Science.gov

Sample records for determining mueller matrix

  1. Experimental validation of optimum input polarization states for Mueller matrix determination with a dual photoelastic modulator polarimeter.

    PubMed

    Gribble, Adam; Layden, David; Vitkin, I Alex

    2013-12-15

    Dual photoelastic modulator polarimeters can measure light polarization, which is often described as a Stokes vector. By evaluating changes in polarization when light interacts with a sample, the sample Mueller matrix also can be derived, completely describing its interaction with polarized light. The choice of which and how many input Stokes vectors to use for sample investigation is under the experimenter's control. Previous work has predicted that sets of input Stokes vectors forming the vertices of platonic solids on the Poincaré sphere allow for the most robust Mueller matrix determination. Further, when errors specific to the dual photoelastic modulator polarimeter are considered, simulations revealed that one specific shape and orientation of Stokes vectors (cube on the Poincaré sphere with vertices away from principal sphere axes) allows for the most robust Mueller matrix determination. Here we experimentally validate the optimum input Stokes vectors for dual photoelastic modulator Mueller polarimetry, toward developing a robust polarimetric platform of increasing relevance to biophotonics.

  2. Determination of the magnetic field induced circular birefringence using the Mueller matrix of FBGs

    NASA Astrophysics Data System (ADS)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-04-01

    Different methods have already been developed to measure the magnetic field with fiber Bragg gratings (FBGs). They are based on the use of a magnetic fluid or magnetostrictive materials. In addition to these methods, a direct measurement of the magnetic field is also possible by determining the circular birefringence created by the magnetic field inside the fiber. In standard optical fiber, this circular birefringence is of the same order as the intrinsic fiber birefringence or even below. The polarization properties of FBGs are therefore used to perform such measurement since they allow to determine weak birefringence with higher accuracy than standard read-out techniques. However, the obtained accuracy is usually low due to the influence of the intrinsic fiber birefringence. To mitigate this issue, we study in this work the use of the diattenuation vector. This parameter is obtained from the Mueller matrix and we show that it evolves in response to a magnetic field. In practice, we analyze its response by both simulation and experiment. In our simulations, we solve numerically the coupled mode equations of the FBG. For the experiments, the Mueller matrix is measured by an optical vector analyzer for the gratings connected in transmission. We apply an increasing magnetic field on different Bragg gratings photo-written in SMF28 fibers. The rotation of the diattenuation vector is then used to retrieve the magnetic field induced circular birefringence. A linear increase of the reconstructed circular birefringence is reported for increasing magnetic field values in the range 0-1T.

  3. Silicon fin line edge roughness determination and sensitivity analysis by Mueller matrix spectroscopic ellipsometry based scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; O'Mullane, Samuel; Sunkoju, Sravan; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe; Keller, Nick; Race, Joseph; Muthinti, Gangadhara Raja; Diebold, Alain C.

    2015-03-01

    Measurement and control of line edge roughness (LER) is one of the most challenging issues facing patterning technology. As the critical dimensions (CD) of patterned structures decrease, LER of only a few nanometers can negatively impact device performance. Here, Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry is used to determine LER in periodic line-space structures in 28 nm pitch Si fin samples fabricated by directed selfassembly (DSA) patterning. The optical response of the Mueller matrix (MM) elements is influenced by structural parameters like pitch, CD, height, and side-wall angle (SWA), as well as the optical properties of the materials. Evaluation and decoupling MM element response to LER from other structural parameters requires sensitivity analysis using simulations of optical models that include LER. Here, an approach is developed that quantifies Si fin LER by comparing the optical responses generated by systematically varying the grating shape and measurement conditions. Finally, the validity of this approach is established by comparing the results obtained from top down scanning electron microscope (SEM) images and cross-sectional TEM image of the 28 nm pitch Si fins.

  4. Cervical collagen imaging for determining preterm labor risks using a colposcope with full Mueller matrix capability

    NASA Astrophysics Data System (ADS)

    Stoff, Susan; Chue-Sang, Joseph; Holness, Nola A.; Gandjbakhche, Amir; Chernomordik, Viktor; Ramella-Roman, Jessica

    2016-02-01

    Preterm birth is a worldwide health issue, as the number one cause of infant mortality and neurological disorders. Although affecting nearly 10% of all births, an accurate, reliable diagnostic method for preterm birth has, yet, to be developed. The primary constituent of the cervix, collagen, provides the structural support and mechanical strength to maintain cervical closure, through specific organization, during fetal gestation. As pregnancy progresses, the disorganization of the cervical collagen occurs to allow eventual cervical pliability so the baby can be birthed through the cervical opening. This disorganization of collagen affects the mechanical properties of the cervix and, if the changes occur prematurely, may be a significant factor leading to preterm birth. The organization of collagen can be analyzed through the use of Mueller Matrix Polarimetric imaging of the characteristic birefringence of collagen. In this research, we have built a full Mueller Matrix Polarimetry attachment to a standard colposcope to enable imaging of human cervixes during standard prenatal exams at various stages of fetal gestation. Analysis of the polarimetric images provides information of quantity and organization of cervical collagen at specific gestational stages of pregnancy. This quantitative information may provide an indication of risk of preterm birth.

  5. Uniqueness of the differential Mueller matrix of uniform homogeneous media.

    PubMed

    Devlaminck, Vincent; Ossikovski, Razvigor

    2014-06-01

    We show that the differential matrix of a uniform homogeneous medium containing birefringence may not be uniquely determined from its Mueller matrix, resulting in the potential existence of an infinite set of elementary polarization properties parameterized by an integer parameter. The uniqueness depends on the symmetry properties of a special differential matrix derived from the eigenvalue decomposition of the Mueller matrix. The conditions for the uniqueness of the differential matrix are identified, physically discussed, and illustrated in examples from the literature.

  6. Channeled partial Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Alenin, Andrey S.; Tyo, J. S.

    2015-09-01

    In prior work,1,2 we introduced methods to treat channeled systems in a way that is similar to Data Reduction Method (DRM), by focusing attention on the Fourier content of the measurement conditions. Introduction of Q enabled us to more readily extract the performance of the system and thereby optimize it to obtain reconstruction with the least noise. The analysis tools developed for that exercise can be expanded to be applicable to partial Mueller Matrix Polarimeters (pMMPs), which were a topic of prior discussion as well. In this treatment, we combine the principles involved in both of those research trajectories and identify a set of channeled pMMP families. As a result, the measurement structure of such systems is completely known and the design of a channeled pMMP intended for any given task becomes a search over a finite set of possibilities, with the additional channel rotation allowing for a more desirable Mueller element mixing.

  7. Snapshot retinal imaging Mueller matrix polarimeter

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Kudenov, Michael; Kashani, Amir; Schwiegerling, Jim; Escuti, Michael

    2015-09-01

    Early diagnosis of glaucoma, which is a leading cause for visual impairment, is critical for successful treatment. It has been shown that Imaging polarimetry has advantages in early detection of structural changes in the retina. Here, we theoretically and experimentally present a snapshot Mueller Matrix Polarimeter fundus camera, which has the potential to record the polarization-altering characteristics of retina with a single snapshot. It is made by incorporating polarization gratings into a fundus camera design. Complete Mueller Matrix data sets can be obtained by analyzing the polarization fringes projected onto the image plane. In this paper, we describe the experimental implementation of the snapshot retinal imaging Mueller matrix polarimeter (SRIMMP), highlight issues related to calibration, and provide preliminary images acquired from the camera.

  8. Mueller matrix imaging ellipsometry for nanostructure metrology.

    PubMed

    Liu, Shiyuan; Du, Weichao; Chen, Xiuguo; Jiang, Hao; Zhang, Chuanwei

    2015-06-29

    In order to achieve effective process control, fast, inexpensive, nondestructive and reliable nanometer scale feature measurements are extremely useful in high-volume nanomanufacturing. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. However, this technique is inherently limited by the illumination spot size of the instrument and the low efficiency in construction of a map of the sample over a wide area. Aiming at these issues, we introduce conventional imaging techniques to optical scatterometry and combine them with Mueller matrix ellipsometry based scatterometry, which is expected to be a powerful tool for the measurement of nanostructures in future high-volume nanomanufacturing, and propose to apply Mueller matrix imaging ellipsometry (MMIE) for nanostructure metrology. Two kinds of nanostructures were measured using an in-house developed Mueller matrix imaging ellipsometer in this work. The experimental results demonstrate that we can achieve Mueller matrix measurement and analysis for nanostructures with pixel-sized illumination spots by using MMIE. We can also efficiently construct parameter maps of the nanostructures over a wide area with pixel-sized lateral resolution by performing parallel ellipsometric analysis for all the pixels of interest.

  9. Photomask CD and LER characterization using Mueller matrix spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Heinrich, A.; Dirnstorfer, I.; Bischoff, J.; Meiner, K.; Ketelsen, H.; Richter, U.; Mikolajick, T.

    2014-10-01

    Critical dimension and line edge roughness on photomask arrays are determined with Mueller matrix spectroscopic ellipsometry. Arrays with large sinusoidal perturbations are measured for different azimuth angels and compared with simulations based on rigorous coupled wave analysis. Experiment and simulation show that line edge roughness leads to characteristic changes in the different Mueller matrix elements. The influence of line edge roughness is interpreted as an increase of isotropic character of the sample. The changes in the Mueller matrix elements are very similar when the arrays are statistically perturbed with rms roughness values in the nanometer range suggesting that the results on the sinusoidal test structures are also relevant for "real" mask errors. Critical dimension errors and line edge roughness have similar impact on the SE MM measurement. To distinguish between both deviations, a strategy based on the calculation of sensitivities and correlation coefficients for all Mueller matrix elements is shown. The Mueller matrix elements M13/M31 and M34/M43 are the most suitable elements due to their high sensitivities to critical dimension errors and line edge roughness and, at the same time, to a low correlation coefficient between both influences. From the simulated sensitivities, it is estimated that the measurement accuracy has to be in the order of 0.01 and 0.001 for the detection of 1 nm critical dimension error and 1 nm line edge roughness, respectively.

  10. Characterization of homogenous depolarizing media based on Mueller matrix differential decomposition.

    PubMed

    Arteaga, Oriol; Kahr, Bart

    2013-04-01

    In a depolarizing medium in which the optical properties are uniformly distributed, the logarithm of the Mueller matrix can be used to calculate the differential Mueller matrix. From the differential Mueller matrix, the 10 optical properties of a homogeneous depolarizing medium are recovered. A modified calculation is introduced for media showing small time-irreversal depolarization events. The benefits of this method are illustrated in the determination of circular dichroism and circular birefringence of a nickel sulfate hexahydrate crystal from spectroscopic Mueller matrix measurements.

  11. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  12. Mueller matrix of a dicot leaf

    NASA Astrophysics Data System (ADS)

    Vanderbilt, Vern C.; Daughtry, Craig S. T.

    2012-06-01

    A better understanding of the information contained in the spectral, polarized bidirectional reflectance and transmittance of leaves may lead to improved techniques for identifying plant species in remotely sensed imagery as well as better estimates of plant moisture and nutritional status. Here we report an investigation of the optical polarizing properties of several leaves of one species, Cannabis sativa, represented by a 3x3 Mueller matrix measured over the wavelength region 400-2,400 nm. Our results support the hypothesis that the leaf surface alters the polarization of incident light - polarizing off nadir, unpolarized incident light, for example - while the leaf volume tends to depolarized incident polarized light.

  13. Method of extraction of the Mueller-Jones part out of an experimental Mueller matrix

    NASA Astrophysics Data System (ADS)

    Savenkov, Sergey N.; Marienko, Valeri V.

    1997-05-01

    Properly measured experimental Mueller matrix contains complete information on depolarization, anisotropy properties of studied object and on value of isotropic change of probated radiation intensity by studied object as well. They know that Jones matrix contains complete information on value of isotropic change of probated radiation intensity and on anisotropy properties of studied object. Thus, in the case of absent of depolarization and measurement errors reducing to existence of, so called, overpolarization there exist a one-to-one correspondence between Mueller and Jones matrix. Mueller matrix will then be called a Mueller-Jones matrix. The possibility of extraction of Mueller-Jones part out of any experimental Mueller matrix is extremely important because of following. First, it allows us to obtain everything about depolarization properties of studied object directly. Depolarization is very informative 'object' and now, in the majority, one knows little about its nature and methods of its complete description. Second, one gets the possibility to operate with correspondent Jones matrix to analyze of which there exist the powerful methods such as solving of the spectral problem and application of the decomposition theorem formerly proved by the present authors. The distinctive feature of the method proposed here is that it allows us in the best way to take into consideration the important fact that far from all elements of initial Mueller matrix contains information on depolarization.

  14. Physical model of differential Mueller matrix for depolarizing uniform media.

    PubMed

    Devlaminck, Vincent

    2013-11-01

    In this article, we address the question of significance of the parameters of differential Mueller matrix formalism. We show how the concept of mean value and uncertainty of the optical properties recently introduced to depict this differential matrix can be related to the random fluctuations of these optical properties. From the layered-medium interpretation introduced by Jones [J. Opt. Soc. Am. 38, 671 (1948)] and extended to Mueller-Jones matrix by Azzam [J. Opt. Soc. Am. 68, 1756 (1978)], a generalization to depolarizing Mueller matrices is proposed. Based on the random Mueller-Jones matrix approach, the obtained parameterization perfectly fits the previous results from the literature. Necessary conditions of positivity on specific coefficients imposed in order to have physical Mueller matrix are introduced in a natural way and not inferred a posteriori. Interpretations of the underlying physical processes are also presented. An illustrative experimental example is provided from literature data.

  15. Least-squares analysis of the Mueller matrix

    NASA Astrophysics Data System (ADS)

    Reimer, Michael; Yevick, David

    2006-08-01

    In a single-mode fiber excited by light with a fixed polarization state, the output polarizations obtained at two different optical frequencies are related by a Mueller matrix. We examine least-squares procedures for estimating this matrix from repeated measurements of the output Stokes vector for a random set of input polarization states. We then apply these methods to the determination of polarization mode dispersion and polarization-dependent loss in an optical fiber. We find that a relatively simple formalism leads to results that are comparable with those of far more involved techniques.

  16. Subwavelength metrological chracterization by Mueller matrix polarimeter and finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Adhikari, Achyut; Dev, Kapil; Asundi, Anand

    2016-11-01

    Wire grid polarizers (WGP), are sub-wavelength gratings with applications in display projection system due to their compact size, wide field of view and long-term stability. Measurement and testing of these structures are important to optimize their use. This is done by first measuring the Mueller matrix of the WGP using a Mueller matrix polarimeter. Next the finite difference time domain (FDTD) method is used to simulate a similar Mueller matrix thus providing the period and step height of the WGP. This approach may lead to more generic determination of sub-wavelength structures including diffractive optical structures.

  17. Systematic errors for a Mueller matrix dual rotating compensator ellipsometer.

    PubMed

    Broch, Laurent; En Naciri, Aotmane; Johann, Luc

    2008-06-09

    The characterization of anisotropic materials and complex systems by ellipsometry has pushed the design of instruments to require the measurement of the full reflection Mueller matrix of the sample with a great precision. Therefore Mueller matrix ellipsometers have emerged over the past twenty years. The values of some coefficients of the matrix can be very small and errors due to noise or systematic errors can induce distored analysis. We present a detailed characterization of the systematic errors for a Mueller Matrix Ellipsometer in the dual-rotating compensator configuration. Starting from a general formalism, we derive explicit first-order expressions for the errors on all the coefficients of the Mueller matrix of the sample. The errors caused by inaccuracy of the azimuthal arrangement of the optical components and residual ellipticity introduced by imperfect optical elements are shown. A new method based on a four-zone averaging measurement is proposed to vanish the systematic errors.

  18. Stage scoring of liver fibrosis using Mueller matrix microscope

    NASA Astrophysics Data System (ADS)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2016-10-01

    Liver fibrosis is a common pathological process of varied chronic liver diseases including alcoholic hepatitis, virus hepatitis, and so on. Accurate evaluation of liver fibrosis is necessary for effective therapy and a five-stage grading system was developed. Currently, experienced pathologists use stained liver biopsies to assess the degree of liver fibrosis. But it is difficult to obtain highly reproducible results because of huge discrepancy among different observers. Polarization imaging technique has the potential of scoring liver fibrosis since it is capable of probing the structural and optical properties of samples. Considering that the Mueller matrix measurement can provide comprehensive microstructural information of the tissues, in this paper, we apply the Mueller matrix microscope to human liver fibrosis slices in different fibrosis stages. We extract the valid regions and adopt the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters for quantitative analysis. We also use the Monte Carlo simulation to analyze the relationship between the microscopic Mueller matrix parameters and the characteristic structural changes during the fibrosis process. The experimental and Monte Carlo simulated results show good consistency. We get a positive correlation between the parameters and the stage of liver fibrosis. The results presented in this paper indicate that the Mueller matrix microscope can provide additional information for the detections and fibrosis scorings of liver tissues and has great potential in liver fibrosis diagnosis.

  19. Rapid full Mueller matrix imaging polarimetry based on the hybrid phase modulation technique

    NASA Astrophysics Data System (ADS)

    Han, Chien-Yuan; Du, Cheng-You; Jhou, Jhe-Yi

    2017-01-01

    In this work, we present a novel method of Mueller matrix imaging polarimetry, which comprises dual liquid crystal variable retarders at the polarization generation portion and a photoelastic modulator at the polarization analysis portion. The light source can be operated either in the continuous mode, which provides an in-situ calibration process for the liquid crystal variable retarders, or in the pulse mode to deduce the full two-dimensional Mueller matrix with 16 images from the camera. We measured the Mueller matrix images of air as a standard test, as well as a quarter wave plate to determine its azimuthal angle and phase retardation by the polar decomposition technique. Finally, the decomposed Mueller matrix images of a biopolymer specimen with the conformational change produced by heat treatment are presented.

  20. Mueller-Jones Matrix measurement in material identification

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Qian, Weixian; Wang, Xiao

    2016-09-01

    The uniformity of lattice arrangement plays an important role in industrial processing, science and technology studies and environmental pollution detection. However, there are very little papers to study surface structure by depolarization characteristics. In order to improve the efficiency and accuracy of material identification system by polarization technology, we developed a new method to decompose the Mueller matrix, we studied the mechanism of the scattering of electromagnetic wave, and analyzed the relationship between the characteristics of depolarization and mechanism of scattering. We used the Jones Matrix and Mueller Matrix to set up the physical model, and decomposed the Mueller-Jones Matrix by the characteristics of polarization, then got the depolarization coefficients (ωd) of the surfaces of the samples. By using this theory, we deduced the relation formula of Mueller matrix, Mueller-Jones matrix and Isotropic-Depolarizer matrix. Based on the polarized characteristics of the samples, we analyzed design method of material identification system and gave the results of the experimental test. Finally, we applied the theory of Fresnel formulas to verify the theoretical model. From the results, we found that the depolarization coefficients of the samples' surfaces were related to the scattering, and in the whole measurement process, the depolarization coefficients of the samples were far different; the method could easily to distinguish the metal and nonmetal, and more quickly to analyze the surface roughness of the samples. Therefore, the depolarization technology had a great application value, and the paper had very important significance on the development of surface structure study.

  1. Near-infrared Mueller matrix imaging for colonic cancer detection

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  2. Characterizing dielectric tensors from angle-of-incidence Mueller matrix images

    NASA Astrophysics Data System (ADS)

    Smith, Paula K.; Chipman, Russell A.

    2007-09-01

    Biaxial ellipsometry is a technique that measures the dielectric tensor and thickness of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x+ ik x, n y+ ik y and n z + ik z) and three Euler angles (Θ, Φ, Δ) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives with low polarization aberrations. The dielectric tensors for multilayer samples are determined from multi-spectral angle-of-incidence Mueller matrix images in either a transmission or reflection mode using an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones matrix image is first calculated by solving Maxwell's equations at each surface which is then transformed into a Mueller matrix image. An optimization algorithm then finds the best fit dielectric tensor based on matching the measured and calculated angle-of-incidence Mueller matrix images. One use for this application is to more accurately determine the dielectric tensors of biaxial films used in liquid crystal displays.

  3. Clustering of Mueller matrix images for skeletonized structure detection

    NASA Astrophysics Data System (ADS)

    Collet, Christophe; Zallat, Jihad; Takakura, Yoshitate

    2004-04-01

    This paper extends and refines previous work on clustering of polarization-encoded images. The polarization-encoded images used in this work are considered as multidimensional parametric images where a clustering scheme based on Markovian Bayesian inference is applied. Hidden Markov Chains Model (HMCM) and Hidden Hierarchical Markovian Model (HHMM) show to handle effectively Mueller images and give very good results for biological tissues (vegetal leaves). Pretreatments attempting to reduce the image dimensionality based on the Principal Component Analysis (PCA) turns out to be useless for Mueller matrix images.

  4. Method of azimuthally stable Mueller-matrix diagnostics of blood plasma polycrystalline films in cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Prysyazhnyuk, V. P.; Gavrylyak, M. S.; Gorsky, M. P.; Bachinskiy, V. T.; Vanchuliak, O. Ya.

    2015-02-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy and patients with liver cirrhosis were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of liver cirrhosis was demonstrated. Prospects of application of the method in experimental medicine to differentiate postmortem changes of the myocardial tissue was examined.

  5. Bandwidth and Noise in Spatiotemporally Modulated Mueller Matrix Polarimeters

    NASA Astrophysics Data System (ADS)

    Vaughn, Israel Jacob

    Polarimetric systems design has seen recent utilization of linear systems theory for system descriptions. Although noise optimal systems have been shown, bandwidth performance has not been addressed in depth generally and is particularly lacking for Mueller matrix (active) polarimetric systems. Bandwidth must be considered in a systematic way for remote sensing polarimetric systems design. The systematic approach facilitates both understanding of fundamental constraints and design of higher bandwidth polarimetric systems. Fundamental bandwidth constraints result in production of polarimetric "artifacts" due to channel crosstalk upon Mueller matrix reconstruction. This dissertation analyzes bandwidth trade-offs in spatio-temporal channeled Mueller matrix polarimetric systems. Bandwidth is directly related to the geometric positioning of channels in the Fourier (channel) space, however channel positioning for polarimetric systems is constrained both physically and by design parameters like domain separability. We present the physical channel constraints and the constraints imposed when the carriers are separable between space and time. Polarimetric systems are also constrained by noise performance, and there is a trade-off between noise performance and bandwidth. I develop cost functions which account for the trade-off between noise and bandwidth for spatio-temporal polarimetric systems. The cost functions allow a systems designer to jointly optimize systems with good bandwidth and noise performance. Optimization is implemented for a candidate spatio-temporal system design, and high temporal bandwidth systems resulting from the optimization are presented. Systematic errors which impact the bandwidth performance and mitigation strategies for these systematic errors are also presented. Finally, a portable imaging Mueller matrix system is built and analyzed based on the theoretical bandwidth analysis and system bandwidth optimization. Temporal bandwidth performance is

  6. Mueller-matrix differentiation of fibrillar networks of biological tissues with different phase and amplitude anisotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Kushnerick, L. Y.; Olar, O. V.; Pashkovskaya, N. V.; Marchuk, Yu. F.

    2016-09-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of histological sections of uterus wall tumor - group 1 (dysplasia) and group 2 (adenocarcinoma) are estimated.

  7. Feasibility of using Backscattered Mueller Matrix Images for Bioaerosol Detection

    NASA Astrophysics Data System (ADS)

    Li, Changhui; Kattawar, George W.

    2006-03-01

    It has been shown that by looking at the backscattered radiance from an object illuminated by a laser beam one could effectively distinguish different morphologies from one another. However, if one wants to obtain all the information possible from elastic scattering either from a single particle or an ensemble of particles then one must use the Mueller matrix which contains all the polarization and radiance information available. In this talk, we will show that if we take advantage of the polarization information of the object, many more images related to the overall morphology as well as the internal structure of the object can be obtained. We will present images of the complete Mueller matrix to show the sensitivity of its sixteen components to both external and internal particle properties. We will also show that by using only one or two elements of this matrix one might be able to distinguish bioaerosols such as anthrax from more benign aerosols. We also show that the backscattering Mueller images contain more information than the forward scattering ones.

  8. Dielectric tensor measurement from a single Mueller matrix image

    NASA Astrophysics Data System (ADS)

    Beaudry, Neil A.; Zhao, Yanming; Chipman, Russell

    2007-03-01

    A technique for measuring dielectric tensors in anisotropic layered structures, such as thin films of biaxial materials, is demonstrated. The ellipsometric data are collected in a quasi-monochromatic Mueller matrix image acquired over a large range of incident and azimuthal angles by illuminating a very small area on the sample with a focused beam from a modulating polarization state generator. After the beam interacts with the sample, the reflected and/or transmitted light is collected using an imaging polarization state analyzer. An image of the exit pupil of a collection objective lens is formed across a CCD such that each pixel collects light from a different angle incident on the sample, thus acquiring ellipsometric data at numerous incident angles simultaneously. The large range of angles and orientations is necessary to accurately determine dielectric tensors. The small but significant polarization aberrations of the low-polarization objective lenses used to create and collect the focused beams provide a significant challenge to accurate measurement. Measurements are presented of a thin-film E-type polarizer and a stretched plastic biaxial film.

  9. Derivation of phase statistics from the Mueller matrix. [for radar polarimetry in remote sensing

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.

    1992-01-01

    Experimental observations show a strong dependence of phase differences of scattering matrix elements on the physical parameters of random media. Here, the statistical behavior of the phase differences is studied for distributed targets. The pdfs of the phase differences are derived from the Mueller matrix of the target. In deriving the density functions, it is assumed that the real and imaginary parts of the copolarized and cross-polarized terms of the scattering matrix are jointly Gaussian and their covariance matrices are found in terms of the Mueller matrix elements. The functional forms of the copolarized and cross-polarized density functions are similar and are obtained independently. It is shown that the density function of the phase difference is completely determined in terms of only two parameters.

  10. Sensitivity analysis and line edge roughness determination of 28-nm pitch silicon fins using Mueller matrix spectroscopic ellipsometry-based optical critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya; O'Mullane, Samuel; Sunkoju, Sravan; Gottipati, Abhishek; Hosler, Erik R.; Kamineni, Vimal; Preil, Moshe; Keller, Nick; Race, Joseph; Muthinti, Gangadhara Raja; Diebold, Alain C.

    2015-07-01

    Measurement and control of line edge roughness (LER) is one of the most challenging issues facing patterning technology. As the critical dimensions (CDs) of patterned structures decrease, an LER of only a few nanometers negatively impacts device performance. Here, Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry is used to characterize LER in periodic line-space structures in 28-nm pitch Si fin samples fabricated by directed self-assembly patterning. The optical response of the MM elements is influenced by structural parameters like pitch, CDs, height, and side-wall angle, as well as the optical properties of the materials. Evaluation and decoupling MM element response to LER from other structural parameters requires sensitivity analysis using scatterometry models that include LER. Here, an approach is developed that can be used to characterize LER in Si fins by comparing the optical responses generated by systematically varying the grating shape and measurement conditions. Finally, the validity of this approach is established by comparing the results obtained from power spectral density analysis of top down scanning electron microscope images and cross-sectional transmission electron microscope image of the 28-nm pitch Si fins.

  11. Vector and matrix states for Mueller matrices of nondepolarizing optical media.

    PubMed

    Kuntman, Ertan; Ali Kuntman, M; Arteaga, Oriol

    2017-01-01

    Nondepolarizing Mueller matrices contain up to seven independent parameters. However, these seven parameters typically do not appear explicitly among the measured 16 parameters of a Mueller matrix, so that they are not directly accessible for physical interpretation. This work shows that all the information contained in a nondepolarizing Mueller matrix can be conveniently expressed in terms of a four component covariance vector state or a generating 4×4 matrix, which can be understood as a matrix state. The generating matrix, besides being directly related to the nondepolarizing Mueller matrix, mimics all properties of the Jones matrix and provides a powerful mathematical tool for formulating all properties of nondepolarizing systems, including the Mueller symmetries and the anisotropy coefficients.

  12. Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer.

    PubMed

    Ushenko, V A; Dubolazov, O V; Karachevtsev, A O

    2014-04-01

    The model of a Mueller matrix description of mechanisms of optical anisotropy typical for polycrystalline films of blood plasma--optical activity, birefringence, as well as linear and circular dichroism--is suggested. On this basis, the algorithms of reconstruction of parameters distribution (polarization plane rotations, phase shifts, coefficients of linear and circular dichroism) of the indicated types of anisotropy were found for different spectrally selective ranges. Within the statistical analysis of such distributions, the objective criteria of differentiation of films of blood plasma taken from healthy women and breast cancer patients were determined. From the point of view of probative medicine, the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller matrix reconstruction of optical anisotropy parameters were found, and its efficiency in diagnostics of breast cancer was demonstrated.

  13. Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis

    NASA Astrophysics Data System (ADS)

    Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.

    2016-07-01

    This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.

  14. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Sidor, M. I.; Marchuk, Yu F.; Pashkovskaya, N. V.; Andreichuk, D. R.

    2015-03-01

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours.

  15. Mueller matrix holographic method for small particle characterization: theory and numerical studies.

    PubMed

    Gao, Meng; Yang, Ping; McKee, David; Kattawar, George W

    2013-07-20

    Holographic imaging has proved to be useful for spherical particle characterization, including the retrieval of particle size, refractive index, and 3D location. In this method, the interference pattern of the incident and scattered light fields is recorded by a camera and compared with the relevant Lorenz-Mie solutions. However, the method is limited to spherical particles, and the complete polarized scattering components have not been studied. This work extends the Mueller matrix formalism for the scattered light to describe the interference light field, and proposes a Mueller matrix holography method, through which complete polarization information can be obtained. The mathematical formalism of the holographic Mueller matrix is derived, and numerical examples of birefringent spheres are provided. The Mueller matrix holography method may provide a better opportunity than conventional methods to study anisotropic particles.

  16. Virtues of Mueller matrix detection of objects embedded in random media

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.

    2000-06-01

    We will present a brief introduction to Mueller matrix imaging (MMI) from cradle to adolescence and then show how it can be effectively used for detection of objects embedded in a highly scattering medium when ordinary radiance imaging might fail. We will show which elements and combination of elements are important for gaining the highest contrast against the background continuum. The mapping of certain combinations of Mueller matrix elements into an equivalent human visual system will also be discussed.

  17. Virtues of Mueller matrix detection of objects embedded in random media

    NASA Astrophysics Data System (ADS)

    Kattawar, George W.

    2000-04-01

    We will present a brief introduction to Mueller matrix imaging from cradle to adolescence and then show how it can be effectively used for detection of objects embedded in a highly scattering medium when ordinary radiance imaging might fail. We will show which elements and combination of elements are important for gaining the highest contrast against the background continuum. The mapping of certain combinations of Mueller matrix elements into an equivalent human visual system will also be discussed.

  18. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability

    SciTech Connect

    Stanislavchuk, T. N.; Kang, T. D.; Rogers, P. D.; Standard, E. C.; Basistyy, R.; Nita, G.; Zhou, T.; Sirenko, A. A.; Kotelyanskii, A. M.; Carr, G. L.; Kotelyanskii, M.

    2013-02-15

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm{sup -1}. Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of {theta}-2{theta} angular rotation, {chi} tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 Multiplication-Sign 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability {mu}{ne} 1. A nonlinear regression of the rotating analyzer ellipsometry and/or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with {mu}{ne} 1 are illustrated with experimental results and simulations for TbMnO{sub 3} and Dy{sub 3}Fe{sub 5}O{sub 12} single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO{sub 3}.

  19. Synchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability.

    PubMed

    Stanislavchuk, T N; Kang, T D; Rogers, P D; Standard, E C; Basistyy, R; Kotelyanskii, A M; Nita, G; Zhou, T; Carr, G L; Kotelyanskii, M; Sirenko, A A

    2013-02-01

    We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1). Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of θ-2θ angular rotation, χ tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 × 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability μ ≠ 1. A nonlinear regression of the rotating analyzer ellipsometry and∕or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with μ ≠ 1 are illustrated with experimental results and simulations for TbMnO3 and Dy3Fe5O12 single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO3.

  20. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect.

  1. Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation.

    PubMed

    Arteaga, Oriol; Baldrís, Marta; Antó, Joan; Canillas, Adolf; Pascual, Esther; Bertran, Enric

    2014-04-01

    In this paper we describe a new Mueller matrix (MM) microscope that generalizes and makes quantitative the polarized light microscopy technique. In this instrument all the elements of the MU are simultaneously determined from the analysis in the frequency domain of the time-dependent intensity of the light beam at every pixel of the camera. The variations in intensity are created by the two compensators continuously rotating at different angular frequencies. A typical measurement is completed in a little over one minute and it can be applied to any visible wavelength. Some examples are presented to demonstrate the capabilities of the instrument.

  2. Mueller matrix signature in advanced fluorescence microscopy imaging

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Qiu, Jianjun; Kao, Fu-Jen; Diaspro, Alberto

    2017-02-01

    We have demonstrated the measurement and characterization of the polarization properties of a fluorescence signal using four-channel photon counting based Stokes-Mueller polarization microscopy. Thus, Lu-Chipman decomposition was applied to extract the critical polarization properties such as depolarization, linear retardance and the optical rotation of collagen type I fiber. We observed the spatial distribution of anisotropic and helical molecules of collagen from the reconstructed 2D Mueller images based on the fluorescence signal in a pixel-by-pixel manner.

  3. GDx-MM: An imaging Mueller matrix retinal polarimeter

    NASA Astrophysics Data System (ADS)

    Twietmeyer, Karen Marie

    2007-12-01

    Retinal diseases are a major cause of blindness worldwide. Although widely studied, disease mechanisms are not completely understood, and diagnostic tests may not detect disease early enough for timely intervention. The goal of this research is to contribute to research for more sensitive diagnostic tests that might use the interaction of polarized light with retinal tissue to detect subtle changes in the microstructure. This dissertation describes the GDx-MM, a scanning laser polarimeter which measures a complete 16-element Mueller matrix image of the retina. This full polarization signature may provide new comparative information on the structure of healthy and diseased retinal tissue by highlighting depolarizing structures as well as structures with varying magnitudes and orientations of retardance and diattenuation. The three major components of this dissertation are: (1) Development of methods for polarimeter optimization and error analysis; (2) Design, optimization, assembly, calibration, and validation of the GDx-MM polarimeter; and (3) Analysis of data for several human subjects. Development involved modifications to a Laser Diagnostics GDx, a commercially available scanning laser ophthalmoscope with incomplete polarization capability. Modifications included installation of polarization components, development of a data acquisition system, and implementation of algorithms to convert raw data into polarization parameter images. Optimization involved visualization of polarimeter state trajectories on the Poincare sphere and a condition number analysis of the instrument matrix. Retinal images are collected non-invasively at 20 mum resolution over a 15° visual field in four seconds. Validation of the polarimeter demonstrates a polarimetric measurement accuracy of approximately +/- 5%. Retinal polarization data was collected on normal human subjects at the University of Arizona and at Indiana University School of Optometry. Calculated polarization parameter

  4. Selective optical scattering characterisation of tissue malignancy using Mueller matrix polarimetry: a simulation study

    NASA Astrophysics Data System (ADS)

    Fathima, Adeeba; Sujatha, N.

    2016-04-01

    Quantitative Mueller polarimetry optically characterizes a medium and is reflected upon by the ultrastructural changes in it. Tissue morphology changes occur during advent of diseases like cancer neoplasia. This alters the Mueller matrix characterizing the tissue as an optical element. The nucleus size undergoes an approximate doubling during the development of cancer. Cell crowding during cancer increases the number density of the nuclei per unit volume. Modeling the cell nuclei as main scattering centers, a systematic computational study on how Mueller matrix elements vary for an increase in scatterer size and number density is performed. Simulation on polarized light transport of wavelength 633nm through a slab of size 3 mm comprising of spherical scatterers in a medium of refractive index 1.33 is carried out. Light propagation is modeled using Monte Carlo method and meridian plane method is adopted for tracking the polarization state change. The stokes vector of the outgoing light is tracked to calculate the Mueller matrix images of the light backscattered from the slab. The Mueller matrix elements as well as depolarization factors are derived. The depolarization index increases with scatterer size. Along with nucleus size, change in the cell number density is also expected in the different stages of the cancer growth. Volume fraction of the scatterers in medium is varied as an indicator of this number density change. Behavior of Mueller matrix with respect to change in scattering coefficient due to variation in scatterer size and volume fraction is studied. It is observed that the depolarization index derived from Mueller matrix has selective discrimination towards the change in scattering coefficient caused due to size change and volume fraction change respectively.

  5. Evaluation of anisotropic chitosan hydrogels using analytical Mueller matrix method and scanned laser pico-projector.

    PubMed

    Huang, Chih-Ling; Chuang, Chin-Ho; Lo, Yu-Lung

    2013-07-25

    Chitosan has excellent biodegradable, biocompatible and bio-absorbable properties and has been found increasing use in the biomedical field in recent decades. The linear birefringence (LB), linear diattenuation (LD), circular birefringence (CB), circular diattenuation (CD), and depolarization properties of chitosan hydrogel films crosslinked in citrate acid buffer solution (CBS) are extracted using an analytical Mueller matrix method. It is shown that the optical phase retardance property of the hydrogel films provides a reliable indication of both the chitosan concentration of the film and the pH value of the CBS crosslinking environment. In addition, chitosan hydrogel suspension with low-concentration crosslinked in CBS environments with various pH values are studied by the speckle contrast of the projected images obtained when illuminating the suspension with a scanned laser pico-projector (SLPP). It is found that for the samples crosslinked in an acidic environment, the speckle contrast decreases with an increasing pH value. By contrast, for the samples crosslinked in an alkaline CBS environment, the speckle contrast increases as the pH value increases. It is concluded that both the phase retardance and the speckle contrast enable the pH value of the CBS crosslinking solution to be reliably determined. However, of the two methods, the SLPP method yields improved measurement sensitivity. Overall, the results presented in this study show that the analytical Mueller matrix method and SLPP method provide an effective means of characterizing the optical properties, concentration and crosslinking environment of chitosan hydrogel films and suspensions.

  6. The estimation of surface roughness with the utilization of Mueller matrix

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Zhou, Xiaojun; Xu, Fuyuan; Ren, Kan

    2016-05-01

    Roughness is an important parameter to describe the microtopography of target surface. In the field of roughness detection, constraints on traditional methods are significant. Meanwhile, polarization imaging technology is gradually mature in recent years. In this paper, a method of roughness estimation with Mueller matrix is presented. Battery of lenses with fixed orientation have been introduced to produce a facula on the measured surface. Polarized information of each pixel can be obtained with the lenses of known position. According to the polarized information and Lambertian model, Stocks vector, Mueller matrix, and reflected Mueller matrix of each pixel can be acquired. Therefore, the roughness information of target surface can be obtained according to the relationship between roughness information and elements of matrix. Experimental results show that with the proposed method, efficiency of roughness detection can be improved without precision deducing. It can lay a foundation for extending the application of roughness into the field of object identification.

  7. Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry.

    PubMed

    Swami, M K; Manhas, S; Buddhiwant, P; Ghosh, N; Uppal, A; Gupta, P K

    2006-10-02

    The polarization properties of any medium are completely described by the sixteen element Mueller matrix that relates the polarization parameters of the light incident on the medium to that emerging from it. Measurement of all the elements of the matrix requires a minimum of sixteen measurements involving both linear and circularly polarized light. However, for many diagnostic applications, it would be useful if the polarization parameters can be quantified with linear polarization measurements alone. In this paper, we present a method based on polar decomposition of Mueller matrix for quantification of the polarization parameters of a scattering medium using the nine element (3 x 3) Mueller matrix that requires linear polarization measurements only. The methodology for decomposition of the 3 x 3 Mueller matrix is based on the previously developed decomposition process for sixteen element (4 x 4) Mueller matrix but with an assumption that the depolarization of linearly polarized light due to scattering is independent of the orientation angle of the incident linear polarization vector. Studies conducted on various scattering samples demonstrated that this assumption is valid for a turbid medium like biological tissue where the depolarization of linearly polarized light primarily arises due to the randomization of the field vector's direction as a result of multiple scattering. For such medium, polar decomposition of 3 x 3 Mueller matrix can be used to quantify the four independent polarization parameters namely, the linear retardance (delta ), the circular retardance (psi), the linear depolarization coefficient (Delta) and the linear diattenuation (d) with reasonable accuracy. Since this approach requires measurements using linear polarizers only, it considerably simplifies measurement procedure and might find useful applications in tissue diagnosis using the retrieved polarization parameters.

  8. Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Honghui; Li, Xianpeng; Chang, Jintao; Wang, Ye; Liu, Shaoxiong; Zeng, Nan; He, Yonghong; Ma, Hui

    2015-10-01

    We present a new way to extract characteristic features of the Mueller matrix images based on their frequency distributions and the central moments. We take the backscattering Mueller matrices of tissues with distinctive microstructures, and then analyze the frequency distribution histograms (FDHs) of all the matrix elements. For anisotropic skeletal muscle and isotropic liver tissues, we find that the shapes of the FDHs and their central moment parameters, i.e., variance, skewness, and kurtosis, are not sensitive to the sample orientation. Comparisons among different tissues further indicate that the frequency distributions of Mueller matrix elements and their corresponding central moments can be used as indicators for the characteristic microstructural features of tissues. A preliminary application to human cervical cancerous tissues shows that the distribution curves and central moment parameters may have the potential to give quantitative criteria for cancerous tissues detections.

  9. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Ellingsen, Pa˚L. Gunnar; Lilledahl, Magnus Borstad; Aas, Lars Martin Sandvik; Davies, Catharina De Lange; Kildemo, Morten

    2011-11-01

    The collagen meshwork in articular cartilage of chicken knee is characterized using Mueller matrix imaging and multiphoton microscopy. Direction and degree of dispersion of the collagen fibers in the superficial layer are found using a Fourier transform image-analysis technique of the second-harmonic generated image. Mueller matrix images are used to acquire structural data from the intermediate layer of articular cartilage where the collagen fibers are too small to be resolved by optical microscopy, providing a powerful multimodal measurement technique. Furthermore, we show that Mueller matrix imaging provides more information about the tissue compared to standard polarization microscopy. The combination of these techniques can find use in improved diagnosis of diseases in articular cartilage, improved histopathology, and additional information for accurate biomechanical modeling of cartilage.

  10. Diagnosis potential of near infrared Mueller Matrix imaging for colonic adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic adenocarcinoma detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (<5s) Muller matrix imaging system with dual-rotating waveplates was developed. 16 (4 by 4) full Mueller matrices of the colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and adenocarcinomaous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  11. Second-order systematic errors in Mueller matrix dual rotating compensator ellipsometry.

    PubMed

    Broch, Laurent; En Naciri, Aotmane; Johann, Luc

    2010-06-10

    We investigate the systematic errors at the second order for a Mueller matrix ellipsometer in the dual rotating compensator configuration. Starting from a general formalism, we derive explicit second-order errors in the Mueller matrix coefficients of a given sample. We present the errors caused by the azimuthal inaccuracy of the optical components and their influences on the measurements. We demonstrate that the methods based on four-zone or two-zone averaging measurement are effective to vanish the errors due to the compensators. For the other elements, it is shown that the systematic errors at the second order can be canceled only for some coefficients of the Mueller matrix. The calibration step for the analyzer and the polarizer is developed. This important step is necessary to avoid the azimuthal inaccuracy in such elements. Numerical simulations and experimental measurements are presented and discussed.

  12. Number of independent parameters in the Mueller matrix representation of homogeneous depolarizing media.

    PubMed

    Arteaga, Oriol

    2013-04-01

    In general the transmission of polarized light through a homogeneous depolarizing sample has motion-reversal symmetry because the response remains the same for light traveling in the opposite direction. As a consequence, the optical properties of a sample, characterized by the differential Mueller matrix, must be invariant upon motion reversal. This Letter shows that the 16 parameters of the differential Mueller matrix must therefore obey six conditions to satisfy this symmetry. This limits the number of independent parameters to 10. The 10 elementary optical properties of a depolarizing homogeneous medium are defined and discussed.

  13. Azimuthally invariant Mueller-matrix mapping of biological tissue in differential diagnosis of mechanisms protein molecules networks an sotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Gavrylyak, M. S.

    2013-09-01

    The optical model of polycrystalline networks of blood plasma proteins is suggested. The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of Mueller-matrixes elements of blood plasma smears and pathological state of the organism. The diagnostic criteria of breast cancer nascency are determined.

  14. Mueller-matrix mapping of biological tissues in differential diagnosis of optical anisotropy mechanisms of protein networks

    SciTech Connect

    Ushenko, V A; Sidor, M I; Marchuk, Yu F; Pashkovskaya, N V; Andreichuk, D R

    2015-03-31

    We report a model of Mueller-matrix description of optical anisotropy of protein networks in biological tissues with allowance for the linear birefringence and dichroism. The model is used to construct the reconstruction algorithms of coordinate distributions of phase shifts and the linear dichroism coefficient. In the statistical analysis of such distributions, we have found the objective criteria of differentiation between benign and malignant tissues of the female reproductive system. From the standpoint of evidence-based medicine, we have determined the operating characteristics (sensitivity, specificity and accuracy) of the Mueller-matrix reconstruction method of optical anisotropy parameters and demonstrated its effectiveness in the differentiation of benign and malignant tumours. (laser applications and other topics in quantum electronics)

  15. Development of a spectroscopic Mueller matrix imaging ellipsometer for nanostructure metrology.

    PubMed

    Chen, Xiuguo; Du, Weichao; Yuan, Kui; Chen, Jun; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2016-05-01

    In this paper, we describe the development of a spectroscopic Mueller matrix imaging ellipsometer (MMIE), which combines the great power of Mueller matrix ellipsometry with the high spatial resolution of optical microscopy. A dual rotating-compensator configuration is adopted to collect the full 4 × 4 imaging Mueller matrix in a single measurement. The light wavelengths are scanned in the range of 400-700 nm by a monochromator. The instrument has measurement accuracy and precision better than 0.01 for all the Mueller matrix elements in both the whole image and the whole spectral range. The instrument was then applied for the measurement of nanostructures combined with an inverse diffraction problem solving technique. The experiment performed on a photoresist grating sample has demonstrated the great potential of MMIE for accurate grating reconstruction from spectral data collected by a single pixel of the camera and for efficient quantification of geometrical profile of the grating structure over a large area with pixel resolution. It is expected that MMIE will be a powerful tool for nanostructure metrology in future high-volume nanomanufacturing.

  16. Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Pavlov, Sergii V.; Radchenko, Kostiantyn O.; Stasenko, Vladyslav A.; Wójcik, Waldemar; Kussambayeva, Nazym

    2015-12-01

    The application field of using the Mueller-matrix polarizing reconstruction system of phase structure of biological layer for optical-anisotropic parameters differentiation of histological sections of healthy and rat's liver with hepatitis were investigated. Comparison of system informativity with known systems on indexes of sensitivity, specificity and balanced accuracy were performed.

  17. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  18. Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism.

    PubMed

    Agarwal, Naman; Yoon, Jiho; Garcia-Caurel, Enric; Novikova, Tatiana; Vanel, Jean-Charles; Pierangelo, Angelo; Bykov, Alexander; Popov, Alexey; Meglinski, Igor; Ossikovski, Razvigor

    2015-12-01

    We show, through visible-range Mueller polarimetry, as well as numerical simulations, that the depolarization in a homogeneous turbid medium consisting of submicron spherical particles follows a parabolic law with the path-length traveled by light through the medium. This result is in full agreement with the phenomenological theory of the fluctuating medium within the framework of the differential Mueller matrix formalism. We further found that the standard deviations of the fluctuating elementary polarization properties of the medium depend linearly on the concentration of particles. These findings are believed to be useful for the phenomenological interpretation of polarimetric experiments, with special emphasis on biomedical applications.

  19. Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media.

    PubMed

    Ossikovski, Razvigor; Arteaga, Oriol

    2014-08-01

    By applying the statistical definition of a depolarizing Mueller matrix we formally derive and physically interpret the differential matrix of a depolarizing homogeneous medium. The depolarization phenomenon being a direct consequence of the fluctuations of the six elementary polarization properties of the medium, the differential matrix contains the mean values and the variances of the properties, thus fully describing those from a statistical viewpoint. Similarly, the reduced coherency matrix associated with the G-symmetric component of the differential matrix has an immediate physical interpretation as being the covariance matrix of the three basic groups of polarization properties. The formal developments are illustrated on experimental examples.

  20. Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism.

    PubMed

    Liao, Chia-Chi; Lo, Yu-Lung

    2015-04-20

    A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors' knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples.

  1. Study of procariotic and eucariotic microalgae cells with Mueller matrix polarimetry method

    NASA Astrophysics Data System (ADS)

    Savenkov, Sergey N.; Yushtin, Konstantin E.; Parshikova, Tatyana V.; Draga, Mariana V.

    1999-11-01

    Mueller matrix formalism has been used for the analysis of polarization properties for microalgae with different content and structure of cells' wall. Using microalgae from different systematic groups: Cyanobacteria (murein cells' wall)--Anabaena hassalii (Kuetz) Wittr., Microcystis aeruginosa Kuetz. emend. Elenk., and Chlorophyta (cellulose)--Ankistradesmus fusiformas Corda. The dependence of obtained polarization properties of microalgae from morphological peculiarities of cells and its sizes was discussed.

  2. Mapping local anisotropy axis for scattering media using backscattering Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Guo, Yihong; He, Yonghong; Ma, Hui

    2014-03-01

    Mueller matrix imaging techniques can be used to detect the micro-structure variations of superficial biological tissues, including the sizes and shapes of cells, the structures in cells, and the densities of the organelles. Many tissues contain anisotropic fibrous micro-structures, such as collagen fibers, elastin fibers, and muscle fibers. Changes of these fibrous structures are potentially good indicators for some pathological variations. In this paper, we propose a quantitative analysis technique based on Mueller matrix for mapping local anisotropy axis of scattering media. By conducting both experiments on silk sample and Monte Carlo simulation based on the sphere-cylinder scattering model (SCSM), we extract anisotropy axis parameters from different backscattering Mueller matrix elements. Moreover, we testify the possible applications of these parameters for biological tissues. The preliminary experimental results of human cancerous samples show that, these parameters are capable to map the local axis of fibers. Since many pathological changes including early stage cancers affect the well aligned structures for tissues, the experimental results indicate that these parameters can be used as potential tools in clinical applications for biomedical diagnosis purposes.

  3. Extraction of optical rotation from chiral turbid medium with Mueller matrix decomposition

    NASA Astrophysics Data System (ADS)

    Ma, Yongchao; Sun, Ping; Liu, Wei; Yang, Qinghua; Jia, Qiongzhen

    2013-09-01

    Optical activity is the intrinsic property of chiral molecules. Investigation of optical activity is particularly important for diagnosing and monitoring blood glucose of diabetes. The experimental setup to obtain the Mueller matrix in the forward detection geometry is used. Three kinds of chiral turbid media are selected to be studied in the experiment. The first is the tissue phantom composed of an aqueous solution of glucose mixed with PST sphere suspensions. The second is the actual chicken blood mixed with glucose solution. The last is the vein blood plasma of diabetic patients. The results presented in this study demonstrate that the method of Mueller matrix decomposition can be used to quantitatively extract the optical rotation of chiral molecule in turbid medium. The rotation angle has linear relationship with the concentration of the optical activity material when the scattering coefficient of the turbid medium maintains unchanged. The scattering effect enlarges the rotation angle. Furthermore, optical rotation abides by the Drude's dispersion equation. The decomposition method also has been found useful applications in quantifying the optical rotations due to blood glucose in diabetic patients. The diabetic severity status can be distinguished with the rotation angle of glucose by using the decomposition method and also are in accordance with the clinical diagnosis. Thus, the method of Mueller matrix decomposition has promising applications in diabetic diagnosis.

