Sample records for determining kernel composition

  1. Relationship of source and sink in determining kernel composition of maize

    PubMed Central

    Seebauer, Juliann R.; Singletary, George W.; Krumpelman, Paulette M.; Ruffo, Matías L.; Below, Frederick E.

    2010-01-01

    The relative role of the maternal source and the filial sink in controlling the composition of maize (Zea mays L.) kernels is unclear and may be influenced by the genotype and the N supply. The objective of this study was to determine the influence of assimilate supply from the vegetative source and utilization of assimilates by the grain sink on the final composition of maize kernels. Intermated B73×Mo17 recombinant inbred lines (IBM RILs) which displayed contrasting concentrations of endosperm starch were grown in the field with deficient or sufficient N, and the source supply altered by ear truncation (45% reduction) at 15 d after pollination (DAP). The assimilate supply into the kernels was determined at 19 DAP using the agar trap technique, and the final kernel composition was measured. The influence of N supply and kernel ear position on final kernel composition was also determined for a commercial hybrid. Concentrations of kernel protein and starch could be altered by genotype or the N supply, but remained fairly constant along the length of the ear. Ear truncation also produced a range of variation in endosperm starch and protein concentrations. The C/N ratio of the assimilate supply at 19 DAP was directly related to the final kernel composition, with an inverse relationship between the concentrations of starch and protein in the mature endosperm. The accumulation of kernel starch and protein in maize is uniform along the ear, yet adaptable within genotypic limits, suggesting that kernel composition is source limited in maize. PMID:19917600

  2. Fruit position within the canopy affects kernel lipid composition of hazelnuts.

    PubMed

    Pannico, Antonio; Cirillo, Chiara; Giaccone, Matteo; Scognamiglio, Pasquale; Romano, Raffaele; Caporaso, Nicola; Sacchi, Raffaele; Basile, Boris

    2017-11-01

    The aim of this research was to study the variability in kernel composition within the canopy of hazelnut trees. Kernel fresh and dry weight increased linearly with fruit height above the ground. Fat content decreased, while protein and ash content increased, from the bottom to the top layers of the canopy. The level of unsaturation of fatty acids decreased from the bottom to the top of the canopy. Thus, the kernels located in the bottom layers of the canopy appear to be more interesting from a nutritional point of view, but their lipids may be more exposed to oxidation. The content of different phytosterols increased progressively from bottom to top canopy layers. Most of these effects correlated with the pattern in light distribution inside the canopy. The results of this study indicate that fruit position within the canopy is an important factor in determining hazelnut kernel growth and composition. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Effect of kernel size and mill type on protein, milling yield, and baking quality of hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Optimization of flour yield and quality is important in the milling industry. The objective of this study was to determine the effect of kernel size and mill type on flour yield and end-use quality. A hard red spring wheat composite sample was segregated, based on kernel size, into large, medium, ...

  4. Chemical and Nutritional Composition of Terminalia ferdinandiana (Kakadu Plum) Kernels: A Novel Nutrition Source

    PubMed Central

    Netzel, Michael E.; Tinggi, Ujang

    2018-01-01

    Terminalia ferdinandiana (Kakadu plum) is a native Australian fruit. Industrial processing of T. ferdinandiana fruits into puree generates seeds as a by-product, which are generally discarded. The aim of our present study was to process the seed to separate the kernel and determine its nutritional composition. The proximate, mineral and fatty acid compositions were analysed in this study. Kernels are composed of 35% fat, while proteins account for 32% dry weight (DW). The energy content and fiber were 2065 kJ/100 g and 21.2% DW, respectively. Furthermore, the study showed that kernels were a very rich source of minerals and trace elements, such as potassium (6693 mg/kg), calcium (5385 mg/kg), iron (61 mg/kg) and zinc (60 mg/kg) DW, and had low levels of heavy metals. The fatty acid composition of the kernels consisted of omega-6 fatty acid, linoleic acid (50.2%), monounsaturated oleic acid (29.3%) and two saturated fatty acids namely palmitic acid (12.0%) and stearic acid (7.2%). The results indicate that T. ferdinandiana kernels have the potential to be utilized as a novel protein source for dietary purposes and non-conventional supply of linoleic, palmitic and oleic acids. PMID:29649154

  5. The effect of microwave roasting on bioactive compounds, antioxidant activity and fatty acid composition of apricot kernel and oils.

    PubMed

    Al Juhaimi, Fahad; Musa Özcan, Mehmet; Ghafoor, Kashif; Babiker, Elfadıl E

    2018-03-15

    In this study, the effect of microwave (360W, 540W and 720W) oven roasting on oil yields, phenolic compounds, antioxidant activity, and fatty acid composition of some apricot kernel and oils was investigated. While total phenol contents of control group of apricot kernels change between 54.41mgGAE/100g (Soğancıoğlu) and 59.61mgGAE/100g (Hasanbey), total phenol contents of kernel samples roasted in 720W were determined between 27.41mgGAE/100g (Çataloğlu) and 34.52mgGAE/100g (Soğancıoğlu). Roasting process in microwave at 720W caused the reduction of some phenolic compounds of apricot kernels. The gallic acid contents of control apricot kernels ranged between 7.23mg/100g (Kabaaşı) and 11.23mg/100g (Çataloğlu) whereas the gallic acid contents of kernels roasted in 540W changed between 15.35mg/100g (Soğancıoğlu) and 21.17mg/100g (Çataloğlu). In addition, oleic acid contents of control group oils vary between 65.98% (Soğancıoğlu) and 71.86% (Hasanbey), the same fatty acid ranged from 63.48% (Soğancıoğlu) to 70.36% (Hasanbey). Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The partial replacement of palm kernel shell by carbon black and halloysite nanotubes as fillers in natural rubber composites

    NASA Astrophysics Data System (ADS)

    Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu

    2017-07-01

    The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).

  7. Determining the minimum required uranium carbide content for HTGR UCO fuel kernels

    DOE PAGES

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.; ...

    2017-03-10

    There are three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from free O generated when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. Furthermore, in the HTGR UCO kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium in the form of a carbide, UC x. An approach for determining the minimum UC xmore » content to ensure negligible CO formation was developed and demonstrated using CALPHAD models and the Serpent 2 reactor physics and depletion analysis tool. Our results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmutation products on the oxygen distribution as the fuel kernel composition evolves with burnup.« less

  8. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    PubMed

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  9. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    PubMed Central

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-01-01

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202

  11. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition.

    PubMed

    Nawaz, Malik A; Gaiani, Claire; Fukai, Shu; Bhandari, Bhesh

    2016-12-01

    The objectives of this study were to evaluate the ability of X-ray photoelectron spectroscopy (XPS) to differentiate rice macromolecules and to calculate the surface composition of rice kernels and flours. The uncooked kernels and flours surface composition of the two selected rice varieties, Thadokkham-11 (TDK11) and Doongara (DG) demonstrated an over-expression of lipids and proteins and an under-expression of starch compared to the bulk composition. The results of the study showed that XPS was able to differentiate rice polysaccharides (mainly starch), proteins and lipids in uncooked rice kernels and flours. Nevertheless, it was unable to distinguish components in cooked rice samples possibly due to complex interactions between gelatinized starch, denatured proteins and lipids. High resolution imaging methods (Scanning Electron Microscopy and Confocal Laser Scanning Microscopy) were employed to obtain complementary information about the properties and location of starch, proteins and lipids in rice kernels and flours. Copyright © 2016. Published by Elsevier Ltd.

  12. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  13. Mineral contents and proximate composition of Pistacia vera kernels.

    PubMed

    Harmankaya, Mustafa; Ozcan, Mehmet Musa; Al Juhaimi, Fahad

    2014-07-01

    The mineral contents of Pistacia vera kernels were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The minimum and maximum values of K, P, Ca, Mg, and S elements ranged from 6,333 to 8,064 mg/kg, 3,630 to 5,228 mg/kg, 1,614 to 3,226 mg/kg, 1,716 to 2,402 mg/kg, and 1,417 to 1,825 mg/kg, respectively. In addition, the mean values of Fe, Zn, Cu, Mn, B, Mo, Cr and Ni elements were determined as 42.48, 20.52, 12.81, 7.48, 11.31, 0.106, 0.511 and 1.67 mg/kg, respectively. Ash levels of kernels were found between 2.28 % (Urfa) and 2.79 % (Halebi). In addition, crude oil and protein contents were determined between 48.8 % (Halebi) to 55.3 % (Siirt) and 23.33 % (Uzun) to 27.16 % (Halebi), respectively.

  14. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels

    NASA Astrophysics Data System (ADS)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.

  15. Genetic, Genomic, and Breeding Approaches to Further Explore Kernel Composition Traits and Grain Yield in Maize

    ERIC Educational Resources Information Center

    Da Silva, Helena Sofia Pereira

    2009-01-01

    Maize ("Zea mays L.") is a model species well suited for the dissection of complex traits which are often of commercial value. The purpose of this research was to gain a deeper understanding of the genetic control of maize kernel composition traits starch, protein, and oil concentration, and also kernel weight and grain yield. Germplasm with…

  16. Relationship between processing score and kernel-fraction particle size in whole-plant corn silage.

    PubMed

    Dias Junior, G S; Ferraretto, L F; Salvati, G G S; de Resende, L C; Hoffman, P C; Pereira, M N; Shaver, R D

    2016-04-01

    Kernel processing increases starch digestibility in whole-plant corn silage (WPCS). Corn silage processing score (CSPS), the percentage of starch passing through a 4.75-mm sieve, is widely used to assess degree of kernel breakage in WPCS. However, the geometric mean particle size (GMPS) of the kernel-fraction that passes through the 4.75-mm sieve has not been well described. Therefore, the objectives of this study were (1) to evaluate particle size distribution and digestibility of kernels cut in varied particle sizes; (2) to propose a method to measure GMPS in WPCS kernels; and (3) to evaluate the relationship between CSPS and GMPS of the kernel fraction in WPCS. Composite samples of unfermented, dried kernels from 110 corn hybrids commonly used for silage production were kept whole (WH) or manually cut in 2, 4, 8, 16, 32 or 64 pieces (2P, 4P, 8P, 16P, 32P, and 64P, respectively). Dry sieving to determine GMPS, surface area, and particle size distribution using 9 sieves with nominal square apertures of 9.50, 6.70, 4.75, 3.35, 2.36, 1.70, 1.18, and 0.59 mm and pan, as well as ruminal in situ dry matter (DM) digestibilities were performed for each kernel particle number treatment. Incubation times were 0, 3, 6, 12, and 24 h. The ruminal in situ DM disappearance of unfermented kernels increased with the reduction in particle size of corn kernels. Kernels kept whole had the lowest ruminal DM disappearance for all time points with maximum DM disappearance of 6.9% at 24 h and the greatest disappearance was observed for 64P, followed by 32P and 16P. Samples of WPCS (n=80) from 3 studies representing varied theoretical length of cut settings and processor types and settings were also evaluated. Each WPCS sample was divided in 2 and then dried at 60 °C for 48 h. The CSPS was determined in duplicate on 1 of the split samples, whereas on the other split sample the kernel and stover fractions were separated using a hydrodynamic separation procedure. After separation, the kernel fraction was redried at 60°C for 48 h in a forced-air oven and dry sieved to determine GMPS and surface area. Linear relationships between CSPS from WPCS (n=80) and kernel fraction GMPS, surface area, and proportion passing through the 4.75-mm screen were poor. Strong quadratic relationships between proportion of kernel fraction passing through the 4.75-mm screen and kernel fraction GMPS and surface area were observed. These findings suggest that hydrodynamic separation and dry sieving of the kernel fraction may provide a better assessment of kernel breakage in WPCS than CSPS. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Hou, Yiran; Wen, Bin

    2016-08-01

    The present study was conducted to determine the change of digestive physiology in sea cucumber Apostichopus japonicus (Selenka) induced by corn kernels meal and soybean meal in diets. Four experimental diets were tested, in which Sargassum thunbergii was proportionally replaced by the mixture of corn kernels meal and soybean meal. The growth performance, body composition and intestinal digestive enzyme activities in A. japonicus fed these 4 diets were examined. Results showed that the sea cucumber exhibited the maximum growth rate when 20% of S. thunbergii in the diet was replaced by corn kernels meal and soybean meal, while 40% of S. thunbergii in the diet can be replaced by the mixture of corn kernels meal and soybean meal without adversely affecting growth performance of A. japonicus. The activities of intestinal trypsin and amylase in A. japonicus can be significantly altered by corn kernels meal and soybean meal in diets. Trypsin activity in the intestine of A. japonicus significantly increased in the treatment groups compared to the control, suggesting that the supplement of corn kernels meal and soybean meal in the diets might increase the intestinal trypsin activity of A. japonicus. However, amylase activity in the intestine of A. japonicus remarkably decreased with the increasing replacement level of S. thunbergii by the mixture of corn kernels meal and soybean meal, suggesting that supplement of corn kernels meal and soybean meal in the diets might decrease the intestinal amylase activity of A. japonicus.

  18. Gaussian processes with optimal kernel construction for neuro-degenerative clinical onset prediction

    NASA Astrophysics Data System (ADS)

    Canas, Liane S.; Yvernault, Benjamin; Cash, David M.; Molteni, Erika; Veale, Tom; Benzinger, Tammie; Ourselin, Sébastien; Mead, Simon; Modat, Marc

    2018-02-01

    Gaussian Processes (GP) are a powerful tool to capture the complex time-variations of a dataset. In the context of medical imaging analysis, they allow a robust modelling even in case of highly uncertain or incomplete datasets. Predictions from GP are dependent of the covariance kernel function selected to explain the data variance. To overcome this limitation, we propose a framework to identify the optimal covariance kernel function to model the data.The optimal kernel is defined as a composition of base kernel functions used to identify correlation patterns between data points. Our approach includes a modified version of the Compositional Kernel Learning (CKL) algorithm, in which we score the kernel families using a new energy function that depends both the Bayesian Information Criterion (BIC) and the explained variance score. We applied the proposed framework to model the progression of neurodegenerative diseases over time, in particular the progression of autosomal dominantly-inherited Alzheimer's disease, and use it to predict the time to clinical onset of subjects carrying genetic mutation.

  19. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    PubMed

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Classification of Astrocytomas and Oligodendrogliomas from Mass Spectrometry Data Using Sparse Kernel Machines

    PubMed Central

    Huang, Jacob; Gholami, Behnood; Agar, Nathalie Y. R.; Norton, Isaiah; Haddad, Wassim M.; Tannenbaum, Allen R.

    2013-01-01

    Glioma histologies are the primary factor in prognostic estimates and are used in determining the proper course of treatment. Furthermore, due to the sensitivity of cranial environments, real-time tumor-cell classification and boundary detection can aid in the precision and completeness of tumor resection. A recent improvement to mass spectrometry known as desorption electrospray ionization operates in an ambient environment without the application of a preparation compound. This allows for a real-time acquisition of mass spectra during surgeries and other live operations. In this paper, we present a framework using sparse kernel machines to determine a glioma sample’s histopathological subtype by analyzing its chemical composition acquired by desorption electrospray ionization mass spectrometry. PMID:22256188

  1. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.

    PubMed

    Ledbetter, C A

    2008-09-01

    Researchers are currently developing new value-added uses for almond shells, an abundant agricultural by-product. Almond varieties are distinguished by processors as being either hard or soft shelled, but these two broad classes of almond also exhibit varietal diversity in shell morphology and physical characters. By defining more precisely the physical and chemical characteristics of almond shells from different varieties, researchers will better understand which specific shell types are best suited for specific industrial processes. Eight diverse almond accessions were evaluated in two consecutive harvest seasons for nut and kernel weight, kernel percentage and shell cracking strength. Shell bulk density was evaluated in a separate year. Harvest year by almond accession interactions were highly significant (p0.01) for each of the analyzed variables. Significant (p0.01) correlations were noted for average nut weight with kernel weight, kernel percentage and shell cracking strength. A significant (p0.01) negative correlation for shell cracking strength with kernel percentage was noted. In some cases shell cracking strength was independent of the kernel percentage which suggests that either variety compositional differences or shell morphology affect the shell cracking strength. The varietal characterization of almond shell materials will assist in determining the best value-added uses for this abundant agricultural by-product.

  2. Nature and composition of fat bloom from palm kernel stearin and hydrogenated palm kernel stearin compound chocolates.

    PubMed

    Smith, Kevin W; Cain, Fred W; Talbot, Geoff

    2004-08-25

    Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures.

  3. Tocochromanols composition in kernels recovered from different apricot varieties: RP-HPLC/FLD and RP-UPLC-ESI/MS(n) study.

    PubMed

    Górnaś, Paweł; Mišina, Inga; Grāvīte, Ilze; Soliven, Arianne; Kaufmane, Edīte; Segliņa, Dalija

    2015-01-01

    Composition of tocochromanols in kernels recovered from 16 different apricot varieties (Prunus armeniaca L.) was studied. Three tocopherol (T) homologues, namely α, γ and δ, were quantified in all tested samples by an RP-HPLC/FLD method. The γ-T was the main tocopherol homologue identified in apricot kernels and constituted approximately 93% of total detected tocopherols. The RP-UPLC-ESI/MS(n) method detected trace amounts of two tocotrienol homologues α and γ in the apricot kernels. The concentration of individual tocopherol homologues in kernels of different apricots varieties, expressed in mg/100 g dwb, was in the following range: 1.38-4.41 (α-T), 42.48-73.27 (γ-T) and 0.77-2.09 (δ-T). Moreover, the ratio between individual tocopherol homologues α:γ:δ was nearly constant in all varieties and amounted to approximately 2:39:1.

  4. 7 CFR 868.304 - Broken kernels determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...

  5. 7 CFR 868.304 - Broken kernels determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.304 Section 868.304 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.304 Broken kernels determination. Broken kernels shall be determined by the use...

  6. Production of Low Enriched Uranium Nitride Kernels for TRISO Particle Irradiation Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, J. W.; Silva, C. M.; Helmreich, G. W.

    2016-06-01

    A large batch of UN microspheres to be used as kernels for TRISO particle fuel was produced using carbothermic reduction and nitriding of a sol-gel feedstock bearing tailored amounts of low-enriched uranium (LEU) oxide and carbon. The process parameters, established in a previous study, produced phasepure NaCl structure UN with dissolved C on the N sublattice. The composition, calculated by refinement of the lattice parameter from X-ray diffraction, was determined to be UC 0.27N 0.73. The final accepted product weighed 197.4 g. The microspheres had an average diameter of 797±1.35 μm and a composite mean theoretical density of 89.9±0.5% formore » a solid solution of UC and UN with the same atomic ratio; both values are reported with their corresponding calculated standard error.« less

  7. 7 CFR 810.2003 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Basis of determination. Each determination of heat-damaged kernels, damaged kernels, material other than... shrunken and broken kernels. Other determinations not specifically provided for under the general...

  8. 7 CFR 868.254 - Broken kernels determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Broken kernels determination. 868.254 Section 868.254 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Governing Application of Standards § 868.254 Broken kernels determination. Broken kernels shall be...

  9. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties.

    PubMed

    Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad

    2017-11-01

    Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.

  10. 7 CFR 981.60 - Determination of kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Determination of kernel weight. 981.60 Section 981.60... Regulating Handling Volume Regulation § 981.60 Determination of kernel weight. (a) Almonds for which settlement is made on kernel weight. All lots of almonds, whether shelled or unshelled, for which settlement...

  11. 7 CFR 51.1416 - Optional determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... throughout the lot. (a) Edible kernel content. A minimum sample of at least 500 grams of in-shell pecans shall be used for determination of edible kernel content. After the sample is weighed and shelled... determine edible kernel content for the lot. (b) Poorly developed kernel content. A minimum sample of at...

  12. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  13. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  14. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    DOE PAGES

    Hunt, Rodney Dale; Johnson, Jared A.; Collins, Jack Lee; ...

    2017-10-12

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC 2), which is UC 1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UCmore » 2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90–92% of TD with full conversion of UC to UC 2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC 2. Lastly, the selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.« less

  15. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  16. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  17. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  18. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as... purposes of determining inedible kernels, pieces, or particles of almond kernels. [59 FR 39419, Aug. 3...

  19. Unconventional protein sources: apricot seed kernels.

    PubMed

    Gabrial, G N; El-Nahry, F I; Awadalla, M Z; Girgis, S M

    1981-09-01

    Hamawy apricot seed kernels (sweet), Amar apricot seed kernels (bitter) and treated Amar apricot kernels (bitterness removed) were evaluated biochemically. All kernels were found to be high in fat (42.2--50.91%), protein (23.74--25.70%) and fiber (15.08--18.02%). Phosphorus, calcium, and iron were determined in all experimental samples. The three different apricot seed kernels were used for extensive study including the qualitative determination of the amino acid constituents by acid hydrolysis, quantitative determination of some amino acids, and biological evaluation of the kernel proteins in order to use them as new protein sources. Weanling albino rats failed to grow on diets containing the Amar apricot seed kernels due to low food consumption because of its bitterness. There was no loss in weight in that case. The Protein Efficiency Ratio data and blood analysis results showed the Hamawy apricot seed kernels to be higher in biological value than treated apricot seed kernels. The Net Protein Ratio data which accounts for both weight, maintenance and growth showed the treated apricot seed kernels to be higher in biological value than both Hamawy and Amar kernels. The Net Protein Ratio for the last two kernels were nearly equal.

  20. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    USGS Publications Warehouse

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-01-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  1. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data

    NASA Astrophysics Data System (ADS)

    Dawson, Andria; Paciorek, Christopher J.; McLachlan, Jason S.; Goring, Simon; Williams, John W.; Jackson, Stephen T.

    2016-04-01

    Mitigation of climate change and adaptation to its effects relies partly on how effectively land-atmosphere interactions can be quantified. Quantifying composition of past forest ecosystems can help understand processes governing forest dynamics in a changing world. Fossil pollen data provide information about past forest composition, but rigorous interpretation requires development of pollen-vegetation models (PVMs) that account for interspecific differences in pollen production and dispersal. Widespread and intensified land-use over the 19th and 20th centuries may have altered pollen-vegetation relationships. Here we use STEPPS, a Bayesian hierarchical spatial PVM, to estimate key process parameters and associated uncertainties in the pollen-vegetation relationship. We apply alternate dispersal kernels, and calibrate STEPPS using a newly developed Euro-American settlement-era calibration data set constructed from Public Land Survey data and fossil pollen samples matched to the settlement-era using expert elicitation. Models based on the inverse power-law dispersal kernel outperformed those based on the Gaussian dispersal kernel, indicating that pollen dispersal kernels are fat tailed. Pine and birch have the highest pollen productivities. Pollen productivity and dispersal estimates are generally consistent with previous understanding from modern data sets, although source area estimates are larger. Tests of model predictions demonstrate the ability of STEPPS to predict regional compositional patterns.

  2. Electron-beam irradiation effects on phytochemical constituents and antioxidant capacity of pecan kernels [ Carya illinoinensis (Wangenh.) K. Koch] during storage.

    PubMed

    Villarreal-Lozoya, Jose E; Lombardini, Leonardo; Cisneros-Zevallos, Luis

    2009-11-25

    Pecans kernels (Kanza and Desirable cultivars) were irradiated with 0, 1.5, and 3.0 kGy using electron-beam (E-beam) irradiation and stored under accelerated conditions [40 degrees C and 55-60% relative humidity (RH)] for 134 days. Antioxidant capacity (AC) using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays, phenolic (TP) and condensed tannin (CT) content, high-performance liquid chromatography (HPLC) phenolic profile, tocopherol content, peroxide value (PV), and fatty acid profiles were determined during storage. Irradiation decreased TP and CT with no major detrimental effects in AC. Phenolic profiles after hydrolysis were similar among treatments (e.g., gallic and ellagic acid, catechin, and epicatechin). Tocopherol content decreased with irradiation (>21 days), and PV increased at later stages (>55 days), with no change in fatty acid composition among treatments. Color lightness decreased, and a reddish brown hue developed during storage. A proposed mechanism of kernel oxidation is presented, describing the events taking place. In general, E-beam irradiation had slight effects on phytochemical constituents and could be considered a potential tool for pecan kernel decontamination.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jacob W.; Lindemer, Terrence B.; Brown, Nicholas R.

    There are three important failure mechanisms that must be controlled in high-temperature gas-cooled reactor (HTGR) fuel for certain higher burnup applications are SiC layer rupture, SiC corrosion by CO, and coating compromise from kernel migration. All are related to high CO pressures stemming from free O generated when uranium present as UO 2 fissions and the O is not subsequently bound by other elements. Furthermore, in the HTGR UCO kernel design, CO buildup from excess O is controlled by the inclusion of additional uranium in the form of a carbide, UC x. An approach for determining the minimum UC xmore » content to ensure negligible CO formation was developed and demonstrated using CALPHAD models and the Serpent 2 reactor physics and depletion analysis tool. Our results are intended to be more accurate than previous estimates by including more nuclear and chemical factors, in particular the effect of transmutation products on the oxygen distribution as the fuel kernel composition evolves with burnup.« less

  4. Composition and Free Radical Scavenging Activity of Kernel Oil from Torreya grandis, Carya Cathayensis, and Myrica Rubra

    PubMed Central

    Ni, Liang; Shi, Wei-Yong

    2014-01-01

    In this study, we measured the composition and free radical scavenging activity of several species of nuts, namely, Torreya grandis, Carya cathayensis, and Myrica rubra. The nut kernels of the aforementioned species are rich in fatty acids, particularly in unsaturated fatty acids, and have 51% oil content. T. grandis and C. cathayensis are mostly produced in ZheJiang province. The trace elements in the kernels of T. grandis and C. cathayensis were generally higher than those in M. rubra, except for Fe with a value of 64.41 mg/Kg. T. grandis is rich in selenium (52.91−68.71 mg/Kg). All three kernel oils have a certain free radical scavenging capacity, with the highest value in M. rubra. In the DPPH assay, the IC50 of M. rubra kernel oil was 60 μg/mL, and OH was 100 μg/mL. The results of this study provide basic data for the future development of the edible nut resources in ZheJiang province. PMID:24734074

  5. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature

    PubMed Central

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems. PMID:29099838

  6. Distributed smoothed tree kernel for protein-protein interaction extraction from the biomedical literature.

    PubMed

    Murugesan, Gurusamy; Abdulkadhar, Sabenabanu; Natarajan, Jeyakumar

    2017-01-01

    Automatic extraction of protein-protein interaction (PPI) pairs from biomedical literature is a widely examined task in biological information extraction. Currently, many kernel based approaches such as linear kernel, tree kernel, graph kernel and combination of multiple kernels has achieved promising results in PPI task. However, most of these kernel methods fail to capture the semantic relation information between two entities. In this paper, we present a special type of tree kernel for PPI extraction which exploits both syntactic (structural) and semantic vectors information known as Distributed Smoothed Tree kernel (DSTK). DSTK comprises of distributed trees with syntactic information along with distributional semantic vectors representing semantic information of the sentences or phrases. To generate robust machine learning model composition of feature based kernel and DSTK were combined using ensemble support vector machine (SVM). Five different corpora (AIMed, BioInfer, HPRD50, IEPA, and LLL) were used for evaluating the performance of our system. Experimental results show that our system achieves better f-score with five different corpora compared to other state-of-the-art systems.

  7. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Basis of determination. Each determination of broken kernels and foreign material is made on the basis of the grain when free from dockage. Each determination of class, damaged kernels, heat-damaged kernels, and stones is made on the basis of the grain when free from dockage and that portion of the...

  8. Triacylglycerol and triterpene ester composition of shea nuts from seven African countries.

    PubMed

    Akihisa, Toshihiro; Kojima, Nobuo; Katoh, Naoko; Kikuchi, Takashi; Fukatsu, Makoto; Shimizu, Naoto; Masters, Eliot T

    2011-01-01

    The compositions of the triacylglycerol (TAG) and triterpene ester (TE) fractions of the kernel fats (n-hexane extracts; shea butter) of the shea tree (Vitellaria paradoxa; Sapotaceae) were determined for 36 samples from seven sub-Saharan countries, i.e., Cote d' Ivoire, Ghana, Nigeria, Cameroun, Chad, Sudan, and Uganda. The principal TAGs are stearic-oleic-stearic (SOS; mean 31.2%), SOO (27.7%), and OOO (10.8%). The TE fractions contents are in the range of 0.5-6.5%, and contain α-amyrin cinnamate (1c; mean 29.3%) as the predominant TE followed by butyrospermol cinnamate (4c; 14.8%), α-amyrin acetate (1a; 14.1%), lupeol cinnamate (3c; 9.0%), β-amyrin cinnamate (2c; 7.6%), lupeol acetate (3a; 7.2%), butyrospermol acetate (4a; 5.8%), and β-amyrin acetate (2a; 4.9%). Shea kernel fats from West African provenances contained, in general, higher levels of high-melting TAGs such as SOS, and higher amount of TEs than those from East African provenances. No striking regional difference in the composition of the TE fractions was observed. Copyright © 2011 by Japan Oil Chemists' Society

  9. Kernel Machine SNP-set Testing under Multiple Candidate Kernels

    PubMed Central

    Wu, Michael C.; Maity, Arnab; Lee, Seunggeun; Simmons, Elizabeth M.; Harmon, Quaker E.; Lin, Xinyi; Engel, Stephanie M.; Molldrem, Jeffrey J.; Armistead, Paul M.

    2013-01-01

    Joint testing for the cumulative effect of multiple single nucleotide polymorphisms grouped on the basis of prior biological knowledge has become a popular and powerful strategy for the analysis of large scale genetic association studies. The kernel machine (KM) testing framework is a useful approach that has been proposed for testing associations between multiple genetic variants and many different types of complex traits by comparing pairwise similarity in phenotype between subjects to pairwise similarity in genotype, with similarity in genotype defined via a kernel function. An advantage of the KM framework is its flexibility: choosing different kernel functions allows for different assumptions concerning the underlying model and can allow for improved power. In practice, it is difficult to know which kernel to use a priori since this depends on the unknown underlying trait architecture and selecting the kernel which gives the lowest p-value can lead to inflated type I error. Therefore, we propose practical strategies for KM testing when multiple candidate kernels are present based on constructing composite kernels and based on efficient perturbation procedures. We demonstrate through simulations and real data applications that the procedures protect the type I error rate and can lead to substantially improved power over poor choices of kernels and only modest differences in power versus using the best candidate kernel. PMID:23471868

  10. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    PubMed

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation.

  11. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata).

    PubMed

    Coimbra, Michelle C; Jorge, Neuza

    2012-02-01

    Bioactive compounds are capable of providing health benefits, reducing disease incidence or favoring body functioning. There is a growing search for vegetable oils containing such compounds. This study aimed to characterize the pulp and kernel oils of the Brazilian palm species guariroba (Syagrus oleracea), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata), aiming at possible uses in several industries. Fatty acid composition, phenolic and carotenoid contents, tocopherol composition were evaluated. The majority of the fatty acids in pulps were oleic and linoleic; macaúba pulp contained 526 g kg⁻¹ of oleic acid. Lauric acid was detected in the kernels of all three species as the major saturated fatty acid, in amounts ranging from 325.8 to 424.3 g kg⁻¹. The jerivá pulp contained carotenoids and tocopherols on average of 1219 µg g⁻¹ and 323.50 mg kg⁻¹, respectively. The pulps contained more unsaturated fatty acids than the kernels, mainly oleic and linoleic. Moreover, the pulps showed higher carotenoid and tocopherol contents. The kernels showed a predominance of saturated fatty acids, especially lauric acid. The fatty acid profiles of the kernels suggest that these oils may be better suited for the cosmetic and pharmaceutical industries than for use in foods. Copyright © 2011 Society of Chemical Industry.

  12. The correlation of chemical and physical corn kernel traits with production performance in broiler chickens and laying hens.

    PubMed

    Moore, S M; Stalder, K J; Beitz, D C; Stahl, C H; Fithian, W A; Bregendahl, K

    2008-04-01

    A study was conducted to determine the influence on broiler chicken growth and laying hen performance of chemical and physical traits of corn kernels from different hybrids. A total of 720 male 1-d-old Ross-308 broiler chicks were allotted to floor pens in 2 replicated experiments with a randomized complete block design. A total of 240 fifty-two-week-old Hy-Line W-36 laying hens were allotted to cages in a randomized complete block design. Corn-soybean meal diets were formulated for 3 broiler growth phases and one 14-wk-long laying hen phase to be marginally deficient in Lys and TSAA to allow for the detection of differences or correlations attributable to corn kernel chemical or physical traits. The broiler chicken diets were also marginally deficient in Ca and nonphytate P. Within a phase, corn- and soybean-based diets containing equal amounts of 1 of 6 different corn hybrids were formulated. The corn hybrids were selected to vary widely in chemical and physical traits. Feed consumption and BW were recorded for broiler chickens every 2 wk from 0 to 6 wk of age. Egg production was recorded daily, and feed consumption and egg weights were recorded weekly for laying hens between 53 and 67 wk of age. Physical and chemical composition of kernels was correlated with performance measures by multivariate ANOVA. Chemical and physical kernel traits were weakly correlated with performance in broiler chickens from 0 to 2 wk of age (P<0.05, | r |<0.42). However, from 4 to 6 wk of age and 0 to 6 wk of age, only kernel chemical traits were correlated with broiler chicken performance (P<0.05, | r |<0.29). From 53 to 67 wk of age, correlations were observed between both kernel physical and chemical traits and laying hen performance (P<0.05, | r |<0.34). In both experiments, the correlations of performance measures with individual kernel chemical and physical traits for any single kernel trait were not large enough to base corn hybrid selection on for feeding poultry.

  13. Fatty acid, triacylglycerol, phytosterol, and tocopherol variations in kernel oil of Malatya apricots from Turkey.

    PubMed

    Turan, Semra; Topcu, Ali; Karabulut, Ihsan; Vural, Halil; Hayaloglu, Ali Adnan

    2007-12-26

    The fatty acid, sn-2 fatty acid, triacyglycerol (TAG), tocopherol, and phytosterol compositions of kernel oils obtained from nine apricot varieties grown in the Malatya region of Turkey were determined ( P<0.05). The names of the apricot varieties were Alyanak (ALY), Cataloglu (CAT), Cöloglu (COL), Hacihaliloglu (HAC), Hacikiz (HKI), Hasanbey (HSB), Kabaasi (KAB), Soganci (SOG), and Tokaloglu (TOK). The total oil contents of apricot kernels ranged from 40.23 to 53.19%. Oleic acid contributed 70.83% to the total fatty acids, followed by linoleic (21.96%), palmitic (4.92%), and stearic (1.21%) acids. The s n-2 position is mainly occupied with oleic acid (63.54%), linoleic acid (35.0%), and palmitic acid (0.96%). Eight TAG species were identified: LLL, OLL, PLL, OOL+POL, OOO+POO, and SOO (where P, palmitoyl; S, stearoyl; O, oleoyl; and L, linoleoyl), among which mainly OOO+POO contributed to 48.64% of the total, followed by OOL+POL at 32.63% and OLL at 14.33%. Four tocopherol and six phytosterol isomers were identified and quantified; among these, gamma-tocopherol (475.11 mg/kg of oil) and beta-sitosterol (273.67 mg/100 g of oil) were predominant. Principal component analysis (PCA) was applied to the data from lipid components of apricot kernel oil in order to explore the distribution of the apricot variety according to their kernel's lipid components. PCA separated some varieties including ALY, COL, KAB, CAT, SOG, and HSB in one group and varieties TOK, HAC, and HKI in another group based on their lipid components of apricot kernel oil. So, in the present study, PCA was found to be a powerful tool for classification of the samples.

  14. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  15. Phenolic compounds and fatty acid composition of organic and conventional grown pecan kernels

    USDA-ARS?s Scientific Manuscript database

    In this study, differences in contents of phenolic compounds and fatty acids in pecan kernels of organically versus conventionally grown pecan cultivars (‘Desirable’, ‘Cheyenne’, and ‘Wichita’) were evaluated. Although we were able to identify nine phenolic compounds (gallic acid, catechol, catechin...

  16. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period.

    PubMed

    Yesbergenova-Cuny, Zhazira; Dinant, Sylvie; Martin-Magniette, Marie-Laure; Quilleré, Isabelle; Armengaud, Patrick; Monfalet, Priscilla; Lea, Peter J; Hirel, Bertrand

    2016-11-01

    Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Novel near-infrared sampling apparatus for single kernel analysis of oil content in maize.

    PubMed

    Janni, James; Weinstock, B André; Hagen, Lisa; Wright, Steve

    2008-04-01

    A method of rapid, nondestructive chemical and physical analysis of individual maize (Zea mays L.) kernels is needed for the development of high value food, feed, and fuel traits. Near-infrared (NIR) spectroscopy offers a robust nondestructive method of trait determination. However, traditional NIR bulk sampling techniques cannot be applied successfully to individual kernels. Obtaining optimized single kernel NIR spectra for applied chemometric predictive analysis requires a novel sampling technique that can account for the heterogeneous forms, morphologies, and opacities exhibited in individual maize kernels. In this study such a novel technique is described and compared to less effective means of single kernel NIR analysis. Results of the application of a partial least squares (PLS) derived model for predictive determination of percent oil content per individual kernel are shown.

  18. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  19. Anthocyanin composition and oxygen radical scavenging capacity (ORAC) of milled and pearled purple, black, and common barley.

    PubMed

    Bellido, Guillermo G; Beta, Trust

    2009-02-11

    The importance of anthocyanins to the total antioxidant capacity of various fruits and vegetables has been well established, but less attention has been focused on cereal grains. This study investigated the antioxidant capacity and anthocyanin composition of a bran-rich pearling fraction (10% outer kernel layers) and whole kernel flour of purple (CI-1248), black (PERU-35), and yellow (EX-83) barley genotypes. HPLC analysis showed that as much as 6 times more anthocyanin per unit weight (microg/g) was present in the bran-rich fractions of yellow and purple barley (1587 and 3534, respectively) than in their corresponding whole kernel flours (210 and 573, respectively). Delphinidin 3-glucoside, delphinidin 3-rutinoside, cyanidin 3-glucoside, petunidin 3-glucoside, and cyanidin chloride were positively identified in barley, with as many as 9 and 15 anthocyanins being detected in yellow and purple barley, respectively. Antioxidant activity analysis showed that the ORAC values for the bran-rich fractions were significantly (p < 0.05) higher than for the whole kernel flour.

  20. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars.

