Lewan, M.D.; Ruble, T.E.
2002-01-01
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.
Lewan, M.D.; Kotarba, M.J.; Curtis, John B.; Wieclaw, D.; Kosakowski, P.
2006-01-01
The Menilite Shales (Oligocene) of the Polish Carpathians are the source of low-sulfur oils in the thrust belt and some high-sulfur oils in the Carpathian Foredeep. These oil occurrences indicate that the high-sulfur oils in the Foredeep were generated and expelled before major thrusting and the low-sulfur oils in the thrust belt were generated and expelled during or after major thrusting. Two distinct organic facies have been observed in the Menilite Shales. One organic facies has a high clastic sediment input and contains Type-II kerogen. The other organic facies has a lower clastic sediment input and contains Type-IIS kerogen. Representative samples of both organic facies were used to determine kinetic parameters for immiscible oil generation by isothermal hydrous pyrolysis and S2 generation by non-isothermal open-system pyrolysis. The derived kinetic parameters showed that timing of S2 generation was not as different between the Type-IIS and -II kerogen based on open-system pyrolysis as compared with immiscible oil generation based on hydrous pyrolysis. Applying these kinetic parameters to a burial history in the Skole unit showed that some expelled oil would have been generated from the organic facies with Type-IIS kerogen before major thrusting with the hydrous-pyrolysis kinetic parameters but not with the open-system pyrolysis kinetic parameters. The inability of open-system pyrolysis to determine earlier petroleum generation from Type-IIS kerogen is attributed to the large polar-rich bitumen component in S2 generation, rapid loss of sulfur free-radical initiators in the open system, and diminished radical selectivity and rate constant differences at higher temperatures. Hydrous-pyrolysis kinetic parameters are determined in the presence of water at lower temperatures in a closed system, which allows differentiation of bitumen and oil generation, interaction of free-radical initiators, greater radical selectivity, and more distinguishable rate constants as would occur during natural maturation. Kinetic parameters derived from hydrous pyrolysis show good correlations with one another (compensation effect) and kerogen organic-sulfur contents. These correlations allow for indirect determination of hydrous-pyrolysis kinetic parameters on the basis of the organic-sulfur mole fraction of an immature Type-II or -IIS kerogen. ?? 2006 Elsevier Inc. All rights reserved.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
An integrated software system for geometric correction of LANDSAT MSS imagery
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Esilva, A. J. F. M.; Camara-Neto, G.; Serra, P. R. M.; Desousa, R. C. M.; Mitsuo, Fernando Augusta, II
1984-01-01
A system for geometrically correcting LANDSAT MSS imagery includes all phases of processing, from receiving a raw computer compatible tape (CCT) to the generation of a corrected CCT (or UTM mosaic). The system comprises modules for: (1) control of the processing flow; (2) calculation of satellite ephemeris and attitude parameters, (3) generation of uncorrected files from raw CCT data; (4) creation, management and maintenance of a ground control point library; (5) determination of the image correction equations, using attitude and ephemeris parameters and existing ground control points; (6) generation of corrected LANDSAT file, using the equations determined beforehand; (7) union of LANDSAT scenes to produce and UTM mosaic; and (8) generation of output tape, in super-structure format.
New Boundary Constraints for Elliptic Systems used in Grid Generation Problems
NASA Technical Reports Server (NTRS)
Kaul, Upender K.; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.
Zhang, Z; Jewett, D L
1994-01-01
Due to model misspecification, currently-used Dipole Source Localization (DSL) methods may contain Multiple-Generator Errors (MulGenErrs) when fitting simultaneously-active dipoles. The size of the MulGenErr is a function of both the model used, and the dipole parameters, including the dipoles' waveforms (time-varying magnitudes). For a given fitting model, by examining the variation of the MulGenErrs (or the fit parameters) under different waveforms for the same generating-dipoles, the accuracy of the fitting model for this set of dipoles can be determined. This method of testing model misspecification can be applied to evoked potential maps even when the parameters of the generating-dipoles are unknown. The dipole parameters fitted in a model should only be accepted if the model can be shown to be sufficiently accurate.
Generating functions for weighted Hurwitz numbers
NASA Astrophysics Data System (ADS)
Guay-Paquet, Mathieu; Harnad, J.
2017-08-01
Double Hurwitz numbers enumerating weighted n-sheeted branched coverings of the Riemann sphere or, equivalently, weighted paths in the Cayley graph of Sn generated by transpositions are determined by an associated weight generating function. A uniquely determined 1-parameter family of 2D Toda τ -functions of hypergeometric type is shown to consist of generating functions for such weighted Hurwitz numbers. Four classical cases are detailed, in which the weighting is uniform: Okounkov's double Hurwitz numbers for which the ramification is simple at all but two specified branch points; the case of Belyi curves, with three branch points, two with specified profiles; the general case, with a specified number of branch points, two with fixed profiles, the rest constrained only by the genus; and the signed enumeration case, with sign determined by the parity of the number of branch points. Using the exponentiated quantum dilogarithm function as a weight generator, three new types of weighted enumerations are introduced. These determine quantum Hurwitz numbers depending on a deformation parameter q. By suitable interpretation of q, the statistical mechanics of quantum weighted branched covers may be related to that of Bosonic gases. The standard double Hurwitz numbers are recovered in the classical limit.
NASA Technical Reports Server (NTRS)
Jones, L. D.
1979-01-01
The Space Environment Test Division Post-Test Data Reduction Program processes data from test history tapes generated on the Flexible Data System in the Space Environment Simulation Laboratory at the National Aeronautics and Space Administration/Lyndon B. Johnson Space Center. The program reads the tape's data base records to retrieve the item directory conversion file, the item capture file and the process link file to determine the active parameters. The desired parameter names are read in by lead cards after which the periodic data records are read to determine parameter data level changes. The data is considered to be compressed rather than full sample rate. Tabulations and/or a tape for generating plots may be output.
Optimizing the Determination of Roughness Parameters for Model Urban Canopies
NASA Astrophysics Data System (ADS)
Huq, Pablo; Rahman, Auvi
2018-05-01
We present an objective optimization procedure to determine the roughness parameters for very rough boundary-layer flow over model urban canopies. For neutral stratification the mean velocity profile above a model urban canopy is described by the logarithmic law together with the set of roughness parameters of displacement height d, roughness length z_0 , and friction velocity u_* . Traditionally, values of these roughness parameters are obtained by fitting the logarithmic law through (all) the data points comprising the velocity profile. The new procedure generates unique velocity profiles from subsets or combinations of the data points of the original velocity profile, after which all possible profiles are examined. Each of the generated profiles is fitted to the logarithmic law for a sequence of values of d, with the representative value of d obtained from the minima of the summed least-squares errors for all the generated profiles. The representative values of z_0 and u_* are identified by the peak in the bivariate histogram of z_0 and u_* . The methodology has been verified against laboratory datasets of flow above model urban canopies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madlazim,, E-mail: m-lazim@physics.its.ac.id; Hariyono, E., E-mail: m-lazim@physics.its.ac.id
The purpose of the study was to estimate P-wave rupture durations (T{sub dur}), dominant periods (T{sub d}) and exceeds duration (T{sub 50Ex}) simultaneously for local events, shallow earthquakes which occurred off the coast of Indonesia. Although the all earthquakes had parameters of magnitude more than 6,3 and depth less than 70 km, part of the earthquakes generated a tsunami while the other events (Mw=7.8) did not. Analysis using Joko Tingkir of the above stated parameters helped understand the tsunami generation of these earthquakes. Measurements from vertical component broadband P-wave quake velocity records and determination of the above stated parameters canmore » provide a direct procedure for assessing rapidly the potential for tsunami generation. The results of the present study and the analysis of the seismic parameters helped explain why the events generated a tsunami, while the others did not.« less
Nondestructive ultrasonic characterization of engineering materials
NASA Technical Reports Server (NTRS)
Salama, K.
1985-01-01
The development of an ultrasonic method for the nondestructive characterization of mechanical properties of engineering material is described. The method utilizes the nonlinearity parameter measurement which describes the anharmonic behavior of the solid through measurements of amplitudes of the fundamental and of the generated second harmonic ultrasonic waves. The nonlinearity parameter is also directly related to the acoustoelastic constant of the solid which can be determined by measuring the linear dependence of ultrasonic velocity on stress. A major advantage of measurements of the nonlinearity parameter over that of the acoustoelastic constant is that it may be determined without the application of stress on the material, which makes it more applicable for in-service nondestructive characterization. The relationships between the nonlinearity parameter of second-harmonic generation and the percentage of solid solution phase in engineering materials such as heat treatable aluminum alloys was established. The acoustoelastic constants are measured on these alloys for comparison and confirmation. A linear relationship between the nonlinearity parameter and the volume fraction of second phase precipitates in the alloys is indicated.
Speaker verification system using acoustic data and non-acoustic data
Gable, Todd J [Walnut Creek, CA; Ng, Lawrence C [Danville, CA; Holzrichter, John F [Berkeley, CA; Burnett, Greg C [Livermore, CA
2006-03-21
A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.
Simulation of a Radio-Frequency Photogun for the Generation of Ultrashort Beams
NASA Astrophysics Data System (ADS)
Nikiforov, D. A.; Levichev, A. E.; Barnyakov, A. M.; Andrianov, A. V.; Samoilov, S. L.
2018-04-01
A radio-frequency photogun for the generation of ultrashort electron beams to be used in fast electron diffractoscopy, wakefield acceleration experiments, and the design of accelerating structures of the millimeter range is modeled. The beam parameters at the photogun output needed for each type of experiment are determined. The general outline of the photogun is given, its electrodynamic parameters are calculated, and the accelerating field distribution is obtained. The particle dynamics is analyzed in the context of the required output beam parameters. The optimal initial beam characteristics and field amplitudes are chosen. A conclusion is made regarding the obtained beam parameters.
Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.
2011-05-01
Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.
Enhanced Elliptic Grid Generation
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2007-01-01
An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.
Parametric analysis of parameters for electrical-load forecasting using artificial neural networks
NASA Astrophysics Data System (ADS)
Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael
1997-04-01
Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.
NASA Astrophysics Data System (ADS)
Kumenko, A. I.; Kostyukov, V. N.; Kuz'minykh, N. Yu.; Boichenko, S. N.; Timin, A. V.
2017-08-01
The rationale is given for the improvement of the regulatory framework for the use of shaft sensors for the in-service condition monitoring of turbo generators and the development of control systems of shaft surfacing and misalignments of supports. A modern concept and a set of methods are proposed for the condition monitoring of the "shaft line-thrust bearing oil film-turbo generator supports" system elements based on the domestic COMPACS® technology. The system raw data are design, technology, installation, and operating parameters of the turbo generator as well as measured parameters of the absolute vibration of supports and mechanical quantities, relative displacements and relative vibration of the rotor teeth in accordance with GOST R 55263-2012. The precalculated shaft line assembly line in the cold state, the nominal parameters of rotor teeth positions on the dynamic equilibrium curve, the static and dynamic characteristics of the oil film of thrust bearings, and the shaft line stiffness matrix of unit support displacements have been introduced into the system. Using the COMPACS-T system, it is planned to measure positions and oscillations of rotor teeth, to count corresponding static and dynamic characteristics of the oil film, and the static and dynamic loads in the supports in real time. Using the obtained data, the system must determine the misalignments of supports and corrective alignments of rotors of coupling halves, voltages in rotor teeth, welds, and bolts of the coupling halves, and provide automatic conclusion if condition monitoring parameters correspond to standard values. A part of the methodological support for the proposed system is presented, including methods for determining static reactions of supports under load, the method for determining shaft line stiffness matrices, and the method for solving the inverse problem, i.e., the determination of the misalignments of the supports by measurements of rotor teeth relative positions in bearing housings. The procedure for calculating misalignments of turbo generator shaft line supports is set out.
Method and apparatus for automatically generating airfoil performance tables
NASA Technical Reports Server (NTRS)
van Dam, Cornelis P. (Inventor); Mayda, Edward A. (Inventor); Strawn, Roger Clayton (Inventor)
2006-01-01
One embodiment of the present invention provides a system that facilitates automatically generating a performance table for an object, wherein the object is subject to fluid flow. The system operates by first receiving a description of the object and testing parameters for the object. The system executes a flow solver using the testing parameters and the description of the object to produce an output. Next, the system determines if the output of the flow solver indicates negative density or pressure. If not, the system analyzes the output to determine if the output is converging. If converging, the system writes the output to the performance table for the object.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2007-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine's performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2007-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs, such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends on knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined that accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least-squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
An Optimal Orthogonal Decomposition Method for Kalman Filter-Based Turbofan Engine Thrust Estimation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
2005-01-01
A new linear point design technique is presented for the determination of tuning parameters that enable the optimal estimation of unmeasured engine outputs such as thrust. The engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters related to each major engine component. Accurate thrust reconstruction depends upon knowledge of these health parameters, but there are usually too few sensors to be able to estimate their values. In this new technique, a set of tuning parameters is determined which accounts for degradation by representing the overall effect of the larger set of health parameters as closely as possible in a least squares sense. The technique takes advantage of the properties of the singular value decomposition of a matrix to generate a tuning parameter vector of low enough dimension that it can be estimated by a Kalman filter. A concise design procedure to generate a tuning vector that specifically takes into account the variables of interest is presented. An example demonstrates the tuning parameters ability to facilitate matching of both measured and unmeasured engine outputs, as well as state variables. Additional properties of the formulation are shown to lend themselves well to diagnostics.
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Dutta, B. K.; Chattopadhyay, J.
2017-04-01
The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (JIC) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine JIC using available empirical correlations. The correlations between JIC and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (εqf) and crack initiation toughness (Ji) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (εqf) and analysis of TPB specimen generated value of Ji. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in Ji for the same value of biaxial fracture strain (εqf) within a limit. Such variation in the value of Ji has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get Ji by using newly developed correlation. A reasonable comparison of calculated Ji with the values quoted in literature confirmed usefulness of the correlation.
NASA Astrophysics Data System (ADS)
Soomro, Feroz Ahmed; Rizwan-ul-Haq; Khan, Z. H.; Zhang, Qiang
2017-10-01
Main theme of the article is to examine the entropy generation analysis for the magneto-hydrodynamic mixed convection flow of water functionalized carbon nanotubes along an inclined stretching surface. Thermophysical properties of both particles and working fluid are incorporated in the system of governing partial differential equations. Rehabilitation of nonlinear system of equations is obtained via similarity transformations. Moreover, solutions of these equations are further utilized to determine the volumetric entropy and characteristic entropy generation. Solutions of governing boundary layer equations are obtained numerically using the finite difference method. Effects of two types of carbon nanotubes, namely, single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs) with water as base fluid have been analyzed over the physical quantities of interest, namely, surface skin friction, heat transfer rate and entropy generation coefficients. Influential results of velocities, temperature, entropy generation and isotherms are plotted against the emerging parameter, namely, nanoparticle fraction 0≤φ ≤ 0.2, thermal convective parameter 0≤ λ ≤ 5, Hartmann number 0≤ M≤ 2, suction/injection parameter -1≤ S≤ 1, and Eckert number 0≤ Ec ≤ 2. It is finally concluded that skin friction increases due to the increase in the magnetic parameter, suction/injection and nanoparticle volume fraction, whereas the Nusselt number shows an increasing trend due to the increase in the suction parameter, mixed convection parameter and nanoparticle volume fraction. Similarly, entropy generation shows an opposite behavior for the Hartmann number and mixed convection parameter for both single-wall and multi-wall carbon nanotubes.
Determination of female breast tumor and its parameter estimation by thermal simulation
NASA Astrophysics Data System (ADS)
Chen, Xin-guang; Xu, A.-qing; Yang, Hong-qin; Wang, Yu-hua; Xie, Shu-sen
2010-02-01
Thermal imaging is an emerging method for early detection of female breast tumor. The main challenge for thermal imaging used in breast clinics lies in how to detect or locate the tumor and obtain its related parameters. The purpose of this study is to apply an improved method which combined a genetic algorithm with finite element thermal analysis to determine the breast tumor and its parameters, such as the size, location, metabolic heat generation and blood perfusion rate. A finite element model for breast embedded a tumor was used to investigate the temperature distribution, and then the influences of tumor metabolic heat generation, tumor location and tumor size on the temperature were studied by use of an improved genetic algorithm. The results show that thermal imaging is a potential and effective detection tool for early breast tumor, and thermal simulation may be helpful for the explanation of breast thermograms.
Demonstration of a vectorial optical field generator with adaptive close loop control.
Chen, Jian; Kong, Lingjiang; Zhan, Qiwen
2017-12-01
We experimentally demonstrate a vectorial optical field generator (VOF-Gen) with an adaptive close loop control. The close loop control capability is illustrated with the calibration of polarization modulation of the system. To calibrate the polarization ratio modulation, we generate 45° linearly polarized beam and make it propagate through a linear analyzer whose transmission axis is orthogonal to the incident beam. For the retardation calibration, circularly polarized beam is employed and a circular polarization analyzer with the opposite chirality is placed in front of the CCD as the detector. In both cases, the close loop control automatically changes the value of the corresponding calibration parameters in the pre-set ranges to generate the phase patterns applied to the spatial light modulators and records the intensity distribution of the output beam by the CCD camera. The optimized calibration parameters are determined corresponding to the minimum total intensity in each case. Several typical kinds of vectorial optical beams are created with and without the obtained calibration parameters, and the full Stokes parameter measurements are carried out to quantitatively analyze the polarization distribution of the generated beams. The comparisons among these results clearly show that the obtained calibration parameters could remarkably improve the accuracy of the polarization modulation of the VOF-Gen, especially for generating elliptically polarized beam with large ellipticity, indicating the significance of the presented close loop in enhancing the performance of the VOF-Gen.
Validated numerical simulation model of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
Performance Model and Sensitivity Analysis for a Solar Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Rehman, Naveed Ur; Siddiqui, Mubashir Ali
2017-03-01
In this paper, a regression model for evaluating the performance of solar concentrated thermoelectric generators (SCTEGs) is established and the significance of contributing parameters is discussed in detail. The model is based on several natural, design and operational parameters of the system, including the thermoelectric generator (TEG) module and its intrinsic material properties, the connected electrical load, concentrator attributes, heat transfer coefficients, solar flux, and ambient temperature. The model is developed by fitting a response curve, using the least-squares method, to the results. The sample points for the model were obtained by simulating a thermodynamic model, also developed in this paper, over a range of values of input variables. These samples were generated employing the Latin hypercube sampling (LHS) technique using a realistic distribution of parameters. The coefficient of determination was found to be 99.2%. The proposed model is validated by comparing the predicted results with those in the published literature. In addition, based on the elasticity for parameters in the model, sensitivity analysis was performed and the effects of parameters on the performance of SCTEGs are discussed in detail. This research will contribute to the design and performance evaluation of any SCTEG system for a variety of applications.
PubChem3D: Conformer generation
2011-01-01
Background PubChem, an open archive for the biological activities of small molecules, provides search and analysis tools to assist users in locating desired information. Many of these tools focus on the notion of chemical structure similarity at some level. PubChem3D enables similarity of chemical structure 3-D conformers to augment the existing similarity of 2-D chemical structure graphs. It is also desirable to relate theoretical 3-D descriptions of chemical structures to experimental biological activity. As such, it is important to be assured that the theoretical conformer models can reproduce experimentally determined bioactive conformations. In the present study, we investigate the effects of three primary conformer generation parameters (the fragment sampling rate, the energy window size, and force field variant) upon the accuracy of theoretical conformer models, and determined optimal settings for PubChem3D conformer model generation and conformer sampling. Results Using the software package OMEGA from OpenEye Scientific Software, Inc., theoretical 3-D conformer models were generated for 25,972 small-molecule ligands, whose 3-D structures were experimentally determined. Different values for primary conformer generation parameters were systematically tested to find optimal settings. Employing a greater fragment sampling rate than the default did not improve the accuracy of the theoretical conformer model ensembles. An ever increasing energy window did increase the overall average accuracy, with rapid convergence observed at 10 kcal/mol and 15 kcal/mol for model building and torsion search, respectively; however, subsequent study showed that an energy threshold of 25 kcal/mol for torsion search resulted in slightly improved results for larger and more flexible structures. Exclusion of coulomb terms from the 94s variant of the Merck molecular force field (MMFF94s) in the torsion search stage gave more accurate conformer models at lower energy windows. Overall average accuracy of reproduction of bioactive conformations was remarkably linear with respect to both non-hydrogen atom count ("size") and effective rotor count ("flexibility"). Using these as independent variables, a regression equation was developed to predict the RMSD accuracy of a theoretical ensemble to reproduce bioactive conformations. The equation was modified to give a minimum RMSD conformer sampling value to help ensure that 90% of the sampled theoretical models should contain at least one conformer within the RMSD sampling value to a "bioactive" conformation. Conclusion Optimal parameters for conformer generation using OMEGA were explored and determined. An equation was developed that provides an RMSD sampling value to use that is based on the relative accuracy to reproduce bioactive conformations. The optimal conformer generation parameters and RMSD sampling values determined are used by the PubChem3D project to generate theoretical conformer models. PMID:21272340
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Bayesian Parameter Estimation for Heavy-Duty Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Eric; Konan, Arnaud; Duran, Adam
2017-03-28
Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the currentmore » state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.« less
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
SU-C-BRD-03: Analysis of Accelerator Generated Text Logs for Preemptive Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
2014-06-15
Purpose: To develop a model to analyze medical accelerator generated parameter and performance data that will provide an early warning of performance degradation and impending component failure. Methods: A robust 6 MV VMAT quality assurance treatment delivery was used to test the constancy of accelerator performance. The generated text log files were decoded and analyzed using statistical process control (SPC) methodology. The text file data is a single snapshot of energy specific and overall systems parameters. A total of 36 system parameters were monitored which include RF generation, electron gun control, energy control, beam uniformity control, DC voltage generation, andmore » cooling systems. The parameters were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and the parameter/system specification. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: the value of 1 standard deviation from the mean operating parameter of 483 TB systems, a small fraction (≤ 5%) of the operating range, or a fraction of the minor fault deviation. Results: There were 34 parameters in which synthetic errors were introduced. There were 2 parameters (radial position steering coil, and positive 24V DC) in which the errors did not exceed the limit of the I/MR chart. The I chart limit was exceeded for all of the remaining parameters (94.2%). The MR chart limit was exceeded in 29 of the 32 parameters (85.3%) in which the I chart limit was exceeded. Conclusion: Statistical process control I/MR evaluation of text log file parameters may be effective in providing an early warning of performance degradation or component failure for digital medical accelerator systems. Research is Supported by Varian Medical Systems, Inc.« less
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, Jr., David (Inventor)
2016-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Data Point Averaging for Computational Fluid Dynamics Data
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.
Geist, E.; Yoshioka, S.
1996-01-01
The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.
Sel, Davorka; Lebar, Alenka Macek; Miklavcic, Damijan
2007-05-01
In electrochemotherapy (ECT) electropermeabilization, parameters (pulse amplitude, electrode setup) need to be customized in order to expose the whole tumor to electric field intensities above permeabilizing threshold to achieve effective ECT. In this paper, we present a model-based optimization approach toward determination of optimal electropermeabilization parameters for effective ECT. The optimization is carried out by minimizing the difference between the permeabilization threshold and electric field intensities computed by finite element model in selected points of tumor. We examined the feasibility of model-based optimization of electropermeabilization parameters on a model geometry generated from computer tomography images, representing brain tissue with tumor. Continuous parameter subject to optimization was pulse amplitude. The distance between electrode pairs was optimized as a discrete parameter. Optimization also considered the pulse generator constraints on voltage and current. During optimization the two constraints were reached preventing the exposure of the entire volume of the tumor to electric field intensities above permeabilizing threshold. However, despite the fact that with the particular needle array holder and pulse generator the entire volume of the tumor was not permeabilized, the maximal extent of permeabilization for the particular case (electrodes, tissue) was determined with the proposed approach. Model-based optimization approach could also be used for electro-gene transfer, where electric field intensities should be distributed between permeabilizing threshold and irreversible threshold-the latter causing tissue necrosis. This can be obtained by adding constraints on maximum electric field intensity in optimization procedure.
Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre
2016-09-25
Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Report on the study of the tax and rate treatment of renewable energy projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, S.W.; Hill, L.J.; Perlack, R.D.
1993-12-01
This study was conducted in response to the requirements of Section 1205 of the Energy Policy Act of 1992 (EPACT), which states: The Secretary (of Energy), in conjunction with State regulatory commissions, shall undertake a study to determine if conventional taxation and ratemaking procedures result in economic barriers to or incentives for renewable energy power plants compared to conventional power plants. The purpose of the study, therefore, is not to compare the cost-effectiveness of different types of renewable and conventional electric generating plants. Rather, it is to determine the relative impact of conventional ratemaking and taxation procedures on the selectionmore » of renewable power plants compared to conventional ones. To make this determination, we quantify the technical and financial parameters of renewable and conventional electric generating technologies, and hold them fixed throughout the study. Then, we vary taxation and ratemaking procedures to determine their effects on the financial criteria that investor-owned electric utilities (IOUs) and nonutility electricity generators (NUGs) use to make technology-adoption decisions. In the planning process of a typical utility, the opposite is usually the case. That is, utilities typically hold ratemaking and taxation procedures constant and look for the least-cost mix of resources, varying the values of engineering and financial parameters of generating plants in the process.« less
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra
NASA Technical Reports Server (NTRS)
Valenti, J. A.; Piskunov, N.
1996-01-01
We describe a new software package that may be used to determine stellar and atomic parameters by matching observed spectra with synthetic spectra generated from parameterized atmospheres. A nonlinear least squares algorithm is used to solve for any subset of allowed parameters, which include atomic data (log gf and van der Waals damping constants), model atmosphere specifications (T(sub eff, log g), elemental abundances, and radial, turbulent, and rotational velocities. LTE synthesis software handles discontiguous spectral intervals and complex atomic blends. As a demonstration, we fit 26 Fe I lines in the NSO Solar Atlas (Kurucz et al.), determining various solar and atomic parameters.
van de Geijn, J; Fraass, B A
1984-01-01
The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from 60Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small number of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.
Net fractional depth dose: a basis for a unified analytical description of FDD, TAR, TMR, and TPR
DOE Office of Scientific and Technical Information (OSTI.GOV)
van de Geijn, J.; Fraass, B.A.
The net fractional depth dose (NFD) is defined as the fractional depth dose (FDD) corrected for inverse square law. Analysis of its behavior as a function of depth, field size, and source-surface distance has led to an analytical description with only seven model parameters related to straightforward physical properties. The determination of the characteristic parameter values requires only seven experimentally determined FDDs. The validity of the description has been tested for beam qualities ranging from /sup 60/Co gamma rays to 18-MV x rays, using published data from several different sources as well as locally measured data sets. The small numbermore » of model parameters is attractive for computer or hand-held calculator applications. The small amount of required measured data is important in view of practical data acquisition for implementation of a computer-based dose calculation system. The generating function allows easy and accurate generation of FDD, tissue-air ratio, tissue-maximum ratio, and tissue-phantom ratio tables.« less
The Phoretic Motion Experiment (PME) definition phase
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Neste, S. L. (Editor)
1982-01-01
The aerosol generator and the charge flow devices (CFD) chamber which were designed for zero-gravity operation was analyzed. Characteristics of the CFD chamber and aerosol generator which would be useful for cloud physics experimentation in a one-g as well as a zero-g environment are documented. The Collision type of aerosol generator is addressed. Relationships among the various input and output parameters are derived and subsequently used to determine the requirements on the controls of the input parameters to assure a given error budget of an output parameter. The CFD chamber operation in a zero-g environment is assessed utilizing a computer simulation program. Low nuclei critical supersaturation and high experiment accuracies are emphasized which lead to droplet growth times extending into hundreds of seconds. The analysis was extended to assess the performance constraints of the CFD chamber in a one-g environment operating in the horizontal mode.
Häcker, Axel; Köhrmann, Kai Uwe; Knoll, Thomas; Langbein, Sigrun; Steidler, Annette; Kraut, Oliver; Marlinghaus, Ernst; Alken, Peter; Michel, Maurice Stephan
2004-11-01
The therapeutic application of noninvasive tissue ablation by high-intensity focused ultrasound (HIFU) requires precise physical definition of the focal size and determination of control parameters. The objective of this study was to measure the extent of ex-vivo porcine kidney tissue ablation at variable generator parameters and to identify parameters to control lesion size. The ultrasound waves generated by a cylindrical piezoceramic element (1.04 MHz) were focused at a depth of 100 mm using a parabolic reflector (diameter 100 mm). A needle hydrophone was used to measure the field distribution of the sound pressure. The morphology and extent of tissue necrosis were examined at generator powers of up to 400 W (P(el)) and single pulse durations of as long as 8 seconds. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (-6 dB). A sharp demarcation between coagulation necrosis and intact tissue was observed. Lesion size was controlled by both the variation of generator power and the pulse duration. At a constant pulse duration of 2 seconds, a generator power of 100 W remained below the threshold doses for inducing a reproducible lesion. An increase in power to as high as 400 W induced lesions with average dimensions of as much as 11.2 x 3 mm. At constant total energy (generator power x pulse duration), lesion size increased at higher generator power. This ultrasound generator can induce defined and reproducible necrosis in ex-vivo kidney tissue. Lesion size can be controlled by adjusting the generator power and pulse duration. Generator power, in particular, turned out to be a suitable control parameter for obtaining a lesion of a defined size.
Nonlinear Optics and Organic Materials
1989-10-01
incrementally by making small changes in the generating optical harmonics. However, deficiencies in backbone or substituents. In this way the chemist can...experimental determination of Otx.l = 4.5 X 10-32 esu. ability of polymeric molecules to generate third Key parameters extracted from the UV and visible...solubility of most active organics in negative charge at the other end, thus generating a the polymer and their tendency to segregate or migrate out
Robust measurement of supernova ν e spectra with future neutrino detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
Robust measurement of supernova ν e spectra with future neutrino detectors
Nikrant, Alex; Laha, Ranjan; Horiuchi, Shunsaku
2018-01-25
Measuring precise all-flavor neutrino information from a supernova is crucial for understanding the core-collapse process as well as neutrino properties. We apply a chi-squared analysis for different detector setups to explore determination of ν e spectral parameters. Using a long-term two-dimensional core-collapse simulation with three time-varying spectral parameters, we generate mock data to examine the capabilities of the current Super-Kamiokande detector and compare the relative improvements that gadolinium, Hyper-Kamiokande, and DUNE would have. We show that in a realistic three spectral parameter framework, the addition of gadolinium to Super-Kamiokande allows for a qualitative improvement in νe determination. Efficient neutron taggingmore » will allow Hyper-Kamiokande to constrain spectral information more strongly in both the accretion and cooling phases. Overall, significant improvements will be made by Hyper-Kamiokande and DUNE, allowing for much more precise determination of ν e spectral parameters.« less
Feasibility study of wind-generated electricity for rural applications in southwestern Ohio
NASA Astrophysics Data System (ADS)
Kohring, G. W.
The parameters associated with domestic production of wind generated electricity for direct use by small farms and rural homes in the southwestern Ohio region are discussed. The project involves direct utility interfaced electricity generation from a horizontal axis, down-wind, fixed pitch, wind powered induction generator system. Goals of the project are to determine: the ability to produce useful amounts of domestic wind generated electricity in the southwestern Ohio region; economic justification for domestic wind generated electrical production; and the potential of domestic wind generated electricity for reducing dependence on non-renewable energy resources in the southwestern Ohio region.
Parameter calibration for synthesizing realistic-looking variability in offline handwriting
NASA Astrophysics Data System (ADS)
Cheng, Wen; Lopresti, Dan
2011-01-01
Motivated by the widely accepted principle that the more training data, the better a recognition system performs, we conducted experiments asking human subjects to do evaluate a mixture of real English handwritten text lines and text lines altered from existing handwriting with various distortion degrees. The idea of generating synthetic handwriting is based on a perturbation method by T. Varga and H. Bunke that distorts an entire text line. There are two purposes of our experiments. First, we want to calibrate distortion parameter settings for Varga and Bunke's perturbation model. Second, we intend to compare the effects of parameter settings on different writing styles: block, cursive and mixed. From the preliminary experimental results, we determined appropriate ranges for parameter amplitude, and found that parameter settings should be altered for different handwriting styles. With the proper parameter settings, it should be possible to generate large amount of training and testing data for building better off-line handwriting recognition systems.
Pietrzyk, Sławomir; Fortuna, Teresa; Królikowska, Karolina; Rogozińska, Ewelina; Labanowska, Maria; Kurdziel, Magdalena
2013-09-12
The objective of this study was to determine the effect of enrichment of oxidised starches with mineral compounds on their physicochemical properties and capability for free radical generation. Potato and spelt wheat starches were oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. The modified starches were analysed for: content of mineral elements, colour parameters (L*a*b*), water binding capacity solubility in water at temperature of 50 and 80 °C, and susceptibility to enzymatic hydrolysis with α-amylase. In addition, thermodynamic characteristics of gelatinisation was determined by differential scanning calorimetry (DSC), and the number and character of thermally generated free radicals was assayed using electron paramagnetic resonance (EPR). Based on the results achieved, it was concluded that the quantity of incorporated minerals and changes in the assayed physicochemical parameters depended not only on the botanical type of starch but also on the type of the incorporated mineral element. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke
2016-01-01
A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.
NASA Astrophysics Data System (ADS)
Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.
2005-12-01
This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing
Gao, Haoshi; Huang, Hongzhang; Zheng, Aini; Yu, Nuojun; Li, Ning
2017-11-01
In this study, we analyzed danshen (Salvia miltiorrhiza) constituents using biopartitioning and microemulsion high-performance liquid chromatography (MELC). The quantitative retention-activity relationships (QRARs) of the constituents were established to model their pharmacokinetic (PK) parameters and chromatographic retention data, and generate their biological effectiveness fingerprints. A high-performance liquid chromatography (HPLC) method was established to determine the abundance of the extracted danshen constituents, such as sodium danshensu, rosmarinic acid, salvianolic acid B, protocatechuic aldehyde, cryptotanshinone, and tanshinone IIA. And another HPLC protocol was established to determine the abundance of those constituents in rat plasma samples. An experimental model was built in Sprague Dawley (SD) rats, and calculated the corresponding PK parameterst with 3P97 software package. Thirty-five model drugs were selected to test the PK parameter prediction capacities of the various MELC systems and to optimize the chromatographic protocols. QRARs and generated PK fingerprints were established. The test included water/oil-soluble danshen constituents and the prediction capacity of the regression model was validated. The results showed that the model had good predictability. Copyright © 2017. Published by Elsevier B.V.
Centrifuge Impact Cratering Experiments
NASA Technical Reports Server (NTRS)
Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.
1985-01-01
The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.
Machine-Thermal Coupling Stresses Analysis of the Fin-Type Structural Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Yue, Hao; Chen, Dongbo; Qin, Delei; Chen, Zijian
2017-05-01
The design structure and heat-transfer mechanism of a thermoelectric generator (TEG) determine its body temperature state. Thermal stress and thermal deformation generated by the temperature variation directly affect the stress state of thermoelectric modules (TEMs). Therefore, the rated temperature and pressing force of TEMs are important parameters in TEG design. Here, the relationships between structural of a fin-type TEG (FTEG) and these parameters are studied by modeling and "machine-thermal" coupling simulation. An indirect calculation method is adopted in the coupling simulation. First, numerical heat transfer calculations of a three-dimensional FTEG model are conducted according to an orthogonal simulation table. The influences of structural parameters for heat transfer in the channel and outer fin temperature distribution are analyzed. The optimal structural parameters are obtained and used to simulate temperature field of the outer fins. Second, taking the thermal calculation results as the initial condition, the thermal-solid coupling calculation is adopted. The thermal stresses of outer fin, mechanical force of spring-angle pressing mechanism, and clamping force on a TEM are analyzed. The simulation results show that the heat transfer area of the inner fin and the physical parameters of the metal materials are the keys to determining the FTEG temperature field. The pressing mechanism's mechanical force can be reduced by reducing the outer fin angle. In addition, a corrugated cooling water pipe, which has cooling and spring functionality, is conducive to establishing an adaptable clamping force to avoid the TEMs being crushed by the thermal stresses in the body.
Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li
2014-01-01
The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.
Bayesian estimation of the transmissivity spatial structure from pumping test data
NASA Astrophysics Data System (ADS)
Demir, Mehmet Taner; Copty, Nadim K.; Trinchero, Paolo; Sanchez-Vila, Xavier
2017-06-01
Estimating the statistical parameters (mean, variance, and integral scale) that define the spatial structure of the transmissivity or hydraulic conductivity fields is a fundamental step for the accurate prediction of subsurface flow and contaminant transport. In practice, the determination of the spatial structure is a challenge because of spatial heterogeneity and data scarcity. In this paper, we describe a novel approach that uses time drawdown data from multiple pumping tests to determine the transmissivity statistical spatial structure. The method builds on the pumping test interpretation procedure of Copty et al. (2011) (Continuous Derivation method, CD), which uses the time-drawdown data and its time derivative to estimate apparent transmissivity values as a function of radial distance from the pumping well. A Bayesian approach is then used to infer the statistical parameters of the transmissivity field by combining prior information about the parameters and the likelihood function expressed in terms of radially-dependent apparent transmissivities determined from pumping tests. A major advantage of the proposed Bayesian approach is that the likelihood function is readily determined from randomly generated multiple realizations of the transmissivity field, without the need to solve the groundwater flow equation. Applying the method to synthetically-generated pumping test data, we demonstrate that, through a relatively simple procedure, information on the spatial structure of the transmissivity may be inferred from pumping tests data. It is also shown that the prior parameter distribution has a significant influence on the estimation procedure, given the non-uniqueness of the estimation procedure. Results also indicate that the reliability of the estimated transmissivity statistical parameters increases with the number of available pumping tests.
Guler, Hasan; Kilic, Ugur
2018-03-01
Weaning is important for patients and clinicians who have to determine correct weaning time so that patients do not become addicted to the ventilator. There are already some predictors developed, such as the rapid shallow breathing index (RSBI), the pressure time index (PTI), and Jabour weaning index. Many important dimensions of weaning are sometimes ignored by these predictors. This is an attempt to develop a knowledge-based weaning process via fuzzy logic that eliminates the disadvantages of the present predictors. Sixteen vital parameters listed in published literature have been used to determine the weaning decisions in the developed system. Since there are considered to be too many individual parameters in it, related parameters were grouped together to determine acid-base balance, adequate oxygenation, adequate pulmonary function, hemodynamic stability, and the psychological status of the patients. To test the performance of the developed algorithm, 20 clinical scenarios were generated using Monte Carlo simulations and the Gaussian distribution method. The developed knowledge-based algorithm and RSBI predictor were applied to the generated scenarios. Finally, a clinician evaluated each clinical scenario independently. The Student's t test was used to show the statistical differences between the developed weaning algorithm, RSBI, and the clinician's evaluation. According to the results obtained, there were no statistical differences between the proposed methods and the clinician evaluations.
An experimental investigation of S-duct flow control using arrays of low-profile vortex generators
NASA Technical Reports Server (NTRS)
Reichert, Bruce A.; Wendt, Bruce J.
1993-01-01
An experimental investigation was undertaken to measure the effect of various configurations of low-profile vortex generator arrays on the flow in a diffusing S-duct. Three parameters that characterize the vortex generator array were systematically varied to determine their effect: (1) the vortex generator height; (2) the streamwise location of the vortex generator array; and (3) the vortex generator spacing. Detailed measurements of total pressure at the duct exit, surface static pressure, and surface flow visualization were gathered for each vortex generator configuration. These results are reported here along with total pressure recovery and distortion coefficients determined from the experimental data. Each array of vortex generators tested improved total pressure recovery. The configuration employing the largest vortex generators was the most effective in reducing total pressure recovery. No configuration of vortex generators completely eliminated the flow separation that naturally occurs in the S-duct, however the extent of the separated flow region was reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasouli, C.; Abbasi Davani, F., E-mail: fabbasidavani@gmail.com
A series of experiments and numerical calculations have been done on the Damavand tokamak for accurate determination of equilibrium parameters, such as the plasma boundary position and shape. For this work, the pickup coils of the Damavand tokamak were recalibrated and after that a plasma boundary shape identification code was developed for analyzing the experimental data, such as magnetic probes and coils currents data. The plasma boundary position, shape and other parameters are determined by the plasma shape identification code. A free-boundary equilibrium code was also generated for comparison with the plasma boundary shape identification results and determination of requiredmore » fields to obtain elongated plasma in the Damavand tokamak.« less
Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E H; Kraut, O; Alken, P
2002-01-01
Therapeutic application of contactless thermoablation by high-intensity focused ultrasound (HIFU) demands precise physical definition of focal size and determination of control parameters. Our objective was to define the focal expansion of a new ultrasound generator and to evaluate the extent of tissue ablation under variable generator parameters in an ex vivo model. Axial and transversal distribution of ultrasound intensity in the area of the focal point was calculated by needle hydrophone. The extent of tissue necrosis after focused ultrasound was assessed in an ex vivo porcine kidney model applying generator power up to 400 Watt and pulse duration up to 8 s. The measurement of field distribution revealed a physical focal size of 32 x 4 mm. Sharp demarcation between coagulation necrosis and intact tissue was observed in our tissue model. Lesion size was kept under control by variation of both generator power and impulse duration. At a constant impulse duration of 2 s, generator power of 100 W remained below the threshold doses for induction of a reproducible lesion. An increase in power up to 200 W and 400 W, respectively, induced lesions with diameters up to 11.2 x 3 mm. Constant total energy (generator power x impulse duration) led to a larger lesion size under higher generator power. It is possible to induce sharply demarcated, reproducible thermonecrosis, which can be regulated by generator power and impulse duration, by means of a cylindrical piezo element with a paraboloid reflector at a focal distance of 10 cm. The variation of generator power was an especially suitable control parameter for the inducement of a defined lesion size.
Synthesis of laughter by modifying excitation characteristics.
Thati, Sathya Adithya; Kumar K, Sudheer; Yegnanarayana, B
2013-05-01
In this paper, a method to synthesize laughter by modifying the excitation source information is presented. The excitation source information is derived by extracting epoch locations and instantaneous fundamental frequency using zero frequency filtering approach. The zero frequency filtering approach is modified to capture the rapidly varying instantaneous fundamental frequency in natural laugh signals. The nature of variation of excitation features in natural laughter is examined to determine the features to be incorporated in the synthesis of a laugh signal. Features such as pitch period and strength of excitation are modified in the utterance of vowel /a/ or /i/ to generate the laughter signal. Frication is also incorporated wherever appropriate. Laugh signal is generated by varying parameters at both call level and bout level. Experiments are conducted to determine the significance of different features in the perception of laughter. Subjective evaluation is performed to determine the level of acceptance and quality of synthesis of the synthesized laughter signal for different choices of parameter values and for different input types.
NASA Technical Reports Server (NTRS)
Weiser, P.; Nordmann, R.
1991-01-01
In today's rotordynamic calculations, the input parameters for a finite element analysis (FEA) determine very much the reliability of eigenvalue and eigenmode predictions. While modeling of an elastic structure by means of beam elements etc. is relatively straightforward to perform and the input data for journal bearings are usually known exactly enough, the determination of stiffness and damping for labyrinth seals is still the subject of many investigations. Therefore, the rotordynamic influence of labyrinths is often not included in FEA for rotating machinery because of a lack of computer programs to calculate these parameters. This circumstance can give rise to severe vibration problems especially for high performance turbines or compressors, resulting in remarkable economic losses. The forces generated in labyrinths can be described for small motions around the seal center with a linearized force-motion relationship. Several years ago, we started with the development of computer codes for the determination of rotordynamic seal coefficients. Our different approaches to evaluate the dynamic fluid forces generated by turbulent, compressible seal flow are introduced.
Hayashi, Hideaki; Nakamura, Go; Chin, Takaaki; Tsuji, Toshio
2017-01-01
This paper proposes an artificial electromyogram (EMG) signal generation model based on signal-dependent noise, which has been ignored in existing methods, by introducing the stochastic construction of the EMG signals. In the proposed model, an EMG signal variance value is first generated from a probability distribution with a shape determined by a commanded muscle force and signal-dependent noise. Artificial EMG signals are then generated from the associated Gaussian distribution with a zero mean and the generated variance. This facilitates representation of artificial EMG signals with signal-dependent noise superimposed according to the muscle activation levels. The frequency characteristics of the EMG signals are also simulated via a shaping filter with parameters determined by an autoregressive model. An estimation method to determine EMG variance distribution using rectified and smoothed EMG signals, thereby allowing model parameter estimation with a small number of samples, is also incorporated in the proposed model. Moreover, the prediction of variance distribution with strong muscle contraction from EMG signals with low muscle contraction and related artificial EMG generation are also described. The results of experiments conducted, in which the reproduction capability of the proposed model was evaluated through comparison with measured EMG signals in terms of amplitude, frequency content, and EMG distribution demonstrate that the proposed model can reproduce the features of measured EMG signals. Further, utilizing the generated EMG signals as training data for a neural network resulted in the classification of upper limb motion with a higher precision than by learning from only measured EMG signals. This indicates that the proposed model is also applicable to motion classification. PMID:28640883
Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes
NASA Astrophysics Data System (ADS)
Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd
2018-05-01
In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.
Lothe, Anjali G; Sinha, Alok
2017-05-01
Leachate pollution index (LPI) is an environmental index which quantifies the pollution potential of leachate generated in landfill site. Calculation of Leachate pollution index (LPI) is based on concentration of 18 parameters present in leachate. However, in case of non-availability of all 18 parameters evaluation of actual values of LPI becomes difficult. In this study, a model has been developed to predict the actual values of LPI in case of partial availability of parameters. This model generates eleven equations that helps in determination of upper and lower limit of LPI. The geometric mean of these two values results in LPI value. Application of this model to three landfill site results in LPI value with an error of ±20% for ∑ i n w i ⩾0.6. Copyright © 2016 Elsevier Ltd. All rights reserved.
VESGEN Software for Mapping and Quantification of Vascular Regulators
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia A.; Vickerman, Mary B.; Keith, Patricia A.
2012-01-01
VESsel GENeration (VESGEN) Analysis is an automated software that maps and quantifies effects of vascular regulators on vascular morphology by analyzing important vessel parameters. Quantification parameters include vessel diameter, length, branch points, density, and fractal dimension. For vascular trees, measurements are reported as dependent functions of vessel branching generation. VESGEN maps and quantifies vascular morphological events according to fractal-based vascular branching generation. It also relies on careful imaging of branching and networked vascular form. It was developed as a plug-in for ImageJ (National Institutes of Health, USA). VESGEN uses image-processing concepts of 8-neighbor pixel connectivity, skeleton, and distance map to analyze 2D, black-and-white (binary) images of vascular trees, networks, and tree-network composites. VESGEN maps typically 5 to 12 (or more) generations of vascular branching, starting from a single parent vessel. These generations are tracked and measured for critical vascular parameters that include vessel diameter, length, density and number, and tortuosity per branching generation. The effects of vascular therapeutics and regulators on vascular morphology and branching tested in human clinical or laboratory animal experimental studies are quantified by comparing vascular parameters with control groups. VESGEN provides a user interface to both guide and allow control over the users vascular analysis process. An option is provided to select a morphological tissue type of vascular trees, network or tree-network composites, which determines the general collections of algorithms, intermediate images, and output images and measurements that will be produced.
Parametric motion control of robotic arms: A biologically based approach using neural networks
NASA Technical Reports Server (NTRS)
Bock, O.; D'Eleuterio, G. M. T.; Lipitkas, J.; Grodski, J. J.
1993-01-01
A neural network based system is presented which is able to generate point-to-point movements of robotic manipulators. The foundation of this approach is the use of prototypical control torque signals which are defined by a set of parameters. The parameter set is used for scaling and shaping of these prototypical torque signals to effect a desired outcome of the system. This approach is based on neurophysiological findings that the central nervous system stores generalized cognitive representations of movements called synergies, schemas, or motor programs. It has been proposed that these motor programs may be stored as torque-time functions in central pattern generators which can be scaled with appropriate time and magnitude parameters. The central pattern generators use these parameters to generate stereotypical torque-time profiles, which are then sent to the joint actuators. Hence, only a small number of parameters need to be determined for each point-to-point movement instead of the entire torque-time trajectory. This same principle is implemented for controlling the joint torques of robotic manipulators where a neural network is used to identify the relationship between the task requirements and the torque parameters. Movements are specified by the initial robot position in joint coordinates and the desired final end-effector position in Cartesian coordinates. This information is provided to the neural network which calculates six torque parameters for a two-link system. The prototypical torque profiles (one per joint) are then scaled by those parameters. After appropriate training of the network, our parametric control design allowed the reproduction of a trained set of movements with relatively high accuracy, and the production of previously untrained movements with comparable accuracy. We conclude that our approach was successful in discriminating between trained movements and in generalizing to untrained movements.
Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.
NASA Astrophysics Data System (ADS)
Le, Loc Xuan
1987-09-01
A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.
High-speed precise cell patterning by pulsed electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Makaev, A. V.; Mingaliev, E. A.; Karpov, V. R.; Zubarev, I. V.; Shur, V. Ya; El'kina, O. S.
2017-10-01
The generation of micro-droplets of nutrient medium with living cells by pulsed electrohydrodynamic printing has been studied. In-situ visualization by high-speed camera made it possible to measure the characteristic times of droplet generation process and to determine the optimal printing parameters. Maximal frequency of stable generation was achieved at 700 Hz. This technique was applied successfully for drop-on-demand printing of culture medium with live HeLa cells and yeasts.
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi
2010-10-01
The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.
Note: A calibration method to determine the lumped-circuit parameters of a magnetic probe.
Li, Fuming; Chen, Zhipeng; Zhu, Lizhi; Liu, Hai; Wang, Zhijiang; Zhuang, Ge
2016-06-01
This paper describes a novel method to determine the lumped-circuit parameters of a magnetic inductive probe for calibration by using Helmholtz coils with high frequency power supply (frequency range: 10 kHz-400 kHz). The whole calibration circuit system can be separated into two parts: "generator" circuit and "receiver" circuit. By implementing the Fourier transform, two analytical lumped-circuit models, with respect to these separated circuits, are constructed to obtain the transfer function between each other. Herein, the precise lumped-circuit parameters (including the resistance, inductance, and capacitance) of the magnetic probe can be determined by fitting the experimental data to the transfer function. Regarding the fitting results, the finite impedance of magnetic probe can be used to analyze the transmission of a high-frequency signal between magnetic probes, cables, and acquisition system.
NASA Technical Reports Server (NTRS)
Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.
1990-01-01
The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.
Method for Predicting and Optimizing System Parameters for Electrospinning System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor)
2011-01-01
An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.
Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao
2017-05-01
Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.
Yamashita, Takehiro; Asaoka, Ryo; Kii, Yuya; Terasaki, Hiroto; Murata, Hiroshi; Sakamoto, Taiji
2017-01-01
The location of the peaks of the circumpapillary retinal nerve fiber layer (cpRNFL) thickness is affected by several ocular parameters. In this study, we have generated equations that can determine the peaks of the cpRNFL. This study was a prospective, observational, cross sectional study of 118 healthy right eyes. The axial length, optic disc tilt, superiortemporal (ST)- and inferiortemporal (IT)-peaks of the cpRNFL thickness, and angles of the ST and IT retinal arteries (RA) and veins (RV) were determined. The correlations between the location of the ST- and IT-peaks and ocular structural parameters and the sex, body height and weight were calculated. The best fit equations to generate the location of the ST/IT-peaks were determined using corrected-Akaike Information Criteria. The location of the ST-peak was 0.72+(0.40 x ST-RA)+(0.27 x ST-RV)+(0.14 x height)-(0.47 x papillo-macular-position)-(0.11 x disc tilt) with a coefficient of correlation of 0.61 (P<0.0001). The location of the IT-peak was 21.88+(0.53 x IT-RA)+(0.15 x IT-RV)+(0.041 x corneal thickness)-(1.00 x axial length) with a coefficient of correlation of 0.59 (P<0.0001). The location of ST/IT peaks is determined by different parameters of the ocular structure. These equations allow clinicians to obtain an accurate location of the peaks for a more accurate diagnosis of glaucoma.
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
A unified convention for biological assemblies with helical symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Chung-Jung, E-mail: tsaic@mail.nih.gov; Nussinov, Ruth; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978
A new representation of helical structure by four parameters, [n{sub 1}, n{sub 2}, twist, rise], is able to generate an entire helical construct from asymmetric units, including cases of helical assembly with a seam. Assemblies with helical symmetry can be conveniently formulated in many distinct ways. Here, a new convention is presented which unifies the two most commonly used helical systems for generating helical assemblies from asymmetric units determined by X-ray fibre diffraction and EM imaging. A helical assembly is viewed as being composed of identical repetitive units in a one- or two-dimensional lattice, named 1-D and 2-D helical systems,more » respectively. The unification suggests that a new helical description with only four parameters [n{sub 1}, n{sub 2}, twist, rise], which is called the augmented 1-D helical system, can generate the complete set of helical arrangements, including coverage of helical discontinuities (seams). A unified four-parameter characterization implies similar parameters for similar assemblies, can eliminate errors in reproducing structures of helical assemblies and facilitates the generation of polymorphic ensembles from helical atomic models or EM density maps. Further, guidelines are provided for such a unique description that reflects the structural signature of an assembly, as well as rules for manipulating the helical symmetry presentation.« less
Global optimization framework for solar building design
NASA Astrophysics Data System (ADS)
Silva, N.; Alves, N.; Pascoal-Faria, P.
2017-07-01
The generative modeling paradigm is a shift from static models to flexible models. It describes a modeling process using functions, methods and operators. The result is an algorithmic description of the construction process. Each evaluation of such an algorithm creates a model instance, which depends on its input parameters (width, height, volume, roof angle, orientation, location). These values are normally chosen according to aesthetic aspects and style. In this study, the model's parameters are automatically generated according to an objective function. A generative model can be optimized according to its parameters, in this way, the best solution for a constrained problem is determined. Besides the establishment of an overall framework design, this work consists on the identification of different building shapes and their main parameters, the creation of an algorithmic description for these main shapes and the formulation of the objective function, respecting a building's energy consumption (solar energy, heating and insulation). Additionally, the conception of an optimization pipeline, combining an energy calculation tool with a geometric scripting engine is presented. The methods developed leads to an automated and optimized 3D shape generation for the projected building (based on the desired conditions and according to specific constrains). The approach proposed will help in the construction of real buildings that account for less energy consumption and for a more sustainable world.
Generation of single-cycle mid-infrared pulses via coherent synthesis.
Ma, Fen; Liu, Hongjun; Huang, Nan; Sun, Qibing
2012-12-17
A new approach for the generation of single-cycle mid-infrared pulses without complicated control systems is proposed, which is based on direct coherent synthesis of two idlers generated by difference frequency generation (DFG) processes. It is found that the waveform of synthesized pulses is mainly determined by the spectra superposition, the carrier-envelope phase (CEP) difference, the relative timing and the chirp ratio between the idlers. The influences of these parameters on the synthesized waveform are also numerically calculated and analyzed via second-order autocorrelation, which offers general guidelines for the waveform optimization. The single-cycle synthesized mid-infrared pulses, which are centered at 4233 nm with the spectrum spanning from 3000 nm to 7000 nm, are achieved by carefully optimizing these parameters. The single-cycle mid-infrared laser source presents the possibility of investigating and controlling the strong field light-matter interaction.
Kaman 40 kW wind turbine generator - control system dynamics
NASA Technical Reports Server (NTRS)
Perley, R.
1981-01-01
The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.
Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia
NASA Astrophysics Data System (ADS)
González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.
2018-03-01
The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can
2017-09-01
A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.
Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can
2017-09-01
A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793
Keogh, Pauraic; Ray, Noel J; Lynch, Christopher D; Burke, Francis M; Hannigan, Ailish
2004-12-01
This investigation determined the minimum exposure times consistent with optimised surface microhardness parameters for a commercial resin composite cured using a "first-generation" light-emitting diode activation lamp. Disk specimens were exposed and surface microhardness numbers measured at the top and bottom surfaces for elapsed times of 1 hour and 24 hours. Bottom/top microhardness number ratios were also calculated. Most microhardness data increased significantly over the elapsed time interval but microhardness ratios (bottom/top) were dependent on exposure time only. A minimum exposure of 40 secs is appropriate to optimise microhardness parameters for the combination of resin composite and lamp investigated.
NASA Technical Reports Server (NTRS)
Chin, M. M.; Goad, C. C.; Martin, T. V.
1972-01-01
A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.
Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime
NASA Astrophysics Data System (ADS)
Zebarjadi, M.
2017-07-01
Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.
NASA Astrophysics Data System (ADS)
Kozioł, Michał
2017-10-01
The article presents a parametric model describing the registered distributions spectrum of optical radiation emitted by electrical discharges generated in the systems: the needle- needle, the needleplate and in the system for surface discharges. Generation of electrical discharges and registration of the emitted radiation was carried out in three different electrical insulating oils: fabric new, operated (used) and operated with air bubbles. For registration of optical spectra in the range of ultraviolet, visible and near infrared a high resolution spectrophotometer was. The proposed mathematical model was developed in a regression procedure using gauss-sigmoid type function. The dependent variable was the intensity of the recorded optical signals. In order to estimate the optimal parameters of the model an evolutionary algorithm was used. The optimization procedure was performed in Matlab environment. For determination of the matching quality of theoretical parameters of the regression function to the empirical data determination coefficient R2 was applied.
Statistical Inference for Data Adaptive Target Parameters.
Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J
2016-05-01
Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.
Determining wave direction using curvature parameters.
de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista
2016-01-01
The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.
Single generation cycles and delayed feedback cycles are not separate phenomena.
Pfaff, T; Brechtel, A; Drossel, B; Guill, C
2014-12-01
We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Generation of laser-induced periodic surface structures on transparent material-fused silica
NASA Astrophysics Data System (ADS)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-01
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionization and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.
Generation of laser-induced periodic surface structures on transparent material-fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Simon; Rung, Stefan; Hellmann, Ralf
2016-05-02
We report on a comparison between simulated and experimental results for the generation of laser-induced periodic surface structures with low spatial frequency on dielectrics. Using the established efficacy factor theory extended by a Drude model, we determine the required carrier density for the generation of low spatial frequency LIPSS (LSFL) and forecast their periodicity and orientation. In a subsequent calculative step, we determine the fluence of ultrashort laser pulses necessary to excite this required carrier density in due consideration of the pulse number dependent ablation threshold. The later calculation is based on a rate equation including photo- and avalanche ionizationmore » and derives appropriate process parameters for a selective generation of LSFL. Exemplarily, we apply this approach to the generation of LSFL on fused silica using a 1030 nm femtosecond laser. The experimental results for the orientation and spatial periodicity of LSFL reveal excellent agreement with the simulation.« less
Alternator control for battery charging
Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.
2015-07-14
In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.
Improved test methods for determining lightning-induced voltages in aircraft
NASA Technical Reports Server (NTRS)
Crouch, K. E.; Plumer, J. A.
1980-01-01
A lumped parameter transmission line with a surge impedance matching that of the aircraft and its return lines was evaluated as a replacement for earlier current generators. Various test circuit parameters were evaluated using a 1/10 scale relative geometric model. Induced voltage response was evaluated by taking measurements on the NASA-Dryden Digital Fly by Wire F-8 aircraft. Return conductor arrangements as well as other circuit changes were also evaluated, with all induced voltage measurements being made on the same circuit for comparison purposes. The lumped parameter transmission line generates a concave front current wave with the peak di/dt near the peak of the current wave which is more representative of lightning. However, the induced voltage measurements when scaled by appropriate scale factors (peak current or di/dt) resulting from both techniques yield comparable results.
Method and system for monitoring and displaying engine performance parameters
NASA Technical Reports Server (NTRS)
Abbott, Terence S. (Inventor); Person, Jr., Lee H. (Inventor)
1991-01-01
The invention is a method and system for monitoring and directly displaying the actual thrust produced by a jet aircraft engine under determined operating conditions and the available thrust and predicted (commanded) thrust of a functional model of an ideal engine under the same determined operating conditions. A first set of actual value output signals representative of a plurality of actual performance parameters of the engine under the determined operating conditions is generated and compared with a second set of predicted value output signals representative of the predicted value of corresponding performance parameters of a functional model of the engine under the determined operating conditions to produce a third set of difference value output signals within a range of normal, caution, or warning limit values. A thrust indicator displays when any one of the actual value output signals is in the warning range while shaping function means shape each of the respective difference output signals as each approaches the limit of the respective normal, caution, and warning range limits.
Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio
2012-10-01
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
A Four-parameter Budyko Equation for Mean Annual Water Balance
NASA Astrophysics Data System (ADS)
Tang, Y.; Wang, D.
2016-12-01
In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.
NASA Technical Reports Server (NTRS)
1973-01-01
The HD 220 program was created as part of the space shuttle solid rocket booster recovery system definition. The model was generated to investigate the damage to SRB components under water impact loads. The random nature of environmental parameters, such as ocean waves and wind conditions, necessitates estimation of the relative frequency of occurrence for these parameters. The nondeterministic nature of component strengths also lends itself to probabilistic simulation. The Monte Carlo technique allows the simultaneous perturbation of multiple independent parameters and provides outputs describing the probability distribution functions of the dependent parameters. This allows the user to determine the required statistics for each output parameter.
Determination of rainfall losses in Virginia, phase II : final report.
DOT National Transportation Integrated Search
1982-01-01
A procedure is presented by which regional unit hydrograph and loss rate parameters are estimated for the generation of design storm hydrographs for watershed in Virginia. The state is divided into seven hydrological regions, and unit hydrograph and ...
Determining dynamical parameters of the Milky Way Galaxy based on high-accuracy radio astrometry
NASA Astrophysics Data System (ADS)
Honma, Mareki; Nagayama, Takumi; Sakai, Nobuyuki
2015-08-01
In this paper we evaluate how the dynamical structure of the Galaxy can be constrained by high-accuracy VLBI (Very Long Baseline Interferometry) astrometry such as VERA (VLBI Exploration of Radio Astrometry). We generate simulated samples of maser sources which follow the gas motion caused by a spiral or bar potential, with their distribution similar to those currently observed with VERA and VLBA (Very Long Baseline Array). We apply the Markov chain Monte Carlo analyses to the simulated sample sources to determine the dynamical parameter of the models. We show that one can successfully determine the initial model parameters if astrometric results are obtained for a few hundred sources with currently achieved astrometric accuracy. If astrometric data are available from 500 sources, the expected accuracy of R0 and Θ0 is ˜ 1% or higher, and parameters related to the spiral structure can be constrained by an error of 10% or with higher accuracy. We also show that the parameter determination accuracy is basically independent of the locations of resonances such as corotation and/or inner/outer Lindblad resonances. We also discuss the possibility of model selection based on the Bayesian information criterion (BIC), and demonstrate that BIC can be used to discriminate different dynamical models of the Galaxy.
Chen, Xiaole; Lin, Jiang
2017-01-01
Determining the impact of inter-subject variability on airflow pattern and nanoparticle deposition in the human respiratory system is necessary to generate population-representative models, useful for several biomedical engineering applications. Thus, the overall research objective is to quantitatively correlate geometric parameters and coupled transport characteristics of air, vapor, and nanoparticles. Focusing on identifying morphological parameters that significantly influence airflow field and nanoparticle transport, an experimentally validated computational fluid-particle dynamics (CFPD) model was employed to simulate airflow pattern in three human lung-airway configurations. The numerical results will be used to generate guidelines to construct a representative geometry of the human respiratory system. PMID:29144436
Energy loss of argon in a laser-generated carbon plasma.
Frank, A; Blazević, A; Grande, P L; Harres, K; Hessling, T; Hoffmann, D H H; Knobloch-Maas, R; Kuznetsov, P G; Nürnberg, F; Pelka, A; Schaumann, G; Schiwietz, G; Schökel, A; Schollmeier, M; Schumacher, D; Schütrumpf, J; Vatulin, V V; Vinokurov, O A; Roth, M
2010-02-01
The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.
Real power regulation for the utility power grid via responsive loads
McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A
2009-05-19
A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.
Four years of Landsat-7 on-orbit geometric calibration and performance
Lee, D.S.; Storey, James C.; Choate, M.J.; Hayes, R.W.
2004-01-01
Unlike its predecessors, Landsat-7 has undergone regular geometric and radiometric performance monitoring and calibration since launch in April 1999. This ongoing activity, which includes issuing quarterly updates to calibration parameters, has generated a wealth of geometric performance data over the four-year on-orbit period of operations. A suite of geometric characterization (measurement and evaluation procedures) and calibration (procedures to derive improved estimates of instrument parameters) methods are employed by the Landsat-7 Image Assessment System to maintain the geometric calibration and to track specific aspects of geometric performance. These include geodetic accuracy, band-to-band registration accuracy, and image-to-image registration accuracy. These characterization and calibration activities maintain image product geometric accuracy at a high level - by monitoring performance to determine when calibration is necessary, generating new calibration parameters, and verifying that new parameters achieve desired improvements in accuracy. Landsat-7 continues to meet and exceed all geometric accuracy requirements, although aging components have begun to affect performance.
Lewan, Michael D.; Dutton, Shirley P.; Ruppel, Stephen C.; Hentz, Tucker F.
2002-01-01
Timing of oil and gas generation from Turonian and Smackover source rocks in the central Gulf CoastInterior Zone was determined in one-dimensional burial-history curves (BHCs) using hydrous-pyrolysis kinetic parameters. The results predict that basal Smackover source-rock intervals with Type-IIS kerogen completed oil generation between 121 and 99 Ma, and Turonian source-rocks with Type-II kerogen remain immature over most of the same area. The only exception to the latter occurs in the northwestern part of the Mississippi salt basin, where initial stages of oil generation have started as a result of higher thermal gradients. This maturity difference between Turonian and Smackover source rocks is predicted with present-day thermal gradients. Predicted oil generation prior to the Sabine and Monroe uplifts suggests that a significant amount of the oil emplaced in Cretaceous reservoirs of these uplifts would have been lost during periods of erosion. Hydrous-pyrolysis kineticparameters predict that cracking of Smackover oil to gas started 52 Ma, which postdates major uplift and erosional events of the Sabine and Monroe uplifts. This generated gas would accumulate and persist in these uplift areas as currently observed. The predicted timing of oil and gas generation with hydrous-pyrolysis kinetic parameters is in accordance with the observed scarcity of oil from Turonian source rocks, predominance of gas accumulations on the Sabine and Monroe uplifts, and predominance of oil accumulations along the northern rim of the Interior Zone.
Optimisation of thulium fibre laser parameters with generation of pulses by pump modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obronov, I V; Larin, S V; Sypin, V E
2015-07-31
The formation of relaxation pulses of a thulium fibre laser (λ = 1.9 μm) by modulating the power of a pump erbium fibre laser (λ = 1.55 μm) is studied. A theoretical model is developed to find the dependences of pulse duration and peak power on different cavity parameters. The optimal cavity parameters for achieving the minimal pulse duration are determined. The results are confirmed by experimental development of a laser emitting pulses with a duration shorter than 10 ns, a peak power of 1.8 kW and a repetition rate of 50 kHz. (control of radiation parameters)
Local tsunamis and earthquake source parameters
Geist, Eric L.; Dmowska, Renata; Saltzman, Barry
1999-01-01
This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.
NASA Astrophysics Data System (ADS)
Karimi, F. S.; Saviz, S.; Ghoranneviss, M.; Salem, M. K.; Aghamir, F. M.
The circuit parameters are investigated in a Mather-type plasma focus device. The experiments are performed in the SABALAN-I plasma focus facility (2 kJ, 20 kV, 10 μF). A 12-turn Rogowski coil is built and used to measure the time derivative of discharge current (dI/dt). The high pressure test has been performed in this work, as alternative technique to short circuit test to determine the machine circuit parameters and calibration factor of the Rogowski coil. The operating parameters are calculated by two methods and the results show that the relative error of determined parameters by method I, are very low in comparison to method II. Thus the method I produces more accurate results than method II. The high pressure test is operated with this assumption that no plasma motion and the circuit parameters may be estimated using R-L-C theory given that C0 is known. However, for a plasma focus, even at highest permissible pressure it is found that there is significant motion, so that estimated circuit parameters not accurate. So the Lee Model code is used in short circuit mode to generate the computed current trace for fitting to the current waveform was integrated from current derivative signal taken with Rogowski coil. Hence, the dynamics of plasma is accounted for into the estimation and the static bank parameters are determined accurately.
Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.
2017-07-01
In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.
Orbit Estimation of Non-Cooperative Maneuvering Spacecraft
2015-06-01
only take on values that generate real sigma points; therefore, λ > −n. The additional weighting scheme is outlined in the following equations κ = α2...orbit shapes resulted in a similar model weighting. Additional cases of this orbit type also resulted in heavily weighting smaller η value models. It is...determined using both the symmetric and additional parameters UTs. The best values for the weighting parameters are then compared for each test case
Sphericity determination using resonant ultrasound spectroscopy
Dixon, Raymond D.; Migliori, Albert; Visscher, William M.
1994-01-01
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.
Sphericity determination using resonant ultrasound spectroscopy
Dixon, R.D.; Migliori, A.; Visscher, W.M.
1994-10-18
A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.
Dresch, Jacqueline M; Liu, Xiaozhou; Arnosti, David N; Ay, Ahmet
2010-10-24
Quantitative models of gene expression generate parameter values that can shed light on biological features such as transcription factor activity, cooperativity, and local effects of repressors. An important element in such investigations is sensitivity analysis, which determines how strongly a model's output reacts to variations in parameter values. Parameters of low sensitivity may not be accurately estimated, leading to unwarranted conclusions. Low sensitivity may reflect the nature of the biological data, or it may be a result of the model structure. Here, we focus on the analysis of thermodynamic models, which have been used extensively to analyze gene transcription. Extracted parameter values have been interpreted biologically, but until now little attention has been given to parameter sensitivity in this context. We apply local and global sensitivity analyses to two recent transcriptional models to determine the sensitivity of individual parameters. We show that in one case, values for repressor efficiencies are very sensitive, while values for protein cooperativities are not, and provide insights on why these differential sensitivities stem from both biological effects and the structure of the applied models. In a second case, we demonstrate that parameters that were thought to prove the system's dependence on activator-activator cooperativity are relatively insensitive. We show that there are numerous parameter sets that do not satisfy the relationships proferred as the optimal solutions, indicating that structural differences between the two types of transcriptional enhancers analyzed may not be as simple as altered activator cooperativity. Our results emphasize the need for sensitivity analysis to examine model construction and forms of biological data used for modeling transcriptional processes, in order to determine the significance of estimated parameter values for thermodynamic models. Knowledge of parameter sensitivities can provide the necessary context to determine how modeling results should be interpreted in biological systems.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Gao, S.; Fang, N. Z.
2017-12-01
A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.
Refrigeration generation using expander-generator units
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.
2016-05-01
The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.