  4. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues.

    PubMed

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  5. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues

    NASA Astrophysics Data System (ADS)

    Wang, Ye; He, Honghui; Chang, Jintao; He, Chao; Liu, Shaoxiong; Li, Migao; Zeng, Nan; Wu, Jian; Ma, Hui

    2016-07-01

    Today the increasing cancer incidence rate is becoming one of the biggest threats to human health. Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper, we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameters can provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.

  6. Mueller-matrix invariants of optical anisotropy of the bile polycrystalline films in the diagnosis of human liver pathologies

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Prysyazhnyuk, V. P.; Dubolazov, O. V.; Savich, O. V.; Novakovska, O. Y.; Olar, O. V.

    2015-09-01

    The model of Mueller-matrix description of mechanisms of optical anisotropy typical for polycrystalline films of bile - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis of such distributions the objective criteria of differentiation of films of bile from the dead you people different times were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Muellermatrix reconstruction of optical anisotropy parameters were found and its efficiency in another task - diagnostics of diseases of internal organs of rats was demonstrated.

  7. Mueller matrix imaging of targets under an air-sea interface.

    PubMed

    Zhai, Peng-Wang; Kattawar, George W; Yang, Ping

    2009-01-10

    The Mueller matrix imaging method is a powerful tool for target detection. In this study, the effect of the air-sea interface on the detection of underwater objects is studied. A backward Monte Carlo code has been developed to study this effect. The main result is that the reflection of the diffuse sky light by the interface reduces the Mueller image contrast. If the air-sea interface is ruffled by wind, the distinction between different regions of the underwater target is smoothed out. The effect of the finite size of an active light source is also studied. The image contrast is found to be relatively insensitive to the size of the light source. The volume scattering function plays an important role on the underwater object detection. Generally, a smaller asymmetry parameter decreases the contrast of the polarimetry images.

  8. Mapping local orientation of aligned fibrous scatterers for cancerous tissues using backscattering Mueller matrix imaging

    NASA Astrophysics Data System (ADS)

    He, Honghui; Sun, Minghao; Zeng, Nan; Du, E.; Liu, Shaoxiong; Guo, Yihong; Wu, Jian; He, Yonghong; Ma, Hui

    2014-10-01

    Polarization measurements are sensitive to the microstructure of tissues and can be used to detect pathological changes. Many tissues contain anisotropic fibrous structures. We obtain the local orientation of aligned fibrous scatterers using different groups of the backscattering Mueller matrix elements. Experiments on concentrically well-aligned silk fibers and unstained human papillary thyroid carcinoma tissues show that the m22, m33, m23, and m32 elements have better contrast but higher degeneracy for the extraction of orientation angles. The m12 and m13 elements show lower contrast, but allow us to determine the orientation angle for the fibrous scatterers along all directions. Moreover, Monte Carlo simulations based on the sphere-cylinder scattering model indicate that the oblique incidence of the illumination beam introduces some errors in the orientation angles obtained by both methods. Mapping the local orientation of anisotropic tissues may not only provide information on pathological changes, but can also give new leads to reduce the orientation dependence of polarization measurements.

  9. Optical diagnosis of dengue virus infected human blood using Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz

    2016-08-01

    Currently dengue fever diagnosis methods include capture ELISAs, immunofluorescence tests, and hemagglutination assays. In this study optical diagnosis of dengue virus infection in the whole blood is presented utilizing Mueller matrix polarimetry. Mueller matrices of about 50 dengue viral infected and 25 non-dengue healthy blood samples were recorded utilizing light source from 500 to 700 nm with scanning step of 10 nm. Polar decomposition of the Mueller matrices for all the blood samples was performed that yielded polarization properties including depolarization, diattenuation, degree of polarization, retardance and optical activity, out of which, depolarization index clusters up the diseased and healthy in to different separate groups. The average depolarized light in the case of dengue infection in the whole blood at 500 nm is 18%, whereas for the healthy blood samples it is 13.5%. This suggests that depolarization index of polarized light at the wavelengths of 500, 510, 520, 530 and 540 nm, we find that in case of depolarization index values are higher for dengue viral infection as compared to normal samples. This technique can effectively be used for the characterization of the dengue virus infected at an early stage of disease.

  10. Quantitative tissue polarimetry using polar decomposition of 3 x 3 Mueller matrix

    NASA Astrophysics Data System (ADS)

    Swami, M. K.; Manhas, S.; Buddhiwant, P.; Ghosh, N.; Uppal, A.; Gupta, P. K.

    2007-05-01

    Polarization properties of any optical system are completely described by a sixteen-element (4 x 4) matrix called Mueller matrix, which transform the Stokes vector describing the polarization properties of incident light to the stokes vector of scattered light. Measurement of all the elements of the matrix requires a minimum of sixteen measurements involving both linear and circularly polarized light. However, for many diagnostic applications, it would be useful if all the polarization parameters of the medium (depolarization (Δ), differential attenuation of two orthogonal polarizations, that is, diattenuation (d), and differential phase retardance of two orthogonal polarizations, i.e., retardance (δ )) can be quantified with linear polarization measurements alone. In this paper we show that for a turbid medium, like biological tissue, where the depolarization of linearly polarized light arises primarily due to the randomization of the field vector's direction by multiple scattering, the polarization parameters of the medium can be obtained from the nine Mueller matrix elements involving linear polarization measurements only. Use of the approach for measurement of polarization parameters (Δ, d and δ) of normal and malignant (squamous cell carcinoma) tissues resected from human oral cavity are presented.

  11. Nondestructive analysis of lithographic patterns with natural line edge roughness from Mueller matrix ellipsometric data

    NASA Astrophysics Data System (ADS)

    Chen, Xiuguo; Shi, Yating; Jiang, Hao; Zhang, Chuanwei; Liu, Shiyuan

    2016-12-01

    Mueller matrix ellipsometry (MME) is applied to characterize lithographic patterns with natural line edge roughness (LER). A computationally efficient approach based on effective medium approximation is proposed to model the effects of LER in MME measurements. We present both the theoretical and experimental results on lithographic patterns with realistic LER which demonstrate that MME in combination with the proposed effective modeling method is capable of quantifying LER amplitudes. Quantitative comparisons between the MME and scanning electron microscopy measured results also reveal the strong potential of this technique for in-line nondestructive line roughness monitoring.

  12. Rapid Mueller matrix polarimetry imaging based on four photoelastic modulators with no moving parts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gribble, Adam; Alali, Sanaz; Vitkin, Alex

    2016-03-01

    Polarized light has many applications in biomedical imaging. The interaction of a biological sample with polarized light reveals information about its composition, both structural and functional. For example, the polarimetry-derived metric of linear retardance (birefringence) is dependent on tissue structural organization (anisotropy) and can be used to diagnose myocardial infarct; circular birefringence (optical rotation) can measure glucose concentrations. The most comprehensive type of polarimetry analysis is to measure the Mueller matrix, a polarization transfer function that completely describes how a sample interacts with polarized light. To derive this 4x4 matrix it is necessary to observe how a tissue interacts with different polarizations. A well-suited approach for tissue polarimetry is to use photoelastic modulators (PEMs), which dynamically modulate the polarization of light. Previously, we have demonstrated a rapid time-gated Stokes imaging system that is capable of characterizing the state of polarized light (the Stokes vector) over a large field, after interacting with any turbid media. This was accomplished by synchronizing CCD camera acquisition times relative to two PEMs using a field-programmable gate array (FPGA). Here, we extend this technology to four PEMs, yielding a polarimetry system that is capable of rapidly measuring the complete sample Mueller matrix over a large field of view, with no moving parts and no beam steering. We describe the calibration procedure and evaluate the accuracy of the measurements. Results are shown for tissue-mimicking phantoms, as well as initial biological samples.

  13. Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium.

    PubMed

    Cameron, B D; Rakovic, M J; Mehrübeoglu, M; Kattawar, G W; Rastegar, S; Wang, L V; Coté, G L

    1998-04-01

    We present both experimental and Monte Carlo-based simulation results for the diffusely backscattered intensity patterns that arise from illumination of a turbid medium with a polarized laser beam. A numerical method that allows the calculation of all 16 elements of the two-dimensional Muller matrix is used; moreover, it is shown that only seven matrix elements are independent. To validate our method, we compared our simulations with experimental measurements, using a turbid medium consisting of 2.02-microm -diameter polystyrene spheres suspended in deionized water. By varying the incident polarization and the analyzer optics for the experimental measurements, we obtained the diffuse backscattering Mueller matrix elements. The experimental and the numerical results are in good agreement.

  14. Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system

    PubMed Central

    Chandel, Shubham; Soni, Jalpa; Ray, Subir kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya

    2016-01-01

    Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes. PMID:27212687

  15. Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing.

    PubMed

    Pham, Thi-Thu-Hien; Lo, Yu-Lung

    2012-09-01

    An analytical technique based on Stokes polarimetry and the Mueller matrix method is proposed for extracting the effective linear birefringence, linear dichroism, circular birefringence, circular dichroism, linear depolarization, and circular depolarization properties of turbid media. In contrast to existing analytical models, the model proposed extracts the effective parameters in a decoupled manner and considers not only the circular dichroism properties of the sample, but also the depolarization properties. The results show that the proposed method enables all of the effective parameters to be measured over the full range. Moreover, it is shown that the extracted value of the depolarization index is unaffected by the order in which the depolarizing Mueller matrix is decomposed during the extraction procedure. Finally, a method is proposed for calibrating the optical rotation angle of a polystyrene microsphere suspension containing dissolved D-glucose (C6H12O6) powder in accordance with the distance between the sample and the detector. The experimental results show that the sensitivity of the resulting D-glucose measurement is equal to approximately 1.73  deg/M.

  16. Polarimetry group theory analysis in biological tissue phantoms by Mueller coherency matrix

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, Félix; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2010-11-01

    The characterization of biological tissues by optical techniques provides several advantages over other techniques. Optical techniques enable to perform high resolution and contrast imaging, in a non-invasive way and with no-contact. Biological tissues are turbid media that strongly scatter light. The ultrastructure of some tissues makes them present a certain degree of anisotropy. Both scattering and anisotropy affect light polarization. Some pathologies alter these characteristics of the tissue. As a consequence polarized light can be used to extract additional information and achieve a better diagnosis. In this work, Group Theory is applied to analyse the polarization behavior of several samples. Firstly, the Mueller matrix for each sample is measured. Then, the Mueller Coherency matrix is obtained by means of the SU(4)-O + (6) homomorphism. Finally, the target decomposition theorem is applied by analyzing the eigenvalues and eigenvectors, and subsequently the different polarimetric effects are separated. In this way, the contrast of tissue imaging can be increased. This analysis is applied to biological tissue phantoms, which consisted on glucose suspensions of polystyrene spheres with different scatterer concentrations. Their behaviour can be modeled by means of single or multiple scattering depending on the concentration, either in the Rayleigh or Mie regimes. The same procedure could be used in a wide range of applications, like the study of cancerous cells that grow without control in cell cultures, or erythrocytes monitoring in anemia. The technique also has a great potential to be applied in Polarization Sensitive Optical Coherence Tomography (PS-OCT).

  17. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  18. Optical Metrology for Directed Self-assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry

    NASA Astrophysics Data System (ADS)

    Dixit, Dhairya J.

    based patterning process. This work focuses on understanding the efficacy of MMSE base scatterometry for characterizing complex DSA structures. For example, the use of symmetry-antisymmetry properties associated with Mueller matrix (MM) elements to understand the topography of the periodic nanostructures and measure defectivity. Simulations (the forward problem approach of scatterometry) are used to investigate MM elements' sensitivity to changes in DSA structure such as one vs. two contact hole patterns and predict sensitivity to dimensional changes. A regression-based approach is used to extract feature shape parameters of the DSA structures by fitting simulated optical spectra to experimental optical spectra. Detection of the DSA defects is a key to reducing defect density for eventual manufacturability and production use of DSA process. Simulations of optical models of structures containing defects are used to evaluate the sensitivity of MM elements to DSA defects. This study describes the application of MMSE to determine the DSA pattern defectivity via spectral comparisons based on optical anisotropy and depolarization. The use of depolarization and optical anisotropy for characterization of experimental MMSE data is a very recent development in scatterometry. In addition, reconstructed scatterometry models are used to calculate line edge roughness in 28 nm pitch Si fins fabricated using DSA patterning process.

  19. Azimuthally invariant Mueller-matrix mapping of optically anisotropic layers of biological networks of blood plasma in the diagnosis of liver disease

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Pavlyukovich, O.; Pavlyukovich, N.; Novakovskaya, O.; Gorsky, M. P.

    2016-09-01

    The model of Mueller-matrix description of mechanisms of optical anisotropy that typical for polycrystalline layers of the histological sections of biological tissues and fluids - optical activity, birefringence, as well as linear and circular dichroism - is suggested. Within the statistical analysis distributions quantities of linear and circular birefringence and dichroism the objective criteria of differentiation of myocardium histological sections (determining the cause of death); films of blood plasma (liver pathology); peritoneal fluid (endometriosis of tissues of women reproductive sphere); urine (kidney disease) were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the method of Mueller-matrix reconstruction of optical anisotropy parameters were found.

  20. Decomposition of a depolarizing Mueller matrix into its nondepolarizing components by using symmetry conditions.

    PubMed

    Kuntman, Ertan; Arteaga, Oriol

    2016-04-01

    A procedure for the parallel decomposition of a depolarizing Mueller matrix with an associated rank 2 covariance matrix into its two nondepolarizing components is presented. We show that, if one of the components agrees with certain symmetry conditions, the arbitrary decomposition becomes unique, and its calculation is straightforward. Solutions for six different symmetries, which are relevant for the physical interpretation of polarimetric measurements, are provided. With this procedure, a single polarimetric measurement is sufficient to fully disclose the complete polarimetric response of two different systems and evaluate their weights in the overall response. The decomposition method we propose is illustrated by obtaining the ellipsometric responses of a silicon wafer and a holographic grating from a single measurement in which the light spot illuminates sectors of both materials. In a second example, we use the decomposition to analyze an optical system in which a polarizing film is partially covered by another misaligned film.

  1. A study on forward scattering Mueller matrix decomposition in anisotropic medium.

    PubMed

    Guo, Yihong; Zeng, Nan; He, Honghui; Yun, Tianliang; Du, E; Liao, Ran; He, Yonghong; Ma, Hui

    2013-07-29

    In this work, we apply Mueller matrix polar decomposition (MMPD) method in a forward scattering configuration on anisotropic scattering samples and look for the physics origin of depolarization and retardance. Using Monte Carlo simulations on the sphere-cylinder birefringence model (SCBM), and forward scattering experiments on samples containing polystyrene microspheres, well-aligned glass fibers and polyacrylamide, we examine in detail the relationship between the MMPD parameters and the microscopic structure of the samples. The results show that the spherical scatterers and birefringent medium contribute to depolarization and retardance respectively, but the cylindrical scatterers contribute to both. Retardance due to the cylindrical scatterers changes with their density, size and order of alignment. Total retardance is a simple sum of both contributions when cylinders are in parallel to the extraordinary axis of birefringence.

  2. Mueller matrix ellipsometric detection of profile asymmetry in nanoimprinted grating structures

    SciTech Connect

    Chen, Xiuguo; Ma, Zhichao; Xu, Zhimou; Zhang, Chuanwei; Jiang, Hao; Liu, Shiyuan

    2014-11-21

    Mueller matrix ellipsometry (MME) is applied to detect foot-like asymmetry encountered in nanoimprint lithography (NIL) processes. We present both theoretical and experimental results which show that MME has good sensitivity to both the magnitude and direction of asymmetric profiles. The physics behind the use of MME for asymmetry detection is the breaking of electromagnetic reciprocity theorem for the zeroth-order diffraction of asymmetric gratings. We demonstrate that accurate characterization of asymmetric nanoimprinted gratings can be achieved by performing MME measurements in a conical mounting with the plane of incidence parallel to grating lines and meanwhile incorporating depolarization effects into the optical model. The comparison of MME-extracted asymmetric profile with the measurement by cross-sectional scanning electron microscopy also reveals the strong potential of this technique for in-line monitoring NIL processes, where symmetric structures are desired.

  3. Mueller-matrix ellipsometry studies of optically active structures in scarab beetles

    NASA Astrophysics Data System (ADS)

    Järrendahl, K.; Landin, J.; Arwin, H.

    2010-06-01

    The complexity of multilayers, photonic crystals, metamaterials and other artificial materials has promoted the use of spectroscopic, variable angle, generalized and Mueller-matrix ellipsometry. Naturally occurring structures may show even higher complexity than artificial structures but with a more narrow range of constituent materials. Fascinating reflection properties result from intricate photonic structures in, for instance, the wing scales and cuticles of insects. Currently there is a large interest to explore such functional supramolecular architectures for exploitation in nanotechnology. In this study, Mueller-matrix spectroscopic ellipsometry is applied in the spectral range of 250 to 1000 nm to investigate optical response and structures of the cuticle of Scarab beetles of the Cetoniinae subfamily. The cuticle of Cetonia aurata (the rose chafer, la cétoine dorée) is green with a metallic appearance and reflects left-handed circular/elliptically polarized light. It has been suggested that the polarization of this metallic gloss is caused by a helical structure in the chitinous cuticle. We find that the polarization effect is limited to the narrow spectral range 470-550 nm whereas for shorter or longer wavelengths the reflection properties are similar to those from a near-dielectric material. Model calculations and parameterization of the nanostructure employing a heliocoidal structure are discussed. As a comparison the polarization effects from light reflected from two other beetles will be presented. Coptomia laevis has a similar appearance as Cetonia aurata but has very different polarization properties. The golden Plusiotis argentiola has very interesting properties showing both left and right-handed polarization depending on incidence angle and wavelength.

  4. Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain.

    PubMed

    Dong, H; Shum, P; Yan, M; Zhou, J Q; Ning, G X; Gong, Y D; Wu, C Q

    2006-06-12

    A generalized Mueller matrix method (GMMM) is proposed to measure the polarization mode dispersion (PMD) in an optical fiber system with polarization-dependent loss or gain (PDL/G). This algorithm is based on the polar decomposition of a 4X4 matrix which corresponds to a Lorentz transformation. Compared to the generalized Poincaré sphere method, the GMMM can measure PMD accurately with a relatively larger frequency step, and the obtained PMD data has very low noise level.

  5. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.

    PubMed

    Ghosh, Nirmalya; Wood, Michael F G; Vitkin, I Alex

    2008-01-01

    Linear birefringence and optical activity are two common optical polarization effects present in biological tissue, and determination of these properties has useful biomedical applications. However, measurement and unique interpretation of these parameters in tissue is hindered by strong multiple scattering effects and by the fact that these and other polarization effects are often present simultaneously. We have investigated the efficacy of a Mueller matrix decomposition methodology to extract the individual intrinsic polarimetry characteristics (linear retardance delta and optical rotation psi, in particular) from a multiply scattering medium exhibiting simultaneous linear birefringence and optical activity. In the experimental studies, a photoelastic modulation polarimeter was used to record Mueller matrices from polyacrylamide phantoms having strain-induced birefringence, sucrose-induced optical activity, and polystyrene microspheres-induced scattering. Decomposition of the Mueller matrices recorded in the forward detection geometry from these phantoms with controlled polarization properties yielded reasonable estimates for delta and psi parameters. The confounding effects of scattering, the propagation path of multiple scattered photons, and detection geometry on the estimated values for delta and psi were further investigated using polarization-sensitive Monte Carlo simulations. The results show that in the forward detection geometry, the effects of scattering induced linear retardance and diattenuation are weak, and the decomposition of the Mueller matrix can retrieve the intrinsic values for delta and psi with reasonable accuracy. The ability of this approach to extract the individual intrinsic polarimetry characteristics should prove valuable in diagnostic photomedicine, for example, in quantifying the small optical rotations due to the presence of glucose in tissue and for monitoring changes in tissue birefringence as a signature of tissue abnormality.

  6. Use of combined polarization-sensitive optical coherence tomography and Mueller matrix imaging for the polarimetric characterization of excised biological tissue

    NASA Astrophysics Data System (ADS)

    Chue-Sang, Joseph; Bai, Yuqiang; Stoff, Susan; Straton, David; Ramaswamy, Sharan; Ramella-Roman, Jessica C.

    2016-07-01

    Mueller matrix polarimetry and polarization-sensitive optical coherence tomography (PS-OCT) are two emerging techniques utilized in the assessment of tissue anisotropy. While PS-OCT can provide cross-sectional images of local tissue birefringence through its polarimetric sensitivity, Mueller matrix polarimetry can be used to measure bulk polarimetric properties such as depolarization, diattenuation, and retardance. To this day true quantification of PS-OCT data can be elusive, partly due to the reliance on inverse models for the characterization of tissue birefringence and the influence of instrumentation noise. Similarly for Mueller matrix polarimetry, calculation of retardance or depolarization may be influenced by tissue heterogeneities that could be monitored with PS-OCT. Here, we propose an instrument that combines Mueller matrix polarimetry and PS-OCT. Through the co-registration of the two systems, we aim at achieving a better understanding of both modalities.

  7. Depolarizing differential Mueller matrix of homogeneous media under Gaussian fluctuation hypothesis.

    PubMed

    Devlaminck, Vincent

    2015-10-01

    In this paper, we address the issue of the existence of a solution of depolarizing differential Mueller matrix for a homogeneous medium. Such a medium is characterized by linear changes of its differential optical properties with z the thickness of the medium. We show that, under a short correlation distance assumption, it is possible to derive such linear solution, and we clarify this solution in the particular case where the random fluctuation processes associated to the optical properties are Gaussian white noise-like. A solution to the problem of noncommutativity of a previously proposed model [J. Opt. Soc. Am.30, 2196 (2013)JOSAAH0030-394110.1364/JOSAA.30.002196] is given by assuming a random permutation of the order of the layers and by averaging all the differential matrices resulting from these permutations. It is shown that the underlying assumption in this case is exactly the Gaussian white noise assumption. Finally, a recently proposed approach [Opt. Lett.39, 4470 (2014)OPLEDP0146-959210.1364/OL.39.004470] for analysis of the statistical properties related to changes in optical properties is revisited, and the experimental conditions of application of these results are specified.

  8. Full-order Mueller matrix polarimeter using liquid-crystal phase retarders and active illumination

    NASA Astrophysics Data System (ADS)

    Dayton, David C.; Hoover, Brian G.; Gonglewski, John D.

    2003-03-01

    Full order Stokes polarimeters are often composed of an analyzer consisting of a rotating quarter wave plate in front of a horizontal polarizer. A number of measurements are then made with the wave-plate oriented at different angle. The four-element Stokes vector is then computed from a linear combination of these measurements. A disadvantage of this device is that only a limited range of analyzer states can be generated. As a result a large number of measurements may be required to reduce the noise gain in the Stokes vector reconstructor. In this paper we describe a polarimeter based on a linear polarizer and two variable wave plates. It can be shown that such a device can produce an arbitrary polarization state. An active polarimeter consists of a generator stage, which transmits a laser illuminator with different polarization states and a receiver with a polarization analyzer stage. In our system both generator and analyzer stages consist of a horizontal polarizer and two variable wave-plates. A sixteen element Mueller matrix of resolved images is then formed for target characterization.

  9. Mueller matrix approach for probing multifractality in the underlying anisotropic connective tissue

    NASA Astrophysics Data System (ADS)

    Das, Nandan Kumar; Dey, Rajib; Ghosh, Nirmalya

    2016-09-01

    Spatial variation of refractive index (RI) in connective tissues exhibits multifractality, which encodes useful morphological and ultrastructural information about the disease. We present a spectral Mueller matrix (MM)-based approach in combination with multifractal detrended fluctuation analysis (MFDFA) to exclusively pick out the signature of the underlying connective tissue multifractality through the superficial epithelium layer. The method is based on inverse analysis on selected spectral scattering MM elements encoding the birefringence information on the anisotropic connective tissue. The light scattering spectra corresponding to the birefringence carrying MM elements are then subjected to the Born approximation-based Fourier domain preprocessing to extract ultrastructural RI fluctuations of anisotropic tissue. The extracted RI fluctuations are subsequently analyzed via MFDFA to yield the multifractal tissue parameters. The approach was experimentally validated on a simple tissue model comprising of TiO2 as scatterers of the superficial isotropic layer and rat tail collagen as an underlying anisotropic layer. Finally, the method enabled probing of precancer-related subtle alterations in underlying connective tissue ultrastructural multifractality from intact tissues.

  10. Optical characterization of murine model's in-vivo skin using Mueller matrix polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Mora-Núñez, Azael; Martinez-Ponce, Geminiano; Garcia-Torales, Guillermo

    2015-12-01

    Mueller matrix polarimetric imaging (MMPI) provides a complete characterization of an anisotropic optical medium. Subsequent single value decomposition allows image interpretation in terms of basic optical anisotropies, such as depolarization, diattenuation, and retardance. In this work, healthy in-vivo skin at different anatomical locations of a biological model (Rattus norvegicus) was imaged by the MMPI technique using 532nm coherent illumination. The body parts under study were back, abdomen, tail, and calvaria. Because skin components are randomly distributed and skin thickness depends on its location, polarization measures arise from the average over a single detection element (pixel) and on the number of free optical paths, respectively. Optical anisotropies over the imaged skin indicates, mainly, the presence of components related to the physiology of the explored region. In addition, a MMPI-based comparison between a tumor on the back of one test subject and proximal healthy skin was made. The results show that the single values of optical anisotropies can be helpful in distinguishing different areas of in-vivo skin and also lesions.

  11. Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor

    2015-05-01

    Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT), retardance (RT), depolarization (ΔT), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT, ΔL, RT,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DT and D showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.

  12. Backscattering Mueller matrix for quasi-horizontally oriented ice plates of cirrus clouds: application to CALIPSO signals.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia; Okamoto, Hajime

    2012-12-17

    A general view of the backscattering Mueller matrix for the quasi-horizontally oriented hexagonal ice crystals of cirrus clouds has been obtained in the case of tilted and scanning lidars. It is shown that the main properties of this matrix are caused by contributions from two qualitatively different components referred to the specular and corner-reflection terms. The numerical calculation of the matrix is worked out in the physical optics approximation. These matrices calculated for two wavelengths and two tilt angles (initial and present) of CALIPSO lidar are presented as a data bank. The depolarization and color ratios for these data have been obtained and discussed.

  13. Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry

    PubMed Central

    Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui

    2016-01-01

    Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919

  14. Depolarizing differential Mueller matrices.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-07-01

    The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.

  15. Mueller matrix for an ensemble of particles of arbitrary shape with an arbitrary square integrable orientation distribution function

    SciTech Connect

    Paramonov, L.E.

    1994-12-01

    Scattering of electromagnetic radiation from the elementary volume containing particles of an arbitrary shape with an arbitrary square integrable orientation distribution function is considered. Based on the T-matrix approach and the quantum theory of angular momentum, an analytical method is suggested for estimating the Mueller matrix elements and the Stokes vector of radiation scattered from an ensemble of particles in the case of an arbituary number of incident radiation sources. The constructive existence theorem is proved for the expansion of the scattering matrix elements as a power series in Wigner functions in the elementary volume having a rotational symmetry relative to the direction of the incident radiation propagation. Corollaries of the results obtained are considered. 24 refs.

  16. Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence

    NASA Astrophysics Data System (ADS)

    Babilotte, P.; Nunes Henrique Silva, V.; Sathaye, K.; Dubreuil, M.; Rivet, S.; Dupont, L.; de Bougrenet de la Tocnaye, J. L.; Le Jeune, B.

    2014-01-01

    A low frequency and high amplitude rectangular voltage V has been applied during different increased duration to Twisted Surface Stabilized Ferroelectric Liquid crystal (TwFLC) samples in which the alignment layers of the two substrates were rubbed along two different directions between 0° and 90°. The optical bistability properties have been evaluated using the specific Mueller Matrix formalism that allows a simultaneous access, through a single-shot measurement, to different polarimetric coefficients. In this new approach, the ellipticity ɛR and the azimuthal αR polarimetric parameters, extracted from the birefringence Mueller Matrix MR will be considered in priority. Several significant parameters, such as the horizontal offset ΔV, the degree of asymmetry DA, the characteristic area S of the hysteresis loop, are used to characterize the degradation observed into the hysteretic behaviour of the samples, for different values of ψ, at different duration T of exposure to V, before reaching the so-called stripes regime, giving a new experimental point of view concerning the evolution of the dynamic properties of the samples studied. The αR(V) and the ɛR(V) hysteresis loops are specifically examined. Static mapping related to ɛR(T) is given too. Among the different possible physical origins of the observed degradation, the in-plane anchoring energy contribution will be particularly examined, and a theoretical model is proposed that also gives access to different physical parameters, through a new approach.

  17. Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection

    PubMed Central

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-01-01

    We report the development and implementation of a unique integrated Mueller-matrix (MM) near-infrared (NIR) imaging and Mueller-matrix point-wise diffuse reflectance (DR) spectroscopy technique for improving colonic cancer detection and diagnosis. Point-wise MM DR spectra can be acquired from any suspicious tissue areas indicated by MM imaging. A total of 30 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated MM imaging and point-wise MM DR spectroscopy system. Polar decomposition algorithms are employed on the acquired images and spectra to derive three polarization metrics including depolarization, diattentuation and retardance for colonic tissue characterization. The decomposition results show that tissue depolarization and retardance are significantly decreased (p<0.001, paired 2-sided Student’s t-test, n = 30); while the tissue diattentuation is significantly increased (p<0.001, paired 2-sided Student’s t-test, n = 30) associated with colonic cancer. Further partial least squares discriminant analysis (PLS-DA) and leave-one tissue site-out, cross validation (LOSCV) show that the combination of the three polarization metrics provide the best diagnostic accuracy of 95.0% (sensitivity: 93.3%, and specificity: 96.7%) compared to either of the three polarization metrics (sensitivities of 93.3%, 83.3%, and 80.0%; and specificities of 90.0%, 96.7%, and 80.0%, respectively, for the depolarization, diattentuation and retardance metrics) for colonic cancer detection. This work suggests that the integrated MM NIR imaging and point-wise MM NIR diffuse reflectance spectroscopy has the potential to improve the early detection and diagnosis of malignant lesions in the colon. PMID:27446640

  18. Division of focal plane polarimeter-based 3 × 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues

    NASA Astrophysics Data System (ADS)

    Chang, Jintao; He, Honghui; Wang, Ye; Huang, Yi; Li, Xianpeng; He, Chao; Liao, Ran; Zeng, Nan; Liu, Shaoxiong; Ma, Hui

    2016-05-01

    A polarization microscope is a useful tool to reveal the optical anisotropic nature of a specimen and can provide abundant microstructural information about samples. We present a division of focal plane (DoFP) polarimeter-based polarization microscope capable of simultaneously measuring both the Stokes vector and the 3×4 Mueller matrix with an optimal polarization illumination scheme. The Mueller matrix images of unstained human carcinoma tissue slices show that the m24 and m34 elements can provide important information for pathological observations. The characteristic features of the m24 and m34 elements can be enhanced by polarization staining under illumination by a circularly polarized light. Hence, combined with a graphics processing unit acceleration algorithm, the DoFP polarization microscope is capable of real-time polarization imaging for potential quick clinical diagnoses of both standard and frozen slices of human carcinoma tissues.

  19. Stochastic determination of matrix determinants.

    PubMed

    Dorn, Sebastian; Ensslin, Torsten A

    2015-07-01

    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.

  20. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.

  1. Mueller matrix ellipsometry studies of the optical phonons and crystal field excitations in multiferroic orthoferrites RFeO3 (R=Tb,Dy)

    NASA Astrophysics Data System (ADS)

    Martinez, V. A.; Stanislavchuk, T. N.; Sirenko, A. A.; Litvinchuk, A. P.; Wang, Yazhong; Cheong, S. W.

    Optical properties of multiferroic orthoferrites RFeO3 (R=Tb,Dy) bulk crystals have been studied in the far-infrared range from 50 to 1000 cm-1 and temperatures from 7 K to 300 K. Mueller matrix and rotating analyzer ellipsometry measurements were carried out at the U4IR beamline of the National Synchrotron Light Source at Brookhaven National Lab. Optical phonon spectra and crystal field excitations were measured for all three orthorhombic axes of RFeO3. In the experimental temperature dependencies of the phonon frequencies we found non-Grüneisen behavior caused by the electron-phonon and spin-phonon interactions. We determined the symmetries and selection rules for the crystal field transitions in Tb3+ and Dy3+ ions. Magnetic field dependencies of the optical spectra allowed us to determine anisotropy of the crystal field g-factors for Tb3+ and Dy3+ ions. This Project is supported by collaborative DOE Grant DE-FG02-07ER46382 between Rutgers U. and NJIT. Use of NSLS-BNL was supported by DOE DE-AC02-98CH10886. V.A. Martinez was supported by NEU NSF-1343716.

  2. Mueller polarimetric microscopy

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; De Martino, Antonello; Le Naour, Gilles; Genestie, Catherine; Schwartz, Laurent; Garcia-Caurel, Enric; Drevillon, Bernard

    2004-07-01

    We present a multispectral polarimetric imaging system well suited for complete Mueller matrix microscopy. The source is a spectrally filtered halogen light bulb, and the image is formed on a fast CCD camera The light polarization is modulated before the sample and analyzed after the sample by using nematic liquid crystal modulators.. The whole Mueller matrix image of the sample is typically measured over 5 seconds for a good signal-to-noise ratio. The instrument design, together with an original and easy-to-operate calibration procedure provides a high polarimetric accuracy over wide ranges of wavelengths and magnifications. Mueller polarimetry provides separate images of scalar and vector retardation and dichroism of the sample, together with its depolarizing power, while all these effects do contribute simultaneously to the contrasts observed in standard polarized microsopy. Polarimetric images of several samples, namely an unstained rabbit cornea, a picrosirius red stained hepatic biopsy, and a rat artery specifically stained for collagen III are shown and discussed

  3. Polarimetric target detection in the presence of spatially fluctuating Mueller matrices.

    PubMed

    Anna, Guillaume; Goudail, François; Dolfi, Daniel

    2011-12-01

    In polarimetric imaging systems, the main source of perturbations may not be detection noise but fluctuations of the Mueller matrices in the scene. In this case, we propose a method for determining the illumination and analysis polarization states that allow reaching the highest target detection performance. We show with simulations and real-world images that, in practical applications, the statistics of Mueller matrix fluctuations have to be taken into account to optimize polarimetric imagery.

  4. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring.

    PubMed

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-04-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed.

  5. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring

    PubMed Central

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-01-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  6. Historical revision of the differential Stokes-Mueller formalism: discussion.

    PubMed

    Arteaga, Oriol

    2017-03-01

    The differential Stokes-Mueller matrix formalism expresses the local evolution of the Mueller matrix or the Stokes parameters for light propagating through a homogeneous optical medium. This paper presents a historical revision of the development of the differential Stokes-Mueller matrix formalism and highlights several important early contributions that have been overlooked. Particularly relevant is that this formalism was pioneered as early as 1929 by Paul Soleillet, almost 50 years earlier than it has been usually assumed. This historical revision demonstrates that several different authors independently formulated the differential Stokes-Mueller formalism during the 20th century and they found equivalent results studying the propagation problem from different approaches.

  7. Mueller-matrices polarization selection of two-dimensional linear and circular birefringence images

    NASA Astrophysics Data System (ADS)

    Ushenko, V. A.; Zabolotna, N. I.; Pavlov, S. V.; Burcovets, D. M.; Novakovska, O. Yu.

    2013-12-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The complex statistic, correlation and fractal analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order, correlation moment, fratal parameters) of differentiation of histological sections of uterus wall tumor - group 1 (polypus) and group 2 (adenocarcinoma) are estimated.

  8. Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy

    PubMed Central

    Golaraei, Ahmad; Kontenis, Lukas; Cisek, Richard; Tokarz, Danielle; Done, Susan J.; Wilson, Brian C.; Barzda, Virginijus

    2016-01-01

    Second-harmonic generation (SHG) double Stokes-Mueller polarimetric microscopy is applied to study the alteration of collagen ultrastructure in a tissue microarray containing three pathological human breast cancer types with differently overexpressed estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor 2 (HER2). Kleinman symmetry is experimentally validated in breast tissue for 1028 nm laser wavelength and it has been shown that measurements with only linearly polarized incoming and outgoing states can determine molecular nonlinear susceptibility tensor component ratio, average in-plane orientation of collagen fibers and degree of linear polarization of SHG. Increase in the susceptibility ratio for ER, PgR, HER2 positive cases, reveals ultrastructural changes in the collagen fibers while the susceptibility ratio increase and decrease in degree of linear polarization for ER and PgR positive cases indicate alteration of the ultrastructure and increased disorder of the collagen fibers within each focal volume. The study demonstrates a potential use of polarimetric SHG microscopy for collagen characterization and cancer diagnostics. PMID:27867715

  9. Integral decomposition and polarization properties of depolarizing Mueller matrices.

    PubMed

    Ossikovski, Razvigor; Arteaga, Oriol

    2015-03-15

    We show that, by suitably defining the integral decomposition of a depolarizing Mueller matrix, it becomes possible to fully interpret the polarization response of the medium or structure under study in terms of mean values and variances-covariances of a set of six integral polarization properties. The latter appear as natural counterparts of the elementary (differential) polarization properties stemming from the differential decomposition of the Mueller matrix. However, unlike the differential decomposition, the integral one is always mathematically and physically realizable and is furthermore unambiguously defined inasmuch as a nondepolarizing estimate of the initial Mueller matrix is secured. The theoretical results are illustrated on an experimental example.

  10. Mueller-matrix mapping of optically anisotropic fluorophores of molecular biological tissues in the diagnosis of death causes

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.

    2016-09-01

    A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.

  11. Estimation of Mueller matrices using non-local means filtering.

    PubMed

    Faisan, Sylvain; Heinrich, Christian; Sfikas, Giorgos; Zallat, Jihad

    2013-02-25

    This article addresses the estimation of polarization signatures in the Mueller imaging framework by non-local means filtering. This is an extension of previous work dealing with Stokes signatures. The extension is not straightforward because of the gap in complexity between the Mueller framework and the Stokes framework. The estimation procedure relies on the Cholesky decomposition of the coherency matrix, thereby ensuring the physical admissibility of the estimate. We propose an original parameterization of the boundary of the set of Mueller matrices, which makes our approach possible. The proposed method is fully unsupervised. It allows noise removal and the preservation of edges. Applications to synthetic as well as real data are presented.

  12. Narrow band 3 × 3 Mueller polarimetric endoscopy

    PubMed Central

    Qi, Ji; Ye, Menglong; Singh, Mohan; Clancy, Neil T.; Elson, Daniel S.

    2013-01-01

    Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information. PMID:24298405

  13. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data.

    PubMed

    Antonelli, Maria-Rosaria; Pierangelo, Angelo; Novikova, Tatiana; Validire, Pierre; Benali, Abdelali; Gayet, Brice; De Martino, Antonello

    2010-05-10

    Colon samples with both healthy and cancerous regions have been imaged in diffuse light and backscattering geometry by using a Mueller imaging polarimeter. The tumoral parts at the early stage of cancer are found to be less depolarizing than the healthy ones. This trend clearly shows that polarimetric imaging may provide useful contrasts for optical biopsy. Moreover, both types of tissues are less depolarizing when the incident polarization is linear rather than circular. However, to really optimize an optical biopsy technique based on polarimetric imaging a realistic model is needed for polarized light scattering by tissues. Our approach to this goal is based on numerical Monte-Carlo simulations of polarized light propagation in biological tissues modeled as suspensions of monodisperse spherical scatterers representing the cell nuclei. The numerical simulations were validated by comparison with measurements on aqueous polystyrene sphere suspensions, which are commonly used as tissue phantoms. Such systems exhibit lower depolarization for incident linear polarization in the Rayleigh scattering regime, i.e. when the sphere diameters are smaller than the wavelength, which is obviously not the case for cell nuclei. In contrast, our results show that this behaviour can also be seen for "large" scatterers provided the optical index contrast between the spheres and the surrounding medium is small enough, as it is likely to be the case in biological tissues.

  14. A Mueller polarimetric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Laude, Blandine; De Martino, Antonello; Le Naour, Gilles; Genestie, Catherine; Nazac, Andre; Guyot, Steve; Clairac, Bernard; Garcia Caurel, Enric; Drevillon, Bernard; Schwartz, Laurent

    2003-10-01

    We present a new polarimetric imaging system based on liquid crystal modulators, a spectrally filtered white light source and a CCD camera. The whole Mueller matrix image of the sample is measured in around 5 seconds in transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure provides a high accuracy (better than 1.5% for the normalized Mueller matrix) over a wide spectral range. The data can be processed with different algorithms. Results on hepatic biopsies with different grades of fibrosis are presented.

  15. Fast full 4x4 Mueller polarimeter for endoscopic applications

    NASA Astrophysics Data System (ADS)

    Rivet, Sylvain; Bradu, Adrian; Podoleanu, Adrian

    2016-03-01

    A new set-up is proposed to measure the full polarimetric properties of a sample through an optical fiber, paving the way to full-Mueller endoscopic imaging. The technique combines a channeled spectrum polarimeter and an interferometer. This permits high-speed measurement of two Mueller matrices simultaneoulsy. The first matrix characterizes only the fiber while the second characterizes both fiber and sample. The instrument is validated on vacuum, a quarter-wave plate and a linear polarizer for single-point measurements. Insensitivity of the polarimetric measurement to fiber disturbances is proven while manipulating the fiber.

  16. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    SciTech Connect

    Florian, Christian; Langmann, Thomas; Weber, Bernhard H.F.; Morsczeck, Christian

    2008-09-19

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture.

  17. Stephan Mueller (1930”1997)

    NASA Astrophysics Data System (ADS)

    Olsen, Kenneth H.; Ansorge, Joerg

    Stephan Mueller, professor emeritus at the Institute of Geophysics at the Swiss Federal Institute of Technology (ETH) in Zurich and highly respected leader of international geoscience, died February 17, 1997. His untimely death, due to pneumonia following intestinal surgery, came just 18 months after his retirement from the ETH Chair of Geophysics and Directorship of the Swiss Seismological Service. He is survived by his wife, Doris, two sons, and six grandchildren. Mueller received a diploma in physics at the University of Stuttgart in 1957 and an M.S. in electrical engineering from Columbia University in New York in 1959. As an undergraduate at Stuttgart, he was influenced by seismologist Wilhelm Hillerand geophysics quickly became his major academic and career objective. After receiving a 1954-1955 German Academic Interchange Scholarship at Columbia, Mueller sought out Maurice Ewing and his group at Lamont Geological Observatory, where Mueller's enthusiasm for geophysics was strongly encouraged. While at Lamont, he participated in the first U.S. deep-sea geophysical expedition in the Mediterranean Sea during the summer of 1956 aboard the RV Vema.

  18. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  19. Optical fiber-based full Mueller polarimeter for endoscopic imaging using a two-wavelength simultaneous measurement method.

    PubMed

    Vizet, Jérémy; Manhas, Sandeep; Tran, Jacqueline; Validire, Pierre; Benali, Abdelali; Garcia-Caurel, Enric; Pierangelo, Angelo; De Martino, Antonello; Pagnoux, Dominique

    2016-07-01

    This paper reports a technique based on spectrally differential measurement for determining the full Mueller matrix of a biological sample through an optical fiber. In this technique, two close wavelengths were used simultaneously, one for characterizing the fiber and the other for characterizing the assembly of fiber and sample. The characteristics of the fiber measured at one wavelength were used to decouple its contribution from the measurement on the assembly of fiber and sample and then to extract sample Mueller matrix at the second wavelength. The proof of concept was experimentally validated by measuring polarimetric parameters of various calibrated optical components through the optical fiber. Then, polarimetric images of histological cuts of human colon tissues were measured, and retardance, diattenuation, and orientation of the main axes of fibrillar regions were displayed. Finally, these images were successfully compared with images obtained by a free space Mueller microscope. As the reported method does not use any moving component, it offers attractive integration possibilities with an endoscopic probe.

  20. Mueller Polarimetric Imaging System with Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Laude-Boulesteix, Blandine; de Martino, Antonello; Drévillon, Bernard; Schwartz, Laurent

    2004-05-01

    We present a new polarimetric imaging system based on liquid-crystal modulators, a spectrally filtered white-light source, and a CCD camera. The whole Mueller matrix image of the sample is measured in approximately 5 s in the transmission mode. The instrument design, together with an original and easy-to-operate calibration procedure, provides high accuracy over a wide spectral range (500-700 nm). This accuracy has been assessed by measurement of a linear polarizer at different orientations and a thick wedged quartz plate as an example of a partially depolarized retarder. Polarimetric images of a stained hepatic biopsy with significant fibrosis have been taken at several wavelengths. The optical properties of Picrosirius Red stained collagen (diattenuation, retardance, and polarizance) have been measured independently from each other between 500 and 700 nm.

  1. Matrix transformations for spacecraft attitude determination

    NASA Technical Reports Server (NTRS)

    Cauffman, D. P.

    1972-01-01

    A common problem for experimental space physicists is the determination of the attitude matrix T which transforms vectors between representations in X and X' coordinate systems according to (vector V sub X) = (T sub XX')(vector V sub X'). A straightforward, simple, and efficient solution for the transformation matrix is a double-cross transformation. It is calculated from any two directions A and B, which are vectors normalized to unit length and are known in both X and X' coordinates. The B direction need be known only well enough to define the plane in which vectors A and B lie. The problem of the intersection of two cones as applicable to attitude solutions is also discussed.

  2. Transformation of full 4 × 4 Mueller matrices: a quantitative technique for biomedical diagnosis

    NASA Astrophysics Data System (ADS)

    He, Honghui; Chang, Jintao; He, Chao; Ma, Hui

    2016-03-01

    Polarization images contain abundant microstructural information of samples. Recently, as a comprehensive description of the structural and optical properties of complex media, the Mueller matrix imaging has been widely applied to biomedical studies, especially cancer detections. In previous works, we proposed a technique to transform the backscattering 3 × 3 Mueller matrices into a group of quantitative parameters with clear relationships to specific microstructures. In this paper, we extend this transformation method to full 4 × 4 Mueller matrices of both the back and forward scattering directions. Using the experimental results of phantoms and Monte Carlo simulation based on the sphere-cylinder birefringence model, we fit the Mueller matrix elements to trigonometric curves in polar coordinates and obtain a new set of transformation parameters, which can be expressed as analytical functions of 16 Mueller matrix elements. Both the experimental and simulated results demonstrate that the transformation parameters have simple relationships to the characteristic microstructural properties, including the densities and orientations of fibrous structures, the sizes of the scatterers, and the depolarization power of the samples. We also apply the transformation parameters of full 4 × 4 Mueller matrices to human liver cancerous tissues. Preliminary imaging results show that the parameters can quantitatively reflect the formation of fibrous birefringent tissues accompanying the cancerous processes. The findings presented in this study can be useful for in vivo or in vitro polarization imaging of tissues for diagnostic applications.

  3. Refined distribution of myelinated trigeminal proprioceptive nerve fibres in Mueller's muscle as the mechanoreceptors to induce involuntary reflexive contraction of the levator and frontalis muscles.

    PubMed

    Yuzuriha, Shunsuke; Matsuo, Kiyoshi; Hirasawa, Chihiro; Moriizumi, Tetsuji

    2009-11-01

    Stretching of mechanoreceptors in Mueller's muscle induces reflexive contraction of not only the levator muscle but also the frontalis muscle as two different eyelid-opening muscles. Previously, we reported that fine neural myelinated structures, acting as mechanoreceptors, were found in the proximal Mueller's muscle. Since there is a risk of misunderstanding that the middle and distal Mueller's muscle does not contain mechanoreceptors and can be invalidated or resected, the accurate distribution of myelinated trigeminal proprioceptive nerve fibres as mechanoreceptors in Mueller's muscle was refined horizontally in this study. We explored 10 whole Mueller's muscles between the levator muscle and the tarsus of the upper eyelids obtained from five Japanese cadavers. The specimens were serially sliced along the horizontal plane and stained with HE, S-100 protein to determine the presence of Schwann cells, and smooth muscle actin antibody to determine the presence of Mueller's smooth muscle fibres. Although all myelinated nerve fibres in the intermuscular connective tissues among the sympathetically innervated Mueller's multi-unit smooth muscle fibres may not correspond to the proprioceptive nerve fibres, the nerve bundles consisting of multiple myelinated nerve fibres were well distributed in the proximal Mueller's muscle, and single myelinated nerve fibres were well distributed in the middle and distal Mueller's muscle. We believe that the mechanoreceptors in Mueller's muscle consist of myelinated proprioceptive nerve fibres with nerve endings possibly attached to collagen fibres in the intermuscular connective tissues present among Mueller's smooth muscle fibres. As the myelinated nerve fibres innervate the middle and distal Mueller's muscle to a greater extent than those in the proximal Mueller's muscle, the former may be more important as mechanoreceptors than the latter and should not be invalidated or excised during surgery for treatment of blepharoptosis to

  4. Determination of Matrix Diffusion Properties of Granite

    SciTech Connect

    Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti

    2007-07-01

    Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, {sup 36}Cl, {sup 131}I, {sup 22}Na and {sup 85}Sr at flow rates of 1-50 {mu}L.min{sup -1}. Rock matrix was characterized using {sup 14}C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 {mu}L.min{sup -1}. The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)

  5. A Magnus Expansion Analysis of Frequency-Dependent Mueller Matrices

    NASA Astrophysics Data System (ADS)

    Reimer, Michael; Yevick, David

    2006-03-01

    We have recently demonstrated that, for any physical system characterized by a non-singular, frequency dependent Jones matrix, the frequency evolution of the corresponding Mueller matrix is described by a differential equation whose general solution can be compactly formulated through the Magnus expansion [M. Reimer, D. Yevick, and D. Dumas, submitted to J. Opt. Soc. Am. A, Photon. Technol. Lett.]. [D. Yevick, T. Lu, W. Huang and W. Bardyszewski to be published in J. Opt. Soc. Am. A]. We subsequently applied our analytic results to optical compensators for communications networks and to the estimation of a system's frequency dependent Mueller matrix based on repeated measurements of the output state of polarization for randomly generated input polarization states [M. Reimer, D. Yevick and D. Dumas, submitted to Photon. Technol. Lett.]. We have also incorporated the Magnus expansion into a Clifford algebra description of polarization evolution. This procedure reformulates numerous physical transformations in a simple and transparent manner [M. Reimer and D. Yevick, submitted to Photon. Technol. Lett.].

  6. Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction.

    PubMed

    Novikova, Tatiana; De Martino, Antonello; Bulkin, Pavel; Nguyen, Quang; Drévillon, Bernard; Popov, Vladimir; Chumakov, Alexander

    2007-03-05

    The feasibility of metrological characterization of the one-dimensional (1D) holographic gratings, used in the nanoimprint molding tool fabrication step, by spectroscopic Mueller polarimetry in conical diffraction is investigated. The studied samples correspond to two different steps of the replicated diffraction grating fabrication process. We characterized master gratings that consist of patterned resist layer on chromium-covered glass substrate and complementary (replica) gratings made of nickel. The profiles of the gratings obtained by fitting the experimental spectra of Mueller matrix coefficients taken at different azimuthal angles were confirmed by atomic force microscopy (AFM) measurements. The calculated profiles of corresponding master and replica gratings are found to be complementary. We conclude that the Mueller polarimetry, as a fast and non-contact optical characterization technique, can provide the basis for the metrology of the molding tool fabrication step in the nanoimprint technique.

  7. View of northern portion of Mueller property from the intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of northern portion of Mueller property from the intersection of East Avenue and Highland Avenue, looking south. North side of the Mueller House visible in the background. Remnants of citrus grove in background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA

  8. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  9. Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices.