    PubMed

    He, Zhiyong; Zhu, Haidong; Li, Wangling; Zeng, Maomao; Wu, Shengfang; Chen, Shangwei; Qin, Fang; Chen, Jie

    2016-10-15

    The chemical compositions of cold pressed kernel oils of seven Torreya grandis cultivars from China were analyzed in this study. The contents of the chemical components of T. grandis kernels and kernel oils varied to different extents with the cultivar. The T. grandis kernels contained relatively high oil and protein content (45.80-53.16% and 10.34-14.29%, respectively). The kernel oils were rich in unsaturated fatty acids including linoleic (39.39-47.77%), oleic (30.47-37.54%) and eicosatrienoic acid (6.78-8.37%). The kernel oils contained some abundant bioactive substances such as tocopherols (0.64-1.77mg/g) consisting of α-, β-, γ- and δ-isomers; sterols including β-sitosterol (0.90-1.29mg/g), campesterol (0.06-0.32mg/g) and stigmasterol (0.04-0.18mg/g) in addition to polyphenols (9.22-22.16μgGAE/g). The results revealed that the T. grandis kernel oils possessed the potentially important nutrition and health benefits and could be used as oils in the human diet or functional ingredients in the food industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    NASA Astrophysics Data System (ADS)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  2. Kernel learning at the first level of inference.

    PubMed

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Influence of Kernel Age on Fumonisin B1 Production in Maize by Fusarium moniliforme

    PubMed Central

    Warfield, Colleen Y.; Gilchrist, David G.

    1999-01-01

    Production of fumonisins by Fusarium moniliforme on naturally infected maize ears is an important food safety concern due to the toxic nature of this class of mycotoxins. Assessing the potential risk of fumonisin production in developing maize ears prior to harvest requires an understanding of the regulation of toxin biosynthesis during kernel maturation. We investigated the developmental-stage-dependent relationship between maize kernels and fumonisin B1 production by using kernels collected at the blister (R2), milk (R3), dough (R4), and dent (R5) stages following inoculation in culture at their respective field moisture contents with F. moniliforme. Highly significant differences (P ≤ 0.001) in fumonisin B1 production were found among kernels at the different developmental stages. The highest levels of fumonisin B1 were produced on the dent stage kernels, and the lowest levels were produced on the blister stage kernels. The differences in fumonisin B1 production among kernels at the different developmental stages remained significant (P ≤ 0.001) when the moisture contents of the kernels were adjusted to the same level prior to inoculation. We concluded that toxin production is affected by substrate composition as well as by moisture content. Our study also demonstrated that fumonisin B1 biosynthesis on maize kernels is influenced by factors which vary with the developmental age of the tissue. The risk of fumonisin contamination may begin early in maize ear development and increases as the kernels reach physiological maturity. PMID:10388675

  4. 7 CFR 868.203 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...

  5. 7 CFR 868.203 - Basis of determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Rough Rice Principles Governing..., heat-damaged kernels, red rice and damaged kernels, chalky kernels, other types, color, and the special grade Parboiled rough rice shall be on the basis of the whole and large broken kernels of milled rice...

  6. Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm.

    PubMed

    de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Héctor Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino

    2018-05-01

    This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Published by Elsevier B.V.

  7. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat has very hard kernels. We developed soft kernel durum wheat via Ph1b-mediated homoeologous recombination. The Hardness locus was transferred from Chinese Spring to Svevo durum wheat via back-crossing. ‘Soft Svevo’ had SKC...

  8. Determining the Parameters of Fractional Exponential Hereditary Kernels for Nonlinear Viscoelastic Materials

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2013-03-01

    The parameters of fractional-exponential hereditary kernels for nonlinear viscoelastic materials are determined. Methods for determining the parameters used in the third-order theory of viscoelasticity and in nonlinear theories based on the similarity of primary creep curves and the similarity of isochronous creep curves are analyzed. The parameters of fractional-exponential hereditary kernels are determined and tested against experimental data for microplastic, TC-8/3-250 glass-reinforced plastics, SVAM glass-reinforced plastics. The results (tables and plots) are analyzed

  9. Evaluating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Wilton, Donald R.; Champagne, Nathan J.

    2008-01-01

    Recently, a formulation for evaluating the thin wire kernel was developed that employed a change of variable to smooth the kernel integrand, canceling the singularity in the integrand. Hence, the typical expansion of the wire kernel in a series for use in the potential integrals is avoided. The new expression for the kernel is exact and may be used directly to determine the gradient of the wire kernel, which consists of components that are parallel and radial to the wire axis.

  10. Chemical properties and oxidative stability of Arjan (Amygdalus reuteri) kernel oil as emerging edible oil.

    PubMed

    Tavakoli, Javad; Emadi, Teymour; Hashemi, Seyed Mohammad Bagher; Mousavi Khaneghah, Amin; Munekata, Paulo Eduardo Sichetti; Lorenzo, Jose Manuel; Brnčić, Mladen; Barba, Francisco J

    2018-05-01

    The oxidative stability, as well as the chemical composition of Amygdalus reuteri kernel oil (ARKO), were evaluated and compared to those of Amygdalus scoparia kernel oil (ASKO) and extra virgin olive oil (EVOO) during and after holding in the oven (170 °C for 8 h). The oxidative stability analysis was carried out by measuring the changes in conjugated dienes, carbonyl and acid values as well as oil/oxidative stability index and their correlation with the antioxidant compounds (tocopherol, polyphenols, and sterol compounds). The oleic acid was determined as the predominant fatty acid of ARKO (65.5%). Calculated oxidizability value and an iodine value of ARKO, ASKO and EVOO were reported as 3.29 and 3.24, 2.00 and 100.0, 101.4 and 81.9, respectively. Due to the high wax content (4.5% and 3.3%, respectively), the saponification number of ARKO and ASKO (96.4 and 99.8, respectively) was lower than that of EVOO (169.7). ARKO had the highest oxidative stability, followed by ASKO and EVOO. Therefore, ARKO can be introduced as a new source of edible oil with high oxidative stability. Copyright © 2018. Published by Elsevier Ltd.

  11. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel.

  12. Oil point and mechanical behaviour of oil palm kernels in linear compression

    NASA Astrophysics Data System (ADS)

    Kabutey, Abraham; Herak, David; Choteborsky, Rostislav; Mizera, Čestmír; Sigalingging, Riswanti; Akangbe, Olaosebikan Layi

    2017-07-01

    The study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min-1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin-1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.

  13. Anthraquinones isolated from the browned Chinese chestnut kernels (Castanea mollissima blume)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Qi, J. H.; Qin, L.; Wang, F.; Pang, M. X.

    2016-08-01

    Anthraquinones (AQS) represent a group of secondary metallic products in plants. AQS are often naturally occurring in plants and microorganisms. In a previous study, we found that AQS were produced by enzymatic browning reaction in Chinese chestnut kernels. To find out whether non-enzymatic browning reaction in the kernels could produce AQS too, AQS were extracted from three groups of chestnut kernels: fresh kernels, non-enzymatic browned kernels, and browned kernels, and the contents of AQS were determined. High performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) methods were used to identify two compounds of AQS, rehein(1) and emodin(2). AQS were barely exists in the fresh kernels, while both browned kernel groups sample contained a high amount of AQS. Thus, we comfirmed that AQS could be produced during both enzymatic and non-enzymatic browning process. Rhein and emodin were the main components of AQS in the browned kernels.

  14. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis).

    PubMed

    de la Rosa, Laura A; Alvarez-Parrilla, Emilio; Shahidi, Fereidoon

    2011-01-12

    The phenolic composition and antioxidant activity of pecan kernels and shells cultivated in three regions of the state of Chihuahua, Mexico, were analyzed. High concentrations of total extractable phenolics, flavonoids, and proanthocyanidins were found in kernels, and 5-20-fold higher concentrations were found in shells. Their concentrations were significantly affected by the growing region. Antioxidant activity was evaluated by ORAC, DPPH•, HO•, and ABTS•-- scavenging (TAC) methods. Antioxidant activity was strongly correlated with the concentrations of phenolic compounds. A strong correlation existed among the results obtained using these four methods. Five individual phenolic compounds were positively identified and quantified in kernels: ellagic, gallic, protocatechuic, and p-hydroxybenzoic acids and catechin. Only ellagic and gallic acids could be identified in shells. Seven phenolic compounds were tentatively identified in kernels by means of MS and UV spectral comparison, namely, protocatechuic aldehyde, (epi)gallocatechin, one gallic acid-glucose conjugate, three ellagic acid derivatives, and valoneic acid dilactone.

  15. Determining Parameters of Fractional-Exponential Heredity Kernels of Nonlinear Viscoelastic Materials

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pavlyuk, Ya. V.; Fernati, P. V.

    2017-07-01

    The problem of determining the parameters of fractional-exponential heredity kernels of nonlinear viscoelastic materials is solved. The methods for determining the parameters that are used in the cubic theory of viscoelasticity and the nonlinear theories based on the conditions of similarity of primary creep curves and isochronous creep diagrams are analyzed. The parameters of fractional-exponential heredity kernels are determined and experimentally validated for the oriented polypropylene, FM3001 and FM10001 nylon fibers, microplastics, TC 8/3-250 glass-reinforced plastic, SWAM glass-reinforced plastic, and contact molding glass-reinforced plastic.

  16. Genetic dissection of the maize kernel development process via conditional QTL mapping for three developing kernel-related traits in an immortalized F2 population.

    PubMed

    Zhang, Zhanhui; Wu, Xiangyuan; Shi, Chaonan; Wang, Rongna; Li, Shengfei; Wang, Zhaohui; Liu, Zonghua; Xue, Yadong; Tang, Guiliang; Tang, Jihua

    2016-02-01

    Kernel development is an important dynamic trait that determines the final grain yield in maize. To dissect the genetic basis of maize kernel development process, a conditional quantitative trait locus (QTL) analysis was conducted using an immortalized F2 (IF2) population comprising 243 single crosses at two locations over 2 years. Volume (KV) and density (KD) of dried developing kernels, together with kernel weight (KW) at different developmental stages, were used to describe dynamic changes during kernel development. Phenotypic analysis revealed that final KW and KD were determined at DAP22 and KV at DAP29. Unconditional QTL mapping for KW, KV and KD uncovered 97 QTLs at different kernel development stages, of which qKW6b, qKW7a, qKW7b, qKW10b, qKW10c, qKV10a, qKV10b and qKV7 were identified under multiple kernel developmental stages and environments. Among the 26 QTLs detected by conditional QTL mapping, conqKW7a, conqKV7a, conqKV10a, conqKD2, conqKD7 and conqKD8a were conserved between the two mapping methodologies. Furthermore, most of these QTLs were consistent with QTLs and genes for kernel development/grain filling reported in previous studies. These QTLs probably contain major genes associated with the kernel development process, and can be used to improve grain yield and quality through marker-assisted selection.

  17. Kernel machine methods for integrative analysis of genome-wide methylation and genotyping studies.

    PubMed

    Zhao, Ni; Zhan, Xiang; Huang, Yen-Tsung; Almli, Lynn M; Smith, Alicia; Epstein, Michael P; Conneely, Karen; Wu, Michael C

    2018-03-01

    Many large GWAS consortia are expanding to simultaneously examine the joint role of DNA methylation in addition to genotype in the same subjects. However, integrating information from both data types is challenging. In this paper, we propose a composite kernel machine regression model to test the joint epigenetic and genetic effect. Our approach works at the gene level, which allows for a common unit of analysis across different data types. The model compares the pairwise similarities in the phenotype to the pairwise similarities in the genotype and methylation values; and high correspondence is suggestive of association. A composite kernel is constructed to measure the similarities in the genotype and methylation values between pairs of samples. We demonstrate through simulations and real data applications that the proposed approach can correctly control type I error, and is more robust and powerful than using only the genotype or methylation data in detecting trait-associated genes. We applied our method to investigate the genetic and epigenetic regulation of gene expression in response to stressful life events using data that are collected from the Grady Trauma Project. Within the kernel machine testing framework, our methods allow for heterogeneity in effect sizes, nonlinear, and interactive effects, as well as rapid P-value computation. © 2017 WILEY PERIODICALS, INC.

  18. Nutritional composition of shea products and chemical properties of shea butter: a review.

    PubMed

    Honfo, Fernande G; Akissoe, Noel; Linnemann, Anita R; Soumanou, Mohamed; Van Boekel, Martinus A J S

    2014-01-01

    Increasing demand of shea products (kernels and butter) has led to the assessment of the state-of-the-art of these products. In this review, attention has been focused on macronutrients and micronutrients of pulp, kernels, and butter of shea tree and also the physicochemical properties of shea butter. Surveying the literature revealed that the pulp is rich in vitamin C (196.1 mg/100 g); consumption of 50 g covers 332% and 98% of the recommended daily intake (RDI) of children (4-8 years old) and pregnant women, respectively. The kernels contain a high level of fat (17.4-59.1 g/100 g dry weight). Fat extraction is mainly done by traditional methods that involve roasting and pressing of the kernels, churning the obtained liquid with water, boiling, sieving, and cooling. The fat (butter) is used in food preparation and medicinal and cosmetics industries. Its biochemical properties indicate some antioxidant and anti-inflammatory activities. Large variations are observed in the reported values for the composition of shea products. Recommendations for future research are presented to improve the quality and the shelf-life of the butter. In addition, more attention should be given to the accuracy and precision in experimental analyses to obtain more reliable information about biological variation.

  19. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels.

    PubMed

    Yiğit, D; Yiğit, N; Mavi, A

    2009-04-01

    The present study describes the in vitro antimicrobial and antioxidant activity of methanol and water extracts of sweet and bitter apricot (Prunus armeniaca L.) kernels. The antioxidant properties of apricot kernels were evaluated by determining radical scavenging power, lipid peroxidation inhibition activity and total phenol content measured with a DPPH test, the thiocyanate method and the Folin method, respectively. In contrast to extracts of the bitter kernels, both the water and methanol extracts of sweet kernels have antioxidant potential. The highest percent inhibition of lipid peroxidation (69%) and total phenolic content (7.9 +/- 0.2 microg/mL) were detected in the methanol extract of sweet kernels (Hasanbey) and in the water extract of the same cultivar, respectively. The antimicrobial activities of the above extracts were also tested against human pathogenic microorganisms using a disc-diffusion method, and the minimal inhibitory concentration (MIC) values of each active extract were determined. The most effective antibacterial activity was observed in the methanol and water extracts of bitter kernels and in the methanol extract of sweet kernels against the Gram-positive bacteria Staphylococcus aureus. Additionally, the methanol extracts of the bitter kernels were very potent against the Gram-negative bacteria Escherichia coli (0.312 mg/mL MIC value). Significant anti-candida activity was also observed with the methanol extract of bitter apricot kernels against Candida albicans, consisting of a 14 mm in diameter of inhibition zone and a 0.625 mg/mL MIC value.

  20. Determination of amino acid contents of manketti seeds (Schinziophyton rautanenii) by pre-column derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and RP-HPLC.

    PubMed

    Gwatidzo, Luke; Botha, Ben M; McCrindle, Rob I

    2013-12-01

    Defatted kernel flour from manketti seed kernels (Schinziophyton rautanenii) is an underutilised natural product. The plant grows in the wild, on sandy soils little used for agriculture in Southern Africa. The kernels are rich in protein and have a great potential for improving nutrition. The protein content and amino acid profile of manketti seed kernel were studied, using a new analytical method, in order to evaluate the nutritional value. The crude protein content of the press cake and defatted kernel flour was 29.0% and 67.5%, respectively. Leucine and arginine were found to be the most abundant essential and non-essential amino acids, respectively. The seed kernel contained 4.77 g leucine and 12.34 g arginine/100 g of defatted seed kernel flour. Methionine and proline were the least abundant essential and non-essential amino acids to with 0.23 g methionine and 0.36 g proline/100 g of defatted seed kernel flour, respectively. Validation of the pre-column derivatisation procedure with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) for the determination of amino acids was carried out. The analytical parameters were determined: linearity (0.0025-0.20 mM), accuracy of the derivatisation procedure: 86.7-109.8%, precision (method: 0.72-5.04%, instrumental: 0.14-1.88% and derivatisation: 0.15-2.94% and 0.41-4.32% for intraday and interday, respectively). Limits of detection and quantification were 6.80-157 mg/100 g and 22.7-523 mg/100 g kernel flour, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels

    PubMed Central

    2014-01-01

    Background Protein complexes play important roles in biological systems such as gene regulatory networks and metabolic pathways. Most methods for predicting protein complexes try to find protein complexes with size more than three. It, however, is known that protein complexes with smaller sizes occupy a large part of whole complexes for several species. In our previous work, we developed a method with several feature space mappings and the domain composition kernel for prediction of heterodimeric protein complexes, which outperforms existing methods. Results We propose methods for prediction of heterotrimeric protein complexes by extending techniques in the previous work on the basis of the idea that most heterotrimeric protein complexes are not likely to share the same protein with each other. We make use of the discriminant function in support vector machines (SVMs), and design novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance vector machines (RVMs). We perform 10-fold cross-validation computational experiments. The results suggest that our proposed two-phase methods and SVM with the extended features outperform the existing method NWE, which was reported to outperform other existing methods such as MCL, MCODE, DPClus, CMC, COACH, RRW, and PPSampler for prediction of heterotrimeric protein complexes. Conclusions We propose two-phase prediction methods with the extended features, the domain composition kernel, SVMs and RVMs. The two-phase method with the extended features and the domain composition kernel using SVM as the second classifier is particularly useful for prediction of heterotrimeric protein complexes. PMID:24564744

  2. Studies of fatty acid composition, physicochemical and thermal properties, and crystallization behavior of mango kernel fats from various Thai varieties.

    PubMed

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2014-01-01

    Mango kernel fat (MKF) has received attention in recent years due to the resemblance between its characteristics and those of cocoa butter (CB). In this work, fatty acid (FA) composition, physicochemical and thermal properties and crystallization behavior of MKFs obtained from four varieties of Thai mangoes: Keaw-Morakot (KM), Keaw-Sawoey (KS), Nam-Dokmai (ND) and Aok-Rong (AR), were characterized. The fat content of the mango kernels was 6.40, 5.78, 5.73 and 7.74% (dry basis) for KM, KS, ND and AR, respectively. The analysis of FA composition revealed that all four cultivars had oleic and stearic acids as the main FA components with ND and AR exhibiting highest and lowest stearic acid content, respectively. ND had the highest slip melting point and solid fat content (SFC) followed by KS, KM and AR. All fat samples exhibited high SFC at 20℃ and below. They melted slowly as the temperature increased and became complete liquids as the temperature approached 35°C. During static isothermal crystallization at 20°C, ND displayed the highest Avrami rate constant k followed by KS, KM and AR, indicating that the crystallization was fastest for ND and slowest for AR. The Avrami exponent n of all samples ranged from 0.89 to 1.73. The x-ray diffraction analysis showed that all MKFs crystallized into a mixture of pseudo-β', β', sub-β and β structures with β' being the predominant polymorph. Finally, the crystals of the kernel fats from all mango varieties exhibited spherulitic morphology.

  3. Optimization of the acceptance of prebiotic beverage made from cashew nut kernels and passion fruit juice.

    PubMed

    Rebouças, Marina Cabral; Rodrigues, Maria do Carmo Passos; Afonso, Marcos Rodrigues Amorim

    2014-07-01

    The aim of this research was to develop a prebiotic beverage from a hydrosoluble extract of broken cashew nut kernels and passion fruit juice using response surface methodology in order to optimize acceptance of its sensory attributes. A 2(2) central composite rotatable design was used, which produced 9 formulations, which were then evaluated using different concentrations of hydrosoluble cashew nut kernel, passion fruit juice, oligofructose, and 3% sugar. The use of response surface methodology to interpret the sensory data made it possible to obtain a formulation with satisfactory acceptance which met the criteria of bifidogenic action and use of hydrosoluble cashew nut kernels by using 14% oligofructose and 33% passion fruit juice. As a result of this study, it was possible to obtain a new functional prebiotic product, which combined the nutritional and functional properties of cashew nut kernels and oligofructose with the sensory properties of passion fruit juice in a beverage with satisfactory sensory acceptance. This new product emerges as a new alternative for the industrial processing of broken cashew nut kernels, which have very low market value, enabling this sector to increase its profits. © 2014 Institute of Food Technologists®

  4. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    PubMed

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  5. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods

    NASA Astrophysics Data System (ADS)

    Liu, Qinya; Tromp, Jeroen

    2008-07-01

    We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.

  6. Study on Energy Productivity Ratio (EPR) at palm kernel oil processing factory: case study on PT-X at Sumatera Utara Plantation

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Bukit, R. Br; Situmeang, E. M.; Christina, E. P.; Pandiangan, F.

    2018-02-01

    The purpose of this study was to determine the performance, productivity and feasibility of the operation of palm kernel processing plant based on Energy Productivity Ratio (EPR). EPR is expressed as the ratio of output to input energy and by-product. Palm Kernel plan is process in palm kernel to become palm kernel oil. The procedure started from collecting data needed as energy input such as: palm kernel prices, energy demand and depreciation of the factory. The energy output and its by-product comprise the whole production price such as: palm kernel oil price and the remaining products such as shells and pulp price. Calculation the equality of energy of palm kernel oil is to analyze the value of Energy Productivity Ratio (EPR) bases on processing capacity per year. The investigation has been done in Kernel Oil Processing Plant PT-X at Sumatera Utara plantation. The value of EPR was 1.54 (EPR > 1), which indicated that the processing of palm kernel into palm kernel oil is feasible to be operated based on the energy productivity.

  7. 7 CFR 810.403 - Basis of determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... GRAIN United States Standards for Corn Principles Governing the Application of Standards § 810.403 Basis of determination. Each determination of class, damaged kernels, heat-damaged kernels, waxy corn, flint corn, and flint and dent corn is made on the basis of the grain after the removal of the broken...

  8. 7 CFR 810.403 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... GRAIN United States Standards for Corn Principles Governing the Application of Standards § 810.403 Basis of determination. Each determination of class, damaged kernels, heat-damaged kernels, waxy corn, flint corn, and flint and dent corn is made on the basis of the grain after the removal of the broken...

  9. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels

    PubMed Central

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  10. A random walk description of individual animal movement accounting for periods of rest

    NASA Astrophysics Data System (ADS)

    Tilles, Paulo F. C.; Petrovskii, Sergei V.; Natti, Paulo L.

    2016-11-01

    Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or `bouts' (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings.

  11. A random walk description of individual animal movement accounting for periods of rest.

    PubMed

    Tilles, Paulo F C; Petrovskii, Sergei V; Natti, Paulo L

    2016-11-01

    Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or 'bouts' (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings.

  12. A random walk description of individual animal movement accounting for periods of rest

    PubMed Central

    Tilles, Paulo F. C.

    2016-01-01

    Animals do not move all the time but alternate the period of actual movement (foraging) with periods of rest (e.g. eating or sleeping). Although the existence of rest times is widely acknowledged in the literature and has even become a focus of increased attention recently, the theoretical approaches to describe animal movement by calculating the dispersal kernel and/or the mean squared displacement (MSD) rarely take rests into account. In this study, we aim to bridge this gap. We consider a composite stochastic process where the periods of active dispersal or ‘bouts’ (described by a certain baseline probability density function (pdf) of animal dispersal) alternate with periods of immobility. For this process, we derive a general equation that determines the pdf of this composite movement. The equation is analysed in detail in two special but important cases such as the standard Brownian motion described by a Gaussian kernel and the Levy flight described by a Cauchy distribution. For the Brownian motion, we show that in the large-time asymptotics the effect of rests results in a rescaling of the diffusion coefficient. The movement occurs as a subdiffusive transition between the two diffusive asymptotics. Interestingly, the Levy flight case shows similar properties, which indicates a certain universality of our findings. PMID:28018645

  13. Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Billings, S. A.

    2017-02-01

    The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.

  14. Differential evolution algorithm-based kernel parameter selection for Fukunaga-Koontz Transform subspaces construction

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin

    2015-10-01

    The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.

  15. Credit scoring analysis using kernel discriminant

    NASA Astrophysics Data System (ADS)

    Widiharih, T.; Mukid, M. A.; Mustafid

    2018-05-01

    Credit scoring model is an important tool for reducing the risk of wrong decisions when granting credit facilities to applicants. This paper investigate the performance of kernel discriminant model in assessing customer credit risk. Kernel discriminant analysis is a non- parametric method which means that it does not require any assumptions about the probability distribution of the input. The main ingredient is a kernel that allows an efficient computation of Fisher discriminant. We use several kernel such as normal, epanechnikov, biweight, and triweight. The models accuracy was compared each other using data from a financial institution in Indonesia. The results show that kernel discriminant can be an alternative method that can be used to determine who is eligible for a credit loan. In the data we use, it shows that a normal kernel is relevant to be selected for credit scoring using kernel discriminant model. Sensitivity and specificity reach to 0.5556 and 0.5488 respectively.

  16. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn.

    PubMed

    Gordon, S H; Schudy, R B; Wheeler, B C; Wicklow, D T; Greene, R V

    1997-04-01

    Aspergillus flavus and other pathogenic fungi display typical infrared spectra which differ significantly from spectra of substrate materials such as corn. On this basis, specific spectral features have been identified which permit detection of fungal infection on the surface of corn kernels by photoacoustic infrared spectroscopy. In a blind study, ten corn kernels showing bright greenish yellow fluorescence (BGYF) in the germ or endosperm and ten BGYF-negative kernels were correctly classified as infected or not infected by Fourier transform infrared photoacoustic spectroscopy. Earlier studies have shown that BGYF-positive kernels contain the bulk of the aflatoxin contaminating grain at harvest. Ten major spectral features, identified by visual inspection of the photoacoustic spectra of A. flavus mycelium grown in culture versus uninfected corn, were interpreted and assigned by theoretical comparisons of the relative chemical compositions of fungi and corn. The spectral features can be built into either empirical or knowledge-based computer models (expert systems) for automatic infrared detection and segregation of grains or kernels containing aflatoxin from the food and feed supply.

  17. Characterization of Mesocarp and Kernel Lipids from Elaeis guineensis Jacq., Elaeis oleifera [Kunth] Cortés, and Their Interspecific Hybrids.

    PubMed

    Lieb, Veronika M; Kerfers, Margarete R; Kronmüller, Amrei; Esquivel, Patricia; Alvarado, Amancio; Jiménez, Víctor M; Schmarr, Hans-Georg; Carle, Reinhold; Schweiggert, Ralf M; Steingass, Christof B

    2017-05-10

    Morphological traits, total lipid contents, and fatty acid profiles were assessed in fruits of several accessions of Elaeis oleifera [Kunth] Cortés, Elaeis guineensis Jacq., and their interspecific hybrids. The latter featured the highest mesocarp-to-fruit ratios (77.9-78.2%). The total lipid contents of both E. guineensis mesocarp and kernel were significantly higher than for E. oleifera accessions. Main fatty acids comprised C16:0, C18:1n9, and C18:2n6 in mesocarp and C12:0, C14:0, and C18:1n9 in kernels. E. oleifera samples were characterized by higher proportions of unsaturated long-chain fatty acids. Saturated medium-chain fatty acids supported the clustering of E. guineensis kernels in multivariate statistics. Hybrid mesocarp lipids had an intermediate fatty acid composition, whereas their kernel lipids resembled those of E. oleifera genotypes. Principal component analysis based on lipid contents and proportions of individual fatty acids permitted clear-cut distinction of E. oleifera, E. guineensis, and their hybrids.

  18. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin.

    PubMed

    Rico, Ricard; Bulló, Mònica; Salas-Salvadó, Jordi

    2016-03-01

    The total dietary fiber, sugar, protein, lipid profile, sodium, and energy contents of 11 raw cashew kernel (Anacardium occidentale L.) samples from India, Brazil, Ivory Coast, Kenya, Mozambique, and Vietnam were determined. Total fat was the major component accounting for 48.3% of the total weight, of which 79.7% were unsaturated FA (fatty acids), 20.1% saturated FA, and 0.2% trans FA. Proteins, with 21.3 g/100 g, were ranked second followed by carbohydrates (20.5 g/100 g). The average sodium content was 144 mg/kg. Fourteen FA were identified among which oleic acid was the most abundant with a contribution of 60.7% to the total fat, followed by linoleic (17.77%), palmitic (10.2%), and stearic (8.93%) acids. The mean energy content was 2525 kJ/100g. Furthermore, the sterol profile and content, amino acids, vitamins, and minerals of four raw cashew kernel samples from Brazil, India, Ivory Coast, and Vietnam were determined. β-Sitosterol with 2380 ± 4 mg/kg fat was the most occurring sterol. Glutamic acid, with 4.60 g/100 g, was the amino acid with highest presence, whereas tryptophan with 0.32 g/100 g was the one with lower presence. Vitamin E with an average contribution of 5.80 mg/100 g was the most abundant vitamin. Potassium with a mean value of 6225 mg/kg was the mineral with highest amount in cashew samples.

  19. Ambered kernels in stenospermocarpic fruit of eastern black walnut

    Treesearch

    Michele R. Warmund; J.W. Van Sambeek

    2014-01-01

    "Ambers" is a term used to describe poorly filled, shriveled eastern black walnut (Juglans nigra L.) kernels with a dark brown or black-colored pellicle that are unmarketable. Studies were conducted to determine the incidence of ambered black walnut kernels and to ascertain when symptoms were apparent in specific tissues. The occurrence of...

  20. Apollo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckingsal, David; Gamblin, Todd

    Modern performance portability frameworks provide application developers with a flexible way to determine how to run application kernels, however, they provide no guidance as to the best configuration for a given kernel. Apollo provides a model-generation framework that, when integrated with the RAJA library, uses lightweight decision tree models to select the fastest execution configuration on a per-kernel basis

  1. End-use quality of soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  2. The effect of smelting time and composition of palm kernel shell charcoal reductant toward extractive Pomalaa nickel laterite ore in mini electric arc furnace

    NASA Astrophysics Data System (ADS)

    Sihotang, Iqbal Huda; Supriyatna, Yayat Iman; Ismail, Ika; Sulistijono

    2018-04-01

    Indonesia is a country that is rich in natural resources. Being a third country which has a nickel laterite ore in the world after New Caledonia and Philippines. However, the processing of nickel laterite ore to increase its levels in Indonesia is still lacking. In the processing of nickel laterite ore into metal, it can be processed by pyrometallurgy method that typically use coal as a reductant. However, coal is a non-renewable energy and have high enough levels of pollution. One potentially replace is the biomass, that is a renewable energy. Palm kernel shell are biomass that can be used as a reductant because it has a fairly high fix carbon content. This research aims to make nickel laterite ores become metal using palm kernel shell charcoal as reductant in mini electric arc furnace. The result show that the best smelting time of this research is 60 minutes with the best composition of the reductant is 2,000 gram.

  3. Microwave moisture meter for in-shell almonds.

    USDA-ARS?s Scientific Manuscript database

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  4. Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role?

    PubMed

    Smit, Lidwien A M; Boender, Gert Jan; de Steenhuijsen Piters, Wouter A A; Hagenaars, Thomas J; Huijskens, Elisabeth G W; Rossen, John W A; Koopmans, Marion; Nodelijk, Gonnie; Sanders, Elisabeth A M; Yzermans, Joris; Bogaert, Debby; Heederik, Dick

    2017-01-01

    Air pollution has been shown to increase the susceptibility to community-acquired pneumonia (CAP). Previously, we observed an increased incidence of CAP in adults living within 1 km from poultry farms, potentially related to particulate matter and endotoxin emissions. We aim to confirm the increased risk of CAP near poultry farms by refined spatial analyses, and we hypothesize that the oropharyngeal microbiota composition in CAP patients may be associated with residential proximity to poultry farms. A spatial kernel model was used to analyze the association between proximity to poultry farms and CAP diagnosis, obtained from electronic medical records of 92,548 GP patients. The oropharyngeal microbiota composition was determined in 126 hospitalized CAP patients using 16S-rRNA-based sequencing, and analyzed in relation to residential proximity to poultry farms. Kernel analysis confirmed a significantly increased risk of CAP when living near poultry farms, suggesting an excess risk up to 1.15 km, followed by a sharp decline. Overall, the oropharyngeal microbiota composition differed borderline significantly between patients living <1 km and ≥1 km from poultry farms (PERMANOVA p  = 0.075). Results suggested a higher abundance of Streptococcus pneumoniae (mean relative abundance 34.9% vs. 22.5%, p  = 0.058) in patients living near poultry farms, which was verified by unsupervised clustering analysis, showing overrepresentation of a S. pneumoniae cluster near poultry farms ( p  = 0.049). Living near poultry farms is associated with an 11% increased risk of CAP, possibly resulting from changes in the upper respiratory tract microbiota composition in susceptible individuals. The abundance of S. pneumoniae near farms needs to be replicated in larger, independent studies.

  5. Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers.

    PubMed

    Devaux, C; Lavigne, C; Austerlitz, F; Klein, E K

    2007-02-01

    Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.

  6. THERMOS. 30-Group ENDF/B Scattered Kernels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrosson, F.J.; Finch, D.R.

    1973-12-01

    These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library.« less

  7. QTL Analysis of Kernel-Related Traits in Maize Using an Immortalized F2 Population

    PubMed Central

    Hu, Yanmin; Li, Weihua; Fu, Zhiyuan; Ding, Dong; Li, Haochuan; Qiao, Mengmeng; Tang, Jihua

    2014-01-01

    Kernel size and weight are important determinants of grain yield in maize. In this study, multivariate conditional and unconditional quantitative trait loci (QTL), and digenic epistatic analyses were utilized in order to elucidate the genetic basis for these kernel-related traits. Five kernel-related traits, including kernel weight (KW), volume (KV), length (KL), thickness (KT), and width (KWI), were collected from an immortalized F2 (IF2) maize population comprising of 243 crosses performed at two separate locations over a span of two years. A total of 54 unconditional main QTL for these five kernel-related traits were identified, many of which were clustered in chromosomal bins 6.04–6.06, 7.02–7.03, and 10.06–10.07. In addition, qKL3, qKWI6, qKV10a, qKV10b, qKW10a, and qKW7a were detected across multiple environments. Sixteen main QTL were identified for KW conditioned on the other four kernel traits (KL, KWI, KT, and KV). Thirteen main QTL were identified for KV conditioned on three kernel-shape traits. Conditional mapping analysis revealed that KWI and KV had the strongest influence on KW at the individual QTL level, followed by KT, and then KL; KV was mostly strongly influenced by KT, followed by KWI, and was least impacted by KL. Digenic epistatic analysis identified 18 digenic interactions involving 34 loci over the entire genome. However, only a small proportion of them were identical to the main QTL we detected. Additionally, conditional digenic epistatic analysis revealed that the digenic epistasis for KW and KV were entirely determined by their constituent traits. The main QTL identified in this study for determining kernel-related traits with high broad-sense heritability may play important roles during kernel development. Furthermore, digenic interactions were shown to exert relatively large effects on KL (the highest AA and DD effects were 4.6% and 6.7%, respectively) and KT (the highest AA effects were 4.3%). PMID:24586932

  8. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-Maize.

    PubMed

    Ma, Yuntao; Chen, Youjia; Zhu, Jinyu; Meng, Lei; Guo, Yan; Li, Baoguo; Hoogenboom, Gerrit

    2018-02-13

    Failure to account for the variation of kernel growth in a cereal crop simulation model may cause serious deviations in the estimates of crop yield. The goal of this research was to revise the GREENLAB-Maize model to incorporate source- and sink-limited allocation approaches to simulate the dry matter accumulation of individual kernels of an ear (GREENLAB-Maize-Kernel). The model used potential individual kernel growth rates to characterize the individual potential sink demand. The remobilization of non-structural carbohydrates from reserve organs to kernels was also incorporated. Two years of field experiments were conducted to determine the model parameter values and to evaluate the model using two maize hybrids with different plant densities and pollination treatments. Detailed observations were made on the dimensions and dry weights of individual kernels and other above-ground plant organs throughout the seasons. Three basic traits characterizing an individual kernel were compared on simulated and measured individual kernels: (1) final kernel size; (2) kernel growth rate; and (3) duration of kernel filling. Simulations of individual kernel growth closely corresponded to experimental data. The model was able to reproduce the observed dry weight of plant organs well. Then, the source-sink dynamics and the remobilization of carbohydrates for kernel growth were quantified to show that remobilization processes accompanied source-sink dynamics during the kernel-filling process. We conclude that the model may be used to explore options for optimizing plant kernel yield by matching maize management to the environment, taking into account responses at the level of individual kernels. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Genetic architecture of kernel composition in global sorghum germplasm

    USDA-ARS?s Scientific Manuscript database

    Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland areas in the United States and for small-holder farmers in Africa. Natural variation of sorghum grain composition (protein, fat, and starch) between accessions can be used for crop improvement, but the genetic controls are...

  10. Determining weight and moisture properties of sound and fusarium-damaged single wheat kernels by near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Single kernel moisture content (MC) is important in the measurement of other quality traits in single kernels since many traits are expressed on a dry weight basis, and MC affects viability, storage quality, and price. Also, if near-infrared (NIR) spectroscopy is used to measure grain traits, the in...

  11. Anisotropic hydrodynamics with a scalar collisional kernel

    NASA Astrophysics Data System (ADS)

    Almaalol, Dekrayat; Strickland, Michael

    2018-04-01

    Prior studies of nonequilibrium dynamics using anisotropic hydrodynamics have used the relativistic Anderson-Witting scattering kernel or some variant thereof. In this paper, we make the first study of the impact of using a more realistic scattering kernel. For this purpose, we consider a conformal system undergoing transversally homogenous and boost-invariant Bjorken expansion and take the collisional kernel to be given by the leading order 2 ↔2 scattering kernel in scalar λ ϕ4 . We consider both classical and quantum statistics to assess the impact of Bose enhancement on the dynamics. We also determine the anisotropic nonequilibrium attractor of a system subject to this collisional kernel. We find that, when the near-equilibrium relaxation-times in the Anderson-Witting and scalar collisional kernels are matched, the scalar kernel results in a higher degree of momentum-space anisotropy during the system's evolution, given the same initial conditions. Additionally, we find that taking into account Bose enhancement further increases the dynamically generated momentum-space anisotropy.

  12. Broken rice kernels and the kinetics of rice hydration and texture during cooking.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2013-05-01

    During rice milling and processing, broken kernels are inevitably present, although to date it has been unclear as to how the presence of broken kernels affects rice hydration and cooked rice texture. Therefore, this work intended to study the effect of broken kernels in a rice sample on rice hydration and texture during cooking. Two medium-grain and two long-grain rice cultivars were harvested, dried and milled, and the broken kernels were separated from unbroken kernels. Broken rice kernels were subsequently combined with unbroken rice kernels forming treatments of 0, 40, 150, 350 or 1000 g kg(-1) broken kernels ratio. Rice samples were then cooked and the moisture content of the cooked rice, the moisture uptake rate, and rice hardness and stickiness were measured. As the amount of broken rice kernels increased, rice sample texture became increasingly softer (P < 0.05) but the unbroken kernels became significantly harder. Moisture content and moisture uptake rate were positively correlated, and cooked rice hardness was negatively correlated to the percentage of broken kernels in rice samples. Differences in the proportions of broken rice in a milled rice sample play a major role in determining the texture properties of cooked rice. Variations in the moisture migration kinetics between broken and unbroken kernels caused faster hydration of the cores of broken rice kernels, with greater starch leach-out during cooking affecting the texture of the cooked rice. The texture of cooked rice can be controlled, to some extent, by varying the proportion of broken kernels in milled rice. © 2012 Society of Chemical Industry.

  13. The effects of food irradiation on quality of pine nut kernels

    NASA Astrophysics Data System (ADS)

    Gölge, Evren; Ova, Gülden

    2008-03-01

    Pine nuts ( Pinus pinae) undergo gamma irradiation process with the doses 0.5, 1.0, 3.0, and 5.0 kGy. The changes in chemical, physical and sensory attributes were observed in the following 3 months of storage period. The data obtained from the experiments showed the peroxide values of the pine nut kernels increased proportionally to the dose. On contrary, irradiation process has no effect on the physical quality such as texture and color, fatty acid composition and sensory attributes.

  14. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  15. Effects of sample size on KERNEL home range estimates

    USGS Publications Warehouse

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  16. Effects of incorporating agro-industrial by-products into diet of New Zealand rabbits: Case of rebus of date and apricot kernel meal.

    PubMed

    Mennani, Achour; Arbouche, Rafik; Arbouche, Yasmine; Montaigne, Etienne; Arbouche, Fodil; Arbouche, Halima Saâdia

    2017-12-01

    The aim of this study was to determine the effects of incorporating the by-products complex of date and apricot on the fattening performance of the New Zealand breed of rabbits, to reduce the economic costs of the food formula. A total of 288 young New Zealand rabbits aged 35 days were divided into four equal groups each containing 72 animals and into sub-groups of 6 rabbits per cage, depending on the rate of substitution of corn by date rebus and of soybean meal by apricot kernel meal (0%, 10%, 20%, and 30%). The change in weight from day 35 to 77 and the average daily gain are not significantly different, regardless of the diet. The pH and water content are proportional to the substitution rates (6.4-6.6% and 66.5-68.8%). Meat protein levels increased significantly, in particular for the 10% and 30% groups (+8.1% and 6%) while the fat and mineral content levels decreased significantly, in particular for the 30% group displaying -16% and -17%, respectively. Incorporation of dates and apricot kernel meal into the ration of rabbits reduces the cost of the kilogram of food produced of -9%, with an opportunity cost of 165 Algerian dinars (DZD). The date rebus/apricot kernel meal complex can be used as an alternative to the corn/soybean meal complex at substitution rates of up to 30% without adverse effects on growth rates, feed contribution, or slaughter yield. It improves the chemical composition of the meat and reduces the cost price of the quintal of feed produced.

  17. Effects of incorporating agro-industrial by-products into diet of New Zealand rabbits: Case of rebus of date and apricot kernel meal

    PubMed Central

    Mennani, Achour; Arbouche, Rafik; Arbouche, Yasmine; Montaigne, Etienne; Arbouche, Fodil; Arbouche, Halima Saâdia

    2017-01-01

    Aim: The aim of this study was to determine the effects of incorporating the by-products complex of date and apricot on the fattening performance of the New Zealand breed of rabbits, to reduce the economic costs of the food formula. Materials and Methods: A total of 288 young New Zealand rabbits aged 35 days were divided into four equal groups each containing 72 animals and into sub-groups of 6 rabbits per cage, depending on the rate of substitution of corn by date rebus and of soybean meal by apricot kernel meal (0%, 10%, 20%, and 30%). Results: The change in weight from day 35 to 77 and the average daily gain are not significantly different, regardless of the diet. The pH and water content are proportional to the substitution rates (6.4-6.6% and 66.5-68.8%). Meat protein levels increased significantly, in particular for the 10% and 30% groups (+8.1% and 6%) while the fat and mineral content levels decreased significantly, in particular for the 30% group displaying −16% and −17%, respectively. Incorporation of dates and apricot kernel meal into the ration of rabbits reduces the cost of the kilogram of food produced of −9%, with an opportunity cost of 165 Algerian dinars (DZD). Conclusion: The date rebus/apricot kernel meal complex can be used as an alternative to the corn/soybean meal complex at substitution rates of up to 30% without adverse effects on growth rates, feed contribution, or slaughter yield. It improves the chemical composition of the meat and reduces the cost price of the quintal of feed produced. PMID:29391686

  18. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus.

    PubMed

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.

  19. Temporal Effects on Internal Fluorescence Emissions Associated with Aflatoxin Contamination from Corn Kernel Cross-Sections Inoculated with Toxigenic and Atoxigenic Aspergillus flavus

    PubMed Central

    Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2017-01-01

    Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606

  20. Effects of kernel vitreousness and protein level on protein molecular weight distribution, milling quality, and breadmaking quality in hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Dark, hard, and vitreous kernel content is an important grading characteristic for hard red spring (HRS) wheat in the U.S. This research aimed to determine the associations of kernel vitreousness (KV) with protein molecular weight distribution (MWD) and quality traits that were not biased by quanti...

  1. Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil

    USDA-ARS?s Scientific Manuscript database

    Detailed knowledge of the composition and toxigenic potential of the Fusarium graminearum species complex affecting maize crops in Brazil is lacking. A multilocus genotype approach was used to identify 539 isolates from three sub-collections: 1) maize kernels (n= 110) from five states spanning sout...

  2. Protein fold recognition using geometric kernel data fusion.

    PubMed

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  3. Development and analysis of composite flour bread.

    PubMed

    Menon, Lakshmi; Majumdar, Swarnali Dutta; Ravi, Usha

    2015-07-01

    The study elucidates the effect of utilizing cereal-pulse-fruit seed composite flour in the development and quality analysis of leavened bread. The composite flour was prepared using refined wheat flour (WF), high protein soy flour (SF), sprouted mung bean flour (MF) and mango kernel flour (MKF). Three variations were formulated such as V-I (WF: SF: MF: MKF = 85:5:5:5), V-II (WF: SF: MF: MKF = 70:10:10:10), and V-III (WF: SF: MF: MKF = 60:14:13:13). Pertinent functional, physico-chemical and organoleptic attributes were studied in composite flour variations and their bread preparations. Physical characteristics of the bread variations revealed a percentage decrease in loaf height (14 %) and volume (25 %) and 20 % increase in loaf weight with increased substitution of composite flour. The sensory evaluation of experimental breads on a nine-point hedonic scale revealed that V-I score was 5 % higher than the standard bread. Hence, the present study highlighted the nutrient enrichment of bread on incorporation of a potential waste material mango kernel, soy and sprouted legume. Relevant statistical tests were done to analyze the significance of means for all tested parameters.

  4. Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites

    PubMed Central

    Meinicke, Peter; Tech, Maike; Morgenstern, Burkhard; Merkl, Rainer

    2004-01-01

    Background Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the learnt representations in terms of positional and compositional variability of the underlying biological signals. Results We propose a kernel-based approach to datamining on biological sequences. With our method it is possible to model and analyze positional variability of oligomers of any length in a natural way. On one hand this is achieved by mapping the sequences to an intuitive but high-dimensional feature space, well-suited for interpretation of the learnt models. On the other hand, by means of the kernel trick we can provide a general learning algorithm for that high-dimensional representation because all required statistics can be computed without performing an explicit feature space mapping of the sequences. By introducing a kernel parameter that controls the degree of position-dependency, our feature space representation can be tailored to the characteristics of the biological problem at hand. A regularized learning scheme enables application even to biological problems for which only small sets of example sequences are available. Our approach includes a visualization method for transparent representation of characteristic sequence features. Thereby importance of features can be measured in terms of discriminative strength with respect to classification of the underlying sequences. To demonstrate and validate our concept on a biochemically well-defined case, we analyze E. coli translation initiation sites in order to show that we can find biologically relevant signals. For that case, our results clearly show that the Shine-Dalgarno sequence is the most important signal upstream a start codon. The variability in position and composition we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems. PMID:15511290

  5. Individual detection of genetically modified maize varieties in non-identity-preserved maize samples.

    PubMed

    Akiyama, Hiroshi; Sakata, Kozue; Kondo, Kazunari; Tanaka, Asako; Liu, Ming S; Oguchi, Taichi; Furui, Satoshi; Kitta, Kazumi; Hino, Akihiro; Teshima, Reiko

    2008-03-26

    In many countries, the labeling of grains and feed- and foodstuffs is mandatory if the genetically modified organism (GMO) content exceeds a certain level of approved GM varieties. The GMO content in a maize sample containing the combined-trait (stacked) GM maize as determined by the currently available methodology is likely to be overestimated. However, there has been little information in the literature on the mixing level and varieties of stacked GM maize in real sample grains. For the first time, the GMO content of non-identity-preserved (non-IP) maize samples imported from the United States has been successfully determined by using a previously developed individual kernel detection system coupled to a multiplex qualitative PCR method followed by multichannel capillary gel electrophoresis system analysis. To clarify the GMO content in the maize samples imported from the United States, determine how many stacked GM traits are contained therein, and which GM trait varieties frequently appeared in 2005, the GMO content (percent) on a kernel basis and the varieties of the GM kernels in the non-IP maize samples imported from the United States were investigated using the individual kernel analysis system. The average (+/-standard deviation) of the GMO contents on a kernel basis in five non-IP sample lots was determined to be 51.0+/-21.6%, the percentage of a single GM trait grains was 39%, and the percentage of the stacked GM trait grains was 12%. The MON810 grains and NK603 grains were the most frequent varieties in the single GM traits. The most frequent stacked GM traits were the MON810xNK603 grains. In addition, the present study would provide the answer and impact for the quantification of GM maize content in the GM maize kernels on labeling regulation.

  6. Improvements to the kernel function method of steady, subsonic lifting surface theory

    NASA Technical Reports Server (NTRS)

    Medan, R. T.

    1974-01-01

    The application of a kernel function lifting surface method to three dimensional, thin wing theory is discussed. A technique for determining the influence functions is presented. The technique is shown to require fewer quadrature points, while still calculating the influence functions accurately enough to guarantee convergence with an increasing number of spanwise quadrature points. The method also treats control points on the wing leading and trailing edges. The report introduces and employs an aspect of the kernel function method which apparently has never been used before and which significantly enhances the efficiency of the kernel function approach.

  7. Determination of active ingredients in corn silk, leaf, and kernel by capillary electrophoresis with electrochemicaI detection.

    PubMed

    Lin, Miao; Chu, Qing-Cui; Tian, Xiu-Hui; Ye, Jian-Nong

    2007-01-01

    Corn has been known for its accumulation of flavones and phenolic acids. However, many parts of corn, except kernel, have not drawn much attention. In this work, a method based on capillary zone electrophoresis with electrochemical detection has been used for the separation and determination of epicatechin, rutin, ascorbic acid (Vc), kaempferol, chlorogenic acid, and quercetin in corn silk, leaf, and kernel. The distribution comparison of the ingredients among silk, leaf, and kernel is discussed. Several important factors--including running buffer acidity, separation voltage, and working electrode potential--were evaluated to acquire the optimum analysis conditions. Under the optimum conditions, the analytes could be well separated within 19 min in a 40-mmol/L borate buffer (pH 9.2). The response was linear over three orders of magnitude with detection limits (S/N = 3) ranging from 4.97 x 10(-8) to 9.75 x 10(-8) g/mL. The method has been successfully applied for the analysis of corn silk, leaf, and kernel with satisfactory results.

  8. Characterization of non-diffusive transport in plasma turbulence by means of flux-gradient integro-differential kernels

    NASA Astrophysics Data System (ADS)

    Alcuson, J. A.; Reynolds-Barredo, J. M.; Mier, J. A.; Sanchez, Raul; Del-Castillo-Negrete, Diego; Newman, David E.; Tribaldos, V.

    2015-11-01

    A method to determine fractional transport exponents in systems dominated by fluid or plasma turbulence is proposed. The method is based on the estimation of the integro-differential kernel that relates values of the fluxes and gradients of the transported field, and its comparison with the family of analytical kernels of the linear fractional transport equation. Although use of this type of kernels has been explored before in this context, the methodology proposed here is rather unique since the connection with specific fractional equations is exploited from the start. The procedure has been designed to be particularly well-suited for application in experimental setups, taking advantage of the fact that kernel determination only requires temporal data of the transported field measured on an Eulerian grid. The simplicity and robustness of the method is tested first by using fabricated data from continuous-time random walk models built with prescribed transport characteristics. Its strengths are then illustrated on numerical Eulerian data gathered from simulations of a magnetically confined turbulent plasma in a near-critical regime, that is known to exhibit superdiffusive radial transport

  9. Geographically weighted regression model on poverty indicator

    NASA Astrophysics Data System (ADS)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  10. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    NASA Astrophysics Data System (ADS)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  11. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  12. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging.

    PubMed

    Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M

    2018-01-01

    Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.

  13. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  14. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    NASA Astrophysics Data System (ADS)

    Silva, Chinthaka M.; Lindemer, Terrence B.; Voit, Stewart R.; Hunt, Rodney D.; Besmann, Theodore M.; Terrani, Kurt A.; Snead, Lance L.

    2014-11-01

    Three sets of experimental conditions were tested to synthesize uranium carbonitride (UC1-xNx) kernels from gel-derived urania-carbon microspheres. Primarily, three sequences of gases were used, N2 to N2-4%H2 to Ar, Ar to N2 to Ar, and Ar-4%H2 to N2-4%H2 to Ar-4%H2. Physical and chemical characteristics such as geometrical density, phase purity, and chemical compositions of the synthesized UC1-xNx were measured. Single-phase kernels were commonly obtained with densities generally ranging from 85% to 93% TD and values of x as high as 0.99. In-depth analysis of the microstrutures of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.

  15. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation.

    PubMed

    Atanasova-Penichon, Vessela; Pons, Sebastien; Pinson-Gadais, Laetitia; Picot, Adeline; Marchegay, Gisèle; Bonnin-Verdal, Marie-Noelle; Ducos, Christine; Barreau, Christian; Roucolle, Joel; Sehabiague, Pierre; Carolo, Pierre; Richard-Forget, Florence

    2012-12-01

    Fusarium graminearum is the causal agent of Gibberella ear rot and produces trichothecene mycotoxins. Basic questions remain unanswered regarding the kernel stages associated with trichothecene biosynthesis and the kernel metabolites potentially involved in the regulation of trichothecene production in planta. In a two-year field study, F. graminearum growth, trichothecene accumulation, and phenolic acid composition were monitored in developing maize kernels of a susceptible and a moderately resistant variety using quantitative polymerase chain reaction and liquid chromatography coupled with photodiode array or mass spectrometry detection. Infection started as early as the blister stage and proceeded slowly until the dough stage. Then, a peak of trichothecene accumulation occurred and infection progressed exponentially until the final harvest time. Both F. graminearum growth and trichothecene production were drastically reduced in the moderately resistant variety. We found that chlorogenic acid is more abundant in the moderately resistant variety, with levels spiking in the earliest kernel stages induced by Fusarium infection. This is the first report that precisely describes the kernel stage associated with the initiation of trichothecene production and provides in planta evidence that chlorogenic acid may play a role in maize resistance to Gibberella ear rot and trichothecene accumulation.

  16. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction.

    PubMed

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-11

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ=275 nm, the fluorescence emission intensity of melatonin was measured at λ=366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL(-1), with a detection limit of 0.0036 μg mL(-1). This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Oladi, Elham; Mohamadi, Maryam; Shamspur, Tayebeh; Mostafavi, Ali

    2014-11-01

    Melatonin is normally consumed to regulate the body's biological cycle. However it also has therapeutic properties, such as anti-tumor, anti-aging and protects the immune system. There are some reports on the presence of melatonin in edible kernels such as walnuts, but the extraction of melatonin from pistachio kernels is reported here for the first time. For this, the methanolic extract of pistachio kernels was exposed to gas chromatography/mass spectrometry analysis which confirmed the presence of melatonin. A fluorescence-based method was applied for the determination of melatonin in different extracts. When excited at λ = 275 nm, the fluorescence emission intensity of melatonin was measured at λ = 366 nm. Ultrasound-assisted solid-liquid extraction was used for the extraction of melatonin from pistachio kernels prior to fluorimetric determination. To achieve the highest extraction recovery, the main parameters affecting the extraction efficiency such as extracting solvent type and volume, temperature, sonication time and pH were evaluated. Under the optimized conditions, a linear dependence of fluorescence intensity on melatonin concentration was observed in the range of 0.0040-0.160 μg mL-1, with a detection limit of 0.0036 μg mL-1. This method was applied successfully for measuring and comparing the melatonin content in the kernels of four different varieties of Pistacia including Ahmad Aghaei, Akbari, Kalle Qouchi and Fandoghi. In addition, the results obtained were compared with those obtained using GC/MS. A good agreement was observed indicating the reliability of the proposed method.

  18. Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification.

    PubMed

    Tanwar, Beenu; Modgil, Rajni; Goyal, Ankit

    2018-04-25

    The present investigation was aimed to study the effect of detoxification on the nutrients and antinutrients of wild apricot kernel followed by its hypocholesterolemic effect in male Wistar albino rats. The results revealed a non-significant (p > 0.05) effect of detoxification on the proximate composition except total carbohydrates and protein content. However, detoxification led to a significant (p < 0.05) decrease in l-ascorbic acid (76.82%), β-carotene (25.90%), dietary fiber constituents (10.51-28.92%), minerals (4.76-31.08%) and antinutritional factors (23.92-77.05%) (phenolics, tannins, trypsin inhibitor activity, saponins, phytic acid, alkaloids, flavonoids, oxalates) along with the complete removal (100%) of bitter and potentially toxic hydrocyanic acid (HCN). The quality parameters of kernel oil indicated no adverse effects of detoxification on free fatty acids, lipase activity, acid value and peroxide value, which remained well below the maximum permissible limit. Blood lipid profile demonstrated that the detoxified apricot kernel group exhibited significantly (p < 0.05) increased levels of HDL-cholesterol (48.79%) and triglycerides (15.09%), and decreased levels of total blood cholesterol (6.99%), LDL-C (22.95%) and VLDL-C (7.90%) compared to that of the raw (untreated) kernel group. Overall, it can be concluded that wild apricot kernel flour could be detoxified efficiently by employing a simple, safe, domestic and cost-effective method, which further has the potential for formulating protein supplements and value-added food products.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, A. T.; Betzler, B. R.; Burke, T. P.

    Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less

  20. Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours.

    PubMed

    El-Adawy, T A; Taha, K M

    2001-03-01

    The nutritional quality and functional properties of paprika seed flour and seed kernel flours of pumpkin and watermelon were studied, as were the characteristics and structure of their seed oils. Paprika seed and seed kernels of pumpkin and watermelon were rich in oil and protein. All flour samples contained considerable amounts of P, K, Mg, Mn, and Ca. Paprika seed flour was superior to watermelon and pumpkin seed kernel flours in content of lysine and total essential amino acids. Oil samples had high amounts of unsaturated fatty acids with linoleic and oleic acids as the major acids. All oil samples fractionated into seven classes including triglycerides as a major lipid class. Data obtained for the oils' characteristics compare well with those of other edible oils. Antinutritional compounds such as stachyose, raffinose, verbascose, trypsin inhibitor, phytic acid, and tannins were detected in all flours. Pumpkin seed kernel flour had higher values of chemical score, essential amino acid index, and in vitro protein digestibility than the other flours examined. The first limiting amino acid was lysine for both watermelon and pumpkin seed kernel flours, but it was leucine in paprika seed flour. Protein solubility index, water and fat absorption capacities, emulsification properties, and foam stability were excellent in watermelon and pumpkin seed kernel flours and fairly good in paprika seed flour. Flour samples could be potentially added to food systems such as bakery products and ground meat formulations not only as a nutrient supplement but also as a functional agent in these formulations.

  1. Kernel structures for Clouds

    NASA Technical Reports Server (NTRS)

    Spafford, Eugene H.; Mckendry, Martin S.

    1986-01-01

    An overview of the internal structure of the Clouds kernel was presented. An indication of how these structures will interact in the prototype Clouds implementation is given. Many specific details have yet to be determined and await experimentation with an actual working system.

  2. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The gravitational potential of axially symmetric bodies from a regularized green kernel

    NASA Astrophysics Data System (ADS)

    Trova, A.; Huré, J.-M.; Hersant, F.

    2011-12-01

    The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.

  4. Linked-cluster formulation of electron-hole interaction kernel in real-space representation without using unoccupied states.

    PubMed

    Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam

    2018-05-21

    Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.

  5. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    PubMed Central

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  6. Optimization of light source parameters in the photodynamic therapy of heterogeneous prostate

    NASA Astrophysics Data System (ADS)

    Li, Jun; Altschuler, Martin D.; Hahn, Stephen M.; Zhu, Timothy C.

    2008-08-01

    The three-dimensional (3D) heterogeneous distributions of optical properties in a patient prostate can now be measured in vivo. Such data can be used to obtain a more accurate light-fluence kernel. (For specified sources and points, the kernel gives the fluence delivered to a point by a source of unit strength.) In turn, the kernel can be used to solve the inverse problem that determines the source strengths needed to deliver a prescribed photodynamic therapy (PDT) dose (or light-fluence) distribution within the prostate (assuming uniform drug concentration). We have developed and tested computational procedures to use the new heterogeneous data to optimize delivered light-fluence. New problems arise, however, in quickly obtaining an accurate kernel following the insertion of interstitial light sources and data acquisition. (1) The light-fluence kernel must be calculated in 3D and separately for each light source, which increases kernel size. (2) An accurate kernel for light scattering in a heterogeneous medium requires ray tracing and volume partitioning, thus significant calculation time. To address these problems, two different kernels were examined and compared for speed of creation and accuracy of dose. Kernels derived more quickly involve simpler algorithms. Our goal is to achieve optimal dose planning with patient-specific heterogeneous optical data applied through accurate kernels, all within clinical times. The optimization process is restricted to accepting the given (interstitially inserted) sources, and determining the best source strengths with which to obtain a prescribed dose. The Cimmino feasibility algorithm is used for this purpose. The dose distribution and source weights obtained for each kernel are analyzed. In clinical use, optimization will also be performed prior to source insertion to obtain initial source positions, source lengths and source weights, but with the assumption of homogeneous optical properties. For this reason, we compare the results from heterogeneous optical data with those obtained from average homogeneous optical properties. The optimized treatment plans are also compared with the reference clinical plan, defined as the plan with sources of equal strength, distributed regularly in space, which delivers a mean value of prescribed fluence at detector locations within the treatment region. The study suggests that comprehensive optimization of source parameters (i.e. strengths, lengths and locations) is feasible, thus allowing acceptable dose coverage in a heterogeneous prostate PDT within the time constraints of the PDT procedure.

  7. Microwave moisture meter for in-shell peanut kernels

    USDA-ARS?s Scientific Manuscript database

    . A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...

  8. Pecan walnut (Carya illinoinensis (Wangenh.) K. Koch) oil quality and phenolic compounds as affected by microwave and conventional roasting.

    PubMed

    Juhaimi, Fahad Al; Özcan, Mehmet Musa; Uslu, Nurhan; Doğu, Süleyman

    2017-12-01

    In this study, the effects of conventional and microwave roasting on phenolic compounds, free acidity, peroxide value, fatty acid composition and tocopherol content of pecan walnut kernel and oil was investigated. The oil content of pecan kernels was 73.78% for microwave oven roasted at 720 W and 73.56% for conventional oven roasted at 110 °C. The highest free fatty acid content (0.50%) and the lowest peroxide value (2.48 meq O 2 /kg) were observed during microwave roasting at 720 W. The fatty acid profiles and tocopherol contents of pecan kernel oils did not show significant differences compared to raw samples. Roasting process in microwave oven at 720 W caused the reduction of some phenolic compounds, while the content of gallic acid exhibited a significant increase.

  9. Correlation and classification of single kernel fluorescence hyperspectral data with aflatoxin concentration in corn kernels inoculated with Aspergillus flavus spores.

    PubMed

    Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D

    2010-05-01

    The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.

  10. Pollen source effects on growth of kernel structures and embryo chemical compounds in maize.

    PubMed

    Tanaka, W; Mantese, A I; Maddonni, G A

    2009-08-01

    Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos. Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos. Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0.01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0.98, P < 0.01) and soluble sugars (r = 0.95, P < 0.05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0.05-0.10) scutellum cell area occupied by starch granules and fewer oil bodies. The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.

  11. 7 CFR 868.253 - Basis of determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... heat, heat-damaged kernels, parboiled kernels in nonparboiled rice, and the special grade Parboiled brown rice for processing shall be on the basis of the brown rice for processing after it has been...

  12. 7 CFR 868.253 - Basis of determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR CERTAIN AGRICULTURAL COMMODITIES United States Standards for Brown Rice for Processing Principles... heat, heat-damaged kernels, parboiled kernels in nonparboiled rice, and the special grade Parboiled brown rice for processing shall be on the basis of the brown rice for processing after it has been...

  13. A locally adaptive kernel regression method for facies delineation

    NASA Astrophysics Data System (ADS)

    Fernàndez-Garcia, D.; Barahona-Palomo, M.; Henri, C. V.; Sanchez-Vila, X.

    2015-12-01

    Facies delineation is defined as the separation of geological units with distinct intrinsic characteristics (grain size, hydraulic conductivity, mineralogical composition). A major challenge in this area stems from the fact that only a few scattered pieces of hydrogeological information are available to delineate geological facies. Several methods to delineate facies are available in the literature, ranging from those based only on existing hard data, to those including secondary data or external knowledge about sedimentological patterns. This paper describes a methodology to use kernel regression methods as an effective tool for facies delineation. The method uses both the spatial and the actual sampled values to produce, for each individual hard data point, a locally adaptive steering kernel function, self-adjusting the principal directions of the local anisotropic kernels to the direction of highest local spatial correlation. The method is shown to outperform the nearest neighbor classification method in a number of synthetic aquifers whenever the available number of hard data is small and randomly distributed in space. In the case of exhaustive sampling, the steering kernel regression method converges to the true solution. Simulations ran in a suite of synthetic examples are used to explore the selection of kernel parameters in typical field settings. It is shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The performance of the method is demonstrated to significantly improve when external information regarding facies proportions is incorporated. Remarkably, the method allows for a reasonable reconstruction of the facies connectivity patterns, shown in terms of breakthrough curves performance.

  14. Selecting good regions to deblur via relative total variation

    NASA Astrophysics Data System (ADS)

    Li, Lerenhan; Yan, Hao; Fan, Zhihua; Zheng, Hanqing; Gao, Changxin; Sang, Nong

    2018-03-01

    Image deblurring is to estimate the blur kernel and to restore the latent image. It is usually divided into two stage, including kernel estimation and image restoration. In kernel estimation, selecting a good region that contains structure information is helpful to the accuracy of estimated kernel. Good region to deblur is usually expert-chosen or in a trial-anderror way. In this paper, we apply a metric named relative total variation (RTV) to discriminate the structure regions from smooth and texture. Given a blurry image, we first calculate the RTV of each pixel to determine whether it is the pixel in structure region, after which, we sample the image in an overlapping way. At last, the sampled region that contains the most structure pixels is the best region to deblur. Both qualitative and quantitative experiments show that our proposed method can help to estimate the kernel accurately.

  15. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  16. Antioxidant capacity and phenolics content of apricot (Prunus armeniaca L.) kernel as a function of genotype.

    PubMed

    Korekar, Girish; Stobdan, Tsering; Arora, Richa; Yadav, Ashish; Singh, Shashi Bala

    2011-11-01

    Fourteen apricot genotypes grown under similar cultural practices in Trans-Himalayan Ladakh region were studied to find out the influence of genotype on antioxidant capacity and total phenolic content (TPC) of apricot kernel. The kernels were found to be rich in TPC ranging from 92.2 to 162.1 mg gallic acid equivalent/100 g. The free radical-scavenging activity in terms of inhibitory concentration (IC(50)) ranged from 43.8 to 123.4 mg/ml and ferric reducing antioxidant potential (FRAP) from 154.1 to 243.6 FeSO(4).7H(2)O μg/ml. A variation of 1-1.7 fold in total phenolic content, 1-2.8 fold in IC(50) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and 1-1.6 fold in ferric reducing antioxidant potential among the examined kernels underlines the important role played by genetic background for determining the phenolic content and antioxidant potential of apricot kernel. A positive significant correlation between TPC and FRAP (r=0.671) was found. No significant correlation was found between TPC and IC(50); FRAP and IC(50); TPC and physical properties of kernel. Principal component analysis demonstrated that genotypic effect is more pronounced towards TPC and total antioxidant capacity (TAC) content in apricot kernel while the contribution of seed and kernel physical properties are not highly significant.

  17. Carbothermic synthesis of 820 μm uranium nitride kernels: Literature review, thermodynamics, analysis, and related experiments

    NASA Astrophysics Data System (ADS)

    Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.

    2014-05-01

    The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.

  18. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor responses in the time, gas and temperature domains, and the dual representation of the support vector regression solution is shown to provide insight into the sensor's sensitivity and potential orthogonality. Finally, the dual weights of the support vector regression solution to the sensor's response are suggested as a fitness function for a genetic algorithm, or some other method for efficiently searching large parameter spaces.

  19. An information theoretic approach of designing sparse kernel adaptive filters.

    PubMed

    Liu, Weifeng; Park, Il; Principe, José C

    2009-12-01

    This paper discusses an information theoretic approach of designing sparse kernel adaptive filters. To determine useful data to be learned and remove redundant ones, a subjective information measure called surprise is introduced. Surprise captures the amount of information a datum contains which is transferable to a learning system. Based on this concept, we propose a systematic sparsification scheme, which can drastically reduce the time and space complexity without harming the performance of kernel adaptive filters. Nonlinear regression, short term chaotic time-series prediction, and long term time-series forecasting examples are presented.

  20. QTL Mapping of Kernel Number-Related Traits and Validation of One Major QTL for Ear Length in Maize.

    PubMed

    Huo, Dongao; Ning, Qiang; Shen, Xiaomeng; Liu, Lei; Zhang, Zuxin

    2016-01-01

    The kernel number is a grain yield component and an important maize breeding goal. Ear length, kernel number per row and ear row number are highly correlated with the kernel number per ear, which eventually determines the ear weight and grain yield. In this study, two sets of F2:3 families developed from two bi-parental crosses sharing one inbred line were used to identify quantitative trait loci (QTL) for four kernel number-related traits: ear length, kernel number per row, ear row number and ear weight. A total of 39 QTLs for the four traits were identified in the two populations. The phenotypic variance explained by a single QTL ranged from 0.4% to 29.5%. Additionally, 14 overlapping QTLs formed 5 QTL clusters on chromosomes 1, 4, 5, 7, and 10. Intriguingly, six QTLs for ear length and kernel number per row overlapped in a region on chromosome 1. This region was designated qEL1.10 and was validated as being simultaneously responsible for ear length, kernel number per row and ear weight in a near isogenic line-derived population, suggesting that qEL1.10 was a pleiotropic QTL with large effects. Furthermore, the performance of hybrids generated by crossing 6 elite inbred lines with two near isogenic lines at qEL1.10 showed the breeding value of qEL1.10 for the improvement of the kernel number and grain yield of maize hybrids. This study provides a basis for further fine mapping, molecular marker-aided breeding and functional studies of kernel number-related traits in maize.

  1. Two-stage autoignition and edge flames in a high pressure turbulent jet

    DOE PAGES

    Krisman, Alex; Hawkes, Evatt R.; Chen, Jacqueline H.

    2017-07-04

    A three-dimensional direct numerical simulation is conducted for a temporally evolving planar jet of n-heptane at a pressure of 40 atmospheres and in a coflow of air at 1100 K. At these conditions, n-heptane exhibits a two-stage ignition due to low- and high-temperature chemistry, which is reproduced by the global chemical model used in this study. The results show that ignition occurs in several overlapping stages and multiple modes of combustion are present. Low-temperature chemistry precedes the formation of multiple spatially localised high-temperature chemistry autoignition events, referred to as ‘kernels’. These kernels form within the shear layer and core ofmore » the jet at compositions with short homogeneous ignition delay times and in locations experiencing low scalar dissipation rates. An analysis of the kernel histories shows that the ignition delay time is correlated with the mixing rate history and that the ignition kernels tend to form in vortically dominated regions of the domain, as corroborated by an analysis of the topology of the velocity gradient tensor. Once ignited, the kernels grow rapidly and establish edge flames where they envelop the stoichiometric isosurface. A combination of kernel formation (autoignition) and the growth of existing burning surface (via edge-flame propagation) contributes to the overall ignition process. In conclusion, an analysis of propagation speeds evaluated on the burning surface suggests that although the edge-flame speed is promoted by the autoignitive conditions due to an increase in the local laminar flame speed, edge-flame propagation of existing burning surfaces (triggered initially by isolated autoignition kernels) is the dominant ignition mode in the present configuration.« less

  2. Detoxification of Jatropha curcas kernel cake by a novel Streptomyces fimicarius strain.

    PubMed

    Wang, Xing-Hong; Ou, Lingcheng; Fu, Liang-Liang; Zheng, Shui; Lou, Ji-Dong; Gomes-Laranjo, José; Li, Jiao; Zhang, Changhe

    2013-09-15

    A huge amount of kernel cake, which contains a variety of toxins including phorbol esters (tumor promoters), is projected to be generated yearly in the near future by the Jatropha biodiesel industry. We showed that the kernel cake strongly inhibited plant seed germination and root growth and was highly toxic to carp fingerlings, even though phorbol esters were undetectable by HPLC. Therefore it must be detoxified before disposal to the environment. A mathematic model was established to estimate the general toxicity of the kernel cake by determining the survival time of carp fingerling. A new strain (Streptomyces fimicarius YUCM 310038) capable of degrading the total toxicity by more than 97% in a 9-day solid state fermentation was screened out from 578 strains including 198 known strains and 380 strains isolated from air and soil. The kernel cake fermented by YUCM 310038 was nontoxic to plants and carp fingerlings and significantly promoted tobacco plant growth, indicating its potential to transform the toxic kernel cake to bio-safe animal feed or organic fertilizer to remove the environmental concern and to reduce the cost of the Jatropha biodiesel industry. Microbial strain profile essential for the kernel cake detoxification was discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determination of aflatoxin risk components for in-shell Brazil nuts.

    PubMed

    Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B

    2011-09-01

    A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis

  4. Investigating light curve modulation via kernel smoothing. II. New additional modes in single-mode OGLE classical Cepheids

    NASA Astrophysics Data System (ADS)

    Süveges, Maria; Anderson, Richard I.

    2018-04-01

    Detailed knowledge of the variability of classical Cepheids, in particular their modulations and mode composition, provides crucial insight into stellar structure and pulsation. However, tiny modulations of the dominant radial-mode pulsation were recently found to be very frequent, possibly ubiquitous in Cepheids, which makes secondary modes difficult to detect and analyse, since these modulations can easily mask the potentially weak secondary modes. The aim of this study is to re-investigate the secondary mode content in the sample of OGLE-III and -IV single-mode classical Cepheids using kernel regression with adaptive kernel width for pre-whitening, instead of using a constant-parameter model. This leads to a more precise removal of the modulated dominant pulsation, and enables a more complete survey of secondary modes with frequencies outside a narrow range around the primary. Our analysis reveals that significant secondary modes occur more frequently among first overtone Cepheids than previously thought. The mode composition appears significantly different in the Large and Small Magellanic Clouds, suggesting a possible dependence on chemical composition. In addition to the formerly identified non-radial mode at P2 ≈ 0.6…0.65P1 (0.62-mode), and a cluster of modes with near-primary frequency, we find two more candidate non-radial modes. One is a numerous group of secondary modes with P2 ≈ 1.25P1, which may represent the fundamental of the 0.62-mode, supposed to be the first harmonic of an l ∈ {7, 8, 9} non-radial mode. The other new mode is at P2 ≈ 1.46P1, possibly analogous to a similar, rare mode recently discovered among first overtone RR Lyrae stars.

  5. Analysis and Development of A Robust Fuel for Gas-Cooled Fast Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Travis W.

    2010-01-31

    The focus of this effort was on the development of an advanced fuel for gas-cooled fast reactor (GFR) applications. This composite design is based on carbide fuel kernels dispersed in a ZrC matrix. The choice of ZrC is based on its high temperature properties and good thermal conductivity and improved retention of fission products to temperatures beyond that of traditional SiC based coated particle fuels. A key component of this study was the development and understanding of advanced fabrication techniques for GFR fuels that have potential to reduce minor actinide (MA) losses during fabrication owing to their higher vapor pressuresmore » and greater volatility. The major accomplishments of this work were the study of combustion synthesis methods for fabrication of the ZrC matrix, fabrication of high density UC electrodes for use in the rotating electrode process, production of UC particles by rotating electrode method, integration of UC kernels in the ZrC matrix, and the full characterization of each component. Major accomplishments in the near-term have been the greater characterization of the UC kernels produced by the rotating electrode method and their condition following the integration in the composite (ZrC matrix) following the short time but high temperature combustion synthesis process. This work has generated four journal publications, one conference proceeding paper, and one additional journal paper submitted for publication (under review). The greater significance of the work can be understood in that it achieved an objective of the DOE Generation IV (GenIV) roadmap for GFR Fuel—namely the demonstration of a composite carbide fuel with 30% volume fuel. This near-term accomplishment is even more significant given the expected or possible time frame for implementation of the GFR in the years 2030 -2050 or beyond.« less

  6. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver.

    PubMed

    Liu, Y; Longmore, R B

    1997-09-01

    Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions.

  7. Aggressiveness of loose kernel smut isolate from Johnson grass on sorghum line BTx643

    USDA-ARS?s Scientific Manuscript database

    An isolate of loose kernel smut obtained from Johnson grass was inoculated unto six BTx643 sorghum plants in the greenhouse to determine its aggressiveness. All the BTx643 sorghum plants inoculated with the Johnson grass isolate were infected. Mean size of the teliospores from the Johnson grass, i...

  8. Computational investigation of intense short-wavelength laser interaction with rare gas clusters

    NASA Astrophysics Data System (ADS)

    Bigaouette, Nicolas

    Current Very High Temperature Reactor designs incorporate TRi-structural ISOtropic (TRISO) particle fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel by dropping a cold precursor solution into a column of hot trichloroethylene (TCE). The temperature difference drives the liquid precursor solution to precipitate the metal solution into gel spheres before reaching the bottom of a production column. Over time, gelation byproducts inhibit complete gelation and the TCE must be purified or discarded. The resulting mixed-waste stream is expensive to dispose of or recycle, and changing the forming fluid to a non-hazardous alternative could greatly improve the economics of kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacements. The physical properties of the alternatives were measured as a function of temperature between 25 °C and 80 °C. Calculated terminal velocities and heat transfer rates provided an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane were selected for further testing, and surrogate yttria-stabilized zirconia (YSZ) kernels were produced using these selected fluids. The kernels were characterized for density, geometry, composition, and crystallinity and compared to a control group of kernels produced in silicone oil. Production in 1-bromotetradecane showed positive results, producing dense (93.8 %TD) and spherical (1.03 aspect ratio) kernels, but proper gelation did not occur in the other alternative forming fluids. With many of the YSZ kernels not properly gelling within the length of the column, this project further investigated the heat transfer properties of the forming fluids and precursor solution. A sensitivity study revealed that the heat transfer properties of the precursor solution have the strongest impact on gelation time. A COMSOL heat transfer model estimated an effective thermal diffusivity range for the YSZ precursor solution as 1.13x10 -8 m2/s to 3.35x10-8 m 2/s, which is an order of magnitude smaller than the value used in previous studies. 1-bromotetradecane is recommended for further investigation with the production of uranium-based kernels.

  9. A graphical approach to optimizing variable-kernel smoothing parameters for improved deformable registration of CT and cone beam CT images

    NASA Astrophysics Data System (ADS)

    Hart, Vern; Burrow, Damon; Li, X. Allen

    2017-08-01

    A systematic method is presented for determining optimal parameters in variable-kernel deformable image registration of cone beam CT and CT images, in order to improve accuracy and convergence for potential use in online adaptive radiotherapy. Assessed conditions included the noise constant (symmetric force demons), the kernel reduction rate, the kernel reduction percentage, and the kernel adjustment criteria. Four such parameters were tested in conjunction with reductions of 5, 10, 15, 20, 30, and 40%. Noise constants ranged from 1.0 to 1.9 for pelvic images in ten prostate cancer patients. A total of 516 tests were performed and assessed using the structural similarity index. Registration accuracy was plotted as a function of iteration number and a least-squares regression line was calculated, which implied an average improvement of 0.0236% per iteration. This baseline was used to determine if a given set of parameters under- or over-performed. The most accurate parameters within this range were applied to contoured images. The mean Dice similarity coefficient was calculated for bladder, prostate, and rectum with mean values of 98.26%, 97.58%, and 96.73%, respectively; corresponding to improvements of 2.3%, 9.8%, and 1.2% over previously reported values for the same organ contours. This graphical approach to registration analysis could aid in determining optimal parameters for Demons-based algorithms. It also establishes expectation values for convergence rates and could serve as an indicator of non-physical warping, which often occurred in cases  >0.6% from the regression line.

  10. Approach to explosive hazard detection using sensor fusion and multiple kernel learning with downward-looking GPR and EMI sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John

    2015-05-01

    This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.

  11. Effect of Temperature and Moisture on the Development of Concealed Damage in Raw Almonds (Prunus dulcis).

    PubMed

    Rogel-Castillo, Cristian; Zuskov, David; Chan, Bronte Lee; Lee, Jihyun; Huang, Guangwei; Mitchell, Alyson E

    2015-09-23

    Concealed damage (CD) is a brown discoloration of nutmeat that appears only after kernels are treated with moderate heat (e.g., roasting). Identifying factors that promote CD in almonds is of significant interest to the nut industry. Herein, the effect of temperature (35 and 45 °C) and moisture (<5, 8, and 11%) on the composition of volatiles in raw almonds (Prunus dulcis var. Nonpareil) was studied using HS-SPME-GC/MS. A CIE LCh colorimetric method was developed to identify raw almonds with CD. A significant increase in CD was demonstrated in almonds exposed to moisture (8% kernel moisture content) at 45 °C as compared to 35 °C. Elevated levels of volatiles related to lipid peroxidation and amino acid degradation were observed in almonds with CD. These results suggest that postharvest moisture exposure resulting in an internal kernel moisture ≥ 8% is a key factor in the development of CD in raw almonds and that CD is accelerated by temperature.

  12. Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel.

    PubMed

    Yalegama, L L W C; Nedra Karunaratne, D; Sivakanesan, Ramiah; Jayasekara, Chitrangani

    2013-11-01

    The coconut kernel residues obtained after extraction of coconut milk (MR) and virgin coconut oil (VOR) were analysed for their potential as dietary fibres. VOR was defatted and treated chemically using three solvent systems to isolate coconut cell wall polysaccharides (CCWP). Nutritional composition of VOR, MR and CCWPs indicated that crude fibre, neutral detergent fibre, acid detergent fibre and hemicelluloses contents were higher in CCWPs than in VOR and MR. MR contained a notably higher content of fat than VOR and CCWPs. The oil holding capacity, water holding capacity and swelling capacity were also higher in CCWPs than in VOR and MR. All the isolates and MR and VOR had high metal binding capacities. The CCWPs when compared with commercially available fibre isolates, indicated improved dietary fibre properties. These results show that chemical treatment of coconut kernel by-products can enhance the performance of dietary fibre to yield a better product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Influence of indigenous minor components on fat crystal network of fully hydrogenated palm kernel oil and fully hydrogenated coconut oil.

    PubMed

    Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa

    2018-07-30

    Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

    NASA Astrophysics Data System (ADS)

    Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty

    2017-12-01

    Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.

  15. Towards Seismic Tomography Based Upon Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Liu, Q.; Tape, C.; Maggi, A.

    2006-12-01

    We outline the theory behind tomographic inversions based on 3D reference models, fully numerical 3D wave propagation, and adjoint methods. Our approach involves computing the Fréchet derivatives for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a spectral-element method (SEM) and a heterogeneous wave-speed model, and stored as synthetic seismograms at particular receivers for which there is data. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the differences between the data and the synthetics are time reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernel. These kernels may be thought of as weighted sums of measurement-specific banana-donut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, i.e., the Fréchet derivatives. A conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. Using 2D examples for Rayleigh wave phase-speed maps of southern California, we illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions, and joint source-structure inversions. We also illustrate the characteristics of these 3D finite-frequency kernels based upon adjoint simulations for a variety of global arrivals, e.g., Pdiff, P'P', and SKS, and we illustrate how the approach may be used to investigate body- and surface-wave anisotropy. In adjoint tomography any time segment in which the data and synthetics match reasonably well is suitable for measurement, and this implies a much greater number of phases per seismogram can be used compared to classical tomography in which the sensitivity of the measurements is determined analytically for specific arrivals, e.g., P. We use an automated picking algorithm based upon short-term/long-term averages and strict phase and amplitude anomaly criteria to determine arrivals and time windows suitable for measurement. For shallow global events the algorithm typically identifies of the order of 1000~windows suitable for measurement, whereas for a deep event the number can reach 4000. For southern California earthquakes the number of phases is of the order of 100 for a magnitude 4.0 event and up to 450 for a magnitude 5.0 event. We will show examples of event kernels for both global and regional earthquakes. These event kernels form the basis of adjoint tomography.

  16. An algorithm of improving speech emotional perception for hearing aid

    NASA Astrophysics Data System (ADS)

    Xi, Ji; Liang, Ruiyu; Fei, Xianju

    2017-07-01

    In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.

  17. Improving the visualization of 3D ultrasound data with 3D filtering

    NASA Astrophysics Data System (ADS)

    Shamdasani, Vijay; Bae, Unmin; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    3D ultrasound imaging is quickly gaining widespread clinical acceptance as a visualization tool that allows clinicians to obtain unique views not available with traditional 2D ultrasound imaging and an accurate understanding of patient anatomy. The ability to acquire, manipulate and interact with the 3D data in real time is an important feature of 3D ultrasound imaging. Volume rendering is often used to transform the 3D volume into 2D images for visualization. Unlike computed tomography (CT) and magnetic resonance imaging (MRI), volume rendering of 3D ultrasound data creates noisy images in which surfaces cannot be readily discerned due to speckles and low signal-to-noise ratio. The degrading effect of speckles is especially severe when gradient shading is performed to add depth cues to the image. Several researchers have reported that smoothing the pre-rendered volume with a 3D convolution kernel, such as 5x5x5, can significantly improve the image quality, but at the cost of decreased resolution. In this paper, we have analyzed the reasons for the improvement in image quality with 3D filtering and determined that the improvement is due to two effects. The filtering reduces speckles in the volume data, which leads to (1) more accurate gradient computation and better shading and (2) decreased noise during compositing. We have found that applying a moderate-size smoothing kernel (e.g., 7x7x7) to the volume data before gradient computation combined with some smoothing of the volume data (e.g., with a 3x3x3 lowpass filter) before compositing yielded images with good depth perception and no appreciable loss in resolution. Providing the clinician with the flexibility to control both of these effects (i.e., shading and compositing) independently could improve the visualization of the 3D ultrasound data. Introducing this flexibility into the ultrasound machine requires 3D filtering to be performed twice on the volume data, once before gradient computation and again before compositing. 3D filtering of an ultrasound volume containing millions of voxels requires a large amount of computation, and doing it twice decreases the number of frames that can be visualized per second. To address this, we have developed several techniques to make computation efficient. For example, we have used the moving average method to filter a 128x128x128 volume with a 3x3x3 boxcar kernel in 17 ms on a single MAP processor running at 400 MHz. The same methods reduced the computing time on a Pentium 4 running at 3 GHz from 110 ms to 62 ms. We believe that our proposed method can improve 3D ultrasound visualization without sacrificing resolution and incurring an excessive computing time.

  18. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa.

    PubMed

    Chandrasekara, Neel; Shahidi, Fereidoon

    2011-05-11

    The effect of roasting on the content of phenolic compounds and antioxidant properties of cashew nuts and testa was studied. Whole cashew nuts, subjected to low-temperature (LT) and high-temperature (HT) treatments, were used to determine the antioxidant activity of products. Antioxidant activities of cashew nut, kernel, and testa phenolics extracted increased as the roasting temperature increased. The highest activity, as determined by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity, oxygen radical absorbance capacity (ORAC), hydroxyl radical scavenging capacity, Trolox equivalent antioxidant activity (TEAC), and reducing power, was achieved when nuts were roasted at 130 °C for 33 min. Furthermore, roasting increased the total phenolic content (TPC) in both the soluble and bound extracts from whole nut, kernel, and testa but decreased that of the proanthocyanidins (PC) except for the soluble extract of cashew kernels. In addition, cashew testa afforded a higher extract yield, TPC, and PC in both soluble and bound fractions compared to that in whole nuts and kernels. Phenolic acids, namely, syringic (the predominant one), gallic, and p-coumaric acids, were identified. Flavonoids, namely, (+)-catechin, (-)-epicatechin, and epigallocatechin, were also identified, and their contents increased with increasing temperature. The results so obtained suggest that HT-short time (HTST) roasting effectively enhances the antioxidant activity of cashew nuts and testa.

  19. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure

    PubMed Central

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-01-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. PMID:26400058

  20. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  1. Yield, pollination aspects and kernel qualities of almond (Prunus amygdalus Batsch) selections trialed in the Southern San Joaquin Valley

    USDA-ARS?s Scientific Manuscript database

    A field trial was established in the Southern San Joaquin Valley to determine yield potential for nine almond selections grown under commercial conditions. Kernel yields were first quantified in 2008, at the end of the third growing season, and continued through the 2010 harvest. Harvested tonnage...

  2. Estimation of kernels mass ratio to total in-shell peanuts using low-cost RF impedance meter

    USDA-ARS?s Scientific Manuscript database

    In this study estimation of percentage of total kernel mass within a given mass of in-shell peanuts was determined nondestructively using a low-cost RF impedance meter. Peanut samples were divided into two groups one the calibration and the other the validation group. Each group contained 25 samples...

  3. A robust, high-throughput method for computing maize ear, cob, and kernel attributes automatically from images.

    PubMed

    Miller, Nathan D; Haase, Nicholas J; Lee, Jonghyun; Kaeppler, Shawn M; de Leon, Natalia; Spalding, Edgar P

    2017-01-01

    Grain yield of the maize plant depends on the sizes, shapes, and numbers of ears and the kernels they bear. An automated pipeline that can measure these components of yield from easily-obtained digital images is needed to advance our understanding of this globally important crop. Here we present three custom algorithms designed to compute such yield components automatically from digital images acquired by a low-cost platform. One algorithm determines the average space each kernel occupies along the cob axis using a sliding-window Fourier transform analysis of image intensity features. A second counts individual kernels removed from ears, including those in clusters. A third measures each kernel's major and minor axis after a Bayesian analysis of contour points identifies the kernel tip. Dimensionless ear and kernel shape traits that may interrelate yield components are measured by principal components analysis of contour point sets. Increased objectivity and speed compared to typical manual methods are achieved without loss of accuracy as evidenced by high correlations with ground truth measurements and simulated data. Millimeter-scale differences among ear, cob, and kernel traits that ranged more than 2.5-fold across a diverse group of inbred maize lines were resolved. This system for measuring maize ear, cob, and kernel attributes is being used by multiple research groups as an automated Web service running on community high-throughput computing and distributed data storage infrastructure. Users may create their own workflow using the source code that is staged for download on a public repository. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  4. Adequacy of the Measurement Capability of Fatty Acid Compositions and Sterol Profiles to Determine Authenticity of Milk Fat Through Formulation of Adulterated Butter.

    PubMed

    Soha, Sahel; Mortazavian, Amir M; Piravi-Vanak, Zahra; Mohammadifar, Mohammad A; Sahafar, Hamed; Nanvazadeh, Sara

    2015-01-01

    In this research a comparison has been made between the fatty acid and sterol compositions of Iranian pure butter and three samples of adulterated butter. These samples were formulated using edible vegetable fats/oils with similar milk fat structures including palm olein, palm kernel and coconut oil to determine the authenticity of milk fat. The amount of vegetable fats/oils used in the formulation of the adulterated butter was 10%. The adulterated samples were formulated so that their fatty acid profiles were comforted with acceptable levels of pure butter as specified by the Iranian national standard. Based on the type of the vegetable oil/fat, fatty acids such as C4:0, C12:0 and C18:2 were used as indicators for the adulterated formulations. According to the standard method of ISO, the analysis was performed using gas chromatography. The cholesterol contents were 99.71% in pure butter (B1), and 97.61%, 98.48% and 97.98% of the total sterols in the samples adulterated with palm olein, palm kernel and coconut oil (B2, B3 and B4), respectively. Contents of the main phytosterol profiles such as β-sitosterol, stigmasterol and campesterol were also determined. The β-sitosterol content, as an indicator of phytosterols, was 0% in pure butter, and 1.81%, 1.67% and 2.16%, of the total sterols in the adulterated samples (B2, B3 and B4), respectively. Our findings indicate that fatty acid profiles are not an efficient indicator for butter authentication. Despite the increase in phytosterols and the reduction in cholesterol and with regard to the conformity of the sterol profiles of the edible fats/oils used in the formulations with Codex standards, lower cholesterol and higher phytosterols contents should have been observed. It can therefore be concluded that sterol measurement is insufficient to verify the authenticity of the milk fat in butter. It can therefore be concluded that sterol measurement is insufficient in verifying the authenticity of milk fat.

  5. Kernel compositions of glyphosate-tolerant and corn rootworm-protected MON 88017 sweet corn and insect-protected MON 89034 sweet corn are equivalent to that of conventional sweet corn (Zea mays).

    PubMed

    Curran, Kassie L; Festa, Adam R; Goddard, Scott D; Harrigan, George G; Taylor, Mary L

    2015-03-25

    Monsanto Co. has developed two sweet corn hybrids, MON 88017 and MON 89034, that contain biotechnology-derived (biotech) traits designed to enhance sustainability and improve agronomic practices. MON 88017 confers benefits of glyphosate tolerance and protection against corn rootworm. MON 89034 provides protection against European corn borer and other lepidopteran insect pests. The purpose of this assessment was to compare the kernel compositions of MON 88017 and MON 89034 sweet corn with that of a conventional control that has a genetic background similar to the biotech sweet corn but does not express the biotechnology-derived traits. The sweet corn samples were grown at five replicated sites in the United States during the 2010 growing season and the conventional hybrid and 17 reference hybrids were grown concurrently to provide an estimate of natural variability for all assessed components. The compositional analysis included proximates, fibers, amino acids, sugars, vitamins, minerals, and selected metabolites. Results highlighted that MON 88017 and MON 89034 sweet corns were compositionally equivalent to the conventional control and that levels of the components essential to the desired properties of sweet corn, such as sugars and vitamins, were more affected by growing environment than the biotech traits. In summary, the benefits of biotech traits can be incorporated into sweet corn with no adverse effects on nutritional quality.

  6. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress.

    PubMed

    Cui, Fa; Fan, Xiaoli; Chen, Mei; Zhang, Na; Zhao, Chunhua; Zhang, Wei; Han, Jie; Ji, Jun; Zhao, Xueqiang; Yang, Lijuan; Zhao, Zongwu; Tong, Yiping; Wang, Tao; Li, Junming

    2016-03-01

    QTLs for kernel characteristics and tolerance to N stress were identified, and the functions of ten known genes with regard to these traits were specified. Kernel size and quality characteristics in wheat (Triticum aestivum L.) ultimately determine the end use of the grain and affect its commodity price, both of which are influenced by the application of nitrogen (N) fertilizer. This study characterized quantitative trait loci (QTLs) for kernel size and quality and examined the responses of these traits to low-N stress using a recombinant inbred line population derived from Kenong 9204 × Jing 411. Phenotypic analyses were conducted in five trials that each included low- and high-N treatments. We identified 109 putative additive QTLs for 11 kernel size and quality characteristics and 49 QTLs for tolerance to N stress, 27 and 14 of which were stable across the tested environments, respectively. These QTLs were distributed across all wheat chromosomes except for chromosomes 3A, 4D, 6D, and 7B. Eleven QTL clusters that simultaneously affected kernel size- and quality-related traits were identified. At nine locations, 25 of the 49 QTLs for N deficiency tolerance coincided with the QTLs for kernel characteristics, indicating their genetic independence. The feasibility of indirect selection of a superior genotype for kernel size and quality under high-N conditions in breeding programs designed for a lower input management system are discussed. In addition, we specified the functions of Glu-A1, Glu-B1, Glu-A3, Glu-B3, TaCwi-A1, TaSus2, TaGS2-D1, PPO-D1, Rht-B1, and Ha with regard to kernel characteristics and the sensitivities of these characteristics to N stress. This study provides useful information for the genetic improvement of wheat kernel size, quality, and resistance to N stress.

  7. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro

    2017-12-01

    Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.

  8. Trichothecene-Genotypes Play a Role in Fusarium Head Blight Disease Spread and Trichothecene Accumulation in Wheat

    USDA-ARS?s Scientific Manuscript database

    In the current study, we evaluated the impact of the observed North American evolutionary shift in the Fusarium graminearum complex on disease spread, kernel damage, and trichothecene accumulation in resistant and susceptible wheat genotypes. Four inocula were prepared using composites of F. gramin...

  9. Genetic analysis of teosinte alleles for kernel composition traits in maize

    USDA-ARS?s Scientific Manuscript database

    Teosinte (Zea mays ssp. parviglumis) is the wild ancestor of modern maize (Zea mays ssp. mays). Teosinte contains greater genetic diversity compared to maize inbreds and landraces, but its use is limited by insufficient genetic resources to evaluate its value. A population of teosinte near isogenic ...

  10. Functional and nutritional characteristics of soft wheat grown in no-till and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of no-till vs. conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity and end-product quality. Soft white winter wheat cv. ORCF 102 was evaluated over a tw...

  11. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population

    USDA-ARS?s Scientific Manuscript database

    Grain hardness is a very important trait in determining wheat market class and also influences milling and baking traits. At the grain Hardness (Ha) locus on chromosome 5DS, there are two primary mutations responsible for conveying a harder kernel texture among U.S. hard red spring wheats: (1) the P...

  12. Changes in the Fusarium Head Blight Complex of Malting Barley in a Three-Year Field Experiment in Italy

    PubMed Central

    Beccari, Giovanni; Prodi, Antonio; Tini, Francesco; Bonciarelli, Umberto; Onofri, Andrea; Oueslati, Souheib; Limayma, Marwa; Covarelli, Lorenzo

    2017-01-01

    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values. PMID:28353653

  13. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation, and lactation performance by dairy cows through a meta-analysis.

    PubMed

    Ferraretto, L F; Shaver, R D

    2015-04-01

    Understanding the effect of whole-plant corn silage (WPCS) hybrids in dairy cattle diets may allow for better decisions on hybrid selection by dairy producers, as well as indicate potential strategies for the seed corn industry with regard to WPCS hybrids. Therefore, the objective of this study was to perform a meta-analysis using literature data on the effects of WPCS hybrid type on intake, digestibility, rumen fermentation, and lactation performance by dairy cows. The meta-analysis was performed using a data set of 162 treatment means from 48 peer-reviewed articles published between 1995 and 2014. Hybrids were divided into 3 categories before analysis. Comparative analysis of WPCS hybrid types differing in stalk characteristics were in 4 categories: conventional, dual-purpose, isogenic, or low-normal fiber digestibility (CONS), brown midrib (BMR), hybrids with greater NDF but lower lignin (%NDF) contents or high in vitro NDF digestibility (HFD), and leafy (LFY). Hybrid types differing in kernel characteristics were in 4 categories: conventional or yellow dent (CONG), NutriDense (ND), high oil (HO), and waxy. Genetically modified (GM) hybrids were compared with their genetically similar non-biotech counterpart (ISO). Except for lower lignin content for BMR and lower starch content for HFD than CONS and LFY, silage nutrient composition was similar among hybrids of different stalk types. A 1.1 kg/d greater intake of DM and 1.5 and 0.05 kg/d greater milk and protein yields, respectively, were observed for BMR compared with CONS and LFY. Likewise, DMI and milk yield were greater for HFD than CONS, but the magnitude of the difference was smaller. Total-tract NDF digestibility was greater, but starch digestibility was reduced, for BMR and HFD compared with CONS or LFY. Silage nutrient composition was similar for hybrids of varied kernel characteristics, except for lower CP and EE content for CONG than ND and HO. Feeding HO WPCS to dairy cows decreased milk fat content and yield and protein content compared with the other kernel-type hybrids. Hybrids varying in kernel characteristics did not affect intake, milk production, or total-tract nutrient digestibilities by lactating dairy cows. Nutrient composition and lactation performance were similar between GM and ISO. Positive effects of BMR and HFD on intake and milk yield were observed for lactating dairy cows, but the reduced total-tract starch digestibility for these hybrids merits further study. Except for negative effects of HO on milk components, differences were minimal among corn silage hybrids differing in kernel type. Feeding GM WPCS did not affect lactation performance by dairy cows. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  15. Center-of-Mass Tomography and Wigner Function for Multimode Photon States

    NASA Astrophysics Data System (ADS)

    Dudinets, Ivan V.; Man'ko, Vladimir I.

    2018-06-01

    Tomographic probability representation of multimode electromagnetic field states in the scheme of center-of-mass tomography is reviewed. Both connection of the field state Wigner function and observable Weyl symbols with the center-of-mass tomograms as well as connection of the Grönewold kernel with the center-of-mass tomographic kernel determining the noncommutative product of the tomograms are obtained. The dual center-of-mass tomogram of the photon states are constructed and the dual tomographic kernel is obtained. The models of other generalized center-of-mass tomographies are discussed. Example of two-mode even and odd Schrödinger cat states is presented in details.

  16. Design and Analysis of Architectures for Structural Health Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  17. [Ttextual research of Cannabis sativa varieties and medicinal part].

    PubMed

    Wei, Yingfang; Wang, Huadong; Guo, Shanshan; Yan, Jie; Long, Fei

    2010-07-01

    To determine the medicinal part and varieties of Cannabis Sativa through herbal textual research to Provide bibliographic reference for clinical application. Herbal textual research of C. Sativa from ancient herbal works and modern data analysis. Through the herbal textual research, the plant of the C. sativa, for Fructus Cannabis used now is identical with that described in ancient herbal literatures. People did not make a sharp distinction on medicinal part of C. sativa in the early stage literatures, female inflorescence and unripe fruit, fruit and kernel of seed were all used. Since Taohongjing realized the toxicity ofpericarp, all the herbal and prescription works indicate that the pericarp shall be removed before usage and only the kernel can be used. However, in modem literatures, both fruit and kernel can be used as medicinal part. The plants for Fructus Cannabis described in modern and ancient literatures are identical. The base of the original plant is the same either in ancient or modern. And the toxicity of the fruit is more than that of the kernel. The kernel is the exact medicinal part of C. Sativa.

  18. The Dispersal and Persistence of Invasive Marine Species

    NASA Astrophysics Data System (ADS)

    Glick, E. R.; Pringle, J.

    2007-12-01

    The spread of invasive marine species is a continuing problem throughout the world, though not entirely understood. Why do some species invade more easily than the rest? How are the range limits of these species set? Recent research (Byers & Pringle 2006, Pringle & Wares 2007) has produced retention criteria that determine whether a coastal species with a benthic adult stage and planktonic larvae can be retained within its range and invade in the direction opposite that of the mean current experienced by the larvae (i.e. upstream). These results however, are only accurate for Gaussian dispersal kernels. For kernels whose kurtosis differs from a Gaussian's, the retention criteria becomes increasingly inaccurate as the mean current increases. Using recent results of Lutscher (2006), we find an improved retention criterion which is much more accurate for non- Gaussian dispersal kernels. The importance of considering non-Gaussian kernels is illustrated for a number of commonly used dispersal kernels, and the relevance of these calculations is illustrated by considering the northward limit of invasion of Hemigrapsus sanguineus, an important invader in the Gulf of Maine.

  19. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  20. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing.

  1. Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis.

    PubMed

    Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-01-04

    Cassava ( Manihot esculenta Crantz) is an important staple food in sub-Saharan Africa. Breeding experiments were conducted at the International Institute of Tropical Agriculture in cassava to select elite parents. Taking into account the heterogeneity in the field while evaluating these trials can increase the accuracy in estimation of breeding values. We used an exploratory approach using the parametric spatial kernels Power, Spherical, and Gaussian to determine the best kernel for a given scenario. The spatial kernel was fit simultaneously with a genomic kernel in a genomic selection model. Predictability of these models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error compared to that of the base model having no spatial kernel. Results from our real and simulated data studies indicated that predictability can be increased by accounting for spatial variation irrespective of the heritability of the trait. In real data scenarios we observed that the accuracy can be increased by a median value of 3.4%. Through simulations, we showed that a 21% increase in accuracy can be achieved. We also found that Range (row) directional spatial kernels, mostly Gaussian, explained the spatial variance in 71% of the scenarios when spatial correlation was significant. Copyright © 2018 Elias et al.

  2. Hyperspectral imaging for detection of black tip damage in wheat kernels

    NASA Astrophysics Data System (ADS)

    Delwiche, Stephen R.; Yang, I.-Chang; Kim, Moon S.

    2009-05-01

    A feasibility study was conducted on the use of hyperspectral imaging to differentiate sound wheat kernels from those with the fungal condition called black point or black tip. Individual kernels of hard red spring wheat were loaded in indented slots on a blackened machined aluminum plate. Damage conditions, determined by official (USDA) inspection, were either sound (no damage) or damaged by the black tip condition alone. Hyperspectral imaging was separately performed under modes of reflectance from white light illumination and fluorescence from UV light (~380 nm) illumination. By cursory inspection of wavelength images, one fluorescence wavelength (531 nm) was selected for image processing and classification analysis. Results indicated that with this one wavelength alone, classification accuracy can be as high as 95% when kernels are oriented with their dorsal side toward the camera. It is suggested that improvement in classification can be made through the inclusion of multiple wavelength images.

  3. Carbothermic Synthesis of 820 m UN Kernels: Literature Review, Thermodynamics, Analysis, and Related Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemer, Terrence; Voit, Stewart L; Silva, Chinthaka M

    2014-01-01

    The U.S. Department of Energy is considering a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with large, dense uranium nitride (UN) kernels. This effort explores many factors involved in using gel-derived uranium oxide-carbon microspheres to make large UN kernels. Analysis of recent studies with sufficient experimental details is provided. Extensive thermodynamic calculations are used to predict carbon monoxide and other pressures for several different reactions that may be involved in conversion of uranium oxides and carbides to UN. Experimentally, the method for making themore » gel-derived microspheres is described. These were used in a microbalance with an attached mass spectrometer to determine details of carbothermic conversion in argon, nitrogen, or vacuum. A quantitative model is derived from experiments for vacuum conversion to an uranium oxide-carbide kernel.« less

  4. A nonlinear quality-related fault detection approach based on modified kernel partial least squares.

    PubMed

    Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen

    2017-01-01

    In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Critical environmental and genotypic factors for Fusarium verticillioides infection, fungal growth and fumonisin contamination in maize grown in northwestern Spain.

    PubMed

    Cao, Ana; Santiago, Rogelio; Ramos, Antonio J; Souto, Xosé C; Aguín, Olga; Malvar, Rosa Ana; Butrón, Ana

    2014-05-02

    In northwestern Spain, where weather is rainy and mild throughout the year, Fusarium verticillioides is the most prevalent fungus in kernels and a significant risk of fumonisin contamination has been exposed. In this study, detailed information about environmental and maize genotypic factors affecting F. verticillioides infection, fungal growth and fumonisin content in maize kernels was obtained in order to establish control points to reduce fumonisin contamination. Evaluations were conducted in a total of 36 environments and factorial regression analyses were performed to determine the contribution of each factor to variability among environments, genotypes, and genotype × environment interactions for F. verticillioides infection, fungal growth and fumonisin content. Flowering and kernel drying were the most critical periods throughout the growing season for F. verticillioides infection and fumonisin contamination. Around flowering, wetter and cooler conditions limited F. verticillioides infection and growth, and high temperatures increased fumonisin contents. During kernel drying, increased damaged kernels favored fungal growth, and higher ear damage by corn borers and hard rainfall favored fumonisin accumulation. Later planting dates and especially earlier harvest dates reduced the risk of fumonisin contamination, possibly due to reduced incidence of insects and accumulation of rainfall during the kernel drying period. The use of maize varieties resistant to Sitotroga cerealella, with good husk coverage and non-excessive pericarp thickness could also be useful to reduce fumonisin contamination of maize kernels. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    PubMed

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four-field crop rotation. The content of T-2/HT-2 toxins was the highest in 2010 in grain from the three-field crop rotation and it was correlated with the isolation frequency of F. langsethiae.

  7. Mango kernel fat fractions as potential healthy food ingredients: A review.

    PubMed

    Jin, Jun; Jin, Qingzhe; Akoh, Casimir C; Wang, Xingguo

    2018-01-16

    Mango kernel fat (MKF) has been reported to have high functional and nutritional potential. However, its application in food industry has not been fully explored or developed. In this review, the chemical compositions, physical properties and potential health benefits of MKF are described. MKF is a unique fat consisting of 28.9-65.0% of 1,3-distearoyl-2-oleoyl-glycerol with excellent oxidative stability index (58.8-85.2 h at 110 °C), making the fat and its fractions suitable for use as high-value added food ingredients such as cocoa butter alternatives, trans-free shortenings, and a source of natural antioxidants (e.g., sterol, tocopherol and squalene). Unfortunately, the long period of dehydration of mango kernels at hot temperature results in the hydrolysis of triacylglycerols. The high levels of hydrolysates (mainly free fatty acids and diacylglycerols) limit the application of MKF in manufacturing these food ingredients. It is suggested that the physico-chemical and functional properties of MKF could be further improved through moderated refining (e.g., degumming and physical deacidification), fractionation, and interesterification.

  8. Transition of phenolics and cyanogenic glycosides from apricot and cherry fruit kernels into liqueur.

    PubMed

    Senica, Mateja; Stampar, Franci; Veberic, Robert; Mikulic-Petkovsek, Maja

    2016-07-15

    Popular liqueurs made from apricot/cherry pits were evaluated in terms of their phenolic composition and occurrence of cyanogenic glycosides (CGG). Analyses consisted of detailed phenolic and cyanogenic profiles of cherry and apricot seeds as well as beverages prepared from crushed kernels. Phenolic groups and cyanogenic glycosides were analyzed with the aid of high-performance liquid chromatography (HPLC) and mass spectrophotometry (MS). Lower levels of cyanogenic glycosides and phenolics have been quantified in liqueurs compared to fruit kernels. During fruit pits steeping in the alcohol, the phenolics/cyanogenic glycosides ratio increased and at the end of beverage manufacturing process higher levels of total analyzed phenolics were detected compared to cyanogenic glycosides (apricot liqueur: 38.79 μg CGG per ml and 50.57 μg phenolics per ml; cherry liqueur 16.08 μg CGG per ml and 27.73 μg phenolics per ml). Although higher levels of phenolics are characteristic for liqueurs made from apricot and cherry pits these beverages nevertheless contain considerable amounts of cyanogenic glycosides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Kinetic study of nickel laterite reduction roasting by palm kernel shell charcoal

    NASA Astrophysics Data System (ADS)

    Sugiarto, E.; Putera, A. D. P.; Petrus, H. T. B. M.

    2017-05-01

    Demand to process nickel-bearing laterite ore increase as continuous depletion of high-grade nickel-bearing sulfide ore takes place. Due to its common nickel association with iron, processing nickel laterite ore into nickel pig iron (NPI) has been developed by some industries. However, to achieve satisfying nickel recoveries, the process needs massive high-grade metallurgical coke consumption. Concerning on the sustainability of coke supply and positive carbon emission, reduction of nickel laterite ore using biomass-based reductor was being studied.In this study, saprolitic nickel laterite ore was being reduced by palm kernel shell charcoal at several temperatures (800-1000 °C). Variation of biomass-laterite composition was also conducted to study the reduction mechanism. X-ray diffraction and gravimetry analysis were applied to justify the phenomenon and predict kinetic model of the reduction. Results of this study provide information that palm kernel shell charcoal has similar reducing result compared with the conventional method. Reduction, however, was carried out by carbon monoxide rather than solid carbon. Regarding kinetics, Ginstling-Brouhnstein kinetic model provides satisfying results to predict the reduction phenomenon.

  10. Infrared microspectroscopic imaging of plant tissues: spectral visualization of Triticum aestivum kernel and Arabidopsis leaf microstructure.

    PubMed

    Warren, Frederick J; Perston, Benjamin B; Galindez-Najera, Silvia P; Edwards, Cathrina H; Powell, Prudence O; Mandalari, Giusy; Campbell, Grant M; Butterworth, Peter J; Ellis, Peter R

    2015-11-01

    Infrared microspectroscopy is a tool with potential for studies of the microstructure, chemical composition and functionality of plants at a subcellular level. Here we present the use of high-resolution bench top-based infrared microspectroscopy to investigate the microstructure of Triticum aestivum L. (wheat) kernels and Arabidopsis leaves. Images of isolated wheat kernel tissues and whole wheat kernels following hydrothermal processing and simulated gastric and duodenal digestion were generated, as well as images of Arabidopsis leaves at different points during a diurnal cycle. Individual cells and cell walls were resolved, and large structures within cells, such as starch granules and protein bodies, were clearly identified. Contrast was provided by converting the hyperspectral image cubes into false-colour images using either principal component analysis (PCA) overlays or by correlation analysis. The unsupervised PCA approach provided a clear view of the sample microstructure, whereas the correlation analysis was used to confirm the identity of different anatomical structures using the spectra from isolated components. It was then demonstrated that gelatinized and native starch within cells could be distinguished, and that the loss of starch during wheat digestion could be observed, as well as the accumulation of starch in leaves during a diurnal period. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  11. Sentence Combining: A Literature Review.

    ERIC Educational Resources Information Center

    Phillips, Sylvia E.

    Sentence combining--a technique of putting strings of sentence kernels together in a variety of ways so that completed sentences possess greater syntactic maturity--is a method offering much promise in the teaching of writing and composition. The purpose of this document is to provide a literature review of this procedure. After defining the term…

  12. Some physical properties of ginkgo nuts and kernels

    NASA Astrophysics Data System (ADS)

    Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.

    2013-12-01

    Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.

  13. Multilevel image recognition using discriminative patches and kernel covariance descriptor

    NASA Astrophysics Data System (ADS)

    Lu, Le; Yao, Jianhua; Turkbey, Evrim; Summers, Ronald M.

    2014-03-01

    Computer-aided diagnosis of medical images has emerged as an important tool to objectively improve the performance, accuracy and consistency for clinical workflow. To computerize the medical image diagnostic recognition problem, there are three fundamental problems: where to look (i.e., where is the region of interest from the whole image/volume), image feature description/encoding, and similarity metrics for classification or matching. In this paper, we exploit the motivation, implementation and performance evaluation of task-driven iterative, discriminative image patch mining; covariance matrix based descriptor via intensity, gradient and spatial layout; and log-Euclidean distance kernel for support vector machine, to address these three aspects respectively. To cope with often visually ambiguous image patterns for the region of interest in medical diagnosis, discovery of multilabel selective discriminative patches is desired. Covariance of several image statistics summarizes their second order interactions within an image patch and is proved as an effective image descriptor, with low dimensionality compared with joint statistics and fast computation regardless of the patch size. We extensively evaluate two extended Gaussian kernels using affine-invariant Riemannian metric or log-Euclidean metric with support vector machines (SVM), on two medical image classification problems of degenerative disc disease (DDD) detection on cortical shell unwrapped CT maps and colitis detection on CT key images. The proposed approach is validated with promising quantitative results on these challenging tasks. Our experimental findings and discussion also unveil some interesting insights on the covariance feature composition with or without spatial layout for classification and retrieval, and different kernel constructions for SVM. This will also shed some light on future work using covariance feature and kernel classification for medical image analysis.

  14. Factors affecting cadmium absorbed by pistachio kernel in calcareous soils, southeast of Iran.

    PubMed

    Shirani, H; Hosseinifard, S J; Hashemipour, H

    2018-03-01

    Cadmium (Cd) which does not have a biological role is one of the most toxic heavy metals for organisms. This metal enters environment through industrial processes and fertilizers. The main objective of this study was to determine the relationships between absorbed Cd by pistachio kernel and some of soil physical and chemical characteristics using modeling by stepwise regression and Artificial Neural Network (ANN), in calcareous soils in Rafsanjan region, southeast of Iran. For these purposes, 220 pistachio orchards were selected, and soil samples were taken from two depths of 0-40 and 40-80cm. Besides, fruit and leaf samples from branches with and without fruit were taken in each sampling point. The results showed that affecting factors on absorbed Cd by pistachio kernel which were obtained by regression method (pH and clay percent) were not interpretable, and considering unsuitable vales of determinant coefficient (R 2 ) and Root Mean Squares Error (RMSE), the model did not have sufficient validity. However, ANN modeling was highly accurate and reliable. Based on its results, soil available P and Zn and soil salinity were the most important factors affecting the concentration of Cd in pistachio kernel in pistachio growing areas of Rafsanjan. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The HAP Complex Governs Fumonisin Biosynthesis and Maize Kernel Pathogenesis in Fusarium verticillioides.

    PubMed

    Ridenour, John B; Smith, Jonathon E; Bluhm, Burton H

    2016-09-01

    Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .

  16. Using Adjoint Methods to Improve 3-D Velocity Models of Southern California

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.

    2006-12-01

    We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical representation of the gradient of the misfit function. With the capability of computing both the value of the misfit function and its gradient, which assimilates the traveltime anomalies, we are ready to use a non-linear conjugate gradient algorithm to iteratively improve velocity models of southern California.

  17. Phylodynamic Inference with Kernel ABC and Its Application to HIV Epidemiology.

    PubMed

    Poon, Art F Y

    2015-09-01

    The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this "kernel-ABC" method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.

    PubMed

    He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun

    2018-03-14

    Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

  19. Distinguishing Nonpareil marketing group almond cultivars through multivariate analyses.

    PubMed

    Ledbetter, Craig A; Sisterson, Mark S

    2013-09-01

    More than 80% of the world's almonds are grown in California with several dozen almond cultivars available commercially. To facilitate promotion and sale, almond cultivars are categorized into marketing groups based on kernel shape and appearance. Several marketing groups are recognized, with the Nonpareil Marketing Group (NMG) demanding the highest prices. Placement of cultivars into the NMG is historical and no objective standards exist for deciding whether newly developed cultivars belong in the NMG. Principal component analyses (PCA) were used to identify nut and kernel characteristics best separating the 4 NMG cultivars (Nonpareil, Jeffries, Kapareil, and Milow) from a representative of the California Marketing Group (cultivar Carmel) and the Mission Marketing Group (cultivar Padre). In addition, discriminant analyses were used to determine cultivar misclassification rates between and within the marketing groups. All 19 evaluated carpological characters differed significantly among the 6 cultivars and during 2 harvest seasons. A clear distinction of NMG cultivars from representatives of the California and Mission Marketing Groups was evident from a PCA involving the 6 cultivars. Further, NMG kernels were successfully discriminated from kernels representing the California and Mission Marketing Groups with overall kernel misclassification of only 2% using 16 of the 19 evaluated characters. Pellicle luminosity was the most discriminating character, regardless of the character set used in analyses. Results provide an objective classification of NMG almond kernels, clearly distinguishing them from kernels of cultivars representing the California and Mission Marketing Groups. Journal of Food Science © 2013 Institute of Food Technologists® No claim to original US government works.

  20. Certain composition formulae for the fractional integral operators

    NASA Astrophysics Data System (ADS)

    Agarwal, Praveen; Harjule, Priyanka

    2017-09-01

    In this paper we establish some (presumably new) interesting expressions for the composition of some well known fractional integral operators Ia+ μ,Da+ μ,Ia+ γ ,μ and also derive an integral operator ℋa+;p ,q ;β w ;m ,n ;α whose kernel involves the Fox's H- function. By suitably specializing the coefficients and the parameters in these functions we can get a large number of (new and known) interesting expressions for the composition formulae which occur rather frequently in many problems of engineering and mathematical analysis but here we can mention only those which follow as particular cases of the Srivastava et al.

  1. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  2. Influence of Stenocarpella maydis infected corn on the composition of corn kernel and its conversion into ethanol

    USDA-ARS?s Scientific Manuscript database

    Stenocarpella ear rot (formerly Diplodia ear rot) is resurfacing as a concern in the central United States Corn Belt. There are reports of some fields containing more than 50% mummified ears. Ears infected within two weeks of silking may be completely mummified with white to grayish brown mycelium c...

  3. Influence of Stenocarpella maydis infected corn on the composition of corn kernel and its conversion into ethanol

    USDA-ARS?s Scientific Manuscript database

    Widespread epidemics of Stenocarpella ear rot (formerly Diplodia ear rot) have occurred throughout the central U.S. Corn Belt in recent years, but the influence of S. maydis infected grain on corn ethanol production is unknown. In this study, S. maydis infected ears of variety 'Heritage 4646' were h...

  4. Absorbed dose kernel and self-shielding calculations for a novel radiopaque glass microsphere for transarterial radioembolization.

    PubMed

    Church, Cody; Mawko, George; Archambault, John Paul; Lewandowski, Robert; Liu, David; Kehoe, Sharon; Boyd, Daniel; Abraham, Robert; Syme, Alasdair

    2018-02-01

    Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 μm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced. © 2017 American Association of Physicists in Medicine.

  5. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    PubMed

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Colorimetric determination of cyanide liberated from apricot kernels.

    PubMed

    Egli, K L

    1977-07-01

    A simple colorimetric method is described for determining the quantity of hydrogen cyanide produced by the spontaneous decomposition of amygdalin in apricot kernels. The evolved cyanide is collected in sodium hydroxide solution and assayed colorimetrically by reaction with picric acid. Results for duplicate assays, 3.02 and 3.06 mg CN-/g, compare well with those obtained by AOAC method 26.115 which specifies steam distillation and silver nitrate titration; results for triplicate assays were 3.02, 3.03, and 3.08 mg CN-/g by the latter. Recovery of cyanide from potassium cyanide at a level equivalent to 243 microgram CN-/g was 101.0%.

  7. Osteoarthritis Severity Determination using Self Organizing Map Based Gabor Kernel

    NASA Astrophysics Data System (ADS)

    Anifah, L.; Purnomo, M. H.; Mengko, T. L. R.; Purnama, I. K. E.

    2018-02-01

    The number of osteoarthritis patients in Indonesia is enormous, so early action is needed in order for this disease to be handled. The aim of this paper to determine osteoarthritis severity based on x-ray image template based on gabor kernel. This research is divided into 3 stages, the first step is image processing that is using gabor kernel. The second stage is the learning stage, and the third stage is the testing phase. The image processing stage is by normalizing the image dimension to be template to 50 □ 200 image. Learning stage is done with parameters initial learning rate of 0.5 and the total number of iterations of 1000. The testing stage is performed using the weights generated at the learning stage. The testing phase has been done and the results were obtained. The result shows KL-Grade 0 has an accuracy of 36.21%, accuracy for KL-Grade 2 is 40,52%, while accuracy for KL-Grade 2 and KL-Grade 3 are 15,52%, and 25,86%. The implication of this research is expected that this research as decision support system for medical practitioners in determining KL-Grade on X-ray images of knee osteoarthritis.

  8. Finite-frequency tomography using adjoint methods-Methodology and examples using membrane surface waves

    NASA Astrophysics Data System (ADS)

    Tape, Carl; Liu, Qinya; Tromp, Jeroen

    2007-03-01

    We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.

  9. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake.

    PubMed

    da Conceição Dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos

    2017-06-01

    The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake.

  10. Carcass characteristics and meat quality of lambs that are fed diets with palm kernel cake

    PubMed Central

    da Conceição dos Santos, Rozilda; Gomes, Daiany Iris; Alves, Kaliandra Souza; Mezzomo, Rafael; Oliveira, Luis Rennan Sampaio; Cutrim, Darley Oliveira; Sacramento, Samara Bianca Moraes; de Moura Lima, Elizanne; de Carvalho, Francisco Fernando Ramos

    2017-01-01

    Objective The aim was to evaluate carcass characteristics, cut yield, and meat quality in lambs that were fed different inclusion levels of palm kernel cake. Methods Forty-five woolless castrated male Santa Inês crossbred sheep with an initial average body weight of 23.16±0.35 kg were used. The experimental design was a completely randomized design with five treatments, with palm kernel cake in the proportions of 0.0%, 7.5%, 15.0%, 22.5%, and 30.0% with nine replications per treatment. After slaughter, the gastrointestinal tract was weighed when it was full, after which it was then emptied. The heart, liver, kidney, pancreas perirenal fat were also collected and weighed. The carcass was split into two identical longitudinal halves and weighed to determine the quantitative and qualitative characteristics. Results The empty body weight, carcass weight and yield, and fat thickness decreased linearly (p<0.05) as a function of palm kernel inclusion in the diet. There was no difference (p>0.05) for the rib eye area of animals that were fed palm kernel cake. There was a reduction in the commercial cut weight (p<0.05), except for the neck weight. The weights of the heart, liver, kidney fat, small, and large intestine, and gastrointestinal tract decreased. Nevertheless, the gastrointestinal content was greater for animals that were fed increasing levels of cake. For the other organs and viscera, differences were not verified (p>0.05). The sarcomere length decreased linearly (p<0.05), although an effect of the inclusion of palm kernel cake was not observed in other meat quality variables. It is worth noting that the red staining intensity, indicated as A, had a tendency to decrease (p = 0.050). Conclusion The inclusion of palm kernel cake up to 30% in the diet does not lead to changes in meat quality characteristics, except for sarcomere length. Nevertheless, carcass quantitative characteristics decrease with the use of palm kernel cake. PMID:27857029

  11. Validation of Born Traveltime Kernels

    NASA Astrophysics Data System (ADS)

    Baig, A. M.; Dahlen, F. A.; Hung, S.

    2001-12-01

    Most inversions for Earth structure using seismic traveltimes rely on linear ray theory to translate observed traveltime anomalies into seismic velocity anomalies distributed throughout the mantle. However, ray theory is not an appropriate tool to use when velocity anomalies have scale lengths less than the width of the Fresnel zone. In the presence of these structures, we need to turn to a scattering theory in order to adequately describe all of the features observed in the waveform. By coupling the Born approximation to ray theory, the first order dependence of heterogeneity on the cross-correlated traveltimes (described by the Fréchet derivative or, more colourfully, the banana-doughnut kernel) may be determined. To determine for what range of parameters these banana-doughnut kernels outperform linear ray theory, we generate several random media specified by their statistical properties, namely the RMS slowness perturbation and the scale length of the heterogeneity. Acoustic waves are numerically generated from a point source using a 3-D pseudo-spectral wave propagation code. These waves are then recorded at a variety of propagation distances from the source introducing a third parameter to the problem: the number of wavelengths traversed by the wave. When all of the heterogeneity has scale lengths larger than the width of the Fresnel zone, ray theory does as good a job at predicting the cross-correlated traveltime as the banana-doughnut kernels do. Below this limit, wavefront healing becomes a significant effect and ray theory ceases to be effective even though the kernels remain relatively accurate provided the heterogeneity is weak. The study of wave propagation in random media is of a more general interest and we will also show our measurements of the velocity shift and the variance of traveltime compare to various theoretical predictions in a given regime.

  12. Moisture Sorption Isotherms and Properties of Sorbed Water of Neem ( Azadirichta indica A. Juss) Kernels

    NASA Astrophysics Data System (ADS)

    Ngono Mbarga, M. C.; Bup Nde, D.; Mohagir, A.; Kapseu, C.; Elambo Nkeng, G.

    2017-01-01

    A neem tree growing abundantly in India as well as in some regions of Asia and Africa gives fruits whose kernels have about 40-50% oil. This oil has high therapeutic and cosmetic qualities and is recently projected to be an important raw material for the production of biodiesel. Its seed is harvested at high moisture contents, which leads tohigh post-harvest losses. In the paper, the sorption isotherms are determined by the static gravimetric method at 40, 50, and 60°C to establish a database useful in defining drying and storage conditions of neem kernels. Five different equations are validated for modeling the sorption isotherms of neem kernels. The properties of sorbed water, such as the monolayer moisture content, surface area of adsorbent, number of adsorbed monolayers, and the percent of bound water are also defined. The critical moisture content necessary for the safe storage of dried neem kernels is shown to range from 5 to 10% dry basis, which can be obtained at a relative humidity less than 65%. The isosteric heats of sorption at 5% moisture content are 7.40 and 22.5 kJ/kg for the adsorption and desorption processes, respectively. This work is the first, to the best of our knowledge, to give the important parameters necessary for drying and storage of neem kernels, a potential raw material for the production of oil to be used in pharmaceutics, cosmetics, and biodiesel manufacturing.

  13. Inferring planetary obliquity using rotational and orbital photometry

    NASA Astrophysics Data System (ADS)

    Schwartz, J. C.; Sekowski, C.; Haggard, H. M.; Pallé, E.; Cowan, N. B.

    2016-03-01

    The obliquity of a terrestrial planet is an important clue about its formation and critical to its climate. Previous studies using simulated photometry of Earth show that continuous observations over most of a planet's orbit can be inverted to infer obliquity. However, few studies of more general planets with arbitrary albedo markings have been made and, in particular, a simple theoretical understanding of why it is possible to extract obliquity from light curves is missing. Reflected light seen by a distant observer is the product of a planet's albedo map, its host star's illumination, and the visibility of different regions. It is useful to treat the product of illumination and visibility as the kernel of a convolution. Time-resolved photometry constrains both the albedo map and the kernel, the latter of which sweeps over the planet due to rotational and orbital motion. The kernel's movement distinguishes prograde from retrograde rotation for planets with non-zero obliquity on inclined orbits. We demonstrate that the kernel's longitudinal width and mean latitude are distinct functions of obliquity and axial orientation. Notably, we find that a planet's spin axis affects the kernel - and hence time-resolved photometry - even if this planet is east-west uniform or spinning rapidly, or if it is north-south uniform. We find that perfect knowledge of the kernel at 2-4 orbital phases is usually sufficient to uniquely determine a planet's spin axis. Surprisingly, we predict that east-west albedo contrast is more useful for constraining obliquity than north-south contrast.

  14. A new kernel-based fuzzy level set method for automated segmentation of medical images in the presence of intensity inhomogeneity.

    PubMed

    Rastgarpour, Maryam; Shanbehzadeh, Jamshid

    2014-01-01

    Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.

  15. SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.

    PubMed

    Altuntas, Ebubekir; Yildiz, Merve

    2017-01-01

    Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.

  16. Derivation of aerodynamic kernel functions

    NASA Technical Reports Server (NTRS)

    Dowell, E. H.; Ventres, C. S.

    1973-01-01

    The method of Fourier transforms is used to determine the kernel function which relates the pressure on a lifting surface to the prescribed downwash within the framework of Dowell's (1971) shear flow model. This model is intended to improve upon the potential flow aerodynamic model by allowing for the aerodynamic boundary layer effects neglected in the potential flow model. For simplicity, incompressible, steady flow is considered. The proposed method is illustrated by deriving known results from potential flow theory.

  17. Nut traits and nutritional composition of hazelnut (Corylus avellana L.) as influenced by zinc fertilization.

    PubMed

    Özenç, Nedim; Özenç, Damla Bender

    2015-07-01

    Zinc is an essential element for plants and its deficiency is a widespread problem throughout the world, causing decreased yields and nutritional quality. In this study the effect of zinc fertilization on some nut traits and the nutritional composition of 'Tombul' hazelnut (Corylus avellana L.) variety cultivated in the Black Sea region of Turkey was investigated and the contribution of this nut to human nutrition determined. Trials were carried out at 'Tombul' hazelnut orchards, and zinc fertilizers were applied at 0, 0.2, 0.4, 0.8 and 1.6 kg Zn ha(-1) in three consecutive years. Significant differences in some nut traits and mineral composition (protein, total oil, ash, kernel percentage, empty and wrinkled nuts, copper, boron, manganese and molybdenum) were observed with zinc fertilizer applications. In terms of daily nutritional element requirements, 100 g of hazelnut provided about 44.74% phosphorus, 13.39% potassium, 19.32% calcium, 37.49% magnesium, 0.19% sodium, 51.63% iron, 25.73% zinc and 14.05% boron of the recommended daily amounts (RDAs), while copper, manganese and molybdenum contents exceeded their RDAs. In order to improve some nut traits and the mineral composition of hazelnut, 0.8 and 1.6 kg Zn ha(-1) fertilizations could be recommended in practice. © 2014 Society of Chemical Industry.

  18. Classification of Microarray Data Using Kernel Fuzzy Inference System

    PubMed Central

    Kumar Rath, Santanu

    2014-01-01

    The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function. PMID:27433543

  19. Rediscovering the Kernels of Truth in the Urban Legends of the Freshman Composition Classroom

    ERIC Educational Resources Information Center

    Lovoy, Thomas

    2004-01-01

    English teachers, as well as teachers within other disciplines, often boil down abstract principles to easily explainable bullet points. Students often pick up and retain these points but fail to grasp the broader contexts that make them relevant. It is therefore sometimes helpful to revisit some of the more common of these "rules of thumb" to…

  20. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  1. Kernel abortion in maize : I. Carbohydrate concentration patterns and Acid invertase activity of maize kernels induced to abort in vitro.

    PubMed

    Hanft, J M; Jones, R J

    1986-06-01

    Kernels cultured in vitro were induced to abort by high temperature (35 degrees C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35 degrees C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth.

  2. An implementation of support vector machine on sentiment classification of movie reviews

    NASA Astrophysics Data System (ADS)

    Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.

    2018-03-01

    With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%

  3. On processed splitting methods and high-order actions in path-integral Monte Carlo simulations.

    PubMed

    Casas, Fernando

    2010-10-21

    Processed splitting methods are particularly well adapted to carry out path-integral Monte Carlo (PIMC) simulations: since one is mainly interested in estimating traces of operators, only the kernel of the method is necessary to approximate the thermal density matrix. Unfortunately, they suffer the same drawback as standard, nonprocessed integrators: kernels of effective order greater than two necessarily involve some negative coefficients. This problem can be circumvented, however, by incorporating modified potentials into the composition, thus rendering schemes of higher effective order. In this work we analyze a family of fourth-order schemes recently proposed in the PIMC setting, paying special attention to their linear stability properties, and justify their observed behavior in practice. We also propose a new fourth-order scheme requiring the same computational cost but with an enlarged stability interval.

  4. 7 CFR 810.602 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Damaged kernels. Kernels and pieces of flaxseed kernels that are badly ground-damaged, badly weather... instructions. Also, underdeveloped, shriveled, and small pieces of flaxseed kernels removed in properly... recleaning. (c) Heat-damaged kernels. Kernels and pieces of flaxseed kernels that are materially discolored...

  5. Kernel Abortion in Maize 1

    PubMed Central

    Hanft, Jonathan M.; Jones, Robert J.

    1986-01-01

    Kernels cultured in vitro were induced to abort by high temperature (35°C) and by culturing six kernels/cob piece. Aborting kernels failed to enter a linear phase of dry mass accumulation and had a final mass that was less than 6% of nonaborting field-grown kernels. Kernels induced to abort by high temperature failed to synthesize starch in the endosperm and had elevated sucrose concentrations and low fructose and glucose concentrations in the pedicel during early growth compared to nonaborting kernels. Kernels induced to abort by high temperature also had much lower pedicel soluble acid invertase activities than did nonaborting kernels. These results suggest that high temperature during the lag phase of kernel growth may impair the process of sucrose unloading in the pedicel by indirectly inhibiting soluble acid invertase activity and prevent starch synthesis in the endosperm. Kernels induced to abort by culturing six kernels/cob piece had reduced pedicel fructose, glucose, and sucrose concentrations compared to kernels from field-grown ears. These aborting kernels also had a lower pedicel soluble acid invertase activity compared to nonaborting kernels from the same cob piece and from field-grown ears. The low invertase activity in pedicel tissue of the aborting kernels was probably caused by a lack of substrate (sucrose) for the invertase to cleave due to the intense competition for available assimilates. In contrast to kernels cultured at 35°C, aborting kernels from cob pieces containing all six kernels accumulated starch in a linear fashion. These results indicate that kernels cultured six/cob piece abort because of an inadequate supply of sugar and are similar to apical kernels from field-grown ears that often abort prior to the onset of linear growth. PMID:16664846

  6. A Software Architecture for Adaptive Modular Sensing Systems

    PubMed Central

    Lyle, Andrew C.; Naish, Michael D.

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration. PMID:22163614

  7. A software architecture for adaptive modular sensing systems.

    PubMed

    Lyle, Andrew C; Naish, Michael D

    2010-01-01

    By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. Template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.

  8. The spectral details of observed and simulated short-term water vapor feedbacks of El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Pan, F.; Huang, X.; Chen, X.

    2015-12-01

    Radiative kernel method has been validated and widely used in the study of climate feedbacks. This study uses spectrally resolved longwave radiative kernels to examine the short-term water vapor feedbacks associated with the ENSO cycles. Using a 500-year GFDL CM3 and a 100-year NCAR CCSM4 pre-industry control simulation, we have constructed two sets of longwave spectral radiative kernels. We then composite El Niño, La Niña and ENSO-neutral states and estimate the water vapor feedbacks associated with the El Niño and La Niña phases of ENSO cycles in both simulations. Similar analysis is also applied to 35-year (1979-2014) ECMWF ERA-interim reanalysis data, which is deemed as observational results here. When modeled and observed broadband feedbacks are compared to each other, they show similar geographic patterns but with noticeable discrepancies in the contrast between the tropics and extra-tropics. Especially, in El Niño phase, the feedback estimated from reanalysis is much greater than those from the model simulations. Considering the observational data span, we carry out a sensitivity test to explore the variability of feedback-deriving using 35-year data. To do so, we calculate the water vapor feedback within every 35-year segment of the GFDL CM3 control run by two methods: one is to composite El Nino or La Nina phases as mentioned above and the other is to regressing the TOA flux perturbation caused by water vapor change (δR_H­2O) against the global-mean surface temperature a­­­­nomaly. We find that the short-term feedback strengths derived from composite method can change considerably from one segment to another segment, while the feedbacks by regression method are less sensitive to the choice of segment and their strengths are also much smaller than those from composite analysis. This study suggests that caution is warranted in order to infer long-term feedbacks from a few decades of observations. When spectral details of the global-mean feedbacks are examined, more inconsistencies can be revealed in many spectral bands, especially H2O continuum absorption bands and window regions. These discrepancies can be attributed back to differences in observed and modeled water vapor profiles in responses to tropical SST.

  9. Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization.

    PubMed

    Smith, Stuart C; Choy, Rachel; Johnson, Stuart K; Hall, Ramon S; Wildeboer-Veloo, Alida C M; Welling, Gjalt W

    2006-09-01

    Changes in the composition of gastrointestinal microbiota by dietary interventions using pro- and prebiotics provide opportunity for improving health and preventing disease. However, the capacity of lupin kernel fiber (LKFibre), a novel legume-derived food ingredient, to act as a prebiotic and modulate the colonic microbiota in humans needed investigation. The present study aimed to determine the effect of LKFibre on human intestinal microbiota by quantitative fluorescent in situ hybridization (FISH) analysis. A total of 18 free-living healthy males between the ages of 24 and 64 years consumed a control diet and a LKFibre diet (containing an additional 17-30 g/day fiber beyond that of the control-incorporated into daily food items) for 28 days with a 28-day washout period in a single-blind, randomized, crossover dietary intervention design. Fecal samples were collected for 3 days towards the end of each diet and microbial populations analyzed by FISH analysis using 16S rRNA gene-based oligonucleotide probes targeting total and predominant microbial populations. Significantly higher levels of Bifidobacterium spp. (P = 0.001) and significantly lower levels of the clostridia group of C. ramosum, C. spiroforme and C. cocleatum (P = 0.039) were observed on the LKFibre diet compared with the control. No significant differences between the LKFibre and the control diet were observed for total bacteria, Lactobacillus spp., the Eubacterium spp., the C. histolyticum/C. lituseburense group and the Bacteroides-Prevotella group. Ingestion of LKFibre stimulated colonic bifidobacteria growth, which suggests that this dietary fiber may be considered as a prebiotic and may beneficially contribute to colon health.

  10. Out-of-Sample Extensions for Non-Parametric Kernel Methods.

    PubMed

    Pan, Binbin; Chen, Wen-Sheng; Chen, Bo; Xu, Chen; Lai, Jianhuang

    2017-02-01

    Choosing suitable kernels plays an important role in the performance of kernel methods. Recently, a number of studies were devoted to developing nonparametric kernels. Without assuming any parametric form of the target kernel, nonparametric kernel learning offers a flexible scheme to utilize the information of the data, which may potentially characterize the data similarity better. The kernel methods using nonparametric kernels are referred to as nonparametric kernel methods. However, many nonparametric kernel methods are restricted to transductive learning, where the prediction function is defined only over the data points given beforehand. They have no straightforward extension for the out-of-sample data points, and thus cannot be applied to inductive learning. In this paper, we show how to make the nonparametric kernel methods applicable to inductive learning. The key problem of out-of-sample extension is how to extend the nonparametric kernel matrix to the corresponding kernel function. A regression approach in the hyper reproducing kernel Hilbert space is proposed to solve this problem. Empirical results indicate that the out-of-sample performance is comparable to the in-sample performance in most cases. Experiments on face recognition demonstrate the superiority of our nonparametric kernel method over the state-of-the-art parametric kernel methods.

  11. 7 CFR 810.1202 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... kernels. Kernels, pieces of rye kernels, and other grains that are badly ground-damaged, badly weather.... Also, underdeveloped, shriveled, and small pieces of rye kernels removed in properly separating the...-damaged kernels. Kernels, pieces of rye kernels, and other grains that are materially discolored and...

  12. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    PubMed

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  13. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize

    PubMed Central

    Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143

  14. Microwave-based treatments of wheat kernels do not abolish gluten epitopes implicated in celiac disease.

    PubMed

    Gianfrani, Carmen; Mamone, Gianfranco; la Gatta, Barbara; Camarca, Alessandra; Di Stasio, Luigia; Maurano, Francesco; Picascia, Stefania; Capozzi, Vito; Perna, Giuseppe; Picariello, Gianluca; Di Luccia, Aldo

    2017-03-01

    Microwave based treatment (MWT) of wet wheat kernels induced a striking reduction of gluten, up to <20 ppm as determined by R5-antibodybased ELISA, so that wheat could be labeled as gluten-free. In contrast, analysis of gluten peptides by G12 antibody-based ELISA, mass spectrometry-based proteomics and in vitro assay with T cells of celiac subjects, indicated no difference of antigenicity before and after MWT. SDS-PAGE analysis and Raman spectroscopy demonstrated that MWT simply induced conformational modifications, reducing alcohol solubility of gliadins and altering the access of R5-antibody to the gluten epitopes. Thus, MWT neither destroys gluten nor modifies chemically the toxic epitopes, contradicting the preliminary claims that MWT of wheat kernels detoxifies gluten. This study provides evidence that R5-antibody ELISA alone is not effective to determine gluten in thermally treated wheat products. Gluten epitopes in processed wheat should be monitored using strategies based on combined immunoassays with T cells from celiacs, G12-antibody ELISA after proteolysis and proper molecular characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 7 CFR 810.802 - Definition of other terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Damaged kernels. Kernels and pieces of grain kernels for which standards have been established under the.... (d) Heat-damaged kernels. Kernels and pieces of grain kernels for which standards have been...

  16. Aveiro method in reproducing kernel Hilbert spaces under complete dictionary

    NASA Astrophysics Data System (ADS)

    Mai, Weixiong; Qian, Tao

    2017-12-01

    Aveiro Method is a sparse representation method in reproducing kernel Hilbert spaces (RKHS) that gives orthogonal projections in linear combinations of reproducing kernels over uniqueness sets. It, however, suffers from determination of uniqueness sets in the underlying RKHS. In fact, in general spaces, uniqueness sets are not easy to be identified, let alone the convergence speed aspect with Aveiro Method. To avoid those difficulties we propose an anew Aveiro Method based on a dictionary and the matching pursuit idea. What we do, in fact, are more: The new Aveiro method will be in relation to the recently proposed, the so called Pre-Orthogonal Greedy Algorithm (P-OGA) involving completion of a given dictionary. The new method is called Aveiro Method Under Complete Dictionary (AMUCD). The complete dictionary consists of all directional derivatives of the underlying reproducing kernels. We show that, under the boundary vanishing condition, bring available for the classical Hardy and Paley-Wiener spaces, the complete dictionary enables an efficient expansion of any given element in the Hilbert space. The proposed method reveals new and advanced aspects in both the Aveiro Method and the greedy algorithm.

  17. Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L.

    PubMed

    Colaric, Mateja; Veberic, Robert; Solar, Anita; Hudina, Metka; Stampar, Franci

    2005-08-10

    Phenolic acids (chlorogenic, caffeic, p-coumaric, ferulic, sinapic, ellagic, and syringic acid) as well as syringaldehyde and juglone were identified in ripe fruits of 10 walnut cultivars: Adams, Cisco, Chandler, Franquette, Lara, Fernor, Fernette, Alsoszentivani 117 (A-117), Rasna, and Elit. Analyses were done using a high-performance liquid chromatograph equipped with a diode array detector. Significant differences in the contents of identified phenolics were observed among cultivars. Phenolics were determined separately in the kernel and in the thin skin of the walnut, termed the pellicle. Not only in the kernel but also in the pellicle did syringic acid, juglone, and ellagic acid predominate (average values of 33.83, 11.75, and 5.90 mg/100 g of kernel; and 1003.24, 317.90, and 128.98 mg/100 g of pellicle, respectively), and the contents of ferulic and sinapic acid (average values of 0.06 and 0.05 mg/100 g of kernel and 2.93 and 2.17 mg/100 g of pellicle, respectively) were the lowest in all cultivars. The highest differences in the sum of all identified phenolics were observed between Rasna and Fernette fruits; in Rasna there were >2-fold higher contents of identified phenolics in both kernel and pellicle. It was found that the walnut pellicle is the most important source of walnut phenolics. The ratio between the contents in pellicle and kernel varied by at least 14.8-fold for caffeic acid (cv. Adams) and by up to 752.0-fold for p-coumaric acid (cv. Elit).

  18. Classification and quantification analysis of peach kernel from different origins with near-infrared diffuse reflection spectroscopy

    PubMed Central

    Liu, Wei; Wang, Zhen-Zhong; Qing, Jian-Ping; Li, Hong-Juan; Xiao, Wei

    2014-01-01

    Background: Peach kernels which contain kinds of fatty acids play an important role in the regulation of a variety of physiological and biological functions. Objective: To establish an innovative and rapid diffuse reflectance near-infrared spectroscopy (DR-NIR) analysis method along with chemometric techniques for the qualitative and quantitative determination of a peach kernel. Materials and Methods: Peach kernel samples from nine different origins were analyzed with high-performance liquid chromatography (HPLC) as a reference method. DR-NIR is in the spectral range 1100-2300 nm. Principal component analysis (PCA) and partial least squares regression (PLSR) algorithm were applied to obtain prediction models, The Savitzky-Golay derivative and first derivative were adopted for the spectral pre-processing, PCA was applied to classify the varieties of those samples. For the quantitative calibration, the models of linoleic and oleinic acids were established with the PLSR algorithm and the optimal principal component (PC) numbers were selected with leave-one-out (LOO) cross-validation. The established models were evaluated with the root mean square error of deviation (RMSED) and corresponding correlation coefficients (R2). Results: The PCA results of DR-NIR spectra yield clear classification of the two varieties of peach kernel. PLSR had a better predictive ability. The correlation coefficients of the two calibration models were above 0.99, and the RMSED of linoleic and oleinic acids were 1.266% and 1.412%, respectively. Conclusion: The DR-NIR combined with PCA and PLSR algorithm could be used efficiently to identify and quantify peach kernels and also help to solve variety problem. PMID:25422544

  19. An Efficient Method Coupling Kernel Principal Component Analysis with Adjoint-Based Optimal Control and Its Goal-Oriented Extensions

    NASA Astrophysics Data System (ADS)

    Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.

    2016-12-01

    The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.

  20. Classification With Truncated Distance Kernel.

    PubMed

    Huang, Xiaolin; Suykens, Johan A K; Wang, Shuning; Hornegger, Joachim; Maier, Andreas

    2018-05-01

    This brief proposes a truncated distance (TL1) kernel, which results in a classifier that is nonlinear in the global region but is linear in each subregion. With this kernel, the subregion structure can be trained using all the training data and local linear classifiers can be established simultaneously. The TL1 kernel has good adaptiveness to nonlinearity and is suitable for problems which require different nonlinearities in different areas. Though the TL1 kernel is not positive semidefinite, some classical kernel learning methods are still applicable which means that the TL1 kernel can be directly used in standard toolboxes by replacing the kernel evaluation. In numerical experiments, the TL1 kernel with a pregiven parameter achieves similar or better performance than the radial basis function kernel with the parameter tuned by cross validation, implying the TL1 kernel a promising nonlinear kernel for classification tasks.

  1. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The method was then applied to five prostate and six head-and-neck IMRT treatment courses (˜1900 clinical images). Deviations between the predicted and measured images were quantified. The portal dose image prediction model developed in this thesis work has been shown to be accurate, and it was demonstrated to be able to verify patients' delivered radiation treatments.

  2. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated dependingmore » on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.« less

  3. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection

    PubMed Central

    Dang, Yaoguo; Mao, Wenxin

    2018-01-01

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521

  4. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection.

    PubMed

    Sun, Huifang; Dang, Yaoguo; Mao, Wenxin

    2018-03-03

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.

  5. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  6. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain.

    PubMed

    Alborch, L; Bragulat, M R; Castellá, G; Abarca, M L; Cabañes, F J

    2012-10-01

    Mycobiota and co-occurrence of aflatoxins, citrinin, ochratoxin A and zearalenone in 30 samples of maize flours and 30 of popcorn kernels purchased in Spain for human consumption were determined. The mycotoxin-producing ability of Aspergillus, Fusarium and Penicillium spp. was also studied. Total fungal counts of maize flours ranged from <10 to 8.4 × 10(4) CFU/g and predominant mycobiota belonged to Aspergillus spp. and Penicillium spp. In popcorn kernels samples the most frequent species were Aspergillus spp., Mucorales, Fusarium spp. and Penicillium spp. Aflatoxins were produced by Aspergillus flavus and Aspergillus parasiticus, citrinin by Penicillium citrinum and Penicillium verrucosum, ochratoxin A by Aspergillus niger and patulin by Aspergillus clavatus and Penicillium griseofulvum. Identification of all the mycotoxin-producing strains as well as some Aspergillus spp. difficult to identify using phenotypic characters only was also performed by molecular methods. Aflatoxins were detected in 14 maize flours and 2 popcorn kernels samples, while ochratoxin A was detected in 4 maize flours and 10 popcorn samples. Co-occurrence of aflatoxins and ochratoxin A was found in the 4 ochratoxin-positive maize flour samples. Citrinin and zearalenone were not detected. This is the first report of aflatoxins and ochratoxin A contamination in maize flours and popcorn kernels commercialized in Spain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    PubMed

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.

  8. A multi-label learning based kernel automatic recommendation method for support vector machine.

    PubMed

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance.

  9. A Multi-Label Learning Based Kernel Automatic Recommendation Method for Support Vector Machine

    PubMed Central

    Zhang, Xueying; Song, Qinbao

    2015-01-01

    Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. PMID:25893896

  10. 7 CFR 981.7 - Edible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Edible kernel. 981.7 Section 981.7 Agriculture... Regulating Handling Definitions § 981.7 Edible kernel. Edible kernel means a kernel, piece, or particle of almond kernel that is not inedible. [41 FR 26852, June 30, 1976] ...

  11. Kernel K-Means Sampling for Nyström Approximation.

    PubMed

    He, Li; Zhang, Hong

    2018-05-01

    A fundamental problem in Nyström-based kernel matrix approximation is the sampling method by which training set is built. In this paper, we suggest to use kernel -means sampling, which is shown in our works to minimize the upper bound of a matrix approximation error. We first propose a unified kernel matrix approximation framework, which is able to describe most existing Nyström approximations under many popular kernels, including Gaussian kernel and polynomial kernel. We then show that, the matrix approximation error upper bound, in terms of the Frobenius norm, is equal to the -means error of data points in kernel space plus a constant. Thus, the -means centers of data in kernel space, or the kernel -means centers, are the optimal representative points with respect to the Frobenius norm error upper bound. Experimental results, with both Gaussian kernel and polynomial kernel, on real-world data sets and image segmentation tasks show the superiority of the proposed method over the state-of-the-art methods.

  12. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    In this paper a partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z=0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  13. The crack problem in a reinforced cylindrical shell

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1986-01-01

    A partially reinforced cylinder containing an axial through crack is considered. The reinforcement is assumed to be fully bonded to the main cylinder. The composite cylinder is thus modelled by a nonhomogeneous shell having a step change in the elastic properties at the z = 0 plane, z being the axial coordinate. Using a Reissner type transverse shear theory the problem is reduced to a pair of singular integral equations. In the special case of a crack tip touching the bimaterial interface it is shown that the dominant parts of the kernels of the integral equations associated with both membrane loading and bending of the shell reduce to the generalized Cauchy kernel obtained for the corresponding plane stress case. The integral equations are solved and the stress intensity factors are given for various crack and shell dimensions. A bonded fiberglass reinforcement which may serve as a crack arrestor is used as an example.

  14. Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species.

    PubMed

    Fernandes, Fátima; Ferreres, Federico; Gil-Izquierdo, Angel; Oliveira, Andreia P; Valentão, Patrícia; Andrade, Paula B

    2017-10-15

    Studies involving jackfruit tree (Artocarpus heterophyllus Lam.) focus on its fruit. Nevertheless a considerable part of jackfruit weight is represented by its seeds. Despite being consumed in several countries, knowledge about the chemical composition of these seeds is scarce. In this work, the accumulation of primary and secondary metabolites in jackfruit seed kernel and seed coating membrane was studied. Sixty-seven compounds were identified, sixty of them being reported for the first time in jackfruit seed. Both tissues had a similar qualitative profile, but significant quantitative differences were found. The capacity of aqueous extracts from jackfruit seed kernel and seed coating membranes to scavenge nitric oxide radical was also evaluated for the first time, the extract prepared from the seed coating membrane being the most potent. This work increases the potential revenue from a food that is still largely wasted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Isolation and Structural Characterization of Antioxidant Peptides from Degreased Apricot Seed Kernels.

    PubMed

    Zhang, Haisheng; Xue, Jing; Zhao, Huanxia; Zhao, Xinshuai; Xue, Huanhuan; Sun, Yuhan; Xue, Wanrui

    2018-05-03

    Background : The composition and sequence of amino acids have a prominent influence on theantioxidant activities of peptides. Objective : A series of isolation and purification experiments was conducted to explore the amino acid sequence of antioxidant peptides, which led to its antioxidation causes. Methods : The degreased apricot seed kernels were hydrolyzed by compound proteases of alkaline protease and flavor protease (3:2, u/u) to prepare apricot seed kernel hydrolysates (ASKH). ASKH were separated into ASKH-A and ASKH-B by dialysis bag. ASKH-B (MW < 3.5 kDa) was further separated into fractions by Sephadex G-25 and G-15 gel-filtration chromatography. Reversed-phase HPLC (RP-HPLC) was performed to separate fraction B4b into two antioxidant peptides (peptide B4b-4 and B4b-6). Results : The amino acid sequences were Val-Leu-Tyr-Ile-Trp and Ser-Val-Pro-Tyr-Glu, respectively. Conclusions : The results suggested that ASKH antioxidant peptides may have potential utility as healthy ingredients and as food preservatives due to their antioxidant activity. Highlights : Materials with regional characteristics were selected to explore, and hydrolysates were identified by RP-HPLC and matrix-assisted laser desorption ionization-time-of-flight-MS to obtain amino acid sequences.

  16. Exploiting graph kernels for high performance biomedical relation extraction.

    PubMed

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.

  17. 7 CFR 810.2202 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... kernels, foreign material, and shrunken and broken kernels. The sum of these three factors may not exceed... the removal of dockage and shrunken and broken kernels. (g) Heat-damaged kernels. Kernels, pieces of... sample after the removal of dockage and shrunken and broken kernels. (h) Other grains. Barley, corn...

  18. 7 CFR 981.8 - Inedible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.8 Section 981.8 Agriculture... Regulating Handling Definitions § 981.8 Inedible kernel. Inedible kernel means a kernel, piece, or particle of almond kernel with any defect scored as serious damage, or damage due to mold, gum, shrivel, or...

  19. 7 CFR 51.1415 - Inedible kernels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Inedible kernels. 51.1415 Section 51.1415 Agriculture... Standards for Grades of Pecans in the Shell 1 Definitions § 51.1415 Inedible kernels. Inedible kernels means that the kernel or pieces of kernels are rancid, moldy, decayed, injured by insects or otherwise...

  20. An Approximate Approach to Automatic Kernel Selection.

    PubMed

    Ding, Lizhong; Liao, Shizhong

    2016-02-02

    Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Baker, Nathan A.; Li, Xiantao

    We present a data-driven approach to determine the memory kernel and random noise of the generalized Langevin equation. To facilitate practical implementations, we parameterize the kernel function in the Laplace domain by a rational function, with coefficients directly linked to the equilibrium statistics of the coarse-grain variables. Further, we show that such an approximation can be constructed to arbitrarily high order. Within these approximations, the generalized Langevin dynamics can be embedded in an extended stochastic model without memory. We demonstrate how to introduce the stochastic noise so that the fluctuation-dissipation theorem is exactly satisfied.

  2. A 3D Ginibre Point Field

    NASA Astrophysics Data System (ADS)

    Kargin, Vladislav

    2018-06-01

    We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.

  3. Finite-frequency sensitivity kernels for head waves

    NASA Astrophysics Data System (ADS)

    Zhang, Zhigang; Shen, Yang; Zhao, Li

    2007-11-01

    Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.

  4. ENDF/B-THERMOS; 30-group ENDF/B scattering kernels. [Auxiliary program written in FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrosson, F.J.; Finch, D.R.

    These data are 30-group THERMOS thermal scattering kernels for P0 to P5 Legendre orders for every temperature of every material from s(alpha,beta) data stored in the ENDF/B library. These scattering kernels were generated using the FLANGE2 computer code. To test the kernels, the integral properties of each set of kernels were determined by a precision integration of the diffusion length equation and compared to experimental measurements of these properties. In general, the agreement was very good. Details of the methods used and results obtained are contained in the reference. The scattering kernels are organized into a two volume magnetic tapemore » library from which they may be retrieved easily for use in any 30-group THERMOS library. The contents of the tapes are as follows - VOLUME I Material ZA Temperatures (degrees K) Molecular H2O 100.0 296, 350, 400, 450, 500, 600, 800, 1000 Molecular D2O 101.0 296, 350, 400, 450, 500, 600, 800, 1000 Graphite 6000.0 296, 400, 500, 600, 700, 800, 1000, 1200, 1600, 2000 Polyethylene 205.0 296, 350 Benzene 106.0 296, 350, 400, 450, 500, 600, 800, 1000 VOLUME II Material ZA Temperatures (degrees K) Zr bound in ZrHx 203.0 296, 400, 500, 600, 700, 800, 1000, 1200 H bound in ZrHx 230.0 296, 400, 500, 600, 700, 800, 1000, 1200 Beryllium-9 4009.0 296, 400, 500, 600, 700, 800, 1000, 1200 Beryllium Oxide 200.0 296, 400, 500, 600, 700, 800, 1000, 1200 Uranium Dioxide 207.0 296, 400, 500, 600, 700, 800, 1000, 1200Auxiliary program written in FORTRAN IV; The retrieval program requires 1 tape drive and a small amount of high-speed core.« less

  5. Genome-Wide Association Study Identifies Candidate Genes for Starch Content Regulation in Maize Kernels

    PubMed Central

    Liu, Na; Xue, Yadong; Guo, Zhanyong; Li, Weihua; Tang, Jihua

    2016-01-01

    Kernel starch content is an important trait in maize (Zea mays L.) as it accounts for 65–75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60 to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM) as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001), among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437) is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops. PMID:27512395

  6. Background field removal technique using regularization enabled sophisticated harmonic artifact reduction for phase data with varying kernel sizes.

    PubMed

    Kan, Hirohito; Kasai, Harumasa; Arai, Nobuyuki; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2016-09-01

    An effective background field removal technique is desired for more accurate quantitative susceptibility mapping (QSM) prior to dipole inversion. The aim of this study was to evaluate the accuracy of regularization enabled sophisticated harmonic artifact reduction for phase data with varying spherical kernel sizes (REV-SHARP) method using a three-dimensional head phantom and human brain data. The proposed REV-SHARP method used the spherical mean value operation and Tikhonov regularization in the deconvolution process, with varying 2-14mm kernel sizes. The kernel sizes were gradually reduced, similar to the SHARP with varying spherical kernel (VSHARP) method. We determined the relative errors and relationships between the true local field and estimated local field in REV-SHARP, VSHARP, projection onto dipole fields (PDF), and regularization enabled SHARP (RESHARP). Human experiment was also conducted using REV-SHARP, VSHARP, PDF, and RESHARP. The relative errors in the numerical phantom study were 0.386, 0.448, 0.838, and 0.452 for REV-SHARP, VSHARP, PDF, and RESHARP. REV-SHARP result exhibited the highest correlation between the true local field and estimated local field. The linear regression slopes were 1.005, 1.124, 0.988, and 0.536 for REV-SHARP, VSHARP, PDF, and RESHARP in regions of interest on the three-dimensional head phantom. In human experiments, no obvious errors due to artifacts were present in REV-SHARP. The proposed REV-SHARP is a new method combined with variable spherical kernel size and Tikhonov regularization. This technique might make it possible to be more accurate backgroud field removal and help to achive better accuracy of QSM. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  8. 7 CFR 981.408 - Inedible kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Inedible kernel. 981.408 Section 981.408 Agriculture... Administrative Rules and Regulations § 981.408 Inedible kernel. Pursuant to § 981.8, the definition of inedible kernel is modified to mean a kernel, piece, or particle of almond kernel with any defect scored as...

  9. Design of CT reconstruction kernel specifically for clinical lung imaging

    NASA Astrophysics Data System (ADS)

    Cody, Dianna D.; Hsieh, Jiang; Gladish, Gregory W.

    2005-04-01

    In this study we developed a new reconstruction kernel specifically for chest CT imaging. An experimental flat-panel CT scanner was used on large dogs to produce 'ground-truth" reference chest CT images. These dogs were also examined using a clinical 16-slice CT scanner. We concluded from the dog images acquired on the clinical scanner that the loss of subtle lung structures was due mostly to the presence of the background noise texture when using currently available reconstruction kernels. This qualitative evaluation of the dog CT images prompted the design of a new recon kernel. This new kernel consisted of the combination of a low-pass and a high-pass kernel to produce a new reconstruction kernel, called the 'Hybrid" kernel. The performance of this Hybrid kernel fell between the two kernels on which it was based, as expected. This Hybrid kernel was also applied to a set of 50 patient data sets; the analysis of these clinical images is underway. We are hopeful that this Hybrid kernel will produce clinical images with an acceptable tradeoff of lung detail, reliable HU, and image noise.

  10. Quality changes in macadamia kernel between harvest and farm-gate.

    PubMed

    Walton, David A; Wallace, Helen M

    2011-02-01

    Macadamia integrifolia, Macadamia tetraphylla and their hybrids are cultivated for their edible kernels. After harvest, nuts-in-shell are partially dried on-farm and sorted to eliminate poor-quality kernels before consignment to a processor. During these operations, kernel quality may be lost. In this study, macadamia nuts-in-shell were sampled at five points of an on-farm postharvest handling chain from dehusking to the final storage silo to assess quality loss prior to consignment. Shoulder damage, weight of pieces and unsound kernel were assessed for raw kernels, and colour, mottled colour and surface damage for roasted kernels. Shoulder damage, weight of pieces and unsound kernel for raw kernels increased significantly between the dehusker and the final silo. Roasted kernels displayed a significant increase in dark colour, mottled colour and surface damage during on-farm handling. Significant loss of macadamia kernel quality occurred on a commercial farm during sorting and storage of nuts-in-shell before nuts were consigned to a processor. Nuts-in-shell should be dried as quickly as possible and on-farm handling minimised to maintain optimum kernel quality. 2010 Society of Chemical Industry.

  11. Sunflower cake as a natural composite: composition and plastic properties.

    PubMed

    Geneau-Sbartaï, Céline; Leyris, Juliette; Silvestre, Françoise; Rigal, Luc

    2008-12-10

    Nowadays, the end-of-life of plastic products and the decrease of fossil energy are great environmental problems. Moreover, with the increase of food and nonfood transformations of renewable resources, the quantities of agro-industrial byproducts and wastes increase hugely. These facts allow the development of plastic substitutes made from agro-resources. Many researches show the feasibility of molding biopolymers extracted from plants like a common polymeric matrix. Other natural macromolecules are used like fillers into polyolefins, for example. However, limited works present results about the transformation of a natural blend of biopolymers into a plastic material. The aim of this study is the determination of the composition of sunflower cake (SFC) and also the characterization of its components. These were identified by chemical and biochemical analysis often used in agricultural or food chemistry. Most of the extraction and purification processes modify the macrostructure of several biopolymers (e.g., denaturation of proteins, cleavage or creation of weak bonds, etc.). So, the composition of different parts of the sunflower seed (husk, kernel, and also protein isolate) was determined, and the plasticlike properties of their components were studied with thermogravimetric analysis, differential scanning calorimetry, and a dynamic mechanical thermal analysis apparatus. Finally, this indirect way of characterization showed that SFC can be considered a natural composite. In SFC, several components like lignocellulosic fibers [40%/dry matter (DM)], which essentially come from the husk of sunflower seed, can act as fillers. However, other biopolymers like globulins ( approximately 30% of the 30% of sunflower seed proteins/DM of SFC) can be shaped as a thermoplastic-like material because this kind of protein has a temperature of glass transition and a temperature of denaturation that seems to be similar to a melting temperature. These proteins have also viscoelastic properties. Moreover, SFC has similar rheological properties and other physicochemical properties compatible with shaping or molding behaviors of plastic-processing machinery.

  12. An Experimental Study of Briquetting Process of Torrefied Rubber Seed Kernel and Palm Oil Shell.

    PubMed

    Hamid, M Fadzli; Idroas, M Yusof; Ishak, M Zulfikar; Zainal Alauddin, Z Alimuddin; Miskam, M Azman; Abdullah, M Khalil

    2016-01-01

    Torrefaction process of biomass material is essential in converting them into biofuel with improved calorific value and physical strength. However, the production of torrefied biomass is loose, powdery, and nonuniform. One method of upgrading this material to improve their handling and combustion properties is by densification into briquettes of higher density than the original bulk density of the material. The effects of critical parameters of briquetting process that includes the type of biomass material used for torrefaction and briquetting, densification temperature, and composition of binder for torrefied biomass are studied and characterized. Starch is used as a binder in the study. The results showed that the briquette of torrefied rubber seed kernel (RSK) is better than torrefied palm oil shell (POS) in both calorific value and compressive strength. The best quality of briquettes is yielded from torrefied RSK at the ambient temperature of briquetting process with the composition of 60% water and 5% binder. The maximum compressive load for the briquettes of torrefied RSK is 141 N and the calorific value is 16 MJ/kg. Based on the economic evaluation analysis, the return of investment (ROI) for the mass production of both RSK and POS briquettes is estimated in 2-year period and the annual profit after payback was approximately 107,428.6 USD.

  13. Physical modification of palm kernel meal improved available carbohydrate, physicochemical properties and in vitro digestibility in economic freshwater fish.

    PubMed

    Thongprajukaew, Karun; Yawang, Pinya; Dudae, Lateepah; Bilanglod, Husna; Dumrongrittamatt, Terdtoon; Tantikitti, Chutima; Kovitvadhi, Uthaiwan

    2013-12-01

    Unavailable carbohydrates are an important limiting factor for utilization of palm kernel meal (PKM) as aquafeed ingredients. The aim of this study was to improve available carbohydrate from PKM. Different physical modifications including water soaking, microwave irradiation, gamma irradiation and electron beam, were investigated in relation to chemical composition, physicochemical properties and in vitro carbohydrate digestibility using digestive enzymes from economic freshwater fish. Modified methods had significant (P < 0.05) effects on chemical composition by decreasing crude fiber and increasing available carbohydrates. Improvements in physicochemical properties of PKM, such as water solubility, microstructure, relative crystallinity and lignocellulosic spectra, were mainly achieved by soaking and microwave irradiation. Carbohydrate digestibility varied among the physical modifications tested (P < 0.05) and three fish species had different abilities to digest PKM. Soaking was the appropriate modification for increasing carbohydrate digestion specifically in Nile tilapia (Oreochromis niloticus), whereas either soaking or microwave irradiation was effective for striped snakehead (Channa striata). For walking catfish (Clarias batrachus), carbohydrate digestibility was similar among raw, soaked and microwave-irradiated PKM. These findings suggest that soaking and microwave irradiation could be practical methods for altering appropriate physicochemical properties of PKM as well as increasing carbohydrate digestibility in select economic freshwater fish. © 2013 Society of Chemical Industry.

  14. A new discriminative kernel from probabilistic models.

    PubMed

    Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert

    2002-10-01

    Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.

  15. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    PubMed

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  16. Hybrid approach of selecting hyperparameters of support vector machine for regression.

    PubMed

    Jeng, Jin-Tsong

    2006-06-01

    To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify the usefulness of the hybrid approach.

  17. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    NASA Technical Reports Server (NTRS)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  18. On the solution of integral equations with a generalized cauchy kernel

    NASA Technical Reports Server (NTRS)

    Kaya, A. C.; Erdogan, F.

    1986-01-01

    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique.

  19. Visualization of Oil Body Distribution in Jatropha curcas L. by Four-Wave Mixing Microscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Makiko; Uchiyama, Susumu; Ozeki, Yasuyuki; Kajiyama, Sin'ichiro; Itoh, Kazuyoshi; Fukui, Kiichi

    2013-06-01

    Jatropha curcas L. (jatropha) is a superior oil crop for biofuel production. To improve the oil yield of jatropha by breeding, the development of effective and reliable tools to evaluate the oil production efficiency is essential. The characteristics of the jatropha kernel, which contains a large amount of oil, are not fully understood yet. Here, we demonstrate the application of four-wave mixing (FWM) microscopy to visualize the distribution of oil bodies in a jatropha kernel without staining. FWM microscopy enables us to visualize the size and morphology of oil bodies and to determine the oil content in the kernel to be 33.2%. The signal obtained from FWM microscopy comprises both of stimulated parametric emission (SPE) and coherent anti-Stokes Raman scattering (CARS) signals. In the present situation, where a very short pump pulse is employed, the SPE signal is believed to dominate the FWM signal.

  20. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale

    PubMed Central

    Diao, Yuzhu; Hu, Aqin

    2018-01-01

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699

  1. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.

    PubMed

    Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin

    2018-03-02

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.

  2. General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.

    PubMed

    Marmarelis, V Z; Berger, T W

    2005-07-01

    This paper presents a general methodological framework for the practical modeling of neural systems with point-process inputs (sequences of action potentials or, more broadly, identical events) based on the Volterra and Wiener theories of functional expansions and system identification. The paper clarifies the distinctions between Volterra and Wiener kernels obtained from Poisson point-process inputs. It shows that only the Wiener kernels can be estimated via cross-correlation, but must be defined as zero along the diagonals. The Volterra kernels can be estimated far more accurately (and from shorter data-records) by use of the Laguerre expansion technique adapted to point-process inputs, and they are independent of the mean rate of stimulation (unlike their P-W counterparts that depend on it). The Volterra kernels can also be estimated for broadband point-process inputs that are not Poisson. Useful applications of this modeling approach include cases where we seek to determine (model) the transfer characteristics between one neuronal axon (a point-process 'input') and another axon (a point-process 'output') or some other measure of neuronal activity (a continuous 'output', such as population activity) with which a causal link exists.

  3. Fission Product Release and Survivability of UN-Kernel LWR TRISO Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M; Ferber, Mattison K; Lin, Hua-Tay

    2014-01-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from range calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 m diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated with a TRISO particle as a function of fluence. Creep and swelling of the innermore » and outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by measuring the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers as a function of fluence. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  4. Fission product release and survivability of UN-kernel LWR TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. M. Besmann; M. K. Ferber; H.-T. Lin

    2014-05-01

    A thermomechanical assessment of the LWR application of TRISO fuel with UN kernels was performed. Fission product release under operational and transient temperature conditions was determined by extrapolation from fission product recoil calculations and limited data from irradiated UN pellets. Both fission recoil and diffusive release were considered and internal particle pressures computed for both 650 and 800 um diameter kernels as a function of buffer layer thickness. These pressures were used in conjunction with a finite element program to compute the radial and tangential stresses generated within a TRISO particle undergoing burnup. Creep and swelling of the inner andmore » outer pyrolytic carbon layers were included in the analyses. A measure of reliability of the TRISO particle was obtained by computing the probability of survival of the SiC barrier layer and the maximum tensile stress generated in the pyrolytic carbon layers from internal pressure and thermomechanics of the layers. These reliability estimates were obtained as functions of the kernel diameter, buffer layer thickness, and pyrolytic carbon layer thickness. The value of the probability of survival at the end of irradiation was inversely proportional to the maximum pressure.« less

  5. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  6. A point kernel algorithm for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Debus, Charlotte; Oelfke, Uwe; Bartzsch, Stefan

    2017-11-01

    Microbeam radiation therapy (MRT) is a treatment approach in radiation therapy where the treatment field is spatially fractionated into arrays of a few tens of micrometre wide planar beams of unusually high peak doses separated by low dose regions of several hundred micrometre width. In preclinical studies, this treatment approach has proven to spare normal tissue more effectively than conventional radiation therapy, while being equally efficient in tumour control. So far dose calculations in MRT, a prerequisite for future clinical applications are based on Monte Carlo simulations. However, they are computationally expensive, since scoring volumes have to be small. In this article a kernel based dose calculation algorithm is presented that splits the calculation into photon and electron mediated energy transport, and performs the calculation of peak and valley doses in typical MRT treatment fields within a few minutes. Kernels are analytically calculated depending on the energy spectrum and material composition. In various homogeneous materials peak, valley doses and microbeam profiles are calculated and compared to Monte Carlo simulations. For a microbeam exposure of an anthropomorphic head phantom calculated dose values are compared to measurements and Monte Carlo calculations. Except for regions close to material interfaces calculated peak dose values match Monte Carlo results within 4% and valley dose values within 8% deviation. No significant differences are observed between profiles calculated by the kernel algorithm and Monte Carlo simulations. Measurements in the head phantom agree within 4% in the peak and within 10% in the valley region. The presented algorithm is attached to the treatment planning platform VIRTUOS. It was and is used for dose calculations in preclinical and pet-clinical trials at the biomedical beamline ID17 of the European synchrotron radiation facility in Grenoble, France.

  7. Independent genetic control of maize (Zea mays L.) kernel weight determination and its phenotypic plasticity.

    PubMed

    Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas

    2014-08-01

    Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Nonlinear Deep Kernel Learning for Image Annotation.

    PubMed

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  9. Multineuron spike train analysis with R-convolution linear combination kernel.

    PubMed

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Predicting complex traits using a diffusion kernel on genetic markers with an application to dairy cattle and wheat data

    PubMed Central

    2013-01-01

    Background Arguably, genotypes and phenotypes may be linked in functional forms that are not well addressed by the linear additive models that are standard in quantitative genetics. Therefore, developing statistical learning models for predicting phenotypic values from all available molecular information that are capable of capturing complex genetic network architectures is of great importance. Bayesian kernel ridge regression is a non-parametric prediction model proposed for this purpose. Its essence is to create a spatial distance-based relationship matrix called a kernel. Although the set of all single nucleotide polymorphism genotype configurations on which a model is built is finite, past research has mainly used a Gaussian kernel. Results We sought to investigate the performance of a diffusion kernel, which was specifically developed to model discrete marker inputs, using Holstein cattle and wheat data. This kernel can be viewed as a discretization of the Gaussian kernel. The predictive ability of the diffusion kernel was similar to that of non-spatial distance-based additive genomic relationship kernels in the Holstein data, but outperformed the latter in the wheat data. However, the difference in performance between the diffusion and Gaussian kernels was negligible. Conclusions It is concluded that the ability of a diffusion kernel to capture the total genetic variance is not better than that of a Gaussian kernel, at least for these data. Although the diffusion kernel as a choice of basis function may have potential for use in whole-genome prediction, our results imply that embedding genetic markers into a non-Euclidean metric space has very small impact on prediction. Our results suggest that use of the black box Gaussian kernel is justified, given its connection to the diffusion kernel and its similar predictive performance. PMID:23763755

  11. 7 CFR 981.9 - Kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Kernel weight. 981.9 Section 981.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Regulating Handling Definitions § 981.9 Kernel weight. Kernel weight means the weight of kernels, including...

  12. An SVM model with hybrid kernels for hydrological time series

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, H.; Zhao, X.; Xie, Q.

    2017-12-01

    Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.

  13. Approximate kernel competitive learning.

    PubMed

    Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang

    2015-03-01

    Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Multiple kernels learning-based biological entity relationship extraction method.

    PubMed

    Dongliang, Xu; Jingchang, Pan; Bailing, Wang

    2017-09-20

    Automatic extracting protein entity interaction information from biomedical literature can help to build protein relation network and design new drugs. There are more than 20 million literature abstracts included in MEDLINE, which is the most authoritative textual database in the field of biomedicine, and follow an exponential growth over time. This frantic expansion of the biomedical literature can often be difficult to absorb or manually analyze. Thus efficient and automated search engines are necessary to efficiently explore the biomedical literature using text mining techniques. The P, R, and F value of tag graph method in Aimed corpus are 50.82, 69.76, and 58.61%, respectively. The P, R, and F value of tag graph kernel method in other four evaluation corpuses are 2-5% higher than that of all-paths graph kernel. And The P, R and F value of feature kernel and tag graph kernel fuse methods is 53.43, 71.62 and 61.30%, respectively. The P, R and F value of feature kernel and tag graph kernel fuse methods is 55.47, 70.29 and 60.37%, respectively. It indicated that the performance of the two kinds of kernel fusion methods is better than that of simple kernel. In comparison with the all-paths graph kernel method, the tag graph kernel method is superior in terms of overall performance. Experiments show that the performance of the multi-kernels method is better than that of the three separate single-kernel method and the dual-mutually fused kernel method used hereof in five corpus sets.

  15. 7 CFR 51.2295 - Half kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half kernel. 51.2295 Section 51.2295 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2295 Half kernel. Half kernel means the separated half of a kernel with not more than one-eighth broken off. ...

  16. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... weight per bushel (pounds) Sound barley (percent) Maximum Limits of— Damaged kernels 1 (percent) Heat damaged kernels (percent) Foreign material (percent) Broken kernels (percent) Thin barley (percent) U.S... or otherwise of distinctly low quality. 1 Includes heat-damaged kernels. Injured-by-frost kernels and...

  17. Executing application function calls in response to an interrupt

    DOEpatents

    Almasi, Gheorghe; Archer, Charles J.; Giampapa, Mark E.; Gooding, Thomas M.; Heidelberger, Philip; Parker, Jeffrey J.

    2010-05-11

    Executing application function calls in response to an interrupt including creating a thread; receiving an interrupt having an interrupt type; determining whether a value of a semaphore represents that interrupts are disabled; if the value of the semaphore represents that interrupts are not disabled: calling, by the thread, one or more preconfigured functions in dependence upon the interrupt type of the interrupt; yielding the thread; and if the value of the semaphore represents that interrupts are disabled: setting the value of the semaphore to represent to a kernel that interrupts are hard-disabled; and hard-disabling interrupts at the kernel.

  18. Efficient 3D movement-based kernel density estimator and application to wildlife ecology

    USGS Publications Warehouse

    Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.

    2014-01-01

    We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.

  19. Data-driven parameterization of the generalized Langevin equation

    DOE PAGES

    Lei, Huan; Baker, Nathan A.; Li, Xiantao

    2016-11-29

    We present a data-driven approach to determine the memory kernel and random noise of the generalized Langevin equation. To facilitate practical implementations, we parameterize the kernel function in the Laplace domain by a rational function, with coefficients directly linked to the equilibrium statistics of the coarse-grain variables. Further, we show that such an approximation can be constructed to arbitrarily high order. Within these approximations, the generalized Langevin dynamics can be embedded in an extended stochastic model without memory. We demonstrate how to introduce the stochastic noise so that the fluctuation-dissipation theorem is exactly satisfied.

  20. Sensitivity kernels for viscoelastic loading based on adjoint methods

    NASA Astrophysics Data System (ADS)

    Al-Attar, David; Tromp, Jeroen

    2014-01-01

    Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity kernel' Kη determines the linearized sensitivity of J to viscosity perturbations defined with respect to a laterally heterogeneous reference earth model, while the `rate-of-loading kernel' K_{dot{σ }} determines the sensitivity to variations in the time derivative of the surface load. By restricting attention to spherically symmetric viscosity perturbations, we also obtain a `radial viscosity kernel' overline{K}_{η } such that the associated contribution to δJ can be written int _{IS}overline{K}_{η }δ ln η dr, where IS denotes the subset of radii lying in solid regions. In order to illustrate this theory, we describe its numerical implementation in the case of a spherically symmetric earth model using a 1-D spectral element method, and calculate sensitivity kernels for a range of realistic observables.

  1. 7 CFR 51.1449 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...

  2. 7 CFR 51.1449 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Kernel which is “dark amber” or darker color; (e) Kernel having more than one dark kernel spot, or one dark kernel spot more than one-eighth inch in greatest dimension; (f) Shriveling when the surface of the kernel is very conspicuously wrinkled; (g) Internal flesh discoloration of a medium shade of gray...

  3. 7 CFR 51.2125 - Split or broken kernels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...

  4. 7 CFR 51.2296 - Three-fourths half kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Three-fourths half kernel. 51.2296 Section 51.2296 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards...-fourths half kernel. Three-fourths half kernel means a portion of a half of a kernel which has more than...

  5. The Classification of Diabetes Mellitus Using Kernel k-means

    NASA Astrophysics Data System (ADS)

    Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.

    2018-01-01

    Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.

  6. UNICOS Kernel Internals Application Development

    NASA Technical Reports Server (NTRS)

    Caredo, Nicholas; Craw, James M. (Technical Monitor)

    1995-01-01

    Having an understanding of UNICOS Kernel Internals is valuable information. However, having the knowledge is only half the value. The second half comes with knowing how to use this information and apply it to the development of tools. The kernel contains vast amounts of useful information that can be utilized. This paper discusses the intricacies of developing utilities that utilize kernel information. In addition, algorithms, logic, and code will be discussed for accessing kernel information. Code segments will be provided that demonstrate how to locate and read kernel structures. Types of applications that can utilize kernel information will also be discussed.

  7. Detection of maize kernels breakage rate based on K-means clustering

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping

    2017-04-01

    In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.

  8. Modeling adaptive kernels from probabilistic phylogenetic trees.

    PubMed

    Nicotra, Luca; Micheli, Alessio

    2009-01-01

    Modeling phylogenetic interactions is an open issue in many computational biology problems. In the context of gene function prediction we introduce a class of kernels for structured data leveraging on a hierarchical probabilistic modeling of phylogeny among species. We derive three kernels belonging to this setting: a sufficient statistics kernel, a Fisher kernel, and a probability product kernel. The new kernels are used in the context of support vector machine learning. The kernels adaptivity is obtained through the estimation of the parameters of a tree structured model of evolution using as observed data phylogenetic profiles encoding the presence or absence of specific genes in a set of fully sequenced genomes. We report results obtained in the prediction of the functional class of the proteins of the budding yeast Saccharomyces cerevisae which favorably compare to a standard vector based kernel and to a non-adaptive tree kernel function. A further comparative analysis is performed in order to assess the impact of the different components of the proposed approach. We show that the key features of the proposed kernels are the adaptivity to the input domain and the ability to deal with structured data interpreted through a graphical model representation.

  9. Aflatoxin and nutrient contents of peanut collected from local market and their processed foods

    NASA Astrophysics Data System (ADS)

    Ginting, E.; Rahmianna, A. A.; Yusnawan, E.

    2018-01-01

    Peanut is succeptable to aflatoxin contamination and the sources of peanut as well as processing methods considerably affect aflatoxin content of the products. Therefore, the study on aflatoxin and nutrient contents of peanut collected from local market and their processed foods were performed. Good kernels of peanut were prepared into fried peanut, pressed-fried peanut, peanut sauce, peanut press cake, fermented peanut press cake (tempe) and fried tempe, while blended kernels (good and poor kernels) were processed into peanut sauce and tempe and poor kernels were only processed into tempe. The results showed that good and blended kernels which had high number of sound/intact kernels (82,46% and 62,09%), contained 9.8-9.9 ppb of aflatoxin B1, while slightly higher level was seen in poor kernels (12.1 ppb). However, the moisture, ash, protein, and fat contents of the kernels were similar as well as the products. Peanut tempe and fried tempe showed the highest increase in protein content, while decreased fat contents were seen in all products. The increase in aflatoxin B1 of peanut tempe prepared from poor kernels > blended kernels > good kernels. However, it averagely decreased by 61.2% after deep-fried. Excluding peanut tempe and fried tempe, aflatoxin B1 levels in all products derived from good kernels were below the permitted level (15 ppb). This suggests that sorting peanut kernels as ingredients and followed by heat processing would decrease the aflatoxin content in the products.

  10. Partial Deconvolution with Inaccurate Blur Kernel.

    PubMed

    Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei

    2017-10-17

    Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.

  11. Identification of subsurface structures using electromagnetic data and shape priors

    NASA Astrophysics Data System (ADS)

    Tveit, Svenn; Bakr, Shaaban A.; Lien, Martha; Mannseth, Trond

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  12. Documentation of the appearance of a caviar-type deposit in Oven 1 following a large scale experiment for heating oil with Upper Silesian coal (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rank

    1942-03-26

    When the oven was disassembled after the test, small kernels of porous material were found in both the upper and lower portion of the oven to a depth of about 2 m. The kernels were of various sizes up to 4 mm. From 1,300 metric ..cap alpha..ons of dry coal, there were 330 kg or the residue of 0.025% of the coal input. These kernels brought to mind deposits of spheroidal material termed ''caviar'', since they had rounded tops. However, they were irregularly long. After multiaxis micrography, no growth rings were found as in Leuna's lignite caviar. So, it wasmore » a question of small particles consisting almost totally of ash. The majority of the composition was Al, Fe, Na, silicic acid, S and Cl. The sulfur was found to be in sulfide form and Cl in a volatile form. The remains did not turn to caviar form since the CaO content was slight. The Al, Fe, Na, silicic acid, S and Cl were concentrated in comparison to coal ash and originate apparently from the catalysts (FeSO/sub 4/, Bayermasse, and Na/sub 2/S). It was notable that the Cl content was so high. 2 graphs, 1 table« less

  13. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  14. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  15. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  16. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  17. 7 CFR 981.401 - Adjusted kernel weight.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on the analysis of a 1,000 gram sample taken from a lot of almonds weighing 10,000 pounds with less than 95 percent kernels, and a 1,000 gram sample taken from a lot of almonds weighing 10,000... percent kernels containing the following: Edible kernels, 530 grams; inedible kernels, 120 grams; foreign...

  18. 7 CFR 51.1441 - Half-kernel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Half-kernel. 51.1441 Section 51.1441 Agriculture... Standards for Grades of Shelled Pecans Definitions § 51.1441 Half-kernel. Half-kernel means one of the separated halves of an entire pecan kernel with not more than one-eighth of its original volume missing...

  19. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Kernel color classification. 51.1403 Section 51.1403... STANDARDS) United States Standards for Grades of Pecans in the Shell 1 Kernel Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...

  20. 7 CFR 51.1450 - Serious damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...

  1. 7 CFR 51.1450 - Serious damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...

  2. 7 CFR 51.1450 - Serious damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...; (c) Decay affecting any portion of the kernel; (d) Insects, web, or frass or any distinct evidence of insect feeding on the kernel; (e) Internal discoloration which is dark gray, dark brown, or black and...) Dark kernel spots when more than three are on the kernel, or when any dark kernel spot or the aggregate...

  3. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  4. A trace ratio maximization approach to multiple kernel-based dimensionality reduction.

    PubMed

    Jiang, Wenhao; Chung, Fu-lai

    2014-01-01

    Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it might be ill-posed under some conditions and consequently its applications are hindered. This paper proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension and a corresponding kernel from the given base kernels among which some may not be suitable for the given data. The solutions for the proposed framework can be found based on trace ratio maximization. The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image and sound datasets, for supervised, unsupervised as well as semi-supervised settings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hadamard Kernel SVM with applications for breast cancer outcome predictions.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong

    2017-12-21

    Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

  6. LZW-Kernel: fast kernel utilizing variable length code blocks from LZW compressors for protein sequence classification.

    PubMed

    Filatov, Gleb; Bauwens, Bruno; Kertész-Farkas, Attila

    2018-05-07

    Bioinformatics studies often rely on similarity measures between sequence pairs, which often pose a bottleneck in large-scale sequence analysis. Here, we present a new convolutional kernel function for protein sequences called the LZW-Kernel. It is based on code words identified with the Lempel-Ziv-Welch (LZW) universal text compressor. The LZW-Kernel is an alignment-free method, it is always symmetric, is positive, always provides 1.0 for self-similarity and it can directly be used with Support Vector Machines (SVMs) in classification problems, contrary to normalized compression distance (NCD), which often violates the distance metric properties in practice and requires further techniques to be used with SVMs. The LZW-Kernel is a one-pass algorithm, which makes it particularly plausible for big data applications. Our experimental studies on remote protein homology detection and protein classification tasks reveal that the LZW-Kernel closely approaches the performance of the Local Alignment Kernel (LAK) and the SVM-pairwise method combined with Smith-Waterman (SW) scoring at a fraction of the time. Moreover, the LZW-Kernel outperforms the SVM-pairwise method when combined with BLAST scores, which indicates that the LZW code words might be a better basis for similarity measures than local alignment approximations found with BLAST. In addition, the LZW-Kernel outperforms n-gram based mismatch kernels, hidden Markov model based SAM and Fisher kernel, and protein family based PSI-BLAST, among others. Further advantages include the LZW-Kernel's reliance on a simple idea, its ease of implementation, and its high speed, three times faster than BLAST and several magnitudes faster than SW or LAK in our tests. LZW-Kernel is implemented as a standalone C code and is a free open-source program distributed under GPLv3 license and can be downloaded from https://github.com/kfattila/LZW-Kernel. akerteszfarkas@hse.ru. Supplementary data are available at Bioinformatics Online.

  7. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1

    PubMed Central

    Amanda, Dhika; Ingram, Gwyneth C.

    2016-01-01

    The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823

  9. Investigating the Impact of Aerosol Deposition on Snow Melt over the Greenland Ice Sheet Using a New Kernel

    NASA Astrophysics Data System (ADS)

    Li, Y.; Flanner, M.

    2017-12-01

    Accelerating surface melt on the Greenland Ice Sheet (GrIS) has led to a doubling of Greenland's contribution to global sea level rise during recent decades. The darkening effect due to black carbon (BC), dust, and other light absorbing impurities (LAI) enhances snow melt by boosting its absorption of solar energy. It is therefore important for coupled aerosol-climate and ice sheet models to include snow darkening effects from LAI, and yet most do not. In this study, we develop an aerosol deposition—snow melt kernel based on the Community Earth System Model (CESM) to investigate changes in melt flux due to variations in the amount and timing of aerosol deposition on the GrIS. The Community Land Model (CLM) component of CESM is driven with a large range of aerosol deposition fluxes to determine non-linear relationships between melt perturbation and deposition amount occurring in different months and location (thereby capturing variations in base state associated with elevation and latitude). The kernel product will include climatological-mean effects and standard deviations associated with interannual variability. Finally, the kernel will allow aerosol deposition fluxes from any global or regional aerosol model to be translated into surface melt perturbations of the GrIS, thus extending the utility of state-of-the-art aerosol models.

  10. Effects of muffin processing on fumonisins from 14C-labeled toxins produced in cultured corn kernels.

    PubMed

    Avantaggiato, Giuseppina; De La Campa, Regina; Miller, J David; Visconti, Angelo

    2003-10-01

    The persistence of fumonisins during cooking is known to be affected by several factors, including thermal degradation and the presence of various ingredients in corn-based food recipes that can react with the toxin. A method for the production of corn kernels containing 14C-fumonisins was developed. The corn kernels were colonized by Fusarium verticillioides MRC 826 and supplemented with 1,2-14C-sodium acetate. The specific activity of 14C-FB1 produced made the study of its fate in cornmeal muffins possible. The double-extraction acetonitrile-water-methanol/immunoaffinity column/o-phthaldialdehyde high-performance liquid chromatography (HPLC) method was used to determine FB1 levels in cornmeal muffins. Reductions in FB1 levels in muffins spiked with 14C-labeled and unlabeled FB1 (43 and 48%, respectively) were similar, indicating that the extraction method was efficient and consistent with previous reports. However, with the labeled corn kernel material, recovery levels based on the 14C counts for the eluate from an immunoaffinity column were much higher (90%). This finding indicates that some fumonisin-related compounds other than FB1 that were present in the cornmeal were recognized by the antibodies but not by the HPLC method.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along withmore » stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less

  12. Combining Lactic Acid Spray with Near-Infrared Radiation Heating To Inactivate Salmonella enterica Serovar Enteritidis on Almond and Pine Nut Kernels

    PubMed Central

    Ha, Jae-Won

    2015-01-01

    The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. PMID:25911473

  13. Influence of Temperature and Humidity on the Stability of Carotenoids in Biofortified Maize (Zea mays L.) Genotypes during Controlled Postharvest Storage.

    PubMed

    Ortiz, Darwin; Rocheford, Torbert; Ferruzzi, Mario G

    2016-04-06

    Maize is a staple crop that has been the subject of biofortification efforts to increase the natural content of provitamin A carotenoids. Although significant progress toward increasing provitamin A carotenoid content in maize varieties has been made, postharvest handling factors that influence carotenoid stability during storage have not been fully established. The objectives of this study were to determine carotenoid profiles of six selected provitamin A biofortified maize genotypes at various developmental stages and assess the stability of carotenoids in maize kernels during controlled storage conditions (12 month period), including elevated temperature and relative humidity. There were no significant changes in the content of individual carotenoids within genotypes during kernel development from 45 days after pollination through the time of harvest. Carotenoid losses through traditional grain drying were also minimal (<9%). However, the stability of carotenoids in maize kernels over storage time after harvest was found to be dependent on both temperature and humidity, with variation observed among genotypes. Different forms of provitamin A carotenoids follow similar degradation rates. The genotype C17xDE3 had a degradation rate 2 times faster than those of the other genotypes evaluated (P < 0.001). These differences in carotenoid stability under controlled storage were attributed, in part, to observed differences in the physical properties of the kernels (surface area and porosity). These results support the notion that effective control of moisture content and temperature of the kernels during storage conditions is essential to reduce the speed of degradative reactions.

  14. Performance of fly ash based geopolymer incorporating palm kernel shell for lightweight concrete

    NASA Astrophysics Data System (ADS)

    Razak, Rafiza Abd; Abdullah, Mohd Mustafa Al Bakri; Yahya, Zarina; Jian, Ang Zhi; Nasri, Armia

    2017-09-01

    A concrete which cement is totally replaced by source material such as fly ash and activated by highly alkaline solutions is known as geopolymer concrete. Fly ash is the most common source material for geopolymer because it is a by-product material, so it can get easily from all around the world. An investigation has been carried out to select the most suitable ingredients of geopolymer concrete so that the geopolymer concrete can achieve the desire compressive strength. The samples were prepared to determine the suitable percentage of palm kernel shell used in geopolymer concrete and cured for 7 days in oven. After that, other samples were prepared by using the suitable percentage of palm kernel shell and cured for 3, 14, 21 and 28 days in oven. The control sample consisting of ordinary Portland cement and palm kernel shell and cured for 28 days were prepared too. The NaOH concentration of 12M, ratio Na2SiO3 to NaOH of 2.5, ratio fly ash to alkaline activator solution of 2.0 and ratio water to geopolymer of 0.35 were fixed throughout the research. The density obtained for the samples were 1.78 kg/m3, water absorption of 20.41% and the compressive strength of 14.20 MPa. The compressive strength of geopolymer concrete is still acceptable as lightweight concrete although the compressive strength is lower than OPC concrete. Therefore, the proposed method by using fly ash mixed with 10% of palm kernel shell can be used to design geopolymer concrete.

  15. 7 CFR 810.202 - Definition of other terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...

  16. 7 CFR 810.202 - Definition of other terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...

  17. 7 CFR 810.202 - Definition of other terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley kernels, other grains, and wild oats that are badly shrunken and distinctly discolored black or... kernels. Kernels and pieces of barley kernels that are distinctly indented, immature or shrunken in...

  18. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  19. Aflatoxin variability in pistachios.

    PubMed Central

    Mahoney, N E; Rodriguez, S B

    1996-01-01

    Pistachio fruit components, including hulls (mesocarps and epicarps), seed coats (testas), and kernels (seeds), all contribute to variable aflatoxin content in pistachios. Fresh pistachio kernels were individually inoculated with Aspergillus flavus and incubated 7 or 10 days. Hulled, shelled kernels were either left intact or wounded prior to inoculation. Wounded kernels, with or without the seed coat, were readily colonized by A. flavus and after 10 days of incubation contained 37 times more aflatoxin than similarly treated unwounded kernels. The aflatoxin levels in the individual wounded pistachios were highly variable. Neither fungal colonization nor aflatoxin was detected in intact kernels without seed coats. Intact kernels with seed coats had limited fungal colonization and low aflatoxin concentrations compared with their wounded counterparts. Despite substantial fungal colonization of wounded hulls, aflatoxin was not detected in hulls. Aflatoxin levels were significantly lower in wounded kernels with hulls than in kernels of hulled pistachios. Both the seed coat and a water-soluble extract of hulls suppressed aflatoxin production by A. flavus. PMID:8919781

  20. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  1. Investigation of various energy deposition kernel refinements for the convolution/superposition method

    PubMed Central

    Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.

    2013-01-01

    Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507

  2. Characteristics of uranium carbonitride microparticles synthesized using different reaction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka M; Lindemer, Terrence; Voit, Stewart L

    2014-11-01

    Three sets of different experimental conditions by changing the cover gases during the sample preparation were tested to synthesize uranium carbonitride (UC1-xNx) microparticles. In the first two sets of experiments using (N2 to N2-4%H2 to Ar) and (Ar to N2 to Ar) environments, single phase UC1-xNx was synthesized. When reducing environments (Ar-4%H2 to N2-4%H2 to Ar-4%H2) were utilized, theoretical densities up to 97% of single phase UC1-xNx kernels were obtained. Physical and chemical characteristics such as density, phase purity, and chemical compositions of the synthesized UC1-xNx materials for the diferent experimental conditions used are provided. In-depth analysis of the microstruturesmore » of UC1-xNx has been carried out and is discussed with the objective of large batch fabrication of high density UC1-xNx kernels.« less

  3. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs.

    PubMed

    Stein, Hans Henrik; Casas, Gloria Amparo; Abelilla, Jerubella Jerusalem; Liu, Yanhong; Sulabo, Rommel Casilda

    2015-01-01

    High fiber co-products from the copra and palm kernel industries are by-products of the production of coconut oil and palm kernel oil. The co-products include copra meal, copra expellers, palm kernel meal, and palm kernel expellers. All 4 ingredients are very high in fiber and the energy value is relatively low when fed to pigs. The protein concentration is between 14 and 22 % and the protein has a low biological value and a very high Arg:Lys ratio. Digestibility of most amino acids is less than in soybean meal but close to that in corn. However, the digestibility of Lys is sometimes low due to Maillard reactions that are initiated due to overheating during drying. Copra and palm kernel ingredients contain 0.5 to 0.6 % P. Most of the P in palm kernel meal and palm kernel expellers is bound to phytate, but in copra products less than one third of the P is bound to phytate. The digestibility of P is, therefore, greater in copra meal and copra expellers than in palm kernel ingredients. Inclusion of copra meal should be less than 15 % in diets fed to weanling pigs and less than 25 % in diets for growing-finishing pigs. Palm kernel meal may be included by 15 % in diets for weanling pigs and 25 % in diets for growing and finishing pigs. Rice bran contains the pericarp and aleurone layers of brown rice that is removed before polished rice is produced. Rice bran contains approximately 25 % neutral detergent fiber and 25 to 30 % starch. Rice bran has a greater concentration of P than most other plant ingredients, but 75 to 90 % of the P is bound in phytate. Inclusion of microbial phytase in the diets is, therefore, necessary if rice bran is used. Rice bran may contain 15 to 24 % fat, but it may also have been defatted in which case the fat concentration is less than 5 %. Concentrations of digestible energy (DE) and metabolizable energy (ME) are slightly less in full fat rice bran than in corn, but defatted rice bran contains less than 75 % of the DE and ME in corn. The concentration of crude protein is 15 to 18 % in rice bran and the protein has a high biological value and most amino acids are well digested by pigs. Inclusion of rice bran in diets fed to pigs has yielded variable results and based on current research it is recommended that inclusion levels are less than 25 to 30 % in diets for growing-finishing pigs, and less than 20 % in diets for weanling pigs. However, there is a need for additional research to determine the inclusion rates that may be used for both full fat and defatted rice bran.

  4. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    PubMed

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Pearson correlation estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.

  6. Comparing Alternative Kernels for the Kernel Method of Test Equating: Gaussian, Logistic, and Uniform Kernels. Research Report. ETS RR-08-12

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; von Davier, Alina A.

    2008-01-01

    The kernel equating method (von Davier, Holland, & Thayer, 2004) is based on a flexible family of equipercentile-like equating functions that use a Gaussian kernel to continuize the discrete score distributions. While the classical equipercentile, or percentile-rank, equating method carries out the continuization step by linear interpolation,…

  7. 7 CFR 810.204 - Grades and grade requirements for Six-rowed Malting barley and Six-rowed Blue Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— Damaged kernels 1 (percent) Foreign material (percent) Other grains (percent) Skinned and broken kernels....0 10.0 15.0 1 Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered against sound barley. Notes: Malting barley shall not be infested in accordance with...

  8. 7 CFR 51.1413 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...

  9. 7 CFR 51.1413 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... well cured; (e) Poorly developed kernels; (f) Kernels which are dark amber in color; (g) Kernel spots when more than one dark spot is present on either half of the kernel, or when any such spot is more...

  10. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (percent) Maximum limits of— Wild oats (percent) Foreign material (percent) Skinned and broken kernels... Injured-by-frost kernels and injured-by-mold kernels are not considered damaged kernels or considered...

  11. Mechanical behaviour of selected bulk oilseeds under compression loading

    NASA Astrophysics Data System (ADS)

    Mizera, Č.; Herák, D.; Hrabě, P.; Aleš, Z.; Pavlů, J.

    2017-09-01

    Pressing of vegetable oils plays an important role in modern agriculture. This study was focused on the linear pressing of soybean seeds (Glycine max L.), Jatropha seeds (Jatropha curcas L.) and palm kernel (Elaeisguineensis). For pressing test the compressive device (ZDM, model 50, Germany) was used. The maximum pressing force of 100 kN with a compression speed of 1 mm s-1 was used to record the force-deformation characteristics. The pressing vessel with diameter 60 mm and initial height of seeds 80 mm were used. The specific energy per gram of oil of soybean, palm kernel and Jatropha was 158.92 ± 7.21, 128.78 ± 8.36 and 68.26 ± 5.94 J.goil-1, respectively. The oil content of soybean, palm kernel and Jatropha was 20.4 ± 1.23, 44.7 ± 2.27 and 34.2 ± 1.75 %, respectively. Water concentration, dynamic and kinematic viscosity of obtained oils was also determined.

  12. Detection of ochratoxin A contamination in stored wheat using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Senthilkumar, T.; Jayas, D. S.; White, N. D. G.; Fields, P. G.; Gräfenhan, T.

    2017-03-01

    Near-infrared (NIR) hyperspectral imaging system was used to detect five concentration levels of ochratoxin A (OTA) in contaminated wheat kernels. The wheat kernels artificially inoculated with two different OTA producing Penicillium verrucosum strains, two different non-toxigenic P. verrucosum strains, and sterile control wheat kernels were subjected to NIR hyperspectral imaging. The acquired three-dimensional data were reshaped into readable two-dimensional data. Principal Component Analysis (PCA) was applied to the two dimensional data to identify the key wavelengths which had greater significance in detecting OTA contamination in wheat. Statistical and histogram features extracted at the key wavelengths were used in the linear, quadratic and Mahalanobis statistical discriminant models to differentiate between sterile control, five concentration levels of OTA contamination in wheat kernels, and five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels. The classification models differentiated sterile control samples from OTA contaminated wheat kernels and non-OTA producing P. verrucosum inoculated wheat kernels with a 100% accuracy. The classification models also differentiated between five concentration levels of OTA contaminated wheat kernels and between five infection levels of non-OTA producing P. verrucosum inoculated wheat kernels with a correct classification of more than 98%. The non-OTA producing P. verrucosum inoculated wheat kernels and OTA contaminated wheat kernels subjected to hyperspectral imaging provided different spectral patterns.

  13. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  14. Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    PubMed Central

    Chung, Moo K.; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K.

    2014-01-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface. PMID:25791435

  15. Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach

    NASA Astrophysics Data System (ADS)

    Kotaru, Appala Raju; Joshi, Ramesh C.

    Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.

  16. Intraear Compensation of Field Corn, Zea mays, from Simulated and Naturally Occurring Injury by Ear-Feeding Larvae.

    PubMed

    Steckel, S; Stewart, S D

    2015-06-01

    Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Evidence-based Kernels: Fundamental Units of Behavioral Influence

    PubMed Central

    Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600

  18. Integrating the Gradient of the Thin Wire Kernel

    NASA Technical Reports Server (NTRS)

    Champagne, Nathan J.; Wilton, Donald R.

    2008-01-01

    A formulation for integrating the gradient of the thin wire kernel is presented. This approach employs a new expression for the gradient of the thin wire kernel derived from a recent technique for numerically evaluating the exact thin wire kernel. This approach should provide essentially arbitrary accuracy and may be used with higher-order elements and basis functions using the procedure described in [4].When the source and observation points are close, the potential integrals over wire segments involving the wire kernel are split into parts to handle the singular behavior of the integrand [1]. The singularity characteristics of the gradient of the wire kernel are different than those of the wire kernel, and the axial and radial components have different singularities. The characteristics of the gradient of the wire kernel are discussed in [2]. To evaluate the near electric and magnetic fields of a wire, the integration of the gradient of the wire kernel needs to be calculated over the source wire. Since the vector bases for current have constant direction on linear wire segments, these integrals reduce to integrals of the form

  19. Ranking Support Vector Machine with Kernel Approximation

    PubMed Central

    Dou, Yong

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256

  20. Ranking Support Vector Machine with Kernel Approximation.

    PubMed

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  1. The Numbers Game.

    ERIC Educational Resources Information Center

    Lustick, David

    1997-01-01

    Describes a simple activity that explores and reveals the principles of significant figures and scientific notation using a 500 gram bag of unpopped popcorn. Students must devise a method for determining the number of kernels in the bag. (DDR)

  2. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... broken kernels, and foreign material that will pass through a 1.98 mm (5/64 inches) triangular-hole sieve... (5/64 inches) triangular-hole sieve. [57 FR 58971, Dec. 14, 1992] Grades and Grade Requirements ...

  3. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... broken kernels, and foreign material that will pass through a 1.98 mm (5/64 inches) triangular-hole sieve... (5/64 inches) triangular-hole sieve. [57 FR 58971, Dec. 14, 1992] Grades and Grade Requirements ...

  4. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... broken kernels, and foreign material that will pass through a 1.98 mm (5/64 inches) triangular-hole sieve... (5/64 inches) triangular-hole sieve. [57 FR 58971, Dec. 14, 1992] Grades and Grade Requirements ...

  5. 7 CFR 810.1403 - Basis of determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... broken kernels, and foreign material that will pass through a 1.98 mm (5/64 inches) triangular-hole sieve... (5/64 inches) triangular-hole sieve. [57 FR 58971, Dec. 14, 1992] Grades and Grade Requirements ...

  6. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins.

    PubMed

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Banchariya, Anjali; Rao, Atmakuri Ramakrishna

    2017-03-24

    Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/ . The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.

  7. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance

    PubMed Central

    Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong

    2016-01-01

    Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351

  8. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    PubMed

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.

  9. NIR Reflectance Spectroscopic Method for Nondestructive Moisture Content Determination of In Peanut Kernels

    USDA-ARS?s Scientific Manuscript database

    Most of the commercial instruments presently available to determine the moisture content (MC) of peanuts need shelling and cleaning of the peanut samples, and in some cases some sort of sample preparation such as grinding. This is cumbersome, time consuming and destructive. It would be useful if t...

  10. Surfactin A Production and Isoform Characterizations in Strains of Bacillus mojavensis for Potential Control of Fusarium verticillioides and Fumonisin in Maize

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, a species recently distinguished as a cryptic species within Bacillus subtilis, was discovered in maize kernels and later determined to possess endophytic characteristics. The bacterium was also determined to have biocontrol potential due to its strong antagonism to the fungus...

  11. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  12. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...

  13. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...

  14. 21 CFR 182.40 - Natural extractives (solvent-free) used in conjunction with spices, seasonings, and flavorings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... source Apricot kernel (persic oil) Prunus armeniaca L. Peach kernel (persic oil) Prunus persica Sieb. et Zucc. Peanut stearine Arachis hypogaea L. Persic oil (see apricot kernel and peach kernel) Quince seed...

  15. Wigner functions defined with Laplace transform kernels.

    PubMed

    Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George

    2011-10-24

    We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America

  16. Online learning control using adaptive critic designs with sparse kernel machines.

    PubMed

    Xu, Xin; Hou, Zhongsheng; Lian, Chuanqiang; He, Haibo

    2013-05-01

    In the past decade, adaptive critic designs (ACDs), including heuristic dynamic programming (HDP), dual heuristic programming (DHP), and their action-dependent ones, have been widely studied to realize online learning control of dynamical systems. However, because neural networks with manually designed features are commonly used to deal with continuous state and action spaces, the generalization capability and learning efficiency of previous ACDs still need to be improved. In this paper, a novel framework of ACDs with sparse kernel machines is presented by integrating kernel methods into the critic of ACDs. To improve the generalization capability as well as the computational efficiency of kernel machines, a sparsification method based on the approximately linear dependence analysis is used. Using the sparse kernel machines, two kernel-based ACD algorithms, that is, kernel HDP (KHDP) and kernel DHP (KDHP), are proposed and their performance is analyzed both theoretically and empirically. Because of the representation learning and generalization capability of sparse kernel machines, KHDP and KDHP can obtain much better performance than previous HDP and DHP with manually designed neural networks. Simulation and experimental results of two nonlinear control problems, that is, a continuous-action inverted pendulum problem and a ball and plate control problem, demonstrate the effectiveness of the proposed kernel ACD methods.

  17. Design of a multiple kernel learning algorithm for LS-SVM by convex programming.

    PubMed

    Jian, Ling; Xia, Zhonghang; Liang, Xijun; Gao, Chuanhou

    2011-06-01

    As a kernel based method, the performance of least squares support vector machine (LS-SVM) depends on the selection of the kernel as well as the regularization parameter (Duan, Keerthi, & Poo, 2003). Cross-validation is efficient in selecting a single kernel and the regularization parameter; however, it suffers from heavy computational cost and is not flexible to deal with multiple kernels. In this paper, we address the issue of multiple kernel learning for LS-SVM by formulating it as semidefinite programming (SDP). Furthermore, we show that the regularization parameter can be optimized in a unified framework with the kernel, which leads to an automatic process for model selection. Extensive experimental validations are performed and analyzed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Computed tomography coronary stent imaging with iterative reconstruction: a trade-off study between medium kernel and sharp kernel.

    PubMed

    Zhou, Qijing; Jiang, Biao; Dong, Fei; Huang, Peiyu; Liu, Hongtao; Zhang, Minming

    2014-01-01

    To evaluate the improvement of iterative reconstruction in image space (IRIS) technique in computed tomographic (CT) coronary stent imaging with sharp kernel, and to make a trade-off analysis. Fifty-six patients with 105 stents were examined by 128-slice dual-source CT coronary angiography (CTCA). Images were reconstructed using standard filtered back projection (FBP) and IRIS with both medium kernel and sharp kernel applied. Image noise and the stent diameter were investigated. Image noise was measured both in background vessel and in-stent lumen as objective image evaluation. Image noise score and stent score were performed as subjective image evaluation. The CTCA images reconstructed with IRIS were associated with significant noise reduction compared to that of CTCA images reconstructed using FBP technique in both of background vessel and in-stent lumen (the background noise decreased by approximately 25.4% ± 8.2% in medium kernel (P

  19. Multiple Kernel Sparse Representation based Orthogonal Discriminative Projection and Its Cost-Sensitive Extension.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Xia, Guiyu; Sun, Quansen

    2016-07-07

    Sparse representation based classification (SRC) has been developed and shown great potential for real-world application. Based on SRC, Yang et al. [10] devised a SRC steered discriminative projection (SRC-DP) method. However, as a linear algorithm, SRC-DP cannot handle the data with highly nonlinear distribution. Kernel sparse representation-based classifier (KSRC) is a non-linear extension of SRC and can remedy the drawback of SRC. KSRC requires the use of a predetermined kernel function and selection of the kernel function and its parameters is difficult. Recently, multiple kernel learning for SRC (MKL-SRC) [22] has been proposed to learn a kernel from a set of base kernels. However, MKL-SRC only considers the within-class reconstruction residual while ignoring the between-class relationship, when learning the kernel weights. In this paper, we propose a novel multiple kernel sparse representation-based classifier (MKSRC), and then we use it as a criterion to design a multiple kernel sparse representation based orthogonal discriminative projection method (MK-SR-ODP). The proposed algorithm aims at learning a projection matrix and a corresponding kernel from the given base kernels such that in the low dimension subspace the between-class reconstruction residual is maximized and the within-class reconstruction residual is minimized. Furthermore, to achieve a minimum overall loss by performing recognition in the learned low-dimensional subspace, we introduce cost information into the dimensionality reduction method. The solutions for the proposed method can be efficiently found based on trace ratio optimization method [33]. Extensive experimental results demonstrate the superiority of the proposed algorithm when compared with the state-of-the-art methods.

  20. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    PubMed

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  1. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population.

    PubMed

    Cheng, Ruiru; Kong, Zhongxin; Zhang, Liwei; Xie, Quan; Jia, Haiyan; Yu, Dong; Huang, Yulong; Ma, Zhengqiang

    2017-07-01

    Seven kernel dimension QTLs were identified in wheat, and kernel thickness was found to be the most important dimension for grain weight improvement. Kernel morphology and weight of wheat (Triticum aestivum L.) affect both yield and quality; however, the genetic basis of these traits and their interactions has not been fully understood. In this study, to investigate the genetic factors affecting kernel morphology and the association of kernel morphology traits with kernel weight, kernel length (KL), width (KW) and thickness (KT) were evaluated, together with hundred-grain weight (HGW), in a recombinant inbred line population derived from Nanda2419 × Wangshuibai, with data from five trials (two different locations over 3 years). The results showed that HGW was more closely correlated with KT and KW than with KL. A whole genome scan revealed four QTLs for KL, one for KW and two for KT, distributed on five different chromosomes. Of them, QKl.nau-2D for KL, and QKt.nau-4B and QKt.nau-5A for KT were newly identified major QTLs for the respective traits, explaining up to 32.6 and 41.5% of the phenotypic variations, respectively. Increase of KW and KT and reduction of KL/KT and KW/KT ratios always resulted in significant higher grain weight. Lines combining the Nanda 2419 alleles of the 4B and 5A intervals had wider, thicker, rounder kernels and a 14% higher grain weight in the genotype-based analysis. A strong, negative linear relationship of the KW/KT ratio with grain weight was observed. It thus appears that kernel thickness is the most important kernel dimension factor in wheat improvement for higher yield. Mapping and marker identification of the kernel dimension-related QTLs definitely help realize the breeding goals.

  2. Adaptive kernel function using line transect sampling

    NASA Astrophysics Data System (ADS)

    Albadareen, Baker; Ismail, Noriszura

    2018-04-01

    The estimation of f(0) is crucial in the line transect method which is used for estimating population abundance in wildlife survey's. The classical kernel estimator of f(0) has a high negative bias. Our study proposes an adaptation in the kernel function which is shown to be more efficient than the usual kernel estimator. A simulation study is adopted to compare the performance of the proposed estimators with the classical kernel estimators.

  3. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  4. 7 CFR 51.2090 - Serious damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... defect which makes a kernel or piece of kernel unsuitable for human consumption, and includes decay...: Shriveling when the kernel is seriously withered, shrunken, leathery, tough or only partially developed: Provided, that partially developed kernels are not considered seriously damaged if more than one-fourth of...

  5. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels

    PubMed Central

    Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.

    2014-01-01

    A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus. PMID:24734028

  6. Co-inoculation of aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus to study fungal invasion, colonization, and competition in maize kernels.

    PubMed

    Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E

    2014-01-01

    A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.

  7. ELECTRON PROBE MICROANALYSIS OF IRRADIATED AND 1600°C SAFETY-TESTED AGR-1 TRISO FUEL PARTICLES WITH LOW AND HIGH RETAINED 110MAG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Karen E.; van Rooyen, Isabella J.

    2016-11-01

    AGR-1 fuel Compact 4-3-3 achieved 18.63% FIMA and was exposed subsequently to a safety test at 1600°C. Two particles, AGR1-433-003 and AGR1-433-007, with measured-to-calculated 110mAg inventories of <22% and 100%, respectively, were selected for comparative electron microprobe analysis to determine whether the distribution or abundance of fission products differed proximally and distally from the deformed kernel in AGR1-433-003, and how this compared to fission product distribution in AGR1-433-007. On the deformed side of AGR1-433-003, Xe, Cs, I, Eu, Sr, and Te concentrations in the kernel buffer interface near the protruded kernel were up to six times higher than on themore » opposite, non-deformed side. At the SiC-inner pyrolytic carbon (IPyC) interface proximal to the deformed kernel, Pd and Ag concentrations were 1.2 wt% and 0.04 wt% respectively, whereas on the SiC-IPyC interface distal from the kernel deformation those elements measured 0.4 and 0.01 wt%, respectively. Palladium and Ag concentrations at the SiC-IPyC interface of AGR1-433-007 were 2.05 and 0.05 wt.%, respectively. Rare earth element concentrations at the SiC-IPyC interface of AGR1-433-007 were a factor of ten higher than at the SiC-IPyC interfaces measured in particle AGR1-433-003. Palladium permeated the SiC layer of AGR1-433-007 and the non-deformed SiC layer of AGR1-433-003.« less

  8. TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawate, T.; Ishii, T. T.; Nakatani, Y.

    2016-12-10

    On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less

  9. Ideal regularization for learning kernels from labels.

    PubMed

    Pan, Binbin; Lai, Jianhuang; Shen, Lixin

    2014-08-01

    In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Straight-chain halocarbon forming fluids for TRISO fuel kernel production - Tests with yttria-stabilized zirconia microspheres

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.

    2015-03-01

    Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  11. Numerical study of the ignition behavior of a post-discharge kernel injected into a turbulent stratified cross-flow

    NASA Astrophysics Data System (ADS)

    Jaravel, Thomas; Labahn, Jeffrey; Ihme, Matthias

    2017-11-01

    The reliable initiation of flame ignition by high-energy spark kernels is critical for the operability of aviation gas turbines. The evolution of a spark kernel ejected by an igniter into a turbulent stratified environment is investigated using detailed numerical simulations with complex chemistry. At early times post ejection, comparisons of simulation results with high-speed Schlieren data show that the initial trajectory of the kernel is well reproduced, with a significant amount of air entrainment from the surrounding flow that is induced by the kernel ejection. After transiting in a non-flammable mixture, the kernel reaches a second stream of flammable methane-air mixture, where the successful of the kernel ignition was found to depend on the local flow state and operating conditions. By performing parametric studies, the probability of kernel ignition was identified, and compared with experimental observations. The ignition behavior is characterized by analyzing the local chemical structure, and its stochastic variability is also investigated.

  12. The site, size, spatial stability, and energetics of an X-ray flare kernel

    NASA Technical Reports Server (NTRS)

    Petrasso, R.; Gerassimenko, M.; Nolte, J.

    1979-01-01

    The site, size evolution, and energetics of an X-ray kernel that dominated a solar flare during its rise and somewhat during its peak are investigated. The position of the kernel remained stationary to within about 3 arc sec over the 30-min interval of observations, despite pulsations in the kernel X-ray brightness in excess of a factor of 10. This suggests a tightly bound, deeply rooted magnetic structure, more plausibly associated with the near chromosphere or low corona rather than with the high corona. The H-alpha flare onset coincided with the appearance of the kernel, again suggesting a close spatial and temporal coupling between the chromospheric H-alpha event and the X-ray kernel. At the first kernel brightness peak its size was no larger than about 2 arc sec, when it accounted for about 40% of the total flare flux. In the second rise phase of the kernel, a source power input of order 2 times 10 to the 24th ergs/sec is minimally required.

  13. [Determination of acidity and vitamin C in apples using portable NIR analyzer].

    PubMed

    Yang, Fan; Li, Ya-Ting; Gu, Xuan; Ma, Jiang; Fan, Xing; Wang, Xiao-Xuan; Zhang, Zhuo-Yong

    2011-09-01

    Near infrared (NIR) spectroscopy technology based on a portable NIR analyzer, combined with kernel Isomap algorithm and generalized regression neural network (GRNN) has been applied to establishing quantitative models for prediction of acidity and vitamin C in six kinds of apple samples. The obtained results demonstrated that the fitting and the predictive accuracy of the models with kernel Isomap algorithm were satisfactory. The correlation between actual and predicted values of calibration samples (R(c)) obtained by the acidity model was 0.999 4, and for prediction samples (R(p)) was 0.979 9. The root mean square error of prediction set (RMSEP) was 0.055 8. For the vitamin C model, R(c) was 0.989 1, R(p) was 0.927 2, and RMSEP was 4.043 1. Results proved that the portable NIR analyzer can be a feasible tool for the determination of acidity and vitamin C in apples.

  14. Determining the multi-scale hedge ratios of stock index futures using the lower partial moments method

    NASA Astrophysics Data System (ADS)

    Dai, Jun; Zhou, Haigang; Zhao, Shaoquan

    2017-01-01

    This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.

  15. The pre-image problem in kernel methods.

    PubMed

    Kwok, James Tin-yau; Tsang, Ivor Wai-hung

    2004-11-01

    In this paper, we address the problem of finding the pre-image of a feature vector in the feature space induced by a kernel. This is of central importance in some kernel applications, such as on using kernel principal component analysis (PCA) for image denoising. Unlike the traditional method which relies on nonlinear optimization, our proposed method directly finds the location of the pre-image based on distance constraints in the feature space. It is noniterative, involves only linear algebra and does not suffer from numerical instability or local minimum problems. Evaluations on performing kernel PCA and kernel clustering on the USPS data set show much improved performance.

  16. Effects of Amygdaline from Apricot Kernel on Transplanted Tumors in Mice.

    PubMed

    Yamshanov, V A; Kovan'ko, E G; Pustovalov, Yu I

    2016-03-01

    The effects of amygdaline from apricot kernel added to fodder on the growth of transplanted LYO-1 and Ehrlich carcinoma were studied in mice. Apricot kernels inhibited the growth of both tumors. Apricot kernels, raw and after thermal processing, given 2 days before transplantation produced a pronounced antitumor effect. Heat-processed apricot kernels given in 3 days after transplantation modified the tumor growth and prolonged animal lifespan. Thermal treatment did not considerably reduce the antitumor effect of apricot kernels. It was hypothesized that the antitumor effect of amygdaline on Ehrlich carcinoma and LYO-1 lymphosarcoma was associated with the presence of bacterial genome in the tumor.

  17. Development of a kernel function for clinical data.

    PubMed

    Daemen, Anneleen; De Moor, Bart

    2009-01-01

    For most diseases and examinations, clinical data such as age, gender and medical history guides clinical management, despite the rise of high-throughput technologies. To fully exploit such clinical information, appropriate modeling of relevant parameters is required. As the widely used linear kernel function has several disadvantages when applied to clinical data, we propose a new kernel function specifically developed for this data. This "clinical kernel function" more accurately represents similarities between patients. Evidently, three data sets were studied and significantly better performances were obtained with a Least Squares Support Vector Machine when based on the clinical kernel function compared to the linear kernel function.

  18. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    DOE PAGES

    Edwards, H. Carter; Sunderland, Daniel; Porter, Vicki; ...

    2012-01-01

    Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs), and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels and (3) multidimensional arrays. Kernel executionmore » performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional array API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].« less

  19. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    PubMed

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  20. Impact of deep learning on the normalization of reconstruction kernel effects in imaging biomarker quantification: a pilot study in CT emphysema

    NASA Astrophysics Data System (ADS)

    Jin, Hyeongmin; Heo, Changyong; Kim, Jong Hyo

    2018-02-01

    Differing reconstruction kernels are known to strongly affect the variability of imaging biomarkers and thus remain as a barrier in translating the computer aided quantification techniques into clinical practice. This study presents a deep learning application to CT kernel conversion which converts a CT image of sharp kernel to that of standard kernel and evaluates its impact on variability reduction of a pulmonary imaging biomarker, the emphysema index (EI). Forty cases of low-dose chest CT exams obtained with 120kVp, 40mAs, 1mm thickness, of 2 reconstruction kernels (B30f, B50f) were selected from the low dose lung cancer screening database of our institution. A Fully convolutional network was implemented with Keras deep learning library. The model consisted of symmetric layers to capture the context and fine structure characteristics of CT images from the standard and sharp reconstruction kernels. Pairs of the full-resolution CT data set were fed to input and output nodes to train the convolutional network to learn the appropriate filter kernels for converting the CT images of sharp kernel to standard kernel with a criterion of measuring the mean squared error between the input and target images. EIs (RA950 and Perc15) were measured with a software package (ImagePrism Pulmo, Seoul, South Korea) and compared for the data sets of B50f, B30f, and the converted B50f. The effect of kernel conversion was evaluated with the mean and standard deviation of pair-wise differences in EI. The population mean of RA950 was 27.65 +/- 7.28% for B50f data set, 10.82 +/- 6.71% for the B30f data set, and 8.87 +/- 6.20% for the converted B50f data set. The mean of pair-wise absolute differences in RA950 between B30f and B50f is reduced from 16.83% to 1.95% using kernel conversion. Our study demonstrates the feasibility of applying the deep learning technique for CT kernel conversion and reducing the kernel-induced variability of EI quantification. The deep learning model has a potential to improve the reliability of imaging biomarker, especially in evaluating the longitudinal changes of EI even when the patient CT scans were performed with different kernels.

  1. Metabolic network prediction through pairwise rational kernels.

    PubMed

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy values have been improved, while maintaining lower construction and execution times. The power of using kernels is that almost any sort of data can be represented using kernels. Therefore, completely disparate types of data can be combined to add power to kernel-based machine learning methods. When we compared our proposal using PRKs with other similar kernel, the execution times were decreased, with no compromise of accuracy. We also proved that by combining PRKs with other kernels that include evolutionary information, the accuracy can also also be improved. As our proposal can use any type of sequence data, genes do not need to be properly annotated, avoiding accumulation errors because of incorrect previous annotations.

  2. Differential metabolome analysis of field-grown maize kernels in response to drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...

  3. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  4. Influence of Agricultural Management on Phytochemicals of Colored Corn Genotypes ( Zea mays L.). Part 2: Sowing Time.

    PubMed

    Giordano, Debora; Beta, Trust; Gagliardi, Federica; Blandino, Massimo

    2018-05-02

    Among the agronomic practices carried out in corn cultivation, the early sowing time is increasingly used by farmers of temperate regions to improve yield and reduce mycotoxin contamination of corn grains. The present study determined the influence of sowing time on the phytochemical content of grains of 10 colored genotypes of corn. There was a significant improvement of both grain yield (+26%), thousand kernel weight (+3%), and test weight (+2%) in plots sown early. The early sowing also significantly influenced the chemical composition of corn grains, with an increase in the concentration of cell-wall-bound phenolic acids (+5%) and β-cryptoxanthin (+23%) and a decrease in the concentration of lutein (-18%) and total anthocyanins (-21%). Environmental conditions that occurred during grain development significantly influenced the phytochemical content of corn grain, and early spring sowing could impart advantages in terms of both productivity and content of some antioxidants of whole-meal corn flour.

  5. Fatty acid and phenolic profiles of almond grown in Serbia.

    PubMed

    Čolić, Slavica D; Fotirić Akšić, Milica M; Lazarević, Kristina B; Zec, Gordan N; Gašić, Uroš M; Dabić Zagorac, Dragana Č; Natić, Maja M

    2017-11-01

    Almond production is not typical for Serbia however the existence of natural populations and unexpectedly suitable agro-climatic conditions initiated this kind of study. Total oil content and concentrations of the fatty acids, total phenolic content and radical-scavenging activity were determined in the kernel oil of 20 local almond selections originating from North Serbia and cultivars 'Marcona', 'Texas' and 'Troito'. Sixteen fatty acids were identified and quantified, with the most abundant being oleic acid and linoleic acid. Nine phenolic acids and nineteen flavonoids were quantified using UHPLC-DAD MS/MS. The predominant polyphenol was catechin, followed by chlorogenic acid and naringenin. Based on oleic acid/linoleic acid ratio, levels of unsaturated fatty acids and specific polyphenols, some selections were chosen for growing and could also be recommended for breeding programs. Our investigation demonstrated that this region could be a suitable for growing almonds with chemical compositions competitive with standard cultivars. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    PubMed

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  7. Predicting spatial patterns of plant recruitment using animal-displacement kernels.

    PubMed

    Santamaría, Luis; Rodríguez-Pérez, Javier; Larrinaga, Asier R; Pias, Beatriz

    2007-10-10

    For plants dispersed by frugivores, spatial patterns of recruitment are primarily influenced by the spatial arrangement and characteristics of parent plants, the digestive characteristics, feeding behaviour and movement patterns of animal dispersers, and the structure of the habitat matrix. We used an individual-based, spatially-explicit framework to characterize seed dispersal and seedling fate in an endangered, insular plant-disperser system: the endemic shrub Daphne rodriguezii and its exclusive disperser, the endemic lizard Podarcis lilfordi. Plant recruitment kernels were chiefly determined by the disperser's patterns of space utilization (i.e. the lizard's displacement kernels), the position of the various plant individuals in relation to them, and habitat structure (vegetation cover vs. bare soil). In contrast to our expectations, seed gut-passage rate and its effects on germination, and lizard speed-of-movement, habitat choice and activity rhythm were of minor importance. Predicted plant recruitment kernels were strongly anisotropic and fine-grained, preventing their description using one-dimensional, frequency-distance curves. We found a general trade-off between recruitment probability and dispersal distance; however, optimal recruitment sites were not necessarily associated to sites of maximal adult-plant density. Conservation efforts aimed at enhancing the regeneration of endangered plant-disperser systems may gain in efficacy by manipulating the spatial distribution of dispersers (e.g. through the creation of refuges and feeding sites) to create areas favourable to plant recruitment.

  8. Scoliosis curve type classification using kernel machine from 3D trunk image

    NASA Astrophysics Data System (ADS)

    Adankon, Mathias M.; Dansereau, Jean; Parent, Stefan; Labelle, Hubert; Cheriet, Farida

    2012-03-01

    Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.

  9. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.

    2014-08-01

    The Idaho National Laboratory (INL) PARFUME (PARticle FUel ModEl) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  10. Evolution of phenotypic clusters through competition and local adaptation along an environmental gradient.