Liu, Feng; Zhao, Jing-Min; Rao, Hui-Ying; Yu, Wei-Miao; Zhang, Wei; Theise, Neil D; Wee, Aileen; Wei, Lai
2017-11-20
Investigate subtle fibrosis similarities and differences in adult and pediatric nonalcoholic fatty liver disease (NAFLD) using second harmonic generation (SHG). SHG/two-photon excitation fluorescence imaging quantified 100 collagen parameters and determined qFibrosis values by using the nonalcoholic steatohepatitis (NASH) Clinical Research Network (CRN) scoring system in 62 adult and 36 pediatric NAFLD liver specimens. Six distinct parameters identified differences among the NASH CRN stages with high accuracy (area under the curve, 0835-0.982 vs 0.885-0.981, adult and pediatric). All portal region parameters showed similar changes across early stages 0, 1C, and 2, in both groups. Parameter values decreased in adults with progression from stage 1A/B to 2 in the central vein region. In children, aggregated collagen parameters decreased, but nearly all distributed collagen parameters increased from stage 1A/B to 2. SHG analysis accurately reproduces NASH CRN staging in NAFLD, as well as reveals differences and similarities between adult and pediatric collagen deposition not captured by currently available quantitative methods. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sally
2010-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.
Scalar field cosmology in f(R,T) gravity via Noether symmetry
NASA Astrophysics Data System (ADS)
Sharif, M.; Nawazish, Iqra
2018-04-01
This paper investigates the existence of Noether symmetries of isotropic universe model in f(R,T) gravity admitting minimal coupling of matter and scalar fields. The scalar field incorporates two dark energy models such as quintessence and phantom models. We determine symmetry generators and corresponding conserved quantities for two particular f(R,T) models. We also evaluate exact solutions and investigate their physical behavior via different cosmological parameters. For the first model, the graphical behavior of these parameters indicate consistency with recent observations representing accelerated expansion of the universe. For the second model, these parameters identify a transition form accelerated to decelerated expansion of the universe. The potential function is found to be constant for the first model while it becomes V(φ )≈ φ 2 for the second model. We conclude that the Noether symmetry generators and corresponding conserved quantities appear in all cases.
From design to manufacturing of asymmetric teeth gears using computer application
NASA Astrophysics Data System (ADS)
Suciu, F.; Dascalescu, A.; Ungureanu, M.
2017-05-01
The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.
Improving Fermi Orbit Determination and Prediction in an Uncertain Atmospheric Drag Environment
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Newman, Clark P.; Slojkowski, Steven E.; Carpenter, J. Russell
2014-01-01
Orbit determination and prediction of the Fermi Gamma-ray Space Telescope trajectory is strongly impacted by the unpredictability and variability of atmospheric density and the spacecraft's ballistic coefficient. Operationally, Global Positioning System point solutions are processed with an extended Kalman filter for orbit determination, and predictions are generated for conjunction assessment with secondary objects. When these predictions are compared to Joint Space Operations Center radar-based solutions, the close approach distance between the two predictions can greatly differ ahead of the conjunction. This work explores strategies for improving prediction accuracy and helps to explain the prediction disparities. Namely, a tuning analysis is performed to determine atmospheric drag modeling and filter parameters that can improve orbit determination as well as prediction accuracy. A 45% improvement in three-day prediction accuracy is realized by tuning the ballistic coefficient and atmospheric density stochastic models, measurement frequency, and other modeling and filter parameters.
First-order kinetic gas generation model parameters for wet landfills.
Faour, Ayman A; Reinhart, Debra R; You, Huaxin
2007-01-01
Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Harrington, W. W.
1973-01-01
The reduction is discussed of the discrete tones generated by jet engines which is essential for jet aircraft to meet present and proposed noise standards. The discrete tones generated by the blades and vanes propagate in the inlet and exhaust duct in the form of spiraling acoustic waves, or spinning modes. The reduction of these spinning modes by the cancellation effect of the combination of two acoustic fields was investigated. The spinning mode synthesizer provided the means for effective study of this noise reduction scheme. Two sets of electrical-acoustical transducers located in an equally-spaced circular array simultaneously generate a specified spinning mode and the cancelling mode. Analysis of the wave equation for the synthesizer established the optimum cancelling array acoustic parameters for maximum sound pressure level reduction. The parameter dependence of the frequency ranges of propagation of single, specified circumferential modes generated by a single array, and of effective cancellation of the modes generated by two arrays, was determined. Substantial sound pressure level reduction was obtained for modes within these limits.
Development of Magnetorheological Resistive Exercise Device for Rowing Machine
Žiliukas, Pranas
2016-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke. PMID:27293479
Development of Magnetorheological Resistive Exercise Device for Rowing Machine.
Grigas, Vytautas; Šulginas, Anatolijus; Žiliukas, Pranas
2015-01-01
Training equipment used by professional sportsmen has a great impact on their sport performance. Most universal exercisers may help only to improve the general physical condition due to the specific kinematics and peculiar resistance generated by their loading units. Training of effective techniques and learning of psychomotor skills are possible only when exercisers conform to the movements and resistance typical for particular sports kinematically and dynamically. Methodology of developing a magnetorheological resistive exercise device for generating the desired law of passive resistance force and its application in a lever-type rowing machine are described in the paper. The structural parameters of a controllable hydraulic cylinder type device were found by means of the computational fluid dynamics simulation performed by ANSYS CFX software. Parameters describing the magnetorheological fluid as non-Newtonian were determined by combining numerical and experimental research of the resistance force generated by the original magnetorheological damper. A structural scheme of the device control system was developed and the variation of the strength of magnetic field that affects the magnetorheological fluid circulating in the device was determined, ensuring a variation of the resistance force on the oar handle adequate for the resistance that occurs during a real boat rowing stroke.
A generalized methodology to characterize composite materials for pyrolysis models
NASA Astrophysics Data System (ADS)
McKinnon, Mark B.
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
Parameter Optimization of PAL-XFEL Injector
NASA Astrophysics Data System (ADS)
Lee, Jaehyun; Ko, In Soo; Han, Jang-Hui; Hong, Juho; Yang, Haeryong; Min, Chang Ki; Kang, Heung-Sik
2018-05-01
A photoinjector is used as the electron source to generate a high peak current and low emittance beam for an X-ray free electron laser (FEL). The beam emittance is one of the critical parameters to determine the FEL performance together with the slice energy spread and the peak current. The Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) was constructed in 2015, and the beam commissioning was carried out in spring 2016. The injector is running routinely for PAL-XFEL user operation. The operational parameters of the injector have been optimized experimentally, and these are somewhat different from the originally designed ones. Therefore, we study numerically the injector parameters based on the empirically optimized parameters and review the present operating condition.
NASA Technical Reports Server (NTRS)
Martin, T. V.; Mullins, N. E.
1972-01-01
The operating and set-up procedures for the multi-satellite, multi-arc GEODYN- Orbit Determination program are described. All system output is analyzed. The GEODYN Program is the nucleus of the entire GEODYN system. It is a definitive orbit and geodetic parameter estimation program capable of simultaneously processing observations from multiple arcs of multiple satellites. GEODYN has two modes of operation: (1) the data reduction mode and (2) the orbit generation mode.
Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network
NASA Technical Reports Server (NTRS)
Kuhn, D. Richard; Kacker, Raghu; Lei, Yu
2010-01-01
This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Arvinder S.; Gagnon, Etienne; Paul, Ariel
2006-12-15
We present evidence for a new regime of high-harmonic generation in a waveguide where bright, sub-optical-cycle, quasimonochromatic, extreme ultraviolet (EUV) light is generated via a mechanism that is relatively insensitive to carrier-envelope phase fluctuations. The interplay between the transient plasma which determines the phase matching conditions and the instantaneous laser intensity which drives harmonic generation gives rise to a new nonlinear stabilization mechanism in the waveguide, localizing the phase-matched EUV emission to within sub-optical-cycle duration. The sub-optical-cycle EUV emission generated by this mechanism can also be selectively optimized in the spectral domain by simple tuning of parameters.
Susong, D.; Marks, D.; Garen, D.
1999-01-01
Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.Topographically distributed energy- and water-balance models can accurately simulate both the development and melting of a seasonal snowcover in the mountain basins. To do this they require time-series climate surfaces of air temperature, humidity, wind speed, precipitation, and solar and thermal radiation. If data are available, these parameters can be adequately estimated at time steps of one to three hours. Unfortunately, climate monitoring in mountain basins is very limited, and the full range of elevations and exposures that affect climate conditions, snow deposition, and melt is seldom sampled. Detailed time-series climate surfaces have been successfully developed using limited data and relatively simple methods. We present a synopsis of the tools and methods used to combine limited data with simple corrections for the topographic controls to generate high temporal resolution time-series images of these climate parameters. Methods used include simulations, elevational gradients, and detrended kriging. The generated climate surfaces are evaluated at points and spatially to determine if they are reasonable approximations of actual conditions. Recommendations are made for the addition of critical parameters and measurement sites into routine monitoring systems in mountain basins.
Rezende, Helen Cristine; Coelho, Nivia Maria Melo
2014-01-01
An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.
The modelling of symmetric airfoil vortex generators
NASA Technical Reports Server (NTRS)
Reichert, B. A.; Wendt, B. J.
1996-01-01
An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.
NASA Astrophysics Data System (ADS)
Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.
2018-02-01
The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.
Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models
NASA Technical Reports Server (NTRS)
Jones, William T.; Lazzara, David; Haimes, Robert
2010-01-01
The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.
Yakimov, Eugene B
2016-06-01
An approach for a prediction of (63)Ni-based betavoltaic battery output parameters is described. It consists of multilayer Monte Carlo simulation to obtain the depth dependence of excess carrier generation rate inside the semiconductor converter, a determination of collection probability based on the electron beam induced current measurements, a calculation of current induced in the semiconductor converter by beta-radiation, and SEM measurements of output parameters using the calculated induced current value. Such approach allows to predict the betavoltaic battery parameters and optimize the converter design for any real semiconductor structure and any thickness and specific activity of beta-radiation source. Copyright © 2016 Elsevier Ltd. All rights reserved.
An improved method for determination of refractive index of absorbing films: A simulation study
NASA Astrophysics Data System (ADS)
Özcan, Seçkin; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat
2017-02-01
In this work an improved version of the method presented by Gandhi was presented for determination of refractive index of absorbing films. In this method local maxima of consecutive interference order in transmittance spectrum are used. The method is based on the minimizing procedure leading to the determination of interference order accurately by using reasonable Cauchy parameters. It was tested on theoretically generated transmittance spectrum of absorbing film and the details of the minimization procedure were discussed.
Gamma Ray Observatory (GRO) OBC attitude error analysis
NASA Technical Reports Server (NTRS)
Harman, R. R.
1990-01-01
This analysis involves an in-depth look into the onboard computer (OBC) attitude determination algorithm. A review of TRW error analysis and necessary ground simulations to understand the onboard attitude determination process are performed. In addition, a plan is generated for the in-flight calibration and validation of OBC computed attitudes. Pre-mission expected accuracies are summarized and sensitivity of onboard algorithms to sensor anomalies and filter tuning parameters are addressed.
NASA Astrophysics Data System (ADS)
Adha, Kurniawan; Yusoff, Wan Ismail Wan; Almanna Lubis, Luluan
2017-10-01
Determining the pore pressure data and overpressure zone is a compulsory part of oil and gas exploration in which the data can enhance the safety with profit and preventing the drilling hazards. Investigation of thermophysical parameters such as temperature and thermal conductivity can enhance the pore pressure estimation for overpressure mechanism determination. Since those parameters are dependent on rock properties, it may reflect the changes on the column of thermophysical parameters when there is abnormally in pore pressure. The study was conducted in “MRI 1” well offshore Sarawak, where a new approach method designed to determine the overpressure generation. The study was insisted the contribution of thermophysical parameters for supporting the velocity analysis method, petrophysical analysis were done in these studies. Four thermal facies were identified along the well. The overpressure developed below the thermal facies 4, where the pressure reached 38 Mpa and temperature was increasing significantly. The velocity and the thermal conductivity cross plots shows a linear relationship since the both parameters mainly are the function of the rock compaction. When the rock more compact, the particles were brought closer into contact and making the sound wave going faster while the thermal conductivity were increasing. In addition, the increment of temperature and high heat flow indicated the presence of fluid expansion mechanism. Since the shale sonic velocity and density analysis were the common methods in overpressure mechanism and pore pressure estimation. As the addition parameters for determining overpressure zone, the presence of thermophysical analysis was enhancing the current method, where the current method was the single function of velocity analysis. The presence of thermophysical analysis will improve the understanding in overpressure mechanism determination as the new input parameters. Thus, integrated of thermophysical technique and velocity analysis are important parameters in investigating the overpressure mechanisms and pore pressure estimation during oil and gas exploitation in the future.
Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy
2014-09-07
The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.
Hypothesis test for synchronization: twin surrogates revisited.
Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf
2009-03-01
The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.
Measurement of Capillary Radius and Contact Angle within Porous Media.
Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed
2015-12-01
The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.
Shtandel', S A; Gopkalova, I V; Khaziev, V V; Dubovik, V N; Svetlova-Kovalenko, E A
2009-01-01
On genealogic data about 242 Gravers disease patients, fertility parameters of 2105 healthy and 369 Grave's disease women peculiarities of genetic determination and natural selection of disease were studied. Results of the genetic analysis have revealed conformity of Grave's disease inheritance to alternative model parameters. Homozygote penetrance within the framework of this model was 78.8%, heterozygote--17.3%. For one generation in the Kharkov area population frequency of a gene to Grave's disease predisposition increases 0.8%.
Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations
NASA Technical Reports Server (NTRS)
Potter, P. D.; Finnie, C.
1978-01-01
A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
NASA Astrophysics Data System (ADS)
Dan'ko, S. A.; Ananyev, S. S.; Kalinin, Yu G.; Krauz, V. I.; Myalton, V. V.
2017-04-01
This paper presents measurement results of neon and helium plasma parameters in axial jets generated in plasma focus discharge. They were obtained in the course of experiments on laboratory modeling of astrophysical jets performed at the PF-3 facility. The plasma concentration was determined according to Stark broadening of spectral lines; the ionization temperature was determined by the average ion charge. The values of the concentration and temperature of jet plasma and background plasma at two distances from the pinch are also presented. In addition, an estimation was made of the heat content losses of the neon and helium jets during their movement through the surrounding medium.
NASA Technical Reports Server (NTRS)
Mullins, N. E.
1972-01-01
The GEODYN Orbit Determination and Geodetic Parameter Estimation System consists of a set of computer programs designed to determine and analyze definitive satellite orbits and their associated geodetic and measurement parameters. This manual describes the Support Programs used by the GEODYN System. The mathematics and programming descriptions are detailed. The operational procedures of each program are presented. GEODYN ancillary analysis programs may be grouped into three different categories: (1) orbit comparison - DELTA (2) data analysis using reference orbits - GEORGE, and (3) pass geometry computations - GROUNDTRACK. All of the above three programs use one or more tapes written by the GEODYN program in either a data reduction or orbit generator run.
Modelling of subject specific based segmental dynamics of knee joint
NASA Astrophysics Data System (ADS)
Nasir, N. H. M.; Ibrahim, B. S. K. K.; Huq, M. S.; Ahmad, M. K. I.
2017-09-01
This study determines segmental dynamics parameters based on subject specific method. Five hemiplegic patients participated in the study, two men and three women. Their ages ranged from 50 to 60 years, weights from 60 to 70 kg and heights from 145 to 170 cm. Sample group included patients with different side of stroke. The parameters of the segmental dynamics resembling the knee joint functions measured via measurement of Winter and its model generated via the employment Kane's equation of motion. Inertial parameters in the form of the anthropometry can be identified and measured by employing Standard Human Dimension on the subjects who are in hemiplegia condition. The inertial parameters are the location of centre of mass (COM) at the length of the limb segment, inertia moment around the COM and masses of shank and foot to generate accurate motion equations. This investigation has also managed to dig out a few advantages of employing the table of anthropometry in movement biomechanics of Winter's and Kane's equation of motion. A general procedure is presented to yield accurate measurement of estimation for the inertial parameters for the joint of the knee of certain subjects with stroke history.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.
Ballistic projectile trajectory determining system
Karr, Thomas J.
1997-01-01
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.
Aeroelastic considerations for torsionally soft rotors
NASA Technical Reports Server (NTRS)
Mantay, W. R.; Yeager, W. T., Jr.
1986-01-01
A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.
1977-03-01
The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less
A Structure-Adaptive Hybrid RBF-BP Classifier with an Optimized Learning Strategy
Wen, Hui; Xie, Weixin; Pei, Jihong
2016-01-01
This paper presents a structure-adaptive hybrid RBF-BP (SAHRBF-BP) classifier with an optimized learning strategy. SAHRBF-BP is composed of a structure-adaptive RBF network and a BP network of cascade, where the number of RBF hidden nodes is adjusted adaptively according to the distribution of sample space, the adaptive RBF network is used for nonlinear kernel mapping and the BP network is used for nonlinear classification. The optimized learning strategy is as follows: firstly, a potential function is introduced into training sample space to adaptively determine the number of initial RBF hidden nodes and node parameters, and a form of heterogeneous samples repulsive force is designed to further optimize each generated RBF hidden node parameters, the optimized structure-adaptive RBF network is used for adaptively nonlinear mapping the sample space; then, according to the number of adaptively generated RBF hidden nodes, the number of subsequent BP input nodes can be determined, and the overall SAHRBF-BP classifier is built up; finally, different training sample sets are used to train the BP network parameters in SAHRBF-BP. Compared with other algorithms applied to different data sets, experiments show the superiority of SAHRBF-BP. Especially on most low dimensional and large number of data sets, the classification performance of SAHRBF-BP outperforms other training SLFNs algorithms. PMID:27792737
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
NASA Astrophysics Data System (ADS)
Ashat, Ali; Pratama, Heru Berian
2017-12-01
The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.
Consistency relations for sharp features in the primordial spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, Sander; Palma, Gonzalo A.; Panotopoulos, Grigoris
We study the generation of sharp features in the primordial spectra within the framework of effective field theory of inflation, wherein curvature perturbations are the consequence of the dynamics of a single scalar degree of freedom. We identify two sources in the generation of features: rapid variations of the sound speed c{sub s} (at which curvature fluctuations propagate) and rapid variations of the expansion rate H during inflation. With this in mind, we propose a non-trivial relation linking these two quantities that allows us to study the generation of sharp features in realistic scenarios where features are the result ofmore » the simultaneous occurrence of these two sources. This relation depends on a single parameter with a value determined by the particular model (and its numerical input) responsible for the rapidly varying background. As a consequence, we find a one-parameter consistency relation between the shape and size of features in the bispectrum and features in the power spectrum. To substantiate this result, we discuss several examples of models for which this one-parameter relation (between c{sub s} and H) holds, including models in which features in the spectra are both sudden and resonant.« less
Large-Scale Alfvenic Impulses on the Sun: How They Are Generated and What We Learn From Them
NASA Technical Reports Server (NTRS)
Thompson, Barbara
2004-01-01
NASA GSFC The Sun's atmosphere hosts a wide variety of magnetosonic disturbances. These wave modes are detected, almost exclusively, by examining images of the Sun's magnetic atmosphere and looking for propagating distortions. Although none of the Sun's plasma parameters are measured directly, we derive a great deal of information from these observations. In fact, by modeling these propagating disturbances, we may be able to derive the most accurate estimates plasma parameters. From observations absorption, refraction, reflection, and coupling of numerous wave modes, we advance our knowledge of the Sun's magnetic field, temperature, density, and current. The Sun's continuous oscillation, coronal mass ejections, flares, and other dynamic phenomena can produce wave disturbances which are observable from near-Earth space. Several of these disturbances have been traced from the inner corona out into the heliosphere. From the generation of these disturbances, we are able to learn about the phenomena which create them as well as the media through which they re-propagating. The presentation will include a discussion of the generation of Alfvenic disturbances on the Sun, ways we observe these disturbances, and how recent advances in modeling and analysis have brought us closer to determining solar in situ parameters.
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Mcmaster, K. M.
1981-01-01
The methodology presented is a derivation of the utility owned solar electric systems model. The net present value of the system is determined by consideration of all financial benefits and costs including a specified return on investment. Life cycle costs, life cycle revenues, and residual system values are obtained. Break-even values of system parameters are estimated by setting the net present value to zero.
NASA Technical Reports Server (NTRS)
Baker, C. R.
1975-01-01
Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.
Methods for resistive switching of memristors
Mickel, Patrick R.; James, Conrad D.; Lohn, Andrew; Marinella, Matthew; Hsia, Alexander H.
2016-05-10
The present invention is directed generally to resistive random-access memory (RRAM or ReRAM) devices and systems, as well as methods of employing a thermal resistive model to understand and determine switching of such devices. In particular example, the method includes generating a power-resistance measurement for the memristor device and applying an isothermal model to the power-resistance measurement in order to determine one or more parameters of the device (e.g., filament state).
Dual stator winding variable speed asynchronous generator: optimal design and experiments
NASA Astrophysics Data System (ADS)
Tutelea, L. N.; Deaconu, S. I.; Popa, G. N.
2015-06-01
In the present paper is carried out a theoretical and experimental study of dual stator winding squirrel cage asynchronous generator (DSWA) behavior in the presence of saturation regime (non-sinusoidal) due to the variable speed operation. The main aims are the determination of the relations of calculating the equivalent parameters of the machine windings to optimal design using a Matlab code. Issue is limited to three phase range of double stator winding cage-induction generator of small sized powers, the most currently used in the small adjustable speed wind or hydro power plants. The tests were carried out using three-phase asynchronous generator having rated power of 6 [kVA].
Reconstruction of Orion Engineering Development Unit (EDU) Parachute Inflation Loads
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
The process of reconstructing inflation loads of Capsule Parachute Assembly System (CPAS) has been updated as the program transitioned to testing Engineering Development Unit (EDU) hardware. The equations used to reduce the test data have been re-derived based on the same physical assumptions made by simulations. Due to instrumentation challenges, individual parachute loads are determined from complementary accelerometer and load cell measurements. Cluster inflations are now simulated by modeling each parachute individually to better represent different inflation times and non-synchronous disreefing. The reconstruction procedure is tailored to either infinite mass or finite mass events based on measurable characteristics from the test data. Inflation parameters are determined from an automated optimization routine to reduce subjectivity. Infinite mass inflation parameters have been re-defined to avoid unrealistic interactions in Monte Carlo simulations. Sample cases demonstrate how best-fit inflation parameters are used to generate simulated drag areas and loads which favorably agree with test data.
Top Quark Mass Calibration for Monte Carlo Event Generators
NASA Astrophysics Data System (ADS)
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W.
2016-12-01
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mtMC. Because of hadronization and parton-shower dynamics, relating mtMC to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e+e- 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, mtMC differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, mtMC≃mt,1 GeV MSR .
Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schee, Jan; Stuchlík, Zdeněk, E-mail: jan.schee@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz
We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghostmore » direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Influence of laser parameters in surface texturing of Ti6Al4V and AA2024-T3 alloys
NASA Astrophysics Data System (ADS)
Ahuir-Torres, J. I.; Arenas, M. A.; Perrie, W.; de Damborenea, J.
2018-04-01
Laser texturing can be used for surface modification of metallic alloys in order to improve their properties under service conditions. The generation of textures is determined by the relationship between the laser processing parameters and the physicochemical properties of the alloy to be modified. In the present work the basic mechanism of dimple generation is studied in two alloys of technological interest, titanium alloy Ti6Al4V and aluminium alloy AA2024-T3. Laser treatment was performed using a pulsed solid state Nd: Vanadate (Nd: YVO4) laser with a pulse duration of 10 ps, operating at a wavelength of 1064 nm and 5 kHz repetition rate. Dimpled surface geometries were generated through ultrafast laser ablation while varying pulse energy between 1 μJ and 20 μJ/pulse and with pulse numbers from 10 to 200 pulses per spot. In addition, the generation of Laser Induced Periodic Surface Structures (LIPSS) nanostructures in both alloys, as well as the formation of random nanostructures in the impact zones are discussed.
NASA Astrophysics Data System (ADS)
Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal
2017-05-01
Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.
Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Neitzke, Kurt W.
2012-01-01
A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
NASA Technical Reports Server (NTRS)
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Yeşiller, Semira Unal; Yalçın, Serife
2013-04-03
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eladj, Said; bansir, fateh; ouadfeul, sid Ali
2016-04-01
The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow us to achieve a more accurate structural interpretation Key words: Hybrid Genetic Algorithm, number of generations, model space, local maxima, Number of hill climbing iteration, Minimum eigenvalue, cross-correlation table
Event generator tunes obtained from underlying event and multiparton scattering measurements.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Mohammed, Y; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukherjee, S; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Miniello, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Mattia, A Di; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fantinel, S; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beir Ao; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Myagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Demiroglu, Z S; Dozen, C; Eskut, E; Gecit, F H; Girgis, S; Gokbulut, G; Guler, Y; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Onengut, G; Ozcan, M; Ozdemir, K; Polatoz, A; Sunar Cerci, D; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Cripps, N; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Elwood, A; Ferguson, W; Futyan, D; Hall, G; Iles, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Bhattacharya, S; Cutts, D; Dhingra, N; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Bravo, C; Cousins, R; Everaerts, P; Farrell, C; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Schnaible, C; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Jung, A W; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Gleyzer, S V; Hugon, J; Konigsberg, J; Korytov, A; Kotov, K; Low, J F; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Ackert, A; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Silkworth, C; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Bierwagen, K; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Ralph, D; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Keller, J; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, K; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Woods, N
New sets of parameters ("tunes") for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton-proton ([Formula: see text]) data at [Formula: see text] and to UE proton-antiproton ([Formula: see text]) data from the CDF experiment at lower [Formula: see text], are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton-proton collisions at 13[Formula: see text]. In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to "minimum bias" (MB) events, multijet, and Drell-Yan ([Formula: see text] lepton-antilepton+jets) observables at 7 and 8[Formula: see text], as well as predictions for MB and UE observables at 13[Formula: see text].
Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective
NASA Astrophysics Data System (ADS)
Corbett, Tyler; Joglekar, Aniket; Li, Hao-Lin; Yu, Jiang-Hao
2018-05-01
We consider extended scalar sectors of the Standard Model as ultraviolet complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-six effective operator, | H|6, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Of seven models which generate | H|6 at tree level only two, quadruplets of hypercharge Y = 3 Y H and Y = Y H , generate only this operator. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters S and T. We find that the T parameter puts very strong constraints on the Wilson coefficient of the | H|6 operator in the triplet and quadruplet models, while the singlet and doublet models could still have Higgs self-couplings which deviate significantly from the standard model prediction. To determine the extent to which the | H|6 operator could be constrained, we study the di-Higgs signatures at the future 100 TeV collider and explore future sensitivity of this operator. Projected onto the Higgs potential parameters of the extended scalar sectors, with 30 ab-1 luminosity data we will be able to explore the Higgs potential parameters in all seven models.
Link-topic model for biomedical abbreviation disambiguation.
Kim, Seonho; Yoon, Juntae
2015-02-01
The ambiguity of biomedical abbreviations is one of the challenges in biomedical text mining systems. In particular, the handling of term variants and abbreviations without nearby definitions is a critical issue. In this study, we adopt the concepts of topic of document and word link to disambiguate biomedical abbreviations. We newly suggest the link topic model inspired by the latent Dirichlet allocation model, in which each document is perceived as a random mixture of topics, where each topic is characterized by a distribution over words. Thus, the most probable expansions with respect to abbreviations of a given abstract are determined by word-topic, document-topic, and word-link distributions estimated from a document collection through the link topic model. The model allows two distinct modes of word generation to incorporate semantic dependencies among words, particularly long form words of abbreviations and their sentential co-occurring words; a word can be generated either dependently on the long form of the abbreviation or independently. The semantic dependency between two words is defined as a link and a new random parameter for the link is assigned to each word as well as a topic parameter. Because the link status indicates whether the word constitutes a link with a given specific long form, it has the effect of determining whether a word forms a unigram or a skipping/consecutive bigram with respect to the long form. Furthermore, we place a constraint on the model so that a word has the same topic as a specific long form if it is generated in reference to the long form. Consequently, documents are generated from the two hidden parameters, i.e. topic and link, and the most probable expansion of a specific abbreviation is estimated from the parameters. Our model relaxes the bag-of-words assumption of the standard topic model in which the word order is neglected, and it captures a richer structure of text than does the standard topic model by considering unigrams and semantically associated bigrams simultaneously. The addition of semantic links improves the disambiguation accuracy without removing irrelevant contextual words and reduces the parameter space of massive skipping or consecutive bigrams. The link topic model achieves 98.42% disambiguation accuracy on 73,505 MEDLINE abstracts with respect to 21 three letter abbreviations and their 139 distinct long forms. Copyright © 2014 Elsevier Inc. All rights reserved.
Radar signal transmission and switching over optical networks
NASA Astrophysics Data System (ADS)
Esmail, Maged A.; Ragheb, Amr; Seleem, Hussein; Fathallah, Habib; Alshebeili, Saleh
2018-03-01
In this paper, we experimentally demonstrate a radar signal distribution over optical networks. The use of fiber enables us to distribute radar signals to distant sites with a low power loss. Moreover, fiber networks can reduce the radar system cost, by sharing precise and expensive radar signal generation and processing equipment. In order to overcome the bandwidth challenges in electrical switches, a semiconductor optical amplifier (SOA) is used as an all-optical device for wavelength conversion to the desired port (or channel) of a wavelength division multiplexing (WDM) network. Moreover, the effect of chromatic dispersion in double sideband (DSB) signals is combated by generating optical single sideband (OSSB) signals. The optimal values of the SOA device parameters required to generate an OSSB with a high sideband suppression ratio (SSR) are determined. We considered various parameters such as injection current, pump power, and probe power. In addition, the effect of signal wavelength conversion and transmission over fiber are studied in terms of signal dynamic range.
NASA Astrophysics Data System (ADS)
Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang
2015-12-01
Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ...
USDA-ARS?s Scientific Manuscript database
Accurate determination of predicted environmental concentrations (PECs) is a continuing and often elusive goal of pesticide risk assessment. PECs are typically derived using simulation models that depend on laboratory generated data for key input parameters (t1/2, Koc, etc.). Model flexibility in ev...
A variety of common activities in the home, such as smoking and cooking, generate indoor particle concentrations. Mathematical indoor air quality models permit predictions of indoor pollutant concentrations in homes, provided that parameter values such as source strengths and ...
A systematic study of finite BRST-BFV transformations in generalized Hamiltonian formalism
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2014-09-01
We study systematically finite BRST-BFV transformations in the generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate an arbitrary finite change of gauge-fixing functions in the path integral.
How to Use FASTLANEs to Protect IP Networks
2006-08-18
parameters exists in its QoS database , then determine which VRF table is assigned to the QoS request. Once an association between the requested QoS and a...Generation, 18 Oct 2002 [30] TMOK: mistvan, MPLS for Linux How-To, 2001. [31] Italy (Telecom Italia Lab S.p.A.) and UK (CCSR, University of
Submarine Periscope Depth Course Selection Tactical Decision Aid
1997-12-01
are translated to Cartesian coordinates. Co is own ship’s course. 8 X0 = DMho. cos(Co) Yo = DAho . sin(Co) Xc = DMht- cos(Ct) Yc = DMhbt sin(Ct) These...Display Graph. The input parameters of DAho , Ct, and DMiht along with Co as generated by the simulation are used to determine the Cartesian
Geometric model for softwood transverse thermal conductivity. Part I
Hong-mei Gu; Audrey Zink-Sharp
2005-01-01
Thermal conductivity is a very important parameter in determining heat transfer rate and is required for developing of drying models and in industrial operations such as adhesive cure rate. Geometric models for predicting softwood thermal conductivity in the radial and tangential directions were generated in this study based on obervation and measurements of wood...
DOT National Transportation Integrated Search
2009-03-21
This study investigates all of the generated soils data in an attempt to use the more 'routine' laboratory tests to determine geotechnical design parameters (such as phiangle, cohesion, wet unit weight, unconfined compression, consolidation character...
Generating multi-scale albedo look-up maps using MODIS BRDF/Albedo products and landsat imagery
USDA-ARS?s Scientific Manuscript database
Surface albedo determines radiative forcing and is a key parameter for driving Earth’s climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth’s radiation balance due to land cover change. This paper presents a mult...
Consequences arising from elevated surface temperatures on human blood.
Hamilton, Kathrin F; Schmidt, Verena I; Mager, Ilona; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2010-09-01
Heat in blood pumps is generated by losses of the electrical motor and bearings. In the presented study the influence of tempered surfaces on bulk blood and adhesions on these surfaces was examined. Titanium alloy housing dummies were immersed in 25 mL heparinized human blood. The dummies were constantly tempered at specific temperatures (37-45 °C) over 15 min. Blood samples were withdrawn for blood parameter analysis and the determination of the plasmatic coagulation cascade. The quantities of adhesion on surfaces were determined by drained weight. Blood parameters do not alter significantly up to surface temperatures of 45 °C. In comparison to the control specimen, a drop in the platelet count can be observed, but is not significantly temperature dependent. The mean mass of adhesions at 41 °C increased up to 66% compared to 37 °C. Thus, heat generated in electrical motors and contact bearings may influence the amount of adhesions on surfaces. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A genetic-algorithm approach for assessing the liquefaction potential of sandy soils
NASA Astrophysics Data System (ADS)
Sen, G.; Akyol, E.
2010-04-01
The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.
Design of HIFU transducers for generating specified nonlinear ultrasound fields
Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.
2016-01-01
Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904
Modelling of Technological Solutions to 4th Generation DH Systems
NASA Astrophysics Data System (ADS)
Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija
2017-11-01
Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.
Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters
NASA Technical Reports Server (NTRS)
Masters, W. C.; Scheeres, D. J.; Thurman, S. W.
1994-01-01
The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.
NASA Technical Reports Server (NTRS)
Quek, Kok How Francis
1990-01-01
A method of computing reliable Gaussian and mean curvature sign-map descriptors from the polynomial approximation of surfaces was demonstrated. Such descriptors which are invariant under perspective variation are suitable for hypothesis generation. A means for determining the pose of constructed geometric forms whose algebraic surface descriptors are nonlinear in terms of their orienting parameters was developed. This was done by means of linear functions which are capable of approximating nonlinear forms and determining their parameters. It was shown that biquadratic surfaces are suitable companion linear forms for cylindrical approximation and parameter estimation. The estimates provided the initial parametric approximations necessary for a nonlinear regression stage to fine tune the estimates by fitting the actual nonlinear form to the data. A hypothesis-based split-merge algorithm for extraction and pose determination of cylinders and planes which merge smoothly into other surfaces was developed. It was shown that all split-merge algorithms are hypothesis-based. A finite-state algorithm for the extraction of the boundaries of run-length regions was developed. The computation takes advantage of the run list topology and boundary direction constraints implicit in the run-length encoding.
Wing Shaping and Gust Load Controls of Flexible Aircraft: An LPV Approach
NASA Technical Reports Server (NTRS)
Hammerton, Jared R.; Su, Weihua; Zhu, Guoming; Swei, Sean Shan-Min
2018-01-01
In the proposed paper, the optimum wing shape of a highly flexible aircraft under varying flight conditions will be controlled by a linear parameter-varying approach. The optimum shape determined under multiple objectives, including flight performance, ride quality, and control effort, will be determined as well. This work is an extension of work done previously by the authors, and updates the existing optimization and utilizes the results to generate a robust flight controller.