    PubMed

    Liao, Chia-Chi; Lo, Yu-Lung

    2013-07-15

    A hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties, respectively. It is shown that the proposed hybrid model not only yields full-range measurements of all the anisotropic parameters, but is also more accurate and more stable than the decomposition method. Moreover, compared to the decomposition method, the proposed model more accurately reflects the dependency of the phase retardation angle and linear dichroism angle on the direction of the external magnetic field for ferrofluidic samples. Overall, the results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties.

  10. View of the northwest portion of Mueller property from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the northwest portion of Mueller property from the intersection of East Avenue and Highland Avenue, looking southeast. Row of Magnolia trees along western property boundary. Remnants of citrus grove in background. - Ernst Mueller House, 6563 East Avenue, Rancho Cucamonga, San Bernardino County, CA

  11. RF system calibration for global Q matrix determination

    PubMed Central

    Padormo, Francesco; Beqiri, Arian; Malik, Shaihan J.; Hajnal, Joseph V.

    2016-01-01

    The use of multiple transmission channels (known as Parallel Transmission, or PTx) provides increased control of the MRI signal formation process. This extra flexibility comes at a cost of uncertainty of the power deposited in the patient under examination: the electric fields produced by each transmitter can interfere in such a way to lead to excessively high heating. Although it is not possible to determine local heating, the global Q matrix (which allows the whole-body Specific Absorption Rate (SAR) to be known for any PTx pulse) can be measured in-situ by monitoring the power incident upon and reflected by each transmit element during transmission. Recent observations have shown that measured global Q matrices can be corrupted by losses between the coil array and location of power measurement. In this work we demonstrate that these losses can be accounted for, allowing accurate global Q matrix measurement independent of the location of the power measurement devices. PMID:26747407

  12. Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere-cylinder scattering media: a quantitative study of influence from fibrous scatterers.

    PubMed

    He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Li, Dongzhi; Liao, Ran; He, Yonghong; Ma, Hui

    2013-04-01

    We present both the two-dimensional backscattering point-illumination and surface-illumination Mueller matrices for the anisotropic sphere-cylinder scattering media. The experimental results of the microsphere-silk sample show that the Mueller matrix elements of an anisotropic scattering medium are different from those of an isotropic medium. Moreover, both the experiments and Monte Carlo simulations show that the directions of the fibrous scatterers have prominent effects on the Mueller matrix elements. As the fibrous samples rotate, the surface-illumination Mueller matrix measurement results for the m12, m21, m13, m31, m22, m23, m32, and m33 elements represent periodical variations. Experiments on skeletal muscle and porcine liver tissue samples confirm that the periodical changes for the surface-illumination Mueller matrix elements are closely related to the well aligned fibrous scatterers. The m22, m23, m32, and m33 elements are powerful tools for quantitative characterization of anisotropic scattering media, including biological tissues.

  13. Modal acoustic emission source determination in silicon carbide matrix composites

    NASA Astrophysics Data System (ADS)

    Morscher, G. N.

    2000-05-01

    Modal acoustic emission has been used to monitor damage accumulation in woven silicon carbide (SiC) fiber reinforced SiC matrix composites during tensile testing. There are several potential sources of damage in these systems including transverse matrix cracking, fiber/matrix interphase debonding and sliding, longitudinal cracks in between plies, and fiber breakage. In the past, it has been shown that modal AE is excellent at detecting when damage occurs and subsides, where the damage occurs along the length of the sample, and the loss in material stiffness as a consequence of damage accumulation. The next step is to determine the extent that modal AE can be used to identify specific physical sources. This study will discuss the status of this aim for this composite system. Individual events were analyzed and correlated to specific sources based on the characteristics of the received waveforms, e.g., frequency spectrum and energy, and when the event occurred during the stress-history of the tensile test. Post-test microstructural examination of the test specimens enabled some correlation between specific types of AE events and damage sources.

  14. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance

  15. Determination of CKM Matrix Elements with Superallowed Fermi Decays^*.

    NASA Astrophysics Data System (ADS)

    Fujikawa, Brian

    1996-10-01

    The u-d element (V_ud) of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix is a fundamental parameter of the Standard Model of Electroweak Interactions. Its most precise determination comes from nuclear physics experiments, in particular, from measurements of superallowed Fermi beta decays. Precise knowledge of V_ud will allow a variety of tests of the Standard Model, in addition to placing a number of important constraints on astrophysics and cosmology. These measurements, which require both precision nuclear physics experiments and state of the art theoretical nuclear physics calculations, have been made for a variety of nuclei ranging from ^14O to ^54Co. The u-d element obtained from these measurements are in statistical agreement and the average value obtained implies a non-unitary CKM matrix, which if correct, would require exotic extensions to the Standard Model. Unfortunately the theoretical calculations of the isospin breaking corrections, which are necessary to extract V_ud, are controversial. In order to resolve this controversy, much effort has recently been invested in measuring V_ud from the superallowed Fermi decay of ^10C, where the isospin breaking corrections are expected to be small. This is a very challenging experiment, since it requires the precision measurement of very small branching ratios in a high background environment. I will report on the current status of the determination of V_ud emphasizing the recent experimental effort to measure V_ud from the superallowed Fermi decay of ^10C. ^*Supported by the U.S. D.O.E. under Contracts No. W-31-109-ENG-38 and No. DE-AC03-76SF00098.

  16. Ground Operations of the ISS GNC Babb-Mueller Atmospheric Density Model

    NASA Technical Reports Server (NTRS)

    Brogan, Jonathan

    2002-01-01

    The ISS GNC system was updated recently with a new software release that provides onboard state determination capability. Prior to this release, only the Russian segment maintained and propagated the onboard state, which was periodically updated through Russian ground tracking. The new software gives the US segment the capability for maintaining the onboard state, and includes new GPS and state vector propagation capabilities. Part of this software package is an atmospheric density model based on the Babb-Mueller algorithm. Babb-Mueller efficiently mimics a full analytical density model, such as the Jacchia model. While lacchia is very robust and is used in the Mission Control Center, it is too computationally intensive for use onboard. Thus, Babb-Mueller was chosen as an alternative. The onboard model depends on a set of calibration coefficients that produce a curve fit to the lacchia model. The ISS GNC system only maintains one set of coefficients onboard, so a new set must be uplinked by controllers when the atmospheric conditions change. The onboard density model provides a real-time density value, which is used to calculate the drag experienced by the ISS. This drag value is then incorporated into the onboard propagation of the state vector. The propagation of the state vector, and therefore operation of the BabbMueller algorithm, will be most critical when GPS updates and secondary state vector sources fail. When GPS is active, the onboard state vector will be updated every ten seconds, so the propagation error is irrelevant. When GPS is inactive, the state vector must be updated at least every 24 hours, based on current protocol. Therefore, the Babb-Mueller coefficients must be accurate enough to fulfill the state vector accuracy requirements for at least one day. A ground operations concept was needed in order to manage both the on board Babb-Mueller density model and the onboard state quality. The Babb-Mueller coefficients can be determined operationally

  17. Properties of Biological Media Determined from Polarization Properties of Backscattered Light

    NASA Astrophysics Data System (ADS)

    Locke, Landon

    2004-04-01

    Optical tissue characterization (OTC) is a biomedical optical technique that can potentially be useful in diagnosing and monitoring physiological changes in tissue without surgical intervention. OTC is a rapid, inexpensive, and non-invasive technique that may one day eliminate the occurrence of unnecessary biopsies. By directing light of various known polarization states onto a biological sample and analyzing the polarization state of the backscattered light, it is possible to extract quantitative information about the biological medium. The backscattering can be parameterized by the Mueller matrix, some elements of which are already known to be sensitive to particular properties of the scattering medium. For example, one known matrix element is related to the average size of the scatterers (A. H. Hielscher, A. A. Eick, et al.). There are, however, many elements of the Mueller matrix that have not been studied. My research interests lie in investigating what information some of the other elements of the Mueller matrix are capable of providing. I have constructed an apparatus to experimentally determine Mueller matrices for various samples. I will describe the method and present results to date.

  18. Attitude determination using vector observations - A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. L.

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  19. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  20. Determination of the hydrodynamic friction matrix for various anisotropic particles

    NASA Astrophysics Data System (ADS)

    Kraft, Daniela; Wittkowksi, Raphael; Löwen, Hartmut; Pine, David

    2013-03-01

    The relationship between the shape of a colloidal particle and its Brownian motion can be captured by the hydrodynamic friction matrix. It fully describes the translational and rotational diffusion along the particle's main axes as well as the coupling between rotational and translational diffusion. We observed a wide variety of anisotropic colloidal particles with confocal microscopy and calculated the hydrodynamic friction matrix from the particle trajectories. We find that symmetries in the particle shape are reflected in the entries of the friction matrix. We compare our experimentally obtained results with numerical simulations and theoretical predictions. Financial support through a Rubicon grant by the Netherlands Organisation for Scientific Research.

  1. Mueller-Lyer decrement: practice or prolonged inspection?

    NASA Technical Reports Server (NTRS)

    Schiano, D. J.; Jordan, K.

    1990-01-01

    Noting the similarity between the illusion decrement and selective adaptation paradigms, Long has challenged the view that illusion decrement effects reflect a strategic--as opposed to a structural--underlying mechanism, and has called for further research on this issue. To investigate the confound between prolonged free inspection and repeated trials in the standard decrement procedure, the effects of three inspection conditions (continuous, intermittent, and immediate) on the magnitude of the overestimation Mueller-Lyer illusion have been assessed under two levels of trials (a total of two or six judgments). Significant illusion decline was found only under conditions of repeated trials, with either continuous or intermittent inspection. These findings do not support the predictions of purely structural theories (including neural adaptation and efferent readiness theories), according to which degree of decrement should be determined solely by viewing time. Instead, the data demonstrate that illusion decrement is a product of practice, providing converging evidence for the view of decrement as involving a cognitive 'recalibration' or learning process.

  2. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S.; Frederico, T.; Krein,; Williams, A.G.

    1991-12-31

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  3. Some measurements for determining strangeness matrix elements in the nucleon

    SciTech Connect

    Henley, E.M.; Pollock, S.J.; Ying, S. ); Frederico, T. , Sao Jose dos Campos, SP . Inst. de Estudos Avancados); Krein, . Inst. de Fisica Teorica); Williams, A.G. )

    1991-01-01

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  4. Modeling Transmission and Reflection Mueller Matrices of Dielectric Half-Wave Plates

    NASA Astrophysics Data System (ADS)

    Salatino, Maria; de Bernardis, Paolo; Masi, Silvia

    2017-02-01

    We present a simple analytical model describing multiple reflections in dielectric and optically active waveplates, for both normal and slant incidence, including absorption. We compute from first principles the transmission and reflection Mueller matrices of the waveplate. The model is used to simulate the performance of a Stokes polarimeter for mm-waves, in the framework of current attempts to precisely measure the linear polarization of the Cosmic Microwave Background (CMB). We study the spectral response of these optical devices, taking into account band and angle averaging effects and confirm the presence of a much richer spectral dependence than in an ideal phase retarder. We also present the matrix elements for the reflection matrix, which is useful to estimate systematic effects in some polarimeter configurations. The formulas we have derived can be used to quickly simulate the performance of future CMB polarimeters.

  5. Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation

    NASA Astrophysics Data System (ADS)

    Slavnov, N. A.

    2015-03-01

    We study quantum integrable GL(3)-based models with a trigonometric R-matrix solvable by the nested algebraic Bethe ansatz. We derive a determinant representation for a special case of scalar products of Bethe vectors. This representation allows one to find a determinant formula for the form factor of one of the monodromy matrix entries. We also point out an essential difference between form factors in the models with the trigonometric R-matrix and their analogs in GL(3)-invariant models.

  6. Influence of different Mueller-Hinton agars and media age on Etest susceptibility testing of tigecycline.

    PubMed

    Tan, Thean Yen; Ng, Lily Siew Yong; Chen, Dorene Mei Mei

    2010-09-01

    This study investigated the effect of different Mueller-Hinton agars and media age on tigecycline MICs, obtained by Etest. Variations in MIC values on different Mueller-Hinton were noted, which may result in changes in categoric susceptibility. The use of stored Mueller-Hinton media had minimal effect on MIC values.

  7. Determination of vitamins in food-matrix Standard Reference Materials.

    PubMed

    Sharpless, K E; Margolis, S; Thomas, J B

    2000-06-09

    In recent years, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for vitamins and other organic nutrients. NIST uses several "modes" for assignment of analyte concentrations in SRMs, one of which includes the use of data provided by collaborating laboratories. Certification modes and liquid chromatographic methods that were used by NIST for value assignment of vitamin concentrations in recently introduced food-matrix SRMs are described in this paper. These materials and methods include vitamins D and E in coconut oil (SRM 1563) by gravimetry and multi-dimensional liquid chromatography (LC); vitamins A, E, and several B vitamins by reversed-phase LC and vitamin C by ion-exchange chromatography in infant formula (SRM 1846); and carotenoids and vitamins A and E by reversed-phase liquid chromatography in a baby food composite (SRM 2383).

  8. Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics.

    PubMed

    Novikova, Tatiana; De Martino, Antonello; Ben Hatit, Sami; Drévillon, Bernard

    2006-06-01

    Fast and efficient metrology tools are required in microelectronics for control of ever-decreasing feature sizes. Optical techniques such as spectroscopic ellipsometry (SE) and normal incidence reflectometry are widely used for this task. In this work we investigate the potential of spectral Mueller polarimetry in conical diffraction for the characterization of 1D gratings, with particular emphasis on small critical dimensions (CDs). Mueller matrix spectra were taken in the visible (450-700 nm) wavelength range on a photoresist grating on a Si substrate with 70/240 nm CD/period nominal values, set at nine different azimuthal angles. These spectra were fitted with a rigorous coupled-wave analysis (RCWA) algorithm by using different models for the grating profile (rectangular and trapezoidal, with or without rounded corners). A detailed study of the stability and consistency of the optimal CD values, together with the variation of the merit function (the mean square deviation D2) around these values, clearly showed that for a given wavelength range, this technique can decouple some critical parameters (e.g., top and bottom CDs, left and right sidewall projections) much more efficiently than the usual SE.

  9. Determination of the weak magnetism matrix element in {sup 14}C beta decay

    SciTech Connect

    Zeuli, A.R.; Ahmad, I.; Coulter, K.P.; Greene, J.P.; Schiffer, J.P.; Freedman, S.J.; Fujikawa, B.K.; Mortara, J.L.

    1993-10-01

    Higher order beta decay matrix elements, such as weak magnetism, will introduce small departures (a shape factor) from the allowed beta decay electron energy spectrum. The value of the weak magnetism matrix element is predicted by the Conserved Vector Current (CVC) hypothesis and an experimental determination of the weak magnetism matrix element can be interpreted as a test of CVC. We have determined the weak magnetism matrix element from the {sup 14}C shape factor, which was measured using an apparatus incorporating a high resolution solid state detector and a super conducting solenoid. The results of our measurement will be presented.

  10. Ferdinand von Mueller's interactions with Charles Darwin and his response to Darwinism.

    PubMed

    Lucas, A M

    2010-01-01

    Although Ferdinand Mueller (later von Mueller), Government Botanist of Victoria, opposed Darwin's theories when "On the origin of species" was published, there has been little detailed study of the nature of Mueller's opposition from 1860, when he received a presentation copy of "Origin," to his death in 1896. Analysis of Mueller's correspondence and publications shows that he remained a theist and misunderstood key aspects of Darwin's theory. However, Mueller did come to accept that natural selection could operate within a species, although never accepting it could produce speciation. Despite these differences he retained a cordial relationship with Darwin.

  11. A space efficient flexible pivot selection approach to evaluate determinant and inverse of a matrix.

    PubMed

    Jafree, Hafsa Athar; Imtiaz, Muhammad; Inayatullah, Syed; Khan, Fozia Hanif; Nizami, Tajuddin

    2014-01-01

    This paper presents new simple approaches for evaluating determinant and inverse of a matrix. The choice of pivot selection has been kept arbitrary thus they reduce the error while solving an ill conditioned system. Computation of determinant of a matrix has been made more efficient by saving unnecessary data storage and also by reducing the order of the matrix at each iteration, while dictionary notation [1] has been incorporated for computing the matrix inverse thereby saving unnecessary calculations. These algorithms are highly class room oriented, easy to use and implemented by students. By taking the advantage of flexibility in pivot selection, one may easily avoid development of the fractions by most. Unlike the matrix inversion method [2] and [3], the presented algorithms obviate the use of permutations and inverse permutations.

  12. Urban pipelining project; Mueller pipeliners working in Detroit suburbs

    SciTech Connect

    Not Available

    1988-06-01

    This paper describes how Mueller Pipeliners Inc., is helping Consumers Power Co. renovate and strengthen its system in the northern Detroit suburb of Sterling Heights. Consumers Power is enhancing its system in Sterling Heights with the addition of 10,700 ft of coated steel pipe and 6,000 ft of plastic pipe. The new lines will replace part of the existing system and improve the utility's ability to serve new customers in the rapidly expanding area.

  13. Computer determination of the scattering matrix properties of N-port cavities

    SciTech Connect

    Kroll, N.M. |; Kim, Jin-Soo; Yu, D.U.L.

    1992-08-01

    We extend the Kroll-Yu (KY) method of determining the resonance parameters of single-port cavities to multiport cavities by substituting the determinant of the S matrix for the reflection coefficient used in the KY method. In addition, we present a method for computing the elements of the S matrix in the two-port case, based upon the properties of cavity modes formed when the waveguides associated with the ports are shorted. Extension to the n-port case is discussed.

  14. Effect of speckle on APSCI method and Mueller Imaging.

    PubMed

    Upadhyay, Debajyoti; Richert, Micheal; Lacot, Eric; De Martino, Antonello; Orlik, Xavier

    2011-02-28

    The principle of the polarimetric imaging method called APSCI (Adapted Polarization State Contrast Imaging) is to maximize the polarimetric contrast between an object and its background using specific polarization states of illumination and detection. We perform here a comparative study of the APSCI method with existing Classical Mueller Imaging(CMI) associated with polar decomposition in the presence of fully and partially polarized circular Gaussian speckle. The results show a noticeable increase of the Bhattacharyya distance used as our contrast parameter for the APSCI method, especially when the object and background exhibit several polarimetric properties simultaneously.

  15. Rock matrix diffusivity determinations by in-situ electrical conductivity measurements.

    PubMed

    Ohlsson, Y; Löfgren, M; Neretnieks, I

    2001-02-01

    A fast method to determine rock matrix diffusion properties directly in the bedrock would be valuable in the investigation of a possible site for disposal of nuclear waste. An "effective diffusivity borehole log" would provide important information on the variability of this entity over the area studied. As opposed to traditional matrix diffusion laboratory experiments, electrical conductivity measurements are fast, inexpensive and also easy to carry out in-situ. In this study, electrical resistivity data from borehole logging, as well as from measurements on the actual core, is evaluated with the purpose of extracting matrix diffusivity data. The influence of migration of ions in the electrical double layer, which can be of great importance in low ionic strength pore water, is also considered in evaluating the in-situ data to accurately determine the effective pore diffusivity. The in-situ data compare fairly well to those measured in the rock core.

  16. A high definition Mueller polarimetric endoscope for tissue characterisation

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Elson, Daniel S.

    2016-05-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.

  17. Baroreceptor output during normal and obstructed breathing and Mueller maneuvers.

    PubMed

    Fitzgerald, R S; Robotham, J L; Anand, A

    1981-05-01

    Cardiovascular control during asthma and other forms of obstructed breathing has not been extensively investigated. Previous studies in dogs have shown that obstructed breathing or an inspiratory effort against a blocked airway (Mueller maneuver) provoke large oscillations in blood pressure. During the inspiratory phase transmural systolic pressure relative to atmosphere drops initially, but transmural systolic pressure relative to intrathoracic pressure can remain unchanged or even increase. Because the carotid baroreceptors are located in the extrathoracic circulation, whereas the aortic baroreceptors are located in the intrathoracic circulation, and each responds to local transmural arterial pressure, simultaneous baroreceptor output from these two areas was measured in the anesthetized cat during normal and obstructed breathing and during Mueller maneuvers. Both whole-nerve and single-fiber preparations showed a significantly decreased output from the carotid baroreceptors during obstructed inspiratory efforts, whereas aortic baroreceptor output decreased significantly less or not at all. Transmural systolic pressure decreased significantly less in the aorta than in the carotid regions. Further, the aortic baroreceptors were more sensitive to changes in pulse pressure than were the carotid baroreceptors. These results suggest a mechanism for stabilizing the cardiac responses to precipitous falls in blood pressure that occur in obstructed breathing.

  18. A high definition Mueller polarimetric endoscope for tissue characterisation.

    PubMed

    Qi, Ji; Elson, Daniel S

    2016-05-12

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.

  19. A high definition Mueller polarimetric endoscope for tissue characterisation

    PubMed Central

    Qi, Ji; Elson, Daniel S.

    2016-01-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance. PMID:27173145

  20. Determining the Number of Components from the Matrix of Partial Correlations

    ERIC Educational Resources Information Center

    Velicer, Wayne F.

    1976-01-01

    A method is presented for determining the number of components to retain in a principal components or image components analysis which utilizes a matrix of partial correlations. Advantages and uses of the method are discussed and a comparison of the proposed method with existing methods is presented. (JKS)

  1. Optimal fluorescence waveband determination for detecting defect cherry tomatoes using fluorescence excitation-emission matrix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...

  2. Determination of δ88/86Sr Using Matrix Correction by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, T.; Bian, X. P.; Zhu, Z. Y.

    2014-12-01

    Stable Sr isotopic compositions (δ88/86Sr) in marine carbonates potentially provide key information on paleoseawater temperature (Rüggeberg et al. 2008). Traditional methods for δ88/86Sr determination by 87Sr-84Sr double-spike TIMS or MC-ICP-MS require chemical purification of Sr before spectrometric measurements because of matrix effects. Recent studies suggested that the matrix-matching method, in which matrix-matched standard solutions were used to bracket untreated water samples, gave precise and accurate results for sulfur isotopic ratios by MC-ICP-MS (Lin et al., 2014). The obvious advantage of this method is that there is no need for chemical purification, thus eliminating the possibility of isotope fractionation during the ion chromatography and expediting sample throughput. In this study, we applied the matrix-matching method to δ88/86Sr determination by MC-ICP-MS. NIST 987 Sr solution and a purified seawater sample (collected from the South China Sea) were selected for this study. Given that major matrices in carbonate come form Ca2+, NIST 987 and SW solutions containing 40 ppm Ca2+ were prepared by adding high-purity Ca solution. All solutions used contained 200 ppb Sr and the 88Sr/86Sr ratios were measured using a Neptune MC-ICP-MS. The purified SW was first determined using SSB method, in which pure NIST 987 was used as standard to bracket SW and yielded δ88/86Sr value of 0.366 ± 0.008‰ (2SE, n = 10). The δ88/86Sr values of Ca-bearing SW were then measured by using pure NIST 987 solution as the working standard to investigate matrix effects. The determined δ88/86Sr value (0.039 ± 0.021‰; 2SE, n = 10) deviated obviously from the reference value. Finally, the matrix-matched NIST 987 was applied as the working standard to bracket the Ca-bearing SW, and the measured δ88/86Sr value is 0.351 ± 0.009‰ (2SE, n = 10), consistent with the reference value within uncertainties. The consistent δ88/86Sr values and comparable external precision

  3. Local 3D matrix confinement determines division axis through cell shape.

    PubMed

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-09

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  4. Determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

    SciTech Connect

    Arora, Bindiya; Safronova, M. S.; Clark, Charles W.

    2007-11-15

    Stark shifts of potassium and rubidium D1 lines have been measured with high precision by Miller et al. [Phys. Rev. A 49, 5128 (1994)]. In this work, we combine these measurements with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4p{sub j}-3d{sub j{sup '}} transitions in K and the 5p{sub j}-4d{sub j{sup '}} transitions in Rb to high precision. The 4p{sub 1/2}-3d{sub 3/2} and 5p{sub 1/2}-4d{sub 3/2} transitions contribute on the order of 90% to the respective polarizabilities of the np{sub 1/2} states in K and Rb, and the remaining 10% can be accurately calculated using the relativistic all-order method. Therefore, the combination of the experimental data and theoretical calculations allows us to determine the np-(n-1)d matrix elements and their uncertainties. We compare these values with our all-order calculations of the np-(n-1)d matrix elements in K and Rb for a benchmark test of the accuracy of the all-order method for transitions involving nd states. Such matrix elements are of special interest for many applications, such as determination of ''magic'' wavelengths in alkali-metal atoms for state-insensitive cooling and trapping, and determination of blackbody radiation shifts in optical frequency standards with ions.

  5. Determination of In Situ-Generated Dimethyldioxirane From an Aqueous Matrix Using Selected Ion Monitoring

    DTIC Science & Technology

    2005-07-01

    public release; distribution unlimited. Published in Journal of Chromatography A, 1089 (2005) 211-218. AIRBASE TECHNOLOGIES DIVISION...area code) Journal of Chromatography A, 1089 (2005) 211–218 Determination of in situ-generated dimethyldioxirane from an aqueous matrix using...see front matter © 2005 Elsevier B.V. All rights reserved. oi:10.1016/j.chroma.2005.06.018 212 C.A. Delcomyn et al. / J. Chromatogr. A 1089 (2005

  6. Determining the intrinsic dimension of a hyperspectral image using random matrix theory.

    PubMed

    Cawse-Nicholson, Kerry; Damelin, Steven B; Robin, Amandine; Sears, Michael

    2013-04-01

    Determining the intrinsic dimension of a hyperspectral image is an important step in the spectral unmixing process and under- or overestimation of this number may lead to incorrect unmixing in unsupervised methods. In this paper, we discuss a new method for determining the intrinsic dimension using recent advances in random matrix theory. This method is entirely unsupervised, free from any user-determined parameters and allows spectrally correlated noise in the data. Robustness tests are run on synthetic data, to determine how the results were affected by noise levels, noise variability, noise approximation, and spectral characteristics of the endmembers. Success rates are determined for many different synthetic images, and the method is tested on two pairs of real images, namely a Cuprite scene taken from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and SpecTIR sensors, and a Lunar Lakes scene taken from AVIRIS and Hyperion, with good results.

  7. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-04

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  8. Comparison of cation-adjusted Mueller-Hinton broth with Iso-Sensitest broth for the NCCLS broth microdilution method.

    PubMed

    Koeth, L M; King, A; Knight, H; May, J; Miller, L A; Phillips, I; Poupard, J A

    2000-09-01

    Comparison of MIC results obtained in different parts of the world is currently difficult because of variations in methods. In this study, cation-adjusted Mueller-Hinton broth, the NCCLS-recommended medium, was compared with Iso-Sensitest broth, which is widely used in Europe. Microbroth dilution testing, using the NCCLS procedure, was performed on 124 Gram-positive (staphylococci and enterococci) and Gram-negative (Enterobacteriaceae and Pseudomonas aeruginosa) isolates from the CDC reference set, with the only variable being the medium used. Twelve antimicrobial agents were tested: amoxycillin-clavulanic acid, ampicillin, ciprofloxacin, erythromycin, gentamicin, imipenem, levofloxacin, oxacillin, gemifloxacin, trimethoprim- sulphamethoxazole, tetracycline and vancomycin. Vancomycin, erythromycin and oxacillin were only evaluated for the Gram-positive organisms. Trimethoprim-sulphamethoxazole was only evaluated for a subset of Gram-negative organisms because of off-scale results. The 124 isolates were tested in one American and one UK laboratory with two batches of cation-adjusted Mueller-Hinton broth and two of Iso-Sensitest broth. A statistical evaluation of the data used a 24 fully specified factorial analysis to determine if there were significant differences in results owing to Gram reaction, site of testing and type and/or batch of broth. In addition, the cumulative results for each antimicrobial agent in each broth were plotted against the range of MIC dilutions tested. MICs of ciprofloxacin, levofloxacin, gemifloxacin, gentamicin and tetracycline were slightly higher (half a doubling dilution) with Iso-Sensitest broth than with Mueller-Hinton broth. MIC results for the other antimicrobial agents were equivalent. Essential and category agreement rates were comparable for all agents (88.4-100% and 88.2-99.0%, respectively).

  9. Laurent expansion for the determinant of the matrix of scalar resolvents

    NASA Astrophysics Data System (ADS)

    Savchenko, S. V.

    2005-06-01

    Let A be an arbitrary square matrix, \\lambda an eigenvalue of it, \\{\\xi_{1},\\dots,\\xi_{r}\\} and \\{\\eta_{1},\\dots,\\eta_{r}\\} two systems of linearly independent vectors. A representation of the matrix of scalar resolvents, with ijth entry equal by definition to (\\xi_{i},(zE-A)^{-1}\\eta_{j}), in the form of the product of three matrices \\Xi,\\Delta(z), and \\Psi^{T} is obtained, only one of which, \\Delta(z), depends on z and is a rational function of z. On the basis of this factorization and the Binet-Cauchy formula a method for finding the principal part of the Laurent series at the point z=\\lambda for the determinant of the matrix of scalar resolvents is put forward and the first two coefficients of the series are found. In the case when at least one of them is distinct from zero, the change after the transition from A to A+B of the part of the Jordan normal form corresponding to \\lambda is determined, where B=\\sum_{i=1}^{r}(\\,\\cdot\\,,\\xi_{i})\\eta_{i} is the operator of rank r associated with the systems of vectors \\{\\xi_{1},\\dots,\\xi_{r}\\} and \\{\\eta_{1},\\dots,\\eta_{r}\\}; and the Jordan basis for the corresponding root subspace of A+B is constructed from Jordan chains of A.

  10. 76 FR 19467 - Mueller Steam Specialty Formerly Known As Core Industries Including Workers Whose Unemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... separated unemployment insurance (UI) tax accounts under the names Core Industries and Watts Regulator... as Core Industries, including workers whose unemployment insurance (UI) wages are reported through... Employment and Training Administration Mueller Steam Specialty Formerly Known As Core Industries...

  11. On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine.

    PubMed

    Ohira, Shin-Ichi; Kuhara, Kenta; Shigetomi, Aki; Yamasaki, Takayuki; Kodama, Yuko; Dasgupta, Purnendu K; Toda, Kei

    2014-10-31

    Chromatographic determination of organic acids is widely performed, but the matrix often calls for lengthy and elaborate sample preparation prior to actual analysis. Matrix components, e.g., proteins, non-ionics, lipids etc. are typically removed by a combination of centrifugation/filtration and solid phase extraction (SPE) that may include the use of ion-exchange media. Here we report the quantitative electrodialytic transfer of organic acids from complex samples to ultrapure water in seconds using cellulose membranes modified with N,N-dimethylaminoethyl methacrylate, which essentially eliminates the negative ζ-potential of a regenerated cellulose membrane surface. The transfer characteristics of the ion transfer device (ITD) were evaluated with linear carboxylic acids. While the ion transfer efficiencies may be affected by the acid dissociation constants, in most cases it is possible to achieve quantitative transfer under optimized device residence time (solution flow rate) and the applied voltage. In addition, the transfer efficiency was unaffected by the wide natural variation of pH represented in real samples. The approach was applied to organic acids in various samples, including red wine, considered to represent an especially difficult matrix. While quantitative transfer of the organic acids (as judged by agreement with standard pretreatment procedures involving SPE) was achieved, transfer of other matrix components was <5%. The processed samples could then be chromatographically analyzed in a straightforward manner. We used ion exclusion chromatography with direct UV detection; in treated samples; there was a dramatic reduction of the large early peaks observed compared to only 0.45μm membrane filtered samples.

  12. Some modifications of Sarrus's rule method via permutation for finding determinant of 4 by 4 square matrix

    NASA Astrophysics Data System (ADS)

    Karim, Sharmila; Ibrahim, Haslinda; Omar, Zurni

    2016-10-01

    Sarrus rule is well known method for finding determinant of square matrix. This method is also known as a cross multiplication method. However this method is not applicable for n > 3. With this motivation, we attempt to extend this method by employing some modifications using permutation for the case of 4 by 4 square matrix

  13. Leptonic CP phase determined by an equation involving PMNS matrix elements

    NASA Astrophysics Data System (ADS)

    Ke, Hong-Wei; Zhou, Jia-Hui; Li, Xue-Qian

    2017-04-01

    Several approximate equalities among the matrix elements of the Cabibbo–Kobayashi–Maskawa (CKM) and Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrices imply that hidden symmetries may exist and be common for both quark and neutrino sectors. The charge parity (CP) phase of the CKM matrix ({δ }{CKM}) is involved in these equalities and can be investigated when these equalities turn into several equations. As we substitute those experimentally measured values of the three mixing angles into the equations for quarks, it is noted that one of the equations which holds exactly has a solution {δ }{CKM}=({68.95}-1.15+1.15)^\\circ . That value accords with ({69.1}-3.85+2.02)^\\circ determined from available data. Generalizing the scenario to the lepton sector, the same equality determines the leptonic CP phase {δ }{PMNS} to be ({275.20}-1.15+1.15)^\\circ . Thus we predict the value of {δ }{PMNS} from the equation. So far there is no direct measurement on {δ }{PMNS}, but a recent analysis based on the neutrino oscillation data prefers a phase close to 270°.

  14. Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes

    PubMed Central

    Adesida, Adetola B.; Mulet-Sierra, Aillette; Laouar, Leila; Jomha, Nadr M.

    2012-01-01

    Background Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. Methodology/Principal Findings MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O2) or hypoxia (3%O2). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) –specific extracellular matrix. Conclusions Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation

  15. Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination.

    PubMed

    Zhang, Bochao; He, Miaohong; Hang, Wei; Huang, Benli

    2013-05-07

    Matrix effect is unavoidable in direct solid analysis, which usually is a leading cause of the nonstoichiometric effect in quantitative analysis. In this research, experiments were carried out to study the overall characteristics of atomization and ionization in laser-solid interaction. Both nanosecond (ns) and femtosecond (fs) lasers were applied in a buffer-gas-assisted ionization source coupled with an orthogonal time-of-flight mass spectrometer. Twenty-nine solid standards of ten different matrices, including six metals and four dielectrics, were analyzed. The results indicate that the fs-laser mode offers more stable relative sensitivity coefficients (RSCs) with irradiance higher than 7 × 10(13) W·cm(-2), which could be more reliable in the determination of element composition of solids. The matrix effect is reduced by half when the fs-laser is employed, owing to the fact that the fs-laser ablation and ionization (fs-LAI) incurs an almost heat-free ablation process and creates a dense plasma for the stable ionization.

  16. Determination of Trends in Ozone in the Mid-Atlantic Using Non-Negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Brown, S. G.; Russell-Graham, A.; Xiao, P.; Balzano, L.

    2014-12-01

    Air pollution data are routinely collected at high time resolution at many sites in the United States, but such data are often assessed singularly or in small jurisdictional groups rather than on a large-scale, regional basis. Examining air pollution data, such as for ambient ozone, in a regional context may be advantageous given that air pollution is influenced by a combination of micro, local, and regional sources. Non-negative matrix factorization (NMF) algorithms have been widely used by the environmental research community to identify factors governing pollutant concentrations. NMF can also be useful for identifying and interpreting outlier data, particularly for large data sets. We applied NMF algorithms to ozone data collected at over 100 monitoring sites in the Mid-Atlantic states during the summer of 2013 to examine their utility for identifying outlier data and outlier monitoring sites in the ozone monitoring network. We compared results from five different NMF algorithms with various strengths (such as being robust to missing data or outliers) to assess differences in their ability to identify outliers and to determine underlying factors influencing ambient ozone concentrations. In the future, these NMF methods can be applied to any large data matrix, such as those from networks of small, low-cost air pollution sensors and large-scale environmental monitoring networks.

  17. Determination of color-octet matrix elements from e+e- processes at low energies

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Qiao, Cong-Feng; Chao, Kuang-Ta

    1997-08-01

    We present an analysis of the preliminary experimental data of direct J/ψ production in e+e- processes at low energies. We find that the color-octet contributions are crucially important to the cross section in this energy region, and their inclusion produces a good description of the data. By fitting to the data, we extract the individual values of two color-octet matrix elements: ~1.1×10-2 GeV3; /m2c~7.4×10-3 GeV3. We discuss the allowed range of the two matrix elements constrained by the theoretical uncertainties. We find that is poorly determined because it is sensitive to the variation of the choice of mc, αs and . However, /m2c is quite stable [about (6-9)×10-3 GeV3] when the parameters vary in reasonable ranges. The uncertainties due to large experimental errors are also discussed.

  18. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    PubMed

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  19. Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.

    PubMed

    Jia, X; Wang, T; Wu, J

    2001-05-30

    A graphite furnace atomic absorption spectroscopy method for the analysis of the palladium (Pd) content in bulk pharmaceutical drug substances and their intermediates prepared in aqueous solutions is extended to samples prepared in acetonitrile (ACN) and ACN-water mixtures as well to samples prepared in dimethyl sulfoxide (DMSO) and DMSO-water mixtures. The Pd content in samples solubilized in these solvents can be accurately determined with calibration established with standards prepared in aqueous solutions without matrix matching or using the method of standard additions. The validity of this method is demonstrated by spike recovery studies and by the agreement with results for the same samples prepared in these solvents, in concentrated nitric acid, and prepared by a microwave digestion system.

  20. Determination of fiber-matrix interface failure parameters from off-axis tests

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1993-01-01

    Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.

  1. Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli.

    PubMed

    Johnson, Kasey M; Milner, Richard; Crocker, Stephen J

    2015-07-23

    Astrocytes perform critical homeostatic physiological functions in the central nervous system (CNS) and are robustly responsive to injury, inflammation, or infection. We hypothesized that the components of the extracellular matrix (ECM), which are known to vary during development and in response to disease, determine astrocytic responses to injury and inflammation. We examined the response of primary astrocyte cultures grown on different ECM proteins to a mechanical wound (i.e., scratch). ECM substrates selected were laminin (Ln), vitronectin (Vn), fibronectin (Fn) or Tenascin C (TnC). We found that regrowth of the scratch wound was ECM dependent: recovery was arrested on fibronectin (Fn), almost complete on either Vn, Ln, or TnC. To determine whether ECM responses were also influenced by inflammation, we treated ECM plated cultures with interleukin-1β (IL-1β). We found that IL-1β arrested astrocyte growth on Ln, accelerated astrocyte growth on Fn and had no significant effect on astrocyte growth on TnC or Vn. We also determined that blocking β1integrins, the major class of receptors for all ECM proteins tested, prevented the robust response of astrocytes exposed to TnC, Ln and Vn, and also inhibited the robust effect of IL-1β to stimulate astrocyte growth on Fn. In addition, we evaluated downstream targets of integrin signaling, specifically the mammalian target of rapamycin (mTOR), and determined that activation of this pathway contributed to the response of astrocytes grown on TnC, but not on Ln, Vn or Fn. These findings provide new insights into the role of ECM as a source of heterogeneity of glial responses that may have important implications for neuropathological sequelae.

  2. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    PubMed

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  3. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Elbeih, Ahmed; Abd-Elghany, Mohamed; Elshenawy, Tamer

    2017-03-01

    Vacuum stability test (VST) is mainly used to study compatibility and stability of energetic materials. In this work, VST has been investigated to study thermal decomposition kinetics of four cyclic nitramines, 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), bonded by polyurethane matrix based on hydroxyl terminated polybutadiene (HTPB). Model fitting and model free (isoconversional) methods have been applied to determine the decomposition kinetics from VST results. For comparison, the decomposition kinetics were determined isothermally by ignition delay technique and non-isothermally by Advanced Kinetics and Technology Solution (AKTS) software. The activation energies for thermolysis obtained by isoconversional method based on VST technique of RDX/HTPB, HMX/HTPB, BCHMX/HTPB and CL20/HTPB were 157.1, 203.1, 190.0 and 176.8 kJ mol-1 respectively. Model fitting method proved that the mechanism of thermal decomposition of BCHMX/HTPB is controlled by the nucleation model while all the other studied PBXs are controlled by the diffusion models. A linear relationship between the ignition temperatures and the activation energies was observed. BCHMX/HTPB is interesting new PBX in the research stage.

  4. Development of a Matrix Solid Phase Dispersion methodology for the determination of triazine herbicides in mussels.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S

    2015-04-15

    A method based on Matrix Solid Phase Dispersion (MSPD) for determination of nine triazines in mussels has been optimised in terms of the sorbents used for extracting and cleaning-up. Two dispersing agents: C18 and florisil, and eight cleanup co-sorbents: florisil, silica, silica/alumina, Envi™ Carb, Envi-Carb-II/PSA, SAX/PSA, Envi-Carb-II /SAX/PSA and C18 were assayed. Analytes were eluted using 20 mL of ethyl acetate and 5 mL of acetonitrile and finally the extract was concentrated to dryness, re-constituted with 1 mL methanol and determined by HPLC-DAD. The best results were obtained with C18 as dispersing agent and Envi-Carb-II/SAX/PSA as clean-up co-column. Recoveries ranged between 79% and 99% and repeatability and reproducibility were below than 16% for all compounds. The linearity of the calibration curves yielded the R(2)⩾0.9993. The LOQ values ranged from 0.10 to 0.18 mg kg(-1) dried sample. Finally the method was applied to the analysis of mussel samples from Galicia (NW Spain).

  5. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination

    PubMed Central

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-01-01

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination. PMID:27338390

  6. Optimisation of matrix solid-phase dispersion for the determination of Dechlorane compounds in marketed fish.

    PubMed

    Chen, Chien-Liang; Tsai, Dung-Ying; Ding, Wang-Hsien

    2014-12-01

    A method for the determination of chlorinated flame retardants: Dechlorane Plus, Dechlorane (Dec) 602, Dec 603 and Dec 604, in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by gas chromatography-electron-capture negative-ion chemical-ionisation mass spectrometry (GC-ECNICI-MS). Parameters that affect the extraction efficiency of the target analytes from fish samples were optimised using a Box-Behnken design method. MSPD integrated the extraction and clean-up procedures into a single step, which provides the benefits of being simple and convenient. The optimal extraction conditions involved dispersing a freeze-dried fish (1-g) in 2-g of silica gel, and packed with 1-g of Florisil, and then the target analytes were eluted with 20 mL of n-hexane. The limits of quantification were 9-15 pg/g-lipid weight. Preliminary results showed that the total concentrations of the target analytes ranged from 0.15 to 1.3 ng/g-lipid weight.

  7. Mueller matrix group theory formalism for tissue imaging polarimetry contrast increase.

    PubMed

    Fanjul-Vélez, Felix; Samperio-García, David; Pereda-Cubián, David; Arce-Diego, José L

    2007-01-01

    Optical characterization techniques provide a new approach to diagnostic imaging, with features such as a noninvasive or nonionizing character, as long as a resolution improvement. Intensity based measurements could be not enough for certain cases, and polarization information should be also used as a contrast parameter. Imaging polarimetry could be useful in many biomedical applications like dermatology or ophthalmology. Furthermore, it could be applied to the study of internal tissues through the use of optical fiber endoscopes, much less invasive that conventional biopsy. In this work the use of polarization parameters like the entropy factor, polarization components crosstalks or linear and circular polarization degrees is proposed as a way of improving tissue imaging contrast.

  8. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms

    PubMed Central

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-01

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles – which are common in natural environments – wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments. DOI: http://dx.doi.org/10.7554/eLife.21855.001 PMID:28084994

  9. Matrix elimination ion chromatography method for trace level azide determination in irbesartan drug.

    PubMed

    Subramanian, Narayanan Harihara; Babu, V R Sankar; Jeevan, R Ganesh; Radhakrishnan, Ganga

    2009-08-01

    Ultra-trace analysis of azide in complicated Irbesartan sample matrix is achieved by the in-line sample preparation technique. Sodium azide is the precursor of Irbesartan, which is used as an anti-hypertensive drug. Due to the toxic nature of sodium azide, reliable determination of azide in Irbesartan is necessary. Irbesartan when analyzed for sodium azide, as per the USP 31-NF26 method, gets adsorbed to the analytical column, leading to reduction in column capacity and irreproducible retention time. The retained drug has to be removed with special rinsing solution, followed by re-equilibration with the mobile phase. This process takes at least 3 to 4 h for each sample analysis. The new method developed overcomes the limitations of the USP 31-NF26 method. This method is validated for specificity, linearity, accuracy, precision, sample solution stability, and robustness as per International Conference on Harmonization guidelines. The relationship between peak response and concentration is found to be linear between 5 to 80 ng/mL of sodium azide, with the correlation coefficient (r(2)) of 0.9995. The limits of detection and quantification for sodium azide are 0.532 and 1.61 microg/gm with respect to the sample weight.

  10. Matrix effects during phosphorus determination with quadrupole inductively coupled plasma mass spectrometry.

    PubMed

    Kovacevic, Miroslav; Goessler, Walter; Mikac, Nevenka; Veber, Marjan

    2005-09-01

    A quadrupole inductively coupled plasma mass spectrometer was evaluated for use in the detection of phosphorus. The influences of nitric acid and methanol (simulating the composition of a sample solution after nitric acid digestion) on phosphorus determination were studied using two different measuring methods at different plasma conditions: detection of phosphorus ions at m/z 31 and detection of phosphorus oxide ions at m/z 47. The existence of polyatomic interferences at m/z 31 and 47 was explored. Nitric acid and methanol are shown to be the sources of polyatomic ions and therefore cause poorer detection limits. Better detection limits were achieved in such matrices when phosphorus was detected as 31P+. The presence of methanol improves the system sensitivity towards phosphorus sevenfold; however, this positive effect is hindered by the high background signal due to carbon-based polyatomic ions. For samples with an organic matrix an appropriate mineralization procedure should be applied (high excess of nitric acid and high temperature) to quantitatively oxidize organic compounds to carbon dioxide, which is easily removed from the sample, in order to achieve correct results.

  11. FBI Director Mueller Cites Partnerships as Key to Combating Crime and Terrorism

    ERIC Educational Resources Information Center

    Blake, Christopher G.

    2008-01-01

    At the Public Policy General Session held June 30 during IACLEA's 50th Anniversary Annual Conference, FBI Director Robert S. Mueller told the audience that through its partnerships with IACLEA and other law enforcement organizations and agencies, the FBI has made great strides in combating both crime and terrorism in the communities and on…

  12. Determination of Material Parameters for Microbuckling Analysis of Fiber Reinforced Polymer Matrix Composites

    NASA Astrophysics Data System (ADS)

    Romanowicz, M.

    2015-05-01

    This research focuses on studying the effect of the constitutive law adopted for a matrix material on the compressive response of a unidirectional fiber reinforced polymer matrix composite. To investigate this effect, a periodic unit cell model of a unidirectional composite with an initial fiber waviness and inelastic behavior of the matrix was used. The sensitivity of the compressive strength to the hydrostatic pressure, the flow rule and the fiber misalignment angle were presented. The model was verified against an analytical solution and experimental data. Results of this study indicate that a micromechanical model with correctly identified material parameters provides a useful alternative to theoretical models and experimentation.

  13. Determination of configuration matrix element and outer synchronization among networks with different topologies

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Liu, Shuo; Li, Gang; Zhao, Guannan; Gu, Jiajia; Tian, Jing; Wang, Zhouyang

    2016-11-01

    In this paper, we research the outer synchronization among discrete networks with different topologies. Based on Lyapunov theorem, a novel synchronization technique is designed. Further, the control inputs of the networks and the adaptive laws of configuration matrix element are obtained. In the end, a numerical example is given to illustrate the effectiveness of the synchronization technique. It is found that the designed control input of the networks ensures the convergence of the errors among the networks to zero. And the designed adaptive law of configuration matrix element can replace effectively configuration matrix element in networks.

  14. Quantitative sandwich ELISA for determination of traces of hazelnut (Corylus avellana) protein in complex food matrixes.

    PubMed

    Holzhauser, T; Vieths, S

    1999-10-01

    A hazelnut-specific sandwich-type ELISA based on polyclonal antisera was developed for detection of hidden hazelnut protein residues in complex food matrixes. In the absence of a food matrix, extractable protein from different native and toasted hazelnuts was detected at rates of 94 +/- 13 and 96 +/- 7% applying standards prepared from native and toasted hazelnuts, respectively. From complex food matrixes, 0.001-10% of hazelnut was recovered between 67 and 132%, in average by 106 +/- 17%. Depending on the food matrix, hazelnut protein could be detected down to the ppb (ng/g) level. Intraassay precision was <6% for hazelnut >/= 0.001% and interassay precision was <15% for hazelnut >/= 0.01%. In 12 of 28 commercial food products without labeling or declaration of hazelnut components, between 2 and 421 ppm of hazelnut protein was detected, demonstrating a remarkable presence of potentially allergenic hazelnut protein "hidden" in commercial food products.

  15. Matrix elimination ion chromatography method for the determination of trace levels of anionic impurities in high purity cesium iodide.

    PubMed

    Ayushi; Kumar, Sangita D; Reddy, A V R

    2012-01-01

    In the present study an ion chromatographic method based on matrix elimination has been developed for the determination of anionic impurities in high purity cesium iodide crystals. The presence of impurities has a detrimental effect on the characteristics of detectors based on cesium iodide crystals. In particular, oxygen-containing anions inhibit the resolving power of scintillators and decrease the optical absorption. The quantitative determination of anions (fluoride, chloride, bromide, nitrate, phosphate, and sulphate) simultaneously in the high-purity cesium iodide crystals has not been carried out before. The large concentration of iodide poses a challenge in the determination of anions (especially phosphate and sulphate); hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The method is validated for linearity, accuracy, and precision. The limit of detection for different anions is in the range of 0.3-3 µg/g, and the relative standard deviation is in the range of 4-6% for the overall method.

  16. Determination of Green's function matrix for multiconductor and anisotropic multidielectric planar transmission lines: a variational approach

    SciTech Connect

    Medina, F.; Horno, M.

    1985-10-01

    In this paper, a set of simple recurrence formulas to evaluate the Green's function matrix for a generic multiconductor and multidielectric planar transmission system with arbitrary rectangular boundary conditions is obtained. Combining these formulas with the variational technique in the spectral domain, two useful algorithms to calculate the capacitance matrix of a very wide range of practical configurations are proposed. Upper and lower bounds on mode capacitances are obtained by using both algorithms. A number of practical structures have been analyzed and their most interesting features discussed. The method is very versatile and can handle a large class of MIC configurations, no matter how complex the planar structure.

  17. Determination of tributyltin in toluene extract from sea water by graphite furnace atomic absorption spectrometry with a new matrix modifier.

    PubMed

    Gong, B; Liu, Y; Xu, Y; Lin, T

    1997-06-01

    A new matrix modifier composed of calcium and chromium[VI] was proposed for the determination of tributyltin (TBT) in toluene extract from sea water containing sediment by graphite furnace atomic absorption spectrometry (GFAAS). Fourteen inorganic and organic compounds (barium, calcium, chromium[VI], lanthanum, magnesium, nickel, palladium, strontium, calcium-chromium[VI], calcium-strontium, nickel isocaprylate, 5%-, 10%-aqueous solution of ascorbic acid and toluene-saturated solution of ascorbic acid) as a matrix modifier were comparatively studied and a matrix modifier composed from 5 microg of calcium and 1 microg of chromium[VI] was found to give the best performance. The interference effects of co-existing elements in sea water containing sediment (aluminium, iron, magnesium, sodium and strontium) were studied. TBT in eight toluene extracts was determined by GFAAS with the proposed matrix modifier. The relative standard deviation was 3.0% for 63 ng ml(-1) of TBT (n = 11). The recoveries were 88-104%. The characteristic mass was 7 pg. The linearity range was 0-250 ng mg(-1).

  18. Collagen Unfolding Accelerates Water Influx, Determining Hydration in the Interstitial Matrix

    PubMed Central

    McGee, Maria P.; Morykwas, Michael; Shelton, Julie; Argenta, Louis

    2012-01-01

    In the interstitial matrix, collagen unfolding at physiologic temperatures is thought to facilitate interactions with enzymes and scaffold molecules during inflammation, tissue remodeling, and wound healing. We tested the hypothesis that it also plays a role in modulating flows and matrix hydration potential. After progressively unfolding dermal collagen in situ, we measured the hydration parameters by osmotic stress techniques and modeled them as linear functions of unfolded collagen, quantified by differential scanning calorimetry after timed heat treatment. Consistent with the hypothetical model, the thermodynamic and flow parameters obtained experimentally were related linearly to the unfolded collagen fraction. The increases in relative humidity and intensity of T2 maps were also consistent with interfacial energy contributions to the hydration potential and the hydrophobic character of the newly formed protein/water interfaces. As a plausible explanation, we propose that increased tension at interfaces formed during collagen unfolding generate local gradients in the matrix that accelerate water transfer in the dermis. This mechanism adds a convective component to interstitial transfer of biological fluids that, unlike diffusion, can speed the dispersion of water and large solutes within the matrix. PMID:23200049

  19. Integrating Matrix Method for Determining the Natural Vibrations of a Rotating, Unsymmetrical Beam with Application to Twisted Propeller Blades

    NASA Technical Reports Server (NTRS)

    Hunter, William F.

    1967-01-01

    A numerical method is Presented for determining the natural vibration frequencies, and the corresponding mode shapes, of a rotating cantilever beam which has a nonuniform, unsymmetrical cross section. Two coupled fourth-order differential equations of motion with variable coefficients are derived which govern the motion of such a beam having deformations in two directions. Through the development and utilization of the integrating matrix, the solution of the differential equations is obtained in the form of an eigenvalue problem. The solutions to the eigenvalue problem are determined by an iteration method based upon a special orthogonality relationship which is derived. Numerical examples, including an application to a twisted propeller blade, are presented with the results of the integrating matrix solutions being compared to exact solutions and experimental data.

  20. Application of matrix solid-phase dispersion and high-performance liquid chromatography for determination of sulfonamides in honey.

    PubMed

    Zou, Qiong-Hui; Wang, Jin; Wang, Xiang-Feng; Liu, Yuan; Han, Jie; Hou, Feier; Xie, Meng-Xia

    2008-01-01

    A novel method for simultaneous determination of 8 sulfonamide residues (sulfathiazole, sulfapyridine, sulfadiazine, sulfamerazine, sulfamonome-thoxine, sulfachloropyridazine, sulfamethoxazole, and sulfadimethoxine) in honey samples by high-performance liquid chromatography (HPLC) has been developed on the basis of precolumn derivatization with 9-fluorenylmethyl-chloroformate (FMOC-Cl). Sulfonamide residues in honey samples were extracted and purified by matrix solid-phase dispersion with C18 as the solid support. The residues were derivatized by FMOC-CI, and the FMOC-sulfonamide derivatives were further purified by solid-phase extraction with silica gel as the solid support prior to HPLC analysis. The average recoveries for most sulfonamide compounds at different spiking levels (from 10 to 250 microg/kg) were > 70% with relative standard deviations < 16%, and their limits of detection were 4.0 microg/kg. The established analytical method has high sensitivity and repeatability and can be applicable for determining the sulfonamide residues in various honey matrixes.

  1. Generalized least-squares method applied to fMRI time series with empirically determined correlation matrix.

    PubMed

    Wicker, B; Fonlupt, P

    2003-03-01

    Functional magnetic resonance imaging (fMRI) time series analysis and statistical inferences about the effect of a cognitive task on the regional cerebral blood flow (rCBF) are largely based on the linear model. However, this method requires that the error vector is a gaussian variable with an identity correlation matrix. When this assumption cannot be accepted, statistical inferences can be made using generalized least squares. In this case, knowledge of the covariance matrix of the error vector is needed. In the present report, we propose a method that needs stationarity of the autocorrelation function but is more flexible than autoregressive model of order p (AR(p)) models because it is not necessary to predefine a relation between coefficients of the correlation matrix. We tested this method on sets of simulated data (with presence of an effect of interest or not) representing a time series with a monotonically decreasing autocorrelation function. This time series mimicked an experiment using a random event-related design that does not create correlation between scans. The autocorrelation function is empirically determined and used to reconstitute the correlation matrix as the toeplitz matrix built from the autocorrelation function. When applied to simulated time series with no effect of interest, this method allows the determination of F values corresponding to the accurate false positive level. Moreover, when applied to time series with an effect of interest, this method gives a density function of F values which allows the rejection of the null hypothesis. This method provides a flexible but interpretable time domain noise model.

  2. Nondestructive Determination of Heat/Fire Damage to Polymer- Matrix Composites Using Obliquely Insonified Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Lih, S.

    1995-01-01

    Heat and fire damage to composite structures cause loss of strength that cannot be detected by current NDE methods unless physical damage occurs. Further, there is a lack of fundamental understanding of the mechanism of damage from thermal exposure of organic matrix composites to elevated temperatures. Information compiled from field reports and lab experiments increasingly suggests that there is material degradation and it is not necessarily involved with the introduction of physical defects. In recent years, various researchers examined the potential to identifying thermal degradation to organic matrix composites prior to delamination. The methods that were used include: ultrasonics, backscattered X-ray, eddy current, thermography, drift and LPF spectroscopies, acousto-ultrasonics and hardness testing. None of these methods were able to correlate NDE results with loss of mechanical properties.

  3. Differential matrix formalism for depolarizing anisotropic media.

    PubMed

    Ossikovski, Razvigor

    2011-06-15

    Azzam's differential matrix formalism [J. Opt. Soc. Am. 68, 1756 (1978)], originally developed for longitudinally inhomogeneous anisotropic nondepolarizing media, is extended to include depolarizing media. The generalization is physically interpreted in terms of means and uncertainties of the elementary optical properties of the medium, as well as of three anisotropy absorption parameters introduced to describe the depolarization. The formalism results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generally depolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix. The approach is illustrated on literature data and the conditions of its validity are identified and discussed.

  4. Criticality Detection Using a Mirion Technologies DRM-2NC Remote Area Monitor Geiger-Mueller Probe

    NASA Astrophysics Data System (ADS)

    Kryskow, Adam P.

    The prompt fission neutron activation and subsequent response of a DRM-2NC Geiger-Mueller probe (manufactured by Mirion Technologies) was investigated for the purpose of creating a criticality accident detection algorithm with sensitivity and false positive suppression comparable to modern criticality accident detection systems. The expected decay pattern of secondary emissions arising from the neutron induced activity of the Geiger-Mueller probe was investigated experimentally in high neutron fluence environments at research reactors operated by the University of Massachusetts Lowell, Pennsylvania State University, and the White Sands Missile Range of Los Alamos National Laboratory. Monte Carlo techniques were used to both identify key probe materials responsible for the majority of the Geiger-Mueller response and investigate the effects of boron doping to increase detector sensitivity and enhance the signal to noise ratio. Subsequently, a statistical algorithm centered on a point weighted linear regression of the combined effective half-life was developed as the basis for criticality declaration. Final testing of the system indicated that the system was capable of meeting all ANSI criticality accident criteria with sufficient sensitivity to the minimum accident of concern, an adequate response time, and an extremely low likelihood of false alarm.

  5. Integrated Analysis Tools for Determination of Structural Integrity and Durability of High temperature Polymer Matrix Composites

    DTIC Science & Technology

    2008-08-18

    Dillon none 2306T / X Dr. Charles Y-C. Lee i-incc » Objective : To develop a materials qualification approach based on a combinatorial multi-scale...approaches will be identified and targeted to provide the material supplier with a more efficient way to optimize the material for a particular application...Matrix Composites 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES

  6. Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley

    1997-01-01

    Aircraft engine components invariably are subjected to mean stresses over and above the cyclic loads. In monolithic materials, it has been observed that tensile mean stresses are detrimental and compressive mean stresses are beneficial to fatigue life in comparison to a base of zero mean stress. Several mean stress models exist for monolithic metals, but each differ quantitatively in the extent to which detrimental or beneficial effects are ascribed. There have been limited attempts to apply these models to metal matrix composites. At the NASA Lewis Research Center, several mean stress models--the Smith-Watson- Topper, Walker, Normalized Goodman, and Soderberg models--were examined for applicability to this class of composite materials. The Soderberg approach, which normalizes the mean stress to a 0.02-percent yield strength, was shown to best represent the effect of mean stresses over the range covered. The other models varied significantly in their predictability and often failed to predict the composite behavior at very high tensile mean stresses. This work is the first to systematically demonstrate the influence of mean stresses on metal matrix composites and model their effects. Attention also was given to fatigue-cracking mechanisms in the Ti-15-3 matrix and to micromechanics analyses of mean stress effects.

  7. Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies.

    PubMed

    Vom Eyser, C; Palmu, K; Otterpohl, R; Schmidt, T C; Tuerk, J

    2015-01-01

    Producing valuable biochar from waste materials using thermal processes like hydrothermal carbonization (HTC) has gained attention in recent years. However, the fate of micropollutants present in these waste sources have been neglected, although they might entail the risk of environmental pollution. Thus, an HPLC-MS/MS method was developed for 12 pharmaceuticals to determine the micropollutant load of biochar, which was made from sewage sludge via HTC within 4 h at 210 °C. Pressurized liquid extraction was applied to extract the compounds. Because of the high load of co-extracted matter, matrix effects in HPLC-MS/MS were investigated using matrix effect profiles. Interfering compounds suppressed 50% of the phenazone signal in sewage sludge and 70% in biochar, for example. The quantification approaches external calibration, internal standard analysis, and standard addition were compared considering recovery rates, standard deviations, and measurement uncertainties. The external analysis resulted in decreased or enhanced recovery rates. Spiking before LC-MS/MS compensated instrumental matrix effects. Still, recovery rates remained below 70% for most compounds because this approach neglects sample losses during the extraction. Internal standards compensated for the matrix effects sufficiently for up to five compounds. The standard addition over the whole procedure proved to compensate for the matrix effects for 11 compounds and achieved recovery rates between 85 and 125%. Additionally, results showed good reproducibility and validity. Only sulfamethoxazole recovery rate remained below 70% in sewage sludge. Real sample analysis showed that three pharmaceuticals were detected in the biochar, while the corresponding sewage sludge source contained 8 of the investigated compounds.

  8. Evaluation of a molecularly imprinted polymer for determination of steroids in goat milk by matrix solid phase dispersion.

    PubMed

    Gañán, Judith; Morante-Zarcero, Sonia; Gallego-Picó, Alejandrina; Garcinuño, Rosa María; Fernández-Hernando, Pilar; Sierra, Isabel

    2014-08-01

    A molecularly imprinted polymer-matrix solid-phase dispersion methodology for simultaneous determination of five steroids in goat milk samples was proposed. Factors affecting the extraction recovery such as sample/dispersant ratio and washing and elution solvents were investigated. The molecularly imprinted polymer used as dispersant in the matrix solid-phase dispersion procedure showed high affinity to steroids, and the obtained extracts were sufficiently cleaned to be directly analyzed. Analytical separation was performed by micellar electrokinetic chromatography using a capillary electrophoresis system equipped with a diode array detector. A background electrolyte composed of borate buffer (25mM, pH 9.3), sodium dodecyl sulfate (10mM) and acetonitrile (20%) was used. The developed MIP-MSPD methodology was applied for direct determination of testosterone (T), estrone (E1), 17β-estradiol (17β-E2), 17α-ethinylestradiol (EE2) and progesterone (P) in different goat milk samples. Mean recoveries obtained ranged from 81% to 110%, with relative standard deviations (RSD)≤12%. The molecularly imprinted polymer-matrix solid-phase dispersion method is fast, selective, cost-effective and environment-friendly compared with other pretreatment methods used for extraction of steroids in milk.

  9. Extracellular Matrix Proteins, Alkaline Phosphatase and Pyrophosphate as Molecular Determinants of Bone, Tooth, Kidney and Vascular Calcification

    NASA Astrophysics Data System (ADS)

    McKee, Marc D.

    2008-09-01

    Progress in biomineralization research in recent years has identified, characterized and described functions for key noncollagenous extracellular matrix proteins regulating crystal growth in the skeleton and dentition. Some of these same proteins expressed in soft tissues undergoing pathologic calcification also inhibit ectopic crystal growth. In addition to extracellular matrix proteins regulating matrix mineralization, the enzyme tissue-nonspecific alkaline phosphatase—which is highly expressed by cells in mineralized tissues—cleaves pyrophosphate, an anionic small-molecule inhibitor of mineralization. Together with the required mineral ion availability necessary for crystal growth, these molecular determinants appear to function in limiting the spread of pathologic calcification seen in soft tissues such as blood vessels and kidneys. Osteopontin, in particular, is a potent calcification inhibitor that accumulates in mineralized tissues and in calcified deposits during vascular calcification and nephrolithiasis/urolithiasis. Additional research is required to establish the exact temporal sequence in which the molecular determinants of pathologic calcification appear relative to mineral crystal growth in different tissues, and to establish their relationship (if any) to the activation of osteogenic differentiation programs.

  10. A matrix for determining lower complexity barycentric representations of rational interpolants

    NASA Astrophysics Data System (ADS)

    Berrut, Jean-Paul

    2000-08-01

    Among the representations of rational interpolants, the barycentric form has several advantages, for example, with respect to stability of interpolation, location of unattainable points and poles, and differentiation. But it also has some drawbacks, in particular the more costly evaluation than the canonical representation. In the present work we address this difficulty by diminishing the number of interpolation nodes embedded in the barycentric form. This leads to a structured matrix, made of two (modified) Vandermonde and one Lwner, whose kernel is the set of weights of the interpolant (if the latter exists). We accordingly modify the algorithm presented in former work for computing the barycentric weights and discuss its efficiency with several examples.

  11. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  12. Preliminary Investigation to Determine the Suitable Mixture Composition for Corn Starch Matrix

    NASA Astrophysics Data System (ADS)

    Huzaimi Zakaria, Nazri; Ngali, Zamani; Zulkefli Selamat, Mohd

    2017-01-01

    The use of natural fiber as reinforcement in polymeric composites has been seen a dramatically increase over the last decades. The surge in the interest of natural fiber composite or biodegradable composite is mainly due to the attractive cost of production, improved of hardness, better fatigue endurance and good thermal and mechanical resistivity. In this work, corn starch in the form of powder is utilized as the matrix of the composite. However, starch is brittle and has low strength make it inappropriate candidate for matrix binder. The main objective of this study is to modify the mechanical properties of pure corn starch by mixing it with water, glycerol and vinegar. The composition ratio of water is 60~80%, corn starch 10~35%, glycerol is 5~15% and vinegar is 0~5%, ten samples (A-J) have been manufactured and the best mixture composition is selected based on few selection criteria. The selection criteria are visual impaction, hardness and density. From the results, the samples without vinegar are not suitable to be used because of the fungus availability on the surface. Meanwhile the results from the samples with 5 ml vinegar have no fungus on their surface even has been exposed to the ambient air. While the sample C has shown the best sample based on the visual, hardness and density test.

  13. Extracellular matrix and cell surface as determinants of connective tissue differentiation.

    PubMed

    Solursh, M

    1989-09-01

    This paper reviews in vitro studies, largely from the author's laboratory, concerning the conditions that are permissive for the differentiation of limb bud mesenchymal cells into chondrocytes. In high-density cell culture, even in a defined medium, the same normal sequence of events that is found in vivo in developing cartilage is also observed. This system can be used to study heritable disorders in model systems such as in mutant mouse embryos. In addition, single mesenchymal cells can differentiate into hypertrophic chondrocytes in hydrated collagen gel or agarose cultures. A rounded cell shape promotes chondrogenesis, while a flattened cell shape promotes fibroblast differentiation. The actin cytoskeleton is shown to play a central role in regulating connective tissue cell differentiation. By use of such cell culture manipulations, it is now possible to grow large numbers of fibroblastic cells from human biopsy material for storage and to carry out experimental studies after re-expression of chondrogenesis in gel cultures. It is suggested that cytoskeletal-extracellular matrix interactions play a fundamental role in connective tissue differentiation. Matrix receptors might be developmentally regulated and modify epithelial effects on mesenchymal cells. In this way mesenchymal cells differentiate in a highly organized manner in spatial and temporal terms.

  14. Measurement of the Muller matrix for painted surfaces with a kind of scatterometer

    NASA Astrophysics Data System (ADS)

    Feng, Weiwei; Wei, Qingnong; Chen, Lingxin

    2010-10-01

    The polarized light scattered by the surface of a material contains information that can be used to describe the properties of the surfaces. Polarized Bidirectional Reflectance Distribution Function (BRDF) is one of the most important factors used to represent the property of the surface. It uses a 4×4 matrix (Mueller matrix) to describe the properties of the light scattered from the surface. In order to measure the Mueller matrix of the samples, a new three axis automated scatterometer has been developed to measure the Mueller matrix of painted surfaces. It can do measurement at any illumination and viewing geometric of the hemisphere and it is more convenient for far-field measurement is presented. The design of the instrument is different to the traditional scatterometer. The significant characteristic of the instrument is that the detector and polarization analyzer are fixed, while the source and the incident optical elements rotate on a stage together. All the possible incident and viewing positions can be reached through the rotation of three motors. The rotations of the motors are fed back through photoelectric- encoders, the "closed loop" control mode ensured the precision of the position. Through coordinate transformations, the measurement in three dimensions can be simplified in two dimensional form, the details of the coordinate transformations will be described in detail in this paper. The dualrotating retarders method is used to modulate polarizing and analyzing optics. Two retarders rotate synchronously at angular speed and respectively. For every position, 16 measurements were done, and the Discrete Fourier Transform (DFT) method is used to retrieve the Mueller matrix of the sample. Discrete Fourier Transform (DFT) method is used to retrieve the Mueller matrix of the sample. The results of out-plane polarized bidirectional reflectance distribution function for samples coated with different paints are presented.

  15. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions.

    PubMed

    Changlani, Hitesh J; Zheng, Huihuo; Wagner, Lucas K

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U(∗)/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  16. Oral fluid as an alternative matrix to determine ethanol for forensic purposes.

    PubMed

    Bueno, Laís Helena Picolo; da Silva, Ricardo Henrique Alves; Azenha, Aline Vieira; de Souza Dias, Mariane Cristine; De Martinis, Bruno Spinosa

    2014-09-01

    The present work aimed to evaluate whether it is possible to use oral fluid to monitor alcohol in drivers. In a control experiment the subjects ingested beer with an alcoholic percentage of 4.7%, in an amount that furnished 0.5 g ethanol per kg of body weight. Volunteer's urine, oral fluid, and breath were collected at 10, 30, 60, and 90 min after alcohol intake. Urine and oral fluid were analyzed by gas chromatography with FID (Flame Ionization Detector); breath was analyzed by Alcotest 7410 (Dräger). The absorption profiles correlated well. The Pearson correlation value between samples of oral fluid and urine, and oral fluid and exhaled air, was close to 1, showing that oral fluid is a promising matrix to monitor drivers in traffic or involved in accidents.

  17. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  18. Matrix Elimination Ion Chromatography Method for the Determination of Trace Levels of Anionic Impurities in High Purity Cesium Iodide

    PubMed Central

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    In the present study an ion chromatographic method based on matrix elimination has been developed for the determination of anionic impurities in high purity cesium iodide crystals. The presence of impurities has a detrimental effect on the characteristics of detectors based on cesium iodide crystals. In particular, oxygen-containing anions inhibit the resolving power of scintillators and decrease the optical absorption. The quantitative determination of anions (fluoride, chloride, bromide, nitrate, phosphate, and sulphate) simultaneously in the high-purity cesium iodide crystals has not been carried out before. The large concentration of iodide poses a challenge in the determination of anions (especially phosphate and sulphate); hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The method is validated for linearity, accuracy, and precision. The limit of detection for different anions is in the range of 0.3–3 µg/g, and the relative standard deviation is in the range of 4–6% for the overall method. PMID:22291061

  19. Applicability of ultrasonic testing for the determination of volume fraction of particulates in alumina-reinforced aluminum matrix composites

    SciTech Connect

    Fang, C.K.; Fang, R.L.; Weng, W.P.; Chuang, T.H.

    1999-10-01

    An ultrasonic testing technique was employed to determine the volume fraction of alumina particulate reinforcement in 6061 aluminum matrix composites. this study was performed on various composites with Al{sub 2}O{sub 3} nominal volume fractions of 10, 15, and 20%. For comparison, other techniques were employed as well, including the Archimedes method, metallographic image analysis, X-ray diffraction, and acid dissolution. Observations indicated that ultrasonic testing and acid dissolution methods are more reliable than the other techniques, while ultrasonic testing is faster than the acid dissolution method.

  20. Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry.

    PubMed

    Bunch, Josephine; Clench, Malcolm R; Richards, Don S

    2004-01-01

    Matrix-assisted laser desorption/ionisation (MALDI) quadrupole time-of-flight mass spectrometry (Q-TOFMS) has been used to detect and image the distribution of a xenobiotic substance in skin. Porcine epidermal tissue was treated with 'Nizoral', a medicated shampoo containing ketoconazole (+/-)-1-acetyl-4-[p-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine) as active ingredient. Following incubation for 1 h at 37 degrees C all excess formulation was washed from the surface. A cross-section of the drug-treated tissue was then blotted onto a cellulose membrane, precoated in matrix (alpha-cyano-4-hydroxycinnamic acid (CHCA)), by airspray deposition. In separate experiments the tissue surface was treated with Nizoral within a triangular former, and subsequently blotted onto a matrix-coated membrane. Sample membranes were then mounted into the recess of specialised MALDI targets with adhesive tape. All samples were analysed by MALDI-TOFMS using an Applied Biosystem 'Q-star Pulsar i' hybrid Q-TOF mass spectrometer fitted with an orthagonal MALDI ion source and imaging software. Detection of the protonated molecule was readily achievable by this technique. Treatment of the tissue within a template gave rise to images depicting the expected distribution of the drug, demonstrating that this technique is capable of producing spatially useful data. Ion images demonstrating the permeation of the applied compound into the skin were achieved by imaging a cross-sectional imprint of treated tissue. A calibration graph for the determination of ketoconazole was prepared using the sodium adduct of the matrix ion as an internal standard. This enabled construction of a quantitative profile of drug in skin. Conventional haematoxylin and eosin staining and microscopy methods were employed to obtain a histological image of the porcine epidermal tissue. Superimposing the mass spectrometric and histological images appeared to indicate drug

  1. PDGF stimulation of Mueller cell proliferation: Contributions of c-JNK and the PI3K/Akt pathway

    SciTech Connect

    Moon, Sang Woong; Chung, Eun Jee; Jung, Sun-Ah; Lee, Joon H.

    2009-10-09

    Platelet-derived growth factor (PDGF) has a critical role in proliferative vitreoretinopathy (PVR) as a chemoattractant and mitogen for retinal pigment epithelial cells and retinal glial cells. Here, we investigated the potential effects of PDGF on the proliferation of Mueller cells and the intracellular signaling pathway mediating these changes. PDGF induced Mueller cell proliferation and increased phosphorylation of the PDGF receptor (PDGFR), as shown by an MTT assay and immunoprecipitation analyses. Both effects were blocked by JNJ, a PDGFR-selective tyrosine kinase inhibitor. PDGF also stimulated phosphorylation of c-JNK and Akt. PDGF-induced Mueller cell proliferation was significantly reduced by pre-treatment with SP600125 and LY294002, inhibitors of c-JNK and Akt phosphorylation, respectively. Our findings collectively indicate that PDGF-stimulated Mueller cell proliferation occurs via activation of the c-JNK and PI3K/Akt signaling pathways. These data provide useful information in establishing the role of Mueller cells in the development of proliferative vitreoretinopathy.

  2. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    SciTech Connect

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t to be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.

  3. Transfer matrix method for determination of the natural vibration characteristics of elastically coupled launch vehicle boosters

    NASA Astrophysics Data System (ADS)

    Abbas, Laith K.; Zhou, Qinbo; Hendy, Hossam; Rui, Xiaoting

    2015-08-01

    The analysis of natural vibration characteristics has become one of important steps of the manufacture and dynamic design in the aerospace industry. This paper presents a new scenario called virtual cutting in the context of the transfer matrix method of linear multibody systems closed-loop topology for computing the free vibration characteristics of elastically coupled flexible launch vehicle boosters. In this approach, the coupled system is idealized as a triple-beam system-like structure coupled by linear translational springs, where a non-uniform free-free Euler-Bernoulli beam is used. A large thrust-to-weight ratio leads to large axial accelerations that result in an axial inertia load distribution from nose to tail. Consequently, it causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is important to take into account this effect in the transverse vibration model. This scenario does not need the global dynamics equations of a system, and it has high computational efficiency and low memory requirements. The validity of the presented scenario is achieved through comparison to other approaches published in the literature.

  4. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    NASA Astrophysics Data System (ADS)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  5. Multiscreening determination of organic pollutants in molluscs using matrix solid phase dispersion.

    PubMed

    Ziarrusta, H; Olivares, M; Delgado, A; Posada-Ureta, O; Zuloaga, O; Etxebarria, N

    2015-04-24

    This work describes the optimisation, validation and application of matrix solid-phase dispersion (MSPD) coupled to gas chromatography mass spectrometry, both single quadrupole (GC-MS) and tandem (GC-MS/MS), for the quantification in molluscs of up to 40 different analytes belonging to several families of priority and emerging organic contaminants, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs) and musk fragrances. The MSPD procedure was fully optimised with a special focus on the clean-up strategy. The best recoveries were obtained using glass syringes, 0.30 g of freeze-dried sample, 0.30 g of Florisil as solid support, 4.00 g of activated silica and 25 mL of dichloromethane as elution solvent. Using GC-MS/MS the method afforded good linearities (r(2), between 0.980 and 0.9996), adequate repeatability and reproducibility (RSD<17% and 33%, respectively) and low instrumental limits of detection (between 0.010 and 2.74 ng mL(-1)). The accuracy of the method was evaluated using different approaches, i.e. assessment of spiked fish hatchery samples, laboratory reference material and standard reference material (SRM 2977). Satisfactory apparent recoveries were obtained for all the target analytes after correction with the corresponding labelled surrogate, except for PAHs in the case of SRM 2977, which required the use of the standard addition method. Finally, MSPD was applied to mollusc species collected in Colombia and Nicaragua, where PAHs, PCBs, musks and pesticides were detected at low ng g(-1) levels.

  6. Matrix effect on the determination of synthetic corticosteroids and diuretics by liquid chromatography-tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dikunets, M. A.; Appolonova, S. A.; Rodchenkov, G. M.

    2009-04-01

    This work presents a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) procedure for selective and reliable screening of corticosteroids and diuretics in human urine. Sample preparation included the extraction, evaporation of the organic extract under nitrogen, and solution of the dry residue. The extract was analyzed by HPLC combined with tandem mass spectrometry using electro-spraying ionization at atmospheric pressure with negative ion recording. The mass spectra of all compounds were recorded, and the characteristic ions, retention times, and detection limits were determined. The procedure was validated by evaluating the degree of the matrix suppression of ionization, extraction of analytes from human biological liquid, and the selectivity and specificity of determination.

  7. Matrix method of determining the longitudinal-stability coefficients and frequency response of an aircraft from transient flight data

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Pearson, Henry A

    1952-01-01

    A matrix method is presented for determining the longitudinal-stability coefficients and frequency response of an aircraft from arbitrary maneuvers. The method is devised so that it can be applied to time-history measurements of combinations of such simple quantities as angle of attack, pitching velocity, load factor, elevator angle, and hinge moment to obtain the over-all coefficients. Although the method has been devised primarily for the evaluation of stability coefficients which are of primary interest in most aircraft loads and stability studies, it can be used also, with a simple additional computation, to determine the frequency-response characteristics. The entire procedure can be applied or extended to other problems which can be expressed by linear differential equations.

  8. Matrix methods for determining the longitudinal-stability derivatives of an airplane from transient flight data

    NASA Technical Reports Server (NTRS)

    Donegan, James J

    1954-01-01

    Three matrice methods are developed and presented for determining the longitudinal-stability derivatives from transient flight data. In these methods the expressions for some of the stability derivatives are in the form generally used in stability calculations. The first method requires the combination of four measurements in time-history form, two of which must be incremental elevator deflection and incremental tail load and the other two measurements can be chosen from a possible three, namely incremental load factor, pitching velocity, and angle of attack. The method demonstrates the use of the tail load to separate the pitching-moment derivatives and to determine the downwash derivative. (author)

  9. Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein.

    PubMed

    Mercredi, Peter Y; Bucca, Nadine; Loeliger, Burk; Gaines, Christy R; Mehta, Mansi; Bhargava, Pallavi; Tedbury, Philip R; Charlier, Landry; Floquet, Nicolas; Muriaux, Delphine; Favard, Cyril; Sanders, Charles R; Freed, Eric O; Marchant, Jan; Summers, Michael F

    2016-04-24

    Assembly of HIV-1 particles is initiated by the trafficking of viral Gag polyproteins from the cytoplasm to the plasma membrane, where they co-localize and bud to form immature particles. Membrane targeting is mediated by the N-terminally myristoylated matrix (MA) domain of Gag and is dependent on the plasma membrane marker phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Recent studies revealed that PI(4,5)P2 molecules containing truncated acyl chains [tr-PI(4,5)P2] are capable of binding MA in an "extended lipid" conformation and promoting myristoyl exposure. Here we report that tr-PI(4,5)P2 molecules also readily bind to non-membrane proteins, including HIV-1 capsid, which prompted us to re-examine MA-PI(4,5)P2 interactions using native lipids and membrane mimetic liposomes and bicelles. Liposome binding trends observed using a recently developed NMR approach paralleled results of flotation assays, although the affinities measured under the equilibrium conditions of NMR experiments were significantly higher. Native PI(4,5)P2 enhanced MA binding to liposomes designed to mimic non-raft-like regions of the membrane, suggesting the possibility that binding of the protein to disordered domains may precede Gag association with, or nucleation of, rafts. Studies with bicelles revealed a subset of surface and myr-associated MA residues that are sensitive to native PI(4,5)P2, but cleft residues that interact with the 2'-acyl chains of tr-PI(4,5)P2 molecules in aqueous solution were insensitive to native PI(4,5)P2 in bicelles. Our findings call to question extended-lipid MA:membrane binding models, and instead support a model put forward from coarse-grained simulations indicating that binding is mediated predominantly by dynamic, electrostatic interactions between conserved basic residues of MA and multiple PI(4,5)P2 and phosphatidylserine molecules.

  10. Non-Contact Determination of Antisymmetric Plate Wave Velocity in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    1996-01-01

    A 13 mJ NdYAG 1064 nm, 4 ns, laser pulse was employed to produce ultrasonic plate waves in 20 percent porous SiC/SiC composite tensile specimens of three different architectures. An air coupled 0.5 MHz transducer was used to detect and collect the waveforms which contained first antisymmetric plate wave pulses for determining the shear wave velocity (VS). These results were compared to VS values determined on the same specimens with 0.5 MHz ultrasonic transducers with contact coupling. Averages of four noncontact determinations on each of 18 specimens were compared to averages of four contact values. The noncontact VS's fall in the same range as the contact. The standard deviations for the noncontact VS's averaged 2.8 percent. The standard deviations for the contact measurements averaged 2.3 percent, indicating similar reproducibility. Repeated laser pulsing at the same location always lead to deterioration of the ulu-"nic signal. The signal would recover in about 24 hr in air however, indicating that no permanent damage was produced.

  11. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  12. Use of Mueller polarimetric imaging for the staging of human colon cancer

    NASA Astrophysics Data System (ADS)

    Pierangelo, Angelo; Manhas, Sandeep; Benali, Abdelali; Antonelli, Maria Rosaria; Novikova, Tatiana; Validire, Pierre; Gayet, Brice; De Martino, Antonello

    2011-03-01

    In this paper we show the results of multi-spectral Mueller Imaging applied to the analysis of human colon cancer in a backscattering configuration with diffuse light illumination. The analyzed sample behaves as a pure depolarizer. The depolarization power, for both healthy and cancerous zones, is lower for linearly than for circularly polarized incident light for all used wavelengths and increases with increasing wavelength. Based on their visual staging and polarimetric responses, we chose specific zones which we correlated to the histology of the corresponding cuts. The histological examination shows that we see a multilayer interaction in both healthy and abnormal zones, if the light penetration depth is sufficient. The measured depolarization depends on several factors: the presence or absence of tumor, the microscopic structure of cancer (ratio between cellular density and stroma), its exophytic (budding) or endophytic (penetrating) nature, its thickness, the degree of cancer penetration in deeper layers and the nature of healthy tissue left under abnormal layers. These results demonstrate that multi-spectral Mueller imaging can provide useful contrasts for the quick staging of human colon cancer ex-vivo, with additional information about cancerous zones with different microscopic structures.

  13. KEY COMPARISON: CCQM-K27-Subsequent: Key Comparison (subsequent) for the determination of ethanol in aqueous matrix

    NASA Astrophysics Data System (ADS)

    Schantz, Michele M.; Duewer, David L.; Parris, Reenie M.; May, Willie E.; Archer, Marcellé; Mussell, Chris; Carter, David; Konopelko, Leonid A.; Kustikov, Yury A.; Krylov, Anatoli I.; Fatina, Olga V.

    2005-01-01

    Ethanol is important both forensically ('drunk driving' or driving while under the influence, 'DWI', regulations) and commercially (alcoholic beverages). Blood- and breath-alcohol testing can be imposed on individuals operating private vehicles such as cars, boats, or snowmobiles, or operators of commercial vehicles like trucks, planes, and ships. The various levels of blood alcohol that determine whether these operators are considered legally impaired vary depending on the circumstances and locality. Accurate calibration and validation of instrumentation is critical in areas of forensic testing where quantitative analysis directly affects the outcome of criminal prosecutions, as is the case with the determination of ethanol in blood and breath. Additionally, the accurate assessment of the alcoholic content of beverages is a commercially important commodity. In 2002, the CCQM conducted a Key Comparison (CCQM-K27) for the determination of ethanol in aqueous matrix with nine participants. A report on this project has been approved by the CCQM and can be found at the BIPM website and in this Technical Supplement. CCQM-K27 comprised three samples, one at low mass fraction of ethanol in water (nominal concentration of 0.8 mg/g), one at high level (nominal concentration of 120 mg/g), and one wine matrix (nominal concentration of 81 mg/g). Overall agreement among eight participants using gas chromatography with flame ionization detection (GC-FID), titrimetry, isotope dilution gas chromatography/mass spectrometry (GC-IDMS), and gas chromatography-combustion-isotope ratio mass spectrometry (ID-GC-C-IRMS) was good. The ninth participant used a headspace GC-FID method that had not been validated in an earlier pilot study (CCQM-P35). A follow-on Key Comparison, CCQM-K27-Subsequent, was initiated in 2003 to accommodate laboratories that had not been ready to benchmark their methods in the original CCQM-K27 study or that wished to benchmark a different method. Four levels of

  14. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF–VEGF complex in extracellular matrix

    PubMed Central

    Li, Changjun; Zhen, Gehua; Chai, Yu; Xie, Liang; Crane, Janet L.; Farber, Emily; Farber, Charles R.; Luo, Xianghang; Gao, Peisong; Cao, Xu; Wan, Mei

    2016-01-01

    Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell–ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration. PMID:27126736

  15. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques.

    PubMed

    Bartczak, Dorota; Vincent, Phil; Goenaga-Infante, Heidi

    2015-06-02

    We propose for the first time methodology for the determination of a number-based concentration of silica (SiO2) nanoparticles (NP) in biological serum using nanoparticle tracking analysis (NTA) as the online detector for asymmetric flow field-flow fractionation (AF4). The degree of selectivity offered by AF4 was found necessary to determine reliably number-based concentration of the measured NP in the complex matrix with a relative measurement error of 5.1% (as relative standard deviation, n = 3) and without chemical sample pretreatment. The simultaneous online coupling to other size and concentration detectors, such as multiangle light scattering (MALS) and ICPMS, for the measurement of the same NP suspension, was used to confirm the particle size determined with NTA and the equivalent particle number determined by AF4/NTA, respectively. The size- and number-based concentration data obtained by independent techniques were in a good agreement. The developed methodology can easily be extended to other types of particles or particle suspensions and other complex matrices provided that the particle size is above the limit of detection for NTA.

  16. Elimination of matrix effects in electrothermal atomic absorption spectrophotometric determinations of bismuth in serum and urine.

    PubMed

    Dean, S; Tscherwonyi, P J; Riley, W J

    1992-01-01

    A sensitive and precise electrothermal atomic absorption spectrophotometric method for determining bismuth concentration is described. Protein precipitation and the use of a palladium modifier reduce the problems of foaming and permit the use of a higher ashing temperature. The detection limit of the assay is 0.9 nmol/L. Total CVs (intra- and interassay) for serum ranged from 3.5% to 15.1% and for urine from 4.8% to 14.5% at concentrations of 60.0 and 6.0 nmol/L, respectively. Analytical recoveries of bismuth added to serum and urine were 102% and 103% over the same range. The method is robust and reproducible and can be accurately calibrated with aqueous standards.

  17. Final report on AFRIMETS.QM-K27: Determination of ethanol in aqueous matrix

    NASA Astrophysics Data System (ADS)

    Archer, Marcellé; Fernandes-Whaley, Maria; Visser, Ria; de Vos, Jayne; Prins, Sara; Rosso, Adriana; Ruiz de Arechavaleta, Mariana; Tahoun, Ibrahim; Kakoulides, Elias; Luvonga, Caleb; Muriira, Geoffrey; Naujalis, Evaldas; Zakaria, Osman Bin; Buzoianu, Mirella; Bebic, Jelena; Achour Mounir, Ben; Thanh, Ngo Huy

    2013-01-01

    From within AFRIMETS, the Regional Metrology Organization (RMO) for Africa, the RMO Key Comparison AFRIMETS.QM-K27 was coordinated by the National Metrology Institute of South Africa (NMISA) in 2011. Ten Metrology Institutes participated, comprising three AFRIMETS, two APMP, four EURAMET and one SIM participant. Participants were required to determine the forensic level concentration of two aqueous ethanol solutions that were gravimetrically prepared by the NMISA. Concentrations were expected to lie in the range of 0.1 mg/g to 5.0 mg/g. The accurate determination of ethanol content in aqueous medium is critical for regulatory forensic and trade purposes. The CCQM Organic Analysis Working Group has carried out several key comparisons (CCQM-K27 series) on the determination of ethanol in wine and aqueous matrices. Developing NMIs now had the opportunity to link to the earlier CCQM-K27 studies through the AFRIMETS.QM-K27 study. Gas chromatography coupled to flame ionisation or mass spectrometric detection was applied by eight of the participants, while three participants (including NMISA) applied titrimetry for the ethanol assay. The assigned reference value of the aqueous ethanol solutions was used to link AFRIMETS.QM-K27 to the CCQM-K27 key comparison reference value. The assigned reference values for AFRIMETS.QM-K27 Level 1 and Level 2 were (0.3249 ± 0.0021) mg/g (k = 2) and (4.6649 ± 0.0152) mg/g (k = 2), respectively. The reference values were determined using the purity-corrected gravimetric preparation values, while the standard uncertainty incorporated the gravimetric preparation and titrimetric homogeneity uncertainties. From previous CCQM-K27 studies, the expected spread (%CV) of higher order measurements of ethanol in aqueous medium is about 0.85% relative. In this study the CV for Level 1 is about 12% (10% with two outliers removed) and for Level 2 about 4%. Three of the ten laboratories submitted results within 1.5% of the gravimetric reference value for

  18. Method for the determination of chromium in feed matrix by HPLC.

    PubMed

    Umesh, Balakrishnan; Rajendran, Rajendra Moorthy; Manoharan, Muthu Tamizh

    2015-11-01

    An improved method for the chromatographic separation and determination of chromium (III) and (VI) [ CRIII AND CRVI: ] in mineral mixtures and feed samples has been developed. The method uses precolumn derivatization using ammonium pyrrolidinedithiocarbamate ( APD: ) followed by reversed-phase liquid chromatography to separate the chromium ions. Both Cr(III) and Cr(VI) species are chelated with ammonium pyrrolidinedithiocarbamate prior to separation by mixing with acetonitrile and 0.5 mmol acetate buffer (pH 4.5). Optimum chromatographic separations were obtained with a polymer-based reversed-phase column (Kinetex, 5 μ, 250 × 4.5 mm, Phenomenex, Torrance, CA) and a mobile phase containing acetonitrile and water (7:3). Both Cr(III) and Cr(VI) ion concentrations were directly determined from the corresponding areas in the chromatogram. The effect of analytical parameters, including pH, concentration of ligand, incubation temperature, and mobile phase, was optimized for both chromium complexes. The range of the procedure was found to be linear for Cr(III) and Cr(VI) concentrations between 0.125 and 4 μg/mL (r² = 0.9926) and 0.1 and 3.0 μg/mL (r² = 0.9983), respectively. Precision was evaluated by replicate analysis in which the percentage relative standard deviation values for chromium complex were found to be below 4.0. The recoveries obtained (85-115%) for both Cr(III) and Cr(VI) complexes indicated the accuracy of the developed method. The degradation products, as well as the excipients, were well resolved from the chromium complex peak in the chromatogram. Finally, the new method proved to be suitable for routine analysis of Cr(III) and Cr(VI) species in raw materials, mineral mixtures, and feed samples.

  19. A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2010-01-01

    The paper gives a new method for analyzing planar discontinuities in rectangular waveguides. The method consists of a re-expansion of the normal modes in the two ducts at the junction plane into a system of functions accounting for the velocity singularities at the corner points. As the new expansion has an exponential convergence, only a few terms have to be considered for obtaining the solution of most practical problems. To see how the method works some closed form solutions, obtained by the conformal mapping method, are used to discuss the convergence of the re-expanded series when the number of retained terms increases. The equivalent impedance accounting for nonplanar waves into a plane-wave analysis is determined. Finally, the paper yields the scattering matrix which describes the coupling of arbitrary modes at each side of the discontinuity valid in the case of many propagating modes in both parts of the duct. PMID:20707432

  20. Determining the biofilm penetrating ability of various biocides utilizing an artificial biofilm matrix

    SciTech Connect

    McIlwaine, D.B.; Diemer, J.; Grab, L.

    1997-12-01

    The efficacy of many commonly used biocides is often determined by laboratory evaluations against a variety of planktonic microorganisms. While these tests provide some information as to the performance of a biocide against a particular microorganism, they may not predict how well the biocide will perform under actual field conditions against the more problematic sissile form of the organisms. In order to address the issue of how well a biocide penetrates and kills the problematic microorganisms contained within a biofilm, an artificial biofilm system utilizing microorganisms embedded in alginate beads has been used to compare the efficacy of biocide treatments against both the planktonic and sessile form of the same organism. Pure cultures of Enterobacter aerogenes, as well as mixed field isolates, were used in the experiments. In addition, the alginate beads were prepared with actual system waters taken from a variety of industrial applications. In that way, all of the scale and corrosion inhibitors and other contaminants which are present in the actual system are also present in the model biofilm system. In all cases, the organisms contained within the artificial biofilm were significantly more difficult to kill than the corresponding planktonic microbes.

  1. Analytical quality assurance in veterinary drug residue analysis methods: matrix effects determination and monitoring for sulfonamides analysis.

    PubMed

    Hoff, Rodrigo Barcellos; Rübensam, Gabriel; Jank, Louise; Barreto, Fabiano; Peralba, Maria do Carmo Ruaro; Pizzolato, Tânia Mara; Silvia Díaz-Cruz, M; Barceló, Damià

    2015-01-01

    In residue analysis of veterinary drugs in foodstuff, matrix effects are one of the most critical points. This work present a discuss considering approaches used to estimate, minimize and monitoring matrix effects in bioanalytical methods. Qualitative and quantitative methods for estimation of matrix effects such as post-column infusion, slopes ratios analysis, calibration curves (mathematical and statistical analysis) and control chart monitoring are discussed using real data. Matrix effects varying in a wide range depending of the analyte and the sample preparation method: pressurized liquid extraction for liver samples show matrix effects from 15.5 to 59.2% while a ultrasound-assisted extraction provide values from 21.7 to 64.3%. The matrix influence was also evaluated: for sulfamethazine analysis, losses of signal were varying from -37 to -96% for fish and eggs, respectively. Advantages and drawbacks are also discussed considering a workflow for matrix effects assessment proposed and applied to real data from sulfonamides residues analysis.

  2. Relativistic kinematics formulation of the polarization effects of Jones-Mueller matrices.

    PubMed

    Franssens, Ghislain R

    2015-02-01

    The polarization of a partially coherent, transverse electric, electromagnetic plane wave is commonly represented by a Stokes vector. The similarity between Stokes vectors and four-momentum vectors in special relativity (SR) is studied in depth. The set of Stokes vectors naturally possesses a Euclidean and a Lorentzian geometry. The latter is used to express the polarization-altering properties of Jones-Mueller matrices in a simple and elegant way. In particular, it is shown that the action of a diattenuator on a Stokes vector can be understood in terms of the addition law for velocities from SR. An important simplification in the resulting mathematical expressions further arises if the degree of polarization of a Stokes vector is represented by a hyperbolic polarization angle. This then allows us to demonstrate that the output hyperbolic polarization angle is related to a diattenuator hyperbolic polarization angle and the input hyperbolic polarization angle by the hyperbolic law of cosines holding in a hyperbolic triangle.

  3. Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging.

    PubMed

    Pierangelo, Angelo; Manhas, Sandeep; Benali, Abdelali; Fallet, Clément; Antonelli, Maria-Rosaria; Novikova, Tatiana; Gayet, Brice; Validire, Pierre; De Martino, Antonello

    2012-06-01

    Healthy human colon samples were analyzed ex vivo with a multispectral imaging Mueller polarimeter operating from 500 to 700 nm in a backscattering configuration with diffuse light illumination impinging on the innermost tissue layer, the mucosa. The intensity and polarimetric responses were taken on whole tissues first and after progressive exfoliation of the outer layers afterwards. Moreover, these measurements were carried out with two different substrates (one bright and the other dark) successively placed beneath each sample, allowing a reasonably accurate evaluation of the contributions to the overall backscattered light by the various layers. For the shorter investigated wavelengths (500 to 550 nm) the major contribution comes from mucosa and submucosa, while for the longer wavelengths (650 to 700 nm) muscular tissue and fat also contribute significantly. The depolarization has also been studied and is found to be stronger in the red part of the spectrum, mainly due to the highly depolarizing power of the muscular and fat layers.

  4. Regulation of extracellular matrix remodeling and cell fate determination by matrix metalloproteinase stromelysin-3 during thyroid hormone-dependent post-embryonic development.

    PubMed

    Shi, Yun-Bo; Fu, Liezhen; Hasebe, Takashi; Ishizuya-Oka, Atsuko

    2007-12-01

    Interactions between cells and extracellular matrix (ECM), in particular the basement membrane (BM), are fundamentally important for the regulation of a wide variety of physiological and pathological processes. Matrix metalloproteinases (MMP) play critical roles in ECM remodeling and/or regulation of cell-ECM interactions because of their ability to cleave protein components of the ECM. Of particular interest among MMP is stromelysin-3 (ST3), which was first isolated from a human breast cancer and also shown to be correlated with apoptosis during development and invasion of tumor cells in mammals. We have been using intestinal remodeling during thyroid hormone (TH)-dependent amphibian metamorphosis as a model to study the role of ST3 during post-embryonic tissue remodeling and organ development in vertebrates. This process involves complete degeneration of the tadpole or larval epithelium through apoptosis and de novo development of the adult epithelium. Here, we will first summarize expression studies by us and others showing a tight spatial and temporal correlation of the expression of ST3 mRNA and protein with larval cell death and adult tissue development. We will then review in vitro and in vivo data supporting a critical role of ST3 in TH-induced larval epithelial cell death and ECM remodeling. We will further discuss the potential mechanisms of ST3 function during metamorphosis and its broader implications.

  5. Influence of pre-treatment process on matrix effect for the determination of musk fragrances in fish and mussel.

    PubMed

    Vallecillos, Laura; Pocurull, Eva; Borrull, Francesc

    2015-03-01

    Musk compounds are widely used as fragrances in personal care products. On account of their widespread use and their low biodegradation, they can be found in environmental samples. In our study two extraction methodologies were compared and different clean-up strategies were also studied in order to develop a reliable analytical method, with minimum matrix effect and good detection limits, to determine synthetic musk fragrances- six polycyclic musks, three nitro musks and the degradation product of one polycyclic musk- in fish and mussel samples. The first extraction technique involves a QuEChERS extraction, a consolidate extraction methodology in the field of food analysis of growing interest over recent years, followed by a dispersive solid-phase extraction (dSPE) as clean-up strategy. The second extraction technique consists of a conventional pressurised liquid extraction (PLE) with dichloromethane and an in-cell clean-up to decrease the matrix effect and remove the undesired components(⁎)present in PLE extracts. Large volume injection (LVI) followed by gas chromatography-ion trap-tandem mass spectrometry (GC-IT-MS/MS) was chosen as the separation and detection technique. Validation parameters, such as method detection limits and method quantification limits were found at ng g(-1) levels for both fish and mussel matrices. Good levels of intra-day and inter-day repeatabilities were obtained analysing fish and mussel samples spiked at 50 ng g(-1) (d.w.) (n=5, RSDs<17%). The developed PLE/GC-IT-MS/MS method was successfully applied to determine the target musk fragrances present in fish and mussel samples from the local market in Tarragona and fish samples from the Ebro River. The results showed the presence of galaxolide (2.97-18.04 ng g(-1) (d.w.)) and tonalide (1.17-8.42 ng g(-1) (d.w.)) in all the samples analysed, while the remaining polycyclic musks such as cashmeran, celestolide and phantolide, were only detected in some of the fish samples analysed. None

  6. Exploring matrix effects in liquid chromatography-tandem mass spectrometry determination of pesticide residues in tropical fruits.

    PubMed

    Botero-Coy, Ana María; Marín, José M; Serrano, Roque; Sancho, Juan Vicente; Hernández, Félix

    2015-05-01

    Tropical fruits are being increasingly consumed around the world because of their appreciated characteristics, particularly their high nutritional value and distinctive taste, which are different from those of traditional fruits. Owing to their introduction into international markets it is necessary to have a reliable analytical methodology available for the sensitive determination of pesticide residues in order to monitor the compliance of maximum residue limits (MRLs). From an analytical point of view, tropical fruits have generally been far less studied than other fruits frequently consumed in the European Union or USA, which are among the most important markets. In this work, LC-MS/MS-based methodology using a triple quadrupole analyzer was developed for the multi-residue determination of selected pesticides and metabolites in tropical fruits, which were selected among the most popular in Colombia, one of the most important suppliers of tropical fruits around the world. After selection of a QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)-based sample treatment, the study focused on the evaluation of matrix effects, in order to find a simple way for their correction. Twelve different food matrices were selected to perform this study: the seven Colombian tropical fruits of highest value for domestic and international markets (uchuva, tamarillo, granadilla, gulupa, maracuya, papaya, and pithaya), and five more matrices highly consumed in Colombia (lulo, carambolo, feijoa, mangostan, and guayaba). Twenty compounds, including pesticides widely applied in tropical fruits pest control and several metabolites considered in residue definition, were used as model compounds in this work. Correction factors were used on the basis of calibration graphs obtained with standards in solvent and in matrix, and their usefulness was supported by validation of the method in all the matrices tested at 0.01 and 0.1 mg/kg. The analysis of real-world samples revealed the

  7. Matrix solid phase dispersion-Soxhlet simultaneous extraction clean-up for determination of organochlorine pesticide residues in tobacco.

    PubMed

    Cai, Jibao; Gao, Yun; Zhu, Xiaolan; Su, Qingde

    2005-11-01

    A novel method combining matrix solid phase dispersion (MSPD) with Soxhlet simultaneous extraction clean-up (SSEC) was developed. Being a single-step extraction and clean-up procedure, it could be used instead of multistep solvent extraction and Florisol column clean-up. It not only reduces sample contamination during the procedure, but it also decreases the amount of organic solvent needed. The retention times of standards were used to qualitatively assess the method, and the external standard method was used to quantitatively assess it. Residues of organochlorine pesticides (OCP) in tobaccos were determined by gas chromatography-electron capture detection (GC-ECD), and their identities were confirmed by the standard addition method (SAM). The performance of the method was evaluated and validated: the detection limit was 0.01-0.02 microg g(-1), relative standard deviations were 5-26%, and recoveries were 72-99% at fortification levels of 0.10, 1.00 and 10.0 microg g(-1). The analytical characteristics of MSPD-SSEC compared very favorably with the results from the classical multistep solvent extraction and Florisol column clean-up method.

  8. Determination of optimal collimation parameters for a rotating slat collimator system: a system matrix method using ML-EM

    NASA Astrophysics Data System (ADS)

    Boisson, F.; Bekaert, V.; Brasse, D.

    2016-03-01

    Nowadays, Single Photon imaging has become an essential part of molecular imaging and nuclear medicine. Whether to establish a diagnosis or in the therapeutic monitoring, this modality presents performance that continues to improve. For over 50 years, several collimators have been proposed. Mainly governed by collimation parameters, the resolution-sensitivity trade-off is the factor determining the collimator the most suitable for an intended study. One alternative to the common approaches is the rotating slat collimator (RSC). In the present study, we are aiming at developing a preclinical system equipped with a RSC dedicated to mice and rats imaging, which requires both high sensitivity and spatial resolution. We investigated the resolution-sensitivity trade-offs obtained by varying different collimation parameters: (i) the slats height (H), and (ii) the gap between two consecutive slats (g), considering different intrinsic spatial resolutions. One system matrix was generated for each set of collimation parameters (H,g). Spatial resolutions, Signal-to-Noise Ratio (SNR) and sensitivity obtained for all the set of collimation parameters (H,g) were measured in the 2D projections reconstructed with ML-EM. According to our results, 20 mm high slats and a 1 mm gap were chosen as a good RSC candidate for a preclinical detection module. This collimator will ensure a sensitivity greater than 0.2% and a system spatial resolution below 1 mm, considering an intrinsic spatial resolution below 0.8 mm.

  9. Determination of microcystin-LR in drinking water using UPLC tandem mass spectrometry-matrix effects and measurement.

    PubMed

    Li, Wei; Duan, Jinming; Niu, Chaoying; Qiang, Naichen; Mulcahy, Dennis

    2011-10-01

    A simple detection method using ultra-performance liquid chromatography electrospray ionisation tandem mass spectrometry (UPLC-ESI-MS-MS) coupled with the sample dilution method for determining trace microcystin-LR (MC-LR) in drinking water is presented. The limit of detection (LOD) was 0.04 µg/L and the limit of quantitation (LOQ) was 0.1 µg/L. Water matrix effects of ionic strength, dissolved organic carbon (DOC) and pH were examined. The results indicate that signal detection intensity for MC-LR was significantly suppressed as the ionic strength increased from ultrapure water condition, whereas it increased slightly with solution pH and DOC at low concentrations. However, addition of methanol (MeOH) into the sample was able to counter the signal suppression effects. In this study, dilution of the tap water sample by adding 4% MeOH (v/v) was observed to be adequate to compensate for the signal suppression. The recoveries of the samples fortified with MC-LR (0.2, 1, and 10 µg/L) for three different tap water samples ranged from 84.4% to 112.9%.

  10. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  11. Determination of transition dipole matrix elements for the 266 nm photofragmentation of JKM state-selected CD3I

    NASA Astrophysics Data System (ADS)

    Pipes, Leonard C.; Kim, Dae Young; Brandstater, Nathan; Fuglesang, Christopher D.; Baugh, Delroy

    1995-12-01

    The photofragmentation of rovibrational energy-level and magnetic-state polarized ( overlineX1A 1)CD 3I ∣JKM>≡∣111> was performed at 266 nm. The ∣ NK) rotational energy level distribution and the angular momentum polarization of the vibrationless ( overlineX2A″ 2) CD 3 photofragment were measured by (2+1) REMPI. State-selecting the parent CD 3I allowed the elements of the transition dipole matrix (or T-matrix) to be determined by relating the initial system (CD 3I plus photon) statistical tensors to measured product statistical moments. This is believed to be the first report of the experimental determination of T-matrix elements for a chemical reaction.

  12. [Validation Study on a Multi-Residue Method for Determination of Pesticide Residues in Vegetables and Fruits by using General Matrix Standard Solutions].

    PubMed

    Fukui, Naoki; Takatori, Satoshi; Yamaguchi, Satoko; Kitagawa, Yoko; Yoshimitsu, Masato; Osakada, Masakazu; Kajimura, Keiji; Obana, Hirotaka

    2015-01-01

    Quantitative methods using the matrix-matched standard solutions approach are widely used for multi-residue pesticide determination by GC-MS/MS to deal with the issue of matrix effects. However, preparing matrix-matched standard solutions in analyses of many kinds of samples is very time-consuming. In order to solve this problem, a method that employs general matrix standard solutions has been developed using polyethylene glycol (PEG), extract of vegetables-fruit juice (VFJm) and triphenyl phosphate (named the PEG-VFJm method). Here, a validation study for 168 pesticides was performed on three kinds of samples [potato, spinach and apple] at concentrations of 0.010 and 0.050 μg/g. In these three commodities, 144 to 158 pesticides satisfied the required criteria using the matrix-matched method and 129 to 149 pesticides satisfied the same criteria using the PEG-VFJm method. Our results suggest that application of general matrix standard solutions would enable rapid and effective analyses of pesticides.

  13. Direct determination of the peptide content in microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Na, Dong Hee; DeLuca, Patrick P; Lee, Kang Choon

    2004-05-01

    A quantitative determination of peptides incorporated into poly(d,l-lactide-co-glycolide) microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was accomplished in a single step without pretreatment for extracting the peptide from the microsphere. The conventional extraction methods often underestimate the actual amount of peptide because of incomplete extraction from the microspheres or loss during the procedures. In this study, the microspheres dissolved in acetonitrile containing 0.1% trifluoroacetic acid were mixed with matrix solution containing the internal standard, and the peptide content was directly determined by MALDI-TOF MS. The drug content values determined by MALDI-TOF MS in both the leuprolide- and salmon calcitonin-incorporated microspheres were closer to the theoretical contents than those determined by the conventional extraction method. This method using MALDI-TOF MS could be a good alternative to time-consuming and less-accurate conventional methods.

  14. Determination of suspected fragrance allergens in cosmetics by matrix solid-phase dispersion gas chromatography-mass spectrometry analysis.

    PubMed

    Sanchez-Prado, Lucia; Lamas, J Pablo; Alvarez-Rivera, Gerardo; Lores, Marta; Garcia-Jares, Carmen; Llompart, Maria

    2011-08-05

    An effective low cost sample preparation methodology for the determination of regulated fragrance allergens in leave-on and rinse-off cosmetics has been developed applying, for the first time, matrix solid-phase dispersion (MSPD) to this kind of analytes and samples. The selection of the most suitable extraction conditions was made using statistical tools such as ANOVA, as well as a factorial multifactor experimental design. These studies were carried out using real cosmetic samples. In the final conditions, 0.5 of sample, previously mixed with 1g of anhydrous Na(2)SO(4), were blended with 2g of dispersive sorbent (Florisil), and the MSPD column was eluted with 5 mL of hexane/acetone (1:1). The extract was then analyzed by GC-MS without any further clean-up or concentration step. Accuracy, precision, linearity and detection limits (LODs) were evaluated to assess the performance of the proposed method. Quantitative recoveries (>75%) were obtained and RSD values were lower than 10% in all cases. The quantification limits were well below those set by the international cosmetic regulations, making this multi-component analytical method suitable for routine control. In addition, the MSPD method can be implemented in any laboratory at low cost since it does not require special equipment. Finally, a wide variety of cosmetic products were analyzed. All the samples contained several of the target cosmetic ingredients, with and average number of seven. The total fragrance allergen content was in general quite high, even in baby care products, with values close to or up to 1%, for several samples, although the actual European Cosmetic Regulation was fulfilled.

  15. Quantitative Serology Assays for Determination of Antibody Responses to Ebola Virus Glycoprotein and Matrix Protein in Nonhuman Primates and Humans

    PubMed Central

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C.; Warfield, Kelly L.; Aman, M. Javad; Holtsberg, Frederick W.

    2016-01-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA’s), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in E. coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals. PMID:26681387

  16. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans.

    PubMed

    Vu, Hong; Shulenin, Sergey; Grolla, Allen; Audet, Jonathan; He, Shihua; Kobinger, Gary; Unfer, Robert C; Warfield, Kelly L; Aman, M Javad; Holtsberg, Frederick W

    2016-02-01

    The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals.

  17. Determining the Henry's Law constants of THMs in seawater by means of purge-and-trap gas chromatography (PT-GC): the influence of seawater as sample matrix.

    PubMed

    Ruiz-Bevia, Francisco; Fernandez-Torres, Maria J

    2010-01-01

    The influence of seawater salts as salting out agents on the purge-and-trap gas chromatography (PT-GC) determination of trihalomethanes (THMs) was studied. This is particularly important since seawater is chlorinated when used as a cooling agent in coastal nuclear power stations. The chlorination produces unwanted THMs as by-products. A PT-GC apparatus was used to determine the Henry's Law constant of each THM, with seawater as the sample matrix.

  18. Simultaneous determination of phenolic compounds in Equisetum palustre L. by ultra high performance liquid chromatography with tandem mass spectrometry combined with matrix solid-phase dispersion extraction.

    PubMed

    Wei, Zuofu; Pan, Youzhi; Li, Lu; Huang, Yuyang; Qi, Xiaolin; Luo, Meng; Zu, Yuangang; Fu, Yujie

    2014-11-01

    A method based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with tandem mass spectrometry is presented for the extraction and determination of phenolic compounds in Equisetum palustre. This method combines the high efficiency of matrix solid-phase dispersion extraction and the rapidity, sensitivity, and accuracy of ultra high performance liquid chromatography with tandem mass spectrometry. The influential parameters of the matrix solid-phase dispersion extraction were investigated and optimized. The optimized conditions were as follows: silica gel was selected as dispersing sorbent, the ratio of silica gel to sample was selected to be 2:1 (400/200 mg), and 8 mL of 80% methanol was used as elution solvent. Furthermore, a fast and sensitive ultra high performance liquid chromatography with tandem mass spectrometry method was developed for the determination of nine phenolic compounds in E. palustre. This method was carried out within <6 min, and exhibited satisfactory linearity, precision, and recovery. Compared with ultrasound-assisted extraction, the proposed matrix solid-phase dispersion procedure possessed higher extraction efficiency, and was more convenient and time saving with reduced requirements on sample and solvent amounts. All these results suggest that the developed method represents an excellent alternative for the extraction and determination of active components in plant matrices.

  19. Determination of kresoxim-methyl and its thermolabile metabolites in pear utilizing pepper leaf matrix as a protectant using gas chromatography

    PubMed Central

    Rahman, Md. Musfiqur; Jang, Jin; Park, Jong-Hyouk; Abd El-Aty, A.M.; Ko, Ah-Young; Choi, Jeong-Heui; Yang, Angel; Park, Ki Hun; Shim, Jae-Han

    2013-01-01

    Kresoxim-methyl and its two thermolabile metabolites, BF 490-2 and BF 490-9, were analyzed in pear using a pepper leaf matrix protection to maintain the metabolites inside the gas chromatography system. Samples were extracted with a mixture of ethyl acetate and n-hexane (1:1, v/v) and purified and/or separated using a solid phase extraction procedure. The pepper leaf matrix was added and optimized with cleaned pear extract to enhance metabolite sensitivity. Matrix matched calibration was used for kresoxim-methyl in the pear matrix and for metabolites in the pear mixed with pepper leaf matrix. Good linearity was obtained for all analytes with a coefficient of determination, r2 ⩾ 0.992. Limits of detection (LOD) and quantification (LOQ) were 0.006 and 0.02 mg kg−1 and 0.02 and 0.065 mg kg−1 for kresoxim-methyl and the metabolites, respectively. Recoveries were carried out at two concentration levels and were 85.6–97.9% with a relative standard deviation <2.5%. The method was successfully applied to field incurred pear samples, and only kresoxim-methyl was detected at a concentration of 0.03 mg kg−1. PMID:25685500

  20. Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal-Mueller technique.

    PubMed

    Batishchev, Oleg V; Indenbom, Andrey V

    2008-11-01

    Formation of bilayer lipid membrane (BLM) by Montal-Mueller technique across a small aperture in a partition film traditionally requires coating of the aperture with a hydrophobic substance, often just an organic solvent. However, we demonstrate here that the most effective coating is not strictly hydrophobic but rather provides water/oil repellent properties. BLM were formed from diphytanoylphosphatidylcholine (DPhPC) on small 0.1-0.8 mm apertures made in specially prepared alkylated glass coverslips. The coverslips were either fluorosiliconized by 3,3,3-Trifluoropropyl-trimethoxysilane, which reduces adsorption of DPhPC in addition to creation of hydrophobic surface, or silanized, which promote adsorption of DPhPC. At fluorosiliconized surfaces stable BLM were formed. Specific capacitance of these BLM was 0.86 microF/cm(2)+/-5%, while their lateral tension was estimated as 4.3+/-0.4 mN/m. BLM were stable for hours under moderate voltage applied. At silanized surfaces stable BLM were formed only in acidic medium (3

  1. Use of Mueller-Hinton broth and agar in the germ tube test.

    PubMed

    Mattei, Antonella Souza; Alves, Sydney Hartz; Severo, Cecília Bittencourt; Guazzelli, Luciana da Silva; Oliveira, Flávio de Mattos; Severo, Luiz Carlos

    2014-01-01

    Candida albicans is often isolated from clinical samples, thus its presumptive differentiation from other species of the same genus can be based on its ability to form the germ tube in human serum. Nevertheless, there are two other species that share this characteristic: C. dubliniensis and C. africana. The aim of this study was to compare four different substrates to perform the germ tube (GT) test. The Candida spp. isolates were identified using a manual system (135 C. albicans, 24 C. tropicalis and one C. dubliniensis). The germ tube test was performed with fresh, previously frozen serum and Mueller-Hinton (MH) broth and agar. GT was observed in 96% (130/136) of the isolates through the fresh serum technique, 94% (128/136) through previously frozen serum, 92% (125/136) in MH agar, and 90% (122/136) in MH broth. The sensitivity of each test was higher than 90%, with 100% specificity. Both the MH agar and broth were able to identify the true positives, and false positives were not found. However, some C. albicans isolates were not identified. MH agar and broth may be used in laboratory for the rapid presumptive identification of C. albicans, as an alternative method for germ tube test.

  2. Retinal Mueller glial cells trigger the hallmark inflammatory process in autoimmune uveitis.

    PubMed

    Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; Stangassinger, Manfred; Gerhards, Hartmut; Ueffing, Marius; Deeg, Cornelia A

    2007-06-01

    Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.

  3. General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices.

    PubMed

    Hayman, Matthew; Thayer, Jeffrey P

    2012-04-01

    Polarization measurements have become nearly indispensible in lidar cloud and aerosol studies. Despite polarization's widespread use in lidar, its theoretical description has been widely varying in accuracy and completeness. Incomplete polarization lidar descriptions invariably result in poor accountability for scatterer properties and instrument effects, reducing data accuracy and disallowing the intercomparison of polarization lidar data between different systems. We introduce here the Stokes vector lidar equation, which is a full description of polarization in lidar from laser output to detector. We then interpret this theoretical description in the context of forward polar decomposition of Mueller matrices where distinct polarization attributes of diattenuation, retardance, and depolarization are elucidated. This decomposition can be applied to scattering matrices, where volumes consisting of randomly oriented particles are strictly depolarizing, while oriented ice crystals can be diattenuating, retarding, and depolarizing. For instrument effects we provide a description of how different polarization attributes will impact lidar measurements. This includes coupling effects due to retarding and depolarization attributes of the receiver, which have no description in scalar representations of polarization lidar. We also describe how the effects of polarizance in the receiver can result in nonorthogonal polarization detection channels. This violates one of the most common assumptions in polarization lidar operation.

  4. Towards a reliable molecular mass determination of intact glycoproteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2007-01-01

    Different matrices and sample-matrix preparation procedures have been tested in order to study their influence on the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra of intact glycoproteins, which present different degrees of glycosylation (human transferrin; bovine fetuin; bovine alpha(1)-acid-glycoprotein; recombinant human erythropoietin; and the novel erythropoiesis stimulating protein). Using sinapinic acid (SA) and the fast evaporation method, the studied glycoproteins became susceptible to fragmentation at any laser intensity, suggesting that this 'hot' matrix is unsuitable for a reliable molecular mass determination of glycosylated compounds. In contrast, 2,5-dihydroxybenzoic acid (DHB) and 6-aza-2-thiothymine (ATT), with an adequate sample-matrix preparation, provided improved results. Samples containing DHB after crystallization by vacuum drying demonstrated the best performance because the labile functional groups from the glycoforms were apparently fragmented to a lower extent. The average molecular masses obtained using this methodology were in all cases a better estimation than those values reported in the literature. The results were reproducible, and sensitivity was similar to that obtained with SA and the fast evaporation method. These excellent results suggest that this MALDI-TOF-MS methodology could be useful for an improved determination of the average molecular mass values of microheterogeneous compounds such as glycoproteins, glycosylated compounds or, in general, molecular mass values of molecules with similar labile functional groups.

  5. Simultaneous determination of multiclass emerging contaminants in aquatic plants by ultrasound-assisted matrix solid-phase dispersion and GC-MS.

    PubMed

    Aznar, Ramón; Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Martín-Girela, Isabel; Tadeo, José L

    2017-03-01

    A multiresidue method was developed for the simultaneous determination of 31 emerging contaminants (pharmaceutical compounds, hormones, personal care products, biocides, and flame retardants) in aquatic plants. Analytes were extracted by ultrasound-assisted matrix solid-phase dispersion (UA-MSPD) and determined by gas chromatography-mass spectrometry after sylilation, The method was validated for different aquatic plants (Typha angustifolia, Arundo donax, and Lemna minor) and a semiaquatic cultivated plant (Oryza sativa) with good recoveries at concentrations of 100 and 25 ng g(-1) wet weight, ranging from 70 to 120 %, and low method detection limits (0.3 to 2.2 ng g(-1) wet weight). A significant difference of the chromatographic response was observed for some compounds in neat solvent versus matrix extracts, and therefore, quantification was carried out using matrix-matched standards in order to overcome this matrix effect. Aquatic plants taken from rivers located at three Spanish regions were analyzed, and the compounds detected were parabens, bisphenol A, benzophenone-3, cyfluthrin, and cypermethrin. The levels found ranged from 6 to 25 ng g(-1) wet weight except for cypermethrin that was detected at 235 ng g(-1) wet weight in O. sativa samples.

  6. Evaluation of gas chromatography/matrix isolation infrared spectrometry for the determination of semivolatile organic compounds in air-sample extracts

    SciTech Connect

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1992-01-01

    The capabilities of gas chromatography/matrix isolation-infrared (GC/MI-IR) spectrometry for determination of semivolatile organic compounds (SVOCs) in air sample extracts were evaluated. Systematic experiments, using xylene isomers as test compounds, were conducted to determine the repeatability of the steps involved in GC/MI-IR measurements and to identify parameters that affect the precision in quantitation. The repeatability of MI-IR net absorbance measurements for single and replicate depositions was determined. The MI-IR net absorbance was nonlinear at concentrations higher than 52.1 ng/microliters, probably due to an increase in the sample spot size relative to the IR beam focus or a decrease in the matrix-to-solute ratio to less than acceptable matrix isolation conditions. The method detection limit for xylene isomers was between 1 and 2 ng/microliters injected on-column for routine measurements. Extensive signal averaging was required to obtain spectra at concentrations less than 1 ng/microliters. The method was tested by determining target SVOCs in ambient air sample extracts. The MI-IR quantitative results were compared to those from the system's flame ionization detector(FID). The FID response exhibited a high bias when unknown compounds coeluted with target analytes. The ability of GC/MI-IR to quantify target compounds in the presence of interferents and to discriminate between coeluting isomers is demonstrated.

  7. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  8. The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data

    PubMed Central

    Kalinowski, Jarosław A.; Makal, Anna; Coppens, Philip

    2011-01-01

    A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license. PMID:22199400

  9. The LaueUtil toolkit for Laue photocrystallography. I. Rapid orientation matrix determination for intermediate-size-unit-cell Laue data

    SciTech Connect

    Kalinowski, Jaroslaw A.; Makal, Anna; Coppens, Philip

    2015-10-15

    A new method for determination of the orientation matrix of Laue X-ray data is presented. The method is based on matching of the experimental patterns of central reciprocal lattice rows projected on a unit sphere centered on the origin of the reciprocal lattice with the corresponding pattern of a monochromatic data set on the same material. This technique is applied to the complete data set and thus eliminates problems often encountered when single frames with a limited number of peaks are to be used for orientation matrix determination. Application of the method to a series of Laue data sets on organometallic crystals is described. The corresponding program is available under a Mozilla Public License-like open-source license.

  10. Matrix Solid-Phase Dispersion Coupled with High-Performance Liquid Chromatography Diode Array Detection for Simultaneous Determination of Four Lipophilic Constituents from Salvia miltiorrhiza Bunge.

    PubMed

    Wang, Zhibing; Ma, Siyu; Zhang, Qian; He, Shuang; Li, Qing; Hu, Jianxue; Zhang, Hanqi

    2016-11-29

    A simple, rapid and efficient method based on matrix solid-phase dispersion coupled with high-performance liquid chromatography was developed for determination of lipophilic constituents, including dihydrotanshinone, tanshinone I, cryptotanshinone and tanshinone II A in Salvia miltiorrhiza Bunge Box-Behnken design was employed for optimization of the extraction conditions of matrix solid-phase dispersion, including mass ratio of dispersant to sample, volume of elution solvent, and amount of cleanup reagent. The optimal experimental results were obtained using 0.27 g of acid alumina as dispersant, 13 mL of acetonitrile as elution solvent and 0.36 g of acid alumina as cleanup reagent. The target analytes was determined by high-performance liquid chromatography. The recoveries of tanshinones obtained by analyzing the spiked samples were from 83.81% to 93.74% and relative standard deviations from 2.87% to 6.83%. Matrix solid-phase dispersion integrated the extraction and cleanup into a single step, which provides the advantages of being simple, fast and convenient. Compared with other conventional methods, the present method consumed less time and less organic solvent. The results demonstrate that this method has potential for the determination of active constituents and the quality control of traditional Chinese medicine.

  11. Understanding the interdiffusion behavior and determining the long term stability of tungsten fiber reinforced niobium-base matrix composite systems

    NASA Technical Reports Server (NTRS)

    Tien, John K.

    1990-01-01

    The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.

  12. Determination of trace metals in atmospheric aerosols with a heavy matrix of cellulose by microwave digestion-inductively coupled plasma mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal; Husain, Liaquat

    2002-01-01

    A microwave digestion method followed by inductively coupled plasma mass spectrometric (ICP-MS) analysis was developed to determine trace metal concentrations in atmospheric aerosol samples with a heavy matrix of cellulose material. A combination of HF-HNO 3-H 2O 2-H 3BO 3 was used for digestion. The background spectral features contributed by the matrix elements were studied. In particular, spectral and non-spectral interference caused by B and F were investigated. Detection limits of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb and Pb were determined in the presence of various amounts of matrix elements. In general, the detection limits of most elements degraded with an increase in B and F. Vanadium (V) suffered most due to severe spectral interference from 11B 40Ar + and/or 19F 16O 16O. The concentrations of elements in filter paper matrix blanks were measured. An NIST standard (urban particulate matter, 1648), as well as real world atmospheric aerosol samples from Whiteface Mountain, NY, and from Mayville, NY were pressed into pellets with a great amount of cellulose filter material and digested, and the concentrations of trace metals were determined. For the NIST standard, the recoveries of V, Mn, Fe, Co, Ni, Cu, Zn, Cd, As, Sb and Pb were over 90%, while 77 and 70% for Cr and Se, respectively. For the atmospheric aerosol samples from Whiteface Mountain and Mayville, NY, only the values of Fe, Se, As, Sb and Zn could be compared with those obtained through instrumental neutron activation analysis, and the agreement was within ±10%.

  13. A matrix effect and accuracy evaluation for the determination of elements in milk powder LIBS and laser ablation/ICP-OES spectrometry.

    PubMed

    Gilon, N; El-Haddad, J; Stankova, A; Lei, W; Ma, Q; Motto-Ros, V; Yu, J

    2011-11-01

    Laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES) and laser-induced breakdown spectroscopy (LIBS) were investigated for the determination of Ca, Mg, Zn and Na in milk samples. The accuracy of both methods was evaluated by comparison of the concentration found using LA-ICP-OES and LIBS with classical wet digestion associated with ICP-OES determination. The results were not fully acceptable, with biases from less than 1% to more than 60%. Matrix effects were also investigated. The sample matrix can influence the temperature, electron number density (n (e)) and other excitation characteristics in the ICP. These ICP characteristics were studied and evaluated during ablation of eight milk samples. Differences in n (e) (from 8.9 to 13.8 × 10(14) cm(-3)) and rotational temperature (ranging from 3,400 to 4,400 K) occurred with no correlation with trueness. LIBS results obtained after classical external calibration procedure gave degraded accuracy, indicating a strong matrix effect. The LIBS measurements clearly showed that the major problem in LA-ICP was related to the ablation process and that LIBS spectroscopy is an excellent diagnostic tool for LA-ICP techniques.

  14. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    SciTech Connect

    Agodi, C. Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S.; Cappuzzello, F.; Greco, V.; Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F.; Branchina, V.; Foti, A.; Lo Presti, D.; Lanzalone, G.; and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  15. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    SciTech Connect

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  16. The influence of matrix composition and ink layer thickness on iron gall ink determination by the PIXE method

    NASA Astrophysics Data System (ADS)

    Uršič, Mitja; Budnar, Miloš; Simčič, Jure; Pelicon, Primož

    2006-06-01

    The elemental composition of iron gall inks in historical documents can be effectively studied using the non-destructive proton induced X-ray emission (PIXE) method. The in-air proton beam experimental set-up installed at the Microanalytical Centre of the Jožef Stefan Institute was used for this purpose. The aim of the present investigation was to model and evaluate the uncertainties in the analysis due to the incompletely known matrix composition and iron gall ink layer thickness. Estimation of these uncertainties helped in quantifying the accuracy of multi-elemental PIXE analysis of historical documents.

  17. Mueller-Hinton broth undergoes visible oxidative color changes in the presence of peroxidase and hydrogen peroxide.

    PubMed Central

    Galeazzi, L; Groppa, G; Giunta, S

    1990-01-01

    In the presence of peroxidase and hydrogen peroxide, Mueller-Hinton broth undergoes a slow but clearly detectable color change from pale yellow to dark yellow or brown. An investigation of this phenomenon led to the conclusion that it is the result of the oxidation of tyrosine, a major component of the broth. Indeed, tyrosine has long been known to oxidize upon treatment with peroxidase and hydrogen peroxide. The observations reported here, besides being curious for the clinical microbiologist, might deserve attention for the possible implications in the medium color darkening which sometimes happens during microbial growth. Images PMID:2172301

  18. Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium.

    PubMed Central

    Catrenich, C. E.; Johnson, W.

    1989-01-01

    The phenotypic difference between virulent and avirulent Legionella pneumophila with regard to growth on supplemented Mueller-Hinton (SMH) agar was investigated. Defined populations of virulent and avirulent L. pneumophila were inoculated onto hybrid growth media containing the combination of SMH agar components with potassium phosphate-buffered charcoal-yeast extract agar. The casein acid hydrolysate component of SMH agar was found to be inhibitory to the growth of virulent but not avirulent cells. The selectively inhibitory component of the casein acid hydrolysate was identified as NaCl. Images PMID:2722245

  19. Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS.

    PubMed

    Kowal, Sebastian; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2012-06-01

    The development and validation of a sensitive and reliable detection method for the determination of two polar degradation products, desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) in surface water, ground water and drinking water is presented. The method is based on direct large volume injection ultra-performance liquid chromatography electrospray tandem mass spectrometry. This simple but powerful analytical method for polar substances in the aquatic environment is usually hampered by varying matrix effects, depending on the nature of different water bodies. For the two examined degradation products, the matrix effects are particularly strong compared with other polar degradation products of pesticides. Therefore, matrix effects were studied thoroughly with the aim of minimising them and improving sensitivity during determination by postcolumn addition of ammonia solution as a modifier. An internal standard was used in order to compensate for remaining matrix effects. The calibration curve shows very good coefficients of correlation (0.9994 for DPC and 0.9999 for MDPC). Intraday precision values were lower than 5 % for DPC, 3 % for MDPC and the limits of detection were 10 ng/L for both substances. The method was successfully used in a national round robin test with a deviation between 3 and 8 % from target values. Finally, about 1,000 samples from different water bodies have been examined with this method in the Rhine and Ruhr region of North-Rhine-Westphalia (Germany) and in the European Union. Approximately 76 % of analysed samples contained measurable amounts of DPC at concentrations up to 8 μg/L while 53 % of the samples showed MDPC concentrations up to 2.3 μg/L.

  20. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    SciTech Connect

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

  1. Controlling the hydration rate of a hydrophilic matrix in the core of an intravaginal ring determines antiretroviral release.

    PubMed

    Teller, Ryan S; Malaspina, David C; Rastogi, Rachna; Clark, Justin T; Szleifer, Igal; Kiser, Patrick F

    2016-02-28

    Intravaginal ring technology is generally limited to releasing low molecular weight species that can diffuse through the ring elastomer. To increase the diversity of drugs that can be delivered from intravaginal rings, we designed an IVR that contains a drug matrix encapsulated in the core of the IVR whereby the mechanism of drug release is uncoupled from the interaction of the drug with the ring elastomer. We call the device a flux controlled pump, and it is comprised of compressed pellets of a mixture of drug and hydroxypropyl cellulose within the hollow core of the ring. The pump orifice size and chemistry of the polymer pellets control the rate of hydration and diffusion of the drug-containing hydroxypropyl cellulose gel from the device. A mechanistic model describing the hydration and diffusion of the hydroxypropyl cellulose matrix is presented. Good agreement between the quantitative model predictions and the experimental studies of drug release was obtained. We achieved controlled release rates of multiple antiretrovirals ranging from μg/d to mg/d by altering the orifice design, drug loading, and mass of pellets loaded in the device. This device could provide an adaptable platform for the vaginal drug delivery of many molecules.

  2. Quinalizarin anchored on Amberlite XAD-2. A new matrix for solid-phase extraction of metal ions for flame atomic absorption spectrometric determination.

    PubMed

    Kumar, M; Rathore, D P; Singh, A K

    2001-06-01

    Amberlite XAD-2 has been functionalized by coupling it to quinalizarin [1,2,5,8-tetrahydroxyanthraquinone] by means of an -N = N- spacer. Elemental analysis, thermogravimetric analysis, and infrared spectra were used to characterize the resulting new polymer matrix. The matrix has been used to preconcentrate Cu(II), Cd(II), Co(II), Pb(II), Zn(II), and Mn(II) before their determination by flame atomic absorption spectrometry (FAAS). UO2(II) has been preconcentrated for fluorimetric determination. The optimum pH values for maximum adsorption of the metals are between 5.0 and 7.0. All these metal ions are desorbed (recovery 91-99%) with 4 mol L(-1) HNO3. The adsorptive capacity of the resin was found to be in the range 0.94-5.28 mg metal g(-1) resin and loading half-life (t1/2) between 5.3 and 15.0 min. The effects of NaF, NaCl, NaNO3, Na2SO4, Na3PO4, Ca(II), and Mg(II) on the adsorption of these metal ions (0.2 microg mL(-1)) are reported. The lower limits of detection for these metal ions are between 1 and 15.0 microg L(-1). After enrichment on this matrix flame AAS has been used to determine these metal ions (except the uranyl ion) in river water samples (RSD < or = 6.5%); fluorimetry was used to determine uranyl ion in well water samples (RSD < or = 6.3%). Cobalt from pharmaceutical vitamin tablets was preconcentrated by use of this chelating resin and estimated by FAAS (RSD approximately 4%).

  3. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  4. Immunohistochemical determination of the extracellular matrix modulation in a rat model of choline-deprived myocardium: the effects of carnitine.

    PubMed

    Strilakou, Athina; Perelas, Apostolos; Lazaris, Andreas; Papavdi, Asteria; Karkalousos, Petros; Giannopoulou, Ioanna; Kriebardis, Anastasios; Panayiotides, Ioannis; Liapi, Charis

    2016-02-01

    Choline has been identified as an essential nutrient with crucial role in many vital biological functions. Recent studies have demonstrated that heart dysfunction can develop in the setting of choline deprivation even in the absence of underlying heart disease. Matrix metalloproteinases (MMPs) are responsible for extracellular matrix degradation, and the dysregulation of MMP-2 and MMP-9 has been involved in the pathogenesis of various cardiovascular disorders. The aim of the study was to investigate the role of MMPs and their inhibitors (TIMPs), in the pathogenesis of choline deficiency-induced cardiomyopathy, and the way they are affected by carnitine supplementation. Male Wistar Albino adult rats were divided into four groups and received standard or choline-deficient diet with or without L-carnitine in drinking water (0.15% w/v) for 1 month. Heart tissue immunohistochemistry for MMP-2, MMP-9, TIMP-1, and TIMP-2 was performed. Choline deficiency was associated with suppressed immunohistochemical expression of MMP-2 and an increased expression of TIMP-2 compared to control, while it had no impact on TIMP-1. MMP-9 expression was decreased without, however, reaching statistical significance. Carnitine did not affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. The pattern of TIMP and MMP modulation observed in a choline deficiency setting appears to promote fibrosis. Carnitine, although shown to suppress fibrosis, does not seem to affect MMP-2, MMP-9, TIMP-1 or TIMP-2 expression. Further studies will be required to identify the mechanism underlying the beneficial effects of carnitine.

  5. Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction for the determination of sulfonamides in animal tissues using high-performance liquid chromatography.

    PubMed

    Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi

    2015-12-01

    Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg.

  6. Determination of four sulfonylurea herbicides in tea by matrix solid-phase dispersion cleanup followed by dispersive liquid-liquid microextraction.

    PubMed

    Liang, Pei; Wang, Jinjin; Liu, Guojiao; Guan, Jinyan

    2014-09-01

    Matrix solid-phase dispersion combined with dispersive liquid-liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron-methyl, chlorimuron-ethyl, and pyrazosulfuron) in tea by high-performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid-phase dispersion was carried out by using CN-silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid-phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid-liquid microextraction procedure for further purification and enrichment of the target analytes before high-performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r(2)) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31-2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples.

  7. [Direct determination of lead and cadmium in soil by slurry-sampling graphite furnace atomic absorption spectrometry using matrix modification technique].

    PubMed

    Sun, Han-Wen; Wen, Xiao-Hua; Liang, Shu-Xuan

    2006-05-01

    A method for the direct determination of lead and cadmium in soil by slurry-sampling graphite furnace-atomic absorption spectrometry using NH4 H2 PO4 as matrix modifier was developed. The effects of slurry stability, particle size of sample, matrix modifiers, ashing temperature, atomization temperature and common coexistent components on the signal intensities of lead and cadmium were investigated. The apparent activation energies of lead and cadmium were measured based on the linear relationship between the logarithm value of atomization peak time and atomization temperature. The mechanism of matrix modification was discussed. Under optimized conditions, the detection limit was 9.05 x 10(-10) g x mL(-1) for Pb and 1.76 x 10(-11) g x mL(-1) for Cd. The recoveries were in the range of 91%-97% for Pb and 93%-109% for Cd. The relative standard deviations were in the range of 4.2%-7.8%.

  8. Development of a matrix solid-phase dispersion extraction combined with high-performance liquid chromatography for determination of five lignans from the Schisandra chinensis.

    PubMed

    Zhang, Qi; Zhu, Wenquan; Guan, Hong; Liu, Han; Yang, Wenqin; Wang, Huirong; Cai, Defu

    2016-02-01

    A method based on a simplified sample extraction by matrix solid phase dispersion (MSPD) followed by HPLC determination is validated for analysis of five lignans in Schisandra chinensis. The MSPD parameters that affect the extraction efficiency of lignans from S. chinensis were examined and optimized. The optimal extraction conditions were determined to be that silica gel was used as dispersing sorbent, the ratio of silica gel to sample mass was selected to be 2:1, and 4mL of methanol was used as elution solvent. The method recoveries were determined to be from 92.25 to 101.17% and the RSDs from 1.3 to 4.9%. The extraction yields of five lignans obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirements on sample, solvent and time. In addition, the optimized method was applied for analyzing five real S. chinensis samples obtained from different cultivated areas.

  9. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  10. Interlaboratory evaluation of an off-line supercritical fluid extraction/infrared spectrometric method for determination of petroleum hydrocarbons in solid matrixes

    SciTech Connect

    Lopez-Avila, V.; Young, R.; Kim, R.; Beckert, W.F. )

    1993-05-01

    A collaborative study was conducted, with 14 laboratories participating, to determine the method accuracy and precision of the proposed U.S. Environmental Protection Agency Methods 3560 and 8440. These methods involve the extraction of petroleum hydrocarbons from solid matrixes with supercritical carbon dioxide at 340 atm and 80 degrees C for 30 min (dynamic), collection of the extracted materials in tetrachloroethene (Method 3560), and analysis of the extracts by infrared (IR) spectrometry (Method 8440). The study design was based on the AOAC blind replicate design with balanced replicates. The study samples consisted of 4 solid matrixes that had petroleum hydrocarbon contents ranging from 614 to 32,600 mg/kg. Each of the 4 matrixes was extracted in triplicate, and the extracts were analyzed with 2 different IR spectrometers. In addition, each of the participating laboratories extracted a sample of unspiked clay soil, the same clay soil spiked with corn oil and reference oil at 1000 mg/kg each, and the same clay soil wetted to 30% water content and spiked with motor oil at 10,000 mg/kg (the latter 3 samples were extracted only once). Results indicated that the overall method accuracy for concentrations ranging from 614 to 32,600 mg/kg was 82.9%; the mean recoveries of petroleum hydrocarbons for each of the 4 solid matrixes ranged from 77.9 to 107% for analyses performed with the Perkin-Elmer Fourier transform IR spectrometer and from 75.9 to 101% for analyses performed with the Buck-Scientific IR spectrometer; the differences between the 2 instruments on a sample-by-sample basis were less than 17% for the total petroleum hydrocarbon determinations. The interlaboratory method precisions (RSDR) appeared to be matrix-dependent and ranged from 17.3 to 45.4% for analyses performed with the Perkin-Elmer Fourier transform IR spectrometer and from 16.7 to 47.9% for the Buck-Scientific IR spectrometer.

  11. Size dependent optical characterization of semiconductor particle: CdS embedded in polymer matrix

    NASA Astrophysics Data System (ADS)

    Roy, S.; Gogoi, A.; Ahmed, G. A.

    2010-10-01

    We report the optical investigation and analysis of both nano-sized and micrometer size Cadmium Sulphide particles which is embedded in a transparent polyvinyl alcohol (PVOH) dielectric host material. A designed and fabricated laser based light scattering system using a He-Ne laser of wavelength 632.8nm was used for the measurement and study of the scattering properties of the particles as a function of the scattering angle at this wavelength. An attempt was made to experimentally determine the most significant elements of the Mueller scattering matrix using combinations of randomly and linearly polarized incident laser beam and subsequent analyzers in corresponding orientations. The analysis of the experimental data was done by the method of comparison with theoretically generated data. Novel computational technique, involving single scattering for spherical particles using Mie-theory, was developed and applied. The theoretical data was found to be in good agreement with the experimental data within an acceptable margin of error. The results have proved that the combination of the experimental setup and associated computational method is a highly efficient and reliable in-situ system for monitoring size growth of semiconductor particles in the laboratory.

  12. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  13. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations.

    PubMed

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; Di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  14. Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations

    NASA Astrophysics Data System (ADS)

    Scarchilli, Claudio; Adriani, Alberto; Cairo, Francesco; di Donfrancesco, Guido; Buontempo, Carlo; Snels, Marcel; Moriconi, Maria Luisa; Deshler, Terry; Larsen, Niels; Luo, Beiping; Mauersberger, Konrad; Ovarlez, Joelle; Rosen, Jim; Schreiner, Jochen

    2005-06-01

    A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

  15. Validated GC-MS analysis for the determination of residual fentanyl in applied Durogesic reservoir and Durogesic D-Trans matrix transdermal fentanyl patches.

    PubMed

    Van Nimmen, Nadine F J; Veulemans, Hendrik A F

    2007-02-01

    The method development and validation characteristics are described of a simple gas chromatographic-mass spectrometric (GC-MS) analytical procedure to determine residual fentanyl in used Durogesic reservoir patches and Durogesic D-Trans matrix technology based systems to estimate the actual rate of transdermal fentanyl delivered in individual patients. The sample preparation protocol constituting a saline based extraction of sets of new patches of each nominal dose available, resulted in fentanyl extraction recoveries to increase steadily as a function of increasing extraction time. For the reservoir type transdermal therapeutic system (TTS), fentanyl extraction efficiencies at equilibrium (16 h) ranged from approximately 60% (100-microg/h TTS) to 95% (25-microg/h TTS), whereas for the matrix type system considerable lower recoveries were demonstrated for the highest nominal dose rates (35%-52%), while reaching 90% for the 25-microg/h system. For the latter type of fentanyl TTS, an optimized methanol based extraction protocol yielded virtually quantitative fentanyl recoveries for each matrix patch nominal dose level at substantially shorter extraction periods (15 min). The GC-MS analytical method using selected ion monitoring (SIM) and deuterated fentanyl as internal standard was shown to be adequately selective with regard to the presence of other compounds in the Durogesic patches. It was further demonstrated that the developed analytical protocols provided highly reproducible and accurate estimates of the initial fentanyl content of each patch type at all available nominal doses, with coefficients of variation and relative errors generally below 10%. These advantageous assay validation characteristics can be further transposed to the application of residual fentanyl level estimates in used patches, provided that with each batch of samples also a set of new TTSs with equal dose is assayed to perfectly mimic extraction phenomena. Finally, the presented GC

  16. Determination of triazine herbicides in seaweeds: development of a sample preparation method based on Matrix Solid Phase Dispersion and Solid Phase Extraction Clean-up.

    PubMed

    Rodríguez-González, N; González-Castro, M J; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2014-04-01

    A method using dual process columns of Matrix Solid Phase Dispersion (MSPD) and Solid Phase Extraction (SPE) has been developed for extracting and cleaning-up of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine and terbutryn) in seaweed samples. Under optimized conditions, samples were blended with 2g of octasilyl-derivatized silica (C8) and transferred into an SPE cartridge containing ENVI-Carb II/PSA (0.5/0.5 g) as a clean up co-sorbent. Then the dispersed sample was washed with 10 mL of n-hexane and triazines were eluted with 20 mL ethyl acetate and 5 mL acetonitrile. Finally the extract was concentrated to dryness, re-constituted with 1 mL methanol:water (1:1) and injected into the HPLC-DAD system. The linearity of the calibration curves was excellent in matrix matched standards, and yielded the coefficients of determination>0.995 for all the target analytes. The recoveries ranged from 75% to 100% with relative standard deviations lower than 7%. The achieved LOQs (<10 µg kg(-1)) for all triazines under study permits to ensure proper determination at the maximum allowed residue levels set in the European Union Legislation. Samples of three seaweeds were subjected to the procedure proving the suitability of MSPD method for the analysis of triazines in different seaweeds samples.

  17. Determination of perfluorooctanoate and perfluorooctanesulfonate in water matrices by inline matrix elimination liquid chromatography with reversed phase separation and suppressed conductivity detection.

    PubMed

    Subramanian, N Harihara; Manigandan, P; Wille, Andrea; Radhakrishnan, Ganga

    2011-09-01

    This work describes a new method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water matrices by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 45°C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix were quantified by a pre-concentration technique. For the concentration range of 1 to 15 ng/mL and 2 to 30 ng/mL, the linear calibration curve for PFOA and PFOS yielded coefficients of determination (R(2)) of 0.9995 and 0.9985, respectively. The relative standard deviations were smaller than 1.5% for PFOA and PFOS. The retention-time precision of four consecutive 12 h injections was smaller than 0.641% and 0.818%, respectively. The presence of common divalent cations, such as calcium, magnesium, and iron in water matrices impairs PFOS recovery. This drawback was overcome by applying inline matrix elimination method. The optimized method was successfully applied for drinking water, ground water, and seawater samples.

  18. Preparation of a magnetic molecularly imprinted polymer with pseudo template for rapid simultaneous determination of cyromazine and melamine in bio-matrix samples.

    PubMed

    Wang, Xianhua; Fang, Qiuxue; Liu, Shipeng; Chen, Lei

    2012-09-01

    A magnetic molecularly imprinted polymer (M-MIP) for cyromazine and melamine was prepared by simple suspension polymerization using a pseudo template, 2-(4,6-diamino-1,3,5-triazin-2-ylamino)ethanethiol disulfide. The M-MIP was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, and vibrating sample magnetometry. Molecular recognition properties and binding capability to cyromazine and melamine were evaluated by adsorption testing, which showed the M-MIP had better affinity and selectivity than the magnetic non-imprinted polymer (M-NIP) for cyromazine and melamine. A method based on molecularly imprinted solid-phase extraction assisted by magnetic separation was developed for extraction of cyromazine and melamine from bio-matrix samples. Various conditions, for example desorption conditions, amount of M-MIP, extraction time, and sample pH were optimized. High-performance liquid chromatography with UV detection was used to determine cyromazine and melamine after extraction. The proposed method was successfully applied to determination of cyromazine and melamine in egg and milk samples. Recovery of standard spiked cyromazine and melamine from these samples was between 71.86 and 80.57%, with intraday and interday relative standard deviation ranging from 3.45 to 6.39% and from 3.95 to 7.84%, respectively. The results indicate that the pseudo template M-MIP can be used for preconcentration, purification, and analysis of cyromazine and melamine in bio-matrix samples.

  19. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed.

  20. A comparison of antibiotic disks from different sources on Quicolor and Mueller-Hinton agar media in evaluation of antibacterial susceptibility testing

    PubMed Central

    Saffari, Neda; Salmanzadeh-Ahrabi, Siavosh; Abdi-Ali, Ahya; Rezaei-Hemami, Mohsen

    2016-01-01

    Background and Objectives: Antibacterial susceptibility testing of clinical bacterial isolates through disk diffusion method plays a major role in antibacterial treatment. One of the main factors affecting the result of these tests is the type, structure and quality of the disks. The main objective of this study was to compare the agreement of antibiotic disks originated from three companies on Quicolor and Mueller-Hinton agar. Materials and Methods: Quicolor and Mueller-Hinton agar media were used in disk diffusion method. Seventy clinical isolates from Enterobacteriaceae family (21 Klebsiella spp., 36 Escherichia coli, 1 Enterobacter spp. and 12 Shigella spp.) were investigated in the study. After obtaining data, the results were interpreted as resistant, sensitive or intermediate. Kappa coefficient measured the agreement of two media. Coefficient of variation (CV) was also calculated for antibiotic disks. Results: The kappa agreement values for three types of antibiotic disks on Quicolor and Mueller-Hinton agar plates were good or excellent for all the examined antibiotics. CV values were also very satisfactory in the majority of cases. Conclusion: Antibiotic disks from three manufacturers can successfully be used on both Quicolor and Mueller-Hinton agar plates. PMID:28149489

  1. Electrothermal atomisation atomic absorption conditions and matrix modifications for determining antimony, arsenic, bismuth, cadmium, gallium, gold, indium, lead, molybdenum, palladium, platinum, selenium, silver, tellurium, thallium and tin following back-extraction of organic aminohalide extracts

    USGS Publications Warehouse

    Clark, J.R.

    1986-01-01

    A multi-element organic-extraction and back-extraction procedure, that had been developed previously to eliminate matrix interferences in the determination of a large number of trace elements in complex materials such as geological samples, produced organic and aqueous solutions that were complex. Electrothermal atomisation atomic absorption conditions and matrix modifications have been developed for 13 of the extracted elements (Ag, As, Au, Bi, Cd, Ga, In, Pb, Sb, Se, Sn, Te and Tl) that enhance sensitivity, alleviate problems resulting from the complex solutions and produce acceptable precision. Platinum, Pd and Mo can be determined without matrix modification directly on the original unstripped extracts.

  2. Efficient determination of the uncertainty for the optimization of SPECT system design: a subsampled fisher information matrix.

    PubMed

    Fuin, Niccolo; Pedemonte, Stefano; Arridge, Simon; Ourselin, Sebastien; Hutton, Brian F

    2014-03-01

    System designs in single photon emission tomography (SPECT) can be evaluated based on the fundamental trade-off between bias and variance that can be achieved in the reconstruction of emission tomograms. This trade off can be derived analytically using the Cramer-Rao type bounds, which imply the calculation and the inversion of the Fisher information matrix (FIM). The inverse of the FIM expresses the uncertainty associated to the tomogram, enabling the comparison of system designs. However, computing, storing and inverting the FIM is not practical with 3-D imaging systems. In order to tackle the problem of the computational load in calculating the inverse of the FIM, a method based on the calculation of the local impulse response and the variance, in a single point, from a single row of the FIM, has been previously proposed for system design. However this approximation (circulant approximation) does not capture the global interdependence between the variables in shift-variant systems such as SPECT, and cannot account e.g., for data truncation or missing data. Our new formulation relies on subsampling the FIM. The FIM is calculated over a subset of voxels arranged in a grid that covers the whole volume. Every element of the FIM at the grid points is calculated exactly, accounting for the acquisition geometry and for the object. This new formulation reduces the computational complexity in estimating the uncertainty, but nevertheless accounts for the global interdependence between the variables, enabling the exploration of design spaces hindered by the circulant approximation. The graphics processing unit accelerated implementation of the algorithm reduces further the computation times, making the algorithm a good candidate for real-time optimization of adaptive imaging systems. This paper describes the subsampled FIM formulation and implementation details. The advantages and limitations of the new approximation are explored, in comparison with the circulant

  3. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection.

    PubMed

    Wang, Shu; Liu, Baomin; Yuan, Dongxing; Ma, Jian

    2016-12-01

    Glyphosate (GLYP) is an important herbicide which is also used as the phosphorus source for marine organisms. The wide applications of GLYP can lead to its accumulation in oceans and coastal waters, thus creating environmental issues. However, there is limited methods for detection of GLYP and its degradation product, aminomethylphosphonic acid (AMPA) in saline samples. Therefore, a simple and fast method for the quantification of GLYP and AMPA in seawater matrix has been developed based on the derivatization with 9-fluorenylmethylchloroformate (FMOC-Cl), separation with high performance liquid chromatography (HPLC) and detection with fluorescence detector (FLD). In order to maximize sensitivity, the derivatization procedure was carefully optimized regarding concentration of FMOC-Cl, volume of borate buffer, pH of borate buffer, mixing and derivatization time. The derivatization reaction could be completed within 30min in seawater samples without any additional clean-up or desalting steps. Under the optimized conditions, the developed HPLC method showed a wide linear response (up to several mg/L, R(2)>0.99). The limits of detection were 0.60μg/L and 0.30μg/L for GLYP and AMPA in seawater matrix, respectively. The relative standard deviation was 14.0% for GLYP (1.00mg/L) and 3.1% for AMPA (100μg/L) in saline samples with three different operators (n=24). This method was applied to determine the concentration of GLYP and AMPA in seawater culture media and the recovery data indicated minimal matrix interference. Due to its simplicity, high reproducibility and successful application in seawater culture media analysis, this method is a potentially useful analytical technique for both marine research and environmental science.

  4. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection.

    PubMed

    Bushman, Lane R; Kiser, Jennifer J; Rower, Joseph E; Klein, Brandon; Zheng, Jia-Hua; Ray, Michelle L; Anderson, Peter L

    2011-09-10

    An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research.

  5. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Peebles, W. A.; Crocker, N. A.; Carter, T. A.; Doyle, E. J.; Hyatt, A. W.; Rhodes, T. L.; Wang, G.; Zeng, L.

    2013-10-01

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough BT (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret the

  6. Experimental validation of Mueller-Stokes theory and investigation of the influence of the Cotton-Mouton effect on polarimetry in a magnetized fusion plasma

    SciTech Connect

    Zhang, J.; Peebles, W. A.; Crocker, N. A.; Carter, T. A.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Zeng, L.; Hyatt, A. W.

    2013-10-15

    Mueller-Stokes theory can be used to calculate the polarization evolution of an electromagnetic (EM) wave as it propagates through a magnetized plasma. Historically, the theory has been used to interpret polarimeter signals from systems operating on fusion plasmas. These interpretations have mostly employed approximations of Mueller-Stokes theory in regimes where either the Faraday rotation (FR) or the Cotton-Mouton (CM) effect is dominant. The current paper presents the first systematic comparison of polarimeter measurements with the predictions of full Mueller-Stokes theory where conditions transition smoothly from a FR-dominant (i.e., weak CM effect) plasma to one where the CM effect plays a significant role. A synthetic diagnostic code, based on Mueller-Stokes theory accurately reproduces the trends evident in the experimentally measured polarimeter phase over this entire operating range, thereby validating Mueller-Stokes theory. The synthetic diagnostic code is then used to investigate the influence of the CM effect on polarimetry measurements. As expected, the measurements are well approximated by the FR effect when the CM effect is predicted to be weak. However, the code shows that as the CM effect increases, it can compete with the FR effect in rotating the polarization of the EM-wave. This results in a reduced polarimeter response to the FR effect, just as observed in the experiment. The code also shows if sufficiently large, the CM effect can even reverse the handedness of a wave launched with circular polarization. This helps to understand the surprising experimental observations that the sensitivity to the FR effect can be nearly eliminated at high enough B{sub T} (2.0 T). The results also suggest that the CM effect on the plasma midplane can be exploited to potentially measure magnetic shear in tokamak plasmas. These results establish increased confidence in the use of such a synthetic diagnostic code to guide future polarimetry design and interpret

  7. Development and validation of UHPLC-MS/MS method for determination of eight naturally occurring catechin derivatives in various tea samples and the role of matrix effects.

    PubMed

    Svoboda, Pavel; Vlčková, Hana; Nováková, Lucie

    2015-10-10

    A complete analytical procedure combining optimized tea infusion preparation and validated UHPLC-MS/MS method was developed for routine quantification of eight naturally occurring catechin derivatives in various tea samples. The preparation of tea infusions was optimized in terms of temperature, time and water-to-tea ratio in green, white and black teas. The catechins were analyzed using ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry in a run of only 4 min including equilibration of the system. The UHPLC-MS/MS method was fully validated in terms of inter/intra-day precision, accuracy, linearity (r(2)>0.9991), range (50-5000 ng/ml), LOD (1.5-7.5 ng/ml) and LOQ (5-25 ng/ml). Validation of the method included also the determination of the matrix effects that were evaluated in both flavored and unflavored green, white and black teas. Dilution of the resulting tea infusions appeared to be crucial for the matrix effects and also for subsequent catechin quantification in real tea samples in order to fit into the linear range of the UHPLC-MS/MS method. This complete procedure for catechin quantification was finally applied to real sample analysis represented by 70 commercial tea samples.

  8. Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-fenicols determination in shrimp and fish by liquid chromatography-electrospray ionisation tandem mass spectrometry.

    PubMed

    Tao, Yanfei; Zhu, Fangwei; Chen, Dongmei; Wei, Huimin; Pan, Yuanhu; Wang, Xu; Liu, Zhenli; Huang, Lingli; Wang, Yulian; Yuan, Zonghui

    2014-05-01

    A quantitative LC-MS/MS method was developed for the determination of chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF) and florfenicol amine (FFA) in shrimp and fish. This rapid simple and effective extraction method was based on matrix solid-phase dispersion (MSPD). The best results were obtained using C18 as dispersant sorbent. The correlation coefficient (r) with each matrix-matched calibration curve is higher than 0.999 at the range of 0.05-0.8μg/kg for CAP and FF, 0.1-1.6μg/kg for FFA and TAP. CCα and CCβ of the fenicols upon the method were ranged from 0.01 to 0.09μg/kg and 0.04 to 0.25μg/kg respectively. In the fortified levels recoveries of the four compounds ranged from 83.8% to 98.8% with RSDs lower than 13.7%. The proposed method has been applied successfully to the analysis of CAP, TAP, FF and FFA in shrimp and fish samples, which demonstrates that this method is fast, sensitive, reliable and environmental friendly.

  9. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  10. Comparative study of matrix-assisted laser desorption/ionization and gas chromatography for quantitative determination of cocoa butter and cocoa butter equivalent triacylglycerol composition.

    PubMed

    Guyon, F; Absalon, Ch; Eloy, A; Salagoity, M H; Esclapez, M; Medina, B

    2003-01-01

    The triacylglycerol (TAG) composition study of cocoa butter (CB) and cocoa butter equivalents (CBEs) has been performed by gas chromatography (GC) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). These two techniques provided comparable results. The advantage of the MALDI technique was the detection of each compound comprising the triacylglycerol classes (Cn). Moreover, comparison of the data obtained by these two techniques indicated that TAG relative percentages could be obtained quantitatively with the MALDI technique. These techniques have been applied for the composition determination of CB + CBE mixtures. Encouraging results showed that it is possible to quantify an admixture containing as little as 4% of CBE.

  11. Determination of traces of Pt and Rh in soil and quartz samples contaminated by automobile exhaust after an ion-exchange matrix separation.

    PubMed

    Kowalska, Joanna; Kińska, Katarzyna; Pałdyna, Joanna; Czyżewska, Monika; Boder, Kamila; Krasnodębska-Ostręga, Beata

    2014-09-01

    Monitoring of PGEs content in the natural samples is a crucial point in the environment science since catalytic car converters have been introduced. In the presented paper application of a very sensitive voltammetric method for determination of traces of Pt and Rh in the environmental samples contaminated by automobile exhausts is discussed. Voltammetric measurements were carried out in the supporting electrolyte containing formaldehyde and semicarbazide. PGEs were separated from the digested solutions of soils or quartz samples, collected from monitoring plots-by applying an ion-exchange resin Cellex-T. Pt was very effectively separated from the matrix approaching nearly 100% recovery after its elution by hydrochloric acid. Moreover the conditions of soil and quartz samples digestion were discussed. To validate the obtained result an independent analytical method-ICP MS was applied and analysis of certified reference material road dust 723-was completed.

  12. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection.

    PubMed

    Liu, He; Zhang, Yupu; Sun, Yantao; Wang, Xue; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Yu, Aimin; Zhang, Hanqi; Wang, Yinghua

    2010-10-15

    The arctiin and arctigenin in the fruit of Arctium lappa L. were extracted by matrix solid-phase dispersion (MSPD) and determined by high-performance liquid chromatography (HPLC) with fluorescence detection. The experimental conditions for the MSPD were optimized. Silica gel was selected as dispersion adsorbent and methanol as elution solvent. The calibration curve showed good relationship (r>0.9998) in the concentration range of 0.010-5.0μgmL(-1) for arctiin and 0.025-7.5μgmL(-1) for arctigenin. The recoveries were between 74.4% and 100%. The proposed method consumed less sample, time and solvent compared with conventional methods, including ultrasonic and Soxhlet extraction.

  13. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography.

    PubMed

    Ferreira, Fernanda N; Carneiro, Manuel C; Vaitsman, Delmo S; Pontes, Fernanda V M; Monteiro, Maria Inês C; Silva, Lílian Irene D da; Neto, Arnaldo Alcover

    2012-02-03

    A method for determination of formic, acetic, propionic and butyric acids in hypersaline waters by ion-exclusion chromatography (IEC), using steam distillation to eliminate matrix-interference, was developed. The steam distillation variables such as type of solution to collect the distillate, distillation time and volume of the 50% v/v H₂SO₄ solution were optimized. The effect of the addition of NaCl different concentrations to the calibration standards on the carboxylic acid recovery was also investigated. Detection limits of 0.2, 0.5, 0.3 and 1.5 mg L⁻¹ were obtained for formic, acetic, propionic and butyric acids, respectively. Produced waters from petroleum reservoirs in the Brazilian pre-salt layer containing about 19% m/v of NaCl were analyzed. Good recoveries (99-108%) were obtained for all acids in spiked produced water samples.

  14. Trace matrix solid phase dispersion using a molecular sieve as the sorbent for the determination of flavonoids in fruit peels by ultra-performance liquid chromatography.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Ye, Li-Hong; Cao, Jun; Pang, Xiao-Qing; Xu, Jing-Jing

    2016-01-01

    A simple, rapid, and highly selective trace matrix solid phase dispersion (MSPD) technique, coupled with ultra-performance liquid chromatography-ultraviolet detection, was proposed for extracting flavonoids from orange fruit peel matrices. Molecular sieve SBA-15 was applied for the first time as a solid support in trace MSPD. Parameters, such as the type of dispersant, mass ratio of the sample to the dispersant, grinding time, and elution pH, were optimized in detail. The optimal extraction conditions involved dispersing a powdered fruit peel sample (25 mg) into 25mg of SBA-15 and then eluting the target analytes with 500 μL of methanol. A satisfactory linearity (r(2) > 0.9990) was obtained, and the calculated limits of detection reached 0.02-0.03 μg/mL for the compounds. The results showed that the method developed was successfully applied to determine the content of flavonoids in complex fruit peel matrices.

  15. Time-dependent wave-packet method for the complete determination of S-matrix elements for reactive molecular collisions in three dimensions

    NASA Technical Reports Server (NTRS)

    Judson, Richard S.; Kouri, Donald J.; Neuhauser, Daniel; Baer, Michael

    1990-01-01

    An alternative time-dependent wave-packet method for treating three-dimensional gas phase reactive atom-diatom collisions is presented. The method employs a nonreactive body-frame wave packet propagation procedure, made possible by judicious use of absorbing optical potentials, a novel scheme for interpolating the wave function from coordinates in one arrangement to those in another and the fact that the time-dependent Schroedinger equation is an initial-value problem. The last feature makes possible a computationally viable and accurate procedure for changing from one arrangement's coordinates to another. In addition, the method allows the determination of S-matrix elements over a wide range of energies from a single wave-packet propagation. The method is illustrated by carrying out detailed calculations of inelastic and reactive scattering in the H + H2 system using the Liu-Siegbahn-Truhlar-Horowitz potential surface.

  16. Determination of selected UV filters in indoor dust by matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry.

    PubMed

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2009-07-31

    A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.

  17. Simplified matrix solid phase dispersion procedure for the determination of parabens and benzophenone-ultraviolet filters in human placental tissue samples.

    PubMed

    Vela-Soria, F; Rodríguez, I; Ballesteros, O; Zafra-Gómez, A; Ballesteros, L; Cela, R; Navalón, A

    2014-12-05

    In recent decades, the industrial development has resulted in the appearance of a large amount of new chemicals that are able to produce disorders in the human endocrine system. These substances, so-called endocrine disrupting chemicals (EDCs), include many families of compounds, such as parabens and benzophenone-UV filters. Taking into account the demonstrated biological activity of these compounds, it is necessary to develop new analytical procedures to assess the exposure in order to establish, in an accurate way, relationships between EDCs and harmful health effects in population. In the present work, a new method based on a simplified sample treatment by matrix solid phase dispersion (MSPD) followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, is validated for the determination of four parabens (methyl-, ethyl-, propyl- and butylparaben) and six benzophenone-UV filters (benzophenone-1, benzophenone-2, benzophenone-3, benzophenone-6, benzophenone-8 and 4-hydroxybenzophenone) in human placental tissue samples. The extraction parameters were accurately optimized using multivariate optimization strategies. Ethylparaben ring-13C6 and benzophenone-d10 were used as surrogates. The found limits of quantification ranged from 0.2 to 0.4 ng g(-1) and inter-day variability (evaluated as relative standard deviation) ranged from 5.4% to 12.8%. The method was validated using matrix-matched standard calibration followed by a recovery assay with spiked samples. Recovery rates ranged from 96% to 104%. The method was satisfactorily applied for the determination of compounds in human placental tissue samples collected at the moment of delivery from 10 randomly selected women.

  18. Determination of endocrine disruptors in honey by CZE-MS using restricted access materials for matrix cleanup.

    PubMed

    Rodríguez-Gonzalo, Encarnación; Domínguez-Alvarez, Javier; García-Gómez, Diego; García-Jiménez, María-Guadalupe; Carabias-Martínez, Rita

    2010-07-01

    An analytical method based on CZE coupled to ESI-MS is proposed for the identification and simultaneous quantification of several endocrine-disrupting chemicals in honey. The target compounds were the chlorophenols: 2,4-dichlorophenol, 2,4,5-trichlorophenol and pentachlorophenol, and bisphenol-A, 4-tert-butylphenol, and 4-tert-butylbenzoic acid. A two-step optimization of the ESI-MS detection was carried out. First, the organic solvent present in the sheath liquid was selected and its effect on the analytical signal was studied. The best results in terms of the intensity of the MS signals were obtained with methanol. Thus, an experimental design technique (Doehlert type) was used for the optimization of the other parameters: the NH(3) concentration in the sheath liquid, the flow of the sheath liquid, the nebulizer pressure in ESI, and the drying gas temperature and flow. Here, we developed a new sample treatment based on the combined use of a restricted access material and a polymeric sorbent for SPE. The LOD achieved were in the range of 5-31 ng/g. The intraday precision of the proposed method was determined from replicate analyses (n=4) at a concentration level of 50 ng/g, with RSD values in the range of 15-23%. The results revealed that the proposed method is suitable for the reliable quantification of endocrine-disrupting chemicals in honey at nanograms per gram levels.

  19. Determination of optimal excitation and emission wavebands for detection of defect cherry tomato by using fluorescence emission and excitation matrix

    NASA Astrophysics Data System (ADS)

    Baek, In-Suck; Cho, Byoung-Kwan; Kim, Moon S.; Kim, Young-Sik

    2013-05-01

    Fluorescence imaging technique has been widely used for quality and safety measurements of agro-food materials. Fluorescence emission intensities of target materials are influenced by wavelengths of excitation sources. Hence, selection of a proper excitation wavelength is an important factor in differentiating target materials effectively. In this study, optimal fluorescence excitation wavelength was determined on the basis of fluorescence emission intensity of defect and sound areas of cherry tomatoes. The result showed that fluorescence responses of defect and sound surfaces of cherry tomatoes were most significantly separated with the excitation light wavelength range between 400 and 410 nm. Fluorescence images of defect cherry tomatoes were acquired with the LEDs with the central wavelength of 410 nm as the excitation source to verify the detection efficiency of cherry tomato defects. The resultant fluorescence images showed that the defects were discriminated from sound areas on cherry tomatoes with above 98% accuracy. This study shows that high power LEDs as the excitation source for fluorescence imaging are suitable for defect detection of cherry tomatoes.

  20. Is there anything of practical value hidden amongst the composite toughening theories : A Jim Mueller prospective

    SciTech Connect

    Gac, F.D.

    1990-01-01

    Numerous theories have been developed over the last three decades for explaining the toughening behavior of discontinuous fiber reinforced brittle matrix composites. The issue is the practical engineering utility of these theories. Upon compiling a table of fiber parameters that are identified in the predominant toughening mechanisms, a number of important features become evident for achieving high toughnesses. First, all of the mechanisms indicate that a high fiber volume fraction is desirable. Second, residual stresses appear to influence all of the composite toughening mechanisms. Third, the highest fiber tensile strength is preferred. Finally, fiber diameter and fiber-matrix interfacial shear strength are also important, but both are composite system and toughening mechanism specific. 25 refs., 13 figs., 1 tab.

  1. Determination of particle and crystal size distribution from turbidity spectrum of TiO2 pigments by means of T-matrix.

    NASA Astrophysics Data System (ADS)

    Jalava, J.-P.; Taavitsainen, V.-M.; Haario, H.; Lamberg, L.

    1998-09-01

    A method has been developed for the determination of particle and crystal size distributions of rutile titanium dioxide pigments. This is based on a rigorous model for the turbidity (light extinction) spectra of rutile particles in dilute water suspension. The inversion of the rigorous model leads to an ill-posed problem and to a semi-rigorous method, in which the constraints of the solution have been determined empirically. The pigment particles are approximated as spheroids and a two-dimensional size distribution of particle width and ratio of length and width is calculated. Most of the particles are single crystals but a small amount is in aggregate form. A method to separate the distributions of aggregates and single crystals is proposed. The extinction cross section values for spheroids, needed in the model, are calculated by the T-matrix method. A comparison of the crystal size results with the values determined by transmission electron microscopy shows a very good accuracy for mean values of both the volume equivalent size and for the width, whereas the results for the means of the length/width ratio are much less accurate.

  2. A simple method for the determination of organochlorine pollutants and the enantiomers in oil seeds based on matrix solid-phase dispersion.

    PubMed

    Zhan, Jing; Li, Jindong; Liu, Donghui; Liu, Chang; Yang, Genggeng; Zhou, Zhiqiang; Wang, Peng

    2016-03-01

    A simple, rapid and effective method was developed based on matrix solid-phase dispersion (MSPD) for the determination of organochlorine pollutants including sixteen organochlorine pesticides (OCPs) and seven polychlorinated biphenyls (PCBs) in oil seeds (peanuts and soybeans). Among the organochlorine pollutants selected, α-HCH, heptachlor, o,p'-DDT, o,p'-DDD, trans-chlordane and cis-chlordane were chiral and their enantiomers were determined by GC-ECD with a chiral column. The MSPD procedure was optimized focusing on the type and amount of dispersion sorbent, co-column sorbent and eluting solvent. Under the optimized condition, good recoveries were obtained in the range of 68.9-103.3% with relative standard deviations (RSD) values below 16.1% in all cases. LODs and LOQs were in range of 0.1-2.0ngg(-1) and 0.4-6.7ngg(-1) respectively. In summary, the method set up was qualified to be used for the determination of the pollutants and the enantiomers in oil seeds.

  3. Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography.

    PubMed

    Wang, Xilong; Qiao, Xuguang; Ma, Yue; Zhao, Tao; Xu, Zhixiang

    2013-04-24

    How to determine trace multipesticide residues in fruits is an important problem. This paper reports a molecularly imprinted polymer (MIP) that was prepared using 4-(dimethoxyphosphorothioylamino)butanoic acid as the template, acrylamide as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The novel imprinted polymer was characterized by static and kinetic adsorption experiments, and it exhibited good recognition ability and fast adsorption-desorption dynamicd toward trichlorfon, malathion, acephate, methamidophos, omethoate, dimethoate, phosphamidon, monocrotophos, and methyl parathion. Using this imprinted polymer as sorbent, matrix solid-phase dispersion coupled to gas chromatography for simultaneous determination of nine trace organophosphorus pesticide residues was first presented. Under the optimized conditions, the LOD (S/N = 3) of this method for the nine organophosphorus was 0.3-1.6 μg kg(-1); the RSD for three replicate extractions ranged from 1.2 to 4.8%. The apple and pear samples spiked with nine organophosphate pesticides at levels of 20 and 100 μg kg(-1) were determined according to this method with good recoveries ranging from 81 to 105%. Moreover, this developed method was successfully applied to the quantitative detection of the nine organophosphorus pesticide residues in orange samples.

  4. Rapid simultaneous quantitative determination of different small pharmaceutical drugs using a conventional matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system.

    PubMed

    Persike, Markus; Karas, Michael

    2009-11-01

    The present study establishes a simple, rapid and sensitive method for the simultaneous quantification of different small pharmaceutical drugs using a matrix-assisted laser desorption/ionization source (MALDI) coupled with a time-of-flight (TOF) mass analyzer. Neither time-consuming sample preparation, nor special target plates, isotopically labelled internal standards or other extra equipment are necessary. A simple standard dried-droplet preparation with the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) was used. The background signals of CHCA in the low-mass region did not pose the presumed problem, because the sensitivity, resolution and mass accuracy of a modern MALDI-TOF MS system is sufficient to overcome this difficulty. Four experiments were performed in order to verify the quantification method. First, ten different phenothiazines were quantified in the range of 5-2000 nM (1-880 ng/mL). A good precision (relative standard deviation (RSD) 4.4-9.3%), linearity (R2 >0.99) and accuracy (error 4.7-11%) was obtained in all cases. Additionally, simultaneous quantification of these ten phenothiazines was carried out in human plasma without prior chromatographic separation in the range of 2-1750 ng/mL yielding good linearity, precision and accuracy (mean RSD 7.6%; R2 >0.99, mean error 8.0%). Accordingly, a quantitative analysis of ten chemically and pharmaceutically unrelated drugs was performed in the same way. A comparable linearity (R2 >0.99), precision (mean RSD 7.6%) and accuracy (mean error 8.3%) was obtained in the range of 5-2000 nM. Finally, the prazosin content of a commercial tablet was directly determined without further purification steps.

  5. Development of C60-based labeling reagents for the determination of low-molecular-weight compounds by matrix assisted laser desorption ionization mass (I): Determination of amino acids in microliter biofluids.

    PubMed

    Wu, Pin; Xiao, Hua-Ming; Ding, Jun; Deng, Qian-Yun; Zheng, Fang; Feng, Yu-Qi

    2017-04-01

    Quantification of low molecular weight compounds (<800 Da) using matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS) is challenging due to the matrix signal interference at low m/z region and poor reproducibility of MS responses. In this study, a C60 labeling-MALDI MS strategy was proposed for the fast, sensitive and reliable determination of amino acids (AAs) in biofluids. An N-hydroxysuccinimide functionalized C60 was synthesized as the labeling reagent and added as an 880 Da tag to AAs; a carboxyl acid containing C60 was employed as the internal standards to normalize MS variations. This solved the inherent problems of MALDI MS for small molecule analysis. The entire analytical procedure-which consisted of simple protein precipitation and 10 min of derivatization in a microwave prior to the MALDI MS analysis-could be accomplished within 20 min with high throughput and great sample matrix tolerance. AA quantification showed good linearity from 0.7 to 70.0 μM with correlation coefficients (R) larger than 0.9954. The limits of detection were 70.0-300.0 fmol. Good reproducibility and reliability of the method were demonstrated by intra-day and inter-day precision with relative standard deviations less than 13.8%, and the recovery in biofluid ranged from 80.4% to 106.8%. This approach could be used in 1 μL of urine, serum, plasma, whole blood, and cerebrospinal fluid. Most importantly, the C60 labeling strategy is a universal approach for MALDI MS analysis of various LMW compounds because functionalized C60 is now available on demand.

  6. Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry.

    PubMed

    Su, Rui; Wang, Xinghua; Xu, Xu; Wang, Ziming; Li, Dan; Zhao, Xin; Li, Xueyuan; Zhang, Hanqi; Yu, Aimin

    2011-08-05

    The multiwall carbon nanotubes (MWCNTs)-based matrix solid phase dispersion (MSPD) was applied for the extraction of hormones, including 17-α-ethinylestradiol, 17-α-estradiol, estriol, 17-β-estradiol, estrone, medroxyprogesterone, progesterone and norethisterone acetate in butter samples. The method includes MSPD extraction of the target analytes from butter samples, derivatization of hormones with heptafluorobutyric acid anhydride-acetonitrile mixture, and determination by gas chromatography-mass spectrometry. The mixture containing 0.30 g graphitized MWCNTs and 0.10 g MWCNTs was selected as absorbent. Ethyl acetate was used as elution solvent. The elution solvent volume and flow rate were 12 mL and 0.9 mL min(-1), respectively. The recoveries of hormones obtained by analyzing the five spiked butter samples were from 84.5 to 111.2% and relative standard deviations from 1.9 to 8.9%. Limits of detection and quantification for determining the analytes were in the range of 0.2-1.3 and 0.8-4.5 μg kg(-1), respectively. Compared with other traditional methods, the proposed method is simpler in the operation and shorter in the sample pretreatment time.

  7. Development of matrix solid-phase dispersion coupled with high-performance liquid chromatography for determination of jolkinolide A and jolkinolide B in Euphorbia fischeriana Steud.

    PubMed

    Cai, Defu; Zhai, Weiyu; Zhang, Qi; Liu, Jianhua; Sun, Yu; Liu, Lei; Liu, Jicheng

    2017-03-24

    A novel and simple method was established for the extraction and determination of jolkinolide A and B in Euphorbia fischeriana Steud. using matrix solid-phase dispersion (MSPD) extraction and high-performance liquid chromatography (HPLC). The optimised conditions for the MSPD extraction were determined to be that silica gel was served as dispersant, the mass ratio of sample to silica gel was selected to be 1:4, and 5 mL of acetonitrile was used as elution solvent. The method exhibited a good performance in terms of linearity (r(2) ≥ 0.9997) and the limits of detection in the range of 0.052-0.065 μg mL(-1). The recoveries were in the range of 90.2-98.9% with relative standard deviations (RSDs) ranging from 1.3 to 3.5%. The extraction efficiencies obtained by the MSPD were higher than other extraction method with less cost of sample and solvent. At last, the optimised method was applied for analysing real samples.

  8. Optimization of matrix solid-phase dispersion for the rapid determination of salicylate and benzophenone-type UV absorbing substances in marketed fish.

    PubMed

    Tsai, Dung-Ying; Chen, Chien-Liang; Ding, Wang-Hsien

    2014-07-01

    A simple and effective method for the rapid determination of five salicylate and benzophenone-type UV absorbing substances in marketed fish is described. The method involves the use of matrix solid-phase dispersion (MSPD) prior to their determination by on-line silylation gas chromatography tandem mass spectrometry (GC-MS/MS). The parameters that affect the extraction efficiency were optimized using a Box-Behnken design method. The optimal extraction conditions involved dispersing 0.5g of freeze-dried powdered fish with 1.0g of Florisil using a mortar and pestle. This blend was then transferred to a solid-phase extraction (SPE) cartridge containing 1.0g of octadecyl bonded silica (C18), as the clean-up co-sorbent. The target analytes were then eluted with 7mL of acetonitrile. The extract was derivatized on-line in the GC injection-port by reaction with a trimethylsilylating (TMS) reagent. The TMS-derivatives were then identified and quantitated by GC-MS/MS. The limits of quantitation (LOQs) were less than 0.1ng/g.

  9. The Gamma-Poisson model as a statistical method to determine if micro-organisms are randomly distributed in a food matrix.

    PubMed

    Toft, Nils; Innocent, Giles T; Mellor, Dominic J; Reid, Stuart W J

    2006-02-01

    The Gamma-Poisson model, i.e., a Poisson distribution where the parameter lambda is Gamma distributed, has been suggested as a statistical method for determining whether or not micro-organisms are randomly distributed in a food matrix. In this study, we analyse the Gamma-Poisson model to explore some of the properties of the Gamma-Poisson model left unexplored by the previous study. The conclusion of our analysis is that the Gamma-Poisson model distinguishes poorly between variation at the Poisson level and the Gamma level. Estimated parameter values from simulated data-sets showed large variation around the true values, even for moderate sample sizes (n=100). Furthermore, at these sample sizes the likelihood ratio is not a good test statistic for discriminating between the Gamma-Poisson distribution and the Poisson distribution. Hence, to determine if data are randomly distributed, i.e., Poisson distributed, the Gamma-Poisson distribution is not a good choice. However, the ratio between variation at the Poisson level and the Gamma level does provide a measure of the amount of overdispersion.

  10. Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system.

    PubMed

    Ohira, Shin-Ichi; Nakamura, Koretaka; Chiba, Mitsuki; Dasgupta, Purnendu K; Toda, Kei

    2017-03-01

    Chromium speciation by spectrophotometric determination of hexavalent chromium (Cr(VI)) with diphenylcarbazide (DPC) has several problems. These include: (1) the inability to directly detect trivalent chromium (Cr(III)) with DPC, (2) positive interference in Cr(VI) determination by other metal cations and (3) negative interference by any reducing agent present in the sample. These are addressed with an ion transfer device (ITD) in a flow injection analysis system. We previously developed the ITD for electrodialytic separations. Here we separate oppositely charged Cr(III) and Cr(VI) species by the ITD into two different acceptor solutions within ~5 s. The acceptor solutions consist of buffered H2O2 to oxidize the Cr(III) to Cr(VI). Then DPC is added to either acceptor to measure Cr(III) and Cr(VI) spectrophotometrically. The system was optimized to provide the same response for Cr(VI) and Cr(III) with limits of detection (LODs, S/N=3) of 0.5 μg L(-1) for each and a throughput rate of 30 samples h(-1). The ITD separation was also effective for matrix isolation and reduction of interferences. Potential cationic interferences were not transferred into the anionic Cr(VI) acceptor stream. Much of the organic compounds in soil extracts were also eliminated as evidenced from standard addition and recovery studies.

  11. Molecularly imprinted nanomicrospheres as matrix solid-phase dispersant combined with gas chromatography for determination of four phosphorothioate pesticides in carrot and yacon.

    PubMed

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05-17.0 ng·g(-1) with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g(-1) in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4-105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples.

  12. Simultaneous determination of 13 phytohormones in oilseed rape tissues by liquid chromatography-electrospray tandem mass spectrometry and the evaluation of the matrix effect.

    PubMed

    Fan, Sufang; Wang, Xiupin; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2011-03-01

    In the experiment, a high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry with selected reaction monitoring was used to simultaneously determine various classes of phytohormones, including indole-3-acetic acid, α-naphthaleneacetic acid, 2-chlorobenzoic acid, 4-chlorobenzoic acid, indole-3-butyric acid, gibberellic acid, 2,4-dichlorophenoxyacetic acid, 2-naphthoxyacetic acid, abscisic acid, 2,3,5-triiodobenzoic acid, uniconazole, paclobutrazol and 2,4-epibassinolide in rape tissues. The analyses were separated by an HPLC equipped with a reversed-phase column using a binary solvent system composed of methanol and water, both containing 0.1% of formic acid. The matrix effect was also considered and determined. The technology was applied to analyze rape tissues, including roots, stems, leaves, flowers, immature pods and rape seeds. The rape tissues were subjected to ultrasound-assisted extraction and purified by dispersive solid-phase extraction, and then transferred into the liquid chromatography system. The detection limit for each plant hormone was defined by the ratio of signal/background noise (S/N) of 3. The results showed perfect linearity (R(2) values of 0.9987-1.0000) and reproducibility of elution times (relative standard deviations, RSDs,<1%) and peak areas (RSDs,<7%) for all target compounds.

  13. Miniaturized matrix solid-phase dispersion combined with ultrasound-assisted dispersive liquid-liquid microextraction for the determination of three pyrethroids in soil.

    PubMed

    Wang, Hui; Yan, Hongyuan; Qiao, Jindong

    2012-01-01

    A simple and miniaturized pretreatment procedure combining matrix solid-phase dispersion (MSPD) with ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) technique was proposed in first time for simultaneous determination of three pyrethroids (fenpropathrin, cyhalothrin and fenvalerate) in soils. The solid samples were directly extracted using MSPD procedure, and the eluent of MSPD was used as the dispersive solvent of the followed DLLME procedure for further purification and enrichment of the analytes before GC-ECD analysis. Good linear relationships were obtained for all the analytes in a range of 5.0-500.0 ng/g with LOQs (S/N=10) ranged from 1.51 to 3.77 ng/g. Average recoveries at three spiked levels were in a range of 83.6-98.5% with RSD≤7.3%. The present method combined the advantages of MSPD and DLLME, and was successfully applied for the determination of three pyrethroids in soil samples.

  14. Determination of paraben preservatives in seafood using matrix solid-phase dispersion and on-line acetylation gas chromatography-mass spectrometry.

    PubMed

    Djatmika, Rosalina; Hsieh, Chih-Chung; Chen, Jhih-Ming; Ding, Wang-Hsien

    2016-11-15

    An effective method for determining four commonly detected paraben preservatives (methyl, ethyl, propyl and butyl paraben) in marketed seafood is presented. This method employs matrix solid-phase dispersion (MSPD) before identification and quantification of the paraben preservatives via on-line acetylation gas chromatography-mass spectrometry (GC-MS). Parameters affecting the extraction efficiency of MSPD were optimized through a Box-Behnken design method. Under optimal condition, 0.5-g of freeze-dried seafood was mixed with 0.5-g of anhydrous sodium sulfate, and dispersed with 1.0-g of Florisil using vortex. After that, the blend was transferred to a glass column containing 1.5-g of silica gel+C18 (w/w, 9:1), which acted as clean-up co-sorbents. Then, target analytes were eluted with 12mL of acetonitrile. The extract was then derivatized on-line in the GC injection-port through reaction with acetic anhydride, and the identity and quantity of the target analytes were determined by the GC-MS system. The limits of quantitation (LOQs) were 0.2 to 1.0ng/g (dry weight). Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7ng/g (dry weight).

  15. Molecularly Imprinted Nanomicrospheres as Matrix Solid-Phase Dispersant Combined with Gas Chromatography for Determination of Four Phosphorothioate Pesticides in Carrot and Yacon

    PubMed Central

    Zhou, Mengchun; Hu, Nana; Shu, Shaohua; Wang, Mo

    2015-01-01

    An efficient, rapid, and selective method for sample pretreatment, namely, molecularly imprinted matrix solid-phase dispersion (MI-MSPD) coupled with gas chromatography (GC), was developed for the rapid isolation of four phosphorothioate organophosphorus pesticides (tolclofos-methyl, phoxim, chlorpyrifos, and parathion-methyl) from carrot and yacon samples. New molecularly imprinted polymer nanomicrospheres were synthesized by using typical structural analogue tolclofos-methyl as a dummy template via surface grafting polymerization on nanosilica. Then, these four pesticides in carrot and yacon were extracted and adsorbed using the imprinted nanomicrospheres and further determined by gas chromatography. Under the optimized conditions, a good linearity of four pesticides was obtained in a range of 0.05–17.0 ng·g−1 with R varying from 0.9971 to 0.9996, and the detection limit of the method was 0.012~0.026 ng·g−1 in carrot and yacon samples. The recovery rates at two spiked levels were in the range of 85.4–105.6% with RSD ≤9.6%. The presented MI-MSPD method combined the advantages of MSPD for allowing the extraction, dispersion, and homogenization in two steps and the advantages of MIPs for high affinity and selectivity towards four phosphorothioate pesticides, which could be applied to the determination of pesticide residues in complicated vegetal samples. PMID:25954569

  16. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ayorinde, F O; Garvin, K; Saeed, K

    2000-01-01

    A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils

  17. Development and validation of spectrophotometric and HPTLC methods for simultaneous determination of rosiglitazone maleate and metformin hydrochloride in the presence of interfering matrix excipients.

    PubMed

    Mahgoub, Hoda; Youssef, Rasha M; Korany, Mohamed A; Khamis, Essam F; Kamal, Miranda F

    2014-09-01

    Two simple methods have been developed and validated for the simultaneous determination of rosiglitazone maleate (ROS) and metformin hydrochloride (MET) in synthetic mixtures and coated tablets in a ratio of 1:250 (ROS:MET). The first method was a spectrophotometric one. The minor component, ROS was determined by measuring the values of absorbance at λmax 312 nm and the D1 amplitudes at 331 nm where MET shows no absorption contribution. However, absorbance interferences from tablet excipients were successfully corrected by D1 at 331 nm zero-crossing technique. Study of spectral interference from tablet excipients was included in the text. Standard curves for Amax and D1 methods were in the concentration range 20.0-80.0 μg mL(-1). The major component, MET was determined both in binary mixtures and tablets by measuring its Amax at 236 nm. Extensive dilution eliminated any absorption contribution from the coexisting ROS or tablet matrix. Standard curves showed linearity in the concentration range 4.0-12.8 μg mL(-1). The second method was based on high performance thin layer chromatography (HPTLC) separation of the two drugs followed by densitometric measurements of their spots at 230 nm. The separation was carried out on Merck HPTLC aluminium sheets of silica gel 60 F254 using methanol:water:NH4Cl 1% w/v (5:4:1 v/v/v) as the mobile phase. Linear calibration graphs of peak area values were obtained versus concentrations in the range of 0.4-2.0 μg band(-1) and 20.0-100.0 μg band(-1) for ROS and MET, respectively. According to International Conference on Harmonisation (ICH) guidelines, different validation parameters were verified for the two methods and presented.

  18. A fixed full-matrix method for determining ice sheet height change from satellite altimeter: an ENVISAT case study in East Antarctica with backscatter analysis

    NASA Astrophysics Data System (ADS)

    Yang, Yuande; Hwang, Cheinway; E, Dongchen

    2014-09-01

    A new method, called the fixed full-matrix method (FFM), is used to compute height changes at crossovers of satellite altimeter ground tracks. Using the ENVISAT data in East Antarctica, FFM results in crossovers of altimeter heights that are 1.9 and 79 times more than those from the fixed half method (FHM) and the one-row method (ORM). The mean standard error of height changes is about 14 cm from ORM, which is reduced to 7 cm by FHM and to 3 cm by FFM. Unlike FHM, FFM leads to uniform errors in the first-half and second-half height-change time series. FFM has the advantage in improving the accuracy of the change of height and backscattered power over ORM and FHM. Assisted by the ICESat-derived height changes, we determine the optimal threshold correlation coefficient (TCC) for a best correction for the backscatter effect on ENVISAT height changes. The TCC value of 0.92 yields an optimal result for FFM. With this value, FFM yields ENVISAT-derived height change rates in East Antarctica mostly falling between and 3 cm/year, and matching the ICESat result to 0.94 cm/year. The ENVISAT result will provide a constraint on the current mass balance result along the Chinese expedition route CHINARE.

  19. Determination of opiates in whole blood and vitreous humor: a study of the matrix effect and an experimental design to optimize conditions for the enzymatic hydrolysis of glucuronides.

    PubMed

    Sanches, Livia Rentas; Seulin, Saskia Carolina; Leyton, Vilma; Paranhos, Beatriz Aparecida Passos Bismara; Pasqualucci, Carlos Augusto; Muñoz, Daniel Romero; Osselton, Michael David; Yonamine, Mauricio

    2012-04-01

    Undoubtedly, whole blood and vitreous humor have been biological samples of great importance in forensic toxicology. The determination of opiates and their metabolites has been essential for better interpretation of toxicological findings. This report describes the application of experimental design and response surface methodology to optimize conditions for enzymatic hydrolysis of morphine-3-glucuronide and morphine-6-glucuronide. The analytes (free morphine, 6-acetylmorphine and codeine) were extracted from the samples using solid-phase extraction on mixed-mode cartridges, followed by derivatization to their trimethylsilyl derivatives. The extracts were analysed by gas chromatography-mass spectrometry with electron ionization and full scan mode. The method was validated for both specimens (whole blood and vitreous humor). A significant matrix effect was found by applying the F-test. Different recovery values were also found (82% on average for whole blood and 100% on average for vitreous humor). The calibration curves were linear for all analytes in the concentration range of 10-1,500 ng/mL. The limits of detection ranged from 2.0 to 5.0 ng/mL. The method was applied to a case in which a victim presented with a previous history of opiate use.

  20. Rate of phosphoantimonylmolybdenum blue complex formation in acidic persulfate digested sample matrix for total dissolved phosphorus determination: importance of post-digestion pH adjustment.

    PubMed

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2008-10-19

    Acidic persulfate oxidation is one of the most common procedures used to digest dissolved organic phosphorus compounds in water samples for total dissolved phosphorus determination. It has been reported that the rates of phosphoantimonylmolybdenum blue complex formation were significantly reduced in the digested sample matrix. This study revealed that the intermediate products of persulfate oxidation, not the slight change in pH, cause the slowdown of color formation. This effect can be remedied by adjusting digested samples pH to a near neural to decompose the intermediate products. No disturbing effects of chlorine on the phosphoantimonylmolybdenum blue formation in seawater were observed. It is noted that the modification of mixed reagent recipe cannot provide near neutral pH for the decomposition of the intermediate products of persulfate oxidation. This study provides experimental evidence not only to support the recommendation made in APHA standard methods that the pH of the digested sample must be adjusted to within a narrow range of sample, but also to improve the understanding of role of residue from persulfate decomposition on the subsequent phosphoantimonylmolybdenum blue formation.

  1. Determination of rhenium content in molybdenite by ICP-MS after separation of the major matrix by solvent extraction with N-benzoyl-N-phenylhydroxalamine.

    PubMed

    Li, Jie; Zhong, Li-feng; Tu, Xiang-lin; Liang, Xi-rong; Xu, Ji-feng

    2010-05-15

    A simple and rapid analytical method for determining the concentration of rhenium in molybdenite for Re-Os dating was developed. The method used isotope dilution-inductively coupled plasma-mass spectrometry (ID-ICP-MS) after the removal of major matrix elements (e.g., Mo, Fe, and W) from Re by solvent extraction with N-benzoyl-N-phenylhydroxylamine (BPHA) in chloroform solution. The effect on extraction efficiency of parameters such as pH (HCl concentration), BPHA concentration, and extraction time were also assessed. Under the optimal experimental conditions, the validity of the separation method was accessed by measuring (187)Re/(185)Re values for a molybdenite reference material (JDC). The obtained values were in good agreement with previously measured values of the Re standard. The proposed method was applied to replicate Re-Os dating of JDC and seven samples of molybdenite from the Yuanzhuding large Cu-Mo porphyry deposit. The results demonstrate good precision and accuracy for the proposed method. The advantages of the method (i.e., simplicity, efficiency, short analysis time, and low cost) make it suitable for routine analysis.

  2. Determination of dyes in cosmetic products by micro-matrix solid phase dispersion and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Guerra, Eugenia; Celeiro, Maria; Lamas, J Pablo; Llompart, Maria; Garcia-Jares, Carmen

    2015-10-09

    A simple method based on micro-matrix solid phase dispersion (MSPD) followed by liquid chromatography-mass spectrometry (LC-MS/MS) has been developed for the rapid and simultaneous determination of nine regulated water-soluble dyes in personal care and decorative products. The proposed miniaturized extraction procedure was optimized by means of experimental designs in order to obtain the highest extraction efficiency. Under the optimal selected conditions, the method was validated showing satisfactory performance in terms of linearity, sensitivity, and intra-day and inter-day precision. Recoveries were evaluated in different cosmetic matrices and they can be considered quantitative with average values between 70 and 120% with relative standard deviations (RSD) lower than 15%. Finally, the validated method was applied to 24 samples of cosmetic and personal care products, including decorative makeup, lipsticks, lip gloss, toothpastes, regenerating creams, shampoos, and eye shadows, among others, to cover a broad range of commercial real samples. Seven of the analyzed dyes were detected, being declared all of them in the label list of ingredients. More than 50% of the samples contained at least two dyes. Tartrazine was the most frequently found (50% of the samples) at concentration levels of 0.243-79.9μgg(-1). Other targets were found in 1-9 samples, highlighting the presence of Quinoline at high concentration (>500μgg(-1)) in a toothpaste sample.

  3. Concurrent determination of 237Np and Pu isotopes using ICP-MS: analysis of NIST environmental matrix standard reference materials 4357, 1646a, and 2702.

    PubMed

    Matteson, Brent S; Hanson, Susan K; Miller, Jeffrey L; Oldham, Warren J

    2015-04-01

    An optimized method was developed to analyze environmental soil and sediment samples for (237)Np, (239)Pu, and (240)Pu by ICP-MS using a (242)Pu isotope dilution standard. The high yield, short time frame required for analysis, and the commercial availability of the (242)Pu tracer are significant advantages of the method. Control experiments designed to assess method uncertainty, including variation in inter-element fractionation that occurs during the purification protocol, suggest that the overall precision for measurements of (237)Np is typically on the order of ± 5%. Measurements of the (237)Np concentration in a Peruvian Soil blank (NIST SRM 4355) spiked with a known concentration of (237)Np tracer confirmed the accuracy of the method, agreeing well with the expected value. The method has been used to determine neptunium and plutonium concentrations in several environmental matrix standard reference materials available from NIST: SRM 4357 (Radioactivity Standard), SRM 1646a (Estuarine Sediment) and SRM 2702 (Inorganics in Marine Sediment).

  4. Determination of N,N-dimethyltryptamine in Mimosa tenuiflora inner barks by matrix solid-phase dispersion procedure and GC-MS.

    PubMed

    Gaujac, Alain; Aquino, Adriano; Navickiene, Sandro; de Andrade, Jailson Bittencourt

    2012-01-15

    N,N-dimethyltryptamine (DMT) is a potent hallucinogen found in beverages consumed in religion rituals and neo-shamanic practices over the world. Two of these religions, Santo Daime and União do Vegetal (UDV), are represented in countries including Australia, the United States and several European nations. In some of this countries there have been legal disputes concerning the legalization of ayahuasca consumption during religious rituals, a beverage rich in DMT. In Brazil, even children and pregnant women are legally authorized to consume ayahuasca in a religious context. A simple and low-cost method based on matrix solid-phase dispersion (MSPD) and gas chromatography with mass spectrometric detection (GC-MS) has been optimized for the determination of N,N-dimethyltryptamine in Mimosa tenuiflora inner bark. The experimental variables that affect the MSPD method, such as the amounts of solid-phase and herbal sample, solvent nature, eluate volume and NaOH concentration were optimized using an experimental design. The method showed good linearity (r = 0.9962) and repeatability (RSD < 7.4%) for DMT compound, with detection limit of 0.12 mg/g. The proposed method was used to analyze 24 samples obtained locally. The results showed that concentrations of the target compound in M. tenuiflora barks, ranged from 1.26 to 9.35 mg/g for these samples.

  5. Interoceanic occurrence of species of Aristocleidus Mueller, 1936 (Monogenoidea: Dactylogyridae) parasitizing the gills of gerreid fishes in the Neotropics.

    PubMed

    Mendoza Franco, Edgar F; Violante-González, Juan; Roche, Dominique G

    2009-09-01

    During investigations of fish parasites in the Neotropics (including the state of Veracruz and the Yucatán Peninsula in the Gulf of Mexico, the Chautengo Lagoon on the Pacific coast of the state of Guerrero in Mexico, and Lake Gatun in the Panama Canal), three monogenoidean (Dactylogyridae) species were found parasitizing the gills of gerreids (Gerreidae): Aristocleidus hastatus Mueller, 1936, was recovered from Eugerres plumieri (Cuvier) and Diapterus auratus Ranzani in Veracruz, from D. auratus and Diapterus rhombeus (Cuvier) in Yucatán, from Eugerres brasilianus (Cuvier) in Panama (all new hosts and geographical records), and from D. peruvianus (Cuvier) and Gerres cinereus (Walbaum) in Guerrero; Aristocleidus lamothei Kritsky and Mendoza-Franco, 2008, was recovered from E. plumieri in Veracruz and from D. rhombeus in Yucatan (new hosts and geographical records), and Aristocleidus sp. was recovered from G. cinereus in Guerrero. Results from this study suggest that species of Aristocleidus exhibit wide host specificity within gerreid fishes and that geminate species within this parasite genus may have originated with the formation of the Isthmus of Panama (3.1 to 3.5 ma). Evidence is also presented suggesting the potential role of the Panama Canal as a passageway allowing the interoceanic dispersal of Aristocleidus species across the isthmus.

  6. Determination of elemental constituents in different matrix materials and flow injection studies by the electrolyte cathode glow discharge technique with a new design

    SciTech Connect

    Shekhar, R.; Karunasagar, D.; Ranjit, M.; Arunachalam, J.

    2009-10-15

    An open-to-air type electrolyte cathode discharge (ELCAD) has been developed with a new design. The present configuration leads to a stable plasma even at low flow rates (0.96 mL/min). Plasma fluctuations arising from the variations in the gap between solid anode and liquid cathode were eliminated by providing a V-groove to the liquid glass-capillary. Cathode (ground) connection is given to the solution at the V-groove itself. Interfaced to atomic emission spectrometry (AES), its analytical performance is evaluated. The optimized molarity of the solution is 0.2 M. The analytical response curves for Ca, Cu, Cd, Pb, Hg, Fe, and Zn demonstrated good linearity. The limit of detections of Ca, Cu, Cd, Pb, Hg, Fe, and Zn are determined to be 17, 11, 5, 45, 15, 28, and 3 ng mL{sup -1}. At an integration time of 0.3 s, the relative standard deviation (RSD) values of the acid blank solutions are found to be less than 10% for the elements Ca, Cu, Cd, Hg, Fe, and Zn and 18% for Pb. The method is applied for the determination of the elemental constituents in different matrix materials such as tuna fish (IAEA-350), oyster tissue (NIST SRM 1566a), and coal fly ash (CFA SRM 1633b). The obtained results are in good agreement with the certified values. The accuracy is found to be between 7% and 0.6% for major to trace levels of constituent elements and the precision between 11% and 0.6%. For the injection of 100 {mu} L of 200 ng mL{sup -1} mercury solution at the flow rate of 0.8 mL/min, the flow injection studies resulted in the relative standard deviation (RSD) of 8%, concentration detection limit of 10 ng/mL, and mass detection limit of 1 ng for mercury.

  7. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination.

    PubMed

    Guo, Linyuan; Guan, Min; Zhao, Chuande; Zhang, Haixia

    2008-12-01

    The synthesis and evaluation of a molecularly imprinted polymer (MIP) as a selective matrix solid-phase dispersion (MSPD) sorbent, coupled with high-performance liquid chromatography for the efficient determination of chloramphenicol (CAP) in fish tissues are studied. The polymer was prepared using CAP as the template molecule, vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer, and sodium dodecyl sulfate as the surfactant in the presence of water as a solvent by miniemulsion polymerization. The CAP-imprinted polymers and nonimprinted polymers (NIPs) were characterized by Fourier transform IR spectroscopy, scanning electron microscopy, and static adsorption experiments. The CAP-imprinted material prepared showed high adsorption capacity, significant selectivity, and good site accessibility. The maximum static adsorption capacity of the CAP-imprinted and the NIP material for CAP was 78.4 and 59.9 mg g(-1), respectively. The relative selectivity factors of this CAP-imprinted material were larger than 1.9. Several parameters influencing the MSPD process were optimized. Finally, the CAP-imprinted polymers were used as the sorbent in MSPD to determine CAP in three kinds of fishes and resulted in satisfactory recovery in the range 89.8-101.43%. CAP-imprinted polymer as a sorbent in MSPD is better than C18 and attapulgite in terms of both recovery and percent relative standard deviation. The baseline noise was measured from a chromatogram of a blank fish sample which was treated after the MSPD procedure using CAP-imprinted polymer as a sorbent. Signal values of 3 times the noise (signal-to-noise ratio of 3) and 10 times the noise (signal-to-noise ratio of 10) were used to calculate the limit of detection and the limit of quantitation of the calibration curve. The limit of detection for CAP was 1.2 ng g(-1) and the limit of quantitation was 3.9 ng g(-1).

  8. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals.

    PubMed

    García-Fonseca, Sergio; Rubio, Soledad

    2016-02-01

    Ion suppression/enhancement caused by matrix effects continues being a major concern in liquid chromatography-mass spectrometry (LC-MS). This research explores the ability of a supramolecular solvent (SUPRAS) made up of inverted hexagonal aggregates of oleic acid to behave as a liquid with restricted access properties (SUPRAS-RAM). Fusarium toxins in cereals were extracted with the oleic acid-based SUPRAS-RAM prior to their quantification by LC-electrospray ionization (ESI)-ion trap-MS (LC-ESI-IT-MS) in order to investigate the capability of this solvent to remove or reduce ionization suppression and/or enhancement in the analysis of complex samples by MS. The method involved the vortex-shaking of 300 mg of cereal with 600 μL of the SUPRAS-RAM for 15 min, centrifugation for separation of the supernatant and quantitation by LC-ESI-IT-MS. Macromolecules such as proteins and carbohydrates were excluded from extraction by chemical and physical mechanisms. Extraction of analytes and sample clean-up were thus carried out in a single step. No evaporation of the extracts was needed. Method detection limits for the legislated Fusarium toxins [i.e. deoxynivalenol (DON), zearalenone (ZEA) and fumonisins B1 (FB1) and B2 (FB2)] were 15 μg kg(-1) for DON and ZEA and 8 μg kg(-1) for fumonisins. These values were far below the maximum levels set by the European Commission for these toxins in foodstuffs. The method was successfully applied to the determination of these toxins in wheat and maize harvested in the South of Spain. No contamination of Fusarium toxins was found in samples at detectable levels. Recoveries in spiked samples were in the range 87-105%, with relative standard deviations between 1 and 7%. The use of the oleic acid-based SUPRAS-RAM effectively removed matrix interferences and allowed reliable quantitation of Fusarium toxins in cereals using solvent-based calibration.

  9. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  10. Measurement of the decay B →D ℓνℓ in fully reconstructed events and determination of the Cabibbo-Kobayashi-Maskawa matrix element |Vc b|

    NASA Astrophysics Data System (ADS)

    Glattauer, R.; Schwanda, C.; Abdesselam, A.; Adachi, I.; Adamczyk, K.; Aihara, H.; Al Said, S.; Asner, D. M.; Aushev, T.; Ayad, R.; Aziz, T.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhuyan, B.; Biswal, J.; Bonvicini, G.; Bozek, A.; Bračko, M.; Breibeck, F.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Dingfelder, J.; Doležal, Z.; Drutskoy, A.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Frey, A.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goh, Y. M.; Goldenzweig, P.; Golob, B.; Greenwald, D.; Haba, J.; Hamer, P.; Hara, T.; Hasenbusch, J.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Hsu, C.-L.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Jeon, H. B.; Joffe, D.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y.-J.; Lee, I. S.; Li, L.; Li, Y.; Libby, J.; Liu, Y.; Liventsev, D.; Lukin, P.; MacNaughton, J.; Masuda, M.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Oswald, C.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, H.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ribežl, E.; Ritter, M.; Rostomyan, A.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Sibidanov, A.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumiyoshi, T.; Tamponi, U.; Teramoto, Y.; Trabelsi, K.; Trusov, V.; Uchida, M.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Varvell, K. E.; Vorobyev, V.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; Won, E.; Yamamoto, H.; Yamashita, Y.; Yook, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2016-02-01

    We present a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vc b| using the decay B →D ℓνℓ (ℓ=e ,μ ) based on 711 fb-1 of e+e-→ϒ (4 S ) data recorded by the Belle detector and containing 772 ×106 B B ¯ pairs. One B meson in the event is fully reconstructed in a hadronic decay mode, while the other, on the signal side, is partially reconstructed from a charged lepton and either a D+ or D0 meson in a total of 23 hadronic decay modes. The isospin-averaged branching fraction of the decay B →D ℓνℓ is found to be B (B0→D-ℓ+νℓ )=(2.31 ±0.03 (stat )±0.11 (syst ))% . Analyzing the differential decay rate as a function of the hadronic recoil with the parametrization of Caprini, Lellouch, and Neubert and using the form-factor prediction G (1 ) =1.0541 ±0.0083 calculated by FNAL/MILC, we obtain ηEW|Vc b| =(40.12 ±1.34 )×10-3 , where ηEW is the electroweak correction factor. Alternatively, assuming the model-independent form-factor parametrization of Boyd, Grinstein, and Lebed and using lattice QCD data from the FNAL/MILC and HPQCD collaborations, we find ηEW|Vc b| =(41.10 ±1.14 )×10-3 .

  11. GH3 tumor pituitary cell cytoskeleton and plasma membrane arrangement are determined by extracellular matrix proteins: implications on motility, proliferation and hormone secretion

    PubMed Central

    Azorín, Erika; Romero-Pérez, Beatriz; Solano-Agama, Carmen; de la Vega, María T; Toriz, César G; Reyes-Márquez, Blanca; González-Pozos, Sirenia; Rosales-García, Víctor H; del Pliego, Margarita González; Sabanero, Myrna; Mendoza-Garrido, María E

    2014-01-01

    The extracellular matrix (ECM) influences different physiological and pathophysiological aspects of the cell. The ECM consists in a complex network of macromolecules with characteristic biochemical properties that allow cells to sense their environments inducing different signals and changing cell behavior. The purpose of the present study was to evaluate the participation of different ECM proteins in cell morphology and its implication on motility, proliferation and hormone secretion in GH3 cells, a tumor pituitary cell. GH3 cells were cultured with a defined medium on collagens I/III and IV, fibronectin and laminin. GH3 cells express α2 integrin subunit de novo. The cells responded to the ECM proteins with differentiated cell surface morphologies and membrane protrusions. A rounded shape with small membrane blebs, weak substrate adhesion and high motility was observed in cells on C I/III and fibronectin, while on C IV and laminin cells were viewed elongated and adhered. Differences on actin cytoskeleton, cytoskeletal-associated vinculin and phospho-MLC showed that ECM proteins determine the cytoskeleton organization. Cell proliferation showed dependency on the ECM protein, observing a higher rate in cells on collagen I/III. Prolactin secretion was higher in cells with small blebs, but an unchangeable response to EGF was obtained with the ECM proteins, suggesting is a consequence of cortical actin arrangement. We ascribe the functional differences of the GH3 cells to the cytoskeletal organization. Overall, the data showed that ECM plays a critical role in GH3 cells modulating different cellular comportment and evidenced the importance of the ECM composition of pituitary adenomas. PMID:25057334

  12. Determination of isothiazolinone preservatives in cosmetics and household products by matrix solid-phase dispersion followed by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Alvarez-Rivera, Gerardo; Dagnac, Thierry; Lores, Marta; Garcia-Jares, Carmen; Sanchez-Prado, Lucia; Lamas, J Pablo; Llompart, Maria

    2012-12-28

    In this work, the development of a new efficient methodology applying, for the first time, matrix solid phase dispersion (MSPD) for the determination of sensitizer isothiazolinone biocides in cosmetics and household products - 2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BzI) and 2-octyl-3-isothiazolinone (OI) - is described. The main factors affecting the MSPD extraction procedure, the dispersive phase and the elution solvent, are assessed and optimized through a multicategorical experimental design, using a real cosmetic sample. The most suitable extraction conditions comprise the use of 2g of florisil as dispersive phase and 5 mL of methanol as elution solvent. Subsequently, the extract is readily analyzed by HPLC-MS/MS without any further clean-up or concentration steps. Method performance was evaluated demonstrating to have a broad linear range (R(2)>0.9980) and limits of detection (LOD) and quantification (LOQ) at the low nanogram per gram level, which are well below the required limits for UE regulation compliance. Satisfactory recoveries above 80%, except for MI (mean values close to 60%), were obtained. In all cases, the method precision (% RSD) was lower than 7%, making this low cost extraction method reliable for routine control. The validated methodology was finally applied to the analysis of a wide variety of cosmetics and household products. Most of the real samples analyzed have been shown to comply with the current European Cosmetic Regulation, although the results obtained for some rinse-off cosmetics (e.g. baby care products) revealed high isothiazolinone content.

  13. GH3 tumor pituitary cell cytoskeleton and plasma membrane arrangement are determined by extracellular matrix proteins: implications on motility, proliferation and hormone secretion.

    PubMed

    Azorín, Erika; Romero-Pérez, Beatriz; Solano-Agama, Carmen; de la Vega, María T; Toriz, César G; Reyes-Márquez, Blanca; González-Pozos, Sirenia; Rosales-García, Víctor H; Del Pliego, Margarita González; Sabanero, Myrna; Mendoza-Garrido, María E

    2014-01-01

    The extracellular matrix (ECM) influences different physiological and pathophysiological aspects of the cell. The ECM consists in a complex network of macromolecules with characteristic biochemical properties that allow cells to sense their environments inducing different signals and changing cell behavior. The purpose of the present study was to evaluate the participation of different ECM proteins in cell morphology and its implication on motility, proliferation and hormone secretion in GH3 cells, a tumor pituitary cell. GH3 cells were cultured with a defined medium on collagens I/III and IV, fibronectin and laminin. GH3 cells express α2 integrin subunit de novo. The cells responded to the ECM proteins with differentiated cell surface morphologies and membrane protrusions. A rounded shape with small membrane blebs, weak substrate adhesion and high motility was observed in cells on C I/III and fibronectin, while on C IV and laminin cells were viewed elongated and adhered. Differences on actin cytoskeleton, cytoskeletal-associated vinculin and phospho-MLC showed that ECM proteins determine the cytoskeleton organization. Cell proliferation showed dependency on the ECM protein, observing a higher rate in cells on collagen I/III. Prolactin secretion was higher in cells with small blebs, but an unchangeable response to EGF was obtained with the ECM proteins, suggesting is a consequence of cortical actin arrangement. We ascribe the functional differences of the GH3 cells to the cytoskeletal organization. Overall, the data showed that ECM plays a critical role in GH3 cells modulating different cellular comportment and evidenced the importance of the ECM composition of pituitary adenomas.

  14. Matrix solid-phase dispersion combined to liquid chromatography-tandem mass spectrometry for the determination of paraben preservatives in mollusks.

    PubMed

    Villaverde-de-Sáa, Eugenia; Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2016-08-12

    A method for the extraction and determination of seven parabens, esters of 4-hydroxybenzoic acid, widely used as preservatives in personal care products, pharmaceuticals, etc., and two chlorinated derivatives (mono- and di-chloro methyl paraben) from mollusk samples was developed by combining matrix solid-phase dispersion (MSPD) and liquid chromatography-tandem mass spectrometry. MSPD parameters, such as solvent, solid support and clean-up sorbent, were optimized. Besides, since blank problems were observed for some parabens, these were investigated and blanks were tackled by precleaning all sorbents prior to use. Under final conditions, 0.5g of freeze-dried mollusk were dispersed with 1.2g of silica and packed into a cartridge containing 3g of C18, as on-line clean-up sorbent. This cartridge was eluted with 10mL of acetonitrile, evaporated and reconstituted in methanol for analysis. In the validation stage, successful linearity (R(2)>0.999), recoveries (between 71 and 117% for most analytes), precision (RSD lower than 21%) and limits of detection and quantification (LOD and LOQ, lower than 0.4 and 1.4ngg(-1) dry weight respectively) levels were achieved. Finally, the new methodology was applied to mussel, clam and cockle samples. Methyl paraben was above the LOQ in five of the six samples (not found in one clam sample) at concentrations up to 7ngg(-1) dry weight. Ethyl paraben was found above the LOQ in mussel and cockle samples at a concentration level around 0.3ngg(-1). n-Propyl paraben was only above the LOQ in one mussel sample.

  15. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  16. Determination of selected water-soluble vitamins using hydrophilic chromatography: a comparison of photodiode array, fluorescence, and coulometric detection, and validation in a breakfast cereal matrix.

    PubMed

    Langer, Swen; Lodge, John K

    2014-06-01

    Water-soluble vitamins are an important class of compounds that require quantification from food sources to monitor nutritional value. In this study we have analysed six water-soluble B vitamins ([thiamine (B1), riboflavin (B2), nicotinic acid (B3, NAc), nicotinamide (B3, NAm), pyridoxal (B6), folic acid (B9)], and ascorbic acid (vit C) with hydrophilic interaction liquid chromatography (HILIC), and compared UV, fluorescent (FLD) and coulometric detection to optimise a method to quantitate the vitamins from food sources. Employing UV/diode array (DAD) and fluorimetric detection, six B vitamins were detected in a single run using gradient elution from 100% to 60% solvent B [10mM ammonium acetate, pH 5.0, in acetonitrile and water 95:5 (v:v)] over 18 min. UV detection was performed at 268 nm for B1, 260 nm for both B3 species and 284 nm for B9. FLD was employed for B2 at excitation wavelength of 268 nm, emission of 513 nm, and 284 nm/317 nm for B6. Coulometric detection can be used to detect B6 and B9, and vit C, and was performed isocratically at 75% and 85% of solvent B, respectively. B6 was analysed at a potential of 720 mV, while B9 was analysed at 600 mV, and vit C at 30 mV. Retention times (0.96 to 11.81 min), intra-day repeatability (CV 1.6 to 3.6), inter-day variability (CV 1.8 to 11.1), and linearity (R 0.9877 to 0.9995) remained good under these conditions with limits of detection varying from 6.6 to 164.6 ng mL(-1), limits of quantification between 16.8 and 548.7 ng mL(-1). The method was successfully applied for quantification of six B vitamins from a fortified food product and is, to our knowledge, the first to simultaneously determine multiple water-soluble vitamins extracted from a food matrix using HILIC.

  17. Nomina nova in Platyhelminthes pro Macrorhynchus von Graff, 1882 (non [Gmelin, 1801]; non Dunker, 1843), and Leptocleidus Mueller, 1936 (non Andrews, 1922).

    PubMed

    Hornung, Jahn J

    2016-08-19

    Two genus-group names of flat-worms-Leptocleidus Mueller, 1936 and Macrorhynchus von Graff, 1882-are junior homonyms that are preoccupied by fossil diapsid reptile genera-Leptocleidus Andrews, 1922, and Macrorhynchus Dunker, 1843-and an extant teleost fish genus-Macrorhynchus [Gmelin, 1801] ex La Cépède, 1800. These are replaced by nomina nova (Pharyngodytes nom. nov.; Graffiellus nom. nov.). Macrorhynchus [Gmelin, 1801] is an objective senior synonym of Macrorhyncus Dumeríl, 1805 ex La Cépède, 1800 (syn. nov.), and a senior homonym of Macrorhynchus Dunker, 1843, and Macrorhynchus von Graff, 1882.

  18. Deformation of the lithosphere and what microstructures can tell us about it (Stephan Mueller Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée

    2016-04-01

    The lithosphere is a roughly stratified and heterogeneous rock body that constitutes the outer layer of our planet. It is subdivided into irregularly shaped stiff plates that move with respect to one another deforming each other along their margins. At the large scale the lithosphere is usually modeled as a flat-lying multi-layer, its rheological profile being based on flow laws determined experimentally for key minerals of the crust and upper mantle. At the somewhat smaller scale of field observations, geometrical and physical complexities become apparent: rocks are folded, sheared and fractured, and - in general - quite heterogeneously deformed. And finally, at the even smaller scale of mechanical testing and microscopic investigations, rocks are seen as polycrystalline aggregates or granular composites whose bulk properties depends both on the composition and shape of the individual grains and the spatial arrangement of the crystals with respect to one another. In other words, the physical properties of the lithosphere and the inferred style or type of deformation depend very much on the scale of observation. Microstructures and textures (crystallographic preferred orientations) of deformed rocks provide a wealth of information: when used as archives of the deformation history, they allow us to unravel the tectonic evolution of the lithosphere at plate boundaries. At the same time, they enable us to assess past and/or present geophysical properties. By comparing the microstructures of experimentally and naturally deformed rocks it is possible to infer the active deformation mechanisms and thus to extrapolate flow laws to geological time scales. With the advent of digital image processing, microstructure and texture analysis have taken a great leap forward. By amalgamating methods from neighbouring disciplines such as mathematical morphometry, stereology, geostatistics, material sciences, etc., microstructure and texture analysis have come a long way since the

  19. Multiple headspace solid-phase microextraction using a new fiber for avoiding matrix interferences in the quantitative determination of ethyl carbamate in pickles.

    PubMed

    Lei, Fen-Fen; Zhang, Xue-Na; Gao, Yuan-Li; Han, Ya-Hong; Li, Xiu-Juan; Pan, Si-Yi

    2012-05-01

    Multiple headspace solid-phase microextraction (HS-SPME) using a novel fiber coated with anilino-methyl triethoxy silicane-methacrylic acid/terminated silicone oil has been introduced as a useful pretreatment technique coupled to gas chromatography-flame ionization detector for the detection of ethyl carbamate in pickles. Anilino-methyl triethoxy silicane and methacrylic acid are put into use simultaneously with the aim to increase the hydrogen interaction strength between ethyl carbamate and the coating. In addition, the new fiber exhibits high thermal stability, good reproducibility, and long lifetime. Extraction temperature, extraction time, amount of desiccant, and amount of sample were well optimized to guarantee the suitability of multiple HS-SPME. Significant matrix interference was observed among various types of pickles and the multiple HS-SPME procedure was proved to be effective in avoiding the matrix effect by a complete recovery of the analyte. The method showed satisfactory linearity (0.1-100 mg kg(-1)), precision (4.25%, n = 5), and detection limit (0.038 mg kg(-1)). The accuracy of the method was evaluated by comparison with standard addition method and the results were statistically equivalent. The study indicates that the multiple HS-SPME procedure is simple, convenient, accurate, and low-cost, and most of all, can be used for quantitative analysis in complex matrix without matrix effect.

  20. Mechanical assessment of bovine pericardium using Müeller matrix imaging, enhanced backscattering and digital image correlation analysis

    PubMed Central

    Cuando-Espitia, Natanael; Sánchez-Arévalo, Francisco; Hernández-Cordero, Juan

    2015-01-01

    Mechanical characterization of tissue is an important but complex task. We demonstrate the simultaneous use of Mueller matrix imaging (MMI), enhanced backscattering (EBS) and digital image correlation (DIC) in a bovine pericardium (BP) tensile test. The interest in BP relies on its wide use as valve replacement and biological patch. We show that the mean free path (MFP), obtained through EBS measurements, can be used as an indicator of the anisotropy of the fiber ensemble. Our results further show a good correlation between retardance images and displacement vector fields, which are intrinsically related with the fiber interaction within the tissue. PMID:26309759

  1. Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro.

    PubMed

    Herklotz, Manuela; Prewitz, Marina C; Bidan, Cécile M; Dunlop, John W C; Fratzl, Peter; Werner, Carsten

    2015-08-01

    To explore the space-filling growth of adherent mesenchymal stem cells (MSC) into tissue-like structures in vitro, human bone marrow derived MSC were exposed to fibronectin-coated, millimeter-sized, triangular channels casted in poly(dimethyl siloxane) carriers. The results revealed that the three dimensional (3D) growth of MSC differs in dependence on differentiation status and availability of extracellular matrix (ECM) proteins: Massive 3D structure formation was observed for MSC under pro-osteogenic stimulation but not for undifferentiated MSC nor for MSC under pro-adipogenic stimulation; boosting cellular matrix secretion and addition of soluble ECM proteins caused extensive 3D tissue formation of undifferentiated MSC. The reported findings may contribute to bridge the gap between in vitro and in vivo analyses and guide the application of MSC in tissue replacement approaches.

  2. Palladium-citric acid-ammonium fluoride as a matrix modifier for overcoming of interferences occurring during the direct determination of Sn in aqua regia extracts from environmental samples by D2-ETAAS.

    PubMed

    Husáková, Lenka; Srámková, Jitka; Cernohorský, Tomás; Urbanová-Dolezalová, Iva

    2009-02-15

    When tin is to be determined in such a complex matrix like aqua regia extracts of environmental samples by electrothermal atomic absorption spectrometry (ETAAS), spectral interferences occur when deuterium-lamp (D(2)) background correction is used, even using high pyrolysis temperature of 1400 degrees C achieved with palladium with citric acid chemical modifier. We have found that the further addition of NH(4)F to palladium with citric acid chemical modifier is essential for overcoming the above-mentioned problems for which aluminium oxide is most probably responsible. It is supposed, that NH(4)F enables volatilization of the alumina matrix formed by hydrolysis from the chloride salt and interfering in a gas phase via the formation of AlF(3) which could be, in contrast to aluminium oxide, removed from the graphite furnace during the pyrolysis stage. Using the proposed chemical modifier, the direct and accurate determination of Sn in aqua regia extracts from rocks, soils and sediments is possible even when using matrix free standard solutions. This presumption was confirmed by the analysis of certified reference samples and by the comparison with inductively coupled plasma time of flight mass spectrometry (ICP-TOFMS) method. Characteristic mass and LOD value for the original sample (10-microL aliquots of sample) was 17 pg and 0.055 microg g(-1), respectively.

  3. Rapid and sensitive determination of major polyphenolic components in Euphoria longana Lam. seeds using matrix solid-phase dispersion extraction and UHPLC with hybrid linear ion trap triple quadrupole mass spectrometry.

    PubMed

    Rathore, Atul S; Sathiyanarayanan, L; Deshpande, Shreekant; Mahadik, Kakasaheb R

    2016-11-01

    A rapid and sensitive method for the extraction and determination of four major polyphenolic components in Euphoria longana Lam. seeds is presented for the first time based on matrix solid-phase dispersion extraction followed by ultra high performance liquid chromatography with hybrid triple quadrupole linear ion trap mass spectrometry. Matrix solid-phase dispersion method was designed for the extraction of Euphoria longana seed constituents and compared with microwave-assisted extraction and ultrasonic-assisted extraction methods. An Ultra high performance liquid chromatography with hybrid triple quadrupole linear ion-trap mass spectrometry method was developed for quantitative analysis in multiple-reaction monitoring mode in negative electrospray ionization. The chromatographic separation was accomplished using an ACQUITY UPLC BEH C18 (2.1 mm × 50 mm, 1.7 μm) column with gradient elution of 0.1% aqueous formic acid and 0.1% formic acid in acetonitrile. The developed method was validated with acceptable linearity (r(2) > 0.999), precision (RSD ≤ 2.22%) and recovery (RSD ≤ 2.35%). The results indicated that matrix solid-phase dispersion produced comparable extraction efficiency compared with other methods nevertheless was more convenient and time-saving with reduced requirements on sample and solvent volumes. The proposed method is rapid and sensitive in providing a promising alternative for extraction and comprehensive determination of active components for quality control of Euphoria longana products.

  4. In-situ separation of the matrix for the direct determination of traces of chromium, cobalt, and nickel in titanium dioxide powder by electrothermal atomic-absorption spectrometry with slurry sampling.

    PubMed

    Zhu, X; Hu, B; Wang, L; Li, S; Jiang, Z

    2001-10-01

    A novel method has been developed for the direct determination of traces of chromium, cobalt, and nickel in TiO2 powder; it entails slurry sampling and electrothermal atomic-absorption spectrometry (ETAAS) with a polytetrafluoroethylene (PTFE) slurry (6% m/v) as fluorinating reagent. The factors which could affect the vaporization of the matrix and analytes were studied in detail; the fluorinating vaporization behavior of the analyte both in the slurry and in solution were also investigated. Owing to the in-situ separation of the matrix, the matrix influences were reduced significantly. The proposed method has been applied to the direct determination of traces of chromium, cobalt, and nickel in high-purity TiO2 powder without chemical pretreatment. Under the optimum experimental conditions the detection limits of the analytes (Cr, Co, and Ni) were 1.9 ng g(-1), 2.4 ng g(-1) and 5.4 ng g(-1), respectively, the relative standard deviations (RSD) were 3.4% (n=6, c=7.0 ng mL(-1)), 2.9% (n=6, c=0.70 ng mL(-1)), and 7.6% (n=6, c=4.0 ng mL(-1)), again respectively, and the characteristic masses for Cr, Co, and Ni were 8.4 pg/ 0.0044A, 9.3 pg/0.0044A, and 40.0 pg/0.0044A, respectively.

  5. Process stability assessed by selecting Shewhart's psi statistical analysis technique of the influence of matrix modifier and furnace program in the optimization and precision of zinc determinations by graphite furnace atomic absorption spectroscopy.

    PubMed

    Al-Tufail, M; Akram, M; Haq, A

    1999-03-01

    The method previously used in the Toxicology Laboratories of King Faisal Specialist Hospital and Research Center for determining the zinc concentration in serum by Zeeman atomic absorption spectrometer was improved by modifying the matrix modifier and by changing the heated graphite furnace atomization (HGA) program. After trying several methods we failed to achieve the required precision and the accuracy of methods for serum zinc determination. We changed the matrix modifier to a fifty percent mixture (v/v) of 3.90 grams per liter of ammonium phosphate in Type 1 water with 0.2% nitric acid and 1.0 gram per liter of magnesium nitrate in acidic water (0.2% HNO3) with 0.1% triton X-100 was used as matrix modifier. A twenty-five fold dilution of the sample in matrix modifier was injected on the L'vov's platform of the furnace. In order to reduce the high sensitivity of Zn the furnace program was modified. The method is found very robust. The average reproducibility between inter-runs and intra-run is less than 1.59% with a high degree of accuracy. We used two levels of controls i.e. normal or low level and abnormal or high level. The linearity and the detection limit of the assay were 0.9992 and 0.010 micromol/L respectively. Average recovery of the analyte was 98.65%. The X-Bar and R charts were constructed by using Shewhart's statistical analysis technique to assess the test methodology. It was found that the assay is capable and stable for routine clinical and research analysis. The capability index (C(P)) of the assay, an indicator of the precision, was calculated.

  6. Determination of three triterpene alcohols in rat plasma after oral administration of pollen of Brassica campestris based on the utilization of fetal bovine serum as surrogate matrix.

    PubMed

    Zheng, Shirui; Ma, Zhiyuan; Ye, Jianfeng; Wang, Guangfa; Wang, Ruwei; Zhou, Hui; Zeng, Su; Jiang, Huidi

    2014-01-01

    24-Dehydropollinstanol (DEH), 24-methylene cholesterol (MET) and 31-norcycloartenol (NOR) are the functional triterpene alcohols of pollen of Brassica campestris. To study the pharmacokinetics of the above components of pollen of B. campestris in rats, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed. To avoid the interference of endogenous MET in rat plasma, fetal bovine serum (FBS) was selected as surrogate matrix and validated. Rat plasma was liquid-liquid extracted, then the chromatographic separation was conducted on a poroshell 120 SB C18 column (2.7μm, 2.1mm×50mm) at 38°C within 5.6min utilizing a gradient elution with a mobile phase consisting of (A) 0.1% formic acid in water and (B) 0.1% formic acid in methanol. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode using positive atmospheric pressure chemical ionization (APCI). The method was validated over the concentration of 9.8-1560ng/ml; the inter-and-intra-day precisions (RSD %) were ≤7.8%, and the accuracies (RE %) were -5.3% to 12.2%, the extraction recovery ranged from 73.5% to 106.9% for all of these analytes, and no obvious matrix effect was observed. The developed method was applied successfully to study the pharmacokinetics of DEH, MET and NOR in rats after oral administration of pollen of B. campestris.

  7. Metal-matrix composites: Status and prospects

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.

  8. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  9. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  10. Structural determination of the conjugate of human serum albumin with a mitomycin C derivative, KW-2149, by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Yasuzawa, T; Tomer, K B

    1997-01-01

    A new mitomycin C derivative, KW-2149, is known to form a covalent conjugate with human serum albumin (HSA). This conjugate exhibits 1/20 of the anticellular activity of unconjugated KW-2149. Structural studies of this conjugate were carried out using a combination of enzymatic digestion, high-performance liquid chromatography (HPLC), and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The tryptic peptide T5 (residues 21-41) was the only peptide found to be modified by KW-2149 moieties, the [(gamma-L-glutamylamino)ethyl]thio group or the (2-aminoethyl)thio group, through a disulfide bond. Although the latter peptide lost its mitomycin C moiety in the course of tryptic digestion, these data strongly suggest that KW-2149 was bound to Cys-34, the only free cysteine on HSA.

  11. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2016-11-01

    A novel technique was applied for the synthesis of dummy molecularly imprinted silica nanoparticles (DMISNPs). DMISNPs were characterized by Fourier transmission infrared spectrometry, scanning electron microscopy and transmission electron microscope. The material was used as dispersant for the analysis of biscuit and bread samples using matrix solid phase dispersion (MSPD). Of advantages of such approach may be counted as the simplicity of synthesis procedure, low consumption of organic solvent, mild working temperature during the synthesis, high binding capacity and affinity. The effect of various parameters such as sample-to-dispersant ratio and eluents volume on extraction recovery was investigated and optimized by central composite design under response surface methodology. It was proven that the proposed dispersant leads to high affinity toward acrylamide even in complicated matrices. Quantification of the acrylamide was carried out by high performance liquid chromatography with UV detection (HPLC-UV).

  12. Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis.

    PubMed

    Shin, Young G; Dong, Teresa; Chou, Bilin; Menghrajani, Kapil

    2011-11-01

    Recently matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) imaging has been used to analyze small molecule pharmaceutical compounds directly on tissue sections to determine spatial distribution within target tissue and organs. The data presented to date usually indicate relative amounts of drug within the tissue. The determination of absolute amounts is still done using tissue homogenization followed by traditional liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, the quantitative determination of loperamide, an antidiarrheal agent and a P-glycoprotein substrate, in mdr1a/1b (-/-) mouse brain tissue sections using MALDI MS on a quadrupole time-of-flight mass spectrometry is described. 5 mg/mL α-cyano-4-hydroxycinnamic acid in 50% acetonitrile with 0.1% trifluoroacetic acid and 0.5 μM reserpine was used as the MALDI matrix. The calibration curve constructed by the peak intensities of standard samples from MALDI MS was linear from 0.025 to 0.5 μM with r² = 0.9989. The accuracy of calibration curve standards was 78.3-105.9% and the percent deviation was less than 25%. Comparison between direct MALDI tissue analysis and conventional tissue analysis using homogenization followed by electrospray LC-MS/MS was also explored.

  13. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectroscopy.

    PubMed

    Delatour, Thierry; Périsset, Adrienne; Goldmann, Till; Riediker, Sonja; Stadler, Richard H

    2004-07-28

    An improved sample preparation (extraction and cleanup) is presented that enables the quantification of low levels of acrylamide in difficult matrixes, including soluble chocolate powder, cocoa, coffee, and coffee surrogate. Final analysis is done by isotope-dilution liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS) using d3-acrylamide as internal standard. Sample pretreatment essentially encompasses (a) protein precipitation with Carrez I and II solutions, (b) extraction of the analyte into ethyl acetate, and (c) solid-phase extraction on a Multimode cartridge. The stability of acrylamide in final extracts and in certain commercial foods and beverages is also reported. This approach provided good performance in terms of linearity, accuracy and precision. Full validation was conducted in soluble chocolate powder, achieving a decision limit (CCalpha) and detection capability (CCbeta) of 9.2 and 12.5 microg/kg, respectively. The method was extended to the analysis of acrylamide in various foodstuffs such as mashed potatoes, crisp bread, and butter biscuit and cookies. Furthermore, the accuracy of the method is demonstrated by the results obtained in three inter-laboratory proficiency tests.

  14. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhang, Boyu; Zhang, Hong; Myers, Brittany K; Elupula, Ravinder; Jayawickramarajah, Janarthanan; Grayson, Scott M

    2014-03-13

    End groups play a critical role in macromolecular coupling reactions for building complex polymer architectures, yet their identity and purity can be difficult to ascertain using traditional analytical technique. Recent advances in mass spectrometry techniques have made matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry a rapid and powerful tool for providing detailed information about the identity and purity of homopolymer end groups. In this work, MALDI-TOF mass spectrometry was used to study end groups of linear polyethylene glycols. In particular, the identifications of alcohol, amine and thiol end groups are investigated because these nucleophilic moieties are among the most common within biological and synthetic macromolecules. Through comparative characterization of alcohol, amine, and thiol end groups, the exact identification of these end groups could be confirmed by selective and quantitative modification. The precision of this technique enables the unambiguous differentiation of primary amino groups relative to hydroxyl groups, which differ by only 1 mass unit. In addition, the quantitative conversion of various polyethylene glycol end groups using highly efficient coupling reactions such as the thiol-ene and azide-alkyne click reactions can be confirmed using MALDI-TOF mass spectrometry.

  15. Determination of coumaphos, chlorpyrifos and ethion residues in propolis tinctures by matrix solid-phase dispersion and gas chromatography coupled to flame photometric and mass spectrometric detection.

    PubMed

    Pérez-Parada, Andrés; Colazzo, Marcos; Besil, Natalia; Geis-Asteggiante, Lucía; Rey, Federico; Heinzen, Horacio

    2011-08-26

    A new analytical method has been developed and successfully evaluated in routine application for the quantitative analysis of a selected group of organophosphate pesticides (coumaphos, chlorpyrifos and ethion) which can be found at trace levels in propolis tinctures (ethanolic propolis extracts); a valuable commodity used as raw material in the food and pharmaceutical industries for which there have been few attempts for pesticide residue analysis reported in the literature. The proposed methodology is based on matrix solid phase dispersion (MSPD) using aluminum sulfate anh. a novel dispersant material and subsequent column chromatography clean-up in silica gel prior to gas chromatography (GC) with both flame photometric detector (FPD) and mass spectrometry (MS) detection used for the routine quantification and identification of the residues, respectively. The limits of detection, for coumaphos, chlorpyrifos and ethion were below 26.0 μg/kg in FPD and 1.43 μg/kg for MS detection. Mean recoveries were in the range of 85-123% with RSD values below 13%, which suggests that the proposed method is fit for the purpose of analyzing pesticides in propolis tinctures containing high concentration of polyphenolics. The method has been successfully applied in our laboratory for the last 2 year in the analysis of real propolis tinctures samples.

  16. Improvement of reproducibility and sensitivity by reducing matrix effect in micellar electrokinetic chromatography for determination of amino acids in turtle jelly.

    PubMed

    Li, Lin-Qiu; Cai, Yue; Yang, Mei; Shen, Qing; Yu, Ka-Ming; Cheung, Hon-Yeung

    2015-05-01

    Matrix effect (ME) is commonly seen in electrophoretic separation, but this phenomenon lacks any systematic study. Our work aimed to find out the relationship between separation efficiency and current, and then figure out an effective, simple, and economic solution to overcome the negative impact of ME. This present study showed that small amount of NaCl (≤0.005 mg/mL) in the sample had no impact on the separation but enhanced the sensitivity. However, when concentration of NaCl increased above 0.005 mg/mL, it alleviated the separation efficiency, sensitivity, and migration time. Besides, increasing NaCl concentration resulted in increasing turning point. The study of relationship of current and NaCl concentration indicated that when the TP of a sample is higher than 62.36 μA, desalination is necessary. Since the reported desalination methods are either expensive or complicated, we developed a simple and economic method by simply adding 12 times (volume) of chloroform/methanol (2:1, v/v) into the sample. When applied this method to turtle jelly, the number of theoretical plate (N) of 20 amino acids got up to threefold enhancement.

  17. Trace anion determination in concentrated hydrofluoric acid solutions by two-dimensional ion chromatography I. Matrix elimination by ion-exclusion chromatography.

    PubMed

    Vermeiren, Koen

    2005-08-26

    Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.

  18. Sensitive determination of three aconitum alkaloids and their metabolites in human plasma by matrix solid-phase dispersion with vortex-assisted dispersive liquid-liquid microextraction and HPLC with diode array detection.

    PubMed

    Wang, Xiaozhong; Li, Xuwen; Li, Lanjie; Li, Min; Liu, Ying; Wu, Qian; Li, Peng; Jin, Yongri

    2016-05-01

    A simple and sensitive method for determination of three aconitum alkaloids and their metabolites in human plasma was developed using matrix solid-phase dispersion combined with vortex-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection. The plasma sample was directly purified by matrix solid-phase dispersion and the eluate obtained was concentrated and further clarified by vortex-assisted dispersive liquid-liquid microextraction. Some important parameters affecting the extraction efficiency, such as type and amount of dispersing sorbent, type and volume of elution solvent, type and volume of extraction solvent, salt concentration as well as sample solution pH, were investigated in detail. Under optimal conditions, the proposed method has good repeatability and reproducibility with intraday and interday relative standard deviations lower than 5.44 and 5.75%, respectively. The recoveries of the aconitum alkaloids ranged from 73.81 to 101.82%, and the detection limits were achieved within the range of 1.6-2.1 ng/mL. The proposed method offered the advantages of good applicability, sensitivity, simplicity, and feasibility, which makes it suitable for the determination of trace amounts of aconitum alkaloids in human plasma samples.

  19. Determination of the Form Factors for the Decay B0 to D*- l+ nu_l and of the CKM Matrix Element |Vcb|

    SciTech Connect

    Aubert, B.

    2007-06-06

    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and of the parameters {rho}{sup 2}, R{sub 1}(1), and R{sub 2}(1), which fully characterize the form factors for the B{sup 0} {yields} D*-{ell}+?{sub {ell}} decay in the framework of HQET. The results, based on a selected sample of about 52,800 B{sup 0} {yields} D*-{ell}+?{sub {ell}} decays, recorded by the BABAR detector, are {rho}{sup 2} = 1.156 {+-} 0.094 {+-} 0.028, R{sub 1}(1) = 1.329{+-}0.131{+-}0.044, R{sub 2}(1) = 0.859{+-}0.077{+-}0.022, and F(1)|V{sub cb}| = (35.0{+-}0.4{+-}1.1)x10-3. The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BABAR measurement of the form factors, which employs a different ?t technique on a partial sample of the data, we improve the statistical precision of the result, {rho}{sup 2} = 1.179 {+-} 0.048 {+-} 0.028,R{sub 1}(1) = 1.417 {+-} 0.061 {+-} 0.044,R{sub 2}(1) = 0.836 {+-} 0.037 {+-} 0.022, and F(1)|V{sub cb}| = (34.7 {+-} 0.3 {+-} 1.1) x 10-3. Using lattice calculations for the axial form factor F(1), we extract |V{sub cb}| = (37.7{+-}0.3{+-}1.2{+-}{sup 1.2}{sub 1.4})x10{sup -3}, where the third error is due to the uncertainty in F(1). We also present a measurement of the exclusive branching fraction, B = (4.77 {+-} 0.04 {+-} 0.39)%.

  20. Determination of the Form Factors for the Decay B0 -> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    SciTech Connect

    Aubert, B.

    2006-09-26

    The authors present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and of the parameters {rho}{sup 2}, R{sub 1}, and R{sub 2}, which fully characterize the form factors of the B{sup 0} {yields} D*{sup -}{ell}{sup +}{nu}{sub {ell}} decay in the framework of HQET, based on a sample of about 52,800 B{sup 0} {yields} D*{sup -}{ell}{sup +}{nu}{sub {ell}} decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): {rho}{sup 2} = 1.156 {+-} 0.094 {+-} 0.028, R{sub 1} = 1.329 {+-} 0.131 {+-} 0.044, R{sub 2} = 0.859 {+-} 0.077 {+-} 0.022, F(1)|V{sub cb}| = (35.03 {+-} 0.39 {+-} 1.15) x 10{sup -3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, they improve the statistical accuracy of the measurement, obtaining: {rho}{sup 2} = 1.179 {+-} 0.048 {+-} 0.028, R{sub 1} = 1.417 {+-} 0.061 {+-} 0.044, R{sub 2}, = 0.836 {+-} 0.037 {+-} 0.022, and F(1)|V{sub cb}| = (34.68 {+-} 0.32 {+-} 1.15) x 10{sup -3}. Using the lattice calculations for the axial form factor F(1), they extract |V{sub cb}| = (37.74 {+-} 0.35 {+-} 1.25 {+-} {sub 1.44}{sup 1.23}) x 10{sup -3}, where the third error is due to the uncertainty in F(1).

  1. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  2. Role of P13 Kinase Signaling Pathways in Polarity Determination of Human Mammary Epithelial Cells Grown in Three-Dimensional Extracellular Matrix

    DTIC Science & Technology

    2005-09-01

    morphogenesis, wound healing , and immune- cell trafficking (Friedl and Brocker 2000; Friedl and Wolf 2003). Unlike physiological processes of cell...Boyden chambers (Figure 1D, n=8). Since altered cell motility is the driving force of invasiveness, wound - healing and cell migration assays c were...AD Award Number: DAMD17-03-1-0099 TITLE: Role of P13 Kinase Signaling Pathways in Polarity Determination of Human Mammary Epithelial Cells Grown in

  3. Determination of o,oEDDHA - a xenobiotic chelating agent used in Fe fertilizers - in plant tissues by liquid chromatography/electrospray mass spectrometry: overcoming matrix effects.

    PubMed

    Orera, Irene; Abadía, Anunciación; Abadía, Javier; Alvarez-Fernández, Ana

    2009-06-01

    The Fe(III)-chelate of ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,oEDDHA) is generally considered as the most efficient and widespread Fe fertilizer for fruit crops and intensive horticulture. The determination of the xenobiotic chelating agent o,oEDDHA inside the plant is a key issue in the study of this fertilizer. Both the low concentrations of o,oEDDHA expected and the complexity of plant matrices have been important drawbacks in the development of analytical methods for the determination of o,oEDDHA in plant tissues. The determination of o,oEDDHA in plant materials has been tackled in this study by liquid chromatography coupled to mass spectrometry using several plant species and tissues. Two types of internal standards have been tested: Iron stable isotope labeled compounds and a structural analogue compound, the Fe(III) chelate of ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenylacetic) acid (o,oEDDHMA). Iron stable isotope labeled internal standards did not appear to be suitable because of the occurrence of isobaric endogenous compounds and/or isotope exchange reactions between plant native Fe pools and the Fe stable isotope of the internal standard. However, the structural analogue Fe(III)-o,oEDDHMA is an adequate internal standard for the determination of both isomers of o,oEDDHA (racemic and meso) in plant tissues. The method was highly sensitive, with limits of detection and quantification in the range of 3-49 and 11-162 pmol g(-1) fresh weight, respectively, and analyte recoveries were in the range of 74-116%. Using this methodology, both o,oEDDHA isomers were found in all tissues of sugar beet and tomato plants treated with 90 microM Fe(III)-o,oEDDHA for 24 h, including leaves, roots and xylem sap. This methodology constitutes a useful tool for studies on o,oEDDHA plant uptake, transport and allocation.

  4. Determination of major phenolic compounds in Echinacea spp. raw materials and finished products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation matrix extension.

    PubMed

    Brown, Paula N; Chan, Michael; Paley, Lori; Betz, Joseph M

    2011-01-01

    A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method.

  5. Determination of Major Phenolic Compounds in Echinacea spp. Raw Materials and Finished Products by High-Performance Liquid Chromatography with Ultraviolet Detection: Single-Laboratory Validation Matrix Extension

    PubMed Central

    Brown, Paula N.; Chan, Michael; Paley, Lori; Betz, Joseph M.

    2013-01-01

    A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method. PMID:22165004

  6. Determination of the limit of detection by X-ray photoelectron spectroscopy for As, Zn and Pb oxides in SiO2 matrix as model systems for environmental investigations

    NASA Astrophysics Data System (ADS)

    Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Brundu, Fabio; Rossi, Antonella

    2016-07-01

    In this work the detection limits of arsenic, zinc and lead in silica matrix by X-ray photoelectron spectroscopy (XPS) analysis were evaluated. These elements were selected since they are particularly relevant in environmental investigations. Pure oxides and several binary mixtures with silica at different concentrations of As (III), Zn (II) and Pb (II) oxides obtained by ball milling were analysed by XPS. Inductive-coupled plasma optical emission spectroscopy (ICP-OES) was also exploited for determining their bulk concentration. The linear response of XPS intensity vs weighed (at%) was confirmed. Three different models were here applied to estimate the limit of detection (LOD) of arsenic, zinc and lead and the results were in good agreement. Under the experimental conditions here adopted, the calculated LODs (at%) of arsenic, zinc, and lead as pure oxides and in silica matrix were found to range between 0.1 and 0.3, between 0.04 and 0.1 and between 0.03 and 0.04 respectively.

  7. Simultaneous determination of plant growth regulators in environmental samples using chemometrics-assisted excitation-emission matrix fluorescence: experimental study on the prediction quality of second-order calibration method.

    PubMed

    Qing, Xiang-Dong; Wu, Hai-Long; Nie, Chong-Chong; Yan, Xiu-Fang; Li, Yuan-Na; Wang, Jian-Yao; Yu, Ru-Qin

    2013-01-15

    In this work, with the purpose of developing an effective and inexpensive method, excitation-emission matrix fluorescence data and second-order calibration method based on the self-weighted alternating trilinear decomposition (SWATLD) algorithm were combined for simultaneous determination of 2-naphthoxyacetic acid (NOA) and 1-naphthaleneacetic acid methyl ester (NAAME) in environmental samples, i.e. soil and sewage samples. In order to investigate the prediction quality of the proposed method, different strategies, such as taking spectroscopic measurements in the presence of different matrix interferents and at different fluorescence spectrophotometers, were introduced to build calibration models and comparisons among them were done subsequently. The root-mean-square error of prediction and t-test were used to compare different SWATLD-based calibration models. The limits of detection obtained for NOA and NAAME were 0.36-0.95 ng mL(-1) and 1.32-2.69 ng mL(-1), respectively, for different models. Such a chemometrics-based protocol may possess great potential to be extended as a promising alternative for more practical applications in environment monitoring and for the design of small intelligent and field-portable analytical instruments that rely on statistical discrimination, not complete instrumental separation, of the target analytes even in the presence of unknown and uncalibrated interferences.

  8. Modeling for Matrix Multicracking Evolution of Cross-ply Ceramic-Matrix Composites Using Energy Balance Approach

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    The matrix multicracking evolution of cross-ply ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The multicracking of cross-ply CMCs was classified into five modes, i.e., (1) mode 1: transverse multicracking; (2) mode 2: transverse multicracking and matrix multicracking with perfect fiber/matrix interface bonding; (3) mode 3: transverse multicracking and matrix multicracking with fiber/matrix interface debonding; (4) mode 4: matrix multicracking with perfect fiber/matrix interface bonding; and (5) mode 5: matrix multicracking with fiber/matrix interface debonding. The stress distributions of four cracking modes, i.e., mode 1, mode 2, mode 3 and mode 5, are analysed using shear-lag model. The matrix multicracking evolution of mode 1, mode 2, mode 3 and mode 5, has been determined using energy balance approach. The effects of ply thickness and fiber volume fraction on matrix multicracking evolution of cross-ply CMCs have been investigated.

  9. Study of matrix effects and spectral interferences in the determination of lead in sediments, sludges and soils by SR-ETAAS using slurry sampling.

    PubMed

    Savio, Marianela; Cerutti, Soledad; Martinez, Luis D; Smichowski, Patricia; Gil, Raúl A

    2010-07-15

    An interference-free, fast, and simple method is proposed for Pb determination in environmental solid samples combining slurry sampling and electrothermal atomic absorption spectrometry. Samples were ground to an adequate particle size and slurries were prepared by weighing from 0.05 g to 0.20 g of dry sediment, adding nitric acid, and a solution containing 0.1% Triton X-100. Ultrasonic agitation was employed for slurries homogenization. Analytical variables including acid pre-treatment conditions, particle size, slurry stability, temperature program of the graphite furnace, and type and concentration of the chemical modifier were studied. The undesirable effects of potential non-specific and spectral interferences on Pb signal were also taken into account. Continuum source and self-reversal methods for background correction were evaluated and compared. For calibration, synthetic acid solutions of Pb were employed. Calibration was linear within the range 1-30 microg L(-1) and 5-30 microg L(-1) when the 217.0 nm and 283.3 nm analytical lines were used. Correlation coefficients of 0.9992 and 0.9997 were obtained. Using optimized conditions, limits of detection (3sigma) of 0.025 microg g(-1) and 0.1 microg g(-1) were achieved for the 217.0 nm and 283.3 nm analytical lines, respectively. The method was successfully applied to the determination of lead in soil, contaminated soil, municipal sludge, and sediment samples. The accuracy was assessed by the analysis of two certified reference materials: municipal sludge (QC MUNICIPAL SLUDGE A) and lake sediment (TRAP-LRM from IJS).

  10. Determination of self-exchange rate of alkanethiolates in self-assembled monolayers on gold using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kang, Hyunook; Kim, Yongbin; Choi, Inseong; Chang, Rakwoo; Yeo, Woon-Seok

    2014-09-16

    In this paper, we describe a new method for determining the exchange rates of alkanethiolates in self-assembled monolayers (SAMs) on gold using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the compositions of the alkanethiolate in SAMs rapidly and directly. In particular, to investigate the self-exchange of alkanethiols, we prepared a deuterated alkanethiol that has the same molecular properties as the non-deuterated alkanethiol but a different molecular weight. SAMs consisting of deuterated alkanethiolates were immersed in a solution of the non-deuterated alkanethiol, and the influences of the immersion time, temperature, concentration, and solvent on the self-exchange rates were investigated. Furthermore, we assessed the exchange rates among alkanethiols with different carbon chain lengths and different size of ethylene glycol units. In addition, we performed molecular dynamics simulations using a model SAM system in order to understand the molecular mechanism of the exchange process.

  11. Use of a tantalum-178 generator and a multiwire gamma camera to study the effect of the Mueller maneuver on left ventricular performance: comparison to hemodynamics and single photon emission computed tomography perfusion patterns.

    PubMed

    Gioia, G; Lin, B; Katz, R; DiMarino, A J; Ogilby, J D; Cassel, D; DePace, N L; Heo, J; Iskandrian, A S

    1995-11-01

    During the Mueller maneuver, there is a decrease in intrathoracic pressure and an increase in transmural left ventricular pressure. The changes in loading conditions cause transient left ventricular dysfunction. This study examined the effects of the Mueller maneuver on left ventricular performance using tantalum (Ta)-178 (half-life 9.3 min) and a multiwire gamma camera. First-pass radionuclide angiograms were obtained at baseline and during Mueller maneuver in 41 patients aged 58 +/- 10 years. In 34 patients, stress single photon emission computed tomography (SPECT) myocardial perfusion imaging with thallium-201 or sestamibi was also performed. Hemodynamic measurements during the Mueller maneuver (n = 10) showed a decrease in systemic pressure (139 +/- 25 mm Hg vs 123 +/- 24 mm Hg, p < 0.001) and pulmonary artery pressure (24 +/- 6 mm Hg vs 14 +/- 12 mm Hg, p = 0.01) and an increase in heart rate (67 +/- 10 bpm vs 75 +/- 14 beats/min, p = 0.001). Among the 34 patients who had perfusion imaging, the left ventricular ejection fraction remained unchanged or increased in 17 patients (group 1) (48% +/- 19% vs 49% +/- 21%, p not significant) and decreased (> or = 5%) in 17 patients (group 2) (55% +/- 13% vs 40% +/- 16%, p = 0.001). The stress SPECT images showed no or only fixed defects in 11 (65%) patients in group 1 and 3 (18%) patients in group 2 (p = 0.02), and reversible defects in 6 (35%) patients in group 1 and 14 (82%) patients in group 2 (p = 0.04).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Dihydrobenzoic acid modified nanoparticle as a MALDI-TOF MS matrix for soft ionization and structure determination of small molecules with diverse structures.

    PubMed

    Tseng, Mei-Chun; Obena, Rofeamor; Lu, Ying-Wei; Lin, Po-Chiao; Lin, Ping-Yu; Yen, Yung-Sheng; Lin, Jiann-Tsuen; Huang, Li-De; Lu, Kuang-Lieh; Lai, Long-Li; Lin, Chun-Cheng; Chen, Yu-Ju

    2010-11-01

    Efficient structural characterization is important for quality control when developing novel materials. In this study, we demonstrated the soft ionization capability of the hybrid of immobilized silica and 2,5-dihydrobenzoic acid (DHB) on iron oxide magnetic nanoparticles in MALDI-TOF MS with a clean background. The ratio between SiO(2) and DHB was examined and was found to affect the surface immobilization of DHB on the nanoparticle, critically controlling the ionization efficiency and interference background. Compared with commercial DHB, the functionalized nanoparticle-assisted MALDI-TOF MS provided superior soft ionization with production of strong molecular ions within 5 ppm mass accuracy on a variety of new types of synthetic materials used for solar cells, light emitting devices, dendrimers, and glycolipids, including analytes with either thermally labile structures or poor protonation tendencies. In addition, the enhancements of the molecular ion signal also provided high-quality product-ion spectra allowing structural characterization and unambiguous small molecule identification. Using this technique, the structural differences among the isomers were distinguished through their characteristic fragment ions and comprehensive fragmentation patterns. With the advantages of long-term stability and simple sample preparation by deposition on a regular sample plate, the use of DHB-functionalized nanoparticles combined with high-resolution MALDI-TOF MS provides a generic platform for rapid and unambiguous structure determination of small molecules.

  13. In matrix derivatization of trichloroethylene metabolites in human plasma with methyl chloroformate and their determination by solid-phase microextraction-gas chromatography-electron capture detector.

    PubMed

    Mudiam, Mohana Krishna Reddy; Jain, Rajeev; Varshney, Meenu; Ch, Ratnasekhar; Chauhan, Abhishek; Goyal, Sudhir Kumar; Khan, Haider A; Murthy, R C

    2013-04-15

    Trichloroethylene (TCE) is a common industrial chemical that has been widely used as metal degreaser and for many industrial purposes. In humans, TCE is metabolized into dichloroacetic acid (DCA), trichloroacetic acid (TCA) and trichloroethanol (TCOH). A simple and rapid method has been developed for the quantitative determination of TCE metabolites. The procedure involves the in situ derivatization of TCE metabolites with methyl chloroformate (MCF) directly in diluted plasma samples followed by extraction and analysis with solid-phase microextraction (SPME) coupled to gas chromatography-electron capture detector (GC-ECD). Factors which can influence the efficiency of derivatization such as amount of MCF and pyridine (PYR), ratio of water/methanol were optimized. The factors which can affect the extraction efficiencies of SPME were screened using 2(7-4) Placket-Burman Design (PBD). A central composite design (CCD) was then applied to further optimize the most significant factors for optimum SPME extraction. The optimum factors for the SPME extraction were found to be 562.5mg of NaCl, pH at 1 and an extraction time of 22 min. Recoveries and detection limits of all three analytes in plasma were found to be in the range of 92.69-97.55% and 0.036-0.068 μg mL(-1) of plasma, respectively. The correlation coefficients were found to be in the range of 0.990-0.995. The intra- and inter-day precisions for TCE metabolites were found to be in the range of 2.37-4.81% and 5.13-7.61%, respectively. The major advantage of this method is that MCF derivatization allows conversion of TCE metabolites into their methyl esters in very short time (≤30 s) at room temperature directly in the plasma samples, thus makes it a solventless analysis. The method developed was successfully applied to the plasma samples of humans exposed to TCE.

  14. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

    DOE PAGES

    Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...

    2015-06-30

    A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elements that canmore » act as tracers to detect a CO2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr2+, Ca2+, K+, and Li+ in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na2CO3, and Na2SO4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K+ (30±1 ppb) and Li+ (60±2 ppb) were in ppb range, while higher LODs were observed for Ca2+ (0.94±0.14 ppm) and Sr2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na2SO4, whereas the intensities slightly decreased in the presence of Na2CO3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO2 leak.« less

  15. Atomic-absorption determination of mercury in geological materials by flame and carbon-rod atomisation after solvent extraction and using co-extracted silver as a matrix modifier

    USGS Publications Warehouse

    Sanzolone, R.F.; Chao, T.T.

    1983-01-01

    Based on modifications and expansion of the original Tindall's solvent extraction flame atomic-absorption procedure, an atomic-absorption spectrophotometric method has been developed for the determination of mercury in geological materials. The sample is digested with nitric and hydrochloric acids in a boiling water-bath. The solution is made ammoniacal and potassium iodide and silver nitrate are added. The mercury is extracted into isobutyl methyl ketone as the tetraiodomercurate(ll). Added silver is co-extracted with mercury and serves as a matrix modifier in the carbon-rod atomiser. The mercury in the isobutyl methyl ketone extract may be determined by either the flame- or the carbon-rod atomisation method, depending on the concentration level. The limits of determination are 0.05-10 p.p.m. of mercury for the carbon-rod atomisation and 1 -200 p.p.m. of mercury for the flame atomisation. Mercury values for reference samples obtained by replicate analyses are in good agreement with those reported by other workers, with relative standard deviations ranging from 2.3 to 0.9%. Recoveries of mercury spiked at two levels were 93-106%. Major and trace elements commonly found in geological materials do not interfere.

  16. Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Peng, Li-Qing; Li, Qin; Chang, Yan-Xu; An, Mingrui; Yang, Rui; Tan, Zhijing; Hao, Jie; Cao, Jun; Xu, Jing-Jing; Hu, Shuai-Shuai

    2016-07-22

    A simple, efficient and low-cost method based on matrix solid-phase dispersion (MSPD) microextraction and ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) was developed for the determination of seven main natural phenols (gallic acid, hydroxytyrosol, methyl gallate, luteolin 7-O-β-d-glucoside, rutin, ellagic acid and oleuropein) and other eleven compounds in olive fruits. The experimental conditions for the MSPD extraction, including the type of adsorbent, the amount of dispersing sorbent, the grinding time, and the type of elution solvent were investigated and optimized. The optimized parameters were determined to be that middle-molecular-weight chitosan was used as adsorbent, the amount of middle-molecular-weight chitosan was selected to be 25mg, the grinding time was chosen to be 60s, and methanol: water (6:4, v:v) was used as elution solvent. Compared with reported methods, the proposed method was more simple, rapid, and efficient. Moreover, this method required less extraction time and less amount of sample and solvent. The method showed good linearity (r(2)≥0.9909) for the seven analytes, with the limits of detection in the range of 69.6-358.4ng/g. And recoveries were above 80.06%. The methodology was successfully applied to the extraction and determination of seven phenolic compounds in olive fruits(Canarii fructus).

  17. Matrix effect of sodium compounds on the determination of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy

    SciTech Connect

    Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; Karamalidis, Athanasios K.; Carson, Cantwell

    2015-06-30

    A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elements that can act as tracers to detect a CO2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr2+, Ca2+, K+, and Li+ in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na2CO3, and Na2SO4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K+ (30±1 ppb) and Li+ (60±2 ppb) were in ppb range, while higher LODs were observed for Ca2+ (0.94±0.14 ppm) and Sr2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na2SO4, whereas the intensities slightly decreased in the presence of Na2CO3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it

  18. Phylogenetic affinities of Plagiocirrus Van Cleave and Mueller, 1932 with the description of a new species from the Pascagoula River, Mississippi.

    PubMed

    Curran, Stephen S; Overstreet, Robin M; Tkach, Vasyl V

    2007-12-01

    Plagiocirrus loboides n. sp. (Digenea: Opecoelidae) is described from Fundulus nottii, F. dispar blairae, F. chrysotus, and Notemigonus crysoleucas from the Pascagoula River in Mississippi. Plagiocirrus loboides differs from P. primus Van Cleave and Mueller, 1932, by having a longer postcecal space (14-25% of body length vs. about 7%); a more anterior vitellarium (extending at least to the middle of the ventral sucker vs. to its posterior margin); and larger eggs (51-71 microm long by 23-34 microm wide vs. 40-55 microm long by 30-35 microm wide). Plagiocirrus loboides differs from P. testeus Fritts, 1959, by having a long postcecal space (vs. < 5% of body length); irregular, oblique, contiguous testes (vs. strongly lobed, well separated, tandem testes); and a more extensive vitellarium. Plagiocirrus loboides differs from both congeners by having an ovary comprised of 3 or 4 distinct lobes rather than having an entire ovary. Plagiocirrus wuyienensis Wang, 1981, from Hemimyzon zebroidus in Fujian Province, China, is herein considered a species inquirenda because it has a Y-shaped excretory bladder. Molecular phylogenetic analysis of 28S rDNA gene fragments from P. loboides and 17 digenean species demonstrates that Plagiocirrus belongs in Opecoelidae.

  19. Evaluation of Mueller-Hinton-agar as a simple medium for the germ tube production of Candida albicans and Candida dubliniensis.

    PubMed

    Rimek, Dagmar; Fehse, Brigitte; Göpel, Petra

    2008-05-01

    Candida albicans is the most frequently isolated yeast species from clinical specimens. A classical rapid presumptive differentiation from non-albicans species is based on its ability to produce germ tubes after incubation in human serum. The only non-albicans Candida species producing germ tubes is Candida dubliniensis. In this study, we evaluated Mueller-Hinton-agar (MH-agar) as a medium for germ tube formation of C. albicans and C. dubliniensis. A total of 859 yeast isolates from stool samples, including 632 strains of C. albicans, 10 C. dubliniensis and 217 other yeast strains from 20 different species, were grown on Sabouraud glucose (2%) agar at 37 degrees C for 24-72 h. Species were identified by standard methods. For the germ tube test (GTT), an inoculum from a single colony was streaked onto a MH-agar plate and covered by a sterile coverslip. After incubation at 37 degrees C for 2 h, the MH plates were examined using a light microscope at x200. The GTT was positive in 578 of 632 C. albicans strains (sensitivity 91.5%), in six of 10 C. dubliniensis strains (sensitivity 60.0%), and in none of the other yeast strains. MH-agar is a suitable medium for the GTT and the presumptive identification of C. albicans. It is safer to use than human serum and is widely available in microbiology laboratories.

  20. Risk Management using Dependency Stucture Matrix

    NASA Astrophysics Data System (ADS)

    Petković, Ivan

    2011-09-01

    An efficient method based on dependency structure matrix (DSM) analysis is given for ranking risks in a complex system or process whose entities are mutually dependent. This rank is determined according to the element's values of the unique positive eigenvector which corresponds to the matrix spectral radius modeling the considered engineering system. For demonstration, the risk problem of NASA's robotic spacecraft is analyzed.

  1. Adsorption studies of Cd(II) onto Al 2O 3/Nb 2O 5 mixed oxide dispersed on silica matrix and its on-line preconcentration and determination by flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Mendonça Costa, Lucimara; Ribeiro, Emerson Schwingel; Segatelli, Mariana Gava; do Nascimento, Danielle Raphael; de Oliveira, Fernanda Midori; Tarley, César Ricardo Teixeira

    2011-05-01

    The present study describes the adsorption characteristic of Cd(II) onto Nb 2O 5/Al 2O 3 mixed oxide dispersed on silica matrix. The characterization of the adsorbent has been carried out by infrared spectroscopy (IR), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), energy dispersive X-ray fluorescence analysis (EDXRF) and specific surface area ( SBET). From batch experiments, adsorption kinetic of Cd(II) was described by a pseudo-second-order kinetic model. The Langmuir linear isotherm fitted to the experimental adsorption isotherm very well, and the maximum adsorption capacity was found to be 17.88 mg g -1. Using the effective material, a method for Cd(II) preconcentration at trace level was developed. The method was based on on-line adsorption of Cd(II) onto SiO 2/Al 2O 3/Nb 2O 5 at pH 8.64, in which the quantitative desorption occurs with 1.0 mol L -1 hydrochloric acid towards FAAS detector. The experimental parameters related to the system were studied by means of multivariate analysis, using 2 4 full factorial design and Doehlert matrix. The effect of SO 42-, Cu 2+, Zn 2+ and Ni 2+ foreign ions showed no interference at 1:100 analyte:interferent proportion. Under the most favorable experimental conditions, the preconcentration system provided a preconcentration factor of 18.4 times, consumption index of 1.08 mL, sample throughput of 14 h -1, concentration efficiency of 4.35 min -1, linear range from 5.0 up to 35.0 μg L -1 and limits of detection and quantification of 0.19 and 0.65 μg L -1 respectively. The feasibility of the proposed method for Cd(II) determination was assessed by analysis of water samples, cigarette sample and certified reference materials TORT-2 (Lobster hepatopancreas) and DOLT-4 (Dogfish liver).

  2. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  3. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection.

    PubMed

    Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi

    2014-10-15

    The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE.

  4. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  5. Matrix solid-phase dispersion with chitosan-zinc oxide nanoparticles combined with flotation-assisted dispersive liquid-liquid microextraction for the determination of 13 n-alkanes in soil samples.

    PubMed

    Khajeh, Mostafa; Yan, Hongyuan; Arefnejad, Esmat; Bohlooli, Mousa

    2014-11-01

    In this study, chitosan-zinc oxide nanoparticles were used as a sorbent of miniaturized matrix solid-phase dispersion combined with flotation-assisted dispersive liquid-liquid microextraction for the simultaneous determination of 13 n-alkanes such as C8 H18 and C20 H42 in soil samples. The solid samples were directly blended with the chitosan nanoparticles in the solid-phase dispersion method. The eluent of solid-phase dispersion was applied as the dispersive solvent for the following flotation-assisted dispersive liquid-liquid microextraction for further purification and enrichment of the target compounds prior to gas chromatography with flame ionization detection. Under the optimum conditions, good linearity with correlation coefficients in the range 0.9991 < r(2) < 0.9995 and low detection limits between 0.08 to 2.5 ng/g were achieved. The presented procedure combined the advantages of chitosan-zinc oxide nanoparticles, solid-phase dispersion and flotation-assisted dispersive liquid-liquid microextraction, and could be applied for the determination of n-alkanes in complicated soil samples with acceptable recoveries.

  6. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  7. The intraclass covariance matrix.

    PubMed

    Carey, Gregory

    2005-09-01

    Introduced by C.R. Rao in 1945, the intraclass covariance matrix has seen little use in behavioral genetic research, despite the fact that it was developed to deal with family data. Here, I reintroduce this matrix, and outline its estimation and basic properties for data sets on pairs of relatives. The intraclass covariance matrix is appropriate whenever the research design or mathematical model treats the ordering of the members of a pair as random. Because the matrix has only one estimate of a population variance and covariance, both the observed matrix and the residual matrix from a fitted model are easy to inspect visually; there is no need to mentally average homologous statistics. Fitting a model to the intraclass matrix also gives the same log likelihood, likelihood-ratio (LR) chi2, and parameter estimates as fitting that model to the raw data. A major advantage of the intraclass matrix is that only two factors influence the LR chi2--the sampling error in estimating population parameters and the discrepancy between the model and the observed statistics. The more frequently used interclass covariance matrix adds a third factor to the chi2--sampling error of homologous statistics. Because of this, the degrees of freedom for fitting models to an intraclass matrix differ from fitting that model to an interclass matrix. Future research is needed to establish differences in power-if any--between the interclass and the intraclass matrix.

  8. Fission Matrix Capability for MCNP Monte Carlo

    NASA Astrophysics Data System (ADS)

    Brown, Forrest; Carney, Sean; Kiedrowski, Brian; Martin, William

    2014-06-01

    We describe recent experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix can be used to provide estimates of the fundamental mode fission distribution, the dominance ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission neutron source distribution. It can also be used to accelerate the convergence of the power method iterations and to provide basis functions for higher-order perturbation theory. The higher-mode fission sources can be used in MCNP to determine higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and tallies. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations.

  9. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  10. Modified Hodge test using Mueller-Hinton agar supplemented with cloxacillin improves screening for carbapenemase-producing clinical isolates of Enterobacteriaceae.

    PubMed

    Takayama, Yoko; Adachi, Yuzuru; Nihonyanagi, Shin; Okamoto, Ryoichi

    2015-07-01

    Increasing numbers of clinical isolates of Enterobacteriaceae that produce carbapenemase are now being detected, with the most common carbapenemase found among Enterobacteriaceae in Japan being IMP-1-type metallo-β-lactamase. Clinical isolates of Enterobacteriaceae harbouring carbapenemases may be resistant to carbapenem antimicrobial agents, despite apparent in vitro susceptibility when tested according to Clinical and Laboratory Standards Institute criteria. We evaluated the prevalence of carbapenemase producers among isolates of Enterobacteriaceae at our hospital and assessed the performance of the modified Hodge test (MHT) for correctly identifying the phenotype. We studied 47 clinical isolates obtained between 2006 and 2010 for which the MIC of imipenem was 2 or 4 μg imipenem ml- 1. Antibacterial susceptibility testing was done for cephalosporins and carbapenems, the MHT was performed with meropenem and detection of the genes encoding IMP-1, VIM-2, KPC-2 and NDM-1-type metallo-β-lactamases was performed by PCR. Twelve isolates showed a positive result in the MHT with meropenem and were classified as carbapenemase producers. Of these 12 isolates, seven carried the gene for IMP-1 type, but not for VIM-2, KPC-2 or NDM-1 types. None of the carbapenemase genes tested were detected in the other five isolates. All five isolates were Enterobacter cloacae showing high resistance to ceftazidime and aztreonam. False-positive results were inhibited when Mueller-Hinton agar supplemented with 200 mg cloxacillin ml- 1 was used for the MHT. Five of 12 MHT-positive isolates were shown to have no carbapenemase genes and these isolates were high AmpC producers. Adding cloxacillin when performing the MHT prevented such false-positive results. The MHT with cloxacillin can overcome most problems related to detection of carbapenemases.

  11. Scattering matrix theory for stochastic scalar fields.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2007-05-01

    We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.

  12. Simultaneous determination of umbelliferone and scopoletin in Tibetan medicine Saussurea laniceps and traditional Chinese medicine Radix angelicae pubescentis using excitation-emission matrix fluorescence coupled with second-order calibration method

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wu, Hai-Long; Yin, Xiao-Li; Hu, Yong; Gu, Hui-Wen; Yu, Ru-Qin

    2017-01-01

    A chemometrics-assisted excitation-emission matrix (EEM) fluorescence method is presented for simultaneous determination of umbelliferone and scopoletin in Tibetan medicine Saussurea laniceps (SL) and traditional Chinese medicine Radix angelicae pubescentis (RAP). Using the strategy of combining EEM fluorescence data with second-order calibration method based on the alternating trilinear decomposition (ATLD) algorithm, the simultaneous quantification of umbelliferone and scopoletin in the two different complex systems was achieved successfully, even in the presence of potential interferents. The pretreatment is simple due to the "second-order advantage" and the use of "mathematical separation" instead of awkward "physical or chemical separation". Satisfactory results have been achieved with the limits of detection (LODs) of umbelliferone and scopoletin being 0.06 ng mL- 1 and 0.16 ng mL- 1, respectively. The average spike recoveries of umbelliferone and scopoletin are 98.8 ± 4.3% and 102.5 ± 3.3%, respectively. Besides, HPLC-DAD method was used to further validate the presented strategy, and t-test indicates that prediction results of the two methods have no significant differences. Satisfactory experimental results imply that our method is fast, low-cost and sensitive when compared with HPLC-DAD method.

  13. Enhanced computational efficiency in the direct determination of the two-electron reduced density matrix from the anti-Hermitian contracted Schrödinger equation with application to ground and excited states of conjugated π-systems

    SciTech Connect

    Sand, Andrew M.; Mazziotti, David A.

    2015-10-07

    Determination of the two-electron reduced density matrix (2-RDM) from the solution of the anti-Hermitian contracted Schrödinger equation (ACSE) yields accurate energies and properties for both ground and excited states. Here, we develop a more efficient method to solving the ACSE that uses second-order information to select a more optimal step towards the solution. Calculations on the ground and excited states of water, hydrogen fluoride, and conjugated π systems show that the improved ACSE algorithm is 10-20 times faster than the previous ACSE algorithm. The ACSE can treat both single- and multi-reference electron correlation with the initial 2-RDM from a complete-active-space self-consistent-field (CASSCF) calculation. Using the improved algorithm, we explore the relationship between truncation of the active space in the CASSCF calculation and the accuracy of the energy and 2-RDM from the ACSE calculation. The accuracy of the ACSE, we find, is less sensitive to the size of the active space than the accuracy of other wavefunction methods, which is useful when large active space calculations are computationally infeasible.

  14. New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: fractionation of gliadins from maize or rice prolamins by acidic treatment.

    PubMed

    Hernando, Alberto; Valdes, Israel; Méndez, Enrique

    2003-08-01

    A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods.

  15. Simplified miniaturized ultrasound-assisted matrix solid phase dispersion extraction and high performance liquid chromatographic determination of seven flavonoids in citrus fruit juice and human fluid samples: hesperetin and naringenin as biomarkers.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Barfi, Azadeh; Saeidi, Iman

    2013-10-11

    In the present study, for the first time, a simplified miniaturized ultrasound-assisted matrix solid-phase dispersion (SM-USA-MSPD) method with a different application for liquid matrices was developed to extract different flavonoids (hesperidin, diosmin, eriocitrin, narirutin, naringin, hesperetin and naringenin) from citrus fruit juice and human fluid samples prior to their determination using high performance liquid chromatography (HPLC). Different effective parameters were studied and under the optimum conditions (including sample volume: 150μL; solid phase: silica-based C18, 200mg; eluting solvent: methanol, 500μL; pH: 4; and sonication: 6min; at room temperature), limits of detection and limits of quantification were ranged from 23.3 to 46.8ngmL(-1) and 74.8 to 141.5ngmL(-1), respectively. Once optimized, analytical performance of the method was studied in terms of linearity (0.074-198.5μgmL(-1), r(2)>0.991), accuracy (recovery=84.6-101.5%), and precision (repeatability: intra-day precision<5.9%, and inter-day precision<7.2%). At the end, SM-USA-MSPD method was successfully applied to estimate the levels of hesperetin and naringenin in plasma and urinary excretion -after ingestion of orange, grapefruit and lime juices- and the obtained results confirmed that these compounds could be used as good biomarkers of citrus fruit juice intake.

  16. Deconvolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry isotope patterns to determine ratios of A-type to B-type interflavan bonds in cranberry proanthocyanidins.

    PubMed

    Feliciano, Rodrigo P; Krueger, Christian G; Shanmuganayagam, Dhanansayan; Vestling, Martha M; Reed, Jess D

    2012-12-01

    A method to deconvolute overlapping isotope patterns in positive mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was developed to determine ratios of A- to B-type interflavan bonds in proanthocyanidins that were isolated from cranberry (Vaccinium macrocarpon, Ait.) press cake (c-PAC). Precision and accuracy was validated for binary mixtures of procyanidins A2 and B2. Deconvolution of c-PAC spectra indicated that oligomers with one or more A-type interflavan bonds occur in a higher proportion than oligomers with all B-type interflavan bonds. c-PAC with at least one A-type bond accounted for more than 91% of the oligomers between trimers and undecamers. The c-PAC isotope patterns are highly repeatable, suggesting that the method can be applied to authentication, standardization and efficacy of cranberry products in relationship to urinary tract health. This is the first time MALDI-TOF MS has been used for estimating ratios of A- to B-type bonds in PAC.

  17. Enhanced computational efficiency in the direct determination of the two-electron reduced density matrix from the anti-Hermitian contracted Schrödinger equation with application to ground and excited states of conjugated π-systems.

    PubMed

    Sand, Andrew M; Mazziotti, David A

    2015-10-07

    Determination of the two-electron reduced density matrix (2-RDM) from the solution of the anti-Hermitian contracted Schrödinger equation (ACSE) yields accurate energies and properties for both ground and excited states. Here, we develop a more efficient method to solving the ACSE that uses second-order information to select a more optimal step towards the solution. Calculations on the ground and excited states of water, hydrogen fluoride, and conjugated π systems show that the improved ACSE algorithm is 10-20 times faster than the previous ACSE algorithm. The ACSE can treat both single- and multi-reference electron correlation with the initial 2-RDM from a complete-active-space self-consistent-field (CASSCF) calculation. Using the improved algorithm, we explore the relationship between truncation of the active space in the CASSCF calculation and the accuracy of the energy and 2-RDM from the ACSE calculation. The accuracy of the ACSE, we find, is less sensitive to the size of the active space than the accuracy of other wavefunction methods, which is useful when large active space calculations are computationally infeasible.

  18. Determination of molecular mass distribution of silicone oils by supercritical fluid chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and their off-line combination.

    PubMed

    Chmelík, J; Planeta, J; Rehulka, P; Chmelík, J

    2001-07-01

    Silicone oil samples were characterized by supercritical fluid chromatography (SFC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI--TOF MS), and their off-line combination. SFC was used to separate samples of silicone oils on micropacked capillary columns. The fractions for the identification studies were obtained from SFC runs at defined time intervals, when the restrictor was pulled out from the chromatographic flame ionization detector (FID) and inserted into a glass vial with acetone. MALDI--TOF MS was used for the identification of individual oligomers in the fractions separated. The molecular mass distributions determined based on SFC and MALDI--TOF MS measurements were compared. From this comparison, it follows that the results are in good agreement. However, certain differences were observed: MALDI--TOF MS was capable of detecting somewhat larger oligomers than the SFC-FID, but the lower molecular mass oligomers were not present in the MALDI spectra. Differences in the region of lower molecular masses can be explained by evaporation of the more volatile low molecular mass oligomers resulting from heating of the sample during the MALDI--TOF MS measurements as a result of the absorption of the laser shot energy. The fact that no high mass discrimination effects of the MALDI--TOF MS measurements, compared with SFC, were observed is very promising for further applications of MALDI--TOF MS in characterizing synthetic polymers of moderate polydispersity.

  19. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  20. Evaluation of Bi as internal standard to minimize matrix effects on the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru permanent modifier with co-injection of Pd/Mg(NO 3) 2

    NASA Astrophysics Data System (ADS)

    de Oliveira, Silvana Ruella; Neto, José Anchieta Gomes

    2007-09-01

    Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO 3) 2. The correlation coefficient of the graph plotted from the normalized absorbance signals of Bi versus Pb was r = 0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve obtained from reference solutions prepared in 0.2% (v/v) HNO 3 and analytical curves obtained from Pb additions in red and white wine vinegar samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analytical curves without. Analytical curves in the 2.5-15 μg L - 1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analyte concentration, and typical linear correlations of r = 0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 μg L - 1 . Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 μg L - 1 and the relative standard deviation was ≤ 3.8% and ≤ 8.3% ( n = 12) for a sample containing 10 μg L - 1 Pb with and without internal standard, respectively.

  1. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  2. Condition and Error Estimates in Numerical Matrix Computations

    SciTech Connect

    Konstantinov, M. M.; Petkov, P. H.

    2008-10-30

    This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.

  3. Hacking the Matrix.

    PubMed

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix.

  4. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  5. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  6. Grassmann matrix quantum mechanics

    SciTech Connect

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  7. Fuzzy risk matrix.

    PubMed

    Markowski, Adam S; Mannan, M Sam

    2008-11-15

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated.

  8. Matrix-compatible sorbent coatings based on structurally-tuned polymeric ionic liquids for the determination of acrylamide in brewed coffee and coffee powder using solid-phase microextraction.

    PubMed

    Cagliero, Cecilia; Nan, He; Bicchi, Carlo; Anderson, Jared L

    2016-08-12

    Nine crosslinked polymeric ionic liquid (PIL)-based SPME sorbent coatings were designed and screened in this study for the trace level determination of acrylamide in brewed coffee and coffee powder using gas chromatography-mass spectrometry (GC-MS). The structure of the ionic liquid (IL) monomer was tailored by introducing different functional groups to the cation and the nature of the IL crosslinker was designed by altering both the structure of the cation as well as counteranions. The extraction efficiency of the new PIL coatings towards acrylamide was investigated and compared to a previously reported PIL sorbent coating. All PIL fibers exhibited excellent analytical precision and linearity. The PIL fiber coating consisting of 50% 1,12-di(3-vinylbenzylbenzimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide as IL crosslinker in 1-vinyl-3-(10-hydroxydecyl)imidazolium bis[(trifluoromethyl)sulfonyl]imide IL monomer resulted in a limit of quantitation of 0.5μgL(-1) with in-solution SPME sampling. The hydroxyl moiety appended to the IL cation was observed to significantly increase the sensitivity of the PIL coating toward acrylamide. The quantitation of acrylamide in brewed coffee and coffee powder was performed using the different PIL-based fibers by the method of standard addition after a quenching reaction using ninhydrin to inhibit the formation of interfering acrylamide in the GC inlet, mainly by asparagine thermal degradation. Excellent repeatability with relative standard deviations below 10% were obtained on the real coffee samples and the structure of the coatings appeared intact by scanning electron microscopy after coffee sampling proving the matrix-compatibility of the PIL sorbent coatings.

  9. Determining the polymer threshold amount for achieving robust drug release from HPMC and HPC matrix tablets containing a high-dose BCS class I model drug: in vitro and in vivo studies.

    PubMed

    Klančar, Uroš; Baumgartner, Saša; Legen, Igor; Smrdel, Polona; Kampuš, Nataša Jeraj; Krajcar, Dejan; Markun, Boštjan; Kočevar, Klemen

    2015-04-01

    It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the "threshold values." The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters C max and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.

  10. The sites of Gd3 + in the luminescent matrix La1 - xGdxMgAl11O19: Single crystal structure determination and site-selective excitation of Gd3 +

    NASA Astrophysics Data System (ADS)

    Salem, Y.; Linares, C.; Jacquier, B.; Saine, M. C.; Gasperin, M.; Lejus, A. M.; Vivien, D.

    1990-11-01

    Single crystals of La1-xGdxMgAl11O19 for x=0.02 to 1 have been grown from the melt by the Verneuil (flame fusion) method. The localization of Gd3+ ions in the matrix has been obtained using x-ray diffraction and Gd3+ fluorescence techniques giving the average and the local structure of the material. The resolution of the crystal structure, of La0.4Gd0.6MgAl11O19 homolog, indicates that this compound is of the distorted magnetoplumbite (MP) type (hexagonal P63/ mmc). Lanthanide ions lie in the mirror plane in two kinds of sites: the (2d) regular MP one (D3h symmetry) occupied by La3+ ions, the distorted (12j) one (Cs symmetry) partially filled up and containing only Gd3+. Some oxygen ions of the Ln coordination polyhedron may be missing leading to a lowering of the true symmetry of the sites. Site selective excitation of the fluorescence of Gd3+ and emission spectra have been carried out on crystals with different x values. It indicates that Gd3+ ions are distributed mainly among two sites, A and B. Crystal field analysis of the splitting of the 6P terms of Gd3+ determined on the excitation spectra show that site A is close to the ideal D3h symmetry while site B is a strongly distorted site. This leads to the identification A=(2d), B=(12j). The occupancy is larger for site B than for site A in agreement with the refinement of the structure. Selective laser excitation into the A site induces emission of the B sites as a result of energy transfer which is demonstrated by the fluorescence decay. No evidence of energy migration is found for gadolinium content up to 100%. Fluorescence spectroscopy and crystal structure determination appear complementary to obtain a detailed description of the sites of Gd3+ in La1-xGdxMgAl11O19.

  11. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  12. Semiclassical matrix elements from periodic orbits

    NASA Technical Reports Server (NTRS)

    Eckhardt, B.; Fishman, S.; Mueller, K.; Wintgen, D.

    1992-01-01

    An extension of Gutzwiller's (1967, 1969, 1970, 1971, 1990) semiclassical theory for chaotic systems that allows a determination of matrix elements in terms of classical periodic orbits. Associated zeta functions are derived. The semiclassical predictions are found to be in good agreement with Fourier transforms of quantum spectra of hydrogen in a magnetic field. Expressions for off-diagonal matrix elements are derived that are extensions of the Bohr correspondence relations for integrable systems.

  13. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  14. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  15. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  16. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  17. An ESS maximum principle for matrix games.

    PubMed

    Vincent, T L; Cressman, R

    2000-11-01

    Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.

  18. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  19. Functional Polymer Matrix Fibers

    DTIC Science & Technology

    2007-11-02

    the carbon nanofibers led to the deterioration of the polymeric cellulose structure. Extensive research on the surface treatment of carbon nanofibers...1 November 2003 - 14-Mar-05 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA8655-03-1-3042 Functional Polymer Matrix Fibres 5b. GRANT NUMBER 5c. PROGRAM...MARYLABONE RD LONDON NWl 5TH PERFORMANCE REPORT Project title: Functional polymer matrix fibers Period of performance: 1 November 2003 - 31 October 2004

  20. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  1. Phenomenology of the CKM (Cabibbo-Kobayashi-Maskawa) matrix

    SciTech Connect

    Nir, Y.

    1989-07-01

    The way in which an exact determination of the CKM matrix elements tests the Standard Model is demonstrated by a two generation example. The determination of matrix elements from meson semi-leptonic decays is explained, with an emphasis on the respective reliability of quark level and meson level calculations. The assumptions involved in the use of loop processes are described. Finally, the state of the art of our knowledge of the CKM matrix is presented. 19 refs., 2 figs.

  2. Integrable matrix theory: Level statistics.

    PubMed

    Scaramazza, Jasen A; Shastry, B Sriram; Yuzbashyan, Emil A

    2016-09-01

    We study level statistics in ensembles of integrable N×N matrices linear in a real parameter x. The matrix H(x) is considered integrable if it has a prescribed number n>1 of linearly independent commuting partners H^{i}(x) (integrals of motion) [H(x),H^{i}(x)]=0, [H^{i}(x),H^{j}(x)]=0, for all x. In a recent work [Phys. Rev. E 93, 052114 (2016)2470-004510.1103/PhysRevE.93.052114], we developed a basis-independent construction of H(x) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N→∞ limit provided n scales at least as logN; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x=x_{0} or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O(N^{-0.5}) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.

  3. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    SciTech Connect

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; Schwartz, Oded

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computation to improve application-specific algorithms for multiplying sparse matrices.

  4. Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication

    DOE PAGES

    Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...

    2015-01-01

    The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less

  5. Thermal and mechanical behavior of metal matrix and ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)

    1990-01-01

    The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.

  6. Generalized matrix inversion is not harder than matrix multiplication

    NASA Astrophysics Data System (ADS)

    Petkovic, Marko D.; Stanimirovic, Predrag S.

    2009-08-01

    Starting from the Strassen method for rapid matrix multiplication and inversion as well as from the recursive Cholesky factorization algorithm, we introduced a completely block recursive algorithm for generalized Cholesky factorization of a given symmetric, positive semi-definite matrix . We used the Strassen method for matrix inversion together with the recursive generalized Cholesky factorization method, and established an algorithm for computing generalized {2,3} and {2,4} inverses. Introduced algorithms are not harder than the matrix-matrix multiplication.

  7. Extracellular matrix structure.

    PubMed

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  8. Matrix interdiction problem

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  9. Matrixed business support comparison study.

    SciTech Connect

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  10. Rheocasting Al Matrix Composites

    NASA Astrophysics Data System (ADS)

    Girot, F. A.; Albingre, L.; Quenisset, J. M.; Naslain, R.

    1987-11-01

    Aluminum alloy matrix composites reinforced by SiC short fibers (or whiskers) can be prepared by rheocasting, a process which consists of the incorporation and homogeneous distribution of the reinforcement by stirring within a semi-solid alloy. Using this technique, composites containing fiber volume fractions in the range of 8-15%, have been obtained for various fibers lengths (i.e., 1 mm, 3 mm and 6 mm for SiC fibers). This paper attempts to delineate the best compocasting conditions for aluminum matrix composites reinforced by short SiC (e.g Nicalon) or SiC whiskers (e.g., Tokamax) and characterize the resulting microstructures.

  11. Density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Challacombe, Matt

    2004-05-14

    An orbital-free quantum perturbation theory is proposed. It gives the response of the density matrix upon variation of the Hamiltonian by quadratically convergent recursions based on perturbed projections. The technique allows treatment of embedded quantum subsystems with a computational cost scaling linearly with the size of the perturbed region, O(N(pert.)), and as O(1) with the total system size. The method allows efficient high order perturbation expansions, as demonstrated with an example involving a 10th order expansion. Density matrix analogs of Wigner's 2n+1 rule are also presented.

  12. Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Katafygiotis, Lambros S.

    2016-10-01

    The problem of stochastic system identification utilizing response measurements only is considered in this paper. A negative log-likelihood function utilized to determine the posterior most probable parameters and their associated uncertainties is formulated by incorporating transmissibility matrix concept, random matrix theory and Bayes’ theorem. A numerically iterative coupled method involving the optimization of the parameters in groups is proposed so as to reduce the dimension of the numerical optimization problem involved. The initial guess for the parameters to be optimized is also properly estimated through asymptotic analysis. One novel feature of the proposed method is to avoid repeated time-consuming evaluation of the determinant and inverse of the covariance matrix during optimization due to exploring the statistical properties of the trace of Wishart matrix. The proposed method requires no information about the model of the external input. The theory described in this work is illustrated with synthetic data and field data measured from a laboratory model installed with wireless sensors.

  13. Detecting Cracks in Ceramic Matrix Composites by Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90o fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  14. Detecting Damage in Ceramic Matrix Composites Using Electrical Resistance

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Gyekenyesi, Andrew

    2011-01-01

    The majority of damage in SiC/SiC ceramic matrix composites subjected to monotonic tensile loads is in the form of distributed matrix cracks. These cracks initiate near stress concentrations, such as 90 deg fiber tows or large matrix pores and continue to accumulate with additional stress until matrix crack saturation is achieved. Such damage is difficult to detect with conventional nondestructive evaluation techniques (immersion ultrasonics, x-ray, etc.). Monitoring a specimen.s electrical resistance change provides an indirect approach for monitoring matrix crack density. Sylramic-iBN fiber- reinforced SiC composites with a melt infiltrated (MI) matrix were tensile tested at room temperature. Results showed an increase in resistance of more than 500% prior to fracture, which can be detected either in situ or post-damage. A relationship between resistance change and matrix crack density was also determined.

  15. Matrix Embedded Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.

  16. Constructing the matrix

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  17. Matrix product state renormalization

    NASA Astrophysics Data System (ADS)

    Bal, M.; Rams, M. M.; Zauner, V.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The truncation or compression of the spectrum of Schmidt values is inherent to the matrix product state (MPS) approximation of one-dimensional quantum ground states. We provide a renormalization group picture by interpreting this compression as an application of Wilson's numerical renormalization group along the imaginary time direction appearing in the path integral representation of the state. The location of the physical index is considered as an impurity in the transfer matrix and static MPS correlation functions are reinterpreted as dynamical impurity correlations. Coarse-graining the transfer matrix is performed using a hybrid variational ansatz based on matrix product operators, combining ideas of MPS and the multiscale entanglement renormalization ansatz. Through numerical comparison with conventional MPS algorithms, we explicitly verify the impurity interpretation of MPS compression, as put forward by V. Zauner et al. [New J. Phys. 17, 053002 (2015), 10.1088/1367-2630/17/5/053002] for the transverse-field Ising model. Additionally, we motivate the conceptual usefulness of endowing MPS with an internal layered structure by studying restricted variational subspaces to describe elementary excitations on top of the ground state, which serves to elucidate a transparent renormalization group structure ingrained in MPS descriptions of ground states.

  18. Effect of Matrix Multicracking on the Hysteresis Loops of Carbon-Fiber-Reinforced Cross-Ply Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Li, L. B.

    2017-01-01

    The effect of matrix multicracking on the stress-strain hysteresis loops of cross-ply C/SiC ceramic-matrix composites (CMCs) under cyclic loading/unloading was investigated. When matrix multicracking and fiber/matrix interface debonding occur in the 0° plies, fiber slipping relative to the matrix in the debonded region of interface is the mainly reason for occurrence of the loops. The interfacial slip lengths, i.e., the debonded lengths of interface are determined, with consideration of matrix multicracking in the 90° and 0° plies, by using the fracture mechanics approach. The effects of peak stress, fiber volume content, fiber/matrix interfacial shear stress, and number of cycles on the hysteresis loops are analyzed. The stress-strain hysteresis loops of cross-ply C/SiC composites corresponding to different peak stresses and numbers of cycles are predicted.

  19. Mechanisms balancing skeletal matrix synthesis and degradation.

    PubMed Central

    Blair, Harry C; Zaidi, Mone; Schlesinger, Paul H

    2002-01-01

    Bone is regulated by evolutionarily conserved signals that balance continuous differentiation of bone matrix-producing cells against apoptosis and matrix removal. This is continued from embryogenesis, where the skeleton differentiates as a solid mass and is shaped into separate bones by cell death and proteolysis. The two major tissues of the skeleton are avascular cartilage, with an extracellular matrix based on type II collagen and hydrophilic proteoglycans, and bone, a stronger and lighter material based on oriented type I collagen and hydroxyapatite. Both differentiate from the same mesenchymal stem cells. This differentiation is regulated by a family of related signals centred on bone morphogenic proteins. Fibroblast growth factors, Indian hedgehog and parathyroid hormone-related protein are important in determining the type of matrix and the relation of skeletal and non-skeletal structures. Removal of mineralized matrix involves apoptosis of matrix cells and differentiation of acid-secreting cells (osteoclasts) from macrophage precursors. Key regulators of matrix removal are signals in the tumour-necrosis-factor family. Osteoclasts dissolve bone by isolating a region of the matrix and secreting HCl and proteinases at that site. Successive cycles of removal and replacement allow growth, repair and remodelling. The signals for bone turnover are predominantly cell-membrane-associated, allowing very specific spatial regulation. In addition to its support function, bone is a reservoir of Ca2+, PO3-(4) and OH-. Secondary modulation of mineral secretion and bone degradation are mediated by humoral signals, including parathyroid hormone and vitamin D, as well as the cytokines that also regulate the underlying cell differentiation. PMID:12023876

  20. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  1. Emerging Educational Institutional Decision-Making Matrix

    ERIC Educational Resources Information Center

    Ashford-Rowe, Kevin H.; Holt, Marnie

    2011-01-01

    The "emerging educational institutional decision-making matrix" is developed to allow educational institutions to adopt a rigorous and consistent methodology of determining which of the myriad of emerging educational technologies will be the most compelling for the institution, particularly ensuring that it is the educational or pedagogical but…

  2. Stress In A Fiber During Curing Of Surrounding Matrix Resin

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Madhukar, Madhu S.; Kosuri, Ranga P.

    1995-01-01

    Experiments run to determine variation in tensile stress in single fiber during curing of matrix resin surrounding fiber. Study part of effort to understand physical mechanisms affecting residual stresses in matrix/fiber composites, with view toward optimizing curing cycles (in particular, optimizing temperature-vs.-time schedules of final cooldowns to ambient temperature) to minimize residual stresses. Results signify primary mechanisms affecting residual stress in fibers are thermal expansion and contraction and cure shrinkage of matrix material.

  3. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-05

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses.

  4. Characterization of Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Chun, H. J.; Karalekas, D.

    1994-01-01

    Experimental methods were developed, adapted, and applied to the characterization of a metal matrix composite system, namely, silicon carbide/aluminim (SCS-2/6061 Al), and its constituents. The silicon carbide fiber was characterized by determining its modulus, strength, and coefficient of thermal expansion. The aluminum matrix was characterized thermomechanically up to 399 C (750 F) at two strain rates. The unidirectional SiC/Al composite was characterized mechanically under longitudinal, transverse, and in-plane shear loading up to 399 C (750 F). Isothermal and non-isothermal creep behavior was also measured. The applicability of a proposed set of multifactor thermoviscoplastic nonlinear constitutive relations and a computer code was investigated. Agreement between predictions and experimental results was shown in a few cases. The elastoplastic thermomechanical behavior of the composite was also described by a number of new analytical models developed or adapted for the material system studied. These models include the rule of mixtures, composite cylinder model with various thermoelastoplastic analyses and a model based on average field theory. In most cases satisfactory agreement was demonstrated between analytical predictions and experimental results for the cases of stress-strain behavior and thermal deformation behavior at different temperatures. In addition, some models yielded detailed three-dimensional stress distributions in the constituents within the composite.

  5. Matrix metalloproteinases in metabolic syndrome.

    PubMed

    Hopps, E; Caimi, G

    2012-03-01

    Metabolic syndrome is commonly accompanied by an elevated cardiovascular risk with high morbidity and mortality. The alterations of the arterial vasculature begin with endothelial dysfunction and lead to micro- and macrovascular complications. The remodeling of the endothelial basal membrane, that promotes erosion and thrombosis, has a multifactorial pathogenesis that includes leukocyte activation, increased oxidative stress and also an altered matrix metalloproteinases (MMPs) expression. MMPs are endopeptidases which degrade extracellular matrix proteins, such as collagen, gelatins, fibronectin and laminin. They can be secreted by several cells within the vascular wall, but macrophages are determinant in the atherosclerotic plaques. Their activity is regulated by tissue inhibitors of MMP (TIMPs) and also by other molecules, such as plasmin. MMPs could be implicated in plaque instability predisposing to vascular complications. It has been demonstrated that an impaired MMP or TIMP expression is associated with higher risk of all-cause mortality. A large number of studies evaluated MMPs pattern in obesity, diabetes mellitus, arterial hypertension and dyslipidemia, all of which define metabolic syndrome according to several Consensus Statement (i.e. IDF, ATP III, AHA). However, few research have been carried out on subjects with metabolic syndrome. The evidences of an improvement in MMP/TIMP ratio with diet, exercise and medical therapy should encourage further investigations with the intent to contrast the atherosclerotic process and to reduce morbidity and mortality of this kind of patients.

  6. Random matrix theory

    NASA Astrophysics Data System (ADS)

    Edelman, Alan; Rao, N. Raj

    Random matrix theory is now a big subject with applications in many disciplines of science, engineering and finance. This article is a survey specifically oriented towards the needs and interests of a numerical analyst. This survey includes some original material not found anywhere else. We include the important mathematics which is a very modern development, as well as the computational software that is transforming the theory into useful practice.

  7. Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mortensen, Andreas; Llorca, Javier

    2010-08-01

    In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the past decade, increased significantly in variety. Copper matrix composites, layered composites, high-conductivity composites, nanoscale composites, microcellular metals, and bio-derived composites have been added to a palette that, ten years ago, mostly comprised ceramic fiber- or particle-reinforced light metals together with some well-established engineering materials, such as WC-Co cermets. At the same time, research on composites such as particle-reinforced aluminum, aided by novel techniques such as large-cell 3-D finite element simulation or computed X-ray microtomography, has served as a potent vehicle for the elucidation of the mechanics of high-contrast two-phase elastoplastic materials, with implications that range well beyond metal matrix composites.

  8. Polymer Matrix Composites for Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    The Access-to-Space study identified the requirement for lightweight structures to achieve orbit with a single-stage vehicle. Thus a task was undertaken to examine the use of polymer matrix composites for propulsion components. It was determined that the effort of this task would be to extend previous efforts with polymer matrix composite feedlines and demonstrate the feasibility of manufacturing large diameter feedlines with a complex shape and integral flanges, (i.e. all one piece with a 90 deg bend), and assess their performance under a cryogenic atmosphere.

  9. Matrix metalloproteinases in plants: a brief overview.

    PubMed

    Marino, Giada; Funk, Christiane

    2012-05-01

    Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.

  10. The implementation of a hybrid resultant matrix formulation

    NASA Astrophysics Data System (ADS)

    Ahmad, Shamsatun Nahar; Aris, Nor'aini

    2015-10-01

    The resultant matrix constructed in this paper is based on the Sylvester-Bèzout formulation which gives a hybrid resultant matrix consisting of the Sylvester and Bèzout blocks. In this work, a new algorithm for the construction has been developed and implemented as a computer package written in C++. The empirical results of the implementation on certain systems of multivariate polynomials are observed and compared to its mixed volume of subdivision Minkowski sum for determining the existence of exact resultant. An application for abstracting the resultant from the determinant of the matrix and determining the solutions of the given system of equations is illustrated.

  11. Useful extremum principle for the variational calculation of matrix elements

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.; Rau, A. R. P.; Rosenberg, L.; Spruch, L.

    1974-01-01

    Variational principles are considered for the approximate evaluation of the diagonal matrix elements of an arbitrary known linear Hermitian operator. A method is derived that is immediately applicable to the variational determination of both the off-diagonal and diagonal matrix elements of normal and modified Green's functions.

  12. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  13. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  14. Gas generation matrix depletion quality assurance project plan

    SciTech Connect

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  15. Studies of fiber-matrix adhesion on compression strength

    NASA Technical Reports Server (NTRS)

    Bascom, Willard D.; Nairn, John A.; Boll, D. J.

    1991-01-01

    A study was initiated on the effect of the matrix polymer and the fiber matrix bond strength of carbon fiber polymer matrix composites. The work includes tests with micro-composites, single ply composites, laminates, and multi-axial loaded cylinders. The results obtained thus far indicate that weak fiber-matrix adhesion dramatically reduces 0 degree compression strength. Evidence is also presented that the flaws in the carbon fiber that govern compression strength differ from those that determine fiber tensile strength. Examination of post-failure damage in the single ply tests indicates kink banding at the crack tip.

  16. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  17. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  18. Effective Hamiltonian and unitarity of the S matrix.

    PubMed

    Rotter, I

    2003-07-01

    The properties of open quantum systems are described well by an effective Hamiltonian H that consists of two parts: the Hamiltonian H of the closed system with discrete eigenstates and the coupling matrix W between discrete states and continuum. The eigenvalues of H determine the poles of the S matrix. The coupling matrix elements W(cc')(k) between the eigenstates k of H and the continuum may be very different from the coupling matrix elements W(cc')(k) between the eigenstates of H and the continuum. Due to the unitarity of the S matrix, the W(cc')(k) depend on energy in a nontrivial manner. This conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighborhood of, respectively, avoided level crossings in the complex plane and double poles of the S matrix are given.

  19. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique.

  20. Proving Program Termination With Matrix Weighted Digraphs

    NASA Technical Reports Server (NTRS)

    Dutle, Aaron

    2015-01-01

    Program termination analysis is an important task in logic and computer science. While determining if a program terminates is known to be undecidable in general, there has been a significant amount of attention given to finding sufficient and computationally practical conditions to prove termination. One such method takes a program and builds from it a matrix weighted digraph. These are directed graphs whose edges are labeled by square matrices with entries in {-1,0,1}, equipped with a nonstandard matrix multiplication. Certain properties of this digraph are known to imply the termination of the related program. In particular, termination of the program can be determined from the weights of the circuits in the digraph. In this talk, the motivation for addressing termination and how matrix weighted digraphs arise will be briefly discussed. The remainder of the talk will describe an efficient method for bounding the weights of a finite set of the circuits in a matrix weighted digraph, which allows termination of the related program to be deduced.

  1. Optimized combination of dilution and refined QuEChERS to overcome matrix effects of six types of tea for determination eight neonicotinoid insecticides by ultra performance liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Jiao, Weiting; Xiao, Yu; Qian, Xiaosan; Tong, Mengmeng; Hu, Yizheng; Hou, Ruyan; Hua, Rimao

    2016-11-01

    Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is a primary tool for analysis of low volatility compounds in complex matrices. However, complex matrices, such as different types of tea, complicate analysis through ionization suppression or enhancement. In this study, sample preparation by a refined QuEChERS method combined with a dilution strategy removed almost all matrix effects caused by six types of tea. Tea samples were soaked with water and extracted with acetonitrile, cleaned up with a combination of PVPP (160mg) and GCB (20mg), and dried. Dried extracts were diluted with 20mL acetonitrile/water (15:85, v/v) before analysis by UPLC-MS/MS. The average recoveries of eight neonicotinoid insecticides (dinotefuran, nitenpyram, thiamethoxam, imidacloprid, clothianidin, imidaclothiz, acetamiprid, and thiacloprid) ranged from 66.3 to 108.0% from tea samples spiked at 0.01-0.5mgkg(-1). Relative standard deviations were below 16% for all recovery tests. The limit of quantification ranged from 0.01 to 0.05mgkg(-1).

  2. Genetic, phenotypic and matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based identification of anaerobic bacteria and determination of their antimicrobial susceptibility at a University Hospital in Japan.

    PubMed

    Yunoki, Tomoyuki; Matsumura, Yasufumi; Nakano, Satoshi; Kato, Karin; