceptibility genes for multiple MHC gene-determined traits in the same subjects. Serum levels of IgA, IgD, IgG3, but not IgG4, in 50 pairs of monozygotic twins discordant for type 1 diabetes (T1D) correlated more closely in the twins than in random paired controls. The frequencies of subjects deficient in IgA (6%), IgD (33%) and IgG4 (12%), but not in IgG3, were higher in the twins than in controls. We postulate that this was because the MHC haplotypes (and possible non-MHC genes) that predispose to T1D also carry susceptibility genes for certain immunoglobulin deficiencies. Immunoglobulin deficiencies were not associated with T1D. Pairwise concordance for the deficiencies in the twins was 50% for IgA, 57% for IgD and 50% for IgG4. There were no significant associations among the specific immunoglobulin deficiencies except that all IgA-deficient subjects had IgD deficiency. Thus, intrinsic penetrance is a random process independently affecting different MHC susceptibility genes. Because multiple different external triggers would be required to explain the results, differential environmental determinants appear unlikely. PMID:17029885

  13. Cell-Type-Specific Epigenetic Editing at the Fosb Gene Controls Susceptibility to Social Defeat Stress.

    PubMed

    Hamilton, Peter J; Burek, Dominika J; Lombroso, Sonia I; Neve, Rachael L; Robison, Alfred J; Nestler, Eric J; Heller, Elizabeth A

    2017-05-02

    Chronic social defeat stress regulates the expression of Fosb in the nucleus accumbens (NAc) to promote the cell-type-specific accumulation of ΔFosB in the two medium spiny neuron (MSN) subtypes in this region. ΔFosB is selectively induced in D1-MSNs in the NAc of resilient mice, and in D2-MSNs of susceptible mice. However, little is known about the consequences of such selective induction, particularly in D2-MSNs. This study examined how cell-type-specific control of the endogenous Fosb gene in NAc regulates susceptibility to social defeat stress. Histone post-translational modifications (HPTMs) were targeted specifically to Fosb using engineered zinc-finger proteins (ZFPs). Fosb-ZFPs were fused to either the transcriptional repressor, G9a, which promotes histone methylation or the transcriptional activator, p65, which promotes histone acetylation. These ZFPs were expressed in D1- vs D2-MSNs using Cre-dependent viral expression in the NAc of mice transgenic for Cre recombinase in these MSN subtypes. We found that stress susceptibility is oppositely regulated by the specific cell type and HPTM targeted. We report that Fosb-targeted histone acetylation in D2-MSNs or histone methylation in D1-MSNs promotes a stress-susceptible, depressive-like phenotype, while histone methylation in D2-MSNs or histone acetylation in D1-MSNs increases resilience to social stress as quantified by social interaction behavior and sucrose preference. This work presents the first demonstration of cell- and gene-specific targeting of histone modifications, which model naturally occurring transcriptional phenomena that control social defeat stress behavior. This epigenetic-editing approach, which recapitulates physiological changes in gene expression, reveals clear differences in the social defeat phenotype induced by Fosb gene manipulation in MSN subtypes.Neuropsychopharmacology advance online publication, 7 June 2017; doi:10.1038/npp.2017.88.

  14. Developmental regulation of the Bcl-2 protein and susceptibility to cell death in B lymphocytes.

    PubMed Central

    Merino, R; Ding, L; Veis, D J; Korsmeyer, S J; Nuñez, G

    1994-01-01

    Cell death is a prominent feature of B cell development. For example, a large population of B cells dies at the pre-B cell stage presumably due to the failure to express a functional immunoglobulin receptor. In addition, developing B cells expressing antigen receptors for self are selectively eliminated at the immature B cell stage. The molecular signals that control B cell survival are largely unknown. The product of the bcl-2 proto-oncogene may be involved as its overexpression inhibits apoptotic cell death in a variety of biological systems. However, the physiological role of the endogenous Bcl-2 protein during B cell development is undetermined. Here we show a striking developmental regulation of the Bcl-2 protein in B lymphocytes. Bcl-2 is highly expressed in CD43+ B cell precursors (pro-B cells) and mature B cells but downregulated at the pre-B and immature B cell stages of development. We found that Bcl-2 expressed by B cells is a long-lived protein with a half-life of approximately 10 h. Importantly, susceptibility to apoptosis mediated by the glucocorticoid hormone dexamethasone is stage-dependent in developing B cells and correlates with the levels of Bcl-2 protein. Furthermore, expression of a bcl-2 transgene rescued pre-B and immature B cells from dexamethasone-induced cell death, indicating that Bcl-2 can inhibit the apoptotic cell death of progenitors and early B cells. Taken together, these findings argue that Bcl-2 is a physiological signal controlling cell death during B cell development. Images PMID:8313913

  15. Differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox.

    PubMed

    Okouchi, Masahiro; Okayama, Naotsuka; Aw, Tak Yee

    2005-01-01

    Neuropathologies have been associated with neuronal de-differentiation and oxidative susceptibility. To address whether cellular states determines their oxidative vulnerability, we have challenged naive (undifferentiated) and nerve growth factor-induced differentiated pheochromocytoma (PC12) with methylglyoxal (MG), a model of carbonyl stress. MG dose-dependently induced greater apoptosis (24 h) in naive (nPC12) than differentiated (dPC12) cells. This enhanced nPC12 susceptibility was correlated with a high basal oxidized cellular glutathione-to-glutathione disulfide (GSH/GSSG) redox and an MG-induced GSH-to-Disulfide (GSSG plus protein-bound SSG) imbalance. The loss of redox balance occurred at 30 min post-MG exposure, and was prevented by N-acetylcysteine (NAC) that was unrelated to de novo GSH synthesis. NAC was ineffective when added at 1h post-MG, consistent with an early window of redox signaling. This redox shift was kinetically linked to decreased BcL-2, increased Bax, and release of mitochondrial cytochrome c which preceded caspase-9 and -3 activation and poly ADP-ribose polymerase (PARP) cleavage (1-2 h), consistent with mitochondrial apoptotic signaling. The blockade of apoptosis by cyclosporine A supported an involvement of the mitochondrial permeability transition pore. The enhanced vulnerability of nPC12 cells to MG and its relationship to cellular redox shifts will have important implications for understanding differential oxidative vulnerability in various cell types and their transition states.

  16. Internal-External Control and Others' Susceptibility to Influence as Determinants of Interpersonal Attraction.

    ERIC Educational Resources Information Center

    Davis, William L.; Taylor, Alan L.

    The relationship between internal-external control of reinforcement and attraction to others who vary in susceptibility to persuasion was investigated. Internals are defined as persons who believe that reinforcement is contingent on their behavior, while externals are those who believe that reinforcement is independent of their actions and is…

  17. Methodology for determining susceptibility of rough rice to Rhyzopertha dominica (L.) and Sitotroga cerealella (Olivier)

    USDA-ARS?s Scientific Manuscript database

    Varieties of rough rice, Oryzae sativa (L)., were obtained from different sources in the south-central United States and evaluated for susceptibility to the lesser grain borer, Rhyzopertha dominica (Fab.), and the Angoumois grain moth, Sitotroga cerealella (Olivier), in laboratory studies. Adult R. ...

  18. Depletion of natural killer cells increases mice susceptibility in a Pseudomonas aeruginosa pneumonia model.

    PubMed

    Broquet, Alexis; Roquilly, Antoine; Jacqueline, Cédric; Potel, Gilles; Caillon, Jocelyne; Asehnoune, Karim

    2014-06-01

    Pseudomonas aeruginosa infection is a clinically relevant infection involved in pneumonia in ICUs. Understanding the type of immune response initiated by the host during pneumonia would help defining new strategies to interfere with the bacteria pathogenicity. In this setting, the role of natural killer cells remains controversial. We assessed the role of systemic natural killer cells in a Pseudomonas aeruginosa mouse pneumonia model. Experimental study. Research laboratory from a university hospital. RjOrl:SWISS and BALB/cJ mice (weight, 20-24 g). Lung injuries were assessed by bacterial load, myeloperoxidase activity, endothelial permeability (pulmonary edema), immune cell infiltrate (histological analysis), proinflammatory cytokine release, and Ly6-G immunohistochemistry. Bacterial loads were assessed in the lungs and spleen. Natural killer cell number and status were assessed in spleen (flow cytometry and quantitative polymerase chain reaction). Depletion of natural killer cells was achieved through an IV anti-asialo-GM1 antibody injection. Pseudomonas aeruginosa tracheal instillation led to an acute pneumonia with a rapid decrease of bacterial load in lungs and with an increase of endothelial permeability, proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β), and myeloperoxidase activity followed by Ly6-G positive cell infiltrate in lungs. Pseudomonas aeruginosa was detected in the spleen. Membrane markers of activation and maturation (CD69 and KLRG1 molecules) were increased in splenic natural killer cells during Pseudomonas aeruginosa infection. Splenic natural killer cells activated upon Pseudomonas aeruginosa infection produced interferon-γ but not interleukin-10. Ultimately, mice depleted of natural killer cells displayed an increased neutrophil numbers in the lungs and an increased mortality rate without bacterial load modifications in the lungs, indicating that mice depleted of natural killer cells were much more susceptible to

  19. Novel Antibiotic Susceptibility Tests by the ATP-Bioluminescence Method Using Filamentous Cell Treatment

    PubMed Central

    Hattori, Noriaki; Nakajima, Moto-O; O’Hara, Koji; Sawai, Tetsuo

    1998-01-01

    Antimicrobial susceptibility testing by the ATP-bioluminescence method has been noted for its speed; it provides susceptibility results within 2 to 5 h. However, several disagreements between the ATP method and standard methodology have been reported. The present paper describes a novel ATP method in a 3.5-h test which overcomes these deficiencies through the elimination of false-resistance discrepancies in tests on gram-negative bacteria with β-lactam agents. In our test model using Pseudomonas aeruginosa and piperacillin, it was shown that ATP in filamentous cells accounted for the false resistance. We found that 0.5% 2-amino-2-methyl-1,3-propanediol (AMPD) extracted ATP from the filamentous cells without affecting normal cells and that 0.3 U of adenosine phosphate deaminase (APDase)/ml simultaneously digested the extracted ATP. We used the mixture of these reagents for the pretreatment of cells in a procedure we named filamentous cell treatment, prior to ATP measurements. This novel ATP method with the filamentous cell treatment eliminated false-resistance discrepancies in tests on P. aeruginosa with β-lactam agents, including piperacillin, cefoperazone, aztreonam, imipenem-cilastatin, ceftazidime, and cefsulodin. Furthermore, this novel methodology produced results which agreed with those of the standard microdilution method in other tests on gram-negative and gram-positive bacteria, including P. aeruginosa, Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis, for non-β-lactam agents, such as fosfomycin, ofloxacin, minocycline, and aminoglycosides. MICs obtained by the novel ATP method were also in agreement with those obtained by the agar dilution method of susceptibility testing. From these results, it was shown that the novel ATP method could be used successfully to test the activities of antimicrobial agents with the elimination of the previously reported discrepancies. PMID:9624485

  20. Centriole asymmetry determines algal cell geometry

    PubMed Central

    Marshall, Wallace F.

    2012-01-01

    The mechanisms that determine the shape and organization of cells remain largely unknown. Green algae such as Chlamydomonas provide excellent model systems for studying cell geometry due to their highly reproducible cell organization. Structural and genetic studies suggest that asymmetry of the centriole (basal body) plays a critical determining role in organizing the internal organization of algal cells, through the attachment of microtubule rootlets and other large fiber systems to specific sets of microtubule triplets on the centriole. Thus to understand cell organization, it will be critical to understand how the different triplets of the centriole come to have distinct molecular identities. PMID:23026116

  1. Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2011-01-01

    The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

  2. Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2011-01-01

    The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

  3. Determination of critical current densities of YBa 2Cu 3O 7-δ thin films from AC susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Xing, W.; Heinrich, B.; Chrzanowski, J.; Irwin, J. C.; Zhou, H.; Cragg, A.; Fife, A. A.

    1993-02-01

    The temperature dependent AC susceptibilities χ( T)=χ'( T)-iχ″ ( T) of laser ablated YBa 2Cu 3O 7-δ thin films were measur ed for different AC fields aligned perpendicular to the film surface. According to the critical-state model calculations of Sun et al. [Phys. Rev. B 44 (1991) 5275], the maximum of the imaginary part of the AC susceptibility χ″ ( T) occurs when the amplitude of the applied field HAC equals approximately the full penetration field H∗. With the relation H∗∞ Jcl, where l is the thickness of the film, an estimate of the values of the critical current density Jc at the χ″ peak temperatures has been made. The Jc values obtained in this way are in good agreement with those determined by AC screening measurements also performed in this study. For a temperature range about 10 K below Tc, the critical current density Jc( T) exhibited a temperature dependence Jc ( T) ∞ (1- T/ Tc) n, with n≈2.5. By taking Jc( T) as an input value, we could calculate AC susceptibilities of the film s studied. The calculated χ' ( T) and χ″ ( T) closely resemble the measured curves. The present work has therefore demonstrated that the theoretical calculations of Sun et al. can be used to explain the observed AC susceptibilities of high- Tc thin films.

  4. Streptogramin resistance patterns and virulence determinants in vancomycin-susceptible enterococci isolated from multi-component deli salads.

    PubMed

    Christensen, E A; Joho, K; Matthews, K R

    2008-05-01

    This study examined vancomycin-susceptible Enterococcus (VSE) from deli salads for streptogramin resistance and presence of cpd, agg and gelE genes. Fifteen VSE from retail salads were isolated for identification and antimicrobial susceptibility testing by MicroScan, Etest and agar diffusion. Clinical vancomycin-resistant Enterococcus (n = 32) and animal VSE (n = 17) were included for comparative purposes. Multiplex PCR was used to detect the following genes: agg, gelE, cpd, vatD, vatE and sodA. Results showed fewer streptogramin-susceptible Enterococcus faecium isolated from salad (1/6, 17%) and animals (6/10, 60%) than from clinical (26/29, 90%) sources. A low level of erythromycin susceptibility was detected among salad (2/6, 33%) and animal (3/10, 30%) Ent. faecium isolates. Food and animal VSE demonstrated similarities in antimicrobial resistance profiles. All Enterococcus faecalis carried one or more of the selected genes cpd (40%), gelE (33%) and agg (27%). The vatD or vatE genes were not detected in any of the isolates. Experiments demonstrated that streptogramin resistance and virulence genes agg, cpd and gelE are present in enterococci isolated from deli salads. This study provides useful information regarding streptogramin resistance and virulence determinants in enterococci from foods associated with multi-component ingredients.

  5. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging.

    PubMed

    Baltekin, Özden; Boucharin, Alexis; Tano, Eva; Andersson, Dan I; Elf, Johan

    2017-08-22

    The emergence and spread of antibiotic-resistant bacteria are aggravated by incorrect prescription and use of antibiotics. A core problem is that there is no sufficiently fast diagnostic test to guide correct antibiotic prescription at the point of care. Here, we investigate if it is possible to develop a point-of-care susceptibility test for urinary tract infection, a disease that 100 million women suffer from annually and that exhibits widespread antibiotic resistance. We capture bacterial cells directly from samples with low bacterial counts (10(4) cfu/mL) using a custom-designed microfluidic chip and monitor their individual growth rates using microscopy. By averaging the growth rate response to an antibiotic over many individual cells, we can push the detection time to the biological response time of the bacteria. We find that it is possible to detect changes in growth rate in response to each of nine antibiotics that are used to treat urinary tract infections in minutes. In a test of 49 clinical uropathogenic Escherichia coli (UPEC) isolates, all were correctly classified as susceptible or resistant to ciprofloxacin in less than 10 min. The total time for antibiotic susceptibility testing, from loading of sample to diagnostic readout, is less than 30 min, which allows the development of a point-of-care test that can guide correct treatment of urinary tract infection.

  6. Establishment, characterization and viral susceptibility of two cell lines derived from leopard wrasse Macropharyngodon geoffroy.

    PubMed

    Ma, J; Sun, S; Zeng, L; Lu, Y

    2013-09-01

    Two new fish cell lines were established from skin (LWSK) and fin (LWFN) of leopard wrasse Macropharyngodon geoffroy. These cells grew optimally at 25° C in Leibovitz-15 medium supplemented with 10% foetal bovine serum. Proliferation of M. geoffroy cells remained serum dependent up to cell passage 16, and cell-plating efficiency ranged from 12 to 16%. Karyotypic analysis of these new cell lines at cell passage 8 indicated that both cell lines remained diploid with a peak chromosomal count of 144. PCR amplification of 16S mitochondrial DNA and the subsequent analysis confirmed that these cell lines were indeed derived from M. geoffroy. Results of viral challenge assays revealed that both LWSK and LWFN shared patterns of viral susceptibility similar to that of six fish viruses tested: LWSK and LWFN cells were highly permissive to channel catfish virus, spring viremia carp virus and snakehead rhabdovirus with high-yield virus production ranging from 10(7·18±0·17) to 10(8·37±0·16) TCID50  ml(-1) (mean ± s.d.). These newly established cell lines would be useful in attempts to isolate and study aquatic viruses, particularly the viral aetiology of green turtle fibropapilloma as M. geoffroy is known to be one of the common cleaner fish of green sea turtles. © 2013 The Fisheries Society of the British Isles.

  7. Cell wall composition and biofilm formation of azoles-susceptible and -resistant Candida glabrata strains.

    PubMed

    Vitali, Alberto; Vavala, Elisabetta; Marzano, Valeria; Leone, Claudia; Castagnola, Massimo; Iavarone, Federica; Angiolella, Letizia

    2017-06-01

    In the present study, three strains of Candida glabrata have been investigated to shed light on the mechanisms involved in azole resistance during adherence and biofilm formation. In particular, a clinical isolate, susceptible to azole-based drugs, DSY562 and two different resistant mutagenic strains deriving from DSY562, SFY114 and SFY115, have been analysed with different approaches for their cell wall composition and properties. A proteomic analysis revealed that the expression of six cell wall-related proteins and biofilm formation varied between the strains. The SFY114 and SFY115 strains resulted to be less hydrophobic than the susceptible parental counterpart DSY562, on the other hand they showed a higher amount in total cell wall polysaccharides fraction in the total cell wall. Accordingly to the results obtained from the hydrophobicity and adherence assays, in the resistant strain SFY115 the biofilm formation decreased compared to the parental strain DSY562. Finally, the total glucose amount in resistant SFY115 was about halved in comparison to other strains. Taken together all these data suggest that azole drugs may affect the cell wall composition of C. glabrata, in relation to the different pathogenic behaviours.

  8. Determining Outdoor CPV Cell Temperature (Presentation)

    SciTech Connect

    Muller, M.

    2011-04-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This presentation documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  9. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  10. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    PubMed Central

    Markwell, M A; Paulson, J C

    1980-01-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells. Images PMID:6255459

  11. Investigation of malaria susceptibility determinants in the IFNG/IL26/IL22 genomic region.

    PubMed

    Koch, O; Rockett, K; Jallow, M; Pinder, M; Sisay-Joof, F; Kwiatkowski, D

    2005-06-01

    Interferon-gamma, encoded by IFNG, is a key immunological mediator that is believed to play both a protective and a pathological role in malaria. Here, we investigate the relationship between IFNG variation and susceptibility to malaria. We began by analysing West African and European haplotype structure and patterns of linkage disequilibrium across a 100 kb genomic region encompassing IFNG and its immediate neighbours IL22 and IL26. A large case-control study of severe malaria in a West Africa population identified several weak associations with individual single-nucleotide polymorphisms in the IFNG and IL22 genes, and defined two IL22 haplotypes that are, respectively, associated with resistance and susceptibility. These data provide a starting point for functional and genetic analysis of the IFNG genomic region in malaria and other infectious and inflammatory conditions affecting African populations.

  12. Hyperbaric pressure and increased susceptibility to glutamate toxicity in retinal ganglion cells in vitro.

    PubMed

    Aihara, Makoto; Chen, Yi-Ning; Uchida, Saiko; Nakayama, Mao; Araie, Makoto

    2014-01-01

    To investigate the effect of hyperbaric pressure on purified retinal ganglion cells (RGCs) and the additive effect of hyperbaric pressure on glutamate-induced RGC death. An RGC primary culture from 8-day-old Wistar rats was prepared and cultured in a hyperbaric chamber. The RGC survival rate under various pressure conditions and with 5 or 25 µM of glutamate stimulation was determined and compared with that of RGCs under isobaric conditions. First, RGCs were cultured at atmospheric pressure (0 mmHg) and under hyperbaric pressure (+30 and +90 mmHg, with pressure fluctuations varying from 0 to +30 or +60 mmHg). Next, RGCs were cultured at +15, +30, and +90 mmHg with the addition of 5 or 25 µM of glutamate. The effects of N-Methyl-D-aspartic acid (NMDA) and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid (AMPA)/kainate receptor antagonists, MK-801, and 6,7-dinitroquinoxaline-2,3-dione (DNQX), on cell survival were assessed. Additionally, types of cell death and the induction of Bcl-2-associated X protein (BAX) leading to apoptosis were studied under hyperbaric pressure conditions and/or with 5 µM of glutamate. RGC death was not induced under increasing or fluctuating pressure conditions. RGC death was induced by 25 µM of glutamate and increased as pressure increased. RGC death was not induced by 5 µM of glutamate but was induced by and increased with increasing pressure. MK-801 and DNQX significantly reduced glutamate-induced RGC death, and DNQX was more effective than MK-801. Under hyperbaric pressure conditions, the addition of 5 µM of glutamate resulted in the induction of apoptosis and BAX, which did not occur under hyperbaric pressure conditions or with the addition of glutamate alone. In a rat RGC culture, hyperbaric pressure alone did not induce RGC death but increased RGC susceptibility to glutamate toxicity, which may be of relevance to ocular diseases with pressure-induced RGC death.

  13. Hyperbaric pressure and increased susceptibility to glutamate toxicity in retinal ganglion cells in vitro

    PubMed Central

    Chen, Yi-Ning; Uchida, Saiko; Nakayama, Mao; Araie, Makoto

    2014-01-01

    Purpose To investigate the effect of hyperbaric pressure on purified retinal ganglion cells (RGCs) and the additive effect of hyperbaric pressure on glutamate-induced RGC death. Methods An RGC primary culture from 8-day-old Wistar rats was prepared and cultured in a hyperbaric chamber. The RGC survival rate under various pressure conditions and with 5 or 25 µM of glutamate stimulation was determined and compared with that of RGCs under isobaric conditions. First, RGCs were cultured at atmospheric pressure (0 mmHg) and under hyperbaric pressure (+30 and +90 mmHg, with pressure fluctuations varying from 0 to +30 or +60 mmHg). Next, RGCs were cultured at +15, +30, and +90 mmHg with the addition of 5 or 25 µM of glutamate. The effects of N-Methyl-D-aspartic acid (NMDA) and 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid (AMPA)/kainate receptor antagonists, MK-801, and 6,7-dinitroquinoxaline-2,3-dione (DNQX), on cell survival were assessed. Additionally, types of cell death and the induction of Bcl-2-associated X protein (BAX) leading to apoptosis were studied under hyperbaric pressure conditions and/or with 5 µM of glutamate. Results RGC death was not induced under increasing or fluctuating pressure conditions. RGC death was induced by 25 µM of glutamate and increased as pressure increased. RGC death was not induced by 5 µM of glutamate but was induced by and increased with increasing pressure. MK-801 and DNQX significantly reduced glutamate-induced RGC death, and DNQX was more effective than MK-801. Under hyperbaric pressure conditions, the addition of 5 µM of glutamate resulted in the induction of apoptosis and BAX, which did not occur under hyperbaric pressure conditions or with the addition of glutamate alone. Conclusion In a rat RGC culture, hyperbaric pressure alone did not induce RGC death but increased RGC susceptibility to glutamate toxicity, which may be of relevance to ocular diseases with pressure-induced RGC death. PMID:24826068

  14. Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins

    PubMed Central

    Wrensch, Florian; Hoffmann, Markus; Gärtner, Sabine; Nehlmeier, Inga; Winkler, Michael

    2016-01-01

    ABSTRACT Interferon-induced transmembrane proteins (IFITMs) can inhibit the cellular entry of several enveloped viruses, including simian immunodeficiency virus (SIV). The blockade of SIV by IFITMs is isolate specific, raising the question of which parameters impact sensitivity to IFITM. We show that the virion context in which SIV-Env is presented and the efficiency of virion incorporation determine Env susceptibility to inhibition by IFITMs. Thus, determinants other than the nature of the envelope protein can impact the IFITM sensitivity of viral entry. IMPORTANCE The host cell-encoded IFITM proteins can block viral entry and are an important component of the innate defenses against viral infection. However, the determinants controlling whether a virus is susceptible to blockade by IFITM proteins are incompletely understood. Our study shows that the amount of envelope proteins incorporated into virions as well as the nature of the virion particle itself can impact the sensitivity of viral entry to IFITMs. These results show for the first time that determinants other than the viral envelope protein can impact sensitivity to IFITM and have implications for the interpretation of previously published data on inhibition of viruses by IFITM proteins. Moreover, our findings might help to define the mechanism underlying the antiviral activity of IFITM proteins. PMID:27807233

  15. Virion Background and Efficiency of Virion Incorporation Determine Susceptibility of Simian Immunodeficiency Virus Env-Driven Viral Entry to Inhibition by IFITM Proteins.

    PubMed

    Wrensch, Florian; Hoffmann, Markus; Gärtner, Sabine; Nehlmeier, Inga; Winkler, Michael; Pöhlmann, Stefan

    2017-01-15

    Interferon-induced transmembrane proteins (IFITMs) can inhibit the cellular entry of several enveloped viruses, including simian immunodeficiency virus (SIV). The blockade of SIV by IFITMs is isolate specific, raising the question of which parameters impact sensitivity to IFITM. We show that the virion context in which SIV-Env is presented and the efficiency of virion incorporation determine Env susceptibility to inhibition by IFITMs. Thus, determinants other than the nature of the envelope protein can impact the IFITM sensitivity of viral entry. The host cell-encoded IFITM proteins can block viral entry and are an important component of the innate defenses against viral infection. However, the determinants controlling whether a virus is susceptible to blockade by IFITM proteins are incompletely understood. Our study shows that the amount of envelope proteins incorporated into virions as well as the nature of the virion particle itself can impact the sensitivity of viral entry to IFITMs. These results show for the first time that determinants other than the viral envelope protein can impact sensitivity to IFITM and have implications for the interpretation of previously published data on inhibition of viruses by IFITM proteins. Moreover, our findings might help to define the mechanism underlying the antiviral activity of IFITM proteins. Copyright © 2017 Wrensch et al.

  16. Determination of antifungal susceptibility patterns among the environmental isolates of Aspergillus fumigatus in Iran

    PubMed Central

    Mohammadi, Faezeh; Dehghan, Parvin; Nekoeian, Shahram; Hashemi, Seyed Jamal

    2016-01-01

    Background: In recent years, triazole-resistant environmental isolates of Aspergillus fumigatus have emerged in Europe and Asia. Azole resistance has been reported in patients who are treated with long-term azole therapy or exposure of the fungus spores to the azole fungicides used in agriculture. To date, a wide range of mutations in A. fumigatus have been described conferring azole-resistance, which commonly involves modifications in the cyp51A gene. We investigated antifungal susceptibility pattern of environmental isolates of A. fumigatus. Materials and Methods: In this study, 170 environmental samples collected from indoors surfaces of three hospitals in Iran. It was used β-tubulin gene to confirm the all of A. fumigatus isolates, which was identified by conventional methods. Furthermore, the antifungal susceptibility of itraconazole, voriconazole, and posaconazole was investigated using broth microdilution test, according to European Committee on Antimicrobial Susceptibility testing reference method. Results: From a total of 158 environmental molds fungi obtained from the hospitals, 58 isolates were identified as A. fumigatus by amplification of expected size of β-tubulin gene (~500 bp). In this study, in vitro antifungal susceptibility testing has shown that there were not high minimum inhibitory concentration values of triazole antifungals in all of the 58 environmental isolates of A. fumigatus. Conclusion: Our findings demonstrated that there was not azole-resistant among environmental isolates of A. fumigatus. Medical triazoles compounds have structural similarity with triazole fungicide compounds in agriculture, therefore, resistance development through exposure to triazole fungicide compounds in the environment is important but it sounds there is not a serious health problem in drug resistance in environmental isolates in Iran. PMID:27656605

  17. Determinants of Infant Susceptibility to Malaria During the First Year of Life in South Western Cameroon

    PubMed Central

    Apinjoh, Tobias O.; Anchang-Kimbi, Judith K.; Mugri, Regina N.; Njua-Yafi, Clarisse; Tata, Rolland B.; Chi, Hanesh F.; Tangoh, Delphine A.; Loh, Beatrice T.; Achidi, Eric A.

    2015-01-01

    Background. Falciparum malaria is an important pediatric infectious disease that frequently affects pregnant women and alters infant morbidity. However, the impact of some prenatal and perinatal risk factors such as season and intermittent preventive treatment during pregnancy (IPTp) on neonatal susceptibility has not been fully elucidated. Methods. A cohort of 415 infants born to women who were positive and negative for malaria was monitored in a longitudinal study in Southwestern Cameroon. The clinical and malaria statuses were assessed throughout, whereas paired maternal-cord and 1-year-old antimalarial antibodies were assayed by enzyme-linked immunosorbent assay. Infant susceptibility to malaria was ascertained after accounting for IPTp and season in the statistical analysis. Results. Malaria prevalence was higher in women (P = .039) who delivered during the rainy season and their infants (P = .030) compared with their dry season counterparts. Infants born to women who were positive for malaria (6.40 ± 2.83 months) were older (P = .028) than their counterparts who were negative for malaria (5.52 ± 2.85 months) when they experienced their first malaria episode. Infants born in September–November (adjusted odds ratio [OR] = 0.31, 95% confidence interval [CI] = 0.13–0.72) and to mothers on 1 or no IPTp-sulfadoxine/pyrimethamine (SP) dose (adjusted OR = 0.51, 95% CI = 0.28–0.91) were protected, whereas those born in the rainy season (adjusted OR = 2.82, 95% CI = 1.21–6.55) were susceptible to malaria. Conclusions. Intermittent preventive treatment during pregnancy and month of birth have important implications for infant susceptibility to malaria, with 2 or more IPTp-SP dosage possibly reducing immunoglobulin M production. PMID:26034763

  18. The leukotriene B₄/BLT₁ axis is a key determinant in susceptibility and resistance to histoplasmosis.

    PubMed

    Secatto, Adriana; Soares, Elyara Maria; Locachevic, Gisele Aparecida; Assis, Patricia Aparecida; Paula-Silva, Francisco Wanderlei Garcia; Serezani, Carlos Henrique; de Medeiros, Alexandra Ivo; Faccioli, Lúcia Helena

    2014-01-01

    The bioactive lipid mediator leukotriene B4 (LTB4) greatly enhances phagocyte antimicrobial functions against a myriad of pathogens. In murine histoplasmosis, inhibition of the LT-generating enzyme 5-lypoxigenase (5-LO) increases the susceptibility of the host to infection. In this study, we investigated whether murine resistance or susceptibility to Histoplasma capsulatum infection is associated with leukotriene production and an enhancement of in vivo and/or in vitro antimicrobial effector function. We show that susceptible C57BL/6 mice exhibit a higher fungal burden in the lung and spleen, increased mortality, lower expression levels of 5-LO and leukotriene B4 receptor 1 (BLT1) and decreased LTB4 production compared to the resistant 129/Sv mice. Moreover, we demonstrate that endogenous and exogenous LTs are required for the optimal phagocytosis of H. capsulatum by macrophages from both murine strains, although C57BL/6 macrophages are more sensitive to the effects of LTB4 than 129/Sv macrophages. Therefore, our results provide novel evidence that LTB4 production and BLT1 signaling are required for a histoplasmosis-resistant phenotype.

  19. Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility.

    PubMed

    Cobb, Richard C; Meentemeyer, Ross K; Rizzo, David M

    2010-02-01

    Epidemiological theory predicts that asymmetric transmission, susceptibility, and mortality within a community will drive pathogen and disease dynamics. These epidemiological asymmetries can result in apparent competition, where a highly infectious host reduces the abundance of less infectious or more susceptible members in a community via a shared pathogen. We show that the exotic pathogen Phytophthora ramorum and resulting disease, sudden oak death, cause apparent competition among canopy trees and that transmission differences among canopy trees drives patterns of disease severity in California coast redwood forests. P. ramorum ranges in its ability to infect, sporulate on, and cause mortality of infected hosts. A path analysis showed that the most prolific inoculum producer, California bay laurel (Umbellularia californica), had a greater impact on the mortality rate of tanoak (Lithocarpus densiflorus) than did other inoculum-supporting species. In stands experiencing high tanoak mortality, lack of negative impacts by P. ramorum on bay laurel may increase bay laurel density and subsequently result in positive feedback on pathogen populations. This study demonstrates the degree to which invasive, generalist pathogens can cause rapid changes in forest canopy composition and that differences in transmission can be more important than susceptibility in driving patterns of apparent competition.