ATM Quality of Service Tests for Digitized Video Using ATM Over Satellite: Laboratory Tests
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Brooks, David E.; Frantz, Brian D.
1997-01-01
A digitized video application was used to help determine minimum quality of service parameters for asynchronous transfer mode (ATM) over satellite. For these tests, binomially distributed and other errors were digitally inserted in an intermediate frequency link via a satellite modem and a commercial gaussian noise generator. In this paper, the relation- ship between the ATM cell error and cell loss parameter specifications is discussed with regard to this application. In addition, the video-encoding algorithms, test configurations, and results are presented in detail.
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
An optimal system design process for a Mars roving vehicle
NASA Technical Reports Server (NTRS)
Pavarini, C.; Baker, J.; Goldberg, A.
1971-01-01
The problem of determining the optimal design for a Mars roving vehicle is considered. A system model is generated by consideration of the physical constraints on the design parameters and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals as a function of the design parameters only is developed. The use of nonlinear programming techniques to optimize the design is proposed and an example considering only two of the vehicle subsystems is formulated and solved.
NASA Astrophysics Data System (ADS)
Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.
2015-07-01
In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF) showing that the model simulates adequately the SSR patterns over the region. The bias between RegCM4 and CM SAF is +1.54 % for MFG (Meteosat First Generation) and +3.34 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single scattering albedo (SSA), as well as other parameters including surface broadband albedo (ALB) and water vapor amount (WV) using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations; however, the other parameters also play an important role for specific regions and seasons.
Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models
NASA Astrophysics Data System (ADS)
Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel
2014-07-01
We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package.
Rapid condition assessment of structural condition after a blast using state-space identification
NASA Astrophysics Data System (ADS)
Eskew, Edward; Jang, Shinae
2015-04-01
After a blast event, it is important to quickly quantify the structural damage for emergency operations. In order improve the speed, accuracy, and efficiency of condition assessments after a blast, the authors have previously performed work to develop a methodology for rapid assessment of the structural condition of a building after a blast. The method involved determining a post-event equivalent stiffness matrix using vibration measurements and a finite element (FE) model. A structural model was built for the damaged structure based on the equivalent stiffness, and inter-story drifts from the blast are determined using numerical simulations, with forces determined from the blast parameters. The inter-story drifts are then compared to blast design conditions to assess the structures damage. This method still involved engineering judgment in terms of determining significant frequencies, which can lead to error, especially with noisy measurements. In an effort to improve accuracy and automate the process, this paper will look into a similar method of rapid condition assessment using subspace state-space identification. The accuracy of the method will be tested using a benchmark structural model, as well as experimental testing. The blast damage assessments will be validated using pressure-impulse (P-I) diagrams, which present the condition limits across blast parameters. Comparisons between P-I diagrams generated using the true system parameters and equivalent parameters will show the accuracy of the rapid condition based blast assessments.
Electrocoagulation of wastewater from almond industry.
Valero, David; Ortiz, Juan M; García, Vicente; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio
2011-08-01
This work was carried out to study the treatment of almond industry wastewater by the electrocoagulation process. First of all, laboratory scale experiments were conducted in order to determine the effects of relevant wastewater characteristics such as conductivity and pH, as well as the process variables such as anode material, current density and operating time on the removal efficiencies of the total organic carbon (TOC) and the most representative analytical parameters. Next, the wastewater treatment process was scaled up to pre-industrial size using the best experimental conditions and parameters obtained at laboratory scale. Finally, economic parameters such as chemicals, energy consumption and sludge generation have been discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Numerical study of a permanent magnet linear generator for ship motion energy conversion
NASA Astrophysics Data System (ADS)
Mahmuddin, Faisal; Gunadin, Indar Chaerah; Akhir, Anshar Yaumil
2017-02-01
In order to harvest kinetic energy of a ship moving in waves, a permanent magnet linear generator is designed and simulated in the present study. For the sake of simplicity, only heave motion which will be considered in this preliminary study. The dimension of the generator is designed based on the dimension of the ship. Moreover, in order to designed an optimal design of rotor and stator, the average vertical displacement of heave motion is needed. For this purpose, a numerical method called New Strip Method (NSM) is employed to compute the motions of the ship. With NSM, the ship hull is divided into several strips and the hydrodynamics forces are computed on each strip. Moreover, because the ship is assumed to be slender, the total forces are obtained by integrating the force on each strip. After the motions can be determined, the optimal design of the generator is designed and simulated. The performance of the generator in terms of force, magnetic flux, losses, current and induced voltage which are the primary parameters of the linear generator performance, are evaluated using a finite element analysis software named Maxwell. From the study, a linear generator for converting heave motions is designed so that the produced power from the designed generator can be determined.
NASA Technical Reports Server (NTRS)
Chamberlain, R. G.; Mcmaster, K. M.
1981-01-01
The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.
NASA Astrophysics Data System (ADS)
Beucler, E.; Haugmard, M.; Mocquet, A.
2016-12-01
The most widely used inversion schemes to locate earthquakes are based on iterative linearized least-squares algorithms and using an a priori knowledge of the propagation medium. When a small amount of observations is available for moderate events for instance, these methods may lead to large trade-offs between outputs and both the velocity model and the initial set of hypocentral parameters. We present a joint structure-source determination approach using Bayesian inferences. Monte-Carlo continuous samplings, using Markov chains, generate models within a broad range of parameters, distributed according to the unknown posterior distributions. The non-linear exploration of both the seismic structure (velocity and thickness) and the source parameters relies on a fast forward problem using 1-D travel time computations. The a posteriori covariances between parameters (hypocentre depth, origin time and seismic structure among others) are computed and explicitly documented. This method manages to decrease the influence of the surrounding seismic network geometry (sparse and/or azimuthally inhomogeneous) and a too constrained velocity structure by inferring realistic distributions on hypocentral parameters. Our algorithm is successfully used to accurately locate events of the Armorican Massif (western France), which is characterized by moderate and apparently diffuse local seismicity.
Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M
2016-09-01
Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.
Investigation into stutter ratio variability between different laboratories.
Bright, Jo-Anne; Curran, James M
2014-11-01
The determination of parameters such as stutter ratio is important to inform a laboratory's forensic DNA profile interpretation strategy. As part of a large data analysis project to implement a continuous model of DNA profile interpretation we analysed stutter ratio data from eight different forensic laboratories for the Promega PowerPlex(®) 21 multiplex. This allowed a comparison of inter laboratory variation. The maximum difference for any one laboratory from the average of the best fit determined by the model was 0.31%. These results indicate that stutter ratios calculated from samples analysed using the same profiling kit are not expected to differ between laboratories, even those using different capillary electrophoresis platforms. A common set of laboratory parameters are able to be generated and used for profile interpretation at all laboratories using the same multiplex and cycle number, potentially reducing the need for individual laboratories to determine stutter ratios. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
On multidisciplinary research on the application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
1972-01-01
This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.
Thin film growth studies using time-resolved x-ray scattering
NASA Astrophysics Data System (ADS)
Kowarik, Stefan
2017-02-01
Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.
Thin film growth studies using time-resolved x-ray scattering.
Kowarik, Stefan
2017-02-01
Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCulloch, R.W.; Post, D.W.; Lovell, R.T.
1981-04-01
Variable-width ribbon heating elements that provide a chopped-cosine variable heat flux profile have been fabricated for fuel pin simulators used in test loops by the Breeder Reactor Program Thermal-Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor-Core Flow Test Loop. Thermal, mechanical, and electrical design considerations are used to derive an analytical expression that precisely describes ribbon contour in terms of the major fabrication parameters. These parameters are used to generate numerical control tapes that control ribbon cutting and winding machines. Infrared scanning techniques are developed to determine the optimum transient thermal profile of the coils and relatemore » this profile to that generated by the coils in completed fuel pin simulators.« less
Top Quark Mass Calibration for Monte Carlo Event Generators.
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H; Mateu, Vicent; Preisser, Moritz; Stewart, Iain W
2016-12-02
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator m_{t}^{MC}. Because of hadronization and parton-shower dynamics, relating m_{t}^{MC} to a field theory mass is difficult. We present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e^{+}e^{-} 2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to pythia 8.205, m_{t}^{MC} differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m_{t}^{MC}≃m_{t,1 GeV}^{MSR}.
A study on various methods of supplying propellant to an orbit insertion rocket engine
NASA Technical Reports Server (NTRS)
Boretz, J. E.; Huniu, S.; Thompson, M.; Pagani, M.; Paulsen, B.; Lewis, J.; Paul, D.
1980-01-01
Various types of pumps and pump drives were evaluated to determine the lightest weight system for supplying propellants to a planetary orbit insertion rocket engine. From these analyses four candidate propellant feed systems were identified. Systems Nos. 1 and 2 were both battery powered (lithium-thionyl-chloride or silver-zinc) motor driven pumps. System 3 was a monopropellant gas generator powered turbopump. System 4 was a bipropellant gas generator powered turbopump. Parameters considered were pump break horsepower, weight, reliability, transient response and system stability. Figures of merit were established and the ranking of the candidate systems was determined. Conceptual designs were prepared for typical motor driven pumps and turbopump configurations for a 1000 lbf thrust rocket engine.
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár
2017-05-01
We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).
Ballistic projectile trajectory determining system
Karr, T.J.
1997-05-20
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.
NASA Astrophysics Data System (ADS)
Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.
2012-12-01
A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model which had been used for Western North Pacific (WNP) tropical cyclone (TC) genesis (Hall 2011) as well as North Atlantic tropical cyclone genesis (Hall and Jewson 2007). The introduction of these tracks complements the shortage of the historical samples and allows for more reliable PDFs required for implementation of JPM-OS. Using the 33,731 tracks and JPM-OS, an optimal storm ensemble is determined. This approach results in different storms/winds for storm surge and inundation modeling, and produces different Base Flood Elevation maps for coastal regions. Coastal inundation maps produced by the two different methods will be discussed in detail in the poster paper.
Order parameter for bursting polyrhythms in multifunctional central pattern generators
NASA Astrophysics Data System (ADS)
Wojcik, Jeremy; Clewley, Robert; Shilnikov, Andrey
2011-05-01
We examine multistability of several coexisting bursting patterns in a central pattern generator network composed of three Hodgkin-Huxley type cells coupled reciprocally by inhibitory synapses. We establish that the control of switching between bursting polyrhythms and their bifurcations are determined by the temporal characteristics, such as the duty cycle, of networked interneurons and the coupling strength asymmetry. A computationally effective approach to the reduction of dynamics of the nine-dimensional network to two-dimensional Poincaré return mappings for phase lags between the interneurons is presented.
NASA Astrophysics Data System (ADS)
Baumgardt, H.; Hilker, M.
2018-05-01
We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.
NASA Astrophysics Data System (ADS)
Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.
2016-09-01
Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.
Kumar, Ashwani; Singh, Tiratha Raj
2017-03-01
Alzheimer's disease (AD) is a progressive, incurable and terminal neurodegenerative disorder of the brain and is associated with mutations in amyloid precursor protein, presenilin 1, presenilin 2 or apolipoprotein E, but its underlying mechanisms are still not fully understood. Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the clinical dataset are therefore increasingly becoming necessary. The current study deals with the construction of classifiers that can be human readable as well as robust in performance for gene dataset of AD using a decision tree. Models of classification for different AD genes were generated according to Mini-Mental State Examination scores and all other vital parameters to achieve the identification of the expression level of different proteins of disorder that may possibly determine the involvement of genes in various AD pathogenesis pathways. The effectiveness of decision tree in AD diagnosis is determined by information gain with confidence value (0.96), specificity (92 %), sensitivity (98 %) and accuracy (77 %). Besides this functional gene classification using different parameters and enrichment analysis, our finding indicates that the measures of all the gene assess in single cohorts are sufficient to diagnose AD and will help in the prediction of important parameters for other relevant assessments.
NASA Astrophysics Data System (ADS)
Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.
2016-06-01
Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).
TU-FG-201-09: Predicting Accelerator Dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, C; Nguyen, C; Baydush, A
Purpose: To develop an integrated statistical process control (SPC) framework using digital performance and component data accumulated within the accelerator system that can detect dysfunction prior to unscheduled downtime. Methods: Seven digital accelerators were monitored for twelve to 18 months. The accelerators were operated in a ‘run to failure mode’ with the individual institutions determining when service would be initiated. Institutions were required to submit detailed service reports. Trajectory and text log files resulting from a robust daily VMAT QA delivery were decoded and evaluated using Individual and Moving Range (I/MR) control charts. The SPC evaluation was presented in amore » customized dashboard interface that allows the user to review 525 monitored parameters (480 MLC parameters). Chart limits were calculated using a hybrid technique that includes the standard SPC 3σ limits and an empirical factor based on the parameter/system specification. The individual (I) grand mean values and control limit ranges of the I/MR charts of all accelerators were compared using statistical (ranked analysis of variance (ANOVA)) and graphical analyses to determine consistency of operating parameters. Results: When an alarm or warning was directly connected to field service, process control charts predicted dysfunction consistently on beam generation related parameters (BGP)– RF Driver Voltage, Gun Grid Voltage, and Forward Power (W); beam uniformity parameters – angle and position steering coil currents; and Gantry position accuracy parameter: cross correlation max-value. Control charts for individual MLC – cross correlation max-value/position detected 50% to 60% of MLCs serviced prior to dysfunction or failure. In general, non-random changes were detected 5 to 80 days prior to a service intervention. The ANOVA comparison of BGP determined that each accelerator parameter operated at a distinct value. Conclusion: The SPC framework shows promise. Long term monitoring coordinated with service will be required to definitively determine the effectiveness of the model. Varian Medical System, Inc. provided funding in support of the research presented.« less
Photometry unlocks 3D information from 2D localization microscopy data.
Franke, Christian; Sauer, Markus; van de Linde, Sebastian
2017-01-01
We developed a straightforward photometric method, temporal, radial-aperture-based intensity estimation (TRABI), that allows users to extract 3D information from existing 2D localization microscopy data. TRABI uses the accurate determination of photon numbers in different regions of the emission pattern of single emitters to generate a z-dependent photometric parameter. This method can determine fluorophore positions up to 600 nm from the focal plane and can be combined with biplane detection to further improve axial localization.
Genetic Algorithm for Optimization: Preprocessor and Algorithm
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam A.
2006-01-01
Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.
String-inspired supergravity model at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, M.K.; Papadopoulos, A.; Pierce, D.M.
1992-03-15
We study a prototype supergravity model from superstrings, with three generations of matter fields in the untwisted sector, nonperturbatively induced supersymmetry breaking and including threshold corrections in conformity with modular invariance. The scale degeneracy of the vacuum is lifted at the one-loop level, allowing a determination of the fundamental parameters of the effective low-energy theory.
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2014-09-01
We study systematically finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism. We present explicitly their Jacobians and the form of a solution to the compensation equation determining the functional field dependence of finite Fermionic parameters, necessary to generate arbitrary finite change of gauge-fixing functions in the path integral.
Magnus wind turbine. 3. Calculated characteristics of the windwheel
NASA Astrophysics Data System (ADS)
Bychkov, N. M.
2008-06-01
On the basis of experimental data for a windwheel with large-aspect-ratio (up to 14) cylinders, a method making it possible to determine optimal parameters and main characteristics of a windwheel (power, highspeed) is proposed. Effects due to number of cylinders, their aspect ratio and speed of rotation, stream velocity, and generator load are analysed.
The effect of compliant prisms on subduction zone earthquakes and tsunamis
NASA Astrophysics Data System (ADS)
Lotto, Gabriel C.; Dunham, Eric M.; Jeppson, Tamara N.; Tobin, Harold J.
2017-01-01
Earthquakes generate tsunamis by coseismically deforming the seafloor, and that deformation is largely controlled by the shallow rupture process. Therefore, in order to better understand how earthquakes generate tsunamis, one must consider the material structure and frictional properties of the shallowest part of the subduction zone, where ruptures often encounter compliant sedimentary prisms. Compliant prisms have been associated with enhanced shallow slip, seafloor deformation, and tsunami heights, particularly in the context of tsunami earthquakes. To rigorously quantify the role compliant prisms play in generating tsunamis, we perform a series of numerical simulations that directly couple dynamic rupture on a dipping thrust fault to the elastodynamic response of the Earth and the acoustic response of the ocean. Gravity is included in our simulations in the context of a linearized Eulerian description of the ocean, which allows us to model tsunami generation and propagation, including dispersion and related nonhydrostatic effects. Our simulations span a three-dimensional parameter space of prism size, prism compliance, and sub-prism friction - specifically, the rate-and-state parameter b - a that determines velocity-weakening or velocity-strengthening behavior. We find that compliant prisms generally slow rupture velocity and, for larger prisms, generate tsunamis more efficiently than subduction zones without prisms. In most but not all cases, larger, more compliant prisms cause greater amounts of shallow slip and larger tsunamis. Furthermore, shallow friction is also quite important in determining overall slip; increasing sub-prism b - a enhances slip everywhere along the fault. Counterintuitively, we find that in simulations with large prisms and velocity-strengthening friction at the base of the prism, increasing prism compliance reduces rather than enhances shallow slip and tsunami wave height.
Electromagnetic radiation generated by arcing in low density plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.
1996-01-01
An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.
Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M
2015-02-03
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.
Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.
2015-01-01
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m3; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their ne counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. PMID:25549921
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique
2015-05-15
QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Davidson, Ross S; McKendrick, Iain J; Wood, Joanna C; Marion, Glenn; Greig, Alistair; Stevenson, Karen; Sharp, Michael; Hutchings, Michael R
2012-09-10
A common approach to the application of epidemiological models is to determine a single (point estimate) parameterisation using the information available in the literature. However, in many cases there is considerable uncertainty about parameter values, reflecting both the incomplete nature of current knowledge and natural variation, for example between farms. Furthermore model outcomes may be highly sensitive to different parameter values. Paratuberculosis is an infection for which many of the key parameter values are poorly understood and highly variable, and for such infections there is a need to develop and apply statistical techniques which make maximal use of available data. A technique based on Latin hypercube sampling combined with a novel reweighting method was developed which enables parameter uncertainty and variability to be incorporated into a model-based framework for estimation of prevalence. The method was evaluated by applying it to a simulation of paratuberculosis in dairy herds which combines a continuous time stochastic algorithm with model features such as within herd variability in disease development and shedding, which have not been previously explored in paratuberculosis models. Generated sample parameter combinations were assigned a weight, determined by quantifying the model's resultant ability to reproduce prevalence data. Once these weights are generated the model can be used to evaluate other scenarios such as control options. To illustrate the utility of this approach these reweighted model outputs were used to compare standard test and cull control strategies both individually and in combination with simple husbandry practices that aim to reduce infection rates. The technique developed has been shown to be applicable to a complex model incorporating realistic control options. For models where parameters are not well known or subject to significant variability, the reweighting scheme allowed estimated distributions of parameter values to be combined with additional sources of information, such as that available from prevalence distributions, resulting in outputs which implicitly handle variation and uncertainty. This methodology allows for more robust predictions from modelling approaches by allowing for parameter uncertainty and combining different sources of information, and is thus expected to be useful in application to a large number of disease systems.
Useful surface parameters for biomaterial discrimination.
Etxeberria, Marina; Escuin, Tomas; Vinas, Miquel; Ascaso, Carlos
2015-01-01
Topographical features of biomaterials' surfaces are determinant when addressing their application site. Unfortunately up to date there has not been an agreement regarding which surface parameters are more representative in discriminating between materials. Discs (n = 16) of different currently used materials for implant prostheses fabrication, such as cast cobalt-chrome, direct laser metal soldered (DLMS) cobalt-chrome, titanium grade V, zirconia (Y-TZP), E-glass fiber-reinforced composite and polyetheretherketone (PEEK) were manufactured. Nanoscale topographical surface roughness parameters generated by atomic force microscopy (AFM), microscale surface roughness parameters obtained by white light interferometry (WLI) and water angle values obtained by the sessile-water-drop method were analyzed in order to assess which parameter provides the best optimum surface characterization method. Correlations between nanoroughness, microroughness, and hydrophobicity data were performed to achieve the best parameters giving the highest discriminatory power. A subset of six parameters for surface characterization were proposed. AFM and WLI techniques gave complementary information. Wettability did not correlate with any of the nanoroughness parameters while it however showed a weak correlation with microroughness parameters. © Wiley Periodicals, Inc.
Astrophysical properties of star clusters in the Magellanic Clouds homogeneously estimated by ASteCA
NASA Astrophysics Data System (ADS)
Perren, G. I.; Piatti, A. E.; Vázquez, R. A.
2017-06-01
Aims: We seek to produce a homogeneous catalog of astrophysical parameters of 239 resolved star clusters, located in the Small and Large Magellanic Clouds, observed in the Washington photometric system. Methods: The cluster sample was processed with the recently introduced Automated Stellar Cluster Analysis (ASteCA) package, which ensures both an automatized and a fully reproducible treatment, together with a statistically based analysis of their fundamental parameters and associated uncertainties. The fundamental parameters determined for each cluster with this tool, via a color-magnitude diagram (CMD) analysis, are metallicity, age, reddening, distance modulus, and total mass. Results: We generated a homogeneous catalog of structural and fundamental parameters for the studied cluster sample and performed a detailed internal error analysis along with a thorough comparison with values taken from 26 published articles. We studied the distribution of cluster fundamental parameters in both Clouds and obtained their age-metallicity relationships. Conclusions: The ASteCA package can be applied to an unsupervised determination of fundamental cluster parameters, which is a task of increasing relevance as more data becomes available through upcoming surveys. A table with the estimated fundamental parameters for the 239 clusters analyzed is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A89
NASA Astrophysics Data System (ADS)
Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon
2011-01-01
In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.
Design and Analysis of Tubular Permanent Magnet Linear Wave Generator
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG. PMID:25050388
Design and analysis of tubular permanent magnet linear wave generator.
Si, Jikai; Feng, Haichao; Su, Peng; Zhang, Lufeng
2014-01-01
Due to the lack of mature design program for the tubular permanent magnet linear wave generator (TPMLWG) and poor sinusoidal characteristics of the air gap flux density for the traditional surface-mounted TPMLWG, a design method and a new secondary structure of TPMLWG are proposed. An equivalent mathematical model of TPMLWG is established to adopt the transformation relationship between the linear velocity of permanent magnet rotary generator and the operating speed of TPMLWG, to determine the structure parameters of the TPMLWG. The new secondary structure of the TPMLWG contains surface-mounted permanent magnets and the interior permanent magnets, which form a series-parallel hybrid magnetic circuit, and their reasonable structure parameters are designed to get the optimum pole-arc coefficient. The electromagnetic field and temperature field of TPMLWG are analyzed using finite element method. It can be included that the sinusoidal characteristics of air gap flux density of the new secondary structure TPMLWG are improved, the cogging force as well as mechanical vibration is reduced in the process of operation, and the stable temperature rise of generator meets the design requirements when adopting the new secondary structure of the TPMLWG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malgin, A. S., E-mail: malgin@lngs.infn.it
The parameters of the seasonal modulations in the intensity of muons and cosmogenic neutrons generated by them at a mean muon energy of 280 GeV have been determined in the LVD (Large Volume Detector) experiment. The modulations of muons and neutrons are caused by a temperature effect, the seasonal temperature and density variations of the upper atmospheric layers. The analysis performed here leads to the conclusion that the variations in the mean energy of the muon flux are the main source of underground cosmogenic neutron variations, because the energy of muons is more sensitive to the temperature effect than theirmore » intensity. The parameters of the seasonal modulations in the mean energy of muons and the flux of cosmogenic neutrons at the LVD depth have been determined from the data obtained over seven years of LVD operation.« less
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.
Translating landfill methane generation parameters among first-order decay models.
Krause, Max J; Chickering, Giles W; Townsend, Timothy G
2016-11-01
Landfill gas (LFG) generation is predicted by a first-order decay (FOD) equation that incorporates two parameters: a methane generation potential (L 0 ) and a methane generation rate (k). Because non-hazardous waste landfills may accept many types of waste streams, multiphase models have been developed in an attempt to more accurately predict methane generation from heterogeneous waste streams. The ability of a single-phase FOD model to predict methane generation using weighted-average methane generation parameters and tonnages translated from multiphase models was assessed in two exercises. In the first exercise, waste composition from four Danish landfills represented by low-biodegradable waste streams was modeled in the Afvalzorg Multiphase Model and methane generation was compared to the single-phase Intergovernmental Panel on Climate Change (IPCC) Waste Model and LandGEM. In the second exercise, waste composition represented by IPCC waste components was modeled in the multiphase IPCC and compared to single-phase LandGEM and Australia's Solid Waste Calculator (SWC). In both cases, weight-averaging of methane generation parameters from waste composition data in single-phase models was effective in predicting cumulative methane generation from -7% to +6% of the multiphase models. The results underscore the understanding that multiphase models will not necessarily improve LFG generation prediction because the uncertainty of the method rests largely within the input parameters. A unique method of calculating the methane generation rate constant by mass of anaerobically degradable carbon was presented (k c ) and compared to existing methods, providing a better fit in 3 of 8 scenarios. Generally, single phase models with weighted-average inputs can accurately predict methane generation from multiple waste streams with varied characteristics; weighted averages should therefore be used instead of regional default values when comparing models. Translating multiphase first-order decay model input parameters by weighted average shows that single-phase models can predict cumulative methane generation within the level of uncertainty of many of the input parameters as defined by the Intergovernmental Panel on Climate Change (IPCC), which indicates that decreasing the uncertainty of the input parameters will make the model more accurate rather than adding multiple phases or input parameters.
On the characteristics of landslide tsunamis
Løvholt, F.; Pedersen, G.; Harbitz, C. B.; Glimsdal, S.; Kim, J.
2015-01-01
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. PMID:26392615
Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M
2013-01-01
In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.
On the characteristics of landslide tsunamis.
Løvholt, F; Pedersen, G; Harbitz, C B; Glimsdal, S; Kim, J
2015-10-28
This review presents modelling techniques and processes that govern landslide tsunami generation, with emphasis on tsunamis induced by fully submerged landslides. The analysis focuses on a set of representative examples in simplified geometries demonstrating the main kinematic landslide parameters influencing initial tsunami amplitudes and wavelengths. Scaling relations from laboratory experiments for subaerial landslide tsunamis are also briefly reviewed. It is found that the landslide acceleration determines the initial tsunami elevation for translational landslides, while the landslide velocity is more important for impulsive events such as rapid slumps and subaerial landslides. Retrogressive effects stretch the tsunami, and in certain cases produce enlarged amplitudes due to positive interference. In an example involving a deformable landslide, it is found that the landslide deformation has only a weak influence on tsunamigenesis. However, more research is needed to determine how landslide flow processes that involve strong deformation and long run-out determine tsunami generation. © 2015 The Authors.
Experimental Characterization of Piezoelectric Radial Field Diaphragms for Fluidic Control
NASA Technical Reports Server (NTRS)
Bryant, R. G.; Kavli, S. E.; Thomas, R. A., Jr.; Darji, K. J.; Mossi, K. M.
2004-01-01
NASA has recently developed a new piezoelectric actuator, the Radial Field Diaphragm or RFD. This actuator uses a radially-directed electric field to generate concentric out-of-plane (Z-axis) motion that allows this packaged device to be used as a pump or valve diaphragm. In order to efficiently use this new active device, experimental determination of pressure, flow rate, mechanical work, power consumption and overall efficiency needs to be determined by actually building a pump. However, without an optimized pump design, it is difficult to assess the quality of the data, as these results are inherent to the actual pump. Hence, separate experiments must be conducted in order to generate independent results to help guide the design criteria and pump quality. This paper focuses on the experiments used to generate the RFD's operational parameters and then compares these results to the experimentally determined results of several types of ball pumps. Also discussed are how errors are inherently introduced into the experiments, the pump design, experimental hardware and their effects on the overall system efficiency.
Meng, Yilin; Roux, Benoît
2015-08-11
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost.
2015-01-01
The weighted histogram analysis method (WHAM) is a standard protocol for postprocessing the information from biased umbrella sampling simulations to construct the potential of mean force with respect to a set of order parameters. By virtue of the WHAM equations, the unbiased density of state is determined by satisfying a self-consistent condition through an iterative procedure. While the method works very effectively when the number of order parameters is small, its computational cost grows rapidly in higher dimension. Here, we present a simple and efficient alternative strategy, which avoids solving the self-consistent WHAM equations iteratively. An efficient multivariate linear regression framework is utilized to link the biased probability densities of individual umbrella windows and yield an unbiased global free energy landscape in the space of order parameters. It is demonstrated with practical examples that free energy landscapes that are comparable in accuracy to WHAM can be generated at a small fraction of the cost. PMID:26574437
Adriaansen-Tennekes, R; de Vries Reilingh, G; Nieuwland, M G B; Parmentier, H K; Savelkoul, H F J
2009-09-01
Individual differences in nutrient sensitivity have been suggested to be related with differences in stress sensitivity. Here we used layer hens divergently selected for high and low specific antibody responses to SRBC (i.e., low line hens and high line hens), reflecting a genetically based differential immune competence. The parental line of these hens was randomly bred as the control line and was used as well. Recently, we showed that these selection lines differ in their stress reactivity; the low line birds show a higher hypothalamic-pituitary-adrenal (HPA) axis reactivity. To examine maternal effects and neonatal nutritional exposure on nutrient sensitivity, we studied 2 subsequent generations. This also created the opportunity to examine egg production in these birds. The 3 lines were fed 2 different nutritionally complete layer feeds for a period of 22 wk in the first generation. The second generation was fed from hatch with the experimental diets. At several time intervals, parameters reflecting humoral immunity were determined such as specific antibody to Newcastle disease and infectious bursal disease vaccines; levels of natural antibodies binding lipopolysaccharide, lipoteichoic acid, and keyhole limpet hemocyanin; and classical and alternative complement activity. The most pronounced dietary-induced effects were found in the low line birds of the first generation: specific antibody titers to Newcastle disease vaccine were significantly elevated by 1 of the 2 diets. In the second generation, significant differences were found in lipoteichoic acid natural antibodies of the control and low line hens. At the end of the observation period of egg parameters, a significant difference in egg weight was found in birds of the high line. Our results suggest that nutritional differences have immunomodulatory effects on innate and adaptive humoral immune parameters in birds with high HPA axis reactivity and affect egg production in birds with low HPA axis reactivity.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
Event generator tunes obtained from underlying event and multiparton scattering measurements
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-03-17
Here, new sets of parameters (“tunes”) for the underlying-event (UE) modelling of the pythia8, pythia6 and herwig++ Monte Carlo event generators are constructed using different parton distribution functions. Combined fits to CMS UE proton–proton (more » $$\\mathrm {p}\\mathrm {p}$$ ) data at $$\\sqrt{s} = 7\\,\\text {TeV} $$ and to UE proton–antiproton ( $$\\mathrm {p}\\overline{\\mathrm{p}} $$ ) data from the CDF experiment at lower $$\\sqrt{s}$$ , are used to study the UE models and constrain their parameters, providing thereby improved predictions for proton–proton collisions at 13 $$\\,\\text {TeV}$$ . In addition, it is investigated whether the values of the parameters obtained from fits to UE observables are consistent with the values determined from fitting observables sensitive to double-parton scattering processes. Finally, comparisons are presented of the UE tunes to “minimum bias” (MB) events, multijet, and Drell–Yan ( $$ \\mathrm{q} \\overline{\\mathrm{q}} \\rightarrow \\mathrm{Z}/ \\gamma ^* \\rightarrow $$ lepton-antilepton+jets) observables at 7 and 8 $$\\,\\text {TeV}$$ , as well as predictions for MB and UE observables at 13 $$\\,\\text {TeV}$$ .« less
Reducing the Volume of NASA Earth-Science Data
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre
2010-01-01
A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.
Experimental study of nonlinear ultrasonic behavior of soil materials during the compaction.
Chen, Jun; Wang, Hao; Yao, Yangping
2016-07-01
In this paper, the nonlinear ultrasonic behavior of unconsolidated granular medium - soil during the compaction is experimentally studied. The second harmonic generation technique is adopted to investigate the change of microstructural void in materials during the compaction process of loose soils. The nonlinear parameter is measured with the change of two important environmental factors i.e. moisture content and impact energy of compaction. It is found the nonlinear parameter of soil material presents a similar variation pattern with the void ratio of soil samples, corresponding to the increased moisture content and impact energy. A same optimum moisture content is found by observing the variation of nonlinear parameter and void ratio with respect to moisture content. The results indicate that the unconsolidated soil is manipulated by a strong material nonlinearity during the compaction procedure. The developed experimental technique based on the second harmonic generation could be a fast and convenient testing method for the determination of optimum moisture content of soil materials, which is very useful for the better compaction effect of filled embankment for civil infrastructures in-situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Analysis of Advanced Thermoelectric Materials and Their Functional Limits
NASA Technical Reports Server (NTRS)
Kim, Hyun Jung
2015-01-01
The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit imposed by of the effect of phonon lattice oscillation and energetic electrons towards thermal conductivity? Is the Seebeck coefficient, based on the difference in voltage over temperature gradient ( deltaV/deltaT), an intrinsic parameter of each material? All these parameters were manipulated using nano-bridge and twin-lattice structural concepts at the NASA Langley Research Center. This talk will review the current trend of TE research to optimize the ZT and discuss about new approaches on increasing ZT within functional limits of each parameter.
Nanocrystalline zirconia: a novel sorbent for the preparation of (188)W/(188)Re generator.
Chakravarty, Rubel; Shukla, Rakesh; Tyagi, A K; Dash, Ashutosh; Venkatesh, Meera
2010-02-01
Nanocrystalline zirconia, a novel high capacity sorbent material was synthesized and tested for its utility in the preparation of (188)W/(188)Re generators. The structural investigation of the material was carried out using X-ray diffraction, surface area determination, FTIR and TEM micrograph analysis. Various experimental parameters were optimized to separate (188)Re from (188)W. The capacity of the material was found to be approximately 325mgW/g at the optimum pH. A chromatographic (188)W/(188)Re generator was developed using this material from which >80% of (188)Re generated could be eluted with 0.9% saline solution, with high radionuclidic, radiochemical and chemical purity and appreciably high radioactive concentration suitable for radiopharmaceutical applications. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Source positions from VLBI combined solution
NASA Astrophysics Data System (ADS)
Bachmann, S.; Thaller, D.; Engelhardt, G.
2014-12-01
The IVS Combination Center at BKG is primarily responsible for combined Earth Orientation Parameter (EOP) products and the generation of a terrestrial reference frame based on VLBI observations (VTRF). The procedure is based on the combination of normal equations provided by six IVS Analysis Centers (AC). Since more and more ACs also provide source positions in the normal equations - beside EOPs and station coordinates - an estimation of these parameters is possible and should be investigated. In the past, the International Celestial Reference Frame (ICRF) was not generated as a combined solution from several individual solutions, but was based on a single solution provided by one AC. The presentation will give an overview on the combination strategy and the possibilities for combined source position determination. This includes comparisons with existing catalogs, quality estimation and possibilities of rigorous combination of EOP, TRF and CRF in one combination process.
NASA Astrophysics Data System (ADS)
Ilik, Semih C.; Arsoy, Aysen B.
2017-07-01
Integration of distributed generation (DG) such as renewable energy sources to electrical network becomes more prevalent in recent years. Grid connection of DG has effects on load flow directions, voltage profile, short circuit power and especially protection selectivity. Applying traditional overcurrent protection scheme is inconvenient when system reliability and sustainability are considered. If a fault happens in DG connected network, short circuit contribution of DG, creates additional branch element feeding the fault current; compels to consider directional overcurrent (OC) protection scheme. Protection coordination might get lost for changing working conditions when DG sources are connected. Directional overcurrent relay parameters are determined for downstream and upstream relays when different combinations of DG connected singular or plural, on radial test system. With the help of proposed flow chart, relay parameters are updated and coordination between relays kept sustained for different working conditions in DigSILENT PowerFactory program.
Light propagation in gas-filled kagomé hollow core photonic crystal fibres
NASA Astrophysics Data System (ADS)
Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.
2018-04-01
We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.
Method and device for predicting wavelength dependent radiation influences in thermal systems
Kee, Robert J.; Ting, Aili
1996-01-01
A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)
1982-01-01
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.
Inverting the parameters of an earthquake-ruptured fault with a genetic algorithm
NASA Astrophysics Data System (ADS)
Yu, Ting-To; Fernàndez, Josè; Rundle, John B.
1998-03-01
Natural selection is the spirit of the genetic algorithm (GA): by keeping the good genes in the current generation, thereby producing better offspring during evolution. The crossover function ensures the heritage of good genes from parent to offspring. Meanwhile, the process of mutation creates a special gene, the character of which does not exist in the parent generation. A program based on genetic algorithms using C language is constructed to invert the parameters of an earthquake-ruptured fault. The verification and application of this code is shown to demonstrate its capabilities. It is determined that this code is able to find the global extreme and can be used to solve more practical problems with constraints gathered from other sources. It is shown that GA is superior to other inverting schema in many aspects. This easy handling and yet powerful algorithm should have many suitable applications in the field of geosciences.
Definitive screening design enables optimization of LC-ESI-MS/MS parameters in proteomics.
Aburaya, Shunsuke; Aoki, Wataru; Minakuchi, Hiroyoshi; Ueda, Mitsuyoshi
2017-12-01
In proteomics, more than 100,000 peptides are generated from the digestion of human cell lysates. Proteome samples have a broad dynamic range in protein abundance; therefore, it is critical to optimize various parameters of LC-ESI-MS/MS to comprehensively identify these peptides. However, there are many parameters for LC-ESI-MS/MS analysis. In this study, we applied definitive screening design to simultaneously optimize 14 parameters in the operation of monolithic capillary LC-ESI-MS/MS to increase the number of identified proteins and/or the average peak area of MS1. The simultaneous optimization enabled the determination of two-factor interactions between LC and MS. Finally, we found two parameter sets of monolithic capillary LC-ESI-MS/MS that increased the number of identified proteins by 8.1% or the average peak area of MS1 by 67%. The definitive screening design would be highly useful for high-throughput analysis of the best parameter set in LC-ESI-MS/MS systems.
Simple microfluidic stagnation point flow geometries
Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan
2016-01-01
A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382
NASA Astrophysics Data System (ADS)
Sumin, V. I.; Smolentseva, T. E.; Belokurov, S. V.; Lankin, O. V.
2018-03-01
In the work the process of formation of trainee characteristics with their subsequent change is analyzed and analyzed. Characteristics of trainees were obtained as a result of testing for each section of information on the chosen discipline. The results obtained during testing were input to the dynamic system. The area of control actions consisting of elements of the dynamic system is formed. The limit of deterministic predictability of element trajectories in dynamical systems based on local or global attractors is revealed. The dimension of the phase space of the dynamic system is determined, which allows estimating the parameters of the initial system. On the basis of time series of observations, it is possible to determine the predictability interval of all parameters, which make it possible to determine the behavior of the system discretely in time. Then the measure of predictability will be the sum of Lyapunov’s positive indicators, which are a quantitative measure for all elements of the system. The components for the formation of an algorithm allowing to determine the correlation dimension of the attractor for known initial experimental values of the variables are revealed. The generated algorithm makes it possible to carry out an experimental study of the dynamics of changes in the trainee’s parameters with initial uncertainty.
Estimation of Confidence Intervals for Multiplication and Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J
2009-07-17
Helium-3 tubes are used to detect thermal neutrons by charge collection using the {sup 3}He(n,p) reaction. By analyzing the time sequence of neutrons detected by these tubes, one can determine important features about the constitution of a measured object: Some materials such as Cf-252 emit several neutrons simultaneously, while others such as uranium and plutonium isotopes multiply the number of neutrons to form bursts. This translates into unmistakable signatures. To determine the type of materials measured, one compares the measured count distribution with the one generated by a theoretical fission chain model. When the neutron background is negligible, the theoreticalmore » count distributions can be completely characterized by a pair of parameters, the multiplication M and the detection efficiency {var_epsilon}. While the optimal pair of M and {var_epsilon} can be determined by existing codes such as BigFit, the uncertainty on these parameters has not yet been fully studied. The purpose of this work is to precisely compute the uncertainties on the parameters M and {var_epsilon}, given the uncertainties in the count distribution. By considering different lengths of time tagged data, we will determine how the uncertainties on M and {var_epsilon} vary with the different count distributions.« less
Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India
2014-01-01
Background The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. Methods A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. Results The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Conclusions Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries. PMID:24438431
Resurrecting social infrastructure as a determinant of urban tuberculosis control in Delhi, India.
Chandra, Shivani; Sharma, Nandini; Joshi, Kulanand; Aggarwal, Nishi; Kannan, Anjur Tupil
2014-01-17
The key to universal coverage in tuberculosis (TB) management lies in community participation and empowerment of the population. Social infrastructure development generates social capital and addresses the crucial social determinants of TB, thereby improving program performance. Recently, there has been renewed interest in the concept of social infrastructure development for TB control in developing countries. This study aims to revive this concept and highlight the fact that documentation on ways to operationalize urban TB control is required from a holistic development perspective. Further, it explains how development of social infrastructure impacts health and development outcomes, especially with respect to TB in urban settings. A wide range of published Government records pertaining to social development parameters and TB program surveillance, between 2001 and 2011 in Delhi, were studied. Social infrastructure development parameters like human development index along with other indicators reflecting patient profile and habitation in urban settings were selected as social determinants of TB. These include adult literacy rates, per capita income, net migration rates, percentage growth in slum population, and percentage of urban population living in one-room dwelling units. The impact of the Revised National Tuberculosis Control Program on TB incidence was assessed as an annual decline in new TB cases notified under the program. Univariate linear regression was employed to examine the interrelationship between social development parameters and TB program outcomes. The decade saw a significant growth in most of the social development parameters in the State. TB program performance showed 46% increment in lives saved among all types of TB cases per 100,000 population. The 7% reduction in new TB case notifications from the year 2001 to 2011, translates to a logarithmic decline of 5.4 new TB cases per 100,000 population. Except per capita income, literacy, and net migration rates, other social determinants showed significant correlation with decline in new TB cases per 100,000 population. Social infrastructure development leads to social capital generation which engenders positive growth in TB program outcomes. Strategies which promote social infrastructure development should find adequate weightage in the overall policy framework for urban TB control in developing countries.
Top Quark Mass Calibration for Monte Carlo Event Generators
Butenschoen, Mathias; Dehnadi, Bahman; Hoang, André H.; ...
2016-11-29
The most precise top quark mass measurements use kinematic reconstruction methods, determining the top mass parameter of a Monte Carlo event generator mmore » $$MC\\atop{t}$$. Because of hadronization and parton-shower dynamics, relating m$$MC\\atop{t}$$ to a field theory mass is difficult. Here, we present a calibration procedure to determine this relation using hadron level QCD predictions for observables with kinematic mass sensitivity. Fitting e +e −2-jettiness calculations at next-to-leading-logarithmic and next-to-next-to-leading-logarithmic order to PYTHIA 8.205, m$$MC\\atop{t}$$ differs from the pole mass by 900 and 600 MeV, respectively, and agrees with the MSR mass within uncertainties, m$$MC\\atop{t}$$ ≃ m$$MSR\\atop{t,1 GeV}$$.« less
An information theory approach to the density of the earth
NASA Technical Reports Server (NTRS)
Graber, M. A.
1977-01-01
Information theory can develop a technique which takes experimentally determined numbers and produces a uniquely specified best density model satisfying those numbers. A model was generated using five numerical parameters: the mass of the earth, its moment of inertia, three zero-node torsional normal modes (L = 2, 8, 26). In order to determine the stability of the solution, six additional densities were generated, in each of which the period of one of the three normal modes was increased or decreased by one standard deviation. The superposition of the seven models is shown. It indicates that current knowledge of the torsional modes is sufficient to specify the density in the upper mantle but that the lower mantle and core will require smaller standard deviations before they can be accurately specified.
Prete-moi Ton Logiciel pour Ecrire un Mot (Lend Me Your Software Program So I Can Write a Letter).
ERIC Educational Resources Information Center
Mangenot, Francois
1993-01-01
A brief discussion and description of one commercially available software package ("Pour Ecrire un Mot") for writing letters of various types uses the love letter as an example of the software's functioning. Answers to the prompting questions on the screen determine the few variable parameters of the text to be generated. (four…
Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Hill, Dennis
2011-01-01
After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.
Characterization of mixing in an electroosmotically stirred continuous micro mixer
NASA Astrophysics Data System (ADS)
Beskok, Ali
2005-11-01
We present theoretical and numerical studies of mixing in a straight micro channel with zeta potential patterned surfaces. A steady pressure driven flow is maintained in the channel in addition to a time dependent electroosmotic flow, generated by a stream-wise AC electric field. The zeta potential patterns are placed critically in the channel to achieve spatially asymmetric time-dependent flow patterns that lead to chaotic stirring. Fixing the geometry, we performed parametric studies of passive particle motion that led to generation of Poincare sections and characterization of chaotic strength by finite time Lyapunov exponents. The parametric studies were performed as a function of the Womersley number (normalized AC frequency) and the ratio of Poiseuille flow and electroosmotic velocities. After determining the non-dimensional parameters that led to high chaotic strength, we performed spectral element simulations of species transport and mixing at high Peclet numbers, and characterized mixing efficiency using the Mixing Index inverse. Mixing lengths proportional to the natural logarithm of the Peclet number are reported. Using the optimum non-dimensional parameters and the typical magnitudes involved in electroosmotic flows, we were able to determine the physical dimensions and operation conditions for a prototype micro-mixer.
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A
2017-02-01
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
Ge, Qianqian; Li, Jian; Li, Jitao; Wang, Jiajia; Li, Zhengdao
2018-03-01
To investigate the immune response of Exopalaemon carinicauda infected with an AHPND-causing strain of Vibrio parahaemolyticus (VP AHPND ), three-generation breeding of shrimp selected for their survival to VP AHPND infection was applied to explore the relationship between immune parameters and AHPND-resistant capacity of E. carinicauda. In this study, the LD 50 dose of 48 h and survival rates at 144 h of shrimp to VP AHPND increased from 10 6.0 to 10 6.6 cfu ml -1 and from 26.67% to 36.67% by three successive generations selection, respectively, while there was no significant difference between the first and second generation (p > .05). Then the immune parameters including vibrio density, total hemocyte counts (THCs), hemocyanin (HEM) concentration, antibacterial activity, activities of four immune enzymes, and expressions of eight immune-related genes were determined in the shrimp of the first (G1) and the third selective generation (G3). The results showed that the shrimp in G1 and G3 generation cleared most of VP AHPND infecting hepatopancreas during 24 h and 6 h post injection, respectively. The levels of THCs, HEM concentration, antibacterial activity, immune enzymes including lysozyme (LZM) activity, alkaline phosphatase (AKP) activity in cell-free hemolymph, and the expression levels of Tollip, ALF, cathepsin B in hemocytes and hepatopancreas, crustin, LZM, SR in hepatopancreas and LGBP in hemocytes were higher in G3 generation than in G1 generation after infection with VP AHPND , suggesting that these parameters may serve as potential disease-resistant indicators for evaluating the physiological status and disease-resistant capability of shrimp when infected with VP AHPND . To further test the role of above genes in the shrimp immune response, RNAi was used to suppress their expressions and a significant decrease in survival was observed in knockdown shrimp infected with VP AHPND as compared to controls. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling of industrial robot in LabView Robotics
NASA Astrophysics Data System (ADS)
Banas, W.; Cwikła, G.; Foit, K.; Gwiazda, A.; Monica, Z.; Sekala, A.
2017-08-01
Currently can find many models of industrial systems including robots. These models differ from each other not only by the accuracy representation parameters, but the representation range. For example, CAD models describe the geometry of the robot and some even designate a mass parameters as mass, center of gravity, moment of inertia, etc. These models are used in the design of robotic lines and sockets. Also systems for off-line programming use these models and many of them can be exported to CAD. It is important to note that models for off-line programming describe not only the geometry but contain the information necessary to create a program for the robot. Exports from CAD to off-line programming system requires additional information. These models are used for static determination of reachability points, and testing collision. It’s enough to generate a program for the robot, and even check the interaction of elements of the production line, or robotic cell. Mathematical models allow robots to study the properties of kinematic and dynamic of robot movement. In these models the geometry is not so important, so are used only selected parameters such as the length of the robot arm, the center of gravity, moment of inertia. These parameters are introduced into the equations of motion of the robot and motion parameters are determined.
NASA Astrophysics Data System (ADS)
Mehrdad Mirsanjari, Mir; Mohammadyari, Fatemeh
2018-03-01
Underground water is regarded as considerable water source which is mainly available in arid and semi arid with deficient surface water source. Forecasting of hydrological variables are suitable tools in water resources management. On the other hand, time series concepts is considered efficient means in forecasting process of water management. In this study the data including qualitative parameters (electrical conductivity and sodium adsorption ratio) of 17 underground water wells in Mehran Plain has been used to model the trend of parameters change over time. Using determined model, the qualitative parameters of groundwater is predicted for the next seven years. Data from 2003 to 2016 has been collected and were fitted by AR, MA, ARMA, ARIMA and SARIMA models. Afterward, the best model is determined using information criterion or Akaike (AIC) and correlation coefficient. After modeling parameters, the map of agricultural land use in 2016 and 2023 were generated and the changes between these years were studied. Based on the results, the average of predicted SAR (Sodium Adsorption Rate) in all wells in the year 2023 will increase compared to 2016. EC (Electrical Conductivity) average in the ninth and fifteenth holes and decreases in other wells will be increased. The results indicate that the quality of groundwater for Agriculture Plain Mehran will decline in seven years.
Post-processing of seismic parameter data based on valid seismic event determination
McEvilly, Thomas V.
1985-01-01
An automated seismic processing system and method are disclosed, including an array of CMOS microprocessors for unattended battery-powered processing of a multi-station network. According to a characterizing feature of the invention, each channel of the network is independently operable to automatically detect, measure times and amplitudes, and compute and fit Fast Fourier transforms (FFT's) for both P- and S- waves on analog seismic data after it has been sampled at a given rate. The measured parameter data from each channel are then reviewed for event validity by a central controlling microprocessor and if determined by preset criteria to constitute a valid event, the parameter data are passed to an analysis computer for calculation of hypocenter location, running b-values, source parameters, event count, P- wave polarities, moment-tensor inversion, and Vp/Vs ratios. The in-field real-time analysis of data maximizes the efficiency of microearthquake surveys allowing flexibility in experimental procedures, with a minimum of traditional labor-intensive postprocessing. A unique consequence of the system is that none of the original data (i.e., the sensor analog output signals) are necessarily saved after computation, but rather, the numerical parameters generated by the automatic analysis are the sole output of the automated seismic processor.
Spontaneous generation of singularities in paraxial optical fields.
Aiello, Andrea
2016-04-01
In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Man; Koo, Min-Mo; Jeong, Jae-Hoon; Hong, Keyyong; Cho, Il-Hyoung; Choi, Jang-Young
2017-05-01
This paper reports the design and analysis of a tubular permanent magnet linear generator (TPMLG) for a small-scale wave-energy converter. The analytical field computation is performed by applying a magnetic vector potential and a 2-D analytical model to determine design parameters. Based on analytical solutions, parametric analysis is performed to meet the design specifications of a wave-energy converter (WEC). Then, 2-D FEA is employed to validate the analytical method. Finally, the experimental result confirms the predictions of the analytical and finite element analysis (FEA) methods under regular and irregular wave conditions.
PRince: a web server for structural and physicochemical analysis of protein-RNA interface.
Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad
2012-07-01
We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.
Flow-induced voltage generation in non-ionic liquids over monolayer graphene
NASA Astrophysics Data System (ADS)
Ho Lee, Seung; Jung, Yousung; Kim, Soohyun; Han, Chang-Soo
2013-02-01
To clarify the origin of the flow-induced voltage generation in graphene, we prepared a new experimental device whose electrodes were aligned perpendicular to the flow with a non-ionic liquid. We found that significant voltage in our device was generated with increasing flow velocity, thereby confirming that voltage was due to an intrinsic interaction between graphene and the flowing liquid. To understand the mechanism of the observed flow-induced voltage generation, we systematically varied several important experimental parameters: flow velocity, electrode alignment, liquid polarity, and liquid viscosity. Based on these measurements, we suggest that polarity of the fluid is a significant factor in determining the extent of the voltage generated, and the major mechanism can be attributed to instantaneous potential differences induced in the graphene due to an interaction with polar liquids and to the momentum transferred from the flowing liquid to the graphene.
NASA Technical Reports Server (NTRS)
Brown, J. M.; Curl, R. F.; Evenson, K. M.
1984-01-01
The far-infrared laser magnetic resonance spectrum of the SiH radical in the v = O level of its X2Pi state has been recorded. The signals are rather weak. The molecules were generated in the reaction between fluorine atoms and SiH4. Rotational transitions have been detected in both 2Pi1/2 and 2Pi3/2 spin components but no fine structure transitions between the spin components were observed. Proton hyperfine splittings were resolved on some lines. The measurements have been analyzed, subjected to a least-squares fit using an effective Hamiltonian, and the appropriate molecular parameters determined. The weakness of the spectrum and the failure of attempts to power saturate favorable lines are both consistent with a small value for the electric dipole moment for SiH.
Optimal Inversion Parameters for Full Waveform Inversion using OBS Data Set
NASA Astrophysics Data System (ADS)
Kim, S.; Chung, W.; Shin, S.; Kim, D.; Lee, D.
2017-12-01
In recent years, full Waveform Inversion (FWI) has been the most researched technique in seismic data processing. It uses the residuals between observed and modeled data as an objective function; thereafter, the final subsurface velocity model is generated through a series of iterations meant to minimize the residuals.Research on FWI has expanded from acoustic media to elastic media. In acoustic media, the subsurface property is defined by P-velocity; however, in elastic media, properties are defined by multiple parameters, such as P-velocity, S-velocity, and density. Further, the elastic media can also be defined by Lamé constants, density or impedance PI, SI; consequently, research is being carried out to ascertain the optimal parameters.From results of advanced exploration equipment and Ocean Bottom Seismic (OBS) survey, it is now possible to obtain multi-component seismic data. However, to perform FWI on these data and generate an accurate subsurface model, it is important to determine optimal inversion parameters among (Vp, Vs, ρ), (λ, μ, ρ), and (PI, SI) in elastic media. In this study, staggered grid finite difference method was applied to simulate OBS survey. As in inversion, l2-norm was set as objective function. Further, the accurate computation of gradient direction was performed using the back-propagation technique and its scaling was done using the Pseudo-hessian matrix.In acoustic media, only Vp is used as the inversion parameter. In contrast, various sets of parameters, such as (Vp, Vs, ρ) and (λ, μ, ρ) can be used to define inversion in elastic media. Therefore, it is important to ascertain the parameter that gives the most accurate result for inversion with OBS data set.In this study, we generated Vp and Vs subsurface models by using (λ, μ, ρ) and (Vp, Vs, ρ) as inversion parameters in every iteration, and compared the final two FWI results.This research was supported by the Basic Research Project(17-3312) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.
NASA Astrophysics Data System (ADS)
Pecháček, T.; Goosmann, R. W.; Karas, V.; Czerny, B.; Dovčiak, M.
2013-08-01
Context. We study some general properties of accretion disc variability in the context of stationary random processes. In particular, we are interested in mathematical constraints that can be imposed on the functional form of the Fourier power-spectrum density (PSD) that exhibits a multiply broken shape and several local maxima. Aims: We develop a methodology for determining the regions of the model parameter space that can in principle reproduce a PSD shape with a given number and position of local peaks and breaks of the PSD slope. Given the vast space of possible parameters, it is an important requirement that the method is fast in estimating the PSD shape for a given parameter set of the model. Methods: We generated and discuss the theoretical PSD profiles of a shot-noise-type random process with exponentially decaying flares. Then we determined conditions under which one, two, or more breaks or local maxima occur in the PSD. We calculated positions of these features and determined the changing slope of the model PSD. Furthermore, we considered the influence of the modulation by the orbital motion for a variability pattern assumed to result from an orbiting-spot model. Results: We suggest that our general methodology can be useful for describing non-monotonic PSD profiles (such as the trend seen, on different scales, in exemplary cases of the high-mass X-ray binary Cygnus X-1 and the narrow-line Seyfert galaxy Ark 564). We adopt a model where these power spectra are reproduced as a superposition of several Lorentzians with varying amplitudes in the X-ray-band light curve. Our general approach can help in constraining the model parameters and in determining which parts of the parameter space are accessible under various circumstances.
Rouhani, S. Zia
1996-01-01
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.
Rouhani, S.Z.
1996-12-03
In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.
NASA Astrophysics Data System (ADS)
Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid
2018-02-01
The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)
2009-01-01
A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Tang, Shoou-Yu (Inventor)
2011-01-01
A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-01-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1 to 47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo. PMID:25960599
NASA Astrophysics Data System (ADS)
Shah, Rhythm R.; Davis, Todd P.; Glover, Amanda L.; Nikles, David E.; Brazel, Christopher S.
2015-08-01
Heating of nanoparticles (NPs) using an AC magnetic field depends on several factors, and optimization of these parameters can improve the efficiency of heat generation for effective cancer therapy while administering a low NP treatment dose. This study investigated magnetic field strength and frequency, NP size, NP concentration, and solution viscosity as important parameters that impact the heating efficiency of iron oxide NPs with magnetite (Fe3O4) and maghemite (γ-Fe2O3) crystal structures. Heating efficiencies were determined for each experimental setting, with specific absorption rates (SARs) ranging from 3.7 to 325.9 W/g Fe. Magnetic heating was conducted on iron oxide NPs synthesized in our laboratories (with average core sizes of 8, 11, 13, and 18 nm), as well as commercially-available iron oxides (with average core sizes of 8, 9, and 16 nm). The experimental magnetic coil system made it possible to isolate the effect of magnetic field parameters and independently study the effect on heat generation. The highest SAR values were found for the 18 nm synthesized particles and the maghemite nanopowder. Magnetic field strengths were applied in the range of 15.1-47.7 kA/m, with field frequencies ranging from 123 to 430 kHz. The best heating was observed for the highest field strengths and frequencies tested, with results following trends predicted by the Rosensweig equation. An increase in solution viscosity led to lower heating rates in nanoparticle solutions, which can have significant implications for the application of magnetic fluid hyperthermia in vivo.
Ely, D. Matthew
2006-01-01
Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow routing parameter. Although the primary objective of this study was to identify, by geographic region, the importance of the parameter value to the simulation of ground-water recharge, the secondary objectives proved valuable for future modeling efforts. The value of a rigorous sensitivity analysis can (1) make the calibration process more efficient, (2) guide additional data collection, (3) identify model limitations, and (4) explain simulated results.
Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M. M.; Hanan, N. A.; Matos, J. E.
1999-09-27
Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less
Model Construction and Analysis of Respiration in Halobacterium salinarum.
Talaue, Cherryl O; del Rosario, Ricardo C H; Pfeiffer, Friedhelm; Mendoza, Eduardo R; Oesterhelt, Dieter
2016-01-01
The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.
Monolithically compatible impedance measurement
Ericson, Milton Nance; Holcomb, David Eugene
2002-01-01
A monolithic sensor includes a reference channel and at least one sensing channel. Each sensing channel has an oscillator and a counter driven by the oscillator. The reference channel and the at least one sensing channel being formed integrally with a substrate and intimately nested with one another on the substrate. Thus, the oscillator and the counter have matched component values and temperature coefficients. A frequency determining component of the sensing oscillator is formed integrally with the substrate and has an impedance parameter which varies with an environmental parameter to be measured by the sensor. A gating control is responsive to an output signal generated by the reference channel, for terminating counting in the at least one sensing channel at an output count, whereby the output count is indicative of the environmental parameter, and successive ones of the output counts are indicative of changes in the environmental parameter.
Investigation into the influence of build parameters on failure of 3D printed parts
NASA Astrophysics Data System (ADS)
Fornasini, Giacomo
Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.
Filter Strategies for Mars Science Laboratory Orbit Determination
NASA Technical Reports Server (NTRS)
Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.
2013-01-01
The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.
Spaceflight and immune responses of Rhesus monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1994-01-01
Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.
Verlinden, Christopher M A; Sarkar, J; Cornuelle, B D; Kuperman, W A
2017-02-01
The waveguide invariant (WGI) is a property that can be used to localize acoustic radiators and extract information about the environment. Here the WGI is determined using ships as sources of opportunity, tracked using the Automatic Identification System (AIS). The relationship between range, acoustic intensity, and frequency for a ship in a known position is used to determine the WGI parameter β. These β values are interpolated and a map of β is generated. The method is demonstrated using data collected in a field experiment on a single hydrophone in a shallow water environment off the coast of Southern California.
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Parameters of oscillation generation regions in open star cluster models
NASA Astrophysics Data System (ADS)
Danilov, V. M.; Putkov, S. I.
2017-07-01
We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.
Numerical-experimental study of internal fixation system "Dufoo" for vertebral fractures.
Nieto-Miranda, J Jesús; Faraón-Carbajal Romero, Manuel; Sánchez-Aguilar, Jons
2012-01-01
We describe a numerical experimental study of the stress generated by the internal fixation system "Dufoo" used in the treatment of vertebral fractures with the purpose of validating the numerical model of human lumbar vertebrae under the main physiological loads that the human body is exposed to in this area. The objective is to model and numerically simulate the elements of the musculoskeletal system to collect the stresses generated and other parameters that are difficult to measure experimentally in the thoracic lumbar vertebrae. We used an internal fixator "Dufoo" and vertebrae L2-L3-L4 specimens from pig and human. The system uses a total L3 corpectomy. The fixator acts as a mechanical bridge implant from L2 to L4. Numerical analysis was performed using the finite element method (FEM). For the experimental study, reflective photoelasticity and extensometry were used. Torsion and combined loads generate the main displacements and stresses in the study system, determining that the internal fixation carries out part of the function of the damaged organ structure when absorbing the stresses presented by applied loads. Numerical analysis allows great freedom in the management of the variables involved in the developed models using radiological images. Geometric models are obtained and are entered into FEM programs that allow testing using parameters that, under actual conditions, may not be easily carried out, allowing to comprehensively determine the biomechanical behavior of the coupled system of study.
Space tug point design study. Volume 4: Program requirements
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the configuration of a space tug and to predict the performance parameters. The program plans and planning data generated in support of the tug development program are presented. The preliminary plans and supporting planning data emphasize the following requirements: (1) maintenance and refurbishment, (2) technology development, (3) production, (4) test facilities, (5) quality control, and (6) scheduling.
NASA Astrophysics Data System (ADS)
Kwok, Yu Fat
The main objective of this study is to develop a model for the determination of optimum testing interval (OTI) of non-redundant standby plants. This study focuses on the emergency power generators in tall buildings in Hong Kong. The model for the reliability, which is developed, is applicable to any non-duplicated standby plant. In a tall building, the mobilisation of occupants is constrained by its height and the building internal layout. Occupant's safety, amongst other safety considerations, highly depends on the reliability of the fire detection and protection system, which in turn is dependent on the reliability of the emergency power generation plants. A thorough literature survey shows that the practice used in determining OTI in nuclear plants is generally applicable. Historically, the OTI in these plants is determined by balancing the testing downtime and reliability gained from frequent testing. However, testing downtime does not exist in plants like emergency power generator. Subsequently, sophisticated models have taken repairing downtime into consideration. In this study, the algorithms for the determination of OTI, and hence reliability of standby plants, are reconsidered. A new concept is introduced into the subject. A new model is developed for such purposes which embraces more realistic factors found in practice. System aging and the finite life cycle of the standby plant are considered. Somewhat more pragmatic is that the Optimum Overhauling Interval can also be determined from this new model. System unavailability grow with time, but can be reset by test or overhaul. Contrary to fixed testing intervals, OTI is determined whenever system point unavailability exceeds certain level, which depends on the reliability requirement of the standby system. An optimum testing plan for lowering this level to the 'minimum useful unavailability' level (see section 9.1 for more elaboration) can be determined by the new model presented. Cost effectiveness is accounted for by a new parameter 'tau min', the minimum testing interval (MTI). The MTI optimises the total number of tests and the total number of overhauls, when the costs for each are available. The model sets up criteria for test and overhaul and to 'announce' end of system life. The usefulness of the model is validated by a detailed analysis of the operating parameters from 8,500 maintenance records collected for emergency power generation plants in high rise buildings in Hong Kong. (Abstract shortened by UMI.)
Preliminary test results of electrical charged particle generator for application to fog dispersal
NASA Technical Reports Server (NTRS)
Frost, W.
1982-01-01
A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.
Automated crystallographic system for high-throughput protein structure determination.
Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F
2003-07-01
High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
NASA Astrophysics Data System (ADS)
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
Aeroelastic considerations for torsionally soft rotors
NASA Technical Reports Server (NTRS)
Mantay, W. R.; Yeager, W. T., Jr.
1985-01-01
A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades.
On the robustness of a Bayes estimate. [in reliability theory
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1974-01-01
This paper examines the robustness of a Bayes estimator with respect to the assigned prior distribution. A Bayesian analysis for a stochastic scale parameter of a Weibull failure model is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by the Monte Carlo method in which, although an inverted gamma is the assigned prior, realizations are generated using distribution functions of varying shape. For several distributional forms and even for some fixed values of the parameter, simulated mean squared errors of Bayes and minimum variance unbiased estimators are determined and compared. Results indicate that the Bayes estimator remains squared-error superior and appears to be largely robust to the form of the assigned prior distribution.
Energy spectra and E2 transition rates of 124—130Ba
NASA Astrophysics Data System (ADS)
Sabri, H.; Seidi, M.
2016-10-01
In this paper, we have studied the energy spectra and B(E2) values of 124—130Ba isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes. We have used a transitional interacting Boson model (IBM), Hamiltonian which is based on affine SU(1,1) Lie algebra in the both IBM-1 and 2 versions and also the Catastrophe theory in combination with a coherent state formalism to generate energy surfaces and determine the exact values of control parameters. Our results for control parameters suggest a combination of U(5) and SO(6) dynamical symmetries in this isotopic chain. Also, the theoretical predictions can be rather well reproduce the experimental counterparts, when the control parameter is approached to the SO(6) limit.
Identifying uniformly mutated segments within repeats.
Sahinalp, S Cenk; Eichler, Evan; Goldberg, Paul; Berenbrink, Petra; Friedetzky, Tom; Ergun, Funda
2004-12-01
Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).
Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2011-01-01
The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.
Combustion Stability Analyses for J-2X Gas Generator Development
NASA Technical Reports Server (NTRS)
Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.
2010-01-01
The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.
NASA Astrophysics Data System (ADS)
Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.
2017-12-01
Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic groundwater conditions, which is another key factor to understand the subrosion process. The elastic parameters derived from seismic velocities can help to identify possible zones of instability.
The pure rotational spectrum of CaNC
NASA Astrophysics Data System (ADS)
Scurlock, C. T.; Steimle, T. C.; Suenram, R. D.; Lovas, F. J.
1994-03-01
The pure rotational spectrum of calcium isocyanide, CaNC, in its (0,0,0) X 2Σ+ vibronic state was measured using a combination of Fourier transform microwave (FTMW) and pump/probe microwave-optical double resonance (PPMODR) spectroscopy. Gaseous CaNC was generated using a laser ablation/supersonic expansion source. The determined spectroscopic parameters are (in MHz), B=4048.754 332 (29); γ=18.055 06 (23); bF=12.481 49 (93); c=2.0735 (14); and eQq0=-2.6974 (11). The hyperfine parameters are qualitatively interpreted in terms of a plausible molecular orbital descriptions and a comparison with the alkaline earth monohalides and the alkali monocyanides is given.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)
2010-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2008-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
Optical air data systems and methods
NASA Technical Reports Server (NTRS)
Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)
2005-01-01
Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetser, John David
2013-10-01
This report details Sculpt's implementation from a user's perspective. Sculpt is an automatic hexahedral mesh generation tool developed at Sandia National Labs by Steve Owen. 54 predetermined test cases are studied while varying the input parameters (Laplace iterations, optimization iterations, optimization threshold, number of processors) and measuring the quality of the resultant mesh. This information is used to determine the optimal input parameters to use for an unknown input geometry. The overall characteristics are covered in Chapter 1. The speci c details of every case are then given in Appendix A. Finally, example Sculpt inputs are given in B.1 andmore » B.2.« less
Response of Partially Saturated Non-cohesive Soils
NASA Astrophysics Data System (ADS)
Świdziński, Waldemar; Mierczyński, Jacek; Mikos, Agata
2017-12-01
This paper analyses and discusses experimental results of undrained triaxial tests. The tests were performed on non-cohesive partially saturated soil samples subjected to monotonic and cyclic loading. The tests were aimed at determining the influence of saturation degree on soil's undrained response (shear strength, excess pore pressure generation). The saturation of samples was monitored by checking Skempton's parameter B. Additionally, seismic P-wave velocity measurements were carried out on samples characterized by various degrees of saturation. The tests clearly showed that liquefaction may also take place in non-cohesive soils that are not fully saturated and that the liquefaction potential of such soils strongly depends on the B parameter.
Generation of realistic tsunami waves using a bottom-tilting wave maker
NASA Astrophysics Data System (ADS)
Park, Yong Sung; Hwang, Jin Hwan
2016-11-01
Tsunamis have caused more than 260,000 human losses and 250 billion in damage worldwide in the last ten years. Observations made during 2011 Japan Tohoku Tsunami revealed that the commonly used waves (solitary waves) to model tsunamis are at least an order-of-magnitude shorter than the real tsunamis, which calls for re-evaluation of the current understanding of tsunamis. To prompt the required paradigm shift, a new wave generator, namely the bottom-tilting wave generator, has been developed at the University of Dundee. The wave tank is fitted with an adjustable slope and a bottom flap hinged at the beginning of the slope. By moving the bottom flap up and down, we can generate very long waves. Here we will report characteristics of waves generated by simple bottom motions, either moving it upward or downward from an initial displacement ending it being horizontal. Two parameters, namely the initial displacement of the bottom and the speed of the motion, determine characteristics of the generated waves. Wave amplitudes scale well with the volume flux of the displaced water. On the other hand, due to combined effects of nonlinearity and dispersion, wavelengths show more complicated relationship with the two bottom motion parameters. We will also demonstrate that by combining simple up and down motions, it is possible to generate waves resembling the one measured during 2011 tsunami. YSP acknowledges financial support from the Royal Society of Edinburgh through the Royal Society of Edinburgh and Scottish Government Personal Research Fellowship Co-Funded by the Marie-Curie Actions.
NASA Astrophysics Data System (ADS)
Kurosu, Keita; Das, Indra J.; Moskvin, Vadim P.
2016-01-01
Spot scanning, owing to its superior dose-shaping capability, provides unsurpassed dose conformity, in particular for complex targets. However, the robustness of the delivered dose distribution and prescription has to be verified. Monte Carlo (MC) simulation has the potential to generate significant advantages for high-precise particle therapy, especially for medium containing inhomogeneities. However, the inherent choice of computational parameters in MC simulation codes of GATE, PHITS and FLUKA that is observed for uniform scanning proton beam needs to be evaluated. This means that the relationship between the effect of input parameters and the calculation results should be carefully scrutinized. The objective of this study was, therefore, to determine the optimal parameters for the spot scanning proton beam for both GATE and PHITS codes by using data from FLUKA simulation as a reference. The proton beam scanning system of the Indiana University Health Proton Therapy Center was modeled in FLUKA, and the geometry was subsequently and identically transferred to GATE and PHITS. Although the beam transport is managed by spot scanning system, the spot location is always set at the center of a water phantom of 600 × 600 × 300 mm3, which is placed after the treatment nozzle. The percentage depth dose (PDD) is computed along the central axis using 0.5 × 0.5 × 0.5 mm3 voxels in the water phantom. The PDDs and the proton ranges obtained with several computational parameters are then compared to those of FLUKA, and optimal parameters are determined from the accuracy of the proton range, suppressed dose deviation, and computational time minimization. Our results indicate that the optimized parameters are different from those for uniform scanning, suggesting that the gold standard for setting computational parameters for any proton therapy application cannot be determined consistently since the impact of setting parameters depends on the proton irradiation technique. We therefore conclude that customization parameters must be set with reference to the optimized parameters of the corresponding irradiation technique in order to render them useful for achieving artifact-free MC simulation for use in computational experiments and clinical treatments.
NASA Astrophysics Data System (ADS)
Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen
2015-10-01
Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.
[Development of a Compared Software for Automatically Generated DVH in Eclipse TPS].
Xie, Zhao; Luo, Kelin; Zou, Lian; Hu, Jinyou
2016-03-01
This study is to automatically calculate the dose volume histogram(DVH) for the treatment plan, then to compare it with requirements of doctor's prescriptions. The scripting language Autohotkey and programming language C# were used to develop a compared software for automatically generated DVH in Eclipse TPS. This software is named Show Dose Volume Histogram (ShowDVH), which is composed of prescription documents generation, operation functions of DVH, software visualization and DVH compared report generation. Ten cases in different cancers have been separately selected, in Eclipse TPS 11.0 ShowDVH could not only automatically generate DVH reports but also accurately determine whether treatment plans meet the requirements of doctor’s prescriptions, then reports gave direction for setting optimization parameters of intensity modulated radiated therapy. The ShowDVH is an user-friendly and powerful software, and can automatically generated compared DVH reports fast in Eclipse TPS 11.0. With the help of ShowDVH, it greatly saves plan designing time and improves working efficiency of radiation therapy physicists.
NASA Astrophysics Data System (ADS)
Cope, Robert Frank, III
1998-12-01
The electric utility industry in the United States is currently experiencing a new and different type of growing pain. It is the pain of having to restructure itself into a competitive business. Many industry experts are trying to explain how the nation as a whole, as well as individual states, will implement restructuring and handle its numerous "transition problems." One significant transition problem for federal and state regulators rests with determining a utility's stranded costs. Stranded generation facilities are assets which would be uneconomic in a competitive environment or costs for assets whose regulated book value is greater than market value. At issue is the methodology which will be used to estimate stranded costs. The two primary methods are known as "Top-Down" and "Bottom-Up." The "Top-Down" approach simply determines the present value of the losses in revenue as the market price for electricity changes over a period of time into the future. The problem with this approach is that it does not take into account technical issues associated with the generation and wheeling of electricity. The "Bottom-Up" approach computes the present value of specific strandable generation facilities and compares the resulting valuations with their historical costs. It is regarded as a detailed and difficult, but more precise, approach to identifying stranded assets and their associated costs. This dissertation develops a "Bottom-Up" quantitative, optimization-based approach to electric power wheeling within the state of Louisiana. It optimally evaluates all production capabilities and coordinates the movement of bulk power through transmission interconnections of competing companies in and around the state. Sensitivity analysis to this approach is performed by varying seasonal consumer demand, electric power imports, and transmission inter-connection cost parameters. Generation facility economic dispatch and transmission interconnection bulk power transfers, specific to each set of parameters, lead to the identification of stranded generation facilities. Stranded costs of non-dispatched and uneconomically dispatched generation facilities can then be estimated to indicate, arguably, the largest portion of restructuring transition costs as the industry is transformed from its present monopolistic structure to a competitive one.
[A Generator of Mono-energetic Electrons for Response Test of Charged Particle Detectors.].
Matsubayashi, Fumiyasu; Yoshida, Katsuhide; Maruyama, Koichi
2005-01-01
We designed and fabricated a generator of mono-energetic electrons for the response test of charged particle detectors, which is used to measure fragmented particles of the carbon beam for cancer therapy. Mono-energetic electrons are extracted from (90)Sr by analyzing the energy of beta rays in the generator with a magnetic field. We evaluated performance parameters of the generator such as the absolute energy, the energy resolution and the counting rates of extracted electrons. The generator supplies mono-energetic electrons from 0.5MeV to 1.7MeV with the energy resolution of 20% in FWHM at higher energies than 1.0MeV. The counting rate of electrons is 400cpm at the maximum when the activity of (90)Sr is 298kBq. The generator was used to measure responses of fragmented-particle detectors and to determine the threshold energy of the detectors. We evaluated the dependence of pulse height variation on the detector position and the threshold energy by using the generator. We concluded this generator is useful for the response test of general charged particle detectors.
NASA Astrophysics Data System (ADS)
Griesbaum, Luisa; Marx, Sabrina; Höfle, Bernhard
2017-07-01
In recent years, the number of people affected by flooding caused by extreme weather events has increased considerably. In order to provide support in disaster recovery or to develop mitigation plans, accurate flood information is necessary. Particularly pluvial urban floods, characterized by high temporal and spatial variations, are not well documented. This study proposes a new, low-cost approach to determining local flood elevation and inundation depth of buildings based on user-generated flood images. It first applies close-range digital photogrammetry to generate a geo-referenced 3-D point cloud. Second, based on estimated camera orientation parameters, the flood level captured in a single flood image is mapped to the previously derived point cloud. The local flood elevation and the building inundation depth can then be derived automatically from the point cloud. The proposed method is carried out once for each of 66 different flood images showing the same building façade. An overall accuracy of 0.05 m with an uncertainty of ±0.13 m for the derived flood elevation within the area of interest as well as an accuracy of 0.13 m ± 0.10 m for the determined building inundation depth is achieved. Our results demonstrate that the proposed method can provide reliable flood information on a local scale using user-generated flood images as input. The approach can thus allow inundation depth maps to be derived even in complex urban environments with relatively high accuracies.
Gesture-controlled interfaces for self-service machines and other applications
NASA Technical Reports Server (NTRS)
Cohen, Charles J. (Inventor); Jacobus, Charles J. (Inventor); Paul, George (Inventor); Beach, Glenn (Inventor); Foulk, Gene (Inventor); Obermark, Jay (Inventor); Cavell, Brook (Inventor)
2004-01-01
A gesture recognition interface for use in controlling self-service machines and other devices is disclosed. A gesture is defined as motions and kinematic poses generated by humans, animals, or machines. Specific body features are tracked, and static and motion gestures are interpreted. Motion gestures are defined as a family of parametrically delimited oscillatory motions, modeled as a linear-in-parameters dynamic system with added geometric constraints to allow for real-time recognition using a small amount of memory and processing time. A linear least squares method is preferably used to determine the parameters which represent each gesture. Feature position measure is used in conjunction with a bank of predictor bins seeded with the gesture parameters, and the system determines which bin best fits the observed motion. Recognizing static pose gestures is preferably performed by localizing the body/object from the rest of the image, describing that object, and identifying that description. The disclosure details methods for gesture recognition, as well as the overall architecture for using gesture recognition to control of devices, including self-service machines.
Recurrence Methods for the Identification of Morphogenetic Patterns
Facchini, Angelo; Mocenni, Chiara
2013-01-01
This paper addresses the problem of identifying the parameters involved in the formation of spatial patterns in nonlinear two dimensional systems. To this aim, we perform numerical experiments on a prototypical model generating morphogenetic Turing patterns, by changing both the spatial frequency and shape of the patterns. The features of the patterns and their relationship with the model parameters are characterized by means of the Generalized Recurrence Quantification measures. We show that the recurrence measures Determinism and Recurrence Entropy, as well as the distribution of the line lengths, allow for a full characterization of the patterns in terms of power law decay with respect to the parameters involved in the determination of their spatial frequency and shape. A comparison with the standard two dimensional Fourier transform is performed and the results show a better performance of the recurrence indicators in identifying a reliable connection with the spatial frequency of the patterns. Finally, in order to evaluate the robustness of the estimation of the power low decay, extensive simulations have been performed by adding different levels of noise to the patterns. PMID:24066062
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines
NASA Astrophysics Data System (ADS)
Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman
2017-10-01
Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.
Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N
2000-05-01
We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.
Triggered Snap-Through of Bistable Shells
NASA Astrophysics Data System (ADS)
Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi
Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.
Simultaneous beam sampling and aperture shape optimization for SPORT.
Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei
2015-02-01
Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.
Simultaneous beam sampling and aperture shape optimization for SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu
Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less
An analysis of the massless planet approximation in transit light curve models
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Ruch, Gerry
2015-08-01
Many extrasolar planet transit light curve models use the approximation of a massless planet. They approximate the planet as orbiting elliptically with the host star at the orbit’s focus instead of depicting the planet and star as both orbiting around a common center of mass. This approximation should generally be very good because the transit is a small fraction of the full-phase curve and the planet to stellar mass ratio is typically very small. However, to fully examine the legitimacy of this approximation, it is useful to perform a robust, all-parameter space-encompassing statistical comparison between the massless planet model and the more accurate model.Towards this goal, we establish two questions: (1) In what parameter domain is the approximation invalid? (2) If characterizing an exoplanetary system in this domain, what is the error of the parameter estimates when using the simplified model? We first address question (1). Given each parameter vector in a finite space, we can generate the simplified and more complete model curves. Associated with these model curves is a measure of the deviation between them, such as the root mean square (RMS). We use Gibbs sampling to generate a sample that is distributed according to the RMS surface. The high-density regions in the sample correspond to a large deviation between the models. To determine the domains of these high-density areas, we first employ the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm. We then characterize the subclusters by performing the Patient Rule Induction Method (PRIM) on the transformed Principal Component spaces of each cluster. This process yields descriptors of the parameter domains with large discrepancies between the models.To consider question (2), we start by generating synthetic transit curve observations in the domains specified by the above analysis. We then derive the best-fit parameters of these synthetic light curves according to each model and examine the quality of agreement between the estimated parameters. Taken as a whole, these steps allow for a thorough analysis of the validity of the massless planet approximation.
Dual ant colony operational modal analysis parameter estimation method
NASA Astrophysics Data System (ADS)
Sitarz, Piotr; Powałka, Bartosz
2018-01-01
Operational Modal Analysis (OMA) is a common technique used to examine the dynamic properties of a system. Contrary to experimental modal analysis, the input signal is generated in object ambient environment. Operational modal analysis mainly aims at determining the number of pole pairs and at estimating modal parameters. Many methods are used for parameter identification. Some methods operate in time while others in frequency domain. The former use correlation functions, the latter - spectral density functions. However, while some methods require the user to select poles from a stabilisation diagram, others try to automate the selection process. Dual ant colony operational modal analysis parameter estimation method (DAC-OMA) presents a new approach to the problem, avoiding issues involved in the stabilisation diagram. The presented algorithm is fully automated. It uses deterministic methods to define the interval of estimated parameters, thus reducing the problem to optimisation task which is conducted with dedicated software based on ant colony optimisation algorithm. The combination of deterministic methods restricting parameter intervals and artificial intelligence yields very good results, also for closely spaced modes and significantly varied mode shapes within one measurement point.
An improved computer model for prediction of axial gas turbine performance losses
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1984-01-01
The calculation model performs a rapid preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; and (3) predictions of expected turbine performance. The model uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with an array of seven NASA single-stage axial gas turbine configurations.
A comprehensive method for preliminary design optimization of axial gas turbine stages
NASA Technical Reports Server (NTRS)
Jenkins, R. M.
1982-01-01
A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.
Moustafa, Islam O F; ElHansy, Muhammad H E; Al Hallag, Moataz; Fink, James B; Dailey, Patricia; Rabea, Hoda; Abdelrahim, Mohamed E A
2017-08-01
Inhaled-medication delivered during mechanical-ventilation is affected by type of aerosol-generator and humidity-condition. Despite many in-vitro studies related to aerosol-delivery to mechanically-ventilated patients, little has been reported on clinical effects of these variables. The aim of this study was to determine effect of humidification and type of aerosol-generator on clinical status of mechanically ventilated asthmatics. 72 (36 females) asthmatic subjects receiving invasive mechanical ventilation were enrolled and assigned randomly to 6 treatment groups of 12 (6 females) subjects each received, as possible, all inhaled medication using their assigned aerosol generator and humidity condition during delivery. Aerosol-generators were placed immediately after humidifier within inspiratory limb of mechanical ventilation circuit. First group used vibrating-mesh-nebulizer (Aerogen Solo; VMN) with humidification; Second used VMN without humidification; Third used metered-dose-inhaler with AeroChamber Vent (MDI-AV) with humidification; Forth used MDI-AV without humidification; Fifth used Oxycare jet-nebulizer (JN) with humidification; Sixth used JN without humidification. Measured parameters included clinical-parameters reflected patient response (CP) and endpoint parameters e.g. length-of-stay in the intensive-care-unit (ICU-days) and mechanical-ventilation days (MV-days). There was no significant difference between studied subjects in the 6 groups in baseline of CP. VMN resulted in trend to shorter ICU-days (∼1.42days) compared to MDI-AV (p = 0.39) and relatively but not significantly shorter ICU-days (∼0.75days) compared JN. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied with very light insignificant tendency of delivery at humid condition to decrease MV-days and ICU-days. No significant effect was found of changing humidity during aerosol-delivery to ventilated-patient. VMN to deliver aerosol in ventilated patient resulted in trend to decreased ICU-days compared to JN and MDI-AV. Aerosol-delivery with or without humidification did not have any significant effect on any of parameters studied. However, we recommend increasing the number of patients studied to corroborate this finding. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh
2015-03-01
A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.
Electron trajectory evaluation in laser-plasma interaction for effective output beam
NASA Astrophysics Data System (ADS)
Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.
2010-06-01
Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
A tuned mesh-generation strategy for image representation based on data-dependent triangulation.
Li, Ping; Adams, Michael D
2013-05-01
A mesh-generation framework for image representation based on data-dependent triangulation is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed framework has several free parameters, the effects of different choices of these parameters on mesh quality are studied, leading to the recommendation of a particular set of choices for these parameters. A mesh-generation method is then introduced that employs the proposed framework with these best parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of squared error and subjectively) than those generated by several competing approaches, at a relatively modest computational and memory cost.
Tunnel transit-time (TUNNETT) devices for terahertz sources
NASA Technical Reports Server (NTRS)
Haddad, G. I.; East, J. R.; Kidner, C.
1991-01-01
The potential and capabilities of tunnel transit-time (TUNNETT) devices for power generation in the 100-1000 GHz range are presented. The basic properties of these devices and the important material parameters which determine their properties are discussed and criteria for designing such devices are presented. It is shown from a first-order model that significant amounts of power can be obtained from these devices in the terahertz frequency range.
Aircraft Engine Sump Fire Mitigation, Phase 2
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.
Sherwood, Carly A; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A; Martin, Daniel B
2009-07-01
Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition.
Sherwood, Carly A.; Eastham, Ashley; Lee, Lik Wee; Risler, Jenni; Mirzaei, Hamid; Falkner, Jayson A.; Martin, Daniel B.
2009-01-01
Multiple reaction monitoring (MRM) is a highly sensitive method of targeted mass spectrometry (MS) that can be used to selectively detect and quantify peptides based on the screening of specified precursor peptide-to-fragment ion transitions. MRM-MS sensitivity depends critically on the tuning of instrument parameters, such as collision energy and cone voltage, for the generation of maximal product ion signal. Although generalized equations and values exist for such instrument parameters, there is no clear indication that optimal signal can be reliably produced for all types of MRM transitions using such an algorithmic approach. To address this issue, we have devised a workflow functional on both Waters Quattro Premier and ABI 4000 QTRAP triple quadrupole instruments that allows rapid determination of the optimal value of any programmable instrument parameter for each MRM transition. Here, we demonstrate the strategy for the optimizations of collision energy and cone voltage, but the method could be applied to other instrument parameters, such as declustering potential, as well. The workflow makes use of the incremental adjustment of the precursor and product m/z values at the hundredth decimal place to create a series of MRM targets at different collision energies that can be cycled through in rapid succession within a single run, avoiding any run-to-run variability in execution or comparison. Results are easily visualized and quantified using the MRM software package Mr. M to determine the optimal instrument parameters for each transition. PMID:19405522
Uncertainty quantification for accident management using ACE surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varuttamaseni, A.; Lee, J. C.; Youngblood, R. W.
The alternating conditional expectation (ACE) regression method is used to generate RELAP5 surrogates which are then used to determine the distribution of the peak clad temperature (PCT) during the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed (F and B) operation in the Zion-1 nuclear power plant. The construction of the surrogates assumes conditional independence relations among key reactor parameters. The choice of parameters to model is based on the macroscopic balance statements governing the behavior of the reactor. The peak clad temperature is calculated based on the independent variables that are known tomore » be important in determining the success of the F and B operation. The relationship between these independent variables and the plant parameters such as coolant pressure and temperature is represented by surrogates that are constructed based on 45 RELAP5 cases. The time-dependent PCT for different values of F and B parameters is calculated by sampling the independent variables from their probability distributions and propagating the information through two layers of surrogates. The results of our analysis show that the ACE surrogates are able to satisfactorily reproduce the behavior of the plant parameters even though a quasi-static assumption is primarily used in their construction. The PCT is found to be lower in cases where the F and B operation is initiated, compared to the case without F and B, regardless of the F and B parameters used. (authors)« less
A simplified lumped model for the optimization of post-buckled beam architecture wideband generator
NASA Astrophysics Data System (ADS)
Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi
2017-11-01
Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.
Kinematically stable bipedal locomotion using ionic polymer-metal composite actuators
NASA Astrophysics Data System (ADS)
Hosseinipour, Milad; Elahinia, Mohammad
2013-08-01
Ionic conducting polymer-metal composites (abbreviated as IPMCs) are interesting actuators that can act as artificial muscles in robotic and microelectromechanical systems. Various black or gray box models have modeled the electrochemical-mechanical behavior of these materials. In this study, the governing partial differential equation of the behavior of IPMCs is solved using finite element methods to find the critical actuation parameters, such as strain distribution, maximum strain, and response time. One-dimensional results of the FEM solution are then extended to 2D to find the tip displacement of a flap actuator and experimentally verified. A model of a seven-degree-of-freedom biped robot, actuated by IPMC flaps, is then introduced. The possibility of fast and stable bipedal locomotion using IPMC artificial muscles is the main motivation of this study. Considering the actuator limits, joint path trajectories are generated to achieve a fast and smooth motion. The stability of the proposed gait is then evaluated using the ZMP criterion and motion simulation. The fabrication parameters of each actuator, such as length, platinum plating thickness and installation angle, are then determined using the generated trajectories. A discussion on future studies on force-torque generation of IPMCs for biped locomotion concludes this paper.
Solar tower power plant using a particle-heated steam generator: Modeling and parametric study
NASA Astrophysics Data System (ADS)
Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan
2016-05-01
Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.
Plasma and Shock Generation by Indirect Laser Pulse Action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasperczuk, A.; Borodziuk, S.; Pisarczyk, T.
2006-01-15
In the paper the results of our experiment with flyer disks, accelerated to high velocities by the PALS iodine laser and subsequently creating craters when hitting massive targets , are presented. We have carried out experiments with the double targets consisted of a disk placed in front of a massive target part at distances of either 200 or 500 {mu}m. Both elements of the targets were made of Al. The following disk irradiation conditions were used: laser energy of 130 J, laser wavelength of 1.315 {mu}m, pulse duration of 0.4 ns, and laser spot diameter of 250 {mu}m. To measuremore » some plasma parameters and accelerated disk velocity a three frame interferometric system was used. Efficiency of crater creation by a disk impact was determined from the crater parameters, which were obtained by means of a crater replica technique. The experimental results concern two main stages: (a) ablative plasma generation and disk acceleration and (b) disk impact and crater creation. Spatial density distributions at different moments of plasma generation and expansion are shown. Discussion of the experimental results on the basis of a 2-D theoretical model of the laser -- solid target interaction is carried out.« less
Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems
NASA Astrophysics Data System (ADS)
Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani
2018-05-01
Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino
2017-04-01
Investigations on Palaeonummulites venosus using the natural laboratory approach for determining chamber building rate, test diameter increase rate, reproduction time and longevity is based on the decomposition of monthly obtained frequency distributions based on chamber number and test diameter into normal-distributed components. The shift of the component parameters 'mean' and 'standard deviation' during the investigation period of 15 months was used to calculate Michaelis-Menten functions applied to estimate the averaged chamber building rate and diameter increase rate under natural conditions. The individual dates of birth were estimated using the inverse averaged chamber building rate and the inverse diameter increase rate fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e. frequency divided by sediment weight) based on chamber building rate and diameter increase rate resulted both in a continuous reproduction through the year with two peaks, the stronger in May /June determined as the beginning of the summer generation (generation1) and the weaker in November determined as the beginning of the winter generation (generation 2). This reproduction scheme explains the existence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date seems to be round about one year, obtained by both estimations based on the chamber building rate and the diameter increase rate.
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino
2017-12-01
We investigated the symbiont-bearing benthic foraminifer Palaeonummulites venosus to determine the chamber building rate (CBR), test diameter increase rate (DIR), reproduction time and longevity using the `natural laboratory' approach. This is based on the decomposition of monthly obtained frequency distributions of chamber number and test diameter into normally distributed components. Test measurements were taken using MicroCT. The shift of the mean and standard deviation of component parameters during the 15-month investigation period was used to calculate Michaelis-Menten functions applied to estimate the averaged CBR and DIR under natural conditions. The individual dates of birth were estimated using the inverse averaged CBR and the inverse DIR fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e., frequency divided by sediment weight) based on both CBR and DIR revealed continuous reproduction throughout the year with two peaks, a stronger one in June determined as the onset of the summer generation (generation 1) and a weaker one in November determined as the onset of the winter generation (generation 2). This reproduction scheme explains the presence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date, is approximately 1.5 yr, an estimation obtained by using both CBR and DIR.
Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
Farsani, Zahra Amini; Schmid, Volker J
2017-01-01
In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.
Lima, Rosilda M G; Carneiro, Luana G; Afonso, Júlio C; Cunha, Kenya M D
2013-01-01
The objective of this study was to determine the solubility parameters (rapid and slow dissolution rates, rapid and slow dissolution fractions) for nickel, cadmium, zinc and manganese compounds present in a pile of slag accumulated under exposure to weathering. This slag was generated by a metallurgical industry that produced zinc and zinc alloys from hemimorphite (Zn(4)(OH)(2)Si(2)O(7).H(2)O) and willemite (Zn(2)SiO(4)) minerals. A static dissolution test in vitro was used to determine the solubility parameters and Gamble's solution was used as the simulated lung fluid (SLF), on a time basis ranging from 10 min to 1 year. The metal concentrations in the slag samples and in the SLF were determined using Particle Induced X-rays Emission (PIXE). There are significant differences in terms of solubility parameters among the metals. The results indicated that the zinc, nickel, cadmium and manganese compounds present in the slag were moderately soluble in the SLF. The rapid dissolution fractions of these metals are associated with their sulfates. In conclusion, this study confirms the harmful effects on the neighboring population of the airborne particles containing these metals that came from the slag.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
Economics of hydrogen production and liquefaction updated to 1980
NASA Technical Reports Server (NTRS)
Baker, C. R.
1979-01-01
Revised costs for generating and liquefying hydrogen in mid-1980 are presented. Plant investments were treated as straight-forward escalations resulting from inflation. Operating costs, however, were derived in terms of the unit cost of coal, fuel gas and electrical energy to permit the determination of the influence of these parameters on the cost of liquid hydrogen. Inflationary influence was recognized by requiring a 15% discounted rate of return on investment for Discounted Cash Flow financing analysis, up from 12% previously. Utility financing was revised to require an 11% interest rate on debt. The scope of operation of the hydrogen plant was revised from previous studies to include only the hydrogen generation and liquefaction facilities. On-site fuel gas and power generation, originally a part of the plant complex, was eliminated. Fuel gas and power are now treated as purchased utilities. Costs for on-site generation of fuel gas however, are included.
NASA Astrophysics Data System (ADS)
Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej
2016-08-01
We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.
Neuromorphic walking gait control.
Still, Susanne; Hepp, Klaus; Douglas, Rodney J
2006-03-01
We present a neuromorphic pattern generator for controlling the walking gaits of four-legged robots which is inspired by central pattern generators found in the nervous system and which is implemented as a very large scale integrated (VLSI) chip. The chip contains oscillator circuits that mimic the output of motor neurons in a strongly simplified way. We show that four coupled oscillators can produce rhythmic patterns with phase relationships that are appropriate to generate all four-legged animal walking gaits. These phase relationships together with frequency and duty cycle of the oscillators determine the walking behavior of a robot driven by the chip, and they depend on a small set of stationary bias voltages. We give analytic expressions for these dependencies. This chip reduces the complex, dynamic inter-leg control problem associated with walking gait generation to the problem of setting a few stationary parameters. It provides a compact and low power solution for walking gait control in robots.
Separation control by vortex generator devices in a transonic channel flow
NASA Astrophysics Data System (ADS)
Bur, Reynald; Coponet, Didier; Carpels, Yves
2009-12-01
An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.
Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators
NASA Astrophysics Data System (ADS)
Kaplin, V.; Kuznetsov, S.; Uglov, S.
2018-05-01
The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.
NASA Technical Reports Server (NTRS)
Lu, F. K.; Settles, G. S.; Bogdonoff, S. M.
1983-01-01
The interaction between a turbulent boundary layer and a shock wave generated by a sharp fin with leading edge sweepback was investigated. The incoming flow was at Mach 2.96 and at a unit Reynolds number of 63 x 10 to the 6th power 0.1 m. The approximate incoming boundary layer thickness was either 4 mm or 17 mm. The fins used were at 5 deg, 9 deg and 15 deg incidence and had leading edge sweepback from 0 deg to 65 deg. The tests consisted of surface kerosene lampblack streak visualization, surface pressure measurements, shock wave shape determination by shadowgraphs, and localized vapor screen visualization. The upstream influence lengths of the fin interactions were correlated using viscous and inviscid flow parameters. The parameters affecting the surface features close to the fin and way from the fin were also identified. Essentially, the surface features in the farfield were found to be conical.
Heredia-Olea, Erick; Pérez-Carrillo, Esther; Serna-Saldívar, Sergio O.
2015-01-01
Second-generation bioethanol production from sweet sorghum bagasse first extruded at different conditions and then treated with cell wall degrading enzymes and fermented with I. orientalis was determined. The twin extruder parameters tested were barrel temperature, screws speed, and feedstock moisture content using surface response methodology. The best extrusion conditions were 100°C, 200 rpm, and 30% conditioning moisture content. This nonchemical and continuous pretreatment did not generate inhibitory compounds. The extruded feedstocks were saccharified varying the biocatalysis time and solids loading. The best conditions were 20% solids loading and 72 h of enzymatic treatment. These particular conditions converted 70% of the total fibrous carbohydrates into total fermentable C5 and C6 sugars. The extruded enzymatically hydrolyzed sweet sorghum bagasse was fermented with the strain I. orientalis at 12% solids obtaining a yield of 198.1 mL of ethanol per kilogram of bagasse (dw). PMID:25866776
A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualini, Donatella
This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimatedmore » stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.« less
Off-resonance frequency operation for power transfer in a loosely coupled air core transformer
Scudiere, Matthew B
2012-11-13
A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.
Constraining torsion with Gravity Probe B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao Yi; Guth, Alan H.; Cabi, Serkan
2007-11-15
It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) suchmore » as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.« less
Bruno, Antonio; Pandolfo, Gianluca; Crucitti, Manuela; Cacciola, Massimo; Santoro, Vincenza; Spina, Edoardo; Zoccali, Rocco A; Muscatello, Maria R A
2017-01-01
Objectives: The nutraceutical approach to the management of metabolic syndrome (MetS) might be a promising strategy in the prevention of cardio-metabolic risk. Low-dose bergamot-derived polyphenolic fraction (BPF) has been proven effective in patients with MetS, as demonstrated by a concomitant improvement in lipemic and glycemic profiles. The present study was aimed to further explore, in a sample of subjects receiving second generation antipsychotics (SGAs), the effects on body weight and metabolic parameters of a low dose of BPF (500 mg/day) administered for 60 days. Methods: Twenty-eight outpatients treated with SGAs assumed BPF at single daily dose of 500 mg/day for 60 days. Body weight, BMI, fasting levels of glucose, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglycerides were determined; moreover, Brief Psychiatric Rating Scale (BPRS) was administered. Results: Low-dose BPF administration did not change clinical and metabolic parameters, as well as clinical symptoms in the study sample. At the end of the trial, among completers ( n = 24) only nine patients (37.5%) reached an LDL reduction >0 but <50%. Conclusions: Our results demonstrate that patients treated with SGAs may need higher BPF doses for obtaining the positive effects on body weight and metabolic parameters previously found in the general population at lower doses.
Bruno, Antonio; Pandolfo, Gianluca; Crucitti, Manuela; Cacciola, Massimo; Santoro, Vincenza; Spina, Edoardo; Zoccali, Rocco A.; Muscatello, Maria R. A.
2017-01-01
Objectives: The nutraceutical approach to the management of metabolic syndrome (MetS) might be a promising strategy in the prevention of cardio-metabolic risk. Low-dose bergamot-derived polyphenolic fraction (BPF) has been proven effective in patients with MetS, as demonstrated by a concomitant improvement in lipemic and glycemic profiles. The present study was aimed to further explore, in a sample of subjects receiving second generation antipsychotics (SGAs), the effects on body weight and metabolic parameters of a low dose of BPF (500 mg/day) administered for 60 days. Methods: Twenty-eight outpatients treated with SGAs assumed BPF at single daily dose of 500 mg/day for 60 days. Body weight, BMI, fasting levels of glucose, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglycerides were determined; moreover, Brief Psychiatric Rating Scale (BPRS) was administered. Results: Low-dose BPF administration did not change clinical and metabolic parameters, as well as clinical symptoms in the study sample. At the end of the trial, among completers (n = 24) only nine patients (37.5%) reached an LDL reduction >0 but <50%. Conclusions: Our results demonstrate that patients treated with SGAs may need higher BPF doses for obtaining the positive effects on body weight and metabolic parameters previously found in the general population at lower doses. PMID:28443024
Pros and cons of characterising an optical translocation setup
NASA Astrophysics Data System (ADS)
Maphanga, Charles; Malabi, Rudzani; Ombinda-Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience
2017-02-01
The delivery of genetic material and drugs into mammalian cells using femtosecond (fs) laser pulses is escalating rapidly. This novel light based technique achieved through a precise focusing of a laser beam on the plasma membrane is called photoporation. This technique is attained using ultrashort laser pulses to irradiate plasma membrane of mammalian cells, thus resulting in the accumulation of a vast amount of free electrons. These generated electrons react photochemically with the cell membrane, resulting in the generation of sub-microscopic pores on the cell membrane enabling a variety of extracellular media to diffuse into the cell. This study is aimed at critically analysing the "do's and don'ts" of designing, assembling, and characterising an optical translocation setup using a femtosecond legend titanium sapphire regenerative amplifier pulsed laser (Gaussian beam, 800 nm, 1 kHz, 113 fs, and an output power of 850 mW). The main objective in our study is to determine optical phototranslocation parameters which are compatible to the plasma membrane and cell viability. Such parameters included beam profiling, testing a range of laser fluencies suitable for photoporation, assessment of the beam quality and laser-cell interaction time. In our study, Chinese Hamster Ovary-K1 (CHO-K1) cells were photoporated in the presence of trypan blue to determine optimal parameters for photoporation experiment. An average power of 4.5 μW, exposure time of 7 ms, with a laser beam spot of 1.1 μm diameter at the focus worked optimally without any sign of cell stress and cytoplasmic bleeding. Cellular responses post laser treatment were analysed using cell morphology studies.
Fission barriers at the end of the chart of the nuclides
NASA Astrophysics Data System (ADS)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; Iwamoto, Akira; Mumpower, Matthew
2015-02-01
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤A ≤330 . The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop model with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than 5 000 000 different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ɛ ) and the spherical-harmonic (β ) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ɛ ,γ ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about 1 MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β -delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. These studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
Predicting Transition from Laminar to Turbulent Flow over a Surface
NASA Technical Reports Server (NTRS)
Rajnarayan, Dev (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A prediction of whether a point on a computer-generated surface is adjacent to laminar or turbulent flow is made using a transition prediction technique. A plurality of instability modes are obtained, each defined by one or more mode parameters. A vector of regressor weights is obtained for the known instability growth rates in a training dataset. For an instability mode in the plurality of instability modes, a covariance vector is determined. A predicted local instability growth rate at the point is determined using the covariance vector and the vector of regressor weights. Based on the predicted local instability growth rate, an n-factor envelope at the point is determined.
An Analytical Approach to Obtaining JWL Parameters from Cylinder Tests
NASA Astrophysics Data System (ADS)
Sutton, Ben; Ferguson, James
2015-06-01
An analytical method for determining parameters for the JWL equation of state (EoS) from cylinder test data is described. This method is applied to four datasets obtained from two 20.3 mm diameter EDC37 cylinder tests. The calculated parameters and pressure-volume (p-V) curves agree with those produced by hydro-code modelling. The calculated Chapman-Jouguet (CJ) pressure is 38.6 GPa, compared to the model value of 38.3 GPa; the CJ relative volume is 0.729 for both. The analytical pressure-volume curves produced agree with the one used in the model out to the commonly reported expansion of 7 relative volumes, as do the predicted energies generated by integrating under the p-V curve. The calculated and model energies are 8.64 GPa and 8.76 GPa respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara
Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less
Selection for growth performance of tank-reared Pacific white shrimp, Litopenaeus vannamei
NASA Astrophysics Data System (ADS)
Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao; Xiang, Jianhai
2013-05-01
Seven growth-related traits were measured to assess the selection response and genetic parameters of the growth of Pacific white shrimp, Litopenaeus vannamei, which had been domesticated in tanks for more than four generations. Phenotypic and genetic parameters were evaluated and fitted to an animal model. Realized response was measured from the difference between the mean growth rates of selected and control families. Realized heritability was determined from the ratio of the selection responses and selection differentials. The animal model heritability estimate over generations was 0.44±0.09 for body weight (BW), and ranged from 0.21±0.08 to 0.37±0.06 for size traits. Genetic correlations of phenotypic traits were more variable (0.51-0.97), although correlations among various traits were high (>0.83). Across generations, BW and size traits increased, while selection response and heritability gradually decreased. Selection responses were 12.28%-23.35% for harvest weight and 3.58%-13.53% for size traits. Heritability estimates ranged from 0.34±0.09 to 0.48±0.15 for harvest weight and 0.17±0.01-0.38±0.11 for size traits. All phenotypic and genetic parameters differed between various treatments. To conclude, the results demonstrated a potential for mass selection of growth traits in L. vannamei. A breeding scheme could use this information to integrate the effectiveness constituent traits into an index to achieve genetic progress.
Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.
Hänzi, Sara; Straka, Hans
2017-01-15
During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.
White, L J; Mandl, J N; Gomes, M G M; Bodley-Tickell, A T; Cane, P A; Perez-Brena, P; Aguilar, J C; Siqueira, M M; Portes, S A; Straliotto, S M; Waris, M; Nokes, D J; Medley, G F
2007-09-01
The nature and role of re-infection and partial immunity are likely to be important determinants of the transmission dynamics of human respiratory syncytial virus (hRSV). We propose a single model structure that captures four possible host responses to infection and subsequent reinfection: partial susceptibility, altered infection duration, reduced infectiousness and temporary immunity (which might be partial). The magnitude of these responses is determined by four homotopy parameters, and by setting some of these parameters to extreme values we generate a set of eight nested, deterministic transmission models. In order to investigate hRSV transmission dynamics, we applied these models to incidence data from eight international locations. Seasonality is included as cyclic variation in transmission. Parameters associated with the natural history of the infection were assumed to be independent of geographic location, while others, such as those associated with seasonality, were assumed location specific. Models incorporating either of the two extreme assumptions for immunity (none or solid and lifelong) were unable to reproduce the observed dynamics. Model fits with either waning or partial immunity to disease or both were visually comparable. The best fitting structure was a lifelong partial immunity to both disease and infection. Observed patterns were reproduced by stochastic simulations using the parameter values estimated from the deterministic models.
Kryst, Lukasz
2014-01-01
Analyses of birth parameters worldwide reveal relatively high variability over time, often related to socioeconomic factors. The aim was to determine the existence of inter-generational changes in birth parameters in Kraków (Poland) in recent years and factors responsible. This research analysed data on 7800 newborns (e.g. body length and weight) and their parents in the years 1985-2010. The significance of differences was calculated using ANOVA. To examine the potential effect of environmental factors, MANOVA were used. In the case of birth weight no significant changes were observed. A significant decreasing tendency in birth length from the beginning of the 21st century was shown - this observation is quite rare. Accordingly, BMI increased significantly in the 2000s. A decreasing tendency was observed for head circumference. In the analysed period Poland experienced significant socio-economic changes, which could have partly contributed to the observed changes. Some of the observed trends in birth parameters are recent phenomena and it seems necessary to continue the research to confirm if these changes form a steady trend or are only temporary. Tracking any phenomena related to the development is important for the determination of disruptive factors and the reduction of their adverse effects.
Comparison of the Battery Life of Nonrechargeable Generators for Deep Brain Stimulation.
Helmers, Ann-Kristin; Lübbing, Isabel; Deuschl, Günther; Witt, Karsten; Synowitz, Michael; Mehdorn, Hubertus Maximilian; Falk, Daniela
2017-11-03
Nonrechargeable deep brain stimulation (DBS) generators must be replaced when the battery capacity is exhausted. Battery life depends on many factors and differs between generator models. A new nonrechargeable generator model replaced the previous model in 2008. Our clinical impression is that the earlier model had a longer battery life than the new one. We conducted this study to substantiate this. We determined the battery life of every DBS generator that had been implanted between 2005 and 2012 in our department for the treatment of Parkinson's disease, and compared the battery lives of the both devices. We calculated the current used by estimating the total electrical energy delivered (TEED) based on the stimulation parameters in use one year after electrode implantation. One hundred ninety-two patients were included in the study; 105 with the old and 86 with the new model generators. The mean battery life in the older model was significantly longer (5.44 ± 0.20 years) than that in the new model (4.44 ± 0.17 years) (p = 0.023). The mean TEED without impedance was 219.9 ± 121.5 mW * Ω in the older model and 145.1 ± 72.7 mW * Ω in the new one, which indicated significantly lower stimulation parameters in the new model (p = 0.00038). The battery life of the new model was significantly shorter than that of the previous model. A lower battery capacity is the most likely reason, since current consumption was similar in both groups. © 2017 International Neuromodulation Society.
NASA Astrophysics Data System (ADS)
Fell, Nicholas F., Jr.; Pinnick, Ronald G.; Hill, Steven C.; Videen, Gorden W.; Niles, Stanley; Chang, Richard K.; Holler, Stephen; Pan, Yongle; Bottiger, Jerold R.; Bronk, Burt V.
1999-01-01
Our group has been developing a system for single-particle fluorescence detection of aerosolized agents. This paper describes the most recent steps in the evolution of this system. The effects of fluorophore concentrations, droplet size, and excitation power have also been investigated with microdroplets containing tryptophan in water to determine the effects of these parameters on our previous results. The vibrating orifice droplet generator was chosen for this study base don its ability to generate particles of well- known and reproducible size. The power levels required to reach saturation and photodegradation were determined. In addition, the collection of fluorescence emission was optimized through the use of a UV achromatic photographic lens. This arrangement permitted collection of images of the droplet stream. Finally, the use of a dual-beam, conditional firing scheme facilitated the collection of improved signal- to-noise single-shot spectra from individual biological particles.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
NASA Astrophysics Data System (ADS)
Saputro, D. R. S.; Amalia, F.; Widyaningsih, P.; Affan, R. C.
2018-05-01
Bayesian method is a method that can be used to estimate the parameters of multivariate multiple regression model. Bayesian method has two distributions, there are prior and posterior distributions. Posterior distribution is influenced by the selection of prior distribution. Jeffreys’ prior distribution is a kind of Non-informative prior distribution. This prior is used when the information about parameter not available. Non-informative Jeffreys’ prior distribution is combined with the sample information resulting the posterior distribution. Posterior distribution is used to estimate the parameter. The purposes of this research is to estimate the parameters of multivariate regression model using Bayesian method with Non-informative Jeffreys’ prior distribution. Based on the results and discussion, parameter estimation of β and Σ which were obtained from expected value of random variable of marginal posterior distribution function. The marginal posterior distributions for β and Σ are multivariate normal and inverse Wishart. However, in calculation of the expected value involving integral of a function which difficult to determine the value. Therefore, approach is needed by generating of random samples according to the posterior distribution characteristics of each parameter using Markov chain Monte Carlo (MCMC) Gibbs sampling algorithm.
Methods for prismatic/tetrahedral grid generation and adaptation
NASA Technical Reports Server (NTRS)
Kallinderis, Y.
1995-01-01
The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.
Noid, W. G.; Liu, Pu; Wang, Yanting; Chu, Jhih-Wei; Ayton, Gary S.; Izvekov, Sergei; Andersen, Hans C.; Voth, Gregory A.
2008-01-01
The multiscale coarse-graining (MS-CG) method [S. Izvekov and G. A. Voth, J. Phys. Chem. B 109, 2469 (2005);J. Chem. Phys. 123, 134105 (2005)] employs a variational principle to determine an interaction potential for a CG model from simulations of an atomically detailed model of the same system. The companion paper proved that, if no restrictions regarding the form of the CG interaction potential are introduced and if the equilibrium distribution of the atomistic model has been adequately sampled, then the MS-CG variational principle determines the exact many-body potential of mean force (PMF) governing the equilibrium distribution of CG sites generated by the atomistic model. In practice, though, CG force fields are not completely flexible, but only include particular types of interactions between CG sites, e.g., nonbonded forces between pairs of sites. If the CG force field depends linearly on the force field parameters, then the vector valued functions that relate the CG forces to these parameters determine a set of basis vectors that span a vector subspace of CG force fields. The companion paper introduced a distance metric for the vector space of CG force fields and proved that the MS-CG variational principle determines the CG force force field that is within that vector subspace and that is closest to the force field determined by the many-body PMF. The present paper applies the MS-CG variational principle for parametrizing molecular CG force fields and derives a linear least squares problem for the parameter set determining the optimal approximation to this many-body PMF. Linear systems of equations for these CG force field parameters are derived and analyzed in terms of equilibrium structural correlation functions. Numerical calculations for a one-site CG model of methanol and a molecular CG model of the EMIM+∕NO3− ionic liquid are provided to illustrate the method. PMID:18601325
NASA Astrophysics Data System (ADS)
Qin, Chuan; Chen, Shuhan; Cai, Yunjiao; Kandaz, Fatih; Ji, Yi
2017-10-01
Spin accumulation generated by the anomalous Hall effect (AHE) in mesoscopic ferromagnetic N i81F e19 (permalloy, Py) films is detected electrically by a nonlocal method. The reciprocal phenomenon, the inverse spin Hall effect (ISHE), can also be generated and detected all electrically in the same structure. For accurate quantitative analysis, a series of nonlocal AHE/ISHE structures and supplementary structures are fabricated on each sample substrate to account for statistical variations and to accurately determine all essential physical parameters in situ. By exploring Py thicknesses of 4, 8, and 12 nm, the Py spin diffusion length λPy is found to be much shorter than the film thicknesses. The product of λPy and the Py spin Hall angle αSH is determined to be independent of thickness and resistivity: αSHλPy=(0.066 ±0.009 ) nm at 5 K and (0.041 ±0.010 )nm at 295 K. These values are comparable to those obtained from mesoscopic Pt films.
Combining Approach in Stages with Least Squares for fits of data in hyperelasticity
NASA Astrophysics Data System (ADS)
Beda, Tibi
2006-10-01
The present work concerns a method of continuous approximation by block of a continuous function; a method of approximation combining the Approach in Stages with the finite domains Least Squares. An identification procedure by sub-domains: basic generating functions are determined step-by-step permitting their weighting effects to be felt. This procedure allows one to be in control of the signs and to some extent of the optimal values of the parameters estimated, and consequently it provides a unique set of solutions that should represent the real physical parameters. Illustrations and comparisons are developed in rubber hyperelastic modeling. To cite this article: T. Beda, C. R. Mecanique 334 (2006).
Landau parameters for energy density functionals generated by local finite-range pseudopotentials
NASA Astrophysics Data System (ADS)
Idini, A.; Bennaceur, K.; Dobaczewski, J.
2017-06-01
In Landau theory of Fermi liquids, the particle-hole interaction near the Fermi energy in different spin-isospin channels is probed in terms of an expansion over the Legendre polynomials. This provides a useful and efficient way to constrain properties of nuclear energy density functionals in symmetric nuclear matter and finite nuclei. In this study, we present general expressions for Landau parameters corresponding to a two-body central local regularized pseudopotential. We also show results obtained for two recently adjusted NLO and N2LO parametrizations. Such pseudopotentials will be used to determine mean-field and beyond-mean-field properties of paired nuclei across the entire nuclear chart.
Spontaneous PT-Symmetry Breaking for Systems of Noncommutative Euclidean Lie Algebraic Type
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2015-11-01
We propose a noncommutative version of the Euclidean Lie algebra E 2. Several types of non-Hermitian Hamiltonian systems expressed in terms of generic combinations of the generators of this algebra are investigated. Using the breakdown of the explicitly constructed Dyson maps as a criterium, we identify the domains in the parameter space in which the Hamiltonians have real energy spectra and determine the exceptional points signifying the crossover into the different types of spontaneously broken PT-symmetric regions with pairs of complex conjugate eigenvalues. We find exceptional points which remain invariant under the deformation as well as exceptional points becoming dependent on the deformation parameter of the algebra.
Residual thermal stresses in a solid sphere cast from a thermosetting material
NASA Technical Reports Server (NTRS)
Levitsky, M.; Shaffer, B. W.
1975-01-01
Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.
ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)
NASA Astrophysics Data System (ADS)
Spearing, Dane R.
1994-05-01
ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.
Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)
2003-01-01
An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.
NASA Astrophysics Data System (ADS)
Akinci, A.; Pace, B.
2017-12-01
In this study, we discuss the seismic hazard variability of peak ground acceleration (PGA) at 475 years return period in the Southern Apennines of Italy. The uncertainty and parametric sensitivity are presented to quantify the impact of the several fault parameters on ground motion predictions for 10% exceedance in 50-year hazard. A time-independent PSHA model is constructed based on the long-term recurrence behavior of seismogenic faults adopting the characteristic earthquake model for those sources capable of rupturing the entire fault segment with a single maximum magnitude. The fault-based source model uses the dimensions and slip rates of mapped fault to develop magnitude-frequency estimates for characteristic earthquakes. Variability of the selected fault parameter is given with a truncated normal random variable distribution presented by standard deviation about a mean value. A Monte Carlo approach, based on the random balanced sampling by logic tree, is used in order to capture the uncertainty in seismic hazard calculations. For generating both uncertainty and sensitivity maps, we perform 200 simulations for each of the fault parameters. The results are synthesized both in frequency-magnitude distribution of modeled faults as well as the different maps: the overall uncertainty maps provide a confidence interval for the PGA values and the parameter uncertainty maps determine the sensitivity of hazard assessment to variability of every logic tree branch. These branches of logic tree, analyzed through the Monte Carlo approach, are maximum magnitudes, fault length, fault width, fault dip and slip rates. The overall variability of these parameters is determined by varying them simultaneously in the hazard calculations while the sensitivity of each parameter to overall variability is determined varying each of the fault parameters while fixing others. However, in this study we do not investigate the sensitivity of mean hazard results to the consideration of different GMPEs. Distribution of possible seismic hazard results is illustrated by 95% confidence factor map, which indicates the dispersion about mean value, and coefficient of variation map, which shows percent variability. The results of our study clearly illustrate the influence of active fault parameters to probabilistic seismic hazard maps.
Natal, Rodrigo A; Vassallo, José; Paiva, Geisilene R; Pelegati, Vitor B; Barbosa, Guilherme O; Mendonça, Guilherme R; Bondarik, Caroline; Derchain, Sophie F; Carvalho, Hernandes F; Lima, Carmen S; Cesar, Carlos L; Sarian, Luís Otávio
2018-04-01
Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin-stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.
Pressure Studies of Protein Dynamics
1990-02-28
a frozen and metastable complex system In the present section was generated by a flashlamp-pumped dye laser (Phase-R DL- treat the equilibrium region...determination of the relative thermodynamic parameters of the and the temperature was monitored with a Si diode on the pressure We assume that the A substates...temperature controller (Model proteins is essentially linear from 200 to 320 K. 2" The entropy 93C). A silicon diode mounted on the sample cell
Novel Approach to Conducting Blast Load Analyses Using Abaqus/Explicit-CEL
2010-05-01
versus uncased, effects of afterburning , angle of incidence with respect to incoming shock, nearby geometry/barriers interacting with the shock...2. Blast parameters as a function of scaled distance – from TNT air blast data (DOE/TIC-11268, 1981). Due to inertial effects, the volume of air...positive phase duration) can be determined for a particular scaled distance. Figure 2 was generated from TNT air blast data for bare, spherical charges
Thermal analysis of combinatorial solid geometry models using SINDA
NASA Technical Reports Server (NTRS)
Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave
1993-01-01
Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.
New Directions in Software Quality Assurance Automation
2009-06-01
generation process. 4.1 Parameterized Safety Analysis We can do a qualitative analysis as well and ask questions like “ what has contributed to this...the probability of interception p1 in the previous example, we can determine what impact those parameters have on the probability of hazardous...assumed that the AEG is traversed top-down and left-to-right and only once to produce a particular event trace Randomized decisions about what
Application of Artificial Neural Network to Optical Fluid Analyzer
NASA Astrophysics Data System (ADS)
Kimura, Makoto; Nishida, Katsuhiko
1994-04-01
A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).
Frequency Analysis of Modis Ndvi Time Series for Determining Hotspot of Land Degradation in Mongolia
NASA Astrophysics Data System (ADS)
Nasanbat, E.; Sharav, S.; Sanjaa, T.; Lkhamjav, O.; Magsar, E.; Tuvdendorj, B.
2018-04-01
This study examines MODIS NDVI satellite imagery time series can be used to determine hotspot of land degradation area in whole Mongolia. The trend statistical analysis of Mann-Kendall was applied to a 16-year MODIS NDVI satellite imagery record, based on 16-day composited temporal data (from May to September) for growing seasons and from 2000 to 2016. We performed to frequency analysis that resulting NDVI residual trend pattern would enable successful determined of negative and positive changes in photo synthetically health vegetation. Our result showed that negative and positive values and generated a map of significant trends. Also, we examined long-term of meteorological parameters for the same period. The result showed positive and negative NDVI trends concurred with land cover types change representing an improve or a degrade in vegetation, respectively. Also, integrated the climate parameters which were precipitation and air temperature changes in the same time period seem to have had an affecting on huge NDVI trend area. The time series trend analysis approach applied successfully determined hotspot of an improvement and a degraded area due to land degradation and desertification.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
Sensitivity Testing of the NSTAR Ion Thruster
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Anderson, John; Brophy, John
2007-01-01
During the Extended Life Test of the DS1 flight spare ion thruster, the engine was subjected to sensitvity testing in order to characterize the macroscopic dependence of discharge chamber sensitivity to a +\\-3% vatiation in main flow, cathode flow and beam current, and to +\\5% variation in beam and accelerator voltage, was determined for the minimum- (THO), half- (TH8) and full power (TH15) throttle levels. For each power level investigared, 16 high/low operating conditions were chosen to vary the flows, beam current, and grid voltages in in a matrix that mapped out the entire parameter space. The matrix of data generated was used to determine the partial derivative or senitivity of the dependent parameters--discharge voltage, discharge current, discharge loss, double-to-single-ion current ratio, and neutralizer-keeper voltage--to the variation in the independent parameters--main flow, cathode flow, beam current, and beam voltage. The sensititivities of each dependent parameter with respect to each independent parameter were determined using a least-square fit routine. Variation in these sensitivities with thruster runtime was recorded over the duration of the ELT, to detemine if discharge performance changed with thruster wear. Several key findings have been ascertained from the sensitivity testing. Discharge operation is most sensitve to changes in cathode flow and to a lesser degree main flow. The data also confirms that for the NSTAR configuration plasma production is limited by primary electron input due to the fixed neutral population. Key sensitivities along with their change with thruster wear (operating time) will be presented. In addition double ion content measurements with an ExB probe will also be presented to illustrate beam ion production and content sensitivity to the discharge chamber operating parameteres.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
Determination of the key parameters affecting historic communications satellite trends
NASA Technical Reports Server (NTRS)
Namkoong, D.
1984-01-01
Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.
NASA Technical Reports Server (NTRS)
Kuchynka, P.; Laskar, J.; Fienga, A.
2011-01-01
Mars ranging observations are available over the past 10 years with an accuracy of a few meters. Such precise measurements of the Earth-Mars distance provide valuable constraints on the masses of the asteroids perturbing both planets. Today more than 30 asteroid masses have thus been estimated from planetary ranging data (see [1] and [2]). Obtaining unbiased mass estimations is nevertheless difficult. Various systematic errors can be introduced by imperfect reduction of spacecraft tracking observations to planetary ranging data. The large number of asteroids and the limited a priori knowledge of their masses is also an obstacle for parameter selection. Fitting in a model a mass of a negligible perturber, or on the contrary omitting a significant perturber, will induce important bias in determined asteroid masses. In this communication, we investigate a simplified version of the mass determination problem. Instead of planetary ranging observations from spacecraft or radar data, we consider synthetic ranging observations generated with the INPOP [2] ephemeris for a test model containing 25000 asteroids. We then suggest a method for optimal parameter selection and estimation in this simplified framework.
In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots
NASA Astrophysics Data System (ADS)
Wendi, Dadiyorto; Marwan, Norbert; Merz, Bruno
As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization.
Oguri, Tomoko; Yoshinaga, Jun; Toshima, Hiroki; Mizumoto, Yoshifumi; Hatakeyama, Shota; Tokuoka, Susumu
2016-01-01
Inorganic arsenic (iAs) has been known as a testicular toxicant in experimental rodents. Possible association between iAs exposure and semen quality (semen volume, sperm concentration, and sperm motility) was explored in male partners of couples (n = 42) who visited a gynecology clinic in Tokyo for infertility consultation. Semen parameters were measured according to WHO guideline at the clinic, and urinary iAs and methylarsonic acid (MMA), and dimethylarsinic acid concentrations were determined by liquid chromatography-hydride generation-ICP mass spectrometry. Biological attributes, dietary habits, and exposure levels to other chemicals with known effects on semen parameters were taken into consideration as covariates. Multiple regression analyses and logistic regression analyses did not find iAs exposure as significant contributor to semen parameters. Lower exposure level of subjects (estimated to be 0.5 μg kg(-1) day(-1)) was considered a reason of the absence of adverse effects on semen parameters, which were seen in rodents dosed with 4-7.5 mg kg(-1).
Anway, Matthew D; Skinner, Michael K
2008-04-01
The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.
Anway, Matthew D.; Skinner, Michael K.
2018-01-01
PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299
A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design
NASA Technical Reports Server (NTRS)
Raquea, Steven M.
1999-01-01
During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.
Reliability-based management of buried pipelines considering external corrosion defects
NASA Astrophysics Data System (ADS)
Miran, Seyedeh Azadeh
Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.
Advanced interactive display formats for terminal area traffic control
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.
1996-01-01
This report describes the basic design considerations for perspective air traffic control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters -- in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) Indirect manipulation of the viewing parameters -- this mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of the screen. This arrangement has been chosen in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene. The proposed, continued research efforts will deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the air traffic control scene can be viewed for a given traffic situation. They determine whether a change in viewing parameter setting is required and determine the dynamic path along which the change to the new viewing parameter setting should take place.
Structural identifiability of cyclic graphical models of biological networks with latent variables.
Wang, Yulin; Lu, Na; Miao, Hongyu
2016-06-13
Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.
NASA Astrophysics Data System (ADS)
Fox, Benjamin D.; Selby, Neil D.; Heyburn, Ross; Woodhouse, John H.
2012-09-01
Estimating reliable depths for shallow seismic sources is important in both seismo-tectonic studies and in seismic discrimination studies. Surface wave excitation is sensitive to source depth, especially at intermediate and short-periods, owing to the approximate exponential decay of surface wave displacements with depth. A new method is presented here to retrieve earthquake source parameters from regional and teleseismic intermediate period (100-15 s) fundamental-mode surface wave recordings. This method makes use of advances in mapping global dispersion to allow higher frequency surface wave recordings at regional and teleseismic distances to be used with more confidence than in previous studies and hence improve the resolution of depth estimates. Synthetic amplitude spectra are generated using surface wave theory combined with a great circle path approximation, and a grid of double-couple sources are compared with the data. Source parameters producing the best-fitting amplitude spectra are identified by minimizing the least-squares misfit in logarithmic amplitude space. The F-test is used to search the solution space for statistically acceptable parameters and the ranges of these variables are used to place constraints on the best-fitting source. Estimates of focal mechanism, depth and scalar seismic moment are determined for 20 small to moderate sized (4.3 ≤Mw≤ 6.4) earthquakes. These earthquakes are situated across a wide range of geographic and tectonic locations and describe a range of faulting styles over the depth range 4-29 km. For the larger earthquakes, comparisons with other studies are favourable, however existing source determination procedures, such as the CMT technique, cannot be performed for the smaller events. By reducing the magnitude threshold at which robust source parameters can be determined, the accuracy, especially at shallow depths, of seismo-tectonic studies, seismic hazard assessments, and seismic discrimination investigations can be improved by the application of this methodology.
Anticipating the higher generations of quarks from rephasing invariance of the mixing matrix
NASA Astrophysics Data System (ADS)
Botella, F. J.; Chau, Ling-Lie
1986-02-01
We show that the number of invariant CP violating parameters XCP jumps from the unique universal one in three generations to nine in the four-generation case, saturating the parameter space for generation numbers higher than three. This can lead to drastically different consequences in CP-violating phenomena. We give the quark mass matrices in the three-generation case and speculate for higher generations. We also give some invariant definitions of “maximal” CP violation.
Second-harmonic generation from a thin spherical layer and No-generation conditions
NASA Astrophysics Data System (ADS)
Kapshai, V. N.; Shamyna, A. A.
2017-09-01
In the Rayleigh-Gans-Debye approximation, we solve the problem of second-harmonic generation by an elliptically polarized electromagnetic wave incident on the surface of a spherical particle that is coated by an optically nonlinear layer and is placed in a dielectric. The formulas obtained characterize the spatial distribution of the electric field of the second harmonic in the far-field zone. The most general form of the second-order dielectric susceptibility tensor is considered, which contains four independent components, with three of them being nonchiral and one, chiral. Consistency and inconsistencies between the obtained solution and formulas from works of other authors are found. We analyze the directivity patterns that characterize the spatial distribution of the generated radiation for the nonchiral layer and their dependences on the anisotropy and ellipticity coefficients of the incident wave. It is found that, with increasing radius of the nonlinear layer, the generated radiation becomes more directional. Combinations of parameters for which no radiation is generated are revealed. Based on this, we propose methods for experimental determination of the anisotropy coefficients.
Peckmann, Tanya R; Orr, Kayla; Meek, Susan; Manolis, Sotiris K
2015-07-01
The determination of sex is an important part of building the biological profile for unknown human remains. Many of the bones traditionally used for the determination of sex are often found fragmented or incomplete in forensic and archaeological cases. The goal of the present research was to derive discriminant function equations from the talus, a preservationally favoured bone, for sexing skeletons from a contemporary Greek population. Nine parameters were measured on 182 individuals (96 males and 86 females) from the University of Athens Human Skeletal Reference Collection. The individuals ranged in age from 20 to 99 years old. The statistical analyses showed that all measured parameters were sexually dimorphic. Discriminant function score equations were generated for use in sex determination. The average accuracy of sex classification ranged from 65.2% to 93.4% for the univariate analysis, 90%-96.5% for the direct method and 86.7% for the stepwise method. Comparisons to other populations were made. Overall, the cross-validated accuracies ranged from 65.5% to 83.2% and males were most often correctly identified. The talus was shown to be useful for sex determination in the modern Greek population. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Humbert, C.; Caudano, Y.; Dreesen, L.; Sartenaer, Y.; Mani, A. A.; Silien, C.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.
2004-10-01
Two-colour sum-frequency generation (two-colour SFG) spectroscopy was used to probe both vibrational and electronic properties of 1-dodecanethiol/Ag(1 1 1), Au(1 1 1), and Pt(1 1 1), of 5-[ p-(6-mercaptohexoxy)-phenyl]-10,15,20-triphenylporphin/Pt(1 1 1), and of C 60/Ag(1 1 1). The role of the various physical parameters determining the sum-frequency generation (SFG) intensity equation is highlighted. The enhancement of the non-linear second order susceptibility in the aforementioned interfaces is explained in terms of metal interband transition, molecular electronic transition and of electron-phonon coupling, respectively.
The ITER disruption mitigation trigger: developing its preliminary design
NASA Astrophysics Data System (ADS)
Pautasso, G.; de Vries, P. C.; Humphreys, D.; Lehnen, M.; Rapson, C.; Raupp, G.; Snipes, J. A.; Treutterer, W.; Vergara-Fernandez, A.; Zabeo, L.
2018-03-01
A concept for the generation of the trigger for the ITER disruption mitigation system is described in this paper. The issuing of the trigger will be the result of a complex decision process, taken by the plasma control system, or by the central interlock system, determining that the plasma is unavoidably going to disrupt—or has disrupted—and that a fast mitigated shut-down is required. Given the redundancy of the mitigation system, the plasma control system must also formulate an injection scheme and specify when and how the injectors of the mitigation system should be activated. The parameters and the conceptual algorithms required for the configuration and generation of the trigger are discussed.
Stability and phase transition of skyrmion crystals generated by Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
El Hog, Sahbi; Bailly-Reyre, Aurélien; Diep, H. T.
2018-06-01
We generate a crystal of skyrmions in two dimensions using a Heisenberg Hamiltonian including the ferromagnetic interaction J, the Dzyaloshinskii-Moriya interaction D, and an applied magnetic field H. The ground state (GS) is determined by minimizing the interaction energy. We show that the GS is a skyrmion crystal in a region of (D, H) . The stability of this skyrmion crystalline phase at finite temperatures is shown by a study of the time-dependence of the order parameter using Monte Carlo simulations. We observe that the relaxation is very slow and follows a stretched exponential law. The skyrmion crystal phase is shown to undergo a transition to the paramagnetic state at a finite temperature.
A Fiber-Optic System Generating Pulses of High Spectral Density
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.
2018-03-01
A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.
Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow
NASA Astrophysics Data System (ADS)
Pozdeeva, I. G.; Mitrofanova, O. V.
2018-03-01
The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.
NASA Astrophysics Data System (ADS)
Żukowicz, Marek; Markiewicz, Michał
2016-09-01
The aim of the article is to present a mathematical definition of the object model, that is known in computer science as TreeList and to show application of this model for design evolutionary algorithm, that purpose is to generate structures based on this object. The first chapter introduces the reader to the problem of presenting data using the TreeList object. The second chapter describes the problem of testing data structures based on TreeList. The third one shows a mathematical model of the object TreeList and the parameters, used in determining the utility of structures created through this model and in evolutionary strategy, that generates these structures for testing purposes. The last chapter provides a brief summary and plans for future research related to the algorithm presented in the article.
Determination of LEDs degradation with entropy generation rate
NASA Astrophysics Data System (ADS)
Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos
2017-10-01
We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.
Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2
NASA Astrophysics Data System (ADS)
Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.
2008-05-01
: The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-Ⅳ distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.
Barnett, William H.; Cymbalyuk, Gennady S.
2014-01-01
The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals–the duration of the burst and the duration of latency to spiking–are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators. PMID:24497927
NASA Astrophysics Data System (ADS)
Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.
2015-11-01
Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.
NASA Astrophysics Data System (ADS)
Khan, M. Ijaz; Hayat, Tasawar; Alsaedi, Ahmed
2018-02-01
This modeling and computations present the study of viscous fluid flow with variable properties by a rotating stretchable disk. Rotating flow is generated through nonlinear rotating stretching surface. Nonlinear thermal radiation and heat generation/absorption are studied. Flow is conducting for a constant applied magnetic field. No polarization is taken. Induced magnetic field is not taken into account. Attention is focused on the entropy generation rate and Bejan number. The entropy generation rate and Bejan number clearly depend on velocity and thermal fields. The von Kármán approach is utilized to convert the partial differential expressions into ordinary ones. These expressions are non-dimensionalized, and numerical results are obtained for flow variables. The effects of the magnetic parameter, Prandtl number, radiative parameter, heat generation/absorption parameter, and slip parameter on velocity and temperature fields as well as the entropy generation rate and Bejan number are discussed. Drag forces (radial and tangential) and heat transfer rates are calculated and discussed. Furthermore the entropy generation rate is a decreasing function of magnetic variable and Reynolds number. The Bejan number effect on the entropy generation rate is reverse to that of the magnetic variable. Also opposite behavior of heat transfers is observed for varying estimations of radiative and slip variables.
NASA Astrophysics Data System (ADS)
Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar
2017-08-01
Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.
Żak, Arkadiusz
2014-01-01
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557
NASA Astrophysics Data System (ADS)
Sepulveda, N.; Rohrer, K.
2008-05-01
The permeability of the semiconfining layers of the highly productive Floridan Aquifer System may be large enough to invalidate the assumptions of the leaky aquifer theory. These layers are the intermediate confining and the middle semiconfining units. The analysis of aquifer-test data with analytical solutions of the ground-water flow equation developed with the approximation of a low hydraulic conductivity ratio between the semiconfining layer and the aquifer may lead to inaccurate hydraulic parameters. An analytical solution is presented here for the flow in a confined leaky aquifer, the overlying storative semiconfining layer, and the unconfined aquifer, generated by a partially penetrating well in a two-aquifer system, and allowing vertical and lateral flow components to occur in the semiconfining layer. The equations describing flow caused by a partially penetrating production well are solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Analysis of the drawdown data from an aquifer test performed in central Florida showed that the flow solution presented here for the semiconfining layer provides a better match and a more unique identification of the hydraulic parameters than an analytical solution that considers only vertical flow in the semiconfining layer.
Marković, Bojan; Ignjatović, Janko; Vujadinović, Mirjana; Savić, Vedrana; Vladimirov, Sote; Karljiković-Rajić, Katarina
2015-01-01
Inter-laboratory verification of European pharmacopoeia (EP) monograph on derivative spectrophotometry (DS) method and its application for chitosan hydrochloride was carried out on two generation of instruments (earlier GBC Cintra 20 and current technology TS Evolution 300). Instruments operate with different versions of Savitzky-Golay algorithm and modes of generating digital derivative spectra. For resolution power parameter, defined as the amplitude ratio A/B in DS method EP monograph, comparable results were obtained only with algorithm's parameters smoothing points (SP) 7 and the 2nd degree polynomial and those provided corresponding data with other two modes on TS Evolution 300 Medium digital indirect and Medium digital direct. Using quoted algorithm's parameters, the differences in percentages between the amplitude ratio A/B averages, were within accepted criteria (±3%) for assay of drug product for method transfer. The deviation of 1.76% for the degree of deacetylation assessment of chitosan hydrochloride, determined on two instruments, (amplitude (1)D202; the 2nd degree polynomial and SP 9 in Savitzky-Golay algorithm), was acceptable, since it was within allowed criteria (±2%) for assay deviation of drug substance, for method transfer in pharmaceutical analyses. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of gender and age structure on municipal waste generation in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl
Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, numbermore » of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.« less
The influence of tree morphology on stemflow generation in a tropical lowland rainforest
NASA Astrophysics Data System (ADS)
Uber, Magdalena; Levia, Delphis F.; Zimmermann, Beate; Zimmermann, Alexander
2014-05-01
Even though stemflow usually accounts for only a small proportion of rainfall, it is an important point source of water and ion input to forest floors and may, for instance, influence soil moisture patterns and groundwater recharge. Previous studies showed that the generation of stemflow depends on a multitude of meteorological and biological factors. Interestingly, despite the tremendous progress in stemflow research during the last decades it is still largely unknown which combination of tree characteristics determines stemflow volumes in species-rich tropical forests. This knowledge gap motivated us to analyse the influence of tree characteristics on stemflow volumes in a 1 hectare plot located in a Panamanian lowland rainforest. Our study comprised stemflow measurements in six randomly selected 10 m by 10 m subplots. In each subplot we measured stemflow of all trees with a diameter at breast height (DBH) > 5 cm on an event-basis for a period of six weeks. Additionally, we identified all tree species and determined a set of tree characteristics including DBH, crown diameter, bark roughness, bark furrowing, epiphyte coverage, tree architecture, stem inclination, and crown position. During the sampling period, we collected 985 L of stemflow (0.98 % of total rainfall). Based on regression analyses and comparisons among plant functional groups we show that palms were most efficient in yielding stemflow due to their large inclined fronds. Trees with large emergent crowns also produced relatively large amounts of stemflow. Due to their abundance, understory trees contribute much to stemflow yield not on individual but on the plot scale. Even though parameters such as crown diameter, branch inclination and position of the crown influence stemflow generation to some extent, these parameters explain less than 30 % of the variation in stemflow volumes. In contrast to published results from temperate forests, we did not detect a negative correlation between bark roughness and stemflow volume. This is because other parameters such as crown diameter obscured this relationship. Due to multicollinearity and poor correlations between single tree characteristics with stemflow volume, an assessment of stemflow volumes based on forest characteristics remains cumbersome in highly diverse ecosystems. Instead of relying on regression relationships, we therefore advocate a total sampling of trees in several plots to determine stand-scale stemflow yield in tropical forests.
Simulator design for advanced ISDN satellite design and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerald R.
1992-01-01
This simulation design task completion report documents the simulation techniques associated with the network models of both the Interim Service ISDN (integrated services digital network) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures. The ISIS network model design represents satellite systems like the Advanced Communication Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) program, moves all control and switching functions on-board the next generation ISDN communication satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete events simulation experiments will be performed with these models using various traffic scenarios, design parameters and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.
1992-01-01
The simulation development associated with the network models of both the Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) and the Full Service ISDN Satellite (FSIS) architectures is documented. The ISIS Network Model design represents satellite systems like the Advanced Communications Technology Satellite (ACTS) orbiting switch. The FSIS architecture, the ultimate aim of this element of the Satellite Communications Applications Research (SCAR) Program, moves all control and switching functions on-board the next generation ISDN communications satellite. The technical and operational parameters for the advanced ISDN communications satellite design will be obtained from the simulation of ISIS and FSIS engineering software models for their major subsystems. Discrete event simulation experiments will be performed with these models using various traffic scenarios, design parameters, and operational procedures. The data from these simulations will be used to determine the engineering parameters for the advanced ISDN communications satellite.
An improved model of the Earth's gravitational field: GEM-T1
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.
1987-01-01
Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
NASA Astrophysics Data System (ADS)
Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.
2012-09-01
The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.
Realization of a mixed-symmetry superconducting gap in correlated organic metals
NASA Astrophysics Data System (ADS)
Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser
Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.
Schubert, M; Fey, A; Ihssen, J; Civardi, C; Schwarze, F W M R; Mourad, S
2015-01-10
An artificial neural network (ANN) and genetic algorithm (GA) were applied to improve the laccase-mediated oxidation of iodide (I(-)) to elemental iodine (I2). Biosynthesis of iodine (I2) was studied with a 5-level-4-factor central composite design (CCD). The generated ANN network was mathematically evaluated by several statistical indices and revealed better results than a classical quadratic response surface (RS) model. Determination of the relative significance of model input parameters, ranking the process parameters in order of importance (pH>laccase>mediator>iodide), was performed by sensitivity analysis. ANN-GA methodology was used to optimize the input space of the neural network model to find optimal settings for the laccase-mediated synthesis of iodine. ANN-GA optimized parameters resulted in a 9.9% increase in the conversion rate. Copyright © 2014 Elsevier B.V. All rights reserved.
Mao, Ling-Feng; Ning, H.; Hu, Changjun; Lu, Zhaolin; Wang, Gaofeng
2016-01-01
Field effect mobility in an organic device is determined by the activation energy. A new physical model of the activation energy is proposed by virtue of the energy and momentum conservation equations. The dependencies of the activation energy on the gate voltage and the drain voltage, which were observed in the experiments in the previous independent literature, can be well explained using the proposed model. Moreover, the expression in the proposed model, which has clear physical meanings in all parameters, can have the same mathematical form as the well-known Meyer-Neldel relation, which lacks of clear physical meanings in some of its parameters since it is a phenomenological model. Thus it not only describes a physical mechanism but also offers a possibility to design the next generation of high-performance optoelectronics and integrated flexible circuits by optimizing device physical parameter. PMID:27103586
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2015-06-01
Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.
IVS: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Behrend, D.; Nothnagel, A.; Petrachenko, W. T.; Tuccari, G.
2016-12-01
The International VLBI Service for Geodesy and Astrometry (IVS) is a globally operating service that coordinates and performs Very Long Baseline Interferometry (VLBI) activities through its constituent components. The VLBI activities are associated with the creation, provision, dissemination, and archiving of relevant VLBI data and products. The products mostly pertain to the determination of the celestial and terrestrial reference frames, the Earth orientation parameters (EOP), atmospheric parameters as well as other ancillary parameters. The IVS observational network currently consists of about 40 radio telescopes worldwide. Subsets of these telescopes (8-12 stations) participate in 24-hour observing sessions that are run several times per week and in 1-hour intensive sessions for UT1 determination every day. The current VLBI network was developed mainly in the 1970s and 1980s. A number of factors, including aging infrastructure and demanding new scientific requirements, started to challenge its future sustainability and relevance. In response, the IVS and other groups developed and started implementing the next generation VLBI system, called VGOS (VLBI Global Observing System), at existing and new sites. The VGOS network is expected to reach maturity in the early 2020s. We describe the current status, progress, and anticipated prospects of geodetic/astrometric VLBI and the IVS.
Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...
2015-12-03
Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less
Yang, Jian; Liu, Chuangui; Wang, Boqian; Ding, Xianting
2017-10-13
Superhydrophobic surface, as a promising micro/nano material, has tremendous applications in biological and artificial investigations. The electrohydrodynamics (EHD) technique is a versatile and effective method for fabricating micro- to nanoscale fibers and particles from a variety of materials. A combination of critical parameters, such as mass fraction, ratio of N, N-Dimethylformamide (DMF) to Tetrahydrofuran (THF), inner diameter of needle, feed rate, receiving distance, applied voltage as well as temperature, during electrospinning process, to determine the morphology of the electrospun membranes, which in turn determines the superhydrophobic property of the membrane. In this study, we applied a recently developed feedback system control (FSC) scheme for rapid identification of the optimal combination of these controllable parameters to fabricate superhydrophobic surface by one-step electrospinning method without any further modification. Within five rounds of experiments by testing totally forty-six data points, FSC scheme successfully identified an optimal parameter combination that generated electrospun membranes with a static water contact angle of 160 degrees or larger. Scanning electron microscope (SEM) imaging indicates that the FSC optimized surface attains unique morphology. The optimized setup introduced here therefore serves as a one-step, straightforward, and economic approach to fabricate superhydrophobic surface with electrospinning approach.
Neutrino versus antineutrino oscillation parameters at DUNE and Hyper-Kamiokande experiments
NASA Astrophysics Data System (ADS)
de Gouvêa, André; Kelly, Kevin J.
2017-11-01
Testing, in a nontrivial, model-independent way, the hypothesis that the three-massive-neutrinos paradigm properly describes nature is among the main goals of the current and the next generation of neutrino oscillation experiments. In the coming decade, the DUNE and Hyper-Kamiokande experiments will be able to study the oscillation of both neutrinos and antineutrinos with unprecedented precision. We explore the ability of these experiments, and combinations of them, to determine whether the parameters that govern these oscillations are the same for neutrinos and antineutrinos, as prescribed by the C P T -theorem. We find that both DUNE and Hyper-Kamiokande will be sensitive to unexplored levels of leptonic C P T -violation. Assuming the parameters for neutrino and antineutrino oscillations are unrelated, we discuss the ability of these experiments to determine the neutrino and antineutrino mass-hierarchies, atmospheric-mixing octants, and C P -odd phases, three key milestones of the experimental neutrino physics program. Additionally, if the C P T -symmetry is violated in nature in a way that is consistent with all present neutrino and antineutrino oscillation data, we find that DUNE and Hyper-Kamiokande have the potential to ultimately establish leptonic C P T -invariance violation.
Auto Code Generation for Simulink-Based Attitude Determination Control System
NASA Technical Reports Server (NTRS)
MolinaFraticelli, Jose Carlos
2012-01-01
This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.
Assessing total and volatile solids in municipal solid waste samples.
Peces, M; Astals, S; Mata-Alvarez, J
2014-01-01
Municipal solid waste is broadly generated in everyday activities and its treatment is a global challenge. Total solids (TS) and volatile solids (VS) are typical control parameters measured in biological treatments. In this study, the TS and VS were determined using the standard methods, as well as introducing some variants: (i) the drying temperature for the TS assays was 105°C, 70°C and 50°C and (ii) the VS were determined using different heating ramps from room tempature to 550°C. TS could be determined at either 105°C or 70°C, but oven residence time was tripled at 70°C, increasing from 48 to 144 h. The VS could be determined by smouldering the sample (where the sample is burnt without a flame), which avoids the release of fumes and odours in the laboratory. However, smouldering can generate undesired pyrolysis products as a consequence of carbonization, which leads to VS being underestimated. Carbonization can be avoided using slow heating ramps to prevent the oxygen limitation. Furthermore, crushing the sample cores decreased the time to reach constant weight and decreased the potential to underestimate VS.
Li, Zhen-shan; Fu, Hui-zhen; Qu, Xiao-yan
2011-09-15
Reliable and accurate determinations of the quantities and composition of wastes is required for the planning of municipal solid waste (MSW) management systems. A model, based on the interrelationships of expenditure on consumer goods, time distribution, daily activities, residents groups, and waste generation, was developed and employed to estimate MSW generation by different activities and resident groups in Beijing. The principle is that MSW is produced by consumption of consumer goods by residents in their daily activities: 'Maintenance' (meeting the basic needs of food, housing and personal care), 'Subsistence' (providing the financial requirements) and 'Leisure' (social and recreational pursuits) activities. Three series of important parameters - waste generation per unit of consumer expenditure, consumer expenditure distribution to activities in unit time, and time assignment to activities by different resident groups - were determined using a statistical analysis, a sampling survey and the Analytic Hierarchy Process, respectively. Data for analysis were obtained from the Beijing Statistical Yearbook (2004-2008) and questionnaire survey. The results reveal that 'Maintenance' activity produced the most MSW, distantly followed by 'Leisure' and 'Subsistence' activities. In 2008, in descending order of MSW generation the different resident groups were floating population, non-civil servants, retired people, civil servants, college students (including both undergraduates and graduates), primary and secondary students, and preschoolers. The new estimation model, which was successful in fitting waste generation by different activities and resident groups over the investigated years, was amenable to MSW prediction. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Winnicki, I.; Jasinski, J.; Kroszczynski, K.; Pietrek, S.
2009-04-01
The paper presents elements of research conducted in the Faculty of Civil Engineering and Geodesy of the Military University of Technology, Warsaw, Poland, concerning application of mesoscale models and remote sensing data to determining meteorological conditions of aircraft flight directly related with atmospheric instabilities. The quality of meteorological support of aviation depends on prompt and effective forecasting of weather conditions changes. The paper presents a computer module for detecting and monitoring zones of cloud cover, precipitation and turbulence along the aircraft flight route. It consists of programs and scripts for managing, processing and visualizing meteorological and remote sensing databases. The application was developed in Matlab® for Windows®. The module uses products of COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) mesoscale non-hydrostatic model of the atmosphere developed by the US Naval Research Laboratory, satellite images acquisition system from the MSG-2 (Meteosat Second Generation) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and meteorological radars data acquired from the Institute of Meteorology and Water Management (IMGW), Warsaw, Poland. The satellite images acquisition system and the COAMPS model are run operationally in the Faculty of Civil Engineering and Geodesy. The mesoscale model is run on an IA64 Feniks multiprocessor 64-bit computer cluster. The basic task of the module is to enable a complex analysis of data sets of miscellaneous information structure and to verify COAMPS results using satellite and radar data. The research is conducted using uniform cartographic projection of all elements of the database. Satellite and radar images are transformed into the Lambert Conformal projection of COAMPS. This facilitates simultaneous interpretation and supports decision making process for safe execution of flights. Forecasts are based on horizontal distributions and vertical profiles of meteorological parameters produced by the module. Verification of forecasts includes research of spatial and temporal correlations of structures generated by the model, e.g.: cloudiness, meteorological phenomena (fogs, precipitation, turbulence) and structures identified on current satellite images. The developed module determines meteorological parameters fields for vertical profiles of the atmosphere. Interpolation procedures run at user selected standard (pressure) or height levels of the model enable to determine weather conditions along any route of aircraft. Basic parameters of the procedures determining e.g. flight safety include: cloud base, visibility, cloud cover, turbulence coefficient, icing and precipitation intensity. Determining icing and turbulence characteristics is based on standard and new methods (from other mesoscale models). The research includes also investigating new generation mesoscale models, especially remote sensing data assimilation. This is required by necessity to develop and introduce objective methods of forecasting weather conditions. Current research in the Faculty of Civil Engineering and Geodesy concerns validation of the mesoscale module performance.
Different Manhattan project: automatic statistical model generation
NASA Astrophysics Data System (ADS)
Yap, Chee Keng; Biermann, Henning; Hertzmann, Aaron; Li, Chen; Meyer, Jon; Pao, Hsing-Kuo; Paxia, Salvatore
2002-03-01
We address the automatic generation of large geometric models. This is important in visualization for several reasons. First, many applications need access to large but interesting data models. Second, we often need such data sets with particular characteristics (e.g., urban models, park and recreation landscape). Thus we need the ability to generate models with different parameters. We propose a new approach for generating such models. It is based on a top-down propagation of statistical parameters. We illustrate the method in the generation of a statistical model of Manhattan. But the method is generally applicable in the generation of models of large geographical regions. Our work is related to the literature on generating complex natural scenes (smoke, forests, etc) based on procedural descriptions. The difference in our approach stems from three characteristics: modeling with statistical parameters, integration of ground truth (actual map data), and a library-based approach for texture mapping.
NASA Technical Reports Server (NTRS)
Scalzo, F.
1983-01-01
Sensor redundancy management (SRM) requires a system which will detect failures and reconstruct avionics accordingly. A probability density function to determine false alarm rates, using an algorithmic approach was generated. Microcomputer software was developed which will print out tables of values for the cummulative probability of being in the domain of failure; system reliability; and false alarm probability, given a signal is in the domain of failure. The microcomputer software was applied to the sensor output data for various AFT1 F-16 flights and sensor parameters. Practical recommendations for further research were made.
Uncovering dispersion properties in semiconductor waveguides to study photon-pair generation
NASA Astrophysics Data System (ADS)
Laiho, K.; Pressl, B.; Schlager, A.; Suchomel, H.; Kamp, M.; Höfling, S.; Schneider, C.; Weihs, G.
2016-10-01
We investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions. Second, by measuring the spectra of the emitted PDC photons, we gain access to their group index dispersion. Our results offer a simple approach for determining the PDC process parameters in the spectral domain, and provide important feedback for designing such sources, especially in the broadband case.
Millimeter-wave spectroscopy of the SiCl+ ion
NASA Astrophysics Data System (ADS)
Takeda, Kazuki; Masuda, Satoshi; Harada, Kensuke; Tanaka, Keiichi
2016-05-01
The millimeter-wave spectrum of the SiCl+ ion in the ground and first excited vibrational states was observed for the two isotopic (35Cl and 37Cl) species. The ion was generated in a free-space absorption cell by a hollow cathode discharge of SiCl4 diluted with He and discriminated from neutral species by the magnetic field effect on the absorption lines. The observed millimeter-wave spectrum was combined with a previously reported diode laser spectrum in an analysis to determine mass-independent Dunham coefficients as well as the mass scaling parameters. The equilibrium bond length of SiCl+ determined is re = 1.943 978(2) Å.
NASA Astrophysics Data System (ADS)
Tarancón, A.; García, J. F.; Rauret, G.
2004-01-01
Plastic scintillation has recently been shown to be a powerful alternative to liquid scintillation and Cherenkov techniques in radionuclide determination due to the good values obtained for the measurement parameters and the low amount of wastes generated. The present study evaluated the capability of plastic scintillation beads and polyethylene vials for routine measurements of beta emitters ( 90Sr, 14C, 3H). Results show that high- and medium-energetic beta emitters can be quantified with relative errors less than 5% in low-activity aqueous samples, whereas low-energetic beta emitters can only be quantified in medium-activity samples.
Fission barriers at the end of the chart of the nuclides
Möller, Peter; Sierk, Arnold J.; Ichikawa, Takatoshi; ...
2015-02-12
We present calculated fission-barrier heights for 5239 nuclides for all nuclei between the proton and neutron drip lines with 171 ≤ A ≤ 330. The barriers are calculated in the macroscopic-microscopic finite-range liquid-drop (FRLDM) with a 2002 set of macroscopic-model parameters. The saddle-point energies are determined from potential-energy surfaces based on more than five million different shapes, defined by five deformation parameters in the three-quadratic-surface shape parametrization: elongation, neck diameter, left-fragment spheroidal deformation, right-fragment spheroidal deformation, and nascent-fragment mass asymmetry. The energy of the ground state is determined by calculating the lowest-energy configuration in both the Nilsson perturbed-spheroid (ϵ) andmore » the spherical-harmonic (β) parametrizations, including axially asymmetric deformations. The lower of the two results (correcting for zero-point motion) is defined as the ground-state energy. The effect of axial asymmetry on the inner barrier peak is calculated in the (ϵ,γ) parametrization. We have earlier benchmarked our calculated barrier heights to experimentally extracted barrier parameters and found average agreement to about one MeV for known data across the nuclear chart. Here we do additional benchmarks and investigate the qualitative and, when possible, quantitative agreement and/or consistency with data on β-delayed fission, isotope generation along prompt-neutron-capture chains in nuclear-weapons tests, and superheavy-element stability. In addition these studies all indicate that the model is realistic at considerable distances in Z and N from the region of nuclei where its parameters were determined.« less
Research developing closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.
1981-01-01
Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.
Electro-Optical Rectifier (EOR) Update Study
1976-05-01
Errors and physical imperfections in paper tape, which is generated by a sepa- rate computer system to drive the EOR, have also limited the...of wrong parameters or other such unpredict- able events Since no physical storage medium such as paper tape or magnetic taiU is used to convey...printing. This is useful to determine whether or not EOR physical limits are exceeded without ruining a piece of film. The trial run can be made at a
Determination and Correction of Persistent Biases in Quantum Annealers
2016-08-25
programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames...The quantum annealers used for this study are of the second generation of D-Wave devices, also called D-Wave Two2: one located at NASA Ames Research...Center in Moffett Field, California, (“ NASA device”), and another located at D-Wave Systems in Burnaby, Canada (“Burnaby device”). These consist of 64
Flynn, Kevin; Swintek, Joe; Johnson, Rodney
2017-02-01
Because of various Congressional mandates to protect the environment from endocrine disrupting chemicals (EDCs), the United States Environmental Protection Agency (USEPA) initiated the Endocrine Disruptor Screening Program. In the context of this framework, the Office of Research and Development within the USEPA developed the Medaka Extended One Generation Reproduction Test (MEOGRT) to characterize the endocrine action of a suspected EDC. One important endpoint of the MEOGRT is fecundity of medaka breeding pairs. Power analyses were conducted to determine the number of replicates needed in proposed test designs and to determine the effects that varying reproductive parameters (e.g. mean fecundity, variance, and days with no egg production) would have on the statistical power of the test. The MEOGRT Reproduction Power Analysis Tool (MRPAT) is a software tool developed to expedite these power analyses by both calculating estimates of the needed reproductive parameters (e.g. population mean and variance) and performing the power analysis under user specified scenarios. Example scenarios are detailed that highlight the importance of the reproductive parameters on statistical power. When control fecundity is increased from 21 to 38 eggs per pair per day and the variance decreased from 49 to 20, the gain in power is equivalent to increasing replication by 2.5 times. On the other hand, if 10% of the breeding pairs, including controls, do not spawn, the power to detect a 40% decrease in fecundity drops to 0.54 from nearly 0.98 when all pairs have some level of egg production. Perhaps most importantly, MRPAT was used to inform the decision making process that lead to the final recommendation of the MEOGRT to have 24 control breeding pairs and 12 breeding pairs in each exposure group. Published by Elsevier Inc.
Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K
2014-01-01
Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Injured subjects demonstrated greater extreme step length changes after medial perturbation than non-injured subjects (percent change = 18.5 ± 9.2 vs. 11.3 ± 4.57; p = .01). The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter which distinguishes between subjects sustaining a fall-related injury and those who did not. © 2014.
Sawicki, Piotr
2018-01-01
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011. PMID:29509679
Gabara, Grzegorz; Sawicki, Piotr
2018-03-06
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011.
Allet, L; Kim, H; Ashton-Miller, JA; De Mott, T; Richardson, JK
2013-01-01
Aims Distal symmetric polyneuropathy increases fall risk due to inability to cope with perturbations. We aimed to 1) identify the frontal plane lower limb sensorimotor functions which are necessary for robustness to a discrete, underfoot perturbation during gait; and 2) determine whether changes in the post-perturbed step parameters could distinguish between fallers and non fallers. Methods Forty-two subjects (16 healthy old and 26 with diabetic PN) participated. Frontal plane lower limb sensorimotor functions were determined using established laboratory-based techniques. The subjects' most extreme alterations in step width or step length in response to a perturbation were measured. In addition, falls and fall-related injuries were prospectively recorded. Results Ankle proprioceptive threshold (APrT; p=.025) and hip abduction rate of torque generation (RTG; p=.041) independently predicted extreme step length after medial perturbation, with precise APrT and greater hip RTG allowing maintenance of step length. Fallers demonstrated greater extreme step length changes after medial perturbation than non fallers (percent change = 16.41±8.42 vs 11.0±4.95; p=.06) Conclusions The ability to rapidly generate frontal plane hip strength and/or precisely perceive motion at the ankle is needed to maintain a normal step length after perturbation, a parameter, which distinguishes between fallers and non fallers. PMID:24183899
NASA Astrophysics Data System (ADS)
Wilches-Bernal, Felipe
Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control of the WTG while the second controller manipulates the reactive power control of the WTG using the current magnitude as the feedback signal. Finally, the dissertation proposes a parameter identification method for identifying and verifying the reactive power control parameters of WTGs. Using voltage and current measurements of a wind unit as an input, the proposed method estimates an optimal set of parameters such that the output current of a standalone WTG model better approximates the measured signal. Because WTG are nonlinear systems, the identification method is solved by a Gauss-Newton iteration used to calculate the solution of a nonlinear least-squares problem. The effectiveness of the proposed method is illustrated using a set of simulated data and actual PMU recordings.
NASA Astrophysics Data System (ADS)
Lu, Mei; Chen, Qing-Qin
2018-05-01
We propose an efficient scheme to generate the maximal entangle states in an atom–cavity system between two three-level atoms in cavity quantum electronic dynamics system based on shortcuts to adiabatic passage. In the accelerate scheme, there is no need to design a time-varying coupling coefficient for the cavity. We only need to tactfully design time-dependent lasers to drive the system into the desired entangled states. Controlling the detuning between the cavity mode and lasers, we deduce a determinate analysis formula for this quantum information processing. The lasers do not need to distinguish which atom is to be affected, therefore the implementation of the experiment is simpler. The method is also generalized to generate a W state. Moreover, the accelerated program can be extended to a multi-body system and an analytical solution in a higher-dimensional system can be achieved. The influence of decoherence and variations of the parameters are discussed by numerical simulation. The results show that the maximally entangled states can be quickly prepared in a short time with high fidelity, and which are robust against both parameter fluctuations and dissipation. Our study enriches the physics and applications of multi-particle quantum entanglement preparation via shortcuts to adiabatic passage in quantum electronic dynamics.
NASA Astrophysics Data System (ADS)
Rehman, Naveed ur; Siddiqui, Mubashir Ali
2018-05-01
This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.
NASA Astrophysics Data System (ADS)
Assmann, Céline; Scott, Amanda; Biller, Dondra
2017-08-01
Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.
Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment
Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon
2013-01-01
As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970
Reliable noninvasive measurement of blood gases
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.
1994-01-01
Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.
Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.
2016-03-22
Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.
Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less
Study of single crystals of metal solid solutions
NASA Technical Reports Server (NTRS)
Doty, J. P.; Reising, J. A.
1973-01-01
The growth of single crystals of relatively high melting point metals such as silver, copper, gold, and their alloys was investigated. The purpose was to develop background information necessary to support a space flight experiment and to generate ground based data for comparison. The ground based data, when compared to the data from space grown crystals, are intended to identify any effects which zero-gravity might have on the basic process of single crystal growth of these metals. The ultimate purposes of the complete investigation are to: (1) determine specific metals and alloys to be investigated; (2) grow single metal crystals in a terrestrial laboratory; (3) determine crystal characteristics, properties, and growth parameters that will be effected by zero-gravity; (4) evaluate terrestrially grown crystals; (5) grow single metal crystals in a space laboratory such as Skylab; (6) evaluate the space grown crystals; (7) compare for zero-gravity effects of crystal characteristics, properties, and parameters; and (8) make a recommendation as to production of these crystals as a routine space manufacturing proceses.
Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes
NASA Technical Reports Server (NTRS)
Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Martin, Richard E. (Inventor); Hafley, Robert A. (Inventor)
2013-01-01
A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.
NASA Technical Reports Server (NTRS)
Von Roos, O.
1979-01-01
By means of an exactly soluble model the short circuit current generated by a scanning electron microscope in a P-N junction has been determined in cases where the trap density is inhomogeneous. The diffusion length for minority carriers becomes then dependent on the spacial coordinates. It is shown that in this case the dependence of the Isc on characteristic parameters as cell thickness, distance of the beam excitation spot from ohmic contacts, etc., becomes very intricate. This fact precludes the determination of the local diffusion length in the usual manner. Although the model is somewhat simplified in order to make it amenable to exact solutions, it is nevertheless realistic enough to lead to the conclusion that SEM measurements of bulk transport parameters in inhomogeneous semiconductor material are impractical since they may lead to serious errors in the interpretation of the data by customary means.
Modes of mantle convection and the removal of heat from the earth's interior
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, H. C.; Wimmer, J. M.; Huang, H. H.; Rorabaugh, M. E.; Schienle, J.; Styhr, K. H.
1985-01-01
The AiResearch Casting Company baseline silicon nitride (92 percent GTE SN-502 Si sub 3 N sub 4 plus 6 percent Y sub 2 O sub 3 plus 2 percent Al sub 2 O sub 3) was characterized with methods that included chemical analysis, oxygen content determination, electrophoresis, particle size distribution analysis, surface area determination, and analysis of the degree of agglomeration and maximum particle size of elutriated powder. Test bars were injection molded and processed through sintering at 0.68 MPa (100 psi) of nitrogen. The as-sintered test bars were evaluated by X-ray phase analysis, room and elevated temperature modulus of rupture strength, Weibull modulus, stress rupture, strength after oxidation, fracture origins, microstructure, and density from quantities of samples sufficiently large to generate statistically valid results. A series of small test matrices were conducted to study the effects and interactions of processing parameters which included raw materials, binder systems, binder removal cycles, injection molding temperatures, particle size distribution, sintering additives, and sintering cycle parameters.
[Cortisol/creatinine ratio in urine (UCC) of healthy cats].
Zimmer, C; Reusch, C E
2003-07-01
In 31 healthy cats urine samples were taken to determine the cortisol/creatinine ratio (UCC) during hospitalisation and at home. The UCC of the samples, which had been taken in the clinic, was significantly higher (0-19 x 10(-6), Median 3 x 10(-6)) than the one of the samples taken at home (0-4 x 10(-6), Median 1 x 10(-6)). The parameter was neither influenced by the cat's age, sex or the fact that the cat stayed inside or outside, nor by the degree of visible agitation. Assay validation achieved good results regarding precision and accuracy of the measuring of cortisol and creatinine in the urine. The study shows that stress--caused by the visit to the veterinarian--can provoke a significant increase of UCC. Therefore, the parameter should be determined only from urine samples taken at home. Furthermore, it is important to notice that cortisol metabolites are measured in varying degree with the different assays. Therefore, it is inevitable that each laboratory generates its own reference values.
Gain determination of optical active doped planar waveguides
NASA Astrophysics Data System (ADS)
Šmejcký, J.; Jeřábek, V.; Nekvindová, P.
2017-12-01
This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.
LWPC: Long Wavelength Propagation Capability
NASA Astrophysics Data System (ADS)
U. S. Navy; Ferguson, J. A.; Hutchins, Michael
2018-03-01
Long Wavelength Propagation Capability (LWPC), written as a collection of separate programs that perform unique actions, generates geographical maps of signal availability for coverage analysis. The program makes it easy to set up these displays by automating most of the required steps. The user specifies the transmitter location and frequency, the orientation of the transmitting and receiving antennae, and the boundaries of the operating area. The program automatically selects paths along geographic bearing angles to ensure that the operating area is fully covered. The diurnal conditions and other relevant geophysical parameters are then determined along each path. After the mode parameters along each path are determined, the signal strength along each path is computed. The signal strength along the paths is then interpolated onto a grid overlying the operating area. The final grid of signal strength values is used to display the signal-strength in a geographic display. The LWPC uses character strings to control programs and to specify options. The control strings have the same meaning and use among all the programs.
Supramolecular Cocrystals of Gliclazide: Synthesis, Characterization and Evaluation.
Chadha, Renu; Rani, Dimpy; Goyal, Parnika
2017-03-01
To prepare the supramolecular cocrystals of gliclazide (GL, a BCS class II drug molecule) via mechanochemical route, with the goal of improving physicochemical and biopharmaceutical properties. Two cocrystals of GL with GRAS status coformers, sebacic acid (GL-SB; 1:1) and α-hydroxyacetic acid (GL-HA; 1:1) were screened out using liquid assisted grinding. The prepared cocrystals were characterized using thermal and analytical techniques followed by evaluation of antidiabetic activity and pharmacokinetic parameters. The generation of new, single and pure crystal forms was characterized by DSC and PXRD. The crystal structure determination from PXRD revealed the existence of both cocrystals in triclinic (P-1) crystal system. The hydrogen bonded network, determined by material studio was well supported by shifts in FTIR and SSNMR. Both the new solid forms displayed improved solubility, IDR, antidiabetic activity and pharmacokinetic parameters as compared to GL. The improvement in these physicochemical and biopharmaceutical properties corroborated the fact that the supramolecular cocrystallization may be useful in the development of pharmaceutical crystalline materials with interesting network and properties.
Davila, Marco L.; Brentjens, Renier; Wang, Xiuyan; Rivière, Isabelle; Sadelain, Michel
2012-01-01
Second-generation chimeric antigen receptors (CARs) are powerful tools to redirect antigen-specific T cells independently of HLA-restriction. Recent clinical studies evaluating CD19-targeted T cells in patients with B-cell malignancies demonstrate the potency of CAR-engineered T cells. With results from 28 subjects enrolled by five centers conducting studies in patients with chronic lymphocytic leukemia (CLL) or lymphoma, some insights into the parameters that determine T-cell function and clinical outcome of CAR-based approaches are emerging. These parameters involve CAR design, T-cell production methods, conditioning chemotherapy as well as patient selection. Here, we discuss the potential relevance of these findings and in particular the interplay between the adoptive transfer of T cells and pre-transfer patient conditioning. PMID:23264903
Thermal contact through a two-temperature kinetic Ising chain
NASA Astrophysics Data System (ADS)
Bauer, M.; Cornu, F.
2018-05-01
We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.
Microfluidic tools toward industrial biotechnology.
Oliveira, Aline F; Pessoa, Amanda C S N; Bastos, Reinaldo G; de la Torre, Lucimara G
2016-11-01
Microfluidics is a technology that operates with small amounts of fluids and makes possible the investigation of cells, enzymes, and biomolecules and encapsulation of biocatalysts in a greater variety of conditions than permitted using conventional methods. This review discusses technological possibilities that can be applied in the field of industrial biotechnology, presenting the principal definitions and fundamental aspects of microfluidic parameters to better understand advanced approaches. Specifically, concentration gradient generators, droplet-based microfluidics, and microbioreactors are explored as useful tools that can contribute to industrial biotechnology. These tools present potential applications, inclusive as commercial platforms to optimizing in bioprocesses development as screening cells, encapsulating biocatalysts, and determining critical kinetic parameters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1372-1389, 2016. © 2016 American Institute of Chemical Engineers.
An extended BET format for La RC shuttle experiments: Definition and development
NASA Technical Reports Server (NTRS)
Findlay, J. T.; Kelly, G. M.; Henry, M. W.
1981-01-01
A program for shuttle post-flight data reduction is discussed. An extended Best Estimate Trajectory (BET) file was developed. The extended format results in some subtle changes to the header record. The major change is the addition of twenty-six words to each data record. These words include atmospheric related parameters, body axis rate and acceleration data, computed aerodynamic coefficients, and angular accelerations. These parameters were added to facilitate post-flight aerodynamic coefficient determinations as well as shuttle entry air data sensor analyses. Software (NEWBET) was developed to generate the extended BET file utilizing the previously defined ENTREE BET, a dynamic data file which may be either derived inertial measurement unit data or aerodynamic coefficient instrument package data, and some atmospheric information.
NASA Astrophysics Data System (ADS)
Popczyk, Marcin
2017-11-01
Polish hard coal mines commonly use hydromixtures in their fire prevention practices. The mixtures are usually prepared based on mass-produced power production wastes, namely the ashes resulting from power production [1]. Such hydromixtures are introduced to the caving area which is formed due to the advancement of a longwall. The first part of the article presents theoretical fundamentals of determining the parameters of gravitational hydraulic transport of water and ash hydromixtures used in the mining pipeline systems. Each hydromixture produced based on fine-grained wastes is characterized by specified rheological parameters that have a direct impact on the future flow parameters of a given pipeline system. Additionally, the gravitational character of the hydraulic transport generates certain limitations concerning the so-called correct hydraulic profile of the system in relation to the applied hydromixture characterized by required rheological parameters that should ensure safe flow at a correct efficiency [2]. The paper includes an example of a gravitational hydraulic transport system and an assessment of the correctness of its hydraulic profile as well as the assessment of the impact of rheological parameters of fine-grained hydromixtures (water and ash) produced based on laboratory tests, depending on the specified flow parameters (efficiency) of the hydromixture in the analyzed system.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Bayesian inference for OPC modeling
NASA Astrophysics Data System (ADS)
Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.
2016-03-01
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
Impact of the injection dose of exhaust gases, on work parameters of combustion engine
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.
Using radar-derived parameters to forecast lightning cessation for nonisolated storms
NASA Astrophysics Data System (ADS)
Davey, Matthew J.; Fuelberg, Henry E.
2017-03-01
Lightning impacts operations at the Kennedy Space Center (KSC) and other outdoor venues leading to injuries, inconvenience, and detrimental economic impacts. This research focuses on cases of "nonisolated" lightning which we define as one cell whose flashes have ceased although it is still embedded in weak composite reflectivity (Z ≥ 15 dBZ) with another cell that is still producing flashes. The objective is to determine if any radar-derived parameters provide useful information about the occurrence of lightning cessation in remnant storms. The data set consists of 50 warm season (May-September) nonisolated storms near KSC during 2013. The research utilizes the National Lightning Detection Network, the second generation Lightning Detection and Ranging network, and polarized radar data. These data are merged and analyzed using the Warning Decision Support System-Integrated Information at 1 min intervals. Our approach only considers 62 parameters, most of which are related to the noninductive charging mechanism. They included the presence of graupel at various thermal altitudes, maximum reflectivity of the decaying storm at thermal altitudes, maximum connecting composite reflectivity between the decaying cell and active cell, minutes since the previous flash, and several others. Results showed that none of the parameters reliably indicated lightning cessation for even our restrictive definition of nonisolated storms. Additional research is needed before cessation can be determined operationally with the high degree of accuracy required for safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion
We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions,more » following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.« less
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.
2015-12-01
The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.
ERIC Educational Resources Information Center
Matthews-Lopez, Joy L.; Hombo, Catherine M.
The purpose of this study was to examine the recovery of item parameters in simulated Automatic Item Generation (AIG) conditions, using Markov chain Monte Carlo (MCMC) estimation methods to attempt to recover the generating distributions. To do this, variability in item and ability parameters was manipulated. Realistic AIG conditions were…
Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning
Kok, Kai Yit; Rajendran, Parvathy
2016-01-01
The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630
NASA Astrophysics Data System (ADS)
Karim, M. Enamul; Samad, M. Abdus; Ferdows, M.
2017-06-01
The present note investigates the magneto hall effect on unsteady flow of elastico-viscous nanofluid in a channel with slip boundary considering the presence of thermal radiation and heat generation with Brownian motion. Numerical results are achieved by solving the governing equations by the implicit Finite Difference Method (FDM) obtaining primary and secondary velocities, temperature, nanoparticles volume fraction and concentration distributions within the boundary layer entering into the problem. The influences of several interesting parameters such as elastico-viscous parameter, magnetic field, hall parameter, heat generation, thermal radiation and Brownian motion parameters on velocity, heat and mass transfer characteristics of the fluid flow are discussed with the help of graphs. Also the effects of the pertinent parameters, which are of physical and engineering interest, such as Skin friction parameter, Nusselt number and Sherwood number are sorted out. It is found that the flow field and other quantities of physical concern are significantly influenced by these parameters.