    PubMed

    Leimar, Olof; Doebeli, Michael; Dieckmann, Ulf

    2008-04-01

    We have analyzed the evolution of a quantitative trait in populations that are spatially extended along an environmental gradient, with gene flow between nearby locations. In the absence of competition, there is stabilizing selection toward a locally best-adapted trait that changes gradually along the gradient. According to traditional ideas, gradual spatial variation in environmental conditions is expected to lead to gradual variation in the evolved trait. A contrasting possibility is that the trait distribution instead breaks up into discrete clusters. Doebeli and Dieckmann (2003) argued that competition acting locally in trait space and geographical space can promote such clustering. We have investigated this possibility using deterministic population dynamics for asexual populations, analyzing our model numerically and through an analytical approximation. We examined how the evolution of clusters is affected by the shape of competition kernels, by the presence of Allee effects, and by the strength of gene flow along the gradient. For certain parameter ranges clustering was a robust outcome, and for other ranges there was no clustering. Our analysis shows that the shape of competition kernels is important for clustering: the sign structure of the Fourier transform of a competition kernel determines whether the kernel promotes clustering. Also, we found that Allee effects promote clustering, whereas gene flow can have a counteracting influence. In line with earlier findings, we could demonstrate that phenotypic clustering was favored by gradients of intermediate slope.

  11. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on the planned NASA HyspIRI mission.

  12. Biasing anisotropic scattering kernels for deep-penetration Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, L.L.; Hendricks, J.S.

    1983-01-01

    The exponential transform is often used to improve the efficiency of deep-penetration Monte Carlo calculations. This technique is usually implemented by biasing the distance-to-collision kernel of the transport equation, but leaving the scattering kernel unchanged. Dwivedi obtained significant improvements in efficiency by biasing an isotropic scattering kernel as well as the distance-to-collision kernel. This idea is extended to anisotropic scattering, particularly the highly forward Klein-Nishina scattering of gamma rays.

  13. Performance Characteristics of a Kernel-Space Packet Capture Module

    DTIC Science & Technology

    2010-03-01

    Defense, or the United States Government . AFIT/GCO/ENG/10-03 PERFORMANCE CHARACTERISTICS OF A KERNEL-SPACE PACKET CAPTURE MODULE THESIS Presented to the...3.1.2.3 Prototype. The proof of concept for this research is the design, development, and comparative performance analysis of a kernel level N2d capture...changes to kernel code 5. Can be used for both user-space and kernel-space capture applications in order to control comparative performance analysis to

  14. Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals

    NASA Astrophysics Data System (ADS)

    Widom, Harold

    1995-07-01

    In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian matrices the probability that an interval of length s contains no eigenvalues is the Fredholm determinant of the sine kernel{sin (x - y)}/{π (x - y)} over this interval. A formal asymptotic expansion for the determinant as s tends to infinity was obtained by Dyson. In this paper we replace a single interval of length s by sJ, where J is a union of m intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to s of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory function of s (zero if m=1, periodic if m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.

  15. A Kernel-based Lagrangian method for imperfectly-mixed chemical reactions

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael J.; Pankavich, Stephen; Benson, David A.

    2017-05-01

    Current Lagrangian (particle-tracking) algorithms used to simulate diffusion-reaction equations must employ a certain number of particles to properly emulate the system dynamics-particularly for imperfectly-mixed systems. The number of particles is tied to the statistics of the initial concentration fields of the system at hand. Systems with shorter-range correlation and/or smaller concentration variance require more particles, potentially limiting the computational feasibility of the method. For the well-known problem of bimolecular reaction, we show that using kernel-based, rather than Dirac delta, particles can significantly reduce the required number of particles. We derive the fixed width of a Gaussian kernel for a given reduced number of particles that analytically eliminates the error between kernel and Dirac solutions at any specified time. We also show how to solve for the fixed kernel size by minimizing the squared differences between solutions over any given time interval. Numerical results show that the width of the kernel should be kept below about 12% of the domain size, and that the analytic equations used to derive kernel width suffer significantly from the neglect of higher-order moments. The simulations with a kernel width given by least squares minimization perform better than those made to match at one specific time. A heuristic time-variable kernel size, based on the previous results, performs on par with the least squares fixed kernel size.

  16. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  17. Brain tumor image segmentation using kernel dictionary learning.

    PubMed

    Jeon Lee; Seung-Jun Kim; Rong Chen; Herskovits, Edward H

    2015-08-01

    Automated brain tumor image segmentation with high accuracy and reproducibility holds a big potential to enhance the current clinical practice. Dictionary learning (DL) techniques have been applied successfully to various image processing tasks recently. In this work, kernel extensions of the DL approach are adopted. Both reconstructive and discriminative versions of the kernel DL technique are considered, which can efficiently incorporate multi-modal nonlinear feature mappings based on the kernel trick. Our novel discriminative kernel DL formulation allows joint learning of a task-driven kernel-based dictionary and a linear classifier using a K-SVD-type algorithm. The proposed approaches were tested using real brain magnetic resonance (MR) images of patients with high-grade glioma. The obtained preliminary performances are competitive with the state of the art. The discriminative kernel DL approach is seen to reduce computational burden without much sacrifice in performance.

  18. SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL

    PubMed Central

    Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan

    2013-01-01

    Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108

  19. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management.

    PubMed

    Chapin, Jay W; Thomas, James S

    2003-08-01

    Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.

  20. Imaging and automated detection of Sitophilus oryzae (Coleoptera: Curculionidae) pupae in hard red winter wheat.

    PubMed

    Toews, Michael D; Pearson, Tom C; Campbell, James F

    2006-04-01

    Computed tomography, an imaging technique commonly used for diagnosing internal human health ailments, uses multiple x-rays and sophisticated software to recreate a cross-sectional representation of a subject. The use of this technique to image hard red winter wheat, Triticum aestivm L., samples infested with pupae of Sitophilus oryzae (L.) was investigated. A software program was developed to rapidly recognize and quantify the infested kernels. Samples were imaged in a 7.6-cm (o.d.) plastic tube containing 0, 50, or 100 infested kernels per kg of wheat. Interkernel spaces were filled with corn oil so as to increase the contrast between voids inside kernels and voids among kernels. Automated image processing, using a custom C language software program, was conducted separately on each 100 g portion of the prepared samples. The average detection accuracy in the five infested kernels per 100-g samples was 94.4 +/- 7.3% (mean +/- SD, n = 10), whereas the average detection accuracy in the 10 infested kernels per 100-g sample was 87.3 +/- 7.9% (n = 10). Detection accuracy in the 10 infested kernels per 100-g samples was slightly less than the five infested kernels per 100-g samples because of some infested kernels overlapping with each other or air bubbles in the oil. A mean of 1.2 +/- 0.9 (n = 10) bubbles (per tube) was incorrectly classed as infested kernels in replicates containing no infested kernels. In light of these positive results, future studies should be conducted using additional grains, insect species, and life stages.

  1. Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan

    2016-11-01

    In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects. Copyright © 2016 Crop Science Society of America.

  2. Image quality of mixed convolution kernel in thoracic computed tomography.

    PubMed

    Neubauer, Jakob; Spira, Eva Maria; Strube, Juliane; Langer, Mathias; Voss, Christian; Kotter, Elmar

    2016-11-01

    The mixed convolution kernel alters his properties geographically according to the depicted organ structure, especially for the lung. Therefore, we compared the image quality of the mixed convolution kernel to standard soft and hard kernel reconstructions for different organ structures in thoracic computed tomography (CT) images.Our Ethics Committee approved this prospective study. In total, 31 patients who underwent contrast-enhanced thoracic CT studies were included after informed consent. Axial reconstructions were performed with hard, soft, and mixed convolution kernel. Three independent and blinded observers rated the image quality according to the European Guidelines for Quality Criteria of Thoracic CT for 13 organ structures. The observers rated the depiction of the structures in all reconstructions on a 5-point Likert scale. Statistical analysis was performed with the Friedman Test and post hoc analysis with the Wilcoxon rank-sum test.Compared to the soft convolution kernel, the mixed convolution kernel was rated with a higher image quality for lung parenchyma, segmental bronchi, and the border between the pleura and the thoracic wall (P < 0.03). Compared to the hard convolution kernel, the mixed convolution kernel was rated with a higher image quality for aorta, anterior mediastinal structures, paratracheal soft tissue, hilar lymph nodes, esophagus, pleuromediastinal border, large and medium sized pulmonary vessels and abdomen (P < 0.004) but a lower image quality for trachea, segmental bronchi, lung parenchyma, and skeleton (P < 0.001).The mixed convolution kernel cannot fully substitute the standard CT reconstructions. Hard and soft convolution kernel reconstructions still seem to be mandatory for thoracic CT.

  3. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing, manufacturing, packing, processing, preparing, treating...

  4. Local Observed-Score Kernel Equating

    ERIC Educational Resources Information Center

    Wiberg, Marie; van der Linden, Wim J.; von Davier, Alina A.

    2014-01-01

    Three local observed-score kernel equating methods that integrate methods from the local equating and kernel equating frameworks are proposed. The new methods were compared with their earlier counterparts with respect to such measures as bias--as defined by Lord's criterion of equity--and percent relative error. The local kernel item response…

  5. 7 CFR 51.1241 - Damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... which have been broken to the extent that the kernel within is plainly visible without minute... discoloration beneath, but the peanut shall be judged as it appears with the talc. (c) Kernels which are rancid or decayed. (d) Moldy kernels. (e) Kernels showing sprouts extending more than one-eighth inch from...

  6. 7 CFR 981.61 - Redetermination of kernel weight.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Redetermination of kernel weight. 981.61 Section 981... GROWN IN CALIFORNIA Order Regulating Handling Volume Regulation § 981.61 Redetermination of kernel weight. The Board, on the basis of reports by handlers, shall redetermine the kernel weight of almonds...

  7. Genome-wide Association Analysis of Kernel Weight in Hard Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat kernel weight is an important and heritable component of wheat grain yield and a key predictor of flour extraction. Genome-wide association analysis was conducted to identify genomic regions associated with kernel weight and kernel weight environmental response in 8 trials of 299 hard winter ...

  8. 7 CFR 999.400 - Regulation governing the importation of filberts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Definitions. (1) Filberts means filberts or hazelnuts. (2) Inshell filberts means filberts, the kernels or edible portions of which are contained in the shell. (3) Shelled filberts means the kernels of filberts... Filbert kernels or portions of filbert kernels shall meet the following requirements: (1) Well dried and...

  9. 7 CFR 51.1404 - Tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (2) For kernel defects, by count. (i) 12 percent for pecans with kernels which fail to meet the... kernels which are seriously damaged: Provided, That not more than six-sevenths of this amount, or 6 percent, shall be allowed for kernels which are rancid, moldy, decayed or injured by insects: And provided...

  10. Enhanced gluten properties in soft kernel durum wheat

    USDA-ARS?s Scientific Manuscript database

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  11. 7 CFR 51.2560 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...

  12. 7 CFR 51.2560 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... are excessively thin kernels and can have black, brown or gray surface with a dark interior color and the immaturity has adversely affected the flavor of the kernel. (2) Kernel spotting refers to dark brown or dark gray spots aggregating more than one-eighth of the surface of the kernel. (g) Serious...

  13. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  14. Fumonisin B(1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot.

    PubMed

    Desjardins, A E; Plattner, R D

    2000-11-01

    Fumonisins are polyketide mycotoxins produced by Fusarium verticillioides (synonym F. moniliforme), a major pathogen of maize (Zea mays) worldwide. Most field strains produce high levels of fumonisin B(1) (FB(1)) and low levels of the less-oxygenated homologues FB(2) and FB(3), but fumonisin B(1)-nonproducing field strains have been obtained by natural variation. To test the role of various fumonisins in pathogenesis on maize under field conditions, one strain producing FB(1), FB(2), and FB(3), one strain producing only FB(2), one strain producing only FB(3), and one fumonisin-nonproducing strain were applied to ears via the silk channel and on seeds at planting. Disease severity on the harvested ears was evaluated by visible symptoms and by weight percent symptomatic kernels. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of the applied FB(1)-nonproducing strains in kernels was determined by analysis of recovered strains for fumonisin production and other traits. All three FB(1)-nonproducing strains were able to infect ears following either silk-channel application or seed application at planting and were as effective as the FB(1)-producing strain in causing ear rot following silk-channel application. These results indicate that production of FB(1), FB(2), or FB(3) is not required for F. verticillioides to cause maize ear infection and ear rot.

  15. Persistence in a Two-Dimensional Moving-Habitat Model.

    PubMed

    Phillips, Austin; Kot, Mark

    2015-11-01

    Environmental changes are forcing many species to track suitable conditions or face extinction. In this study, we use a two-dimensional integrodifference equation to analyze whether a population can track a habitat that is moving due to climate change. We model habitat as a simple rectangle. Our model quickly leads to an eigenvalue problem that determines whether the population persists or declines. After surveying techniques to solve the eigenvalue problem, we highlight three findings that impact conservation efforts such as reserve design and species risk assessment. First, while other models focus on habitat length (parallel to the direction of habitat movement), we show that ignoring habitat width (perpendicular to habitat movement) can lead to overestimates of persistence. Dispersal barriers and hostile landscapes that constrain habitat width greatly decrease the population's ability to track its habitat. Second, for some long-distance dispersal kernels, increasing habitat length improves persistence without limit; for other kernels, increasing length is of limited help and has diminishing returns. Third, it is not always best to orient the long side of the habitat in the direction of climate change. Evidence suggests that the kurtosis of the dispersal kernel determines whether it is best to have a long, wide, or square habitat. In particular, populations with platykurtic dispersal benefit more from a wide habitat, while those with leptokurtic dispersal benefit more from a long habitat. We apply our model to the Rocky Mountain Apollo butterfly (Parnassius smintheus).

  16. Multilevel Hierarchical Kernel Spectral Clustering for Real-Life Large Scale Complex Networks

    PubMed Central

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2014-01-01

    Kernel spectral clustering corresponds to a weighted kernel principal component analysis problem in a constrained optimization framework. The primal formulation leads to an eigen-decomposition of a centered Laplacian matrix at the dual level. The dual formulation allows to build a model on a representative subgraph of the large scale network in the training phase and the model parameters are estimated in the validation stage. The KSC model has a powerful out-of-sample extension property which allows cluster affiliation for the unseen nodes of the big data network. In this paper we exploit the structure of the projections in the eigenspace during the validation stage to automatically determine a set of increasing distance thresholds. We use these distance thresholds in the test phase to obtain multiple levels of hierarchy for the large scale network. The hierarchical structure in the network is determined in a bottom-up fashion. We empirically showcase that real-world networks have multilevel hierarchical organization which cannot be detected efficiently by several state-of-the-art large scale hierarchical community detection techniques like the Louvain, OSLOM and Infomap methods. We show that a major advantage of our proposed approach is the ability to locate good quality clusters at both the finer and coarser levels of hierarchy using internal cluster quality metrics on 7 real-life networks. PMID:24949877

  17. 3DRT-MPASS

    NASA Technical Reports Server (NTRS)

    Lickly, Ben

    2005-01-01

    Data from all current JPL missions are stored in files called SPICE kernels. At present, animators who want to use data from these kernels have to either read through the kernels looking for the desired data, or write programs themselves to retrieve information about all the needed objects for their animations. In this project, methods of automating the process of importing the data from the SPICE kernels were researched. In particular, tools were developed for creating basic scenes in Maya, a 3D computer graphics software package, from SPICE kernels.

  18. Testing for Starch, Respiring Tissues, and Vascular Bundles: Inquiry-Based Seed and Stem Anatomy Labs.

    ERIC Educational Resources Information Center

    Florine, Sara; Hammond, Paul; Pomart, Katrina; Balschweid, Mark

    2002-01-01

    Describes some inquiry-based labs in which students identify starch in popped popcorn, then determine whether starch is present in the kernels prior to them being cooked. Students distinguish monocot and dicot stems as well as determining whether boiling kills tissues in seeds that have been soaked in water. (DDR)

  19. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    PubMed

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  20. 40 CFR 112.8 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore facilities (excluding...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.8... you make material repairs. You must determine, in accordance with industry standards, the appropriate...

  1. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  2. Oecophylla longinoda (Hymenoptera: Formicidae) Lead to Increased Cashew Kernel Size and Kernel Quality.

    PubMed

    Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K

    2017-06-01

    Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  4. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  5. Kernels, Degrees of Freedom, and Power Properties of Quadratic Distance Goodness-of-Fit Tests

    PubMed Central

    Lindsay, Bruce G.; Markatou, Marianthi; Ray, Surajit

    2014-01-01

    In this article, we study the power properties of quadratic-distance-based goodness-of-fit tests. First, we introduce the concept of a root kernel and discuss the considerations that enter the selection of this kernel. We derive an easy to use normal approximation to the power of quadratic distance goodness-of-fit tests and base the construction of a noncentrality index, an analogue of the traditional noncentrality parameter, on it. This leads to a method akin to the Neyman-Pearson lemma for constructing optimal kernels for specific alternatives. We then introduce a midpower analysis as a device for choosing optimal degrees of freedom for a family of alternatives of interest. Finally, we introduce a new diffusion kernel, called the Pearson-normal kernel, and study the extent to which the normal approximation to the power of tests based on this kernel is valid. Supplementary materials for this article are available online. PMID:24764609

  6. The quantitative properties of three soft X-ray flare kernels observed with the AS&E X-ray telescope on Skylab

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Petrasso, R. D.; Kane, S. R.

    1976-01-01

    The physical parameters for the kernels of three solar X-ray flare events have been deduced using photographic data from the S-054 X-ray telescope on Skylab as the primary data source and 1-8 and 8-20 A fluxes from Solrad 9 as the secondary data source. The kernels had diameters of about 5-7 seconds of arc and in two cases electron densities at least as high as 0.3 trillion per cu cm. The lifetimes of the kernels were 5-10 min. The presence of thermal conduction during the decay phases is used to argue: (1) that kernels are entire, not small portions of, coronal loop structures, and (2) that flare heating must continue during the decay phase. We suggest a simple geometric model to explain the role of kernels in flares in which kernels are identified with emerging flux regions.

  7. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  8. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  9. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  10. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in producing...

  11. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2013-01-01 2013-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...

  12. 7 CFR 51.1403 - Kernel color classification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... generally conforms to the “light” or “light amber” classification, that color classification may be used to... 7 Agriculture 2 2014-01-01 2014-01-01 false Kernel color classification. 51.1403 Section 51.1403... Color Classification § 51.1403 Kernel color classification. (a) The skin color of pecan kernels may be...

  13. Nutrition quality of extraction mannan residue from palm kernel cake on brolier chicken

    NASA Astrophysics Data System (ADS)

    Tafsin, M.; Hanafi, N. D.; Kejora, E.; Yusraini, E.

    2018-02-01

    This study aims to find out the nutrient residue of palm kernel cake from mannan extraction on broiler chicken by evaluating physical quality (specific gravity, bulk density and compacted bulk density), chemical quality (proximate analysis and Van Soest Test) and biological test (metabolizable energy). Treatment composed of T0 : palm kernel cake extracted aquadest (control), T1 : palm kernel cake extracted acetic acid (CH3COOH) 1%, T2 : palm kernel cake extracted aquadest + mannanase enzyme 100 u/l and T3 : palm kernel cake extracted acetic acid (CH3COOH) 1% + enzyme mannanase 100 u/l. The results showed that mannan extraction had significant effect (P<0.05) in improving the quality of physical and numerically increase the value of crude protein and decrease the value of NDF (Neutral Detergent Fiber). Treatments had highly significant influence (P<0.01) on the metabolizable energy value of palm kernel cake residue in broiler chickens. It can be concluded that extraction with aquadest + enzyme mannanase 100 u/l yields the best nutrient quality of palm kernel cake residue for broiler chicken.

  14. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles.

    PubMed

    Jia, Xiaodong; Luo, Huiting; Xu, Mengyang; Zhai, Min; Guo, Zhongren; Qiao, Yushan; Wang, Liangju

    2018-02-16

    Pecan ( Carya illinoinensis ) kernels have a high phenolics content and a high antioxidant capacity compared to other nuts-traits that have attracted great interest of late. Changes in the total phenolic content (TPC), condensed tannins (CT), total flavonoid content (TFC), five individual phenolics, and antioxidant capacity of five pecan cultivars were investigated during the process of kernel ripening. Ultra-performance liquid chromatography coupled with quadruple time-of-flight mass (UPLC-Q/TOF-MS) was also used to analyze the phenolics profiles in mixed pecan kernels. TPC, CT, TFC, individual phenolics, and antioxidant capacity were changed in similar patterns, with values highest at the water or milk stages, lowest at milk or dough stages, and slightly varied at kernel stages. Forty phenolics were tentatively identified in pecan kernels, of which two were first reported in the genus Carya , six were first reported in Carya illinoinensis , and one was first reported in its kernel. The findings on these new phenolic compounds provide proof of the high antioxidant capacity of pecan kernels.

  15. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  16. Novel characterization method of impedance cardiography signals using time-frequency distributions.

    PubMed

    Escrivá Muñoz, Jesús; Pan, Y; Ge, S; Jensen, E W; Vallverdú, M

    2018-03-16

    The purpose of this document is to describe a methodology to select the most adequate time-frequency distribution (TFD) kernel for the characterization of impedance cardiography signals (ICG). The predominant ICG beat was extracted from a patient and was synthetized using time-frequency variant Fourier approximations. These synthetized signals were used to optimize several TFD kernels according to a performance maximization. The optimized kernels were tested for noise resistance on a clinical database. The resulting optimized TFD kernels are presented with their performance calculated using newly proposed methods. The procedure explained in this work showcases a new method to select an appropriate kernel for ICG signals and compares the performance of different time-frequency kernels found in the literature for the case of ICG signals. We conclude that, for ICG signals, the performance (P) of the spectrogram with either Hanning or Hamming windows (P = 0.780) and the extended modified beta distribution (P = 0.765) provided similar results, higher than the rest of analyzed kernels. Graphical abstract Flowchart for the optimization of time-frequency distribution kernels for impedance cardiography signals.

  17. New Fukui, dual and hyper-dual kernels as bond reactivity descriptors.

    PubMed

    Franco-Pérez, Marco; Polanco-Ramírez, Carlos-A; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-06-21

    We define three new linear response indices with promising applications for bond reactivity using the mathematical framework of τ-CRT (finite temperature chemical reactivity theory). The τ-Fukui kernel is defined as the ratio between the fluctuations of the average electron density at two different points in the space and the fluctuations in the average electron number and is designed to integrate to the finite-temperature definition of the electronic Fukui function. When this kernel is condensed, it can be interpreted as a site-reactivity descriptor of the boundary region between two atoms. The τ-dual kernel corresponds to the first order response of the Fukui kernel and is designed to integrate to the finite temperature definition of the dual descriptor; it indicates the ambiphilic reactivity of a specific bond and enriches the traditional dual descriptor by allowing one to distinguish between the electron-accepting and electron-donating processes. Finally, the τ-hyper dual kernel is defined as the second-order derivative of the Fukui kernel and is proposed as a measure of the strength of ambiphilic bonding interactions. Although these quantities have never been proposed, our results for the τ-Fukui kernel and for τ-dual kernel can be derived in zero-temperature formulation of the chemical reactivity theory with, among other things, the widely-used parabolic interpolation model.

  18. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    PubMed

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  19. Examining Potential Boundary Bias Effects in Kernel Smoothing on Equating: An Introduction for the Adaptive and Epanechnikov Kernels.

    PubMed

    Cid, Jaime A; von Davier, Alina A

    2015-05-01

    Test equating is a method of making the test scores from different test forms of the same assessment comparable. In the equating process, an important step involves continuizing the discrete score distributions. In traditional observed-score equating, this step is achieved using linear interpolation (or an unscaled uniform kernel). In the kernel equating (KE) process, this continuization process involves Gaussian kernel smoothing. It has been suggested that the choice of bandwidth in kernel smoothing controls the trade-off between variance and bias. In the literature on estimating density functions using kernels, it has also been suggested that the weight of the kernel depends on the sample size, and therefore, the resulting continuous distribution exhibits bias at the endpoints, where the samples are usually smaller. The purpose of this article is (a) to explore the potential effects of atypical scores (spikes) at the extreme ends (high and low) on the KE method in distributions with different degrees of asymmetry using the randomly equivalent groups equating design (Study I), and (b) to introduce the Epanechnikov and adaptive kernels as potential alternative approaches to reducing boundary bias in smoothing (Study II). The beta-binomial model is used to simulate observed scores reflecting a range of different skewed shapes.

  20. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies

    PubMed Central

    Manitz, Juliane; Burger, Patricia; Amos, Christopher I.; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility. PMID:28785300

  1. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.

    PubMed

    Friedrichs, Stefanie; Manitz, Juliane; Burger, Patricia; Amos, Christopher I; Risch, Angela; Chang-Claude, Jenny; Wichmann, Heinz-Erich; Kneib, Thomas; Bickeböller, Heike; Hofner, Benjamin

    2017-01-01

    The analysis of genome-wide association studies (GWAS) benefits from the investigation of biologically meaningful gene sets, such as gene-interaction networks (pathways). We propose an extension to a successful kernel-based pathway analysis approach by integrating kernel functions into a powerful algorithmic framework for variable selection, to enable investigation of multiple pathways simultaneously. We employ genetic similarity kernels from the logistic kernel machine test (LKMT) as base-learners in a boosting algorithm. A model to explain case-control status is created iteratively by selecting pathways that improve its prediction ability. We evaluated our method in simulation studies adopting 50 pathways for different sample sizes and genetic effect strengths. Additionally, we included an exemplary application of kernel boosting to a rheumatoid arthritis and a lung cancer dataset. Simulations indicate that kernel boosting outperforms the LKMT in certain genetic scenarios. Applications to GWAS data on rheumatoid arthritis and lung cancer resulted in sparse models which were based on pathways interpretable in a clinical sense. Kernel boosting is highly flexible in terms of considered variables and overcomes the problem of multiple testing. Additionally, it enables the prediction of clinical outcomes. Thus, kernel boosting constitutes a new, powerful tool in the analysis of GWAS data and towards the understanding of biological processes involved in disease susceptibility.

  2. Effect of cotton bollworm (Helicoverpa armigera Hübner) caused injury on maize grain content, especially regarding to the protein alteration.

    PubMed

    Keszthelyi, S; Pál-Fám, F; Kerepesi, I

    2011-03-01

    The cotton bollworm (Helicoverpa armigera Hübner), which migrated in the Carpathian-basin from Mediterraneum in the last decades, is becoming an increasingly serious problem for maize producers in Hungary. In several regions the damage it causes has reached the threshold of economic loss, especially in the case of the sweet maize cultivation. The aim of the research was to determine the changing of ears weights and in-kernel accumulation and alteration in grain as a function of cotton bollworm mastication.Our investigation confirmed that there is an in-kernel and protein pattern change of maize grain by cotton bollworm. Our results proved the significant damaging of each part of ears by cotton bollworm masticating (the average weight loss of ears: 13.99%; the average weight loss of grains: 14.03%; the average weight loss of cobs: 13.74%), with the exception of the increasing of the grain-cob ratio. Our examinations did not prove the water loss - that is the "forced maturing" - caused by the damage. Decreasing of raw fat (control: 2.8%; part-damaged: 2.6%; damaged: 2.4%) and starch content (control: 53.1%; part-damaged: 46.6%; damaged: 44.7%) were registered as a function of injury. In contrast, the raw protein content was increased (control: 4.7%; part-damaged: 5.3%; damaged: 7.4%) by maize ear masticating. The most conspicuous effect on protein composition changing was proved by comparison of damaged grain samples by SDS PAGE. Increased amounts of 114, 50, 46 and 35 kDa molecular mass proteins were detected which explained the more than 50% elevation of raw protein content. The statistical analysis of molecular weights proved the protein realignment as a function of the pest injuries, too.

  3. Optimization of parameters for enhanced oil recovery from enzyme treated wild apricot kernels.

    PubMed

    Rajaram, Mahatre R; Kumbhar, Baburao K; Singh, Anupama; Lohani, Umesh Chandra; Shahi, Navin C

    2012-08-01

    Present investigation was undertaken with the overall objective of optimizing the enzymatic parameters i.e. moisture content during hydrolysis, enzyme concentration, enzyme ratio and incubation period on wild apricot kernel processing for better oil extractability and increased oil recovery. Response surface methodology was adopted in the experimental design. A central composite rotatable design of four variables at five levels was chosen. The parameters and their range for the experiments were moisture content during hydrolysis (20-32%, w.b.), enzyme concentration (12-16% v/w of sample), combination of pectolytic and cellulolytic enzyme i.e. enzyme ratio (30:70-70:30) and incubation period (12-16 h). Aspergillus foetidus and Trichoderma viride was used for production of crude enzyme i.e. pectolytic and cellulolytic enzyme respectively. A complete second order model for increased oil recovery as the function of enzymatic parameters fitted the data well. The best fit model for oil recovery was also developed. The effect of various parameters on increased oil recovery was determined at linear, quadric and interaction level. The increased oil recovery ranged from 0.14 to 2.53%. The corresponding conditions for maximum oil recovery were 23% (w.b.), 15 v/w of the sample, 60:40 (pectolytic:cellulolytic), 13 h. Results of the study indicated that incubation period during enzymatic hydrolysis is the most important factor affecting oil yield followed by enzyme ratio, moisture content and enzyme concentration in the decreasing order. Enzyme ratio, incubation period and moisture content had insignificant effect on oil recovery. Second order model for increased oil recovery as a function of enzymatic hydrolysis parameters predicted the data adequately.

  4. Cytoprotective effect of palm kernel cake phenolics against aflatoxin B1-induced cell damage and its underlying mechanism of action.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Zulkifli, Idrus; Ebrahimi, Mahdi; Karimi, Ehsan; Goh, Yong Meng; Oskoueian, Armin; Shakeri, Majid

    2015-10-30

    Palm kernel cake (PKC), a by-product of the palm oil industry is abundantly available in many tropical and subtropical countries. The product is known to contain high levels of phenolic compounds that may impede the deleterious effects of fungal mycotoxins. This study focused on the evaluation of PKC phenolics as a potential cytoprotective agent towards aflatoxin B1 (AFB1)-induced cell damage. The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage. The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes. The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.

  5. The Influence of Reconstruction Kernel on Bone Mineral and Strength Estimates Using Quantitative Computed Tomography and Finite Element Analysis.

    PubMed

    Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K

    2017-10-17

    Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Detecting peanuts inoculated with toxigenic and atoxienic Aspergillus flavus strains with fluorescence hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang

    2017-05-01

    Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.

  7. Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity.

    PubMed

    Jung, Stephan; Hütsch, Birgit W; Schubert, Sven

    2017-04-01

    Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H + -ATPase. It was investigated whether the PM H + -ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H + -ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H + -ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.

  9. Considering causal genes in the genetic dissection of kernel traits in common wheat.

    PubMed

    Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz

    2016-11-01

    Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m 2 (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.

  10. Effect of Fungal Colonization of Wheat Grains with Fusarium spp. on Food Choice, Weight Gain and Mortality of Meal Beetle Larvae (Tenebrio molitor)

    PubMed Central

    Guo, Zhiqing; Döll, Katharina; Dastjerdi, Raana; Karlovsky, Petr; Dehne, Heinz-Wilhelm; Altincicek, Boran

    2014-01-01

    Species of Fusarium have significant agro-economical and human health-related impact by infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more than control kernels. The avoidance/preference correlated with larval feeding behaviors and weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. bassiana-colonized kernels had elevated mortality rates. HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin by F. poae, enniatins by F. avenaceum, and deoxynivalenol and zearalenone by F. culmorum. Our results indicate that T. molitor larvae have the ability to sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles potentially along with gustatory cues produced by these fungi may represent survival threat signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were able to use those kernels as diet without exhibiting increased mortality. Consumption of F. avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher enniatin levels than F. proliferatum or F. poae-colonized ones suggesting that T. molitor can tolerate or metabolize those toxins. PMID:24932485

  11. Coronary Stent Artifact Reduction with an Edge-Enhancing Reconstruction Kernel - A Prospective Cross-Sectional Study with 256-Slice CT.

    PubMed

    Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl

    2016-01-01

    Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.

  12. The effect of heat treatment on phenolic compounds and fatty acid composition of Brazilian nut and hazelnut.

    PubMed

    Özcan, Mehmet Musa; Juhaimi, Fahad Al; Uslu, Nurhan

    2018-01-01

    Brazilian peanut oil content increased with oven heating (65.08%) and decreased with microwave heating process (61.00%). While the phenolic content of untreated Brazilian nut was the highest of 68.97 mg GAE/100 g. Hazelnut (Sivri) contained the highest antioxidant activity (86.52%, untreated). Results reflected significantly differences between the antioxidant effect and total phenol contents of Brazilian nut and hazelnut (Sivri) kernels heated in the oven and microwave. Microwave heating caused a decrease in antioxidant activity of hazelnut. Gallic acid, 3,4-dihydroxybenzoic acid and (+)- and catechin were the main phenolic compounds of raw Brazilian nut with the value of 5.33, 4.33 and 4.88 mg/100 g, respectively, while the dominant phenolics of raw hazelnut (Sivri) kernels were gallic acid (4.81 mg/100 g), 3,4-dihydroxybenzoic acid (4.61 mg/100 g), (+)-catechin (6.96 mg/100 g) and 1,2-dihydroxybenzene (4.14 mg/100 g). Both conventional and microwave heating caused minor reduction in phenolic compounds. The main fatty acids of Brazilian nut oil were linoleic (44.39-48.18%), oleic (27.74-31.74%), palmitic (13.09-13.70%) and stearic (8.20-8.91%) acids, while the dominant fatty acids of hazelnut (Sivri) oil were oleic acid (80.84%), respectively. The heating process caused noticeable change in fatty acid compositions of both nut oils.

  13. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  14. Renal Stone Characterization using High Resolution Imaging Mode on a Photon Counting Detector CT System.

    PubMed

    Ferrero, A; Gutjahr, R; Henning, A; Kappler, S; Halaweish, A; Abdurakhimova, D; Peterson, Z; Montoya, J; Leng, S; McCollough, C

    2017-03-09

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm × 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same sub-elements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  15. Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia

    PubMed Central

    Castro, Eduardo; Martínez-Ramón, Manel; Pearlson, Godfrey; Sui, Jing; Calhoun, Vince D.

    2011-01-01

    Pattern classification of brain imaging data can enable the automatic detection of differences in cognitive processes of specific groups of interest. Furthermore, it can also give neuroanatomical information related to the regions of the brain that are most relevant to detect these differences by means of feature selection procedures, which are also well-suited to deal with the high dimensionality of brain imaging data. This work proposes the application of recursive feature elimination using a machine learning algorithm based on composite kernels to the classification of healthy controls and patients with schizophrenia. This framework, which evaluates nonlinear relationships between voxels, analyzes whole-brain fMRI data from an auditory task experiment that is segmented into anatomical regions and recursively eliminates the uninformative ones based on their relevance estimates, thus yielding the set of most discriminative brain areas for group classification. The collected data was processed using two analysis methods: the general linear model (GLM) and independent component analysis (ICA). GLM spatial maps as well as ICA temporal lobe and default mode component maps were then input to the classifier. A mean classification accuracy of up to 95% estimated with a leave-two-out cross-validation procedure was achieved by doing multi-source data classification. In addition, it is shown that the classification accuracy rate obtained by using multi-source data surpasses that reached by using single-source data, hence showing that this algorithm takes advantage of the complimentary nature of GLM and ICA. PMID:21723948

  16. An effective fuzzy kernel clustering analysis approach for gene expression data.

    PubMed

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  17. Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong

    2010-01-01

    The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.

  18. Agricultural factors affecting Fusarium communities in wheat kernels.

    PubMed

    Karlsson, Ida; Friberg, Hanna; Kolseth, Anna-Karin; Steinberg, Christian; Persson, Paula

    2017-07-03

    Fusarium head blight (FHB) is a devastating disease of cereals caused by Fusarium fungi. The disease is of great economic importance especially owing to reduced grain quality due to contamination by a range of mycotoxins produced by Fusarium. Disease control and prediction is difficult because of the many Fusarium species associated with FHB. Different species may respond differently to control methods and can have both competitive and synergistic interactions. Therefore, it is important to understand how agricultural practices affect Fusarium at the community level. Lower levels of Fusarium mycotoxin contamination of organically produced cereals compared with conventionally produced have been reported, but the causes of these differences are not well understood. The aim of our study was to investigate the effect of agricultural factors on Fusarium abundance and community composition in different cropping systems. Winter wheat kernels were collected from 18 organically and conventionally cultivated fields in Sweden, paired based on their geographical distance and the wheat cultivar grown. We characterised the Fusarium community in harvested wheat kernels using 454 sequencing of translation elongation factor 1-α amplicons. In addition, we quantified Fusarium spp. using real-time PCR to reveal differences in biomass between fields. We identified 12 Fusarium operational taxonomic units (OTUs) with a median of 4.5 OTUs per field. Fusarium graminearum was the most abundant species, while F. avenaceum had the highest occurrence. The abundance of Fusarium spp. ranged two orders of magnitude between fields. Two pairs of Fusarium species co-occurred between fields: F. poae with F. tricinctum and F. culmorum with F. sporotrichoides. We could not detect any difference in Fusarium communities between the organic and conventional systems. However, agricultural intensity, measured as the number of pesticide applications and the amount of nitrogen fertiliser applied, had an impact on Fusarium communities, specifically increasing the abundance of F. tricinctum. There were geographical differences in the Fusarium community composition where F. graminearum was more abundant in the western part of Sweden. The application of amplicon sequencing provided a comprehensive view of the Fusarium community in cereals. This gives us better opportunities to understand the ecology of Fusarium spp., which is important in order to limit FHB and mycotoxin contamination in cereals.

  19. Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information.

    PubMed

    Song, Jiangning; Burrage, Kevin; Yuan, Zheng; Huber, Thomas

    2006-03-09

    The majority of peptide bonds in proteins are found to occur in the trans conformation. However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would have many important applications towards the understanding of protein structure and function. In this paper, we propose a new approach to predict the proline cis/trans isomerization in proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear kernel functions. We used single sequence information of different local window sizes, amino acid compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the secondary structure information predicted by PSIPRED. We explored these different sequence encoding schemes in order to investigate their effects on the prediction performance. The training and testing of this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best performance for determining the proline cis/trans isomerization based on the single amino acid sequence. It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to 0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy achieved based on the singe sequence information, respectively. A new method has been developed to predict the proline cis/trans isomerization in proteins based on support vector machine, which used the single amino acid sequence with different local window sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.

  20. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.

Top