  20. Reduced expression IRF7 in nasal epithelial cells from smokers as a potential mechanism mediating enhanced susceptibility to influenza

    EPA Science Inventory

    Rationale: Smokers are more susceptible to viral infections, including influenza virus, yet the mechanisms mediating this effect are not known. Methods: We have established an in vitro model of differentiated nasal epithelial cells from smokers, which maintain enhanced levels...

  1. Reduced expression IRF7 in nasal epithelial cells from smokers as a potential mechanism mediating enhanced susceptibility to influenza

    EPA Science Inventory

    Rationale: Smokers are more susceptible to viral infections, including influenza virus, yet the mechanisms mediating this effect are not known. Methods: We have established an in vitro model of differentiated nasal epithelial cells from smokers, which maintain enhanced levels...

  2. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells.

    PubMed

    Choudhary, Geetika S; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A; Ren, Dacheng

    2015-11-30

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics.

  3. Human Granulocyte Macrophage Colony-Stimulating Factor Enhances Antibiotic Susceptibility of Pseudomonas aeruginosa Persister Cells

    PubMed Central

    Choudhary, Geetika S.; Yao, Xiangyu; Wang, Jing; Peng, Bo; Bader, Rebecca A.; Ren, Dacheng

    2015-01-01

    Bacterial persister cells are highly tolerant to antibiotics and cause chronic infections. However, little is known about the interaction between host immune systems with this subpopulation of metabolically inactive cells, and direct effects of host immune factors (in the absence of immune cells) on persister cells have not been studied. Here we report that human granulocyte macrophage-colony stimulating factor (GM-CSF) can sensitize the persister cells of Pseudomonas aeruginosa PAO1 and PDO300 to multiple antibiotics including ciprofloxacin, tobramycin, tetracycline, and gentamicin. GM-CSF also sensitized the biofilm cells of P. aeruginosa PAO1 and PDO300 to tobramycin in the presence of biofilm matrix degrading enzymes. The DNA microarray and qPCR results indicated that GM-CSF induced the genes for flagellar motility and pyocin production in the persister cells, but not the normal cells of P. aeruginosa PAO1. Consistently, the supernatants from GM-CSF treated P. aeruginosa PAO1 persister cell suspensions were found cidal to the pyocin sensitive strain P. aeruginosa PAK. Collectively, these findings suggest that host immune factors and bacterial persisters may directly interact, leading to enhanced susceptibility of persister cells to antibiotics. PMID:26616387

  4. SIGLEC-G deficiency increases susceptibility to develop B-cell lymphoproliferative disorders

    PubMed Central

    Simonetti, Giorgia; Bertilaccio, Maria Teresa Sabrina; Rodriguez, Tania Veliz; Apollonio, Benedetta; Dagklis, Antonis; Rocchi, Martina; Innocenzi, Anna; Casola, Stefano; Winkler, Thomas H.; Nitschke, Lars; Ponzoni, Maurilio; Caligaris-Cappio, Federico; Ghia, Paolo

    2014-01-01

    The sialic-acid-binding immunoglobulin-like lectin SIGLEC-G is a negative regulator of B-cell receptor-mediated calcium signaling. Its deficiency leads to reduced turnover and increased proliferation and survival of murine B-1a cells. Siglecg−/− mice show a premature expansion of polyclonal CD5+ B cells in the spleen and the peritoneal cavity. Here we studied the fate of B lymphocytes in Siglecg−/− mice over time. We demonstrate that in aging animals SIGLEC-G deficiency promotes progressive accumulation of monoclonal B lymphocytes and increases the susceptibility to develop B-cell lymphoproliferative disorders. Lymphoid tumors arising in aged Siglecg−/− mice are monoclonal and histologically heterogeneous as they include diffuse large B-cell lymphoma, follicular lymphoma, and medium-to-large B-cell monomorphic lymphoma but surprisingly not chronic lymphocytic leukemia. The tumors express high levels of BCL-2 and are transplantable. In keeping with these findings we have also observed a remarkable down-regulation of the human ortholog SIGLEC10 in human B-cell lymphoma and leukemia cell lines. Taken together, these observations indicate that the down-regulation of negative B-cell receptor regulators such as SIGLEC-G/SIGLEC10 may represent another mechanism relevant to the pathogenesis of B-cell lymphomas. PMID:24859880

  5. Susceptibility of chicken Kupffer cells to Chinese virulent infectious bursal disease virus.

    PubMed

    Ma, Haiyan; Zhao, Sufen; Ma, Yunfei; Guo, Xin; Han, Deping; Jia, Yuanyuan; Zhang, Weiwei; Teng, Kedao

    2013-06-28

    cells or 57 percent of the total KUL01(+) cells in bursa. In comparison, the percentage of double positive cells in liver constituted 97 percent of the total IBDV positive cells or 99 percent of the total KUL01(+) cells. These results suggest that IBDV was susceptible to KUL01(+) cells in liver (mainly Kupffer cells) and replicated in the KUL01(+) cells. By comparison with the influence of IBDV on bursa, our findings were the first to elucidate the pathological changes in liver after IBDV infection on a microscopical and ultrastructural scale, and, especially, to gain the initial insight into the susceptibility of Kupffer cells to IBDV.

  6. [Comparative analysis of the susceptibility and productivity of respiratory tract target cells of mice and rats exposed to inflienza virus in vitro].

    PubMed

    Zhukov, V A; Shishkina, L N; Sergeev, A A; Malkova, E M; Riabchikova, E I; Petrishchenko, V A; Sergeev, A N; Ustiuzhanina, N V; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2008-01-01

    The levels of susceptibility to influenza virus A/Aichi/2/68 H3N2 and the virus yield were determined using primary cells of the trachea and lungs of CD-1 mice and Wistar rats, and for 3 sets of cells obtained from primary lung cells of the both species by centrifugation in the gradient of density and by sedimentation on a surface. The values of ID50 virus dose for 10(6) cells and virus yield per 1 infected cell determined for primary mice cells were 4.0+/-0.47 and 3.2+/-0.27 IgEID50 (lung cells), 3.8+/-0.17 and 3.3+/-0.20 IgEID50 (tracheal cells), and those determined for primary rat cells were 4.0+/-0.35 and 2.1+/-0.24 IgEID50 (lung cells), 3.7+/-0.27 and 2.2+/-0.46 IgEID50 (tracheal cells). The values of ID50 and yield measured for mixtures of cells obtained from primary lung cells by centrifugation in gradient of density and by sedimentation on a surface differed insignificantly (p = 0.05) from the values of the corresponding parameters measured for lung and tracheal cells for both rats and mice. The analysis of data on the variation of the concentrations of different cell types in the experimental cell mixtures shows that type 1 and 2 alveolocytes possess significantly lower (p = 0.05) susceptibility and productivity vs. ciliated cells of the both species. The investigation was conducted within the frame of the ISTC/DARPA#450p project.

  7. Serum killing of Ureaplasma parvum shows serovar-determined susceptibility for normal individuals and common variable immuno-deficiency patients.

    PubMed

    Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad

    2012-02-01

    Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Mutations in the primary sigma factor σA and termination factor rho that reduce susceptibility to cell wall antibiotics.

    PubMed

    Lee, Yong Heon; Helmann, John D

    2014-11-01

    Combinations of glycopeptides and β-lactams exert synergistic antibacterial activity, but the evolutionary mechanisms driving resistance to both antibiotics remain largely unexplored. By repeated subculturing with increasing vancomycin (VAN) and cefuroxime (CEF) concentrations, we isolated an evolved strain of the model bacterium Bacillus subtilis with reduced susceptibility to both antibiotics. Whole-genome sequencing revealed point mutations in genes encoding the major σ factor of RNA polymerase (sigA), a cell shape-determining protein (mreB), and the ρ termination factor (rho). Genetic-reconstruction experiments demonstrated that the G-to-C substitution at position 336 encoded by sigA (sigA(G336C)), in the domain that recognizes the -35 promoter region, is sufficient to reduce susceptibility to VAN and works cooperatively with the rho(G56C) substitution to increase CEF resistance. Transcriptome analyses revealed that the sigA(G336C) substitution has wide-ranging effects, including elevated expression of the general stress σ factor (σ(B)) regulon, which is required for CEF resistance, and decreased expression of the glpTQ genes, which leads to fosfomycin (FOS) resistance. Our findings suggest that mutations in the core transcriptional machinery may facilitate the evolution of resistance to multiple cell wall antibiotics.

  9. Susceptibility to tropical theileriosis of calves born to dams immunized with Theileria annulata (Hisar) cell culture vaccine.

    PubMed

    Beniwal, R K; Sharma, R D; Nichani, A K

    1998-12-01

    The susceptibility/immune status to tropical theileriosis of calves born of immunized dams was evaluated. Six cows were vaccinated with the Theileria annulata cell culture vaccine in the eighth month of pregnancy. Sera from the immunized dams exhibited very high post-vaccination antibody titres as determined by the indirect fluorescent antibody (IFA) test. The calves born to these dams did not show antibodies against T. annulata at the time of birth (IFA titres of < 1:20). The new-born calves were fed colostrum from their mothers and were challenged with T. annulata-infected ground tick supernate at 5-7 days of age. All the calves developed fever (from day 5-6 onwards) and parasitological reactions (from day 8-9 onwards) after challenge. There was a significant decrease in the haemoglobin and packed cell volume of the calves after challenge. All the calves showed signs of acute theileriosis by day 9-10 after challenge and had to be treated with buparvaquone in order to save their lives. The study indicated that detectable levels of anti-theilerial antibodies were not transferred from immune dams to their offspring. All the calves born to immunized dams were fully susceptible to theileriosis and thus themselves needed vaccination.

  10. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    PubMed Central

    Zienolddiny, Shanbeh; Skaug, Vidar

    2012-01-01

    Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC. PMID:28210120

  11. Haplotype and Cell Proliferation Analyses of Candidate Lung Cancer Susceptibility Genes on Chromosome 15q24-25.1

    PubMed Central

    Liu, Yan; Liu, Pengyuan; Wen, Weidong; James, Michael A.; Wang, Yian; Bailey-Wilson, Joan E.; Amos, Christopher I.; Pinney, Susan M.; Yang, Ping; de Andrade, Mariza; Petersen, Gloria M.; Wiest, Jonathan S.; Fain, Pamela R.; Schwartz, Ann G.; Gazdar, Adi; Gaba, Colette; Rothschild, Henry; Mandal, Diptasri; Kupert, Elena; Lee, Juwon; Seminara, Daniela; Minna, John; Anderson, Marshall W.; You, Ming

    2010-01-01

    Recent genome-wide association studies have linked the chromosome 15q24-25.1 locus to nicotine addiction and lung cancer susceptibility. To refine the 15q24-25.1 locus, we performed a haplotype-based association analysis of 194 familial lung cases and 219 cancer-free controls from the Genetic Epidemiology of Lung Cancer Consortium (GELCC) collection, and used proliferation and apoptosis analyses to determine which gene(s) in the 15q24-25.1 locus mediates effects on lung cancer cell growth in vitro. We identified two distinct subregions, hapL (P = 3.20 × 10−6) and hapN (P = 1.51 × 10−6), which were significantly associated with familial lung cancer. hapL encompasses IREB2, LOC123688,and PSMA4, and hapN encompasses the three nicotinic acetylcholine receptor subunit genes CHRNA5, CHRNA3,and CHRNB4. Examination of the genes around hapL revealed that PSMA4 plays a role in promoting cancer cell proliferation. PSMA4 mRNA levels were increased in lung tumors compared with normal lung tissues. Down-regulation of PSMA4 expression decreased proteasome activity and induced apoptosis. Proteasome dysfunction leads to many diseases including cancer, and drugs that inhibit proteasome activity show promise as a form of cancer treatment. Genes around hapN were also investigated, but did not show any direct effect on lung cancer cell proliferation. We concluded that PSMA4 is a strong candidate mediator of lung cancer cell growth,and may directly affect lung cancer susceptibility through its modulation of cell proliferation and apoptosis. PMID:19789337

  12. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses.

    PubMed

    Cho, Hyelim; Proll, Sean C; Szretter, Kristy J; Katze, Michael G; Gale, Michael; Diamond, Michael S

    2013-04-01

    Although susceptibility of neurons in the brain to microbial infection is a major determinant of clinical outcome, little is known about the molecular factors governing this vulnerability. Here we show that two types of neurons from distinct brain regions showed differential permissivity to replication of several positive-stranded RNA viruses. Granule cell neurons of the cerebellum and cortical neurons from the cerebral cortex have unique innate immune programs that confer differential susceptibility to viral infection ex vivo and in vivo. By transducing cortical neurons with genes that were expressed more highly in granule cell neurons, we identified three interferon-stimulated genes (ISGs; Ifi27, Irg1 and Rsad2 (also known as Viperin)) that mediated the antiviral effects against different neurotropic viruses. Moreover, we found that the epigenetic state and microRNA (miRNA)-mediated regulation of ISGs correlates with enhanced antiviral response in granule cell neurons. Thus, neurons from evolutionarily distinct brain regions have unique innate immune signatures, which probably contribute to their relative permissiveness to infection.

  13. Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells.

    PubMed

    Menzner, Ann-Katrin; Abolpour Mofrad, Sepideh; Friedrich, Oliver; Gilbert, Daniel F

    2015-12-02

    Human pluripotent embryonal carcinoma (NT2) cells are increasingly considered as a suitable model for in vitro toxicity testing, e.g. developmental toxicity and neurotoxicity (DT/DNT) studies, as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and permit toxicity testing at different stages of maturation. NT2 cells have recently been reported to show specific changes in dielectric resistance profiles during differentiation which can be observed as early as 24h upon RA-stimulation. These observations suggest altered susceptibility to chemicals at an early stage of differentiation. However, chemical susceptibility of early differentiating NT cells has not yet been studied. To address this question, we have established a cell fitness screening assay based on the analysis of intracellular ATP levels and we applied the assay in a large-scale drug screening experiment in NT2 stem cells and early differentiating NT2 cells. Subsequent analysis of ranked fitness phenotypes revealed 19 chemicals with differential toxicity profile in early differentiating NT2 cells. To evaluate whether any of the identified drugs have previously been associated with DT/DNT, we conducted a literature search on the identified molecules and quantified the fraction of chemicals assigned to the FDA (Food and Drug Administration) pregnancy risk categories (PRC) N, A, B, C, D, and X in the hit list and the small molecule library. While the fractions of the categories N and B were decreased (0.81 and 0.35-fold), the classes C, D and X were increased (1.35, 1.47 and 3.27-fold) in the hit list compared to the chemical library. From these data as well as from the literature review, identifying large fractions of chemicals being directly (∼42%) and indirectly associated with DT/DNT (∼32%), we conclude that our method may be beneficial to systematic in vitro-based primary screening for developmental toxicants and neurotoxicants and we propose cell fitness screening in

  14. Simultaneous Identification and Susceptibility Determination to Multiple Antibiotics of Staphylococcus aureus by Bacteriophage Amplification Detection Combined with Mass Spectrometry.

    PubMed

    Rees, Jon C; Pierce, Carrie L; Schieltz, David M; Barr, John R

    2015-07-07

    The continued advance of antibiotic resistance in clinically relevant bacterial strains necessitates the development and refinement of assays that can rapidly and cost-effectively identify bacteria and determine their susceptibility to a panel of antibiotics. A methodology is described herein that exploits the specificity and physiology of the Staphylococci bacteriophage K to identify Staphylococcus aureus (S. aureus) and determine its susceptibility to clindamycin and cefoxitin. The method uses liquid chromatography-mass spectrometry to monitor the replication of bacteriophage after it is used to infect samples thought to contain S. aureus. Amplification of bacteriophage K indicates the sample contains S. aureus, for it is only in the presence of a suitable host that bacteriophage K can amplify. If bacteriophage amplification is detected in samples containing the antibiotics clindamycin or cefoxitin, the sample is deemed to be resistant to these antibiotics, respectively, for bacteriophage can only amplify in a viable host. Thus, with a single work flow, S. aureus can be detected in an unknown sample and susceptibility to clindamycin and cefoxitin can be ascertained. This Article discusses implications for the use of bacteriophage amplification in the clinical laboratory.

  15. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    PubMed

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  16. CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus.

    PubMed Central

    Löffler, S; Lottspeich, F; Lanza, F; Azorsa, D O; ter Meulen, V; Schneider-Schaulies, J

    1997-01-01

    Canine distemper virus (CDV), a lymphotropic and neurotropic negative-stranded RNA virus of the Morbillivirus genus, causes a life-threatening disease in several carnivores, including domestic dogs. To identify the cellular receptor(s) involved in the uptake of CDV by susceptible cells, we isolated a monoclonal antibody (MAb K41) which binds to the cell surface and inhibits the CDV infection of several cell lines from various species. Pretreatment of cells with MAb K41 reduces the number of infectious centers and the size of the syncytia. Using affinity chromatography with MAb K41, we purified from HeLa and Vero cell extracts a 26-kDa protein which contained the amino acid sequence TKDEPQRETLK of human CD9, a member of the tetraspan transmembrane or transmembrane 4 superfamily of cell surface proteins. Transfection of NIH 3T3 or MDBK cells with a CD9 expression plasmid rendered these cells permissive for viral infection and raised virus production by a factor of 10 to 100. The mechanism involved is still unclear, since we were unable to detect direct binding of CDV to CD9 by using immunoprecipitation and a virus overlay protein binding assay. These findings indicate that human CD9 and its homologs in other species are necessary factors for the uptake of CDV by target cells, the formation of syncytia, and the production of progeny virus. PMID:8985321

  17. CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection and Evolution of Persistent Infection

    PubMed Central

    Caì, Yíngyún; Yú, Shuǐqìng; Postnikova, Elena N.; Mazur, Steven; Bernbaum, John G.; Burk, Robin; Zhāng, Téngfēi; Radoshitzky, Sheli R.; Müller, Marcel A.; Jordan, Ingo; Bollinger, Laura; Hensley, Lisa E.; Jahrling, Peter B.; Kuhn, Jens H.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors. PMID:25409519

  18. Isolation of Streptococci from milk samples of normal, acute and subclinical mastitis cows and determination of their antibiotic susceptibility patterns.

    PubMed

    Ebrahimi, Azizollah; Nikookhah, Farzaneh; Nikpour, Saeed; Majiian, Farya; Gholami, Masoud

    2008-01-01

    Streptococci are frequently isolated from bovine mastitis in dairy cows with only limited information available on the antimicrobial susceptibility of these organisms. A total of 42 Streptococci isolated from 148 milk samples of normal, sub acute and acute bovine mastitis cases. Overall, 35% of the strains tested were Streptococcus dysgalactiae, Streptococcus agalactiae 26%, Streptococcus uberis 18 and 4% were Enterococcus sp. Differences between the number of isolations in acute and sub acute groups were statistically significant, (p<0.5). The antimicrobial susceptibility for these organisms was determined for the following antimicrobial agents: cephalexine, penicillin, clindamycin, cloxaciline, gentamicin, streptomycin, amoxicillin, tetracycline, kanamycin, oxytetracycline, ampicillin, chloramphenicol and erythromycin. S. agalactiae, S. dysgalactiae, S. uberis and Enterococci demonstrated high level of resistance against streptomycin, penicillin and cloxaciline. Low level of sensitivity to other tested antimicrobials was demonstrated.

  19. The lupus susceptibility gene Pbx1 regulates the balance between follicular helper T cell and regulatory T cell differentiation

    PubMed Central

    Choi, Seung-Chul; Hutchinson, Tarun E.; Titov, Anton A.; Seay, Howard R.; Li, Shiwu; Brusko, Todd M.; Croker, Byron P.; Salek-Ardakani, Shahram; Morel, Laurence

    2016-01-01

    Pbx1 controls chromatin accessibility to a large number of genes and is entirely conserved between mice and humans. The Pbx1-d dominant negative isoform is more frequent in the CD4+ T cells from lupus patients than from healthy controls. Pbx1-d is associated with the production of autoreactive T cells in mice carrying the Sle1a1 lupus susceptibility locus. Transgenic expression of Pbx1-d in CD4+ T cells reproduced the phenotypes of Sle1a1 mice, with increased inflammatory functions of CD4+ T cells and impaired regulatory T cell homeostasis. Pbx1-d Tg also expanded the number of follicular helper T cells in a cell-intrinsic and antigen-specific manner that was enhanced in recall responses, and resulted in TH1-biased antibodies. Moreover, Pbx1-d Tg CD4+ T cells upregulated the expression of miR-10a, miR-21 and miR-155, which have been implicated in Treg and TFH cell homeostasis. Our results suggest that Pbx1-d impacts lupus development by regulating effector T cell differentiation and promoting TFH cells at the expense of Treg cells. In addition, our results identify Pbx1 as a novel regulator of CD4+ T cell effector function. PMID:27296664

  20. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    PubMed

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.

  1. Cellular senescence determines endothelial cell damage induced by uremia.

    PubMed

    Carracedo, Julia; Buendía, Paula; Merino, Ana; Soriano, Sagrario; Esquivias, Elvira; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael

    2013-08-01

    Renal dysfunction is closely associated with endothelial damage leading to cardiovascular disease. However, the extent to which endothelial damage induced by uremia is modulated by aging is poorly known. Aging can render endothelial cells more susceptible to apoptosis through an oxidative stress-dependent pathway. We examined whether senescence-associated to oxidative stress determines the injury induced by the uremia in endothelial cells. Human umbilical vein endothelial cells (HUVEC) was incubated with human uremic serum and, in the animal model, endothelial cells were obtained from aortas of uremic and no uremic rats. Vitamin C was used to prevent oxidative stress. Senescence, assessed by telomere length and enzyme-betagalactosidase (β-gal), reactive oxygen species (ROS), mitochondrial depolarization (JC-1 probe), caspase 3, and apoptosis were determined by flow cytometry. NF-κB activity was determined by Western blot. Uremic serum increased ROS and NF-κB in young and aging HUVEC. However only in aging cells, uremic serum induced apoptosis (vs young HUVEC, p<0.01). The endothelial damage induced by uremia seems to be related with the increased oxidative stress, since in both HUVEC and in the experimental model of renal disease in rats, vitamin C prevents endothelial apoptosis. However, vitamin C did not decrease the oxidative stress associated to senescence. These results showed that as compared with young cells, senescent cells have high sensitivity to damage associated to the oxidative stress induced by the uremia. Consequently, protecting senescent endothelial cells from increased oxidative stress might be an effective therapeutic approach in the treatment of vascular disorders in chronic kidney diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. In Vitro Susceptibilities of Mycoplasma hominis to Six Fluoroquinolones as Determined by E Test

    PubMed Central

    Waites, Ken B.; Canupp, Kay C.; Kenny, George E.

    1999-01-01

    Twenty isolates of Mycoplasma hominis were tested for their susceptibility to six fluoroquinolones by the E test. The MICs at which 90% of the isolates were inhibited (in micrograms per milliliter) were as follows: sparfloxacin, 0.031; clinafloxacin, moxifloxacin, and trovafloxacin, 0.063; levofloxacin, 0.25; and ciprofloxacin, 0.5. Increasing the amount of inoculum or incubation in CO2 elevated MICs by ≤1 dilution. E tests produce fluoroquinolone MICs comparable to those obtained by agar and microbroth dilution for M. hominis. PMID:10508049

  3. Depressed T-cell proliferation associated with susceptibility to experimental Taenia crassiceps infection.

    PubMed Central

    Sciutto, E; Fragoso, G; Baca, M; De la Cruz, V; Lemus, L; Lamoyi, E

    1995-01-01

    Peritoneal infection with Taenia crassiceps cysticerci of naturally resistant (C57BL/10J and C57BL/6J) and susceptible (BALB/cAnN) mice induces a cellular immune depression. T-cell proliferation in response to concanavalin A (ConA) or anti-CD3 was significantly depressed in infected mice of all strains tested. However, in resistant mice, the diminished response to ConA was transient and animals recovered normal responsiveness at day 40, whereas susceptible mice remained suppressed throughout the 40 days of the experiment. In contrast, the proliferative response to anti-CD3 was lower in infected mice than in noninfected controls regardless of differences in natural susceptibility of the strains. Intraperitoneal injection of mice with a parasite extract also induced a depression of the response to ConA, although not as strong as that produced by the parasite itself. This depression is not due to direct effects by parasite antigens over host lymphocytes, as proliferation is not affected by the presence of cysticercal antigens added in vitro. Diminished interleukin-2 production during the parasitosis accounts at least in part for the diminished responses to ConA. A primary infection favors parasite establishment after a second challenge, pointing to the relevance of the immunodepression in generating a host environment favorable to the parasite. PMID:7768609

  4. Susceptibility of oxidative stress on red blood cells exposed to gamma rays: hemorheological evaluation.

    PubMed

    Kim, Yu-Kyung; Kwon, Eun-Hee; Kim, Dong-Hyun; Won, Dong-Il; Shin, Sehyun; Suh, Jang-Soo

    2008-01-01

    Irradiation has been shown to induce biochemical changes in stored red blood cells (RBCs) and to generate reactive oxygen species (ROS). This study evaluated the hemorheological properties, the degree of lipid peroxidation and the oxidative susceptibility of irradiated RBCs. Furthermore, we investigated the radioprotective role of N-t-butyl hydroxylamine (NtBHA) against gamma-ray exposure of RBCs. RBC concentrates were irradiated with a minimum dose of 25 Gy, and were exposed to FeSO4 to examine the oxidative susceptibility. RBC deformability was evaluated by the use of a microfluidic ektacytometer, in relation to the hematological and biochemical properties. The deformability of the irradiated RBCs was significantly lower than that of control. Exposure to gamma rays significantly increased the mean corpuscular volume (MCV) and lipid peroxidation. Changes in RBC deformability were more prominent in irradiated RBCs than in non-irradiated RBCs also under conditions of oxidative stress. The deformability of NtBHA treated RBCs prior to irradiation was not altered as compared with irradiated RBCs not treated with NtBHA. In conclusion, irradiation reduces RBC deformability during storage and the irradiated RBCs seem susceptible to oxidative stress. NtBHA may not have a protective role against the effects of gamma-ray exposure in RBCs but further evaluation of NtBHA or another radioprotective compound is required.

  5. Section 3--selected biological properties of tissues: potential determinants of susceptibility to ultrasound-induced bioeffects. American Institute of Ultrasound in Medicine.

    PubMed

    2000-02-01

    Although harmful side effects have not been reported in humans associated with the clinical application of continuous wave (CW) ultrasound (typical of therapeutic applications) or pulsed ultrasound (typical of diagnostic applications), bioeffects have been reported in nonhuman mammalian species with both waveforms. Bioeffects have been reported in organ systems that have tissues associated with well-defined gas bodies, such as lung and intestine, and in tissues not associated with well-defined gas bodies, such as nervous tissue, liver, kidney, and reproductive tissues. Lesions in tissues with well-defined gas bodies include hemorrhage in lung and intestine; lesions in tissues without well-defined gas bodies include cell and tissue destruction and necrosis with tissue-specific hemorrhage in nervous tissue, liver, kidney, and reproductive tissues. Studies suggest that there are unique differences in the responses of tissues to CW and pulsed ultrasound among animal species and within a species based on age or stage of development. Data from reference materials covering the anatomy and histology of animal tissues indicate that important structural differences exist among species and within a species based on age or stage of development. These structural differences and how they influence the responses of tissues and organs to ultrasound appear to be focused on the serosal surfaces (protective coverings) of these organs. Such surfaces include, but are not limited to, the visceral pleura of the lung and the visceral peritoneum of all abdominal organs. The thickness and composition (e.g., structural fiber type, collagen, or elastic fibers) of these surfaces and their contiguous internal structural units, such as septa and trabecula, also appear to be important in determining the susceptibility of a tissue or organ to ultrasound-induced damage. Although data exist that support the hypothesis that there are species differences in susceptibility to CW ultrasound-induced lung

  6. FGF-2 Overexpression Increases Excitability and Seizure Susceptibility but Decreases Seizure-Induced Cell Loss

    PubMed Central

    Zucchini, Silvia; Buzzi, Andrea; Barbieri, Mario; Rodi, Donata; Paradiso, Beatrice; Binaschi, Anna; Coffin, J. Douglas; Marzola, Andrea; Cifelli, Pierangelo; Belluzzi, Ottorino

    2008-01-01

    Fibroblast growth factor 2 (FGF-2) has multiple, pleiotropic effects on the nervous system that include neurogenesis, neuroprotection and neuroplasticity. Thus, alteration in FGF-2 expression patterns may have a profound impact in brain function, both in normal physiology and in pathology. Here, we used FGF-2 transgenic mice (TgFGF2) to study the effects of endogenous FGF-2 overexpression on susceptibility to seizures and to the pathological consequences of seizures. TgFGF2 mice display increased FGF-2 expression in hippocampal pyramidal neurons and dentate granule cells. Increased density of glutamatergic synaptic vesicles was observed in the hippocampus of TgFGF2 mice, and electrophysiological data (input/output curves and patch-clamp recordings in CA1) confirmed an increase in excitatory inputs in CA1, suggesting the presence of a latent hyperexcitability. Indeed, TgFGF2 mice displayed increased susceptibility to kainate-induced seizures compared with wild-type (WT) littermates, in that latency to generalized seizure onset was reduced, whereas behavioral seizure scores and lethality were increased. Finally, WT and TgFGF2 mice with similar seizure scores were used for examining seizure-induced cellular consequences. Neurogenesis and mossy fiber sprouting were not significantly different between the two groups. In contrast, cell damage (assessed with Fluoro-Jade B, silver impregnation and anti-caspase 3 immunohistochemistry) was significantly lower in TgFGF2 mice, especially in the areas of overexpression (CA1 and CA3), indicating reduction of seizure-induced necrosis and apoptosis. These data suggest that FGF-2 may be implicated in seizure susceptibility and in seizure-induced plasticity, exerting different, and apparently contrasting effects: favoring ictogenesis but reducing seizure-induced cell death. PMID:19052202

  7. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals.

    PubMed

    Cordeiro, Rossana de A; Teixeira, Carlos E C; Brilhante, Raimunda S N; Castelo-Branco, Débora S C M; Alencar, Lucas P; de Oliveira, Jonathas S; Monteiro, André J; Bandeira, Tereza J P G; Sidrim, José J C; Moreira, José Luciano Bezerra; Rocha, Marcos F G

    2015-06-01

    Tyrosol is a quorum-sensing molecule of Candida albicans able to induce hyphal development in the early and intermediate stages of biofilm growth. In the present study, we evaluated the effect of high concentrations of exogenous tyrosol on planktonic cells and biofilms of C. albicans (n = 10) and C. tropicalis (n = 10), and investigated whether tyrosol could be synergic to antifungals that target cellular ergosterol. Antifungal susceptibility and drug interaction against planktonic cells were investigated by the broth microdilution method. Tyrosol was able to inhibit planktonic cells, with MIC values ranging from 2.5 to 5.0 mM for both species. Synergism was observed between tyrosol/amphotericin B (11/20 strains), tyrosol/itraconazole (18/20 strains) and tyrosol/fluconazole (18/20 strains). Exogenous tyrosol alone or combined with antifungals at both 10 × MIC and 50 × MIC were able to reduce biofilm of both Candida species. Mature biofilms were susceptible to tyrosol alone at 50 × MIC or combined with amphotericin at both 10 × MIC and 50 × MIC. On the other hand, tyrosol plus azoles at both 10 × MIC and 50 × MIC enhanced biofilm growth.

  8. A Cell Type-Specific Expression Signature Predicts Haploinsufficient Autism-Susceptibility Genes.

    PubMed

    Zhang, Chaolin; Shen, Yufeng

    2017-02-01

    Recent studies have identified many genes with rare de novo mutations in autism, but a limited number of these have been conclusively established as disease-susceptibility genes due to the lack of recurrence and confounding background mutations. Such extreme genetic heterogeneity severely limits recurrence-based statistical power even in studies with a large sample size. Here, we use cell-type specific expression profiles to differentiate mutations in autism patients from those in unaffected siblings. We report a gene expression signature in different neuronal cell types shared by genes with likely gene-disrupting (LGD) mutations in autism cases. This signature reflects haploinsufficiency of risk genes enriched in transcriptional and post-transcriptional regulators, with the strongest positive associations with specific types of neurons in different brain regions, including cortical neurons, cerebellar granule cells, and striatal medium spiny neurons. When used to prioritize genes with a single LGD mutation in cases, a D-score derived from the signature achieved a precision of 40% as compared with the 15% baseline with a minimal loss in sensitivity. An ensemble model combining D-score with mutation intolerance metrics from Exome Aggregation Consortium further improved the precision to 60%, resulting in 117 high-priority candidates. These prioritized lists can facilitate identification of additional autism-susceptibility genes.

  9. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility.

    PubMed

    Escalante, Nichole K; Lemire, Paul; Cruz Tleugabulova, Mayra; Prescott, David; Mortha, Arthur; Streutker, Catherine J; Girardin, Stephen E; Philpott, Dana J; Mallevaey, Thierry

    2016-12-12

    The mammalian gastrointestinal tract hosts a diverse community of microbes including bacteria, fungi, protozoa, helminths, and viruses. Through coevolution, mammals and these microbes have developed a symbiosis that is sustained through the host's continuous sensing of microbial factors and the generation of a tolerant or pro-inflammatory response. While analyzing T cell-driven colitis in nonlittermate mouse strains, we serendipitously identified that a nongenetic transmissible factor dramatically increased disease susceptibility. We identified the protozoan Tritrichomonas muris as the disease-exacerbating element. Furthermore, experimental colonization with T. muris induced an elevated Th1 response in the cecum of naive wild-type mice and accelerated colitis in Rag1(-/-) mice after T cell transfer. Overall, we describe a novel cross-kingdom interaction within the murine gut that alters immune cell homeostasis and disease susceptibility. This example of unpredicted microbial priming of the immune response highlights the importance of studying trans-kingdom interactions and serves as a stark reminder of the importance of using littermate controls in all mouse research. © 2016 Escalante et al.

  10. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice.

    PubMed

    Dorfman, Mauricio D; Krull, Jordan E; Douglass, John D; Fasnacht, Rachael; Lara-Lince, Fernando; Meek, Thomas H; Shi, Xiaogang; Damian, Vincent; Nguyen, Hong T; Matsen, Miles E; Morton, Gregory J; Thaler, Joshua P

    2017-02-22

    Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.

  11. MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer.

    PubMed

    Nasti, Tahseen H; Timares, Laura

    2015-01-01

    Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α-melanocyte stimulating hormone (α-MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α-MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red-heads more susceptible to skin cancer. Apart from its effects on melanin production, the α-MSH/MC1R signaling is also a potent anti-inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.

  12. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice

    PubMed Central

    Dorfman, Mauricio D.; Krull, Jordan E.; Douglass, John D.; Fasnacht, Rachael; Lara-Lince, Fernando; Meek, Thomas H.; Shi, Xiaogang; Damian, Vincent; Nguyen, Hong T.; Matsen, Miles E.; Morton, Gregory J.; Thaler, Joshua P.

    2017-01-01

    Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop ‘male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a ‘female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity. PMID:28223698

  13. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas

    PubMed Central

    Suzuki, Haruka; Miyashita, Yuri; Choi, Sun Hee; Hisa, Yusuke; Rihei, Shunsuke; Shimada, Ryoko; Jeon, Eun Jin; Abe, Junya; Uyeda, Ichiro

    2016-01-01

    ABSTRACT Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1. Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a

  14. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas.

    PubMed

    Atsumi, Go; Suzuki, Haruka; Miyashita, Yuri; Choi, Sun Hee; Hisa, Yusuke; Rihei, Shunsuke; Shimada, Ryoko; Jeon, Eun Jin; Abe, Junya; Nakahara, Kenji S; Uyeda, Ichiro

    2016-08-15

    Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line

  15. Hypergravity Alters the Susceptibility of Cells to Anoxia-Reoxygenation Injury

    NASA Technical Reports Server (NTRS)

    McCloud, Henry; Pink, Yulondo; Harris-Hooker, Sandra A.; Melhado, Caroline D.; Sanford, Gary L.

    1997-01-01

    Gravity is a physical force, much like shear stress or mechanical stretch, and should affect organ and cellular function. Researchers have shown that gravity plays a role in ventilation and blood flow distribution, gas exchange, alveolar size and mechanical stresses within the lung. Short exposure to microgravity produced marked alterations in lung blood flow and ventilation distribution while hypergravity exaggerated the regional differences in lung structure and function resulting in reduced ventilation at the base and no ventilation of the upper half of the lung. Microgravity also decreased metabolic activity in cardiac cells, WI-38 embryonic lung cells, and human lymphocytes. Rats, in the tail-suspended head-down tilt model, experienced transient loss of lung water, contrary to an expected increase due to pooling of blood in the pulmonary vasculature. Hypergravity has also been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies show that changes in the gravity environment will affect several aspects of organ and cellular function and produce major change in blood flow and tissue/organ perfusion. However, these past studies have not addressed whether ischemia-reperfusion injury will be exacerbated or ameliorated by changes in the gravity environment, e.g., space flight. Currently, nothing is known about how gravity will affect the susceptibility of different lung and vascular cells to this type of injury. We conducted studies that addressed the following question: Does the susceptibility of lung fibroblasts, vascular smooth muscle, and endothelial cells to anoxia/reoxygenation injury change following exposure to hypergravity conditions?

  16. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions.

    PubMed

    Carvalho, Cristina; Katz, Paige S; Dutta, Somhrita; Katakam, Prasad V G; Moreira, Paula I; Busija, David W

    2014-01-01

    We hypothesized that hyperglycemia-induced mitochondrial dysfunction and oxidative stress are closely associated with amyloid-β peptide (Aβ) toxicity in endothelial cells. Brain microvascular endothelial cells from rat (RBMEC) and mice (MBMEC) were isolated from adult Sprague-Dawley rats and homozygous db/db (Leprdb/Leprdb) and heterozygous (Dock7m/Leprdb) mice, and cultured under normo- and hyperglycemic conditions for 7 d followed by 24 h exposure to Aβ1-40. Some experiments were also performed with two mitochondrial superoxide (O2•-) scavengers, MitoTempo and Peg-SOD. Cell viability was measured by the Alamar blue assay and mitochondrial membrane potential (ΔΨm) by confocal microscopy. Mitochondrial O2•- and hydrogen peroxide (H2O2) production was assessed by fluorescence microscopy and H2O2 production was confirmed by microplate reader. Hyperglycemia or Aβ1-40 alone did not affect cell viability in RBMEC. However, the simultaneous presence of high glucose and Aβ1-40 reduced cell viability and ΔΨm, and enhanced mitochondrial O2•- and H2O2 production. MitoTempo and PEG-SOD prevented Aβ1-40 toxicity. Interestingly, MBMEC presented a similar pattern of alterations with db/db cultures presenting higher susceptibility to Aβ1-40. Overall, our results show that high glucose levels increase the susceptibility of brain microvascular endothelial cells to Aβ toxicity supporting the idea that hyperglycemia is a major risk factor for vascular injury associated with AD.

  17. A Dichotomy in Cortical Actin and Chemotactic Actin Activity between Human Memory and Naive T Cells Contributes to Their Differential Susceptibility to HIV-1 Infection*

    PubMed Central

    Wang, Weifeng; Guo, Jia; Yu, Dongyang; Vorster, Paul J.; Chen, WanJun; Wu, Yuntao

    2012-01-01

    Human memory and naive CD4 T cells can mainly be identified by the reciprocal expression of the CD45RO or CD45RA isoforms. In HIV-1 infection, blood CD45RO memory CD4 T cells are preferentially infected and serve as a major viral reservoir. The molecular mechanism dictating this differential susceptibility to HIV-1 remains largely obscure. Here, we report that the different susceptibility of memory and naive T cells to HIV is not determined by restriction factors such as Apobec3G or BST2. However, we observed a phenotypic distinction between human CD45RO and CD45RA resting CD4 T cells in their cortical actin density and actin dynamics. CD45RO CD4 T cells possess a higher cortical actin density and can be distinguished as CD45RO+Actinhigh. In contrast, CD45RA T cells are phenotypically CD45RA+Actinlow. In addition, the cortical actin in CD45RO memory CD4 T cells is more dynamic and can respond to low dosages of chemotactic induction by SDF-1, whereas that of naive cells cannot, despite a similar level of the chemokine receptor CXCR4 present on both cells. We further demonstrate that this difference in the cortical actin contributes to their differential susceptibility to HIV-1; resting memory but not naive T cells are highly responsive to HIV-mediated actin dynamics that promote higher levels of viral entry and early DNA synthesis in resting memory CD4 T cells. Furthermore, transient induction of actin dynamics in resting naive T cells rescues HIV latent infection following CD3/CD28 stimulation. These results suggest a key role of chemotactic actin activity in facilitating HIV-1 latent infection of these T cell subsets. PMID:22879601

  18. Phenotype and susceptibility to HIV infection of CD4+ Th17 cells in the human female reproductive tract.

    PubMed

    Rodriguez-Garcia, M; Barr, F D; Crist, S G; Fahey, J V; Wira, C R

    2014-11-01

    Prevention of sexual acquisition of HIV in women requires a substantial increase in our knowledge about HIV-target cell availability and regulation in the female reproductive tract (FRT). In this study, we analyzed the phenotype and susceptibility to HIV infection of CD4(+) T cell in the endometrium (EM), endocervix (END), and ectocervix (ECT) of the FRT. We found that T helper type 17 (Th17) cells represent a major subset in FRT tissues analyzed and that Th17 cells were the main CD4(+) T-cell population expressing C-C motif chemokine receptor 5 (CCR5) and CD90. In premenopausal women, CD4(+) T cells and Th17 cells, in particular, were significantly lower in EM relative to END and ECT. Th17 cells were elevated in EM from postmenopausal women relative to premenopausal tissues but not changed in END and ECT. Susceptibility of CD4(+) T cells to HIV infection measured as intracellular p24 was lowest in the EM and highest in the ECT. Additionally, we found that Th17 cells co-expressing CCR5 and CD90 were the most susceptible to HIV infection. Our results provide valuable information for designing preventive strategies directed at targeting highly susceptible target cells in the FRT.

  19. Macrophage production during murine listeriosis: colony-stimulating factor 1 (CSF-1) and CSF-1-binding cells in genetically resistant and susceptible mice.

    PubMed Central

    Cheers, C; Stanley, E R

    1988-01-01

    The concentration of the macrophage-specific colony-stimulating factor (CSF-1) and the numbers of bone marrow and spleen cells with specific receptors for that factor have been investigated in a number of mouse strains under normal conditions and after infection with the facultative intracellular bacterium Listeria monocytogenes. The CSF-1 concentration in serum and tissue was markedly elevated in infected mice, the degree of stimulation reflecting the dose of L. monocytogenes. The CSF-1 titer did not correlate with genetic resistance or susceptibility of the mice to L. monocytogenes. In contrast to the effect of lipopolysaccharide, Listeria infection was able to increase the level of CSF-1 in the lipopolysaccharide nonresponder strain C3H/HeJ. In line with earlier findings on colony-forming cells, cells bearing receptors for CSF-1 in uninfected susceptible BALB/cJ mice were only half those in resistant C57BL/6J mice. After infection the majority of these cells disappeared from the bone marrow and spleen cells of both resistant and susceptible mice. The number of CSF-1 receptor-bearing cells in the normal bone marrow may determine the degree of resistance to L. monocytogenes. PMID:3262588

  20. Interferon-α enhances the susceptibility of renal cell carcinoma to rapamycin by suppressing mTOR activity.

    PubMed

    Han, Xiao; Shang, Donghao; Han, Tiandong; Xu, Xiuhong; Tian, Ye

    2014-07-01

    The aim of the present study was to investigate the antiproliferative effects of interferon (IFN)-α and rapamycin (RPM) on renal cell carcinoma (RCC) cells and examine the synergistic growth suppression conferred by IFN-α and RPM. The effects of IFN-α and/or RPM on RCC cells were determined using a WST-1 assay and the synergy of IFN-α and RPM against three RCC cell lines was analyzed with isobolographic analysis. The expression of mammalian target of rapamycin (mTOR) was downregulated by RNAi, and the expression and phosphorylation of proteins in the mTOR pathway following treatment with IFN-α and/or RPM was examined by western blot analysis. The observations indicated that IFN-α significantly increased the susceptibility of RCC cells to RPM and the synergistic effect of IFN-α and RPM against RCC cells was confirmed in all three RCC cell lines. The mTOR pathway was shown to be associated with the synergistic effect of IFN-α and RPM against RCC. IFN-α and RPM alone decreased the phosphorylation of mTOR, p70 S6 kinase, S6 and 4E binding protein 1, and IFN-α significantly enhanced the RPM-induced suppression of the mTOR pathway. However, in RCC cells with low mTOR activity, the synergy of IFN-α and RPM was eliminated. Therefore, the results of the present study indicate that the mTOR pathway plays an important role in the synergistic effect of IFN-α and RPM against RCC cells. Thus, mTOR may serve as an effective therapeutic target in the treatment of advanced RCC.

  1. Interferon-α enhances the susceptibility of renal cell carcinoma to rapamycin by suppressing mTOR activity

    PubMed Central

    HAN, XIAO; SHANG, DONGHAO; HAN, TIANDONG; XU, XIUHONG; TIAN, YE

    2014-01-01

    The aim of the present study was to investigate the antiproliferative effects of interferon (IFN)-α and rapamycin (RPM) on renal cell carcinoma (RCC) cells and examine the synergistic growth suppression conferred by IFN-α and RPM. The effects of IFN-α and/or RPM on RCC cells were determined using a WST-1 assay and the synergy of IFN-α and RPM against three RCC cell lines was analyzed with isobolographic analysis. The expression of mammalian target of rapamycin (mTOR) was downregulated by RNAi, and the expression and phosphorylation of proteins in the mTOR pathway following treatment with IFN-α and/or RPM was examined by western blot analysis. The observations indicated that IFN-α significantly increased the susceptibility of RCC cells to RPM and the synergistic effect of IFN-α and RPM against RCC cells was confirmed in all three RCC cell lines. The mTOR pathway was shown to be associated with the synergistic effect of IFN-α and RPM against RCC. IFN-α and RPM alone decreased the phosphorylation of mTOR, p70 S6 kinase, S6 and 4E binding protein 1, and IFN-α significantly enhanced the RPM-induced suppression of the mTOR pathway. However, in RCC cells with low mTOR activity, the synergy of IFN-α and RPM was eliminated. Therefore, the results of the present study indicate that the mTOR pathway plays an important role in the synergistic effect of IFN-α and RPM against RCC cells. Thus, mTOR may serve as an effective therapeutic target in the treatment of advanced RCC. PMID:24944633

  2. "A remote sensing approach to determining susceptibility of national park forest areas to forecasted changes in precipitation and temperature"

    NASA Astrophysics Data System (ADS)

    Finley, T.; Griffin, R.

    2016-12-01

    The United States designates 59 protected areas around the country as national parks, totaling around 51.9 million acres. With the exception of a few, the majority of these parks feature forested areas of biological and/or historical importance. Depending on their location, these forested areas are threatened by climate change in the form of decreasing precipitation and/or increasing temperatures, which can result in significant drying resulting in increased susceptibility to threats and resultant tree mortality. This study aims to survey the forested areas of America's national parks and determine their susceptibility to climate-induced drying. Land cover derived from remotely sensed multispectral data was used to characterize forested areas within national parks. Multiple climate change scenarios to end of century were taken from the NASA Earth Exchange Downscaled Climate Projections (DEX _DCP30) dataset and were compared with the forested areas. Forests projected to experience both an increase in temperature and decrease in precipitation were considered most at risk. A susceptibility analysis was performed to develop an index that would identify these areas most prone to negative effects from climate change in low (B1), medium (A1B), and high (A2) emissions scenarios. With this information, park officials can better focus efforts to monitor and preserve their forested areas.

  3. Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells.

    PubMed

    Dahnke, Hannes; Liu, Wei; Herzka, Daniel; Frank, Joseph A; Schaeffter, Tobias

    2008-09-01

    Local susceptibility gradients result in a dephasing of the precessing magnetic moments and thus in a fast decay of the NMR signals. In particular, cells labeled with superparamagnetic iron oxide particles (SPIOs) induce hypointensities, making the in vivo detection of labeled cells from such a negative image contrast difficult. In this work, a new method is proposed to selectively turn this negative contrast into a positive contrast. The proposed method calculates the susceptibility gradient and visualizes it in a parametric map directly from a regular gradient-echo image dataset. The susceptibility gradient map is determined in a postprocessing step, requiring no dedicated pulse sequences or adaptation of the sequence before and during image acquisition. Phantom experiments demonstrated that local susceptibility differences can be quantified. In vivo experiments showed the feasibility of the method for tracking of SPIO-labeled cells. The method bears the potential also for usage in other applications, including the detection of contrast agents and interventional devices as well as metal implants.

  4. Antifolates inhibit Cryptococcus biofilms and enhance susceptibility of planktonic cells to amphotericin B.

    PubMed

    de Aguiar Cordeiro, R; Mourão, C I; Rocha, M F G; de Farias Marques, F J; Teixeira, C E C; de Oliveira Miranda, D F; Neto, L V P; Brilhante, R S N; de Jesus Pinheiro Gomes Bandeira, T; Sidrim, J J C

    2013-04-01

    The Cryptococcus neoformans species complex contains the most important agents of fungal meningoencephalitis. Therapeutic choices are limited and issues related to toxicity and resistance to antifungals have been described. The present study evaluated the inhibitory effect of the antifolate combinations sulfamethoxazole-trimethoprim (SMX/TMP) and sulfadiazine-pyrimethamine (SDZ/PYR) against planktonic cells and biofilms of C. neoformans and C. gattii. The influence of the antifolate combinations on the amphotericin minimum inhibitory concentration (MIC) of planktonic cells was also investigated. In addition, the effect of these combinations on the cellular ergosterol content of planktonic cells was studied. Strains of C. neoformans (n = 15) and C. gattii (n = 15) obtained from environmental or clinical sources were evaluated by the broth microdilution method. SMX/TMP and SDZ/PYR showed antifungal activity against free living cells and sessile cells of Cryptococcus spp. Moreover, planktonic cells showed increased susceptibility to amphotericin B after pre-incubation with sub-inhibitory concentrations of SMX/TMP or SDZ/PYR. The drug combinations SMX/TMP and SDZ/PYR were able to prevent the biofilm formation and showed inhibitory effect against mature biofilms of both species. Additionally, the study showed that antifolate drugs reduced the ergosterol content in C. neoformans and C. gattii planktonic cells. Our results highlight the antifungal potential of antifolate drugs.

  5. Comparable susceptibilities of human 293 cells and insect Tn-5B1-4 cells to photoactivated alpha-terthienyl.

    PubMed

    Huang, Qingchun; Liu, Yang; Zhan, Taisong; Deng, Yunfei; He, Yuan

    2010-03-10

    The hope is that photoactive compounds acting as potential insecticides will have reduced environmental risk, but that is not necessarily the case. In an attempt to elucidate the risk by which photoactivated alpha-terthienyl (alpha-T) affects human health, the effects of exposure of human 293 cells and insect Tn-5B1-4 cells to photoactivated alpha-T at certain doses were characterized. Photoactivated alpha-T exhibited dose dependence of toxicity and time kinetics of phototoxic activation on the growth of 293 cells (EC(50) = 6.23 microg/mL) and Tn-5B1-4 cells (EC(50) = 3.36 microg/mL). 293 cells appeared to be anchorage-independent, inflated, and broken; Tn-5B1-4 cells showed significant necrosis. ROS productions and lipid peroxidation of 293 cells were always lower than that of Tn-5B1-4 cells in the treatments of alpha-T at the same dose. Moreover, photoactivated alpha-T caused nonselective DNA damage in 293 and Tn-5B1-4 cells at a 10 microg/mL dose and induced cell-cycle progression of 293 cells to increase apoptosis of cells and G1 arrest and decrease in S phase cell population, whereas Tn-5B1-4 cells showed S arrest accompanied by a dose-dependent decrease in G1 and G2 phase cells at a 5 microg/mL dose. These observations suggest that Tn-5B1-4 cells are more susceptible to the action of photoactivated alpha-T than 293 cells, but photoactivated alpha-T as an efficient insecticide might be a potential factor in human mutagenic progression.

  6. Susceptibility of colorectal-carcinoma cells to natural-killer-mediated lysis: relationship to CEA expression and degree of differentiation.

    PubMed

    Prado, I B; Laudanna, A A; Carneiro, C R

    1995-06-09

    This study addresses the relevance of colorectal-carcinoma-cell (CRC) CEA expression and degree of differentiation in natural-killer(NK)-mediated lysis susceptibility. A 51Cr-release cytotoxicity assay performed with 5 human CRC lines demonstrated that CRC CEA expression was related to resistance to NK lysis. Moreover, the addition of anti-CEA Fab fragments to the assay led to a significant increase of lysability of high-CEA-producing and NK-resistant cells (LS 174-T), whereas purified CEA drastically reduced lysis of low-CEA-producing and NK-susceptible cells (LISP-I) in a dose-dependent manner. These results strongly suggest that CEA plays a causal role in CRC resistance to NK lysis. Nevertheless, our data did not demonstrate CEA binding to effector cell surface, suggesting that CEA expression can protect CRC, possibly by preventing NK-tumor-cell adhesion to occur. Our results also show that CRC susceptibility to NK lysis was related to a less differentiated phenotype. HCT-8, which are poorly differentiated and low-CEA-producing cells, were cultured in vitro in the presence of the differentiation agent sodium butyrate. Treated cells became less susceptible to NK lysis as they progressed towards a more differentiated phenotype. However, CEA production was not altered upon differentiation. Our study thus demonstrates that both features, CEA expression and degree of cellular differentiation, may individually influence CRC susceptibility to NK lysis.

  7. Transfection of non-susceptible cells with Ovis aries recombinant lymphocyte function-associated antigen 1 renders susceptibility to Mannheimia haemolytica leukotoxin.

    PubMed

    Lawrence, Paulraj K; Dassanayake, Rohana P; Knowles, Donald P; Srikumaran, Subramaniam

    2007-11-15

    Mannheimia haemolytica is an important etiological agent of pneumonia in domestic sheep (DS, Ovis aries). Leukotoxin (Lkt) produced by this organism is the principal virulence factor responsible for the acute inflammation and lung injury characteristic of M. haemolytica caused disease. Previously, we have shown that the leukocyte-specific integrins, beta(2) integrins, serve as the receptor for Lkt. Although it is certain that CD18, the beta subunit of beta(2) integrins, mediates Lkt-induced cytolysis of leukocytes, it is not clear whether CD18 of all three beta(2) integrins, LFA-1, Mac-1 and CR4, mediates Lkt-induced cytolysis of DS leukocytes. Since polymorphonuclear leukocytes, which express all three beta(2) integrins, are the leukocyte subset that is most susceptible to Lkt, we hypothesized that all three beta(2) integrins serve as the receptor for Lkt. The objective of this study was to determine whether DS LFA-1 serves as a receptor for M. haemolytica Lkt. We cloned the cDNA for DS CD11a, the alpha subunit of LFA-1, and co-transfected it along with the previously cloned cDNA for DS CD18, into a Lkt-non-suceptible cell line. Transfectants stably expressing DS LFA-1 were bound by Lkt. More importantly, Lkt lysed the DS LFA-1 transfectants in a concentration-dependent manner. Pre-incubation of Lkt with a Lkt-neutralizing monoclonal antibody (MAb), or pre-incubation of transfectants with MAbs specific for DS CD11a or CD18, inhibited Lkt-induced cytolysis of the transfectants. Exposure of LFA-1 transfectants to low concentrations of Lkt resulted in elevation of intracellular [Ca(2+)](i). Taken together, these results indicate that DS LFA-1 serves as a receptor for M. haemolytica Lkt.

  8. Development of Similar Broth Microdilution Methods to Determine the Antimicrobial Susceptibility of Flavobacterium columnare and F. psychrophilum.

    PubMed

    Gieseker, Charles M; Crosby, Tina C; Mayer, Tamara D; Bodeis, Sonya M; Stine, Cynthia B

    2016-03-01

    Flavobacterium columnare and F. psychrophilum are major fish pathogens that cause diseases that may require antimicrobial therapy. Choice of appropriate treatment is dependent upon determining the antimicrobial susceptibility of isolates. Therefore we optimized methods for broth microdilution testing of F. columnare and F. psychrophilum to facilitate standardizing an antimicrobial susceptibility test. We developed adaptations to make reproducible broth inoculums and confirmed the proper incubation time and media composition. We tested the stability of potential quality-control bacteria and compared test results between different operators. Log phase occurred at 48 h for F. columnare and 72-96 h for F. psychrophilum, confirming the test should be incubated at 28°C for approximately 48 h and at 18°C for approximately 96 h, respectively. The most consistent susceptibility results were achieved with plain, 4-g/L, dilute Mueller-Hinton broth supplemented with dilute calcium and magnesium. Supplementing the broth with horse serum did not improve growth. The quality-control strains, Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658, yielded stable minimal inhibitory concentrations (MIC) against all seven antimicrobials tested after 30 passes at 28°C and 15 passes at 18°C. In comparison tests, most MICs of the isolates agreed 100% within one drug dilution for ampicillin, florfenicol, and oxytetracycline. The agreement was lower with the ormetoprim-sulfdimethoxine combination, but there was at least 75% agreement for all but one isolate. These experiments have provided methods to help standardize antimicrobial susceptibility testing of these nutritionally fastidious aquatic bacteria. Received June 24, 2015; accepted October 2, 2015.

  9. Species-specific PCR for the Diagnosis and Determination of Antibiotic Susceptibilities of Brucella Strains Isolated from Tehran, Iran

    PubMed Central

    Irajian, Gholam Reza; Masjedian Jazi, Faramarz; Mirnejad, Reza; Piranfar, Vahhab; Zahraei salehi, Taghi; Amir Mozafari, Noor; Ghaznavi-rad, Ehsanollah; Khormali, Mahmoud

    2016-01-01

    Background: Brucellosis is an endemic zoonotic disease in the Middle East. This study intended to design a uniplex PCR assay for the detection and differentiation of Brucella at the species level and determining the antibiotic susceptibility pattern of Brucella in Iran. Methods: Sixty-eight Brucella specimens (38 animal and 30 human specimens) were analyzed using PCR (using one pair of primers). Antibiotic susceptibility patterns were evaluated and compared using the E-Test and disk diffusion susceptibility test. Tigecycline susceptibility pattern was compared with other antibiotics. Results: Thirty six isolates of B. melitensis, 2 isolates of B. abortus and 1 isolate of B. suis from the 38 animal specimens, 24 isolates of B. melitensis and 6 isolates of B. abortus from the 30 human specimens were differentiated. The MIC50 values of doxycycline for human and animal specimens were 125 and 10 μg/ml, respectively, tigecycline 0.064 μg/ml for human specimens and 0.125μg/ml for animal specimens, and trimethoprim/ sulfamethoxazole and ciprofloxacin 0.065 and 0.125μg/ml, respectively, for both human and animal specimens. The highest MIC50 value of streptomycin in the human specimens was 0.5μg/ml and 1μg/ml for the animal specimens. The greatest resistance shown was to tetracycline and gentamicin, respectively. Conclusion: Uniplex PCR for the detection and differentiation of Brucella at the strain level is faster and less expensive than multiplex PCR, and the antibiotics doxycycline, rifampin, trimethoprim-sulfamethoxazole, ciprofloxacin, and ofloxacin are the most effective antibiotics for treating brucellosis. Resistance to tigecycline is increasing, and we recommend that it be used in a combination regimen. PMID:27799972

  10. Virulence determinants, antimicrobial susceptibility, and molecular profiles of Erysipelothrix rhusiopathiae strains isolated from China.

    PubMed

    Ding, Yi; Zhu, Dongmei; Zhang, Jianmin; Yang, Longsheng; Wang, Xiangru; Chen, Huanchun; Tan, Chen

    2015-11-01

    The aim of this study was to understand the epidemiology, serotype, antibiotic sensitivity, and clonal structure of Erysipelothrix rhusiopathiae strains in China. Forty-eight strains were collected from seven provinces during the period from 2012 to 2013. Pulse-field electrophoresis identified 32 different patterns which were classified into clonal groups A–D. Most pulsed-field gel electrophoresis (PFGE) patterns were observed in clonal complex A and B, suggesting high diversity of genetic characterization in these two predominant clonal complexes. Antibiotic sensitivity test shows that all the stains were susceptible to ampicillin, erythromycin, and cefotaxime, and resistant to kanamycin, cefazolin, sulfadiazine, and amikacin. Erythromycin and ampicillin are recommended as first-line antibiotics for treatment of E. rhusiopathiae in China. The high variation in PFGE pattern among the main clonal groups shows that the E. rhusiopathiae in China may originate from different lineages and sources instead of from expansion of a single clonal lineage across different regions.

  11. Virulence determinants, antimicrobial susceptibility, and molecular profiles of Erysipelothrix rhusiopathiae strains isolated from China

    PubMed Central

    Ding, Yi; Zhu, Dongmei; Zhang, Jianmin; Yang, Longsheng; Wang, Xiangru; Chen, Huanchun; Tan, Chen

    2015-01-01

    The aim of this study was to understand the epidemiology, serotype, antibiotic sensitivity, and clonal structure of Erysipelothrix rhusiopathiae strains in China. Forty-eight strains were collected from seven provinces during the period from 2012 to 2013. Pulse-field electrophoresis identified 32 different patterns which were classified into clonal groups A–D. Most pulsed-field gel electrophoresis (PFGE) patterns were observed in clonal complex A and B, suggesting high diversity of genetic characterization in these two predominant clonal complexes. Antibiotic sensitivity test shows that all the stains were susceptible to ampicillin, erythromycin, and cefotaxime, and resistant to kanamycin, cefazolin, sulfadiazine, and amikacin. Erythromycin and ampicillin are recommended as first-line antibiotics for treatment of E. rhusiopathiae in China. The high variation in PFGE pattern among the main clonal groups shows that the E. rhusiopathiae in China may originate from different lineages and sources instead of from expansion of a single clonal lineage across different regions. PMID:26975059

  12. Determinative Developmental Cell Lineages Are Robust to Cell Deaths

    PubMed Central

    Yang, Jian-Rong; Ruan, Shuxiang; Zhang, Jianzhi

    2014-01-01

    All forms of life are confronted with environmental and genetic perturbations, making phenotypic robustness an important characteristic of life. Although development has long been viewed as a key component of phenotypic robustness, the underlying mechanism is unclear. Here we report that the determinative developmental cell lineages of two protostomes and one deuterostome are structured such that the resulting cellular compositions of the organisms are only modestly affected by cell deaths. Several features of the cell lineages, including their shallowness, topology, early ontogenic appearances of rare cells, and non-clonality of most cell types, underlie the robustness. Simple simulations of cell lineage evolution demonstrate the possibility that the observed robustness arose as an adaptation in the face of random cell deaths in development. These results reveal general organizing principles of determinative developmental cell lineages and a conceptually new mechanism of phenotypic robustness, both of which have important implications for development and evolution. PMID:25058586

  13. Activated T cells exhibit increased uptake of silicon phthalocyanine Pc 4 and increased susceptibility to Pc 4-photodynamic therapy-mediated cell death.

    PubMed

    Soler, David C; Ohtola, Jennifer; Sugiyama, Hideaki; Rodriguez, Myriam E; Han, Ling; Oleinick, Nancy L; Lam, Minh; Baron, Elma D; Cooper, Kevin D; McCormick, Thomas S

    2016-06-08

    Photodynamic therapy (PDT) is an emerging treatment for malignant and inflammatory dermal disorders. Photoirradiation of the silicon phthalocyanine (Pc) 4 photosensitizer with red light generates singlet oxygen and other reactive oxygen species to induce cell death. We previously reported that Pc 4-PDT elicited cell death in lymphoid-derived (Jurkat) and epithelial-derived (A431) cell lines in vitro, and furthermore that Jurkat cells were more sensitive than A431 cells to treatment. In this study, we examined the effectiveness of Pc 4-PDT on primary human CD3(+) T cells in vitro. Fluorometric analyses of lysed T cells confirmed the dose-dependent uptake of Pc 4 in non-stimulated and stimulated T cells. Flow cytometric analyses measuring annexin V and propidium iodide (PI) demonstrated a dose-dependent increase of T cell apoptosis (6.6-59.9%) at Pc 4 doses ranging from 0-300 nM. Following T cell stimulation through the T cell receptor using a combination of anti-CD3 and anti-CD28 antibodies, activated T cells exhibited increased susceptibility to Pc 4-PDT-induced apoptosis (10.6-81.2%) as determined by Pc 4 fluorescence in each cell, in both non-stimulated and stimulated T cells, Pc 4 uptake increased with Pc 4 dose up to 300 nM as assessed by flow cytometry. The mean fluorescence intensity (MFI) of Pc 4 uptake measured in stimulated T cells was significantly increased over the uptake of resting T cells at each dose of Pc 4 tested (50, 100, 150 and 300 nM, p < 0.001 between 50 and 150 nM, n = 8). Treg uptake was diminished relative to other T cells. Cutaneous T cell lymphoma (CTCL) T cells appeared to take up somewhat more Pc 4 than normal resting T cells at 100 and 150 nm Pc 4. Confocal imaging revealed that Pc 4 localized in cytoplasmic organelles, with approximately half of the Pc 4 co-localized with mitochondria in T cells. Thus, Pc 4-PDT exerts an enhanced apoptotic effect on activated CD3(+) T cells that may be exploited in targeting T cell-mediated skin

  14. Relationship between genetic polymorphisms of DNA ligase 1 and non-small cell lung cancer susceptibility and radiosensitivity.

    PubMed

    Tian, H; He, X; Yin, L; Guo, W J; Xia, Y Y; Jiang, Z X

    2015-06-26

    The aim of this study was to examine the relationship between genetic polymorphisms in DNA ligase 1 (LIG1) and non-small cell lung cancer (NSCLC) susceptibility and radiosensitivity in a Chinese population. This was a case-control study that included 352 NSCLC patients and 448 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to detect HaeIII polymorphisms in exon 6 of the LIG1 gene in this popula-tion. This information was used to observe the effects of radiation in pa-tients with different genotypes in order to determine the genotypes as-sociated with radiosensitivity. The CC genotype and C allele frequency were significantly higher in the NSCLC group than in the control group (P = 0.012 and P = 0.023, respectively). The relative risk of experienc-ing NSCLC was 2.55 [95% confidence interval (CI), 1.12-3.98] for CC homozygous patients and 0.87 (95%CI, 0.46-1.88) for AA homozygous patients. Analysis of LIG1 genetic polymorphisms and radiosensitiv-ity of NSCLC patients showed that AA homozygous patients were sig-nificantly more radiosensitive than the control group (AA vs AC, P = 0.014; AA vs CC, P < 0.001; AC vs CC, P = 0.023). Therefore, the LIG1 CC genotype was associated with susceptibility to NSCLC, and the AA genotype demonstrated increased radiosensitivity compared to the AC and CC genotypes.

  15. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host.

    PubMed

    Keon, John; Antoniw, John; Carzaniga, Raffaella; Deller, Siân; Ward, Jane L; Baker, John M; Beale, Michael H; Hammond-Kosack, Kim; Rudd, Jason J

    2007-02-01

    Many important fungal pathogens of plants spend long periods (days to weeks) of their infection cycle in symptomless association with living host tissue, followed by a sudden transition to necrotrophic feeding as host tissue death occurs. Little is known about either the host responses associated with this sudden transition or the specific adaptations made by the pathogen to invoke or tolerate it. We are studying a major host-specific fungal pathogen of cultivated wheat, Septoria tritici (teleomorph Mycosphaerella graminicola). Here, we describe the host responses of wheat leaves infected with M. graminicola during the development of disease symptoms and use microarray transcription profiling to identify adaptive responses of the fungus to its changing environment. We show that symptom development on a susceptible host genotype has features reminiscent of the hypersensitive response, a rapid and strictly localized form of host programmed cell death (PCD) more commonly associated with disease-resistance mechanisms. The initiation and advancement of this host response is associated with a loss of cell-membrane integrity and dramatic increases in apoplastic metabolites and the rate of fungal growth. Microarray analysis of the fungal genes differentially expressed before and after the onset of host PCD supports a transition to more rapid growth. Specific physiological adaptation of the fungus is also revealed with respect to membrane transport, chemical and oxidative stress mechanisms, and metabolism. Our data support the hypothesis that host plant PCD plays an important role in susceptibility towards fungal pathogens with necrotrophic lifestyles.

  16. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    SciTech Connect

    Wyrobek, A J; Schmid, T E; Marchetti, F

    2004-06-15

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm of mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.

  17. Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma.

    PubMed

    Cerhan, James R; Berndt, Sonja I; Vijai, Joseph; Ghesquières, Hervé; McKay, James; Wang, Sophia S; Wang, Zhaoming; Yeager, Meredith; Conde, Lucia; de Bakker, Paul I W; Nieters, Alexandra; Cox, David; Burdett, Laurie; Monnereau, Alain; Flowers, Christopher R; De Roos, Anneclaire J; Brooks-Wilson, Angela R; Lan, Qing; Severi, Gianluca; Melbye, Mads; Gu, Jian; Jackson, Rebecca D; Kane, Eleanor; Teras, Lauren R; Purdue, Mark P; Vajdic, Claire M; Spinelli, John J; Giles, Graham G; Albanes, Demetrius; Kelly, Rachel S; Zucca, Mariagrazia; Bertrand, Kimberly A; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Hutchinson, Amy; Zhi, Degui; Habermann, Thomas M; Link, Brian K; Novak, Anne J; Dogan, Ahmet; Asmann, Yan W; Liebow, Mark; Thompson, Carrie A; Ansell, Stephen M; Witzig, Thomas E; Weiner, George J; Veron, Amelie S; Zelenika, Diana; Tilly, Hervé; Haioun, Corinne; Molina, Thierry Jo; Hjalgrim, Henrik; Glimelius, Bengt; Adami, Hans-Olov; Bracci, Paige M; Riby, Jacques; Smith, Martyn T; Holly, Elizabeth A; Cozen, Wendy; Hartge, Patricia; Morton, Lindsay M; Severson, Richard K; Tinker, Lesley F; North, Kari E; Becker, Nikolaus; Benavente, Yolanda; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; Staines, Anthony; Lightfoot, Tracy; Crouch, Simon; Smith, Alex; Roman, Eve; Diver, W Ryan; Offit, Kenneth; Zelenetz, Andrew; Klein, Robert J; Villano, Danylo J; Zheng, Tongzhang; Zhang, Yawei; Holford, Theodore R; Kricker, Anne; Turner, Jenny; Southey, Melissa C; Clavel, Jacqueline; Virtamo, Jarmo; Weinstein, Stephanie; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Trichopoulos, Dimitrios; Vermeulen, Roel C H; Boeing, Heiner; Tjonneland, Anne; Angelucci, Emanuele; Di Lollo, Simonetta; Rais, Marco; Birmann, Brenda M; Laden, Francine; Giovannucci, Edward; Kraft, Peter; Huang, Jinyan; Ma, Baoshan; Ye, Yuanqing; Chiu, Brian C H; Sampson, Joshua; Liang, Liming; Park, Ju-Hyun; Chung, Charles C; Weisenburger, Dennis D; Chatterjee, Nilanjan; Fraumeni, Joseph F; Slager, Susan L; Wu, Xifeng; de Sanjose, Silvia; Smedby, Karin E; Salles, Gilles; Skibola, Christine F; Rothman, Nathaniel; Chanock, Stephen J

    2014-11-01

    Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma subtype and is clinically aggressive. To identify genetic susceptibility loci for DLBCL, we conducted a meta-analysis of 3 new genome-wide association studies (GWAS) and 1 previous scan, totaling 3,857 cases and 7,666 controls of European ancestry, with additional genotyping of 9 promising SNPs in 1,359 cases and 4,557 controls. In our multi-stage analysis, five independent SNPs in four loci achieved genome-wide significance marked by rs116446171 at 6p25.3 (EXOC2; P = 2.33 × 10(-21)), rs2523607 at 6p21.33 (HLA-B; P = 2.40 × 10(-10)), rs79480871 at 2p23.3 (NCOA1; P = 4.23 × 10(-8)) and two independent SNPs, rs13255292 and rs4733601, at 8q24.21 (PVT1; P = 9.98 × 10(-13) and 3.63 × 10(-11), respectively). These data provide substantial new evidence for genetic susceptibility to this B cell malignancy and point to pathways involved in immune recognition and immune function in the pathogenesis of DLBCL.

  18. Method of determining the number of cells in cell culture

    SciTech Connect

    Connolly, D.T.

    1990-06-12

    This patent describes a color-sensitivity method for determining the number of cells in in vitro cell culture at a sensitivity as low as about 100 or about 500 cells. It comprises lysing the cells and incubating the lysate with p-nitrophenyl phosphate at acid pH for a predetermined period of time at a temperature of from about 35{degrees} to about 38{degrees}C. and then measuring the color development at 400 to 420 nanometers and correlating the color development with cell number by comparing with a control standard of known cell number.

  19. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility.

    PubMed

    Dai, Xingliang; Ma, Cheng; Lan, Qing; Xu, Tao

    2016-10-11

    Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting. During the in vitro culture period, the printed glioma stem cells not only maintained their inherent characteristics of cancer stem cells (Nestin), but also showed differentiation potential (glial fibrillary acidic protein and β-tubulin III). In order to verify the vascularization potential of glioma stem cells, tumor angiogenesis biomarker, vascular endothelial growth factor was detected by immunohistochemistry, and its expression increased from week one to three during the culture period. Drug-sensitivity results showed that 3D printed tumor model was more resistant to temozolomide than 2D monolayer model at TMZ concentrations of 400-1600 μg ml(-1). In summary, 3D bioprinted glioma model provides a novel alternative tool for studying gliomagenesis, glioma stem cell biology, drug resistance, and anticancer drug susceptibility in vitro.

  20. Herpes simplex virus type 2 modulates the susceptibility of human bladder cells to uropathogenic bacteria.

    PubMed

    Superti, F; Longhi, C; Di Biase, A M; Tinari, A; Marchetti, M; Pisani, S; Gallinelli, C; Chiarini, F; Seganti, L

    2001-09-01

    The present study analyses the susceptibility of human bladder-derived cells (HT-1376) to the infection by herpes simplex virus type 2 (HSV-2) and Chlamydia trachomatis, as well as to the adhesiveness of uropathogenic bacteria. HT-1376 cells were efficiently infected by HSV-2 strain 333, as demonstrated by immunofluorescence staining of viral antigens, titration of cytopathic effect, and visualisation by transmission electron microscopy. This cell model was also prone to C. trachomatis (serovar E, Bour strain) replication and to the adherence of clinical uropathogenic isolates of Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris and Enterococcus faecalis. The pre-infection of HT-1376 cells with HSV-2 caused a tenfold increased adherence of an E. coli strain (U1), isolated from a patient affected by severe haemorrhagic cystitis, whereas in HSV-2 pre-infected cells the number of C. trachomatis inclusion bodies was significantly reduced. Our findings indicate that these cells are a suitable in vitro model for studying infection and super-infection of the lower urinary tract by viruses and bacteria.

  1. T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    PubMed Central

    Neill, Daniel R.; Fernandes, Vitor E.; Wisby, Laura; Haynes, Andrew R.; Ferreira, Daniela M.; Laher, Ameera; Strickland, Natalie; Gordon, Stephen B.; Denny, Paul; Kadioglu, Aras; Andrew, Peter W.

    2012-01-01

    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design. PMID:22563306

  2. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice.

    PubMed

    Copin, Richard; Vitry, Marie-Alice; Hanot Mambres, Delphine; Machelart, Arnaud; De Trez, Carl; Vanderwinden, Jean-Marie; Magez, Stefan; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-01-01

    Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b⁺ F4/80⁺ MHC-II⁺ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS⁺ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.

  3. In Vitro Antifungal Susceptibility Testing of Candida Isolates with the EUCAST Methodology, a New Method for ECOFF Determination.

    PubMed

    Meletiadis, J; Curfs-Breuker, I; Meis, J F; Mouton, J W

    2017-04-01

    The in vitro susceptibilities of 1,099 molecularly identified clinical Candida isolates against 8 antifungal drugs were determined using the EUCAST microdilution method. A new simple, objective, and mathematically solid method for determining epidemiological cutoff values (ECOFFs) was developed by derivatizing the MIC distribution and determining the derivatized ECOFF (dECOFF) as the highest MIC with the maximum second derivative. The dECOFFs were similar (95% agreement within 1 dilution) to the EUCAST ECOFFs. Overall, low non-wild-type/resistance rates were found. The highest rates were found for azoles with C. parapsilosis (2.7 to 9.8%), C. albicans (7%), and C. glabrata (1.7 to 2.3%) and for echinocandins with C. krusei (3.3%), C. albicans (1%), and C. tropicalis (1.7%). Copyright © 2017 American Society for Microbiology.

  4. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21.

    PubMed Central

    Shafren, D R; Dorahy, D J; Greive, S J; Burns, G F; Barry, R D

    1997-01-01

    Competitive viral binding assays have revealed previously that coxsackievirus A21 (CAV21) and human rhinovirus 14 (HRV14) share a common cell surface receptor. More recently, intercellular adhesion molecule-1 (ICAM-1) has been identified as the cellular receptor for HRV-14. Also, anti-ICAM-1 monoclonal antibodies (MAbs) blocked infection by HRV14, CAV13, CAV18, and CAV21, suggesting that these viruses share this receptor; however, this has never been established by more direct methods. In this study we show conclusively that CAV21 binds to ICAM-1 and that MAbs directed against the N-terminal domain of the molecule inhibit this attachment. Furthermore, we show that the specific interaction between ICAM-1 and 160S CAV21 virions induces formation of 135S A particles. Finally, we show transfection of normally nonsusceptible mouse L cells with human ICAM-1 cDNA renders them susceptible to infection by CAV21. PMID:8985417

  5. B16 and cloudman S91 mouse melanoma cells susceptibility to apoptosis after dacarbazine treatment.

    PubMed

    Olszewska-Słonina, Dorota M; Styczyńisk, Jan; Drewa, Tomasz A; Olszewski, Krzysztof J; Czajkowski, Rafał

    2005-01-01

    Considering the necessity of an individual choice of cytostatic drugs for patients with cancer disease and tumor cells' resistance to these compounds, their ability to induction of apoptosis should be investigated. The aim of this study was to determine the influence of dacarbazine (DTIC) on morphology and kinetics of proliferation of B16 and Cloudman S91 cells. It is important to determine the kind of death induced by the DTIC and the effect of a specific concentration. The evaluation of apoptosis and necrosis in these two mouse melanoma cell lines in vitro was performed. Induction of apoptosis was estimated in annexin V binding assay by flow cytometry. DNA content and cell cycle phases were determined by propidium iodide staining. DTIC induced morphological changes typical for apoptosis and necrosis in both cell lines. DTIC caused cell cycle arrest in S and G2/M phase of both cell lines which showed hypertetraploidy. The highest induction of apoptosis was observed in DTIC concentration of 200 microg/mL for B16 cells (11%) and 100 microg/mL for apoptosis Cloudman S91 cells (22.2%). Higher doses of DTIC caused intensification of necrotic process. The B16 melanoma cells are more sensitive to DTIC than the Cloudman S91 cells, however more intensive apoptotic process was detected in Cloudman S91 cells already at lower concentration of DTIC.

  6. The activation of B cells enhances DC-SIGN expression and promotes susceptibility of B cells to HPAI H5N1 infection.

    PubMed

    Na-Ek, Prasit; Thewsoongnoen, Jutarat; Thanunchai, Maytawan; Wiboon-Ut, Suwimon; Sa-Ard-Iam, Noppadol; Mahanonda, Rangsini; Thitithanyanont, Arunee

    2017-09-02

    The interplay between highly pathogenic avian influenza (HPAI) H5N1 virus and immune cells has been extensively studied for years, as host immune components are thought to play significant roles in promoting the systemic spread of the virus and responsible for cytokine storm. Previous studies suggested that the interaction of B cells and monocytes could promote HPAI H5N1 infection by enhancing avian influenza virus receptor expression. In this study, we further investigate the relationship between the HPAI H5N1 virus, activated B cells, and DC-SIGN expression. DC-SIGN has been described as an important factor for mediating various types of viral infection. Here, we first demonstrate that HPAI H5N1 infection could induce an activation of B cells, which was associated with DC-SIGN expression. Using CD40L and recombinant IL-4 for B cell stimulation, we determined that DC-SIGN expressed on activated B cells was able to enhance its susceptibility to HPAI H5N1 infection. Our findings uncover the interplay between this H5N1 virus and B cells and provide important information in understanding how the virus overcomes our immune system, contributing to its unusual immunopathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cell envelope analysis of insensitive, susceptible or resistant strains of Leuconostoc and Weissella genus to Leuconostoc mesenteroides FR 52 bacteriocins.

    PubMed

    Limonet, Maxime; Cailliez-Grimal, Catherine; Linder, Michel; Revol-Junelles, Anne-Marie; Millière, Jean-Bernard

    2004-12-01

    Mesenterocins 52A and 52B belong to class II of lactic acid bacteria bacteriocins. To study susceptibility, insensitivity and resistance to these mesenterocins, four wild-type bacterial strains and four resistant strains, all from Leuconostoc or Weissella genus, were compared. Several cell envelope features were investigated: susceptibilities to antibiotics and to lysozyme, cell morphology and membrane phospholipids contents. The strain insensitive to the two mesenterocins appeared to be resistant to lysozyme and exhibited the highest resistance to antibiotics. Resistant strains displayed cell morphology modifications, several increases in antibiotic resistance and modifications in lysozyme susceptibility. Moreover, mesenterocin 52A-resistant strains displayed modifications in their membrane phospholipids, leading to a more cationic membrane. Insensitivity and resistance of Leuconostoc or Weissella strains seem to be due to various minor modifications of the membrane and/or of the cell wall.

  8. Susceptibility of Chinese Perch Brain (CPB) Cell and Mandarin Fish to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) Infection

    PubMed Central

    Tu, Jiagang; Chen, Wenjie; Fu, Xiaozhe; Lin, Qiang; Chang, Ouqin; Zhao, Lijuan; Lan, Jiangfeng; Li, Ningqiu; Lin, Li

    2016-01-01

    Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), a neurological disease responsible for high mortality of fish species worldwide. Taking advantage of our established Chinese perch brain (CPB) cell line derived from brain tissues of Mandarin fish (Siniperca chuatsi), the susceptibility of CPB cell to Red-Spotted Grouper nervous necrosis virus (RGNNV) was evaluated. The results showed that RGNNV replicated well in CPB cells, resulting in cellular apoptosis. Moreover, the susceptibility of Mandarin fish to RGNNV was also evaluated. Abnormal swimming was observed in RGNNV-infected Mandarin fish. In addition, the cellular vacuolation and viral particles were also observed in brain tissues of RGNNV-infected Mandarin fish by Hematoxylin-eosin staining or electronic microscopy. The established RGNNV susceptible brain cell line from freshwater fish will pave a new way for the study of the pathogenicity and replication of NNV in the future. PMID:27213348

  9. Susceptibility of Chinese Perch Brain (CPB) Cell and Mandarin Fish to Red-Spotted Grouper Nervous Necrosis Virus (RGNNV) Infection.

    PubMed

    Tu, Jiagang; Chen, Wenjie; Fu, Xiaozhe; Lin, Qiang; Chang, Ouqin; Zhao, Lijuan; Lan, Jiangfeng; Li, Ningqiu; Lin, Li

    2016-05-19

    Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), a neurological disease responsible for high mortality of fish species worldwide. Taking advantage of our established Chinese perch brain (CPB) cell line derived from brain tissues of Mandarin fish (Siniperca chuatsi), the susceptibility of CPB cell to Red-Spotted Grouper nervous necrosis virus (RGNNV) was evaluated. The results showed that RGNNV replicated well in CPB cells, resulting in cellular apoptosis. Moreover, the susceptibility of Mandarin fish to RGNNV was also evaluated. Abnormal swimming was observed in RGNNV-infected Mandarin fish. In addition, the cellular vacuolation and viral particles were also observed in brain tissues of RGNNV-infected Mandarin fish by Hematoxylin-eosin staining or electronic microscopy. The established RGNNV susceptible brain cell line from freshwater fish will pave a new way for the study of the pathogenicity and replication of NNV in the future.

  10. CD52-Negative NK Cells Are Abundant in the Liver and Less Susceptible to Alemtuzumab Treatment.

    PubMed

    Hotta, Ryuichi; Ohira, Masahiro; Matsuura, Toshiharu; Muraoka, Izumi; Tryphonopoulos, Panagiotis; Fan, Ji; Tekin, Akin; Selvaggi, Gennaro; Levi, David; Ruiz, Phillip; Ricordi, Camillo; Vianna, Rodrigo; Ohdan, Hideki; Waldmann, Herman; Tzakis, Andreas G; Nishida, Seigo

    2016-01-01

    T-cell depleting strategies have become an integral part of immunosuppressive regimens in organ transplantation. Alemtuzumab is a humanized monoclonal antibody against CD52, a cell-surface antigen on several immune cells. It has been suggested that lymphocyte depletion increases the risk of serious infections. However, this has not been observed with short-term alemtuzumab treatment in an organ transplant setting. For induction therapy using alemtuzumab following liver transplantation, we found that T- and B-cell numbers declined rapidly after alemtuzumab therapy; however, the natural killer (NK) cell number was sustained. NK cells are important effectors of innate immunity. Since the effects of alemtuzumab on NK cell functions, especially those of liver NK cells, are unknown, this study aimed to investigate this in detail. To assess the effect of alemtuzumab on NK cells, samples were obtained from 7 organ donors and examined by flow cytometry using Annexin V and propidium iodide. Phenotypical and functional differences within subsets of NK cells with different levels of CD52 expression were determined by flow cytometry and in vitro cytotoxicity assays. CD52 expression on NK cells was lower than that on other lymphocyte subsets. The liver contained a large number of CD52- NK cells compared with the peripheral blood. In vitro treatment of liver-derived NK cells with alemtuzumab did not result in cell death. In contrast, co-incubation with alemtuzumab induced cell death in peripheral blood mononuclear cells and non-NK cells in the liver. Furthermore, CD52- liver NK cells were more cytotoxic and produced more IFN-γ than CD52+ NK cells after cytokine activation. The liver contains a large number of CD52- NK cells. These cells are refractory to alemtuzumab and have robust activity. These findings indicate that CD52- NK cells persist and could protect against infection after alemtuzumab-based lymphocyte depletion.

  11. Air pollution metric analysis while determining susceptible periods of pregnancy for low birth weight.

    PubMed

    Warren, Joshua L; Fuentes, Montserrat; Herring, Amy H; Langlois, Peter H

    2013-01-01

    Multiple metrics to characterize air pollution are available for use in environmental health analyses in addition to the standard Air Quality System (AQS) pollution monitoring data. These metrics have complete spatial-temporal coverage across a domain and are therefore crucial in calculating pollution exposures in geographic areas where AQS monitors are not present. We investigate the impact that two of these metrics, output from a deterministic chemistry model (CMAQ) and from a spatial-temporal downscaler statistical model which combines information from AQS and CMAQ (DS), have on risk assessment. Using each metric, we analyze ambient ozone's effect on low birth weight utilizing a Bayesian temporal probit regression model. Weekly windows of susceptibility are identified and analyzed jointly for all births in a subdomain of Texas, 2001-2004, and results from the different pollution metrics are compared. Increased exposures during weeks 20-23 of the pregnancy are identified as being associated with low birth weight by the DS metric. Use of the CMAQ output alone results in increased variability of the final risk assessment estimates, while calibrating the CMAQ through use of the DS metric provides results more closely resembling those of the AQS. The AQS data are still preferred when available.

  12. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt.

    PubMed

    Mullen, Peter J; Zahno, Anja; Lindinger, Peter; Maseneni, Swarna; Felser, Andrea; Krähenbühl, Stephan; Brecht, Karin

    2011-12-01

    Statins are widely used to prevent cardiovascular diseases. They are well-tolerated, with side-effects mainly seen in skeletal muscle. How these side-effects are caused is unknown. We compared isolated primary mouse skeletal muscle myocytes, C2C12 myotubes and liver HepG2 cells to detect differences that could uncover why statins are toxic in skeletal muscle but less so in the liver. 10μM simvastatin caused a decrease in mitochondrial respiration in the primary mouse myocytes and C2C12 myotubes, but had no effect in the HepG2 cells. Mitochondrial integrity is maintained by multiple signaling pathways. One of these pathways, Igf-1/Akt signaling, is also heavily implicated in causing statin-induced toxicity by upregulating atrogin-1. We found that phosphorylated Akt was reduced in C2C12 myotubes but not in HepG2 cells. HepG2 mitochondrial respiration became susceptible to simvastatin-treatment after Akt inhibition, and mitochondrial respiration was rescued in Igf-1-treated C2C12 myotubes. These results suggest that disruption of Igf-1/Akt signaling is a causative factor in simvastatin-induced mitochondrial dysfunction in C2C12 myotubes, whereas HepG2 cells are protected by maintaining Igf-1/Akt signaling. We conclude that phosphorylation of Akt is a key indicator of susceptibility to statin-induced toxicity. How statins can disrupt Igf-1/Akt signaling is unknown. Statins reduce geranylgeranylation of small GTPases, such as Rap1. Previous studies implicate Rap1 as a link between cAMP/Epac and Igf-1/Akt signaling. Transient transfection of constitutively active Rap1 into C2C12 myotubes led to a partial rescue of simvastatin-induced inhibition of mitochondrial respiration, providing a novel link between signaling and respiration.

  13. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    PubMed Central

    Sridharan, Deepa M.; Enerio, Shiena; LaBarge, Mark A.; Stampfer, Martha M.; Pluth, Janice M.

    2017-01-01

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations and changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population. PMID:28245431

  14. Low in situ expression of antioxidative enzymes in rat cerebellar granular cells susceptible to methylmercury.

    PubMed

    Fujimura, M; Usuki, F

    2014-01-01

    Methylmercury (MeHg), an environmental neurotoxicant, induces site-specific toxicity in the brain. Although oxidative stress has been demonstrated with MeHg toxicity, the site-specific toxicity is not completely understood. Among the cerebellar neurons, cerebellar granule cells (CGCs) appear vulnerable to MeHg, whereas Purkinje cells and molecular layer neurons are resistant. Here, we use a MeHg-intoxicated rat model to investigate these cerebellar neurons for the different causes of susceptibility to MeHg. Rats were exposed to 20 ppm MeHg for 4 weeks and subsequently exhibited neuropathological changes in the cerebellum that were similar to those observed in humans. We first isolated the three cerebellar neuron types using a microdissection system and then performed real-time PCR analyses for antioxidative enzymes. We observed that expression of manganese-superoxide dismutase (Mn-SOD), glutathione peroxidase 1 (GPx1), and thioredoxin reductase 1 (TRxR1) was significantly higher in Purkinje cells and molecular layer neurons than in CGCs. Finally, we performed immunohistochemical analyses on the cerebellum. Immunohistochemistry showed increased expression of Mn-SOD, GPx1, and TRxR1 in Purkinje cells and molecular layer neurons, which was coincident with the mRNA expression patterns. Considering Mn-SOD, GPx1, and TRxR1 are critical for protecting cells against MeHg intoxication, the results indicate that low expression of these antioxidative enzymes increases CGCs vulnerability to MeHg toxicity.

  15. Adrenergic-mediated loss of splenic marginal zone B cells contributes to infection susceptibility after stroke

    PubMed Central

    McCulloch, Laura; Smith, Craig J.; McColl, Barry W.

    2017-01-01

    Infection is a major complication of acute stroke and causes increased mortality and morbidity; however, current interventions do not prevent infection and improve clinical outcome in stroke patients. The mechanisms that underlie susceptibility to infection in these patients are unclear. Splenic marginal zone (MZ) B cells are innate-like lymphocytes that provide early defence against bacterial infection. Here we show experimental stroke in mice induces a marked loss of MZ B cells, deficiencies in capturing blood-borne antigen and suppression of circulating IgM. These deficits are accompanied by spontaneous bacterial lung infection. IgM levels are similarly suppressed in stroke patients. β-adrenergic receptor antagonism after experimental stroke prevents loss of splenic MZ B cells, preserves IgM levels, and reduces bacterial burden. These findings suggest that adrenergic-mediated loss of MZ B cells contributes to the infection-prone state after stroke and identify systemic B-cell disruption as a target for therapeutic manipulation. PMID:28422126

  16. In Utero Activation of Fetal Memory T Cells Alters Host Regulatory Gene Expression and Affects HIV Susceptibility

    PubMed Central

    Steiner, Kevin; Malhotra, Indu; Mungai, Peter; Muchiri, Eric; Dent, Arlene; King, Christopher L.

    2013-01-01

    In utero priming to malaria antigens renders cord blood mononuclear cells (CBMC) more susceptible to productive HIV infection in vitro in the absence of exogenous stimulation. This provides a unique model to better understand mechanisms affecting lymphocyte susceptibility to HIV infection in vivo. Effector memory CD3+CD4+ T cells (TEM) were the exclusive initial targets of HIV with rapid spread to central memory cells. HIV susceptibility correlated with increased expression of CD25 and HLA-DR on TEM. Virus entered all samples equally, however gag/pol RNA was only detected in HIV susceptible samples, suggesting regulation of proviral gene transcription. Targeted analysis of human genes in memory T cells showed greater expression of IFNG, NFATc1, IRF1, FOS, and PPIA and decreased expression YY1 and TFCP2 in HIV susceptible samples. Thus fetal priming to exogenous antigens enhances specific proviral gene transcription pathways in effector memory cells that may increase risk of vertical transmission of HIV. PMID:22280894

  17. HPV16E7 silencing enhances susceptibility of CaSki cells to natural killer cells.

    PubMed

    Guo, Huimin; Hu, Ruili; Guan, Xinlei; Guo, Fang; Zhao, Shuzhen; Zhang, Xueying

    2014-04-01

    The aim of the present study was to investigate the cytotoxicity of natural killer (NK) cells to CaSki cells following knockdown of the E7 protein of the human papillomavirus type 16 (HPV16E7). Recombinant adenovirus-short hairpin-E7 protein of the human panillomavirus type 16 (Ad‑sh‑HPV16E7) was constructed and used to infect CaSki cells. The expression of HPV16E7 in CaSki cells was assessed using western blot analysis. The expression of cell surface molecule major histocompatibility complex‑I (MHC‑I) in CaSki cells infected with Ad‑sh‑HPV16E7 was examined using flow cytometry. The cytotoxicity of NK cells isolated and expanded from healthy volunteers on Ad‑sh‑HPV16E7‑infected CaSki cells was assessed using the lactate dehydrogenase (LDH) release assay. Ad‑sh‑HPV16E7 was successfully constructed and able to inhibit HPV16E7 the expression in CaSki cells. The expression of major histocompa-tibility complex I (MHC‑I), a surface molecule, in CaSki cells was increased after infection with Ad‑sh‑HPV16E7. Compared with the controls, the cytotoxicity of NK cells on CaSki cells, which were infected with Ad‑sh‑HPV16E7, was decreased (p<0.05). In conclusion, HPV16E7 suppresses the expression of MHC‑I on CaSki cells to evade cytotoxic T‑cell (CTL) response. However, it was possible to enhance the cytotoxicity of expanded NK cells to cervical cancer cells or HPV16‑infected cells in vitro, indicating that NK cells may be used for immunotherapy of cervical cancer.

  18. Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415.

    PubMed

    Dean, Charles R; Narayan, Shubha; Daigle, Denis M; Dzink-Fox, JoAnn L; Puyang, Xiaoling; Bracken, Kathryn R; Dean, Karl E; Weidmann, Beat; Yuan, Zhengyu; Jain, Rakesh; Ryder, Neil S

    2005-08-01

    Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 microg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 microg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 microg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.

  19. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro.

    PubMed

    Zhao, Qingxin; Yuan, Sheng; Wang, Xin; Zhang, Yuling; Zhu, Hong; Lu, Changmei

    2008-08-01

    Mature plant cell walls lose their ability to expand and become unresponsive to expansin. This phenomenon is believed to be due to cross-linking of hemicellulose, pectin, or phenolic groups in the wall. By screening various hydrolytic enzymes, we found that pretreatment of nongrowing, heat-inactivated, basal cucumber (Cucumis sativus) hypocotyls with pectin lyase (Pel1) from Aspergillus japonicus could restore reconstituted exogenous expansin-induced extension in mature cell walls in vitro. Recombinant pectate lyase A (PelA) and polygalacturonase (PG) from Aspergillus spp. exhibited similar capacity to Pel1. Pel1, PelA, and PG also enhanced the reconstituted expansin-induced extension of the apical (elongating) segments of cucumber hypocotyls. However, the effective concentrations of PelA and PG for enhancing the reconstituted expansin-induced extension were greater in the apical segments than in the basal segments, whereas Pel1 behaved in the opposite manner. These data are consistent with distribution of more methyl-esterified pectin in cell walls of the apical segments and less esterified pectin in the basal segments. Associated with the degree of esterification of pectin, more calcium was found in cell walls of basal segments compared to apical segments. Pretreatment of the calcium chelator EGTA could also restore mature cell walls' susceptibility to expansin by removing calcium from mature cell walls. Because recombinant pectinases do not hydrolyze other wall polysaccharides, and endoglucanase, xylanase, and protease cannot restore the mature wall's extensibility, we can conclude that the pectin network, especially calcium-pectate bridges, may be the primary factor that determines cucumber hypocotyl mature cell walls' unresponsiveness to expansin.

  20. Method of determining the delayed fracture susceptibility of steel under the simultaneous effect of hydrogen and mechanical stresses

    SciTech Connect

    Mishin, V.M.; Beresnev, A.G.; Sarrak, V.I.

    1987-02-01

    The delayed fracture test is one of the most informative methods for evaluating the hydrogen embrittlement susceptibility of structural steels. However, in the majority of cases, delayed fracture tests under the simultaneous effect of the metal of mechanical stresses and a hydrogen-containing medium are carried out using methods which make it possible to obtain only the qualitative characteristics of the susceptibility to hydrogen embrittlement. The methods proposed by the authors in this paper include the mechanical tests of delayed fracture of the specimens, simultaneous saturation of the specimens with hydrogen, calculation of the maximum local tensile stresses ahead of the stress raiser, and determining the threshold value of these stresses below which no crack initiation takes place. The authors also propose a variation on the equipment with the following advantages: the specimen is loaded by pure bending to determine the elastic stress concentration factors required for calculating the maximum local tensile stresses; the intensity of the action of the working medium can be easily varied by the application of various electrolytes and cathodic current densities.

  1. Health communication, genetic determinism, and perceived control: the roles of beliefs about susceptibility and severity versus disease essentialism.

    PubMed

    Parrott, Roxanne; Kahl, Mary L; Ndiaye, Khadidiatou; Traeder, Tara

    2012-08-01

    This research examined the lay public's beliefs about genes and health that might be labeled deterministic. The goals of this research were to sort through the divergent and contested meanings of genetic determinism in an effort to suggest directions for public health genomic communication. A survey conducted in community-based settings of 717 participants included 267 who self-reported race as African American and 450 who self-reported race as Caucasian American. The survey results revealed that the structure of genetic determinism included 2 belief sets. One set aligned with perceived threat, encompassing susceptibility and severity beliefs linked to genes and health. The other set represents beliefs about biological essentialism linked to the role of genes for health. These concepts were found to be modestly positively related. Threat beliefs predicted perceived control over genes. Public health efforts to communicate about genes and health should consider effects of these messages for (a) perceived threat relating to susceptibility and severity and (b) perceptions of disease essentialism. Perceived threat may enhance motivation to act in health protective ways, whereas disease essentialist beliefs may contribute to a loss of motivation associated with control over health.

  2. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    PubMed

    Mahller, Yonatan Y; Williams, Jon P; Baird, William H; Mitton, Bryan; Grossheim, Jonathan; Saeki, Yoshinaga; Cancelas, Jose A; Ratner, Nancy; Cripe, Timothy P

    2009-01-01

    Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers. Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice. These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  3. Experiment on the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles.

    PubMed

    Zhao, Ying-Zheng; Gao, Hui-Sheng; Zhou, Zhi-Cai; Tang, Qin-Qin; Lu, Cui-Tao; Jin, Zhuo; Tian, Ji-Lai; Xu, Yan-Yan; Tian, Xin-Qiao; Wang, Lee; Kong, Fan-Lei; Li, Xiao-Kun; Huang, Pin-Tong; He, Hui-Liao; Wu, Yan

    2010-07-01

    The objective of this study was to investigate the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles. Ultrasound (US) combined with phospholipid-based microbubbles (MB) was used to enhance the susceptibility of colon cancer cell line SWD-620 to anticancer drugs Topotecan hydrochloride (TOP). Experiments were designed to investigate the influence of main factors on cell viability and cell inhibition, such as US intensity, MB concentration, drug combination with MB, asynchronous action between US triggered cavitation and drug entering cell, MB particle size. US exposure for 10 sec with US probe power at 0.6 W/cm(2) had satisfied cell viability. Treated with US combined with 15% MB, cell viability maintained more than 85% and cell inhibition 86.16%. Under optimal US combined with MB, TOP showed much higher cell inhibition than that of only TOP group. Cell inhibition under short delayed time (<2 h) for TOP addition did not show obvious difference. In terms of MB particle size, the order of cell inhibition was: Mixture > Micron bubble part > Nanometer bubble part. US combined with MB can enhance the susceptibility of cancer cells to chemotherapeutic drug, which may provide a potential method for US-mediated tumor chemotherapy.

  4. Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong

    PubMed Central

    Seneviratne, Chaminda J.; Rajan, Suhasini; Wong, Sarah S. W.; Tsang, Dominic N. C.; Lai, Christopher K. C.; Samaranayake, Lakshman P.; Jin, Lijian

    2016-01-01

    Candida bloodstream infections (CBI) are one of the most common nosocomial infections globally, and they account for a high mortality rate. The increasing global prevalence of drug-resistant Candida strains has also been posing a challenge to clinicians. In this study, we comprehensively evaluated the biofilm formation and production of hemolysin and proteinase of 63 CBI isolates derived from a hospital setting in Hong Kong as well as their antifungal susceptibility both in the presence and in the absence of human serum, using standard methodology. Candida albicans was the predominant species among the 63 CBI isolates collected, and non-albicans Candida species accounted for approximately one third of the isolates (36.5%). Of them, Candida tropicalis was the most common non-albicans Candida species. A high proportion (31.7%) of the CBI isolates (40% of C. albicans isolates, 10% of C. tropicalis isolates, 11% of C. parapsilosis isolates, and 100% of C. glabrata isolates) were found to be resistant to fluconazole. One of the isolates (C. tropicalis) was resistant to amphotericin B. A rising prevalence of drug-resistance CBI isolates in Hong Kong was observed with reference to a previous study. Notably, all non-albicans Candida species, showed increased hemolytic activity relative to C. albicans, whilst C. albicans, C. tropicalis, and C. parapsilosis exhibited proteinase activities. Majority of the isolates were capable of forming mature biofilms. Interestingly, the presence of serum distorted the yeast sensitivity to fluconazole, but not amphotericin B. Taken together, our findings demonstrate that CBI isolates of Candida have the potential to express to varying extent their virulence attributes (e.g., biofilm formation, hemolysin production, and proteinase activity) and these, together with perturbations in their antifungal sensitivity in the presence of serum, may contribute to treatment complication in candidemia. The effect of serum on antifungal activity

  5. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility

    PubMed Central

    Fahmideh, Maral Adel; Lavebratt, Catharina; Schüz, Joachim; Röösli, Martin; Tynes, Tore; Grotzer, Michael A.; Johansen, Christoffer; Kuehni, Claudia E; Lannering, Birgitta; Prochazka, Michaela; Schmidt, Lisbeth S; Feychting, Maria

    2016-01-01

    Knowledge on the role of genetic polymorphisms in the etiology of pediatric brain tumors (PBTs) is limited. Therefore, we investigated the association between single nucleotide polymorphisms (SNPs), identified by candidate gene-association studies on adult brain tumors, and PBT risk. The study is based on the largest series of PBT cases to date. Saliva DNA from 245 cases and 489 controls, aged 7–19 years at diagnosis/reference date, was genotyped for 68 SNPs. Data were analyzed using unconditional logistic regression. The results showed EGFRrs730437 and EGFRrs11506105 may decrease susceptibility to PBTs, whereas ERCC1rs3212986 may increase risk of these tumors. Moreover, stratified analyses indicated CHAF1Ars243341, CHAF1Ars2992, and XRCC1rs25487 were associated with a decreased risk of astrocytoma subtype. Furthermore, an increased risk of non-astrocytoma subtype associated with EGFRrs9642393, EME1rs12450550, ATMrs170548, and GLTSCRrs1035938 as well as a decreased risk of this subtype associated with XRCC4rs7721416 and XRCC4rs2662242 were detected. This study indicates SNPs in EGFR, ERCC1, CHAF1A, XRCC1, EME1, ATM, GLTSCR1, and XRCC4 may be associated with the risk of PBTs. Therefore, cell cycle and DNA repair pathways variations associated with susceptibility to adult brain tumors also seem to be associated with PBT risk, suggesting pediatric and adult brain tumors might share similar etiological pathways. PMID:27613841

  6. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila

    PubMed Central

    Narbonne-Reveau, Karine; Lanet, Elodie; Dillard, Caroline; Foppolo, Sophie; Chen, Ching-Huan; Parrinello, Hugues; Rialle, Stéphanie; Sokol, Nicholas S; Maurange, Cédric

    2016-01-01

    Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins. DOI: http://dx.doi.org/10.7554/eLife.13463.001 PMID:27296804

  7. Electrical Membrane Properties of Leaves, Roots, and Single Root Cap Cells of Susceptible Avena sativa1

    PubMed Central

    Ullrich, Cornelia I.; Novacky, Anton J.

    1991-01-01

    The effect of the purified host-selective toxin victorin C, a cyclized penta peptide, was compared to that of CCCP and vanadate on membrane functions of susceptible leaves, roots, and single root cap cells of Avena sativa with conventional electrophysiology. The plasmalemma depolarized irreversibly by about 80 millivolts and to below the diffusion potential within 1 hour. Concentrations as low as 12.5 picomolar were effective in the susceptible but not the resistant cultivar. Electrical membrane potential difference changes were independent of pH and could not be prevented by fusicoccin or Ca2+. Membranes began to depolarize after a lag phase that never was shorter than 6.5 minutes, even with concentrations as high as 1.25 micromolar. Membrane depolarization was accompanied by a distinct decrease in specific membrane resistance from 4.5 to 1.0 ohm times square meter on average. These changes were followed by K+ and Cl− efflux and extracellular alkalinization. ATP level and O2 uptake did not decrease within 2 hours. It is concluded that the victorin-induced deleterious membrane alterations are not caused by direct interaction with the plasmalemma H+-ATPase, K+ channels, lipid structure, nor energy metabolism, but they seem to be triggered by a cascade of events leading to an unspecific increase in membrane permeability. Images Figure 1 PMID:16668038

  8. Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chapelle, E. W.; Barza, M. J.; Weinstein, L.; Tuttle, S. A.; Vellend, H.

    1975-01-01

    Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured.

  9. Lack of Apoptosis of Infiltrating Cells as the Mechanism of High Susceptibility to EAE in DA Rats

    PubMed Central

    Mensah-Brown, Eric; Galadari, Sehamuddin; Shahin, Allen

    2001-01-01

    Dark Agouti (DA) rats are highly susceptible to induction of Th-l-mediated autoimmunity disease, including experimental allergic encephalomyelitis (EAE). In contrast to other susceptible rat strains in which disease is induced only with encephalitogen emulsified in complete Freund's adjuvants (CFA), in DA rats EAE develops after injection of encephalitogen in incomplete Freund's adjuvants (IFA) or Titermax, putative Th-2 directed adjuvant. Lymph node cells derived from immunized DA rats and stimulated in vitro produce significantly more Interferon-γ (IFN-γ) than resistant Albino Oxford (AO) rats. However, cells derived from both strains produce large amounts of IL-10 but not IL-4. Immunized lymph node cells derived from EAE susceptible (AO × DA) F1rats induce clinical signs of disease in sublethally irradiated parental DA but not AO rats. The pathohistology of the target tissue in these recipients clearly demonstrated infiltration of mononuclear cells in both parental strains. However, the number of CD4+ cells was significantly higher and number of apoptotic cells significantly lower in DA rats sacrificed 8 days after passive transfer. We postulate that in addition to higher IFN-γ and TNF-α production, resistance to early apoptosis of the invading cells in the target tissue possibly due to lack of downregulation by TGF-β leads to exceptional susceptibility to EAE in DA rats. PMID:11785669

  10. Acidosis increases the susceptibility of respiratory epithelial cells to Pseudomonas aeruginosa-induced cytotoxicity.

    PubMed

    Torres, Iviana M; Demirdjian, Sally; Vargas, Jennifer; Goodale, Britton C; Berwin, Brent

    2017-07-01

    Bacterial infection can lead to acidosis of the local microenvironment, which is believed to exacerbate disease pathogenesis; however, the mechanisms by which changes in pH alter disease progression are poorly understood. We test the hypothesis that acidosis enhances respiratory epithelial cell death in response to infection with Pseudomonas aeruginosa Our findings support the idea that acidosis in the context of P. aeruginosa infection results in increased epithelial cell cytotoxicity due to ExoU intoxication. Importantly, enforced maintenance of neutral pH during P. aeruginosa infection demonstrates that cytotoxicity is dependent on the acidosis. Investigation of the underlying mechanisms revealed that host cell cytotoxicity correlated with increased bacterial survival during an acidic infection that was due to reduced bactericidal activity of host-derived antimicrobial peptides. These findings extend previous reports that the activities of antimicrobial peptides are pH-dependent and provide novel insights into the consequences of acidosis on infection-derived pathology. Therefore, this report provides the first evidence that physiological levels of acidosis increase the susceptibility of epithelial cells to acute Pseudomonas infection and demonstrates the benefit of maintaining pH homeostasis during a bacterial infection. Copyright © 2017 the American Physiological Society.

  11. Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Martineau, Francis; Picard, François J.; Lansac, Nicolas; Ménard, Christian; Roy, Paul H.; Ouellette, Marc; Bergeron, Michel G.

    2000-01-01

    Clinical isolates of Staphylococcus aureus (a total of 206) and S. epidermidis (a total of 188) from various countries were tested with multiplex PCR assays to detect clinically relevant antibiotic resistance genes associated with staphylococci. The targeted genes are implicated in resistance to oxacillin (mecA), gentamicin [aac(6′)-aph(2")], and erythromycin (ermA, ermB, ermC, and msrA). We found a nearly perfect correlation between genotypic and phenotypic analysis for most of these 394 strains, showing the following correlations: 98% for oxacillin resistance, 100% for gentamicin resistance, and 98.5% for erythromycin resistance. The discrepant results were (i) eight strains found to be positive by PCR for mecA or ermC but susceptible to the corresponding antibiotic based on disk diffusion and (ii) six strains of S. aureus found to be negative by PCR for mecA or for the four erythromycin resistance genes targeted but resistant to the corresponding antibiotic. In order to demonstrate in vitro that the eight susceptible strains harboring the resistance gene may become resistant, we subcultured the susceptible strains on media with increasing gradients of the antibiotic. We were able to select cells demonstrating a resistant phenotype for all of these eight strains carrying the resistance gene based on disk diffusion and MIC determinations. The four oxacillin-resistant strains negative for mecA were PCR positive for blaZ and had the phenotype of β-lactamase hyperproducers, which could explain their borderline oxacillin resistance phenotype. The erythromycin resistance for the two strains found to be negative by PCR is probably associated with a novel mechanism. This study reiterates the usefulness of DNA-based assays for the detection of antibiotic resistance genes associated with staphylococcal infections. PMID:10639342

  12. A novel method to measure HLA-DM-susceptibility of peptides bound to MHC class II molecules based on peptide binding competition assay and differential IC(50) determination.

    PubMed

    Yin, Liusong; Stern, Lawrence J

    2014-04-01

    HLA-DM (DM) functions as a peptide editor that mediates the exchange of peptides loaded onto MHCII molecules by accelerating peptide dissociation and association kinetics. The relative DM-susceptibility of peptides bound to MHCII molecules correlates with antigen presentation and immunodominance hierarchy, and measurement of DM-susceptibility has been a key effort in this field. Current assays of DM-susceptibility, based on differential peptide dissociation rates measured for individually labeled peptides over a long time base, are difficult and cumbersome. Here, we present a novel method to measure DM-susceptibility based on peptide binding competition assays performed in the presence and absence of DM, reported as a delta-IC(50) (change in 50% inhibition concentration) value. We simulated binding competition reactions of peptides with various intrinsic and DM-catalyzed kinetic parameters and found that under a wide range of conditions the delta-IC(50) value is highly correlated with DM-susceptibility as measured in off-rate assay. We confirmed experimentally that DM-susceptibility measured by delta-IC(50) is comparable to that measured by traditional off-rate assay for peptides with known DM-susceptibility hierarchy. The major advantage of this method is that it allows simple, fast and high throughput measurement of DM-susceptibility for a large set of unlabeled peptides in studies of the mechanism of DM action and for identification of CD4+ T cell epitopes.

  13. De Novo Pyrimidine Biosynthesis Connects Cell Integrity to Amphotericin B Susceptibility in Cryptococcus neoformans.

    PubMed

    Banerjee, Dithi; Umland, Timothy C; Panepinto, John C

    2016-01-01

    The use of amphotericin B (AmB) in conjunction with 5-fluorocytosine (5-FC) is known to be the optimal therapy for treating cryptococcosis, but the mechanism by which 5-FC synergizes with AmB is unknown. In this study, we generated a Cryptococcus neoformans ura1Δ mutant lacking dihydroorotate dehydrogenase (DHODH), which demonstrated temperature-sensitive growth due to a defect in cell integrity and sensitivity to cell wall-damaging agents. In addition, sensitivity to AmB was greatly increased. Inclusion of uracil or uridine in the medium did not suppress the cell wall or AmB phenotype, whereas complementation with the wild-type URA1 gene complemented the mutant phenotype. As a measure of membrane accessibility, we assayed the rate of association of the lipid-binding dye 3,3'-dihexyloxacarbocyanine iodide (DiOC6) and saw more rapid association in the ura1Δ mutant. We likewise saw an increased rate of DiOC6 association in other AmB-sensitive mutants, including a ura(-) spontaneous URA5 mutant made by 5-fluoroorotic acid (5-FOA) selection and a bck1Δ mutant defective in cell integrity signaling. Similar results were also obtained by using a specific plasma membrane-binding CellMask live stain, with cell integrity mutants that exhibited increased and faster association of the dye with the membrane. Chitin synthase mutants (chs5Δ and chs6Δ) that lack any reported cell wall defects, in turn, demonstrate neither any increased susceptibility to AmB nor a greater accessibility to either of the dyes. Finally, perturbation of the cell wall of the wild type by treatment with the β-1,6-glucan synthase inhibitor caspofungin was synergistic with AmB in vitro. IMPORTANCE Synergy between AmB and nucleotide biosynthetic pathways has been documented, but the mechanism of this interaction has not been delineated. Results from this study suggest a correlation between uridine nucleotide biosynthesis and cell integrity likely mediated through the pool of nucleotide

  14. De Novo Pyrimidine Biosynthesis Connects Cell Integrity to Amphotericin B Susceptibility in Cryptococcus neoformans

    PubMed Central

    Banerjee, Dithi; Umland, Timothy C.

    2016-01-01

    ABSTRACT The use of amphotericin B (AmB) in conjunction with 5-fluorocytosine (5-FC) is known to be the optimal therapy for treating cryptococcosis, but the mechanism by which 5-FC synergizes with AmB is unknown. In this study, we generated a Cryptococcus neoformans ura1Δ mutant lacking dihydroorotate dehydrogenase (DHODH), which demonstrated temperature-sensitive growth due to a defect in cell integrity and sensitivity to cell wall-damaging agents. In addition, sensitivity to AmB was greatly increased. Inclusion of uracil or uridine in the medium did not suppress the cell wall or AmB phenotype, whereas complementation with the wild-type URA1 gene complemented the mutant phenotype. As a measure of membrane accessibility, we assayed the rate of association of the lipid-binding dye 3,3′-dihexyloxacarbocyanine iodide (DiOC6) and saw more rapid association in the ura1Δ mutant. We likewise saw an increased rate of DiOC6 association in other AmB-sensitive mutants, including a ura− spontaneous URA5 mutant made by 5-fluoroorotic acid (5-FOA) selection and a bck1Δ mutant defective in cell integrity signaling. Similar results were also obtained by using a specific plasma membrane-binding CellMask live stain, with cell integrity mutants that exhibited increased and faster association of the dye with the membrane. Chitin synthase mutants (chs5Δ and chs6Δ) that lack any reported cell wall defects, in turn, demonstrate neither any increased susceptibility to AmB nor a greater accessibility to either of the dyes. Finally, perturbation of the cell wall of the wild type by treatment with the β-1,6-glucan synthase inhibitor caspofungin was synergistic with AmB in vitro. IMPORTANCE Synergy between AmB and nucleotide biosynthetic pathways has been documented, but the mechanism of this interaction has not been delineated. Results from this study suggest a correlation between uridine nucleotide biosynthesis and cell integrity likely mediated through the pool of nucleotide

  15. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility.

    PubMed

    Yu, Min; Bardia, Aditya; Aceto, Nicola; Bersani, Francesca; Madden, Marissa W; Donaldson, Maria C; Desai, Rushil; Zhu, Huili; Comaills, Valentine; Zheng, Zongli; Wittner, Ben S; Stojanov, Petar; Brachtel, Elena; Sgroi, Dennis; Kapur, Ravi; Shioda, Toshihiro; Ting, David T; Ramaswamy, Sridhar; Getz, Gad; Iafrate, A John; Benes, Cyril; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A

    2014-07-11

    Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor-positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.

  16. Increased NHC Cells in the Peritoneal Cavity of Plasmacytoma Susceptible BALB/c Mouse

    PubMed Central

    Sánchez-González, Berenice; García-Vázquez, Francisco Javier; Farfán-Morales, José Eduardo; Jiménez-Zamudio, Luis Antonio

    2015-01-01

    BALB/c strain mice are unique in that they develop murine plasmacytoma (MPC) as a consequence of the inflammation induced by pristane oil injection in the peritoneal cavity. In this work the Treg, Th17, B1, B2, and NHC lymphocyte populations from the peritoneal environment of BALB/c, the susceptible strain, and C57BL/6 mice, which do not develop MPC after oil treatment, were studied. Both oil-treated strains showed decreased levels of Th17 lymphocytes, no significant variation in Treg lymphocytes, and a drastic decrease of all B lymphocyte populations. However, only oil-induced BALB/c showed increased levels of natural helper cells (NHC) which could be important in the myeloma induction. PMID:26504358

  17. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.

    PubMed

    Salek, M Mehdi; Jones, Steven M; Martinuzzi, Robert J

    2009-11-01

    The effects of non-uniform hydrodynamic conditions resulting from flow cell geometry (square and rectangular cross-section) on Pseudomonas aeruginosa 01 (PAO1) biofilm formation, location, and structure were investigated for nominally similar flow conditions using a combination of confocal scanning laser microscope (CSLM) and computational fluid dynamics (CFD). The thickness and surface coverage of PAO1 biofilms were observed to vary depending on the location in the flow cell and thus also the local wall shear stress. The biofilm structure in a 5:1 (width to height) aspect ratio rectangular flow cell was observed to consist mainly of a layer of bacterial cells with thicker biofilm formation observed in the flow cell corners. For square cross-section (1:1 aspect ratio) flow cells, generally thicker and more uniform surface coverage biofilms were observed. Mushroom shaped structures with hollow centers and wall breaks, indicative of 'seeding' dispersal structures, were found exclusively in the square cross-section tubes. Exposure of PAO1 biofilms grown in the flow cells to gentamicin revealed a difference in susceptibility. Biofilms grown in the rectangular flow cell overall exhibited a greater susceptibility to gentamicin compared to those grown in square flow cells. However, even within a given flow cell, differences in susceptibility were observed depending on location. This study demonstrates that the spanwise shear stress distribution within the flow cells has an important impact on the location of colonization and structure of the resultant biofilm. These differences in biofilm structure have a significant impact on the susceptibility of the biofilms grown within flow channels. The impact of flow modification due to flow cell geometry should be considered when designing flow cells for laboratory investigation of bacterial biofilms.

  18. Myeloid Dendritic Cells (DCs) of Mice Susceptible to Paracoccidioidomycosis Suppress T Cell Responses whereas Myeloid and Plasmacytoid DCs from Resistant Mice Induce Effector and Regulatory T Cells

    PubMed Central

    Pina, Adriana; Frank de Araujo, Eliseu; Felonato, Maíra; Loures, Flávio V.; Feriotti, Claudia; Bernardino, Simone; Barbuto, José Alexandre M.

    2013-01-01

    The protective adaptive immune response in paracoccidioidomycosis, a mycosis endemic among humans, is mediated by T cell immunity, whereas impaired T cell responses are associated with severe, progressive disease. The early host response to Paracoccidioides brasiliensis infection is not known since the disease is diagnosed at later phases of infection. Our laboratory established a murine model of infection where susceptible mice reproduce the severe disease, while resistant mice develop a mild infection. This work aimed to characterize the influence of dendritic cells in the innate and adaptive immunity of susceptible and resistant mice. We verified that P. brasiliensis infection induced in bone marrow-derived dendritic cells (DCs) of susceptible mice a prevalent proinflammatory myeloid phenotype that secreted high levels of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-β, whereas in resistant mice, a mixed population of myeloid and plasmacytoid DCs secreting proinflammatory cytokines and expressing elevated levels of secreted and membrane-bound transforming growth factor β was observed. In proliferation assays, the proinflammatory DCs from B10.A mice induced anergy of naïve T cells, whereas the mixed DC subsets from resistant mice induced the concomitant proliferation of effector and regulatory T cells (Tregs). Equivalent results were observed during pulmonary infection. The susceptible mice displayed preferential expansion of proinflammatory myeloid DCs, resulting in impaired proliferation of effector T cells. Conversely, the resistant mice developed myeloid and plasmacytoid DCs that efficiently expanded gamma interferon-, IL-4-, and IL-17-positive effector T cells associated with increased development of Tregs. Our work highlights the deleterious effect of excessive innate proinflammatory reactions and provides new evidence for the importance of immunomodulation during pulmonary paracoccidioidomycosis. PMID:23340311

  19. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  20. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  1. Conjugation between quinolone-susceptible bacteria can generate mutations in the quinolone resistance-determining region, inducing quinolone resistance.

    PubMed

    Pitondo-Silva, André; Martins, Vinicius Vicente; Silva, Carolina Fávero da; Stehling, Eliana Guedes

    2015-02-01

    Quinolones are an important group of antibacterial agents that can inhibit DNA gyrase and topoisomerase IV activity. DNA gyrase is responsible for maintaining bacteria in a negatively supercoiled state, being composed of subunits A and B. Topoisomerase IV is a homologue of DNA gyrase and consists of two subunits codified by the parC and parE genes. Mutations in gyrA and gyrB of DNA gyrase may confer resistance to quinolones, and the majority of resistant strains show mutations between positions 67 and 106 of gyrA, a region denoted the quinolone resistance-determining region (QRDR). The most frequent substitutions occur at positions 83 and 87, but little is known about the mechanisms promoting appearance of mutations in the QRDR. The present study proposes that some mutations in the QRDR could be generated as a result of the natural mechanism of conjugation between bacteria in their natural habitat. This event was observed following conjugation in vitro of two different isolates of quinolone-susceptible Pseudomonas aeruginosa, which transferred plasmids of different molecular weights to a recipient strain of Escherichia coli (HB101), also quinolone-susceptible, generating two different transconjugants that presented mutations in DNA gyrase and acquisition of resistance to all quinolones tested.

  2. Effects of temperature on the susceptibility of insect cells to infection by baculoviruses.

    PubMed

    Lynn, D E

    2001-01-01

    Three insect cell lines were tested for susceptibility to baculovirus infection by use of a typical endpoint assay procedure. Cell lines from Spodoptera frugiperda (IPLB-Sf21AE), Lymantria dispar (IPLB-LdEIta), and Heliothis virescens (IPLB-HvE6s) in 96-well tissue culture plates were each infected with dilutions of extra cellular virus suspensions of the Autographa californica nucleopolyhedrovirus (AcMNPV). In addition, the L. dispar and H. virescens cells were also infected with L. dispar nucleopolyhedrovirus, and Helicoverpa zea nucleopolyhedrovirus, respectively. Each cell/virus combination was incubated at three temperatures: 22, 27 and 32 degrees C and wells were scored for positive infection (presence of occlusion bodies in cell nuclei) at 2 to 4 day intervals for up to 4 weeks. The resulting data were analyzed by the Spearman-Kärber method, providing virus titers for each combination of virus, cell line, and temperature. The results were categorized by accuracy (assuming the highest titer achieved was the most accurate) and by rapidity of maximum titer. AcMNPV reached the highest titer in each line at 22 degrees C although equivalent titers were reached with both AcMNPV and HzSNPV in the HvE6a line at all three temperatures. This line actually reported about 100-fold less AcMNPV than the other two lines with the same virus sample. Alternatively, the Sf21AE and LdEIta lines reached 10-fold higher titers at the lowest temperature as compared with the higher temperatures, although also at a slower rate.

  3. Effect on quarter milk somatic cell count and antimicrobial susceptibility of Staphylococcus rostri causing intramammary infection in dairy water buffaloes.

    PubMed

    Locatelli, C; Piepers, S; De Vliegher, S; Barberio, A; Supré, K; Scaccabarozzi, L; Pisoni, G; Bronzo, V; Haesebrouck, F; Moroni, P

    2013-06-01

    In many parts of the world, coagulase-negative staphylococci (CNS) are the predominant cause of intramammary infections (IMI) in dairy cows and in water buffaloes, as well. A longitudinal field study was carried out on one well-managed dairy water buffalo herd to determine the prevalence and distribution of CNS and a recently described CNS-species, Staphylococcus rostri, in milk samples to explore its relevance for buffaloes' udder health throughout lactation, and to gain insight into the susceptibility of the latter species toward commonly used antimicrobials. Twice weekly quarter milk samples from a cohort of 11 lactating water buffaloes were collected over an 8-mo period. The CNS (n=109; 76.2% of all culture-positive samples) were the predominant pathogens causing IMI, followed by Corynebacterium bovis (n=11; 7.6%) and Streptococcus spp. (n=9; 6.2%) other than Stretococcus uberis (n=2; 1.4%). Thirty-seven hemolytic staphylococci suspected to be Staphylococcus aureus were further differentiated using transfer DNA-intergenic spacer-PCR and rpoB-gene sequencing because they were coagulase-negative. Thirty-three of those isolates were identified as Staph. rostri, whereas 2 others were identified as Staphylococcus epidermidis. None of the Staph. rostri isolates displayed resistance to the antimicrobial agents tested. Mean quarter milk somatic cell count (qSCC) of all samples collected throughout lactation was 20,970 cells/mL. The qSCC at sampling of quarters infected with Staph. rostri (34,466 cells/mL) and CNS other than Staph. rostri (34,813 cells/mL) were significantly higher than the qSCC of noninfected quarters (20,287 cells/mL), yet not significantly different from each other. These findings provide novel insight into the prevalence and distribution, antimicrobial susceptibility, and relevance of Staph. rostri compared with other CNS species causing IMI in water buffaloes. Further studies are needed to pinpoint the relevance, niches, and transmission routes of

  4. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage*

    PubMed Central

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-01-01

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. PMID:25971976

  5. Insulin-like Growth Factor 2 Overexpression Induces β-Cell Dysfunction and Increases Beta-cell Susceptibility to Damage.

    PubMed

    Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Jimenez, Veronica; Garcia, Miquel; Agudo, Judith; Obach, Mercè; Haurigot, Virginia; Vilà, Laia; Molas, Maria; Lage, Ricardo; Morró, Meritxell; Casana, Estefania; Ruberte, Jesús; Bosch, Fatima

    2015-07-03

    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants.

    PubMed

    Meyer, Megan; Jaspers, Ilona

    2015-06-15

    The respiratory epithelium functions as a central orchestrator to initiate and organize responses to inhaled stimuli. Proteases and antiproteases are secreted from the respiratory epithelium and are involved in respiratory homeostasis. Modifications to the protease/antiprotease balance can lead to the development of lung diseases such as emphysema or chronic obstructive pulmonary disease. Furthermore, altered protease/antiprotease balance, in favor for increased protease activity, is associated with increased susceptibility to respiratory viral infections such as influenza virus. However, nutritional antioxidants induce antiprotease expression/secretion and decrease protease expression/activity, to protect against viral infection. As such, this review will elucidate the impact of this balance in the context of respiratory viral infection and lung disease, to further highlight the role epithelial cell-derived proteases and antiproteases contribute to respiratory immune function. Furthermore, this review will offer the use of nutritional antioxidants as possible therapeutics to boost respiratory mucosal responses and/or protect against infection.

  7. Respiratory protease/antiprotease balance determines susceptibility to viral infection and can be modified by nutritional antioxidants

    PubMed Central

    Meyer, Megan

    2015-01-01

    The respiratory epithelium functions as a central orchestrator to initiate and organize responses to inhaled stimuli. Proteases and antiproteases are secreted from the respiratory epithelium and are involved in respiratory homeostasis. Modifications to the protease/antiprotease balance can lead to the development of lung diseases such as emphysema or chronic obstructive pulmonary disease. Furthermore, altered protease/antiprotease balance, in favor for increased protease activity, is associated with increased susceptibility to respiratory viral infections such as influenza virus. However, nutritional antioxidants induce antiprotease expression/secretion and decrease protease expression/activity, to protect against viral infection. As such, this review will elucidate the impact of this balance in the context of respiratory viral infection and lung disease, to further highlight the role epithelial cell-derived proteases and antiproteases contribute to respiratory immune function. Furthermore, this review will offer the use of nutritional antioxidants as possible therapeutics to boost respiratory mucosal responses and/or protect against infection. PMID:25888573

  8. Medaka haploid embryonic stem cells are susceptible to Singapore grouper iridovirus as well as to other viruses of aquaculture fish species.

    PubMed

    Yuan, Yongming; Huang, Xiaohong; Zhang, Lei; Zhu, Yi; Huang, Youhua; Qin, Qiwei; Hong, Yunhan

    2013-10-01

    Viral infection is a challenge in high-density aquaculture, as it leads to various diseases and causes massive or even complete loss. The identification and disruption of host factors that viruses utilize for infection offer a novel approach to generate viral-resistant seed stocks for cost-efficient and sustainable aquaculture. Genetic screening in haploid cell cultures represents an ideal tool for host factor identification. We have recently generated haploid embryonic stem (ES) cells in the laboratory fish medaka. Here, we report that HX1, one of the three established medaka haploid ES cell lines, was susceptible to the viruses tested and is thus suitable for genetic screening to identify host factors. HX1 cells displayed a cytopathic effect and massive death upon inoculation with three highly infectious and notifiable fish viruses, namely Singapore grouper iridovirus (SGIV), spring viremia of carp virus (SVCV) and red-spotted grouper nervous necrosis virus (RGNNV). Reverse transcription-PCR and Western blot analyses revealed the expression of virus genes. SGIV infection in HX1 cells elicited a host immune response and apoptosis. Viral replication kinetics were determined from a virus growth curve, and electron microscopy revealed propagation, assembly and release of infectious SGIV particles in HX1 cells. Our results demonstrate that medaka haploid ES cells are susceptible to SGIV, as well as to SVCV and RGNNV, offering a unique opportunity for the identification of host factors by genetic screening.

  9. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration

    PubMed Central

    Cebrián, Carolina; Zucca, Fabio A.; Mauri, Pierluigi; Steinbeck, Julius A.; Studer, Lorenz; Scherzer, Clemens R.; Kanter, Ellen; Budhu, Sadna; Mandelbaum, Jonathan; Vonsattel, Jean P.; Zecca, Luigi; Loike, John D.; Sulzer, David

    2014-01-01

    Subsets of rodent neurons are reported to express major histocompatibilty complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression, and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T-cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T cell-mediated cytotoxic attack. PMID:24736453

  10. [The refractory susceptibility in determination of sulfur in organic drugs using the Schoniger method].

    PubMed

    Listov, S A; Arsamastsev, A P; Gamanina, G J

    1988-10-01

    Conventional methods of the determination of sulphur in organic drugs were studied (Schöniger method) and new methods developed. Emphasis was put on the disturbance effect of 5 elements, which often occur in the structure of organic drug compounds. It could be shown, that the disturbance effect of nitrogen and chlorine was overcome by the use of carbamide and ammonium carbonate in the absorption solution. The effect of fluorine was abolished by the use of boric acid and a special two-spiral technique of the analysis. Based on these studies concrete recommendations for the Schöniger method of sulphur determination in drugs of various composition of elements were given.

  11. Effect of Culture Medium on the Disk Diffusion Method for Determining Antifungal Susceptibilities of Dermatophytes

    PubMed Central

    Fernández-Torres, Belkys; Carrillo-Muñoz, Alfonso; Inza, Isabel; Guarro, Josep

    2006-01-01

    We have evaluated a disk diffusion method to determine the activities of five drugs against 50 strains of dermatophytes and to assess the influence of the culture medium (antibiotic medium 3, high-resolution medium, and RPMI) on the inhibition zone diameters (IZD). There were no differences among the medium/drug combinations, except for itraconazole-RPMI, which showed the narrowest IZD. PMID:16723589

  12. Determination of methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria in blood by capillary zone electrophoresis.

    PubMed

    Horká, Marie; Tesařová, Marie; Karásek, Pavel; Růžička, Filip; Holá, Veronika; Sittová, Martina; Roth, Michal

    2015-04-08

    Serious bloodstream infections are a significant complication in critically ill patients. The treatment of these infections has become more difficult because of the increasing prevalence of multiresistant strains, especially methicillin-resistant Staphylococcus aureus (MRSA). Rapid differentiation of low number of MRSA from methicillin-susceptible S. aureus (MSSA) cells (10(1)-10(2) cells mL(-1)) in blood is necessary for fast effective antibiotic therapy. Currently, three groups of techniques, phenotyping, genotyping, and mass spectrometry, are used for MRSA and MSSA strains differentiation. Most of these techniques are time-consuming. PCR and other molecular techniques allow the detection and differentiation between MSSA and MRSA directly from blood cultures. These methods alone are rapid and they have good reproducibility and repeatability. Potential disadvantages of the genotyping methods include their discrimination ability, technical complexity, financial costs, and difficult interpretation of the results. Recently, capillary electrophoresis (CZE) was successfully used to differentiate between the agar-cultivated MRSA and MSSA strains in fused silica capillaries etched with supercritical water and modified with (3-glycidyloxypropyl)trimethoxysilane. The possible use of CZE as a fast and low-cost method for distinguishing between the blood-incubated MRSA or MSSA cells has been tested in this manuscript. Our goal was to test low amounts of bacteria (∼10(2) cell mL(-1)) similar to those in clinical samples. The migration times of the purified blood-incubated cells and the agar-cultivated cells were different from each other. However, their isoelectric point was the same for all strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases.

    PubMed

    Ilatovskaya, Daria V; Staruschenko, Alexander

    2015-09-01

    Podocytes (terminally differentiated epithelial cells of the glomeruli) play a key role in the maintenance of glomerular structure and permeability and in the incipiency of various renal abnormalities. Injury to podocytes is considered a major contributor to the development of kidney disease as their loss causes proteinuria and progressive glomerulosclerosis. The physiological function of podocytes is critically dependent on proper intracellular calcium handling; excessive calcium influx in these cells may result in the effacement of foot processes, apoptosis, and subsequent glomeruli damage. One of the key proteins responsible for calcium flux in the podocytes is transient receptor potential cation channel, subfamily C, member 6 (TRPC6); a gain-of-function mutation in TRPC6 has been associated with the onset of the familial forms of focal segmental glomerulosclerosis (FSGS). Recent data also revealed a critical role of this channel in the onset of diabetic nephropathy. Therefore, major efforts of the research community have been recently dedicated to unraveling the TRPC6-dependent effects in the initiation of podocyte injury. This mini-review focuses on the TRPC6 channel in podocytes and colligates recent data in an attempt to shed some light on the mechanisms underlying the pathogenesis of TRPC6-mediated glomeruli damage and its potential role as a therapeutic target for the treatment of chronic kidney diseases.

  14. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-01-01

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  15. [Tools for determining health of phytoplankton cells

    SciTech Connect

    Not Available

    1992-12-31

    The primary purpose of the proposed research is to develop molecular tools for determining the health of marine phytoplankton on an individual cell basis. Since the definition of healthy in phytoplankton cells is elusive, we propose to develop markers for several different metabolic processes indicative of physiological state: photosynthetic activity, esterase activity, membrane permeability, and mitochondrial activity. One underlying motivation is to develop methods which will allow us to evaluate the hypothesis that, while healthy cells release very little dissolved organic carbon (DOC), many phytoplankton communities are comprised of unhealthy or physiologically stressed cells which release a large proportion of total photosynthate directly into the pool of labile DOC. This is proposed to be especially true in continental shelf and coastal environments where zones of productivity are patchy and phytoplankton populations adapted to one regime can be easily transported into waters which differ in salinity, nutrient supply, and/or turbidity. The significance of the work, however, extends beyond this immediate goal since there are presently relatively few methods which allow us to estimate the physiological state of phytoplankton cells.When we evaluate population sizes of phytoplankton in the water column or examine fecal pellets, particulate aggregates, or other material, we generally work in ignorance of the activity of the cells except as the average cell-specific activity is estimated from bulk measurements. This approach effectively hides any differences in the relative contribution of different taxa or individuals to overall productivity eventhough most flux processes are sensitive to physiological and taxonomically determined differences among members of the community.

  16. Generation and characterization of a porcine endometrial endothelial cell line susceptible to porcine reproductive and respiratory syndrome virus.

    PubMed

    Feng, Lili; Zhang, Xinyu; Xia, Xiaoli; Li, Yangyang; He, Shan; Sun, Huaichang

    2013-01-01

    Previous studies on the underlying mechanism for porcine reproductive and respiratory syndrome virus (PRRSV)-induced reproductive failure have been focused on the viral replication in the endothelial macrophages, and the susceptibility of porcine endometrial endothelial (PEE) cells to PRRSV has not yet been investigated. Therefore, in the present study we generated a PEE cell line by transfection of the primary cells with a SV40 large T antigen expression vector. The PEE cell line maintained the endothelial morphology with a significantly faster growth rate, shorter population doubling time and higher plating efficiency than the primary cells. The endothelial origination of the cell line was confirmed by detection of the endothelial cell-specific markers. The PEE cell line had been passed successively for 60 generations with an unlimited growth potential. To further characterize the PEE cell line, cells of different passages were infected with different PRRSV strains and analyzed for the viral antigen and replication. Overt cytopathic effect was observed from 36h postinfection (HPI) and the viral antigen detected as early as 12 HPI. The infectious virus was recovered from the infected PEE cells with a titer higher than that in MARC-145 cells. Since the data presented indicate a high susceptibility of PEE cells to PRRSV, we conclude that the PEE cell line generated will be useful for growth of PRRSV and further studies on the underlying mechanism for PRRSV infection of PEE cells. The finding of the susceptibility of PEE cells to PRRSV may provide an alternative explanation for PRRSV-induced reproductive failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. In vitro studies of Dermatophilus congolensis antimicrobial susceptibility by determining minimal inhibitory and bacteriocidal concentrations.

    PubMed

    Hermoso de Mendoza, J; Arenas, A; Rey, J; Alonso, J M; Gil, M C; Naranjo, G; Hermoso de Mendoza, M

    1994-01-01

    The Minimal Inhibitory Concentration (MIC) and Minimal Bacteriocidal Concentration (MBC) of 19 antimicrobials on 16 isolates of D. congolensis were determined. The potential field efficacy of the agents was evaluated by comparing the results with serum levels of drug unbound to proteins and the in vitro and in vivo findings of other authors. A modified standard microtechnique was used for serial dilution-antimicrobial sensitivity and found to be easy and reproducible. Erythromycin, spiramycin, penicillin G, ampicillin, chloramphenicol, the streptomycin, amoxicillin, the tetracyclines and novobiocin had high serum concentrations in comparison with their MBCs and were shown to have potential use for the treatment of dermatophilosis.

  18. Visceral leishmaniasis in congenic mice of susceptible and resistant phenotypes: immunosuppression by adherent spleen cells.

    PubMed Central

    Nickol, A D; Bonventre, P F

    1985-01-01

    Visceral leishmaniasis is one of several parasitic diseases of humans characterized by immune suppression. A murine model of disseminated leishmaniasis utilizing inbred strains of specific genetic constitution was used to study the mechanisms of immunosuppression elicited during the course of infection. Resistant (Lshr) and susceptible (Lshs) strains of mice were challenged with amastigotes of Leishmania donovani and evaluated as to immune status at intervals between 2 and 40 weeks after challenge. The proliferative responses of splenic lymphocytes to T-cell mitogens, a B-cell mitogen, and parasite antigens were measured to evaluate the relative immune status of parasitized mice and noninfected control mice. Lymphocytes from resistant C3Heb/FeJ (C3H) mice responded normally to concanavalin A and phytohemagglutinin throughout the course of infection. Parasite antigen responses appeared 2 weeks after challenge of C3H mice and remained vigorous for periods up to 6 months. In contrast, immune suppression during infection was profound in both the curing (C57B1/10) and noncuring (B10.D2) phenotypes of Lshs congenic mice. Both Lshs strains developed severe infection as evidenced by high parasite burdens in the liver and spleen 4 to 5 weeks after challenge; splenic lymphocytes taken from these mice between 2 and 8 weeks became increasingly unresponsive to the T-cell mitogens as well as to parasite antigens. The noncuring B10.D2 mice which suffered chronic infection continued to be suppressed for as long as 40 weeks. C57B1/10 (curing) mice, in contrast, cleared infection between 12 and 16 weeks. After spontaneous recovery or elimination of parasites by antimonial drug therapy, the response of spleen cells to T-cell mitogens or parasite antigens were restored to normal. The spleen cells from the Lshs strains of mice obtained during the height of infection suppressed the proliferative responses of spleen cells from their uninfected counterparts upon cocultivation in vitro

  19. Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

    PubMed

    Popovic, A; Wiggins, T; Davids, L M

    2015-08-01

    Skin cancer is the most common cancer worldwide, and its incidence rate in South Africa is increasing. Photodynamic therapy (PDT) has been shown to be an effective treatment modality, through topical administration, for treatment of non-melanoma skin cancers. Our group investigates hypericin-induced PDT (HYP-PDT) for the treatment of both non-melanoma and melanoma skin cancers. However, a prerequisite for effective cancer treatments is efficient and selective targeting of the tumoral cells with minimal collateral damage to the surrounding normal cells, as it is well established that cancer therapies have bystander effects on normal cells in the body, often causing undesirable side effects. The aim of this study was to investigate the cellular and molecular effects of HYP-PDT on normal primary human keratinocytes (Kc), melanocytes (Mc) and fibroblasts (Fb) in an in vitro tissue culture model which represented both the epidermal and dermal cellular compartments of human skin. Cell viability analysis revealed a differential cytotoxic response to a range of HYP-PDT doses in all the human skin cell types, showing that Fb (LD50=1.75μM) were the most susceptible to HYP-PDT, followed by Mc (LD50=3.5μM) and Kc (LD50>4μM HYP-PDT) These results correlated with the morphological analysis which displayed distinct morphological changes in Fb and Mc, 24h post treatment with non-lethal (1μM) and lethal (3μM) doses of HYP-PDT, but the highest HYP-PDT doses had no effect on Kc morphology. Fluorescent microscopy displayed cytoplasmic localization of HYP in all the 3 skin cell types and additionally, HYP was excluded from the nuclei in all the cell types. Intracellular ROS levels measured in Fb at 3μM HYP-PDT, displayed a significant 3.8 fold (p<0.05) increase in ROS, but no significant difference in ROS levels occurred in Mc or Kc. Furthermore, 64% (p<0.005) early apoptotic Fb and 20% (p<0.05) early apoptotic Mc were evident; using fluorescence activated cell sorting (FACS), 24

  20. Evaluation of Etest method for determining caspofungin (MK-0991) susceptibilities of 726 clinical isolates of Candida species.

    PubMed

    Pfaller, M A; Messer, S A; Mills, K; Bolmström, A; Jones, R N

    2001-12-01

    The performance of the Etest for testing the susceptibilities to caspofungin (MK-0991) of 726 isolates of Candida spp. was assessed against the National Committee for Clinical Laboratory Standards (NCCLS) microdilution broth method. The NCCLS method employed RPMI 1640 broth medium, and MICs were read after incubation for 48 h at 35 degrees C. MICs were determined by Etest for all 726 isolates with RPMI agar containing 2% glucose (RPG) and were read after incubation for 48 h at 35 degrees C. The Candida isolates included Candida albicans (n = 486), Candida glabrata (n = 96), Candida tropicalis (n = 51), Candida parapsilosis (n = 47), Candida krusei (n = 11), Candida lusitaniae (n = 2), and Candida guilliermondii (n = 33). In addition, a subset of 314 isolates were also tested by Etest using Casitone agar (CAS) and antibiotic medium 3 agar (AM3). The Etest results obtained using RPG correlated well with reference MICs. Overall agreement was 94% with RPG, 82% with CAS, and 79% with AM3. When RPG was used, agreement ranged from 79% for C. parapsilosis to 100% for C. krusei, C. lusitaniae, and C. guilliermondii. When CAS was used, agreement ranged from 0% for C. lusitaniae to 100% for C. glabrata. With AM3, agreement ranged from 0% for C. lusitaniae to 100% for C. guilliermondii. All three media supported growth of each of the Candida species. Etest results were easy to read, with sharp zones of inhibition. In most instances (75%) where a discrepancy was observed between the Etest and the reference method, the Etest MIC was lower. The Etest method using RPG appears to be useful for determining caspofungin susceptibilities of Candida species.

  1. Isolation of Francisella tularensis and Yersinia pestis from Blood Cultures by Plasma Purification and Immunomagnetic Separation Accelerates Antibiotic Susceptibility Determination

    PubMed Central

    Aloni-Grinstein, Ronit; Schuster, Ofir; Yitzhaki, Shmuel; Aftalion, Moshe; Maoz, Sharon; Steinberger-Levy, Ida; Ber, Raphael

    2017-01-01

    The early symptoms of tularemia and plague, which are caused by Francisella tularensis and Yersinia pestis infection, respectively, are common to other illnesses, resulting in a low index of suspicion among clinicians. Moreover, because these diseases can be treated only with antibiotics, rapid isolation of the bacteria and antibiotic susceptibility testing (AST) are preferable. Blood cultures of patients may serve as a source for bacteria isolation. However, due to the slow growth rates of F. tularensis and Y. pestis on solid media, isolation by plating blood culture samples on proper agar plates may require several days. Thus, improving the isolation procedure prior to antibiotic susceptibility determination is a major clinically relevant need. In this study, we developed a rapid, selective procedure for the isolation of F. tularensis and Y. pestis from blood cultures. We examined drop-plating and plasma purification followed by immunomagnetic separation (IMS) as alternative isolation methods. We determined that replacing the classical isolation method with drop-plating is advantageous with respect to time at the expense of specificity. Hence, we also examined isolation by IMS. Sub-localization of F. tularensis within blood cultures of infected mice has revealed that the majority of the bacteria are located within the extracellular fraction, in the plasma. Y. pestis also resides within the plasma. Therefore, the plasma fraction was isolated from blood cultures and subjected to an IMS procedure using polyclonal anti-F. tularensis live vaccine strain (LVS) or anti-Y. pestis antibodies conjugated to 50-nm nano-beads. The time required to reach an inoculum of sufficient bacteria for AST was shortest when using the plasma and IMSs for both bacteria, saving up to 2 days of incubation for F. tularensis and 1 day for Y. pestis. Our isolation procedure provides a proof of concept for the clinical relevance of rapid isolation for AST from F. tularensis- and Y. pestis

  2. In Vitro Amphotericin B Susceptibility of Malassezia pachydermatis Determined by the CLSI Broth Microdilution Method and Etest Using Lipid-Enriched Media

    PubMed Central

    Álvarez-Pérez, Sergio; Peláez, Teresa; Cutuli, Maite; García, Marta E.

    2014-01-01

    We determined the in vitro amphotericin B susceptibility of 60 Malassezia pachydermatis isolates by the CLSI broth microdilution method and the Etest using lipid-enriched media. All isolates were susceptible at MICs of ≤1 μg/ml, confirming the high activity of amphotericin B against this yeast species. Overall, the essential agreement between the tested methods was high (80% and 96.7% after 48 h and 72 h, respectively), and all discrepancies were regarded as nonsubstantial. PMID:24752258

  3. Determination of in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional methods

    SciTech Connect

    Heifets, L.B.; Iseman, M.D.; Cook, J.L.; Lindholm-Levy, P.J.; Drupa, I.

    1985-01-01

    Among eight cephalosporins and cephamycins tested in preliminary in vitro screening against Mycobacterium tuberculosis, the most promising for further study was found to be ceforanide, followed by ceftizoxime, cephapirin, and cefotaxime. Moxalactam, cefoxitin, cefamandole, and cephalothin were found to be not active enough against M. tuberculosis to be considered for further in vitro studies. The antibacterial activity of various ceforanide concentrations was investigated by three methods: (i) the dynamics of radiometric readings (growth index) in 7H12 broth; (ii) the number of CFU in the same medium; and (iii) the proportion method on 7H11 agar plates. There was a good correlation among the results obtained with these methods. The MIC for most strains ranged from 6.0 to 25.0 micrograms/ml. The BACTEC radiometric method is a reliable, rapid, and convenient method for preliminary screening and determination of the level of antibacterial activity of drugs not commonly used against M. tuberculosis.

  4. Determination of in vitro susceptibility of Mycobacterium tuberculosis to cephalosporins by radiometric and conventional methods.

    PubMed Central

    Heifets, L B; Iseman, M D; Cook, J L; Lindholm-Levy, P J; Drupa, I

    1985-01-01

    Among eight cephalosporins and cephamycins tested in preliminary in vitro screening against Mycobacterium tuberculosis, the most promising for further study was found to be ceforanide, followed by ceftizoxime, cephapirin, and cefotaxime. Moxalactam, cefoxitin, cefamandole, and cephalothin were found to be not active enough against M. tuberculosis to be considered for further in vitro studies. The antibacterial activity of various ceforanide concentrations was investigated by three methods: (i) the dynamics of radiometric readings (growth index) in 7H12 broth; (ii) the number of CFU in the same medium; and (iii) the proportion method on 7H11 agar plates. There was a good correlation among the results obtained with these methods. The MIC for most strains ranged from 6.0 to 25.0 micrograms/ml. The BACTEC radiometric method is a reliable, rapid, and convenient method for preliminary screening and determination of the level of antibacterial activity of drugs not commonly used against M. tuberculosis. PMID:3920957

  5. Influence of MDM2 polymorphisms on squamous cell carcinoma susceptibility: a meta-analysis

    PubMed Central

    Yu, Huanxin; Li, Haiyan; Zhang, Jinling; Liu, Gang

    2016-01-01

    Purpose Controversial associations between single-nucleotide polymorphisms (rs2279744, rs937283, rs3730485) of the MDM2 gene and the etiology of squamous cell carcinomas (SCCs) have been reported. This merits further comprehensive assessment. Materials and methods We systematically reviewed the available data and conducted an updated meta-analysis to evaluate the genetic effect of MDM2 polymorphisms in SCC susceptibility, using Stata/SE 12.0 software. Results After screening, 7,987 SCC cases and 12,954 controls from 26 eligible case–control studies were enrolled. Overall, compared with the control group, a significantly increased SCC risk was observed for the MDM2 rs2279744 polymorphism in the Asian population (test of association: odds ratio [OR] 1.12, P=0.027 for G vs T; OR 1.26, P=0.016 for GG vs TT; OR 1.25, P<0.001 for GG vs TT + TG; and OR 1.08, P=0.023 for carrier G vs T). In subgroup analysis by SCC type, a similarly increased esophageal SCC risk was detected (OR 1.19, P<0.001 for G vs T; OR 1.46, P<0.001 for GG vs TT; and OR 1.48, P=0.005 for GG vs TT + TG). Furthermore, MDM2–TP53 double mutation was statistically associated with increased SCC susceptibility overall (OR 1.52, P=0.001), especially in the Asian population (OR 1.49, P=0.022). However, no significant difference between the control and case groups was obtained for MDM2 rs937283 or rs3730485 under any genetic model (all P>0.05). Conclusion Our results highlight a positive association between the GG genotype of MDM2 rs2279744 polymorphism and an increased risk of esophageal SCC in the Asian population, which needs to be clarified by more large-scale studies. PMID:27785069

  6. Genetic variation in IGF1 predicts renal cell carcinoma susceptibility and prognosis in Chinese population

    PubMed Central

    Cao, Qiang; Liang, Chao; Xue, Jianxin; Li, Pu; Li, Jie; Wang, Meilin; Zhang, Zhengdong; Qin, Chao; Lu, Qiang; Hua, Lixin; Shao, Pengfei; Wang, Zengjun

    2016-01-01

    Insulin-like growth factor 1 (IGF1) and IGF binding protein 3 (IGFBP3) play an important role in the development and progression of renal cell carcinoma (RCC). We evaluated the association of functional polymorphisms in IGF1 and IGFBP3 with susceptibility and prognosis of RCC. We genotyped nine potentially functional polymorphisms in IGF1 and IGFBP3 and assessed their association with risk of RCC in a two-stage case-control study compromising 1027 cases and 1094 controls, and with prognosis in a cohort of 311 patients. We found rs5742714 in the 3′-UTR of IGF1 was significantly associated with risk and prognosis of RCC. In the combined set, the rs5742714 GC/CC genotypes were significantly associated with decreased risk of RCC compared with the GG genotype (OR = 0.82; 95% CI = 0.68–0.98, P = 0.002). Furthermore, patients with the rs5742714 GC/CC genotypes showed improved survival than those with the GG genotype (Log-rank P = 0.025, HR = 0.36, 95% CI = 0.14–0.93). Besides, the rs5742714 GC/CC genotypes were associated with significantly decreased expression of IGF1 mRNA and lower IGF1 serum levels. Moreover, the luciferase reporter assays revealed the potential effect of rs5742714 genotype on the binding of microRNAs to IGF1. Our findings suggest that the IGF1 polymorphism rs5742714 may be a genetic predictor of susceptibility and prognosis of RCC. PMID:27976731

  7. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria

    PubMed Central

    2012-01-01

    Background Several studies indicate that people of the Fulani ethnic group are less susceptible to malaria compared to those of other ethnic groups living sympatrically in Africa, including the Dogon ethnic group. Although the mechanisms of this protection remain unclear, the Fulani are known to have higher levels of Plasmodium falciparum-specific antibodies of all Ig classes as compared to the Dogon. However, the proportions of B cell subsets in the Fulani and Dogon that may account for differences in the levels of Ig have not been characterized. Methods In this cross-sectional study, venous blood was collected from asymptomatic Fulani (n = 25) and Dogon (n = 25) adults in Mali during the malaria season, and from P. falciparum-naïve adults in the U.S. (n = 8). At the time of the blood collection, P. falciparum infection was detected by blood-smear in 16% of the Fulani and 36% of the Dogon volunteers. Thawed lymphocytes were analysed by flow cytometry to quantify B cell subsets, including immature and naïve B cells; plasma cells; and classical, activated, and atypical memory B cells (MBCs). Results The overall distribution of B cell subsets was similar between Fulani and Dogon adults, although the percentage of activated MBCs was higher in the Fulani group (Fulani: 11.07% [95% CI: 9.317 – 12.82]; Dogon: 8.31% [95% CI: 6.378 – 10.23]; P = 0.016). The percentage of atypical MBCs was similar between Fulani and Dogon adults (Fulani: 28.3% [95% CI: 22.73 – 34.88]; Dogon: 29.3% [95% CI: 25.06 – 33.55], but higher than U.S. adults (U.S.: 3.0% [95% CI: -0.21 - 6.164]; P < 0.001). Plasmodium falciparum infection was associated with a higher percentage of plasma cells among Fulani (Fulani infected: 3.3% [95% CI: 1.788 – 4.744]; Fulani uninfected: 1.71% [95% CI: 1.33 – 2.08]; P = 0.011), but not Dogon adults. Conclusion These data show that the malaria-resistant Fulani have a higher percentage of activated MBCs compared to the Dogon, and that P. falciparum

  8. B cell analysis of ethnic groups in Mali with differential susceptibility to malaria.

    PubMed

    Portugal, Silvia; Doumtabe, Didier; Traore, Boubacar; Miller, Louis H; Troye-Blomberg, Marita; Doumbo, Ogobara K; Dolo, Amagana; Pierce, Susan K; Crompton, Peter D

    2012-05-11

    Several studies indicate that people of the Fulani ethnic group are less susceptible to malaria compared to those of other ethnic groups living sympatrically in Africa, including the Dogon ethnic group. Although the mechanisms of this protection remain unclear, the Fulani are known to have higher levels of Plasmodium falciparum-specific antibodies of all Ig classes as compared to the Dogon. However, the proportions of B cell subsets in the Fulani and Dogon that may account for differences in the levels of Ig have not been characterized. In this cross-sectional study, venous blood was collected from asymptomatic Fulani (n = 25) and Dogon (n = 25) adults in Mali during the malaria season, and from P. falciparum-naïve adults in the U.S. (n = 8). At the time of the blood collection, P. falciparum infection was detected by blood-smear in 16% of the Fulani and 36% of the Dogon volunteers. Thawed lymphocytes were analysed by flow cytometry to quantify B cell subsets, including immature and naïve B cells; plasma cells; and classical, activated, and atypical memory B cells (MBCs). The overall distribution of B cell subsets was similar between Fulani and Dogon adults, although the percentage of activated MBCs was higher in the Fulani group (Fulani: 11.07% [95% CI: 9.317 - 12.82]; Dogon: 8.31% [95% CI: 6.378 - 10.23]; P = 0.016). The percentage of atypical MBCs was similar between Fulani and Dogon adults (Fulani: 28.3% [95% CI: 22.73 - 34.88]; Dogon: 29.3% [95% CI: 25.06 - 33.55], but higher than U.S. adults (U.S.: 3.0% [95% CI: -0.21 - 6.164]; P < 0.001). Plasmodium falciparum infection was associated with a higher percentage of plasma cells among Fulani (Fulani infected: 3.3% [95% CI: 1.788 - 4.744]; Fulani uninfected: 1.71% [95% CI: 1.33 - 2.08]; P = 0.011), but not Dogon adults. These data show that the malaria-resistant Fulani have a higher percentage of activated MBCs compared to the Dogon, and that P. falciparum infection is associated with a higher percentage of

  9. Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria.

    PubMed

    Lou, J; Gasche, Y; Zheng, L; Critico, B; Monso-Hinard, C; Juillard, P; Morel, P; Buurman, W A; Grau, G E

    1998-12-01

    Upon infection with Plasmodium berghei ANKA (PbA), various inbred strains of mice exhibit different susceptibility to the development of cerebral malaria (CM). Tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN-gamma) have been shown to be crucial mediators in the pathogenesis of this neurovascular complication. Brain microvascular endothelial cells (MVEC) represent an important target of both cytokines. In the present study, we show that brain MVEC purified from CM-susceptible (CM-S) CBA/J mice and CM-resistant (CM-R) BALB/c mice exhibit a different sensitivity to TNF. CBA/J brain MVEC displayed a higher capacity to produce IL-6 and to up-regulate intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in response to TNF than BALB/c brain MVEC. In contrast, no difference was found in the induction of E-selectin after TNF challenge. CM-S brain MVEC were also significantly more sensitive to TNF-induced lysis. This differential reactivity to TNF was further substantiated by comparing TNF receptor expression on CM-S and CM-R brain MVEC. Although the constitutive expression of TNF receptors was comparable on cells from the two origins, TNF induced an up-regulation of both p55 and p75 TNF receptors in CM-S, but not in CM-R brain MVEC. A similar regulation was found at the level of TNF receptor mRNA, but not for receptor shedding. Although a protein kinase C inhibitor blocked the response to TNF in both the brain MVEC, an inhibitor of protein kinase A selectively abolished the response to TNF in CM-R, but not CM-S brain MVEC, suggesting a differential protein kinase involvement in TNF-induced activation of CM-S and CM-R brain MVEC. These results indicate that brain MVEC purified from CM-S and CM-R mice exhibit distinctive sensitivity to TNF This difference may be partly due to a differential regulation of TNF receptors and via distinct protein kinase pathways.

  10. Establishment of a cell line with high transfection efficiency from zebrafish Danio rerio embryos and its susceptibility to fish viruses.

    PubMed

    Jin, Y L; Chen, L M; Le, Y; Li, Y L; Hong, Y H; Jia, K T; Yi, M S

    2017-08-17

    A cell line ZBE3 isolated from a continuous cell culture derived from zebrafish Danio rerio blastomeres by clonal growth was characterized. ZBE3 cells had been subcultured for >120 passages since the initial primary culture of the blastomeres. The ZBE3 cells grow stably at temperature from 20 to 32° C with an optimum temperature of 28° C in ESM2 or ESM4 medium with 15% foetal bovine serum (FBS). The optimum FBS concentration for ZBE3 cell growth ranged from 15 to 20%. Cytogenetical analysis indicated that the modal chromosome number of ZBE3 cells was 50, the same as the diploid chromosome number of D. rerio. Significant cytopathic effect was observed in ZBE3 cells after infection with redspotted grouper nervous necrosis virus, Singapore grouper iridovirus and grass carp reovirus, and the viral replication in the cells was confirmed by real-time quantitative PCR and transmission electron microscopy, indicating the susceptibility of ZBE3 cells to the three fish viruses. After transfected with pEGFP-N3 plasmid, ZBE3 cells showed a transfection efficiency of about 40% which was indicated by the percentage of cells expressing green fluorescence protein. The stable growth, susceptibility to fish viruses as well as high transfection efficiency make ZBE3 cells be a useful tool in transgenic manipulation, fish virus-host cell interaction and immune response in fish. © 2017 The Fisheries Society of the British Isles.

  11. FOXO1 deletion reduces dendritic cell function and enhances susceptibility to periodontitis.

    PubMed

    Xiao, Wenmei; Dong, Guangyu; Pacios, Sandra; Alnammary, Maher; Barger, Laura A; Wang, Yu; Wu, Yingying; Graves, Dana T

    2015-04-01

    The host response plays both protective and destructive roles in periodontitis. FOXO1 is a transcription factor that is activated in dendritic cells (DCs), but its function in vivo has not been examined. We investigated the role of FOXO1 in activating DCs in experimental (CD11c.Cre(+).FOXO1(L/L)) compared with matched control mice (CD11c.Cre(-).FOXO1(L/L)) in response to oral pathogens. Lineage-specific FOXO1 deletion reduced the recruitment of DCs to oral mucosal epithelium by approximately 40%. FOXO1 was needed for expression of genes that regulate migration, including integrins αν and β3 and matrix metalloproteinase-2. Ablation of FOXO1 in DCs significantly decreased IL-12 produced by DCs in mucosal surfaces. Moreover, FOXO1 deletion reduced migration of DCs to lymph nodes, reduced capacity of DCs to induce formation of plasma cells, and reduced production of bacteria-specific antibody. The decrease in DC function in the experimental mice led to increased susceptibility to periodontitis through a mechanism that involved a compensatory increase in osteoclastogenic factors, IL-1β, IL-17, and RANKL. Thus, we reveal a critical role for FOXO1 in DC recruitment to oral mucosal epithelium and activation of adaptive immunity induced by oral inoculation of bacteria. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. FOXO1 Deletion Reduces Dendritic Cell Function and Enhances Susceptibility to Periodontitis

    PubMed Central

    Xiao, Wenmei; Dong, Guangyu; Pacios, Sandra; Alnammary, Maher; Barger, Laura A.; Wang, Yu; Wu, Yingying; Graves, Dana T.

    2016-01-01

    The host response plays both protective and destructive roles in periodontitis. FOXO1 is a transcription factor that is activated in dendritic cells (DCs), but its function in vivo has not been examined. We investigated the role of FOXO1 in activating DCs in experimental (CD11c.Cre+.FOXO1L/L) compared with matched control mice (CD11c.Cre−.FOXO1L/L) in response to oral pathogens. Lineage-specific FOXO1 deletion reduced the recruitment of DCs to oral mucosal epithelium by approximately 40%. FOXO1 was needed for expression of genes that regulate migration, including integrins αν and β3 and matrix metalloproteinase-2. Ablation of FOXO1 in DCs significantly decreased IL-12 produced by DCs in mucosal surfaces. Moreover, FOXO1 deletion reduced migration of DCs to lymph nodes, reduced capacity of DCs to induce formation of plasma cells, and reduced production of bacteria-specific antibody. The decrease in DC function in the experimental mice led to increased susceptibility to periodontitis through a mechanism that involved a compensatory increase in osteoclastogenic factors, IL-1β, IL-17, and RANKL. Thus, we reveal a critical role for FOXO1 in DC recruitment to oral mucosal epithelium and activation of adaptive immunity induced by oral inoculation of bacteria. PMID:25794707

  13. Up-regulation of TRPV1 in mononuclear cells of end-stage kidney disease patients increases susceptibility to N-arachidonoyl-dopamine (NADA)-induced cell death.

    PubMed

    Saunders, Cassandra I; Fassett, Robert G; Geraghty, Dominic P

    2009-10-01

    Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX>NADA>OLDA>capsaicin. TRPV1 (5'-iodoresiniferatoxin) and cannabinoid (CB2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB2) antagonists may have potential for the treatment of immune dysfunction in ESKD.

  14. [Susceptibility of M. tuberculosis to antituberculosis drugs as determined by two methods, in Sucre state, Venezuela].

    PubMed

    Mendoza, Rosmy; De Donato, Marcos; de Waard, Jacobus H; Takiff, Howard; Bello, Teresita; Chirinos, Gladys

    2010-12-01

    The objective of this study was to evaluate the resistance to isoniazid (INH), rifampicin (RIF), streptomycin (STR) and ethambutol (EMB), with the Canetti's proportions method (PM) and the nitrate reductase assay (NRA) of 59 clinical strains of Mycobacterium tuberculosis, isolated in the period of august 2005 to december 2006, in Sucre state, Venezuela. Primary and acquired drug resistance was 6.3% and 14.3%, respectively. Only one strain was found to be multidrug resistant (MDR). The overall agreement between the NRA and PM was 100% for INH, RIF and EMB, and 96% for STR. The time to obtain results was 10 to 14 days for the NRA, compared to 42 days for the PM. The NRA was easy to perform and therefore represents a useful tool for rapid and accurate determination of drug-resistant M. tuberculosis. The sequence of the rpoB gene of the RIF resistant strain demonstrated a never described mutation (change in the codon 456; TCG > CAG) in the hypervariable region of 81 base pairs where most of the mutations of the RIF resistant strains have been reported. Comparison of our results with those of the last resistance prevalence study carried out in the years 1998-1999, shows a decrease in the studied area.

  15. Influence of different susceptibility testing methods and media on determination of the relevant fluconazole minimum inhibitory concentrations for heavy trailing Candida isolates with low-high phenotype.

    PubMed

    Alp, Sehnaz; Sancak, Banu; Hascelik, Gulsen; Arikan, Sevtap

    2010-11-01

    We investigated the incidence of trailing growth with fluconazole in 101 clinical Candida isolates (49 C. albicans and 52 C. tropicalis) and tried to establish the convenient susceptibility testing method and medium for fluconazole minimum inhibitory concentration (MIC) determination. MICs were determined by CLSI M27-A2 broth microdilution (BMD) and Etest methods on RPMI-1640 agar supplemented with 2% glucose (RPG) and on Mueller-Hinton agar supplemented with 2% glucose and 0.5 μg ml(-1) methylene blue (GMB). BMD and Etest MICs were read at 24 and 48 h, and susceptibility categories were compared. All isolates were determined as susceptible with BMD, Etest-RPG and Etest-GMB at 24 h. While all isolates were interpreted as susceptible at 48 h on Etest-RPG and Etest-GMB, one C. albicans isolate was interpreted as susceptible-dose dependent (S-DD) and two C. tropicalis isolates were interpreted as resistant with BMD. On Etest-RPG, trailing growth caused widespread microcolonies within the inhibition zone and resulted in confusion in MIC determination. On Etest-GMB, because of the nearly absence of microcolonies within the zone of inhibition, MICs were evaluated more easily. We conclude that, for the determination of fluconazole MICs of trailing Candida isolates, the Etest method has an advantage over BMD and can be used along with this reference method. Moreover, GMB appears more beneficial than RPG for the fluconazole Etest. © 2009 Blackwell Verlag GmbH.

  16. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility.

    PubMed

    Wu, Guoyan; Yang, Qianru; Long, Mei; Guo, Lijuan; Li, Bei; Meng, Yue; Zhang, Anyun; Wang, Hongning; Liu, Shuliang; Zou, Likou

    2015-11-01

    A variety of disinfectants have been widely used in veterinary hygiene, food industries and environments, which could induce the development of bacterial resistance to disinfectants. The methods used to investigate antimicrobial effects of disinfectant vary considerably among studies, making comparisons difficult. In this study, agar dilution and broth microdilution methods were used to compare the antimicrobial activities of four quaternary ammonium compounds (QACs) against foodborne and zoonotic pathogens. The potential relationship between the presence of QACs resistance genes and phenotypic resistance to QACs was also investigated. Our results indicated that the minimum inhibitory concentrations (MICs) determined by two methods might be different depended upon different QACs and bacteria applied. Regardless of the testing methods, Klebsiella pneumoniae was more tolerant among Gram-negative strains to four QACs, followed by Salmonella and Escherichia coli. The agreement between MICs obtained by the two methods was good, for benzalkonium chloride (78.15%), didecyldimethylammonium chloride (DDAC) (82.35%), cetylpyridinium chloride (CTPC) (97.48%) and cetyltrimethylammonium bromide (CTAB) (99.16%), respectively. Among all Gram-negative bacteria, 94.55% (n=52) of qacEΔ1-positive strains showed higher MICs (512 mg l(-1)) to CTAB. The qacEΔ1 gene was highly associated (P<0.05) with the high MICs of QACs (⩾512 mg l(-1)). In addition, DDAC remained as the most effective disinfectant against both Gram-positive and Gram-negative bacteria. This is the first study that compared the agar dilution and broth microdilution methods to assess the antimicrobial activity of QACs. The study demonstrated the need to standardize method that would be used in evaluating QACs antimicrobial properties in the future.

  17. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress.

    PubMed

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed

  18. Mycobacterial Cultures Contain Cell Size and Density Specific Sub-populations of Cells with Significant Differential Susceptibility to Antibiotics, Oxidative and Nitrite Stress

    PubMed Central

    Vijay, Srinivasan; Nair, Rashmi Ravindran; Sharan, Deepti; Jakkala, Kishor; Mukkayyan, Nagaraja; Swaminath, Sharmada; Pradhan, Atul; Joshi, Niranjan V.; Ajitkumar, Parthasarathi

    2017-01-01

    The present study shows the existence of two specific sub-populations of Mycobacterium smegmatis and Mycobacterium tuberculosis cells differing in size and density, in the mid-log phase (MLP) cultures, with significant differential susceptibility to antibiotic, oxidative, and nitrite stress. One of these sub-populations (~10% of the total population), contained short-sized cells (SCs) generated through highly-deviated asymmetric cell division (ACD) of normal/long-sized mother cells and symmetric cell divisions (SCD) of short-sized mother cells. The other sub-population (~90% of the total population) contained normal/long-sized cells (NCs). The SCs were acid-fast stainable and heat-susceptible, and contained high density of membrane vesicles (MVs, known to be lipid-rich) on their surface, while the NCs possessed negligible density of MVs on the surface, as revealed by scanning and transmission electron microscopy. Percoll density gradient fractionation of MLP cultures showed the SCs-enriched fraction (SCF) at lower density (probably indicating lipid-richness) and the NCs-enriched fraction (NCF) at higher density of percoll fractions. While live cell imaging showed that the SCs and the NCs could grow and divide to form colony on agarose pads, the SCF, and NCF cells could independently regenerate MLP populations in liquid and solid media, indicating their full genomic content and population regeneration potential. CFU based assays showed the SCF cells to be significantly more susceptible than NCF cells to a range of concentrations of rifampicin and isoniazid (antibiotic stress), H2O2 (oxidative stress),and acidified NaNO2 (nitrite stress). Live cell imaging showed significantly higher susceptibility of the SCs of SC-NC sister daughter cell pairs, formed from highly-deviated ACD of normal/long-sized mother cells, to rifampicin and H2O2, as compared to the sister daughter NCs, irrespective of their comparable growth rates. The SC-SC sister daughter cell pairs, formed

  19. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers.

    PubMed

    Espinoza, J Luis; Nguyen, Viet H; Ichimura, Hiroshi; Pham, Trang T T; Nguyen, Cuong H; Pham, Thuc V; Elbadry, Mahmoud I; Yoshioka, Katsuji; Tanaka, Junji; Trung, Ly Q; Takami, Akiyoshi; Nakao, Shinji

    2016-12-20

    Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide and is etiologically linked to several cancers, including cervical and genital cancers. NKG2D, an activating receptor expressed by NK cells, plays an important role in cancer immune-surveillance. We analyzed the impact of a NKG2D gene variant, rs1049174, on the incidence of HPV-related cancers in Vietnamese patients and utilized various molecular approaches to elucidate the mechanisms of NKG2D receptor regulation by rs1049174. In a group of 123 patients with HPV+ anogenital cancers, the low cytotoxicity allele LNK was significantly associated with increased cancer susceptibility (p = 0.016). Similar results were also observed in a group of 153 women with cervical cancer (p = 0.05). In functional studies, NK cells from individuals with LNK genotype showed a lower NKG2D expression and displayed less efficient NKG2D-mediated functions than NK cells with HNK genotype. Notably, the rs1049174 variant occurs within a targeting site for miR-1245, a negative regulator of NKG2D expression. Compared with the higher cytotoxicity allele HNK, the LNK allele was more efficiently targeted by miR-1245 and thus determined lower NKG2D expression in NK cells with the LNK genotype. The NKG2D variants may influence cancer immunosurveillance and thus determine susceptibility to various malignancies, including HPV-induced cancers.

  20. A functional polymorphism in the NKG2D gene modulates NK-cell cytotoxicity and is associated with susceptibility to Human Papilloma Virus-related cancers

    PubMed Central

    Espinoza, J. Luis; Nguyen, Viet H.; Ichimura, Hiroshi; Pham, Trang T. T.; Nguyen, Cuong H.; Pham, Thuc V.; Elbadry, Mahmoud I.; Yoshioka, Katsuji; Tanaka, Junji; Trung, Ly Q.; Takami, Akiyoshi; Nakao, Shinji

    2016-01-01

    Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide and is etiologically linked to several cancers, including cervical and genital cancers. NKG2D, an activating receptor expressed by NK cells, plays an important role in cancer immune-surveillance. We analyzed the impact of a NKG2D gene variant, rs1049174, on the incidence of HPV-related cancers in Vietnamese patients and utilized various molecular approaches to elucidate the mechanisms of NKG2D receptor regulation by rs1049174. In a group of 123 patients with HPV+ anogenital cancers, the low cytotoxicity allele LNK was significantly associated with increased cancer susceptibility (p = 0.016). Similar results were also observed in a group of 153 women with cervical cancer (p = 0.05). In functional studies, NK cells from individuals with LNK genotype showed a lower NKG2D expression and displayed less efficient NKG2D-mediated functions than NK cells with HNK genotype. Notably, the rs1049174 variant occurs within a targeting site for miR-1245, a negative regulator of NKG2D expression. Compared with the higher cytotoxicity allele HNK, the LNK allele was more efficiently targeted by miR-1245 and thus determined lower NKG2D expression in NK cells with the LNK genotype. The NKG2D variants may influence cancer immunosurveillance and thus determine susceptibility to various malignancies, including HPV-induced cancers. PMID:27995954

  1. Differential effect of IL10 and TNFα genotypes on determining susceptibility to discoid and systemic lupus erythematosus

    PubMed Central

    Suarez, A; Lopez, P; Mozo, L; Gutierrez, C

    2005-01-01

    Objective: To ascertain the possible involvement of functional interleukin 10 (IL10) and tumour necrosis α (TNFα) cytokine promoter polymorphisms on the susceptibility to discoid and systemic lupus erythematosus (DLE, SLE), and their associations with immunological features. Methods: Single nucleotide polymorphisms of the IL10 (–1082, –819, and –592) and TNFα (–308) genes were determined using allele specific probes in 248 lupus patients and 343 matched controls. To assess functional significance of genotypes, basal mRNA cytokine levels were quantified in 106 genotyped healthy controls by real time RT-PCR. Specific autoantibodies and cutaneous manifestations were analysed in SLE patients and associated with functional genotypes. Results: After analysing the distribution of IL10 and TNFα transcript levels according to promoter genotypes in healthy individuals, patients and controls were classified into functional single and combined genotypes according to the expected high or low constitutive cytokine production. High TNFα genotypes (–308AA or AG) were associated with SLE independently of IL10 alleles, whereas the risk of developing DLE and the prevalence of discoid lesion in SLE were higher in the high IL10/low TNFα producer group (–1082GG/–308GG). Cytokine interaction also influences the appearance of autoantibodies. Antibodies against Sm are prevalent among low producer patients for both cytokines, a genotype not associated with lupus incidence, whereas low IL10/high TNFα patients have the highest frequency of antibodies to SSa and SSb. Conclusions: IL10/TNFα interaction influences susceptibility to DLE and the appearance of specific autoantibodies in SLE patients, whereas high TNFα producer genotypes represent a significant risk factor for SLE. PMID:15800006

  2. Preliminary AMS Study in Cretaceous Igneous Rocks of Valle Chico Complex, Uruguay: Statistical Determination of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.

    2009-05-01

    The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.

  3. Comparison between the antimicrobial susceptibility of Burkholderia pseudomallei to trimethoprim-sulfamethoxazole by standard disk diffusion method and by minimal inhibitory concentration determination.

    PubMed

    Lumbiganon, P; Tattawasatra, U; Chetchotisakd, P; Wongratanacheewin, S; Thinkhamrop, B

    2000-08-01

    Melioidosis, an infection caused by Burkholderia pseudomallei, usually occurs in immunocompromised patients and requires prolonged antibiotic therapy. Previously, oral trimethoprim-sulfamethoxazole (TM/SM), an inexpensive and effective drug has been used as a maintenance therapy. The susceptibility of B. pseudomallei to TM/SM by the standard disk diffusion method is very low. However, some patients who were treated with TM/SM as a maintenance therapy despite the in vitro resistance showed good clinical responses. There were no data comparing the susceptibility of B. pseudomallei by the standard disk diffusion method with other quantitative susceptibility tests. The objective of this study was to determine the agreement between the antimicrobial susceptibility of B. pseudomallei to TM/SM by standard disk diffusion and minimal inhibitory concentration determination (MIC). We performed the susceptibility test of 144 strains of B. pseudomallei to TM/SM by both the standard disk diffusion and microbroth dilution MIC. The sensitivity results were 53.5 per cent and 84.0 per cent respectively. The agreement between the 2 tests was very poor (Kappa = 0.14; 95% CI = -0.01 to 0.29). The false resistant rate by the standard disk diffusion test was 67.9 per cent. Further in vitro susceptibility and clinical study are needed to define the interpretive criteria that correlate with clinical response.

  4. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice

    PubMed Central

    Solleti, Siva Kumar; Simon, Dawn M.; Srisuma, Sorachai; Arikan, Meltem C.; Rangasamy, Tirumalai; Bijli, Kaiser M.; Rahman, Arshad; Crossno, Joseph T.; Shapiro, Steven D.

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation. PMID:26024894

  5. Airway epithelial cell PPARγ modulates cigarette smoke-induced chemokine expression and emphysema susceptibility in mice.

    PubMed

    Solleti, Siva Kumar; Simon, Dawn M; Srisuma, Sorachai; Arikan, Meltem C; Bhattacharya, Soumyaroop; Rangasamy, Tirumalai; Bijli, Kaiser M; Rahman, Arshad; Crossno, Joseph T; Shapiro, Steven D; Mariani, Thomas J

    2015-08-01

    Chronic obstructive pulmonary disease (COPD) is a highly prevalent, chronic inflammatory lung disease with limited existing therapeutic options. While modulation of peroxisome proliferator-activating receptor (PPAR)-γ activity can modify inflammatory responses in several models of lung injury, the relevance of the PPARG pathway in COPD pathogenesis has not been previously explored. Mice lacking Pparg specifically in airway epithelial cells displayed increased susceptibility to chronic cigarette smoke (CS)-induced emphysema, with excessive macrophage accumulation associated with increased expression of chemokines, Ccl5, Cxcl10, and Cxcl15. Conversely, treatment of mice with a pharmacological PPARγ activator attenuated Cxcl10 and Cxcl15 expression and macrophage accumulation in response to CS. In vitro, CS increased lung epithelial cell chemokine expression in a PPARγ activation-dependent fashion. The ability of PPARγ to regulate CS-induced chemokine expression in vitro was not specifically associated with peroxisome proliferator response element (PPRE)-mediated transactivation activity but was correlated with PPARγ-mediated transrepression of NF-κB activity. Pharmacological or genetic activation of PPARγ activity abrogated CS-dependent induction of NF-κB activity. Regulation of NF-κB activity involved direct PPARγ-NF-κB interaction and PPARγ-mediated effects on IKK activation, IκBα degradation, and nuclear translocation of p65. Our data indicate that PPARG represents a disease-relevant pathophysiological and pharmacological target in COPD. Its activation state likely contributes to NF-κB-dependent, CS-induced chemokine-mediated regulation of inflammatory cell accumulation.

  6. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress

    PubMed Central

    Sriskanthadevan, Shrivani; Jeyaraju, Danny V.; Chung, Timothy E.; Prabha, Swayam; Xu, Wei; Skrtic, Marko; Jhas, Bozhena; Hurren, Rose; Gronda, Marcela; Wang, Xiaoming; Jitkova, Yulia; Sukhai, Mahadeo A.; Lin, Feng-Hsu; Maclean, Neil; Laister, Rob; Goard, Carolyn A.; Mullen, Peter J.; Xie, Stephanie; Penn, Linda Z.; Rogers, Ian M.; Dick, John E.; Minden, Mark D.

    2015-01-01

    Mitochondrial respiration is a crucial component of cellular metabolism that can become dysregulated in cancer. Compared with normal hematopoietic cells, acute myeloid leukemia (AML) cells and patient samples have higher mitochondrial mass, without a concomitant increase in respiratory chain complex activity. Hence these cells have a lower spare reserve capacity in the respiratory chain and are more susceptible to oxidative stress. We therefore tested the effects of increasing the electron flux through the respiratory chain as a strategy to induce oxidative stress and cell death preferentially in AML cells. Treatment with the fatty acid palmitate induced oxidative stress and cell death in AML cells, and it suppressed tumor burden in leukemic cell lines and primary patient sample xenografts in the absence of overt toxicity to normal cells and organs. These data highlight a unique metabolic vulnerability in AML, and identify a new therapeutic strategy that targets abnormal oxidative metabolism in this malignancy. PMID:25631767

  7. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.

    PubMed

    Falcón, Rocío; Martínez, Alba; Albert, Eliseo; Madrid, Silvia; Oltra, Rosa; Giménez, Estela; Soriano, Mario; Vinuesa, Víctor; Gozalbo, Daniel; Gil, María Luisa; Navarro, David

    2016-05-01

    Vancomycin minimum inhibitory concentrations (MICs) at the upper end of the susceptible range for Staphylococcus aureus have been associated with poor clinical outcomes of bloodstream infections. We tested the hypothesis that high vancomycin MICs in S. aureus bacteraemia isolates are associated with increased cell wall thickness and suboptimal bacterial internalisation or lysis by human phagocytes. In total, 95 isolates were evaluated. Original vancomycin MICs were determined by Etest. The susceptibility of S. aureus isolates to killing by phagocytes was assessed in a human whole blood assay. Internalisation of bacterial cells by phagocytes was investigated by flow cytometry. Cell wall thickness was evaluated by transmission electron microscopy. Genotypic analysis of S. aureus isolates was performed using a DNA microarray system. Vancomycin MICs were significantly higher (P=0.006) in isolates that were killed suboptimally (killing index <60%) compared with those killed efficiently (killing index >70%) and tended to correlate inversely (P=0.08) with the killing indices. Isolates in both killing groups were internalised by human neutrophils and monocytes with comparable efficiency. The cell wall was significantly thicker (P=0.03) in isolates in the low killing group. No genotypic differences were found between the isolates in both killing groups. In summary, high vancomycin MICs in S. aureus bacteraemia isolates were associated with increased cell wall thickness and reduced intracellular killing by phagocytes.

  8. Investigation of the electronic and structural properties of potassium hexaboride, KB6, by transport, magnetic susceptibility, EPR, and NMR measurements, temperature-dependent crystal structure determination, and electronic band structure calculations.

    PubMed

    Ammar, A; Ménétrier, M; Villesuzanne, A; Matar, S; Chevalier, B; Etourneau, J; Villeneuve, G; Rodríguez-Carvajal, J; Koo, H-J; Smirnov, A I; Whangbo, M-H

    2004-08-09

    The electronic and structural properties of potassium hexaboride, KB(6), were examined by transport, magnetic susceptibility, EPR, and NMR measurements, temperature-dependent crystal structure determination, and electronic band structure calculations. The valence bands of KB(6) are partially empty, but the electrical resistivity of KB(6) reveals that it is not a normal metal. The magnetic susceptibility as well as EPR and NMR measurements show the presence of localized electrons in KB(6). The EPR spectra of KB(6) have two peaks, a broad ( approximately 320 G) and a narrow (less than approximately 27 G) line width, and the temperature-dependence of the magnetic susceptibility of KB(6) exhibits a strong hysteresis below 70 K. The temperature-dependent crystal structure determination of KB(6) shows the occurrence of an unusual variation in the unit cell parameter hence supporting that the hysteresis of the magnetic susceptibility is a bulk phenomenon. The line width DeltaH(pp) of the broad EPR signal is independent of temperature and EPR frequency. This finding indicates that the line broadening results from the dipole-dipole interaction, and the spins responsible for the broad EPR peak has the average distance of approximately 1.0 nm. To explain these apparently puzzling properties, we examined a probable mechanism of electron localization in KB(6) and its implications.

  9. Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23

    PubMed Central

    Schumacher, Fredrick R.; Wang, Zhaoming; Skotheim, Rolf I.; Koster, Roelof; Chung, Charles C.; Hildebrandt, Michelle A. T.; Kratz, Christian P.; Bakken, Anne C.; Timothy Bishop, D.; Cook, Michael B.; Erickson, R. Loren; Fosså, Sophie D.; Greene, Mark H.; Jacobs, Kevin B.; Kanetsky, Peter A.; Kolonel, Laurence N.; Loud, Jennifer T.; Korde, Larissa A.; Le Marchand, Loic; Pablo Lewinger, Juan; Lothe, Ragnhild A.; Pike, Malcolm C.; Rahman, Nazneen; Rubertone, Mark V.; Schwartz, Stephen M.; Siegmund, Kimberly D.; Skinner, Eila C.; Turnbull, Clare; Van Den Berg, David J.; Wu, Xifeng; Yeager, Meredith; Nathanson, Katherine L.; Chanock, Stephen J.; Cortessis, Victoria K.; McGlynn, Katherine A.

    2013-01-01

    Genome-wide association studies (GWASs) have identified multiple common genetic variants associated with an increased risk of testicular germ cell tumors (TGCTs). A previous GWAS reported a possible TGCT susceptibility locus on chromosome 1q23 in the UCK2 gene, but failed to reach genome-wide significance following replication. We interrogated this region by conducting a meta-analysis of two independent GWASs including a total of 940 TGCT cases and 1559 controls for 122 single-nucleotide polymorphisms (SNPs) on chromosome 1q23 and followed up the most significant SNPs in an additional 2202 TGCT cases and 2386 controls from four case–control studies. We observed genome-wide significant associations for several UCK2 markers, the most significant of which was for rs3790665 (PCombined = 6.0 × 10−9). Additional support is provided from an independent familial study of TGCT where a significant over-transmission for rs3790665 with TGCT risk was observed (PFBAT = 2.3 × 10−3). Here, we provide substantial evidence for the association between UCK2 genetic variation and TGCT risk. PMID:23462292

  10. Identification of four new susceptibility loci for testicular germ cell tumour

    PubMed Central

    Litchfield, Kevin; Holroyd, Amy; Lloyd, Amy; Broderick, Peter; Nsengimana, Jérémie; Eeles, Rosalind; Easton, Douglas F; Dudakia, Darshna; Bishop, D. Timothy; Reid, Alison; Huddart, Robert A.; Grotmol, Tom; Wiklund, Fredrik; Shipley, Janet; Houlston, Richard S.; Turnbull, Clare

    2015-01-01

    Genome-wide association studies (GWAS) have identified multiple risk loci for testicular germ cell tumour (TGCT), revealing a polygenic model of disease susceptibility strongly influenced by common variation. To identify additional single-nucleotide polymorphisms (SNPs) associated with TGCT, we conducted a multistage GWAS with a combined data set of >25,000 individuals (6,059 cases and 19,094 controls). We identified new risk loci for TGCT at 3q23 (rs11705932, TFDP2, P=1.5 × 10−9), 11q14.1 (rs7107174, GAB2, P=9.7 × 10−11), 16p13.13 (rs4561483, GSPT1, P=1.6 × 10−8) and 16q24.2 (rs55637647, ZFPM1, P=3.4 × 10−9). We additionally present detailed functional analysis of these loci, identifying a statistically significant relationship between rs4561483 risk genotype and increased GSPT1 expression in TGCT patient samples. These findings provide additional support for a polygenic model of TGCT risk and further insight into the biological basis of disease development. PMID:26503584

  11. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  12. Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light-induced damage.

    PubMed

    Okano, Kiichiro; Maeda, Akiko; Chen, Yu; Chauhan, Vishal; Tang, Johnny; Palczewska, Grazyna; Sakai, Tsutomu; Tsuneoka, Hiroshi; Palczewski, Krzysztof; Maeda, Tadao

    2012-04-01

    All-trans-retinal and its condensation-products can cause retinal degeneration in a light-dependent manner and contribute to the pathogenesis of human macular diseases such as Stargardt's disease and age-related macular degeneration. Although these toxic retinoid by-products originate from rod and cone photoreceptor cells, the contribution of each cell type to light-induced retinal degeneration is unknown. In this study, the primary objective was to learn whether rods or cones are more susceptible to light-induced, all-trans-retinal-mediated damage. Previously, we reported that mice lacking enzymes that clear all-trans-retinal from the retina, ATP-binding cassette transporter 4 and retinol dehydrogenase 8, manifested light-induced retinal dystrophy. We first examined early-stage age-related macular degeneration patients and found retinal degenerative changes in rod-rich rather than cone-rich regions of the macula. We then evaluated transgenic mice with rod-only and cone-like-only retinas in addition to progenies of such mice inbred with Rdh8(-/-) Abca4(-/-) mice. Of all these strains, Rdh8(-/-) Abca4(-/-) mice with a mixed rod-cone population showed the most severe retinal degeneration under regular cyclic light conditions. Intense light exposure induced acute retinal damage in Rdh8(-/-) Abca4(-/-) and rod-only mice but not cone-like-only mice. These findings suggest that progression of retinal degeneration in Rdh8(-/-) Abca4(-/-) mice is affected by differential vulnerability of rods and cones to light. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  13. Retinal cone and rod photoreceptor cells exhibit differential susceptibility to light–induced damage

    PubMed Central

    Okano, Kiichiro; Maeda, Akiko; Chen, Yu; Chauhan, Vishal; Tang, Johnny; Palczewska, Grazyna; Sakai, Tsutomu; Tsuneoka, Hiroshi; Palczewski, Krzysztof; Maeda, Tadao

    2012-01-01

    All-trans-retinal and its condensation-products can cause retinal degeneration in a light–dependent manner and contribute to the pathogenesis of human macular diseases such as Stargardt’s disease and age–related macular degeneration (AMD). Although these toxic retinoid by–products originate from rod and cone photoreceptor cells, the contribution of each cell type to light–induced retinal degeneration is unknown. Here the primary objective was to learn whether rods or cones are more susceptible to light–induced, all–trans–retinal–mediated damage. Previously, we reported that mice lacking enzymes that clear all–trans–retinal from the retina, ATP–binding cassette transporter 4 (ABCA4) and retinol dehydrogenase 8 (RDH8), manifested light-induced retinal dystrophy. We first examined early-stage-AMD patients and found retinal degenerative changes in rod-rich rather than cone-rich regions of the macula. We then evaluated transgenic mice with rod–only and cone–like–only retinas in addition to progenies of such mice inbred with Rdh8−/− Abca4−/− mice. Of all these strains, Rdh8−/− Abca4−/− mice with a mixed rod–cone population showed the most severe retinal degeneration under regular cyclic light conditions. Intense light exposure induced acute retinal damage in Rdh8−/− Abca4−/− and rod–only mice but not cone–like–only mice. These findings suggest that progression of retinal degeneration in Rdh8-/- Abca4-/- mice is affected by differential vulnerability of rods and cones to light. PMID:22220722

  14. Beryllium presentation to CD4+ T cells underlies disease-susceptibility HLA-DP alleles in chronic beryllium disease

    PubMed Central

    Fontenot, Andrew P.; Torres, Michaelann; Marshall, William H.; Newman, Lee S.; Kotzin, Brian L.

    2000-01-01

    Chronic beryllium disease results from beryllium exposure in the workplace and is characterized by CD4+ T cell-mediated inflammation in the lung. Susceptibility to this disease is associated with particular HLA-DP alleles. We isolated beryllium-specific T cell lines from the lungs of affected patients. These CD4+ T cell lines specifically responded to beryllium in culture in the presence of antigen-presenting cells that expressed class II MHC molecules HLA-DR, -DQ, and -DP. The response to beryllium was nearly completely and selectively blocked by mAb to HLA-DP. Additional studies showed that only certain HLA-DP alleles allowed presentation of beryllium. Overall, the DP alleles that presented beryllium to disease-specific T cell lines match those implicated in disease susceptibility, providing a mechanism for this association. Based on amino acid residues shared by these restricting and susceptibility DP alleles, our results provide insight into the residues of the DP β-chain required for beryllium presentation. PMID:11050177

  15. Potential Susceptibility Loci Identified for Renal Cell Carcinoma by Targeting Obesity-Related Genes.

    PubMed

    Shu, Xiang; Purdue, Mark P; Ye, Yuanqing; Tu, Huakang; Wood, Christopher G; Tannir, Nizar M; Wang, Zhaoming; Albanes, Demetrius; Gapstur, Susan M; Stevens, Victoria L; Rothman, Nathaniel; Chanock, Stephen J; Wu, Xifeng

    2017-09-01

    Background: Obesity is an established risk factor for renal cell carcinoma (RCC). Although genome-wide association studies (GWAS) of RCC have identified several susceptibility loci, additional variants might be missed due to the highly conservative selection.Methods: We conducted a multiphase study utilizing three independent genome-wide scans at MD Anderson Cancer Center (MDA RCC GWAS and MDA RCC OncoArray) and National Cancer Institute (NCI RCC GWAS), which consisted of a total of 3,530 cases and 5,714 controls, to investigate genetic variations in obesity-related genes and RCC risk.Results: In the discovery phase, 32,946 SNPs located at ±10 kb of 2,001 obesity-related genes were extracted from MDA RCC GWAS and analyzed using multivariable logistic regression. Proxies (R(2) > 0.8) were searched or imputation was performed if SNPs were not directly genotyped in the validation sets. Twenty-one SNPs with P < 0.05 in both MDA RCC GWAS and NCI RCC GWAS were subsequently evaluated in MDA RCC OncoArray. In the overall meta-analysis, significant (P < 0.05) associations with RCC risk were observed for SNP mapping to IL1RAPL2 [rs10521506-G: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10(-5)], PLIN2 [rs2229536-A: ORmeta = 0.87 (0.81-0.93), Pmeta = 2.33 × 10(-5)], SMAD3 [rs4601989-A: ORmeta = 0.86 (0.80-0.93), Pmeta = 2.71 × 10(-4)], MED13L [rs10850596-A: ORmeta = 1.14 (1.07-1.23), Pmeta = 1.50 × 10(-4)], and TSC1 [rs3761840-G: ORmeta = 0.90 (0.85-0.97), Pmeta = 2.47 × 10(-3)]. We did not observe any significant cis-expression quantitative trait loci effect for these SNPs in the TCGA KIRC data.Conclusions: Taken together, we found that genetic variation of obesity-related genes could influence RCC susceptibility.Impact: The five identified loci may provide new insights into disease etiology that reveal importance of obesity-related genes in RCC development. Cancer Epidemiol Biomarkers Prev; 26(9); 1436-42. ©2017 AACR. ©2017 American Association for Cancer Research.

  16. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic sub-fabrics of some minerals: An introductory study

    NASA Astrophysics Data System (ADS)

    Hrouda, František; Chadima, Martin; Ježek, Josef; Pokorný, Jiří

    2016-10-01

    The magnetic susceptibility measured in alternating field can in general be resolved into a component that is in-phase with the applied field and a component that is out-of-phase. While in non-conductive diamagnetic, paramagnetic and many ferromagnetic materials the phase is effectively zero, in some ferromagnetic minerals, such as pyrrhotite, hematite, titanomagnetite or small magnetically viscous grains of magnetite, it is clearly non-zero. The anisotropy of out-of-phase susceptibility (opAMS) can then be used as a tool for the direct determination of the magnetic sub-fabrics of the minerals with non-zero phase. The error in determination of out-of-phase susceptibility non-linearly increases with decreasing phase angle. This may result in imprecise determination of the opAMS in specimens with very low phase angle. The degree of opAMS is higher than that of ipAMS, which may in contrast result in slightly increasing precision n the opAMS determination. It is highly recommended to inspect the results of the statistical tests of each specimen and to exclude the specimens whose opAMS is determined with insufficient precision from further processing. In rocks, whose magnetism is dominated by the mineral with non-zero out-of-phase susceptibility, the principal directions of the opAMS and ipAMS are virtually coaxial, while the degree of opAMS is higher than that of ipAMS. In some specific cases, the opAMS provides us with similar data to those provided by anisotropies of low-field dependent susceptibility and frequency-dependent susceptibility. The advantage of the opAMS compared to the other two anisotropies is its simultaneous measurement with the ipAMS during one measuring process, while the other two anisotropies require the AMS measurements in several fields or at least at two operating frequencies.

  17. Anisotropy of out-of-phase magnetic susceptibility of rocks as a tool for direct determination of magnetic subfabrics of some minerals: an introductory study

    NASA Astrophysics Data System (ADS)

    Hrouda, František; Chadima, Martin; Ježek, Josef; Pokorný, Jiří

    2017-01-01

    The magnetic susceptibility measured in alternating field can in general be resolved into a component that is in-phase with the applied field and a component that is out-of-phase. While in non-conductive diamagnetic, paramagnetic and many ferromagnetic materials the phase is effectively zero, in some ferromagnetic minerals, such as pyrrhotite, hematite, titanomagnetite or small magnetically viscous grains of magnetite, it is clearly non-zero. The anisotropy of out-of-phase susceptibility (opAMS) can then be used as a tool for the direct determination of the magnetic subfabrics of the minerals with non-zero phase. The error in determination of out-of-phase susceptibility non-linearly increases with decreasing phase angle. This may result in imprecise determination of the opAMS in specimens with very low phase angle. The degree of opAMS is higher than that of ipAMS, which may in contrast result in slightly increasing precision n the opAMS determination. It is highly recommended to inspect the results of the statistical tests of each specimen and to exclude the specimens whose opAMS is determined with insufficient precision from further processing. In rocks, whose magnetism is dominated by the mineral with non-zero out-of-phase susceptibility, the principal directions of the opAMS and ipAMS are virtually coaxial, while the degree of opAMS is higher than that of ipAMS. In some specific cases, the opAMS provides us with similar data to those provided by anisotropies of low-field dependent susceptibility and frequency-dependent susceptibility. The advantage of the opAMS compared to the other two anisotropies is its simultaneous measurement with the ipAMS during one measuring process, while the other two anisotropies require the AMS measurements in several fields or at least at two operating frequencies.

  18. Determinants of methicillin-susceptible Staphylococcus aureus native bone and joint infection treatment failure: a retrospective cohort study.

    PubMed

    Valour, Florent; Bouaziz, Anissa; Karsenty, Judith; Ader, Florence; Lustig, Sébastien; Laurent, Frédéric; Chidiac, Christian; Ferry, Tristan

    2014-08-16

    Although methicillin-susceptible Staphylococcus aureus (MSSA) native bone and joint infection (BJI) constitutes the more frequent clinical entity of BJI, prognostic studies mostly focused on methicillin-resistant S. aureus prosthetic joint infection. We aimed to assess the determinants of native MSSA BJI outcomes. Retrospective cohort study (2001-2011) of patients admitted in a reference hospital centre for native MSSA BJI. Treatment failure determinants were assessed using Kaplan-Meier curves and binary logistic regression. Sixty-six patients (42 males [63.6%]; median age 61.2 years; interquartile range [IQR] 45.9-71.9) presented an acute (n = 38; 57.6%) or chronic (n = 28; 42.4%) native MSSA arthritis (n = 15; 22.7%), osteomyelitis (n = 19; 28.8%) or spondylodiscitis (n = 32; 48.5%), considered as "difficult-to-treat" in 61 cases (92.4%). All received a prolonged (27.1 weeks; IQR, 16.9-36.1) combined antimicrobial therapy, after surgical management in 37 cases (56.1%). Sixteen treatment failures (24.2%) were observed during a median follow-up period of 63.3 weeks (IQR, 44.7-103.1), including 13 persisting infections, 1 relapse after treatment disruption, and 2 super-infections. Independent determinants of treatment failure were the existence of a sinus tract (odds ratio [OR], 5.300; 95% confidence interval [CI], 1.166-24.103) and a prolonged delay to infectious disease specialist referral (OR, 1.134; 95% CI 1.013-1.271). The important treatment failure rate pinpointed the difficulty of cure encountered in complicated native MSSA BJI. An early infectious disease specialist referral is essential, especially in debilitated patients or in presence of sinus tract.

  19. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: models in glyphosate-resistant and -susceptible crops.

    PubMed

    Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D

    2011-03-23

    Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of

  20. Novel Method Based on Real-Time Cell Analysis for Drug Susceptibility Testing of Herpes Simplex Virus and Human Cytomegalovirus

    PubMed Central

    Piret, Jocelyne; Goyette, Nathalie

    2016-01-01

    The plaque reduction assay (PRA) is the gold standard phenotypic method to determine herpes simplex virus (HSV) and human cytomegalovirus (HCMV) susceptibilities to antiviral drugs. However, this assay is subjective and labor intensive. Here, we describe a novel antiviral phenotypic method based on real-time cell analysis (RTCA) that measures electronic impedance over time. The effective drug concentrations that reduced by 50% (EC50s) the cytopathic effects induced by HSV-1 and HCMV were evaluated by both methods. The EC50s of acyclovir and foscarnet against a reference wild-type (WT) HSV-1 strain in Vero cells were, respectively, 0.5 μM and 32.6 μM by PRA and 0.8 μM and 93.6 μM by RTCA. The EC50 ratios for acyclovir against several HSV-1 thymidine kinase (TK) mutants were 101.8×, 73.4×, 28.8×, and 35.4× (PRA) and 18.0×, 52.0×, 5.5×, and 87.8× (RTCA) compared to those for the WT. The EC50 ratios for acyclovir and foscarnet against the HSV-1 TK/DNA polymerase mutant were 182.8× and 9.7× (PRA) and >125.0× and 10.8× (RTCA) compared to the WT. The EC50s of ganciclovir and foscarnet against WT HCMV strain AD169 in fibroblasts were, respectively, 1.6 μM and 27.8 μM by PRA and 5.0 μM and 111.4 μM by RTCA. The EC50 ratios of ganciclovir against the HCMV UL97 mutant were 3.8× (PRA) and 8.2× (RTCA) compared to those for the WT. The EC50 ratios of ganciclovir and foscarnet against the HCMV UL97/DNA polymerase mutant were 17.1× and 12.1× (PRA) and 14.7× and 4.6× (RTCA) compared to those for the WT. RTCA allows objective drug susceptibility testing of HSV and HCMV and could permit high-throughput screening of new antivirals. PMID:27252463

  1. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    PubMed

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms.

  2. Comparative susceptibilities of insect cell lines to infection by the occlusion-body derived phenotype of baculoviruses.

    PubMed

    Lynn, Dwight E

    2003-07-01

    Twelve insect cell lines from six species were tested for susceptibility to baculovirus infection by occlusion-derived virus (ODV) phenotype through the use of a typical endpoint assay procedure. ODV from three nucleopolyhedroviruses were prepared by alkali treatment (sodium carbonate) of occlusion bodies (OBs) and the virus preparations were titered on various cell lines. More than a four-log difference was realized for each of theses viruses between the various cell lines. The TN368 line from Trichoplusia ni was only marginally susceptible to ODV from each virus, showing only 3-6 infectious units (IU) per million OBs while the gypsy moth line, LdEp was most susceptible, realizing more than 100,000 IU/million OBs. The other lines tested showed various levels of susceptibility between these two extremes and also varied between the three viruses tested. In additional tests, the ODV were treated with trypsin prior to application to the cells. With most cell lines, this treatment increased the infectivity of each virus by 2-10-fold. Exceptions to this trend included the gypsy moth LdEp line, on which the trypsinized ODV from two of the viruses were slightly less infectious than each virus without trypsin, and the TN-368 line, on which the trypsinized ODV was 5,000-75,000 times more infectious. The variable results of trypsinized virus on the different lines are probably due to the levels of endogenous protease activity in the various lines, but the mode of action of the trypsin has not been elucidated. Ultimately, the variable response of cell lines to ODV of different viruses, and the variable effects of trypsin on the ODV may lead to an improved understanding of the infection process of this virus phenotype as well as factors relating to baculovirus host range.

  3. A novel heart-cell line from brown-marbled grouper Epinephelus fuscoguttatus and its susceptibility to iridovirus.

    PubMed

    Wei, Y-B; Fan, T-J; Jiang, G-J; Xu, X-H; Sun, A

    2010-04-01

    A novel cell line (bmGH) was established from the heart of brown-marbled grouper Epinephelus fuscoguttatus and its viral susceptibility was evaluated. The bmGH cells have been subcultured to passage 65 in Dulbecco's modified eagle medium:Ham's nutrient mixture F-12 (1:1) medium (DMEM/F12) which was further supplemented with foetal bovine serum (FBS), carboxymethyl-chitosan, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I) at 24 degrees C. The heart cells have a fibroblastic morphology and proliferated to confluence 14 days later. The cells grew at a steady rate during subsequent subculture and had a population doubling time of 40.3 h at passage 60. Karyotype analysis showed that these cells exhibited chromosomal aneuploidy with a modal chromosome number of 48. The results of viral susceptibility characterization revealed that cytopathic effects (CPE) of bmGH cells appeared after infection by two iridoviruses, turbot reddish body iridovirus (TRBIV) and lymphocystis disease virus (LCDV). A large number of TRBIV and LCDV particles were also observed in the infected bmGH cells by electron microscope examination. All of these facts indicate that the bmGH cell line established here may serve as a valuable tool for studies of cell-virus interactions and has potential applications in fish virus isolation, propagation and vaccine development.

  4. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression.

    PubMed

    Bellucci, Roberto; Martin, Allison; Bommarito, Davide; Wang, Kathy; Hansen, Steen H; Freeman, Gordon J; Ritz, Jerome

    2015-06-01

    Inhibition of JAK1 or JAK2 in human tumor cells was previously shown to increase susceptibility of these cells to NK cell lysis. In the present study, we examined the cellular mechanisms that mediate this effect in hematopoietic tumor cell lines and primary tumor cells. Incubation of tumor cells with supernatant from activated NK cells or interferon-gamma (IFNγ)-induced activation of pSTAT1 and increased expression of PD-L1 without altering expression of other activating or inhibitory NK cell ligands. These functional effects were blocked by chemical JAK inhibition or shRNAs targeting JAK1, JAK2 or STAT1. Inhibition of IFNγ signaling also prevented the upregulation of PD-L1 and blocking PD-L1 resulted in increased tumor lysis by NK cells. These results show that NK cell activation and secretion of IFNγ results in activation of JAK1, JAK2 and STAT1 in tumor cells, resulting in rapid up-regulation of PD-L1 expression. Increased expression of PD-L1 results in increased resistance to NK cell lysis. Blockade of JAK pathway activation prevents increased PD-L1 expression resulting in increased susceptibility of tumor cells to NK cell activity. These observations suggest that JAK pathway inhibitors as well as PD-1 and PD-L1 antibodies may work synergistically with other immune therapies by preventing IFN-induced inhibition of NK cell-mediated tumor cell lysis.

  5. C/EBPα Expression Is Downregulated in Human Nonmelanoma Skin Cancers and Inactivation of C/EBPα Confers Susceptibility to UVB-Induced Skin Squamous Cell Carcinomas

    PubMed Central

    Thompson, Elizabeth A.; Zhu, Songyun; Hall, Jonathan R.; House, John S.; Ranjan, Rakesh; Burr, Jeanne A.; He, Yu-Ying; Owens, David M.; Smart, Robert C.

    2012-01-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB. PMID:21346772

  6. [Evaluation of E-test method in determination of susceptibility of Mycobacterium tuberculosis to four antituberculosis drugs].

    PubMed

    Djiba, M L; Sow, A I; Ndiaye, M; Dromigny, J A

    2004-01-01

    The objective of this study is to evaluate the performance of E-test method versus the standard proportion method, by testing susceptibility of Mycobacterium tuberculosis to four antituberculosis drugs: rifampicin, isoniazid, streptomycin, and ethambutol. Thirty strains isolated at Medical Biology Laboratory of Pasteur Institute of Dakar were tested. The strains were identified by morphological, cultural and biochemical characteristics (microscopy, time of growth, type of colonies, catalase, niacin-test). H37RV strain was tested as reference strain. The E-test method was performed on 7H11 agar with OADC, and the standard proportion method was performed on Lowenstein-Jensen agar. With results of these tests, the authors determined the E-test sensitivity and specificity, and the positive and negative predictive values (PPV, NPV). E-test method gave correct results from the eighth day, with stability of the zone of inhibition until the 21st day. The E-test method has 73% of sensibility and 100% of specificity, with 100% of PPV and 78% of NPV for streptomycin. For isoniazid, these results are respectively: 16.6%, 100%, 100% and 82.7%. There was found a good correlation between the two methods.

  7. Infection of Differentiated Porcine Airway Epithelial Cells by Influenza Virus: Differential Susceptibility to Infection by Porcine and Avian Viruses

    PubMed Central

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Background Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. Methodology/Principal Findings To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Conclusions/Significance Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine. PMID:22174804

  8. Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses.

    PubMed

    Punyadarsaniya, Darsaniya; Liang, Chi-Hui; Winter, Christine; Petersen, Henning; Rautenschlein, Silke; Hennig-Pauka, Isabel; Schwegmann-Wessels, Christel; Wu, Chung-Yi; Wong, Chi-Huey; Herrler, Georg

    2011-01-01

    Swine are important hosts for influenza A viruses playing a crucial role in the epidemiology and interspecies transmission of these viruses. Respiratory epithelial cells are the primary target cells for influenza viruses. To analyze the infection of porcine airway epithelial cells by influenza viruses, we established precision-cut lung slices as a culture system for differentiated respiratory epithelial cells. Both ciliated and mucus-producing cells were found to be susceptible to infection by swine influenza A virus (H3N2 subtype) with high titers of infectious virus released into the supernatant already one day after infection. By comparison, growth of two avian influenza viruses (subtypes H9N2 and H7N7) was delayed by about 24 h. The two avian viruses differed both in the spectrum of susceptible cells and in the efficiency of replication. As the H9N2 virus grew to titers that were only tenfold lower than that of a porcine H3N2 virus this avian virus is an interesting candidate for interspecies transmission. Lectin staining indicated the presence of both α-2,3- and α-2,6-linked sialic acids on airway epithelial cells. However, their distribution did not correlate with pattern of virus infection indicating that staining by plant lectins is not a reliable indicator for the presence of cellular receptors for influenza viruses. Differentiated respiratory epithelial cells significantly differ in their susceptibility to infection by avian influenza viruses. We expect that the newly described precision-cut lung slices from the swine lung are an interesting culture system to analyze the infection of differentiated respiratory epithelial cells by different pathogens (viral, bacterial and parasitic ones) of swine.

  9. B‐cell very late antigen‐4 deficiency reduces leukocyte recruitment and susceptibility to central nervous system autoimmunity

    PubMed Central

    Lehmann‐Horn, Klaus; Sagan, Sharon A.; Bernard, Claude C.A.; Sobel, Raymond A.

    2015-01-01

    Natalizumab, which binds very late antigen‐4 (VLA‐4), is a potent therapy for multiple sclerosis (MS). Studies have focused primarily upon its capacity to interfere with T‐cell migration into the central nervous system (CNS). B cells are important in MS pathogenesis and express high levels of VLA‐4. Here, we report that the selective inhibition of VLA‐4 expression on B cells impedes CNS accumulation of B cells, and recruitment of Th17 cells and macrophages, and reduces susceptibility to experimental autoimmune encephalomyelitis. These results underscore the importance of B‐cell VLA‐4 expression in the pathogenesis of CNS autoimmunity and provide insight regarding mechanisms that may contribute to the benefit of natalizumab in MS, as well as candidate therapeutics that selectively target B cells. Ann Neurol 2015;77:902–908 PMID:25712734

  10. Susceptibility of natural killer cell activity of old rats to stress.

    PubMed Central

    Ghoneum, M; Gill, G; Assanah, P; Stevens, W

    1987-01-01

    We determined an in vivo response of NK cells in young and old rats towards the suppressive effect of stress. Stress was developed by isolating rats in separate cages, but control littermates were kept together. Animals were subjected to stress for 7 days, and alterations of NK cell activities were examined in the spleen, peripheral blood (PB) and bone marrow (BM). The results showed that old rats subjected to stress had a remarkable decrease in splenic and PB-NK activity compared to old control rats, concomitant with a highly increased level of NK cell activity in BM. Suppression of the lytic activity in the spleen of stressed old rats was correlated with a decrease in the percentage of conjugate formation between splenic NK cells and target tumour cells. In contrast, stressed young rats demonstrated relatively unchanged activity of NK cells examined in different tissues compared to age-matched controls. We concluded that old animals are more sensitive to the suppressive effect of stress compared to young ones, and the mechanism of this suppression is probably due to the migration of large granular lymphocytes (LGL) from spleen and PB to other sites such as BM. PMID:3570358

  11. Disk diffusion test and E-test with enriched Mueller-Hinton agar for determining susceptibility of Candida species to voriconazole and fluconazole.

    PubMed

    Lee, Sai-Cheong; Lo, Hsiu-Jung; Fung, Chang-Phone; Lee, Ning; See, Lai-Chu

    2009-04-01

    A simplified antifungal disk diffusion test using Mueller-Hinton agar containing 2% glucose and methylene blue 5 microg/mL (GM-MH, Clinical and Laboratory Standards Institute [CLSI] M44-A) has proved to correlate well with the standard reference test. A new azole, voriconazole, has recently been approved for clinical therapy in Taiwan. This study investigated the reliability of the disk diffusion test with GM-MH agar and compared the results with those of the E-test using GM-MH agar to determine the voriconazole and fluconazole susceptibility of Candida isolates. The antimicrobial susceptibility of Candida isolates were evaluated by E-test and disk diffusion test in accordance with the guidelines of the CLSI, and compared with the reference antifungal macrodilution susceptibility test (CLSI M27-A). The antifungal disk diffusion test and the E-test using GM-MH agar plate provided a sufficiently accurate, time-efficient, and cost-effective way to determine the susceptibility of 182 Candida spp. to voriconazole and fluconazole. There was a high correlation between the test results of the E-test using the GM-MH agar plate and those obtained by the reference antifungal macrodilution susceptibility test (CLSI M27-A). The results of the E-test and those of the 1-microg voriconazole disk diffusion test on the GM-MH agar plate at 24 h had a high correlation. All the minimal inhibitory concentrations of voriconazole for all Candida spp. were <8 microg/mL. The positive predictive value of the susceptible disk test of voriconazole on the GM-MH agar plate was 100% at 24 h for C. albicans and other Candida spp. The disk diffusion test and the E-test using the GM-MH agar plate can be performed quickly, simply, and cost-effectively, and are practicable methods for the initial testing of the susceptibility of Candida spp. to voriconazole and fluconazole.

  12. Antimicrobial susceptibility, virulence determinant carriage and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections.

    PubMed

    Yu, Fangyou; Liu, Yunling; Lv, Jinnan; Qi, Xiuqin; Lu, Chaohui; Ding, Yu; Li, Dan; Liu, Huanle; Wang, Liangxing

    2015-01-01

    A better understanding of the antimicrobial susceptibility, carriage of virulence determinants and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections (SSTIs) may provide further insights related to clinical outcomes with these infections. From January 2012 to September 2013, a total of 128 non-duplicate S. aureus isolates were recovered from patients with SSTIs. All 128 S. aureus SSTI isolates carried at least five virulence genes tested. Virulence genes detected among at least 70% of all tested isolates included hld (100%), hla (95.3%), icaA (96.9%), clf (99.2%), sdrC (79.7%), sdrD (70.3%), and sdrE (72.7%). The prevalence of MRSA isolates with 10 virulence genes tested (54.4%, 31/56) was significantly higher than that among MSSA isolates (35.2%, 25/71) (p<0.05). The positive rates of seb, sen, sem, sdrE and pvl among MRSA isolates were significantly higher than among MSSA isolates (p<0.05). ST7 and ST630 accounting for 10.9% were found to be the predominant STs. The most prevalent spa type was t091 (8.6%). MRSA-ST59-SCCmec IV was the most common clone (12.3%) among MRSA isolates whereas among MSSA isolates the dominant clone was MSSA-ST7 (15.5%). Six main clonal complexes (CCs) were found, including CC5 (52.3%), CC7 (11.7%), CC59 (8.6%), CC88 (6.3%), CC398 (4.7%), and CC121 (3.1%). A higher carriage of seb and sec was found among CC59 isolates. In comparison to CC5 and CC7 isolates, those with the highest carriage rates (>80.0%) of sdrC and sdrD, CC59 isolates had lower prevalence of these two virulence genes. All CC59 isolates were susceptible to gentamicin and trimethoprim/sulfamethoxazole, while CC5 and CC7 isolates had resistance rates to these two antimicrobials of 25.4% and 20.9%, and 40.0% and 40.0%, respectively. The resistance rates for tetracycline, clindamycin, and erythromycin among CC5 isolates were lower than among CC7 and CC59 isolates. In conclusion, the molecular typing of S. aureus SSTI

  13. The acquisition of an insulin-secreting phenotype by HGF-treated rat pancreatic ductal cells (ARIP) is associated with the development of susceptibility to cytokine-induced apoptosis.

    PubMed

    Anastasi, E; Santangelo, C; Bulotta, A; Dotta, F; Argenti, B; Mincione, C; Gulino, A; Maroder, M; Perfetti, R; Di Mario, U

    2005-04-01

    The elucidation of mechanisms regulating the regeneration and survival of pancreatic beta cells has fundamental implications in the cell therapy of type 1 diabetes. The present study had the following three aims: 1. to investigate whether pancreatic ductal epithelial cells can be induced to differentiate into insulin-producing cells by exposing them to hepatocyte growth factor (HGF); 2. to characterize some of the molecular events leading to their differentiation toward a beta-cell-like phenotype; 3. to evaluate the susceptibility of newly differentiated insulin-secreting cells to cytokine-induced apoptosis, a mechanism of beta-cell destruction occurring in type 1 diabetes. We demonstrated that HGF-treated rat pancreatic ductal cell line (ARIP) cells acquired the capability to transcribe the insulin gene and translate its counterpart protein. HGF-treated cells also exhibited a glucose-dependent capability to secrete insulin into the cultured medium. Expression analysis of some of the genes regulating pancreatic beta-cell differentiation revealed a time-dependent transcription of neurogenin-3 and Neuro-D in response to HGF. Finally, we determined the susceptibility to proinflammatory cytokine (PTh1)-induced apoptosis by incubating HGF-treated and untreated ARIP cells with a cocktail of interleukin-1 beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). Such treatment induced apoptotic death, as determined by the TUNEL technique, in about 40% of HGF-treated, insulin-secreting ARIP cells, while untreated ARIP cells were resistant to PTh1-induced apoptosis. In conclusion, we showed that HGF promotes the differentiation of ARIP cells into pancreatic beta-cell-like cells, and that the differentiation toward an insulin-secreting phenotype is associated with the appearance of susceptibility to cytokine-induced apoptosis.

  14. Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis

    PubMed Central

    Lai, Jui-Jen; Chang, Chin-Ching

    2016-01-01

    Purpose. Quantitative cerebral blood flow (CBF) measurement using dynamic susceptibility contrast- (DSC-) MRI requires accurate estimation of the arterial input function (AIF). The present work utilized the independent component analysis (ICA) method to determine the AIF in the regions adjacent to the middle cerebral artery (MCA) by the alleviated confounding of partial volume effect. Materials and Methods. A series of spin-echo EPI MR scans were performed in 10 normal subjects. All subjects received 0.2 mmol/kg Gd-DTPA contrast agent. AIFs were calculated by two methods: (1) the region of interest (ROI) selected manually and (2) weighted average of each component selected by ICA (weighted-ICA). The singular value decomposition (SVD) method was then employed to deconvolve the AIF from the tissue concentration time curve to obtain quantitative CBF values. Results. The CBF values calculated by the weighted-ICA method were 41.1 ± 4.9 and 22.1 ± 2.3 mL/100 g/min for cortical gray matter (GM) and deep white matter (WM) regions, respectively. The CBF values obtained based on the manual ROIs were 53.6 ± 12.0 and 27.9 ± 5.9 mL/100 g/min for the same two regions, respectively. Conclusion. The weighted-ICA method allowed semiautomatic and straightforward extraction of the ROI adjacent to MCA. Through eliminating the partial volume effect to minimum, the CBF thus determined may reflect more accurate physical characteristics of the T2⁎ signal changes induced by the contrast agent. PMID:27547451

  15. Lower Viral Loads and Slower CD4+ T-Cell Count Decline in MRKAd5 HIV-1 Vaccinees Expressing Disease-Susceptible HLA-B*58:02.

    PubMed

    Leitman, Ellen M; Hurst, Jacob; Mori, Masahiko; Kublin, James; Ndung'u, Thumbi; Walker, Bruce D; Carlson, Jonathan; Gray, Glenda E; Matthews, Philippa C; Frahm, Nicole; Goulder, Philip J R

    2016-08-01

    HLA strongly influences human immunodeficiency virus type 1 (HIV-1) disease progression. A major contributory mechanism is via the particular HLA-presented HIV-1 epitopes that are recognized by CD8(+) T-cells. Different populations vary considerably in the HLA alleles expressed. We investigated the HLA-specific impact of the MRKAd5 HIV-1 Gag/Pol/Nef vaccine in a subset of the infected Phambili cohort in whom the disease-susceptible HLA-B*58:02 is highly prevalent. Viral loads, CD4(+) T-cell counts, and enzyme-linked immunospot assay-determined anti-HIV-1 CD8(+) T-cell responses for a subset of infected antiretroviral-naive Phambili participants, selected according to sample availability, were analyzed. Among those expressing disease-susceptible HLA-B*58:02, vaccinees had a lower chronic viral set point than placebo recipients (median, 7240 vs 122 500 copies/mL; P = .01), a 0.76 log10 lower longitudinal viremia level (P = .01), and slower progression to a CD4(+) T-cell count of <350 cells/mm(3) (P = .02). These differences were accompanied by a higher Gag-specific breadth (4.5 vs 1 responses; P = .04) and magnitude (2300 vs 70 spot-forming cells/10(6) peripheral blood mononuclear cells; P = .06) in vaccinees versus placebo recipients. In addition to the known enhancement of HIV-1 acquisition resulting from the MRKAd5 HIV-1 vaccine, these findings in a nonrandomized subset of enrollees show an HLA-specific vaccine effect on the time to CD4(+) T-cell count decline and viremia level after infection and the potential for vaccines to differentially alter disease outcome according to population HLA composition. NCT00413725, DOH-27-0207-1539. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    SciTech Connect

    Poulsen, Raewyn C. Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  17. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis.

    PubMed

    Moore, Lee R; Fujioka, Hisashi; Williams, P Stephen; Chalmers, Jeffrey J; Grimberg, Brian; Zimmerman, Peter A; Zborowski, Maciej

    2006-04-01

    During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of beta-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 x 10(-6) mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Deltachi = 1.80 x 10(-6), significantly higher than that of the oxygenated erythrocyte (-0.18x10(-6)) but lower than that of the fully deoxygenated erythrocyte (3.33x10(-6)). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination.

  18. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis

    PubMed Central

    Moore, Lee R.; Fujioka, Hisashi; Williams, P. Stephen; Chalmers, Jeffrey J.; Grimberg, Brian; Zimmerman, Peter; Zborowski, Maciej

    2013-01-01

    During intra-erythrocytic development, malaria trophozoites digest hemoglobin, which leads to parasite growth and asexual replication while accumulating toxic heme. To avoid death, the parasite synthesizes insoluble hemozoin crystals in the digestive vacuole through polymerization of β-hematin dimers. In the process, the heme is converted to a high-spin ferriheme whose magnetic properties were studied as early as 1936 by Pauling et al. Here, by magnetophoretic cell motion analysis, we provide evidence for a graduated increase of live cell magnetic susceptibility with developing blood-stage parasites, compatible with the increase in hemozoin content and the mechanism used by P. falciparum to avoid heme toxicity. The measured magnetophoretic mobility of the erythrocyte infected with a late-stage schizont form was m = 2.94 × 10−6 mm3 s/kg, corresponding to the net volume magnetic susceptibility (relative to water) of Δχ = 1.80 × 10−6, significantly higher than that of the oxygenated erythrocyte (−0.18×10−6) but lower than that of the fully deoxygenated erythrocyte (3.33×10−6). The corresponding fraction of hemoglobin converted to hemozoin, calculated based on the known magnetic susceptibilities of hemoglobin heme and hemozoin ferriheme, was 0.50, in agreement with the published biochemical and crystallography data. Magnetophoretic analysis of live erythrocytes could become significant for antimalarial drug susceptibility and resistance determination. PMID:16461330

  19. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    SciTech Connect

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-05-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  20. The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells

    PubMed Central

    Berge, T; Leikfoss, I S; Brorson, I S; Bos, S D; Page, C M; Gustavsen, M W; Bjølgerud, A; Holmøy, T; Celius, E G; Damoiseaux, J; Smolders, J; Harbo, H F; Spurkland, A

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system that develops in genetically susceptible individuals. The majority of the MS-associated gene variants are located in genetic regions with importance for T-cell differentiation. Vitamin D is a potent immunomodulator, and vitamin D deficiency has been suggested to be associated with increased MS disease susceptibility and activity. In CD4+ T cells, we have analyzed in vitro vitamin D responsiveness of genes that contain an MS-associated single-nucleotide polymorphism (SNP) and with one or more vitamin D response elements in their regulatory regions. We identify IL2RA and TAGAP as novel vitamin D target genes. The vitamin D response is observed in samples from both MS patients and controls, and is not dependent on the genotype of MS-associated SNPs in the respective genes. PMID:26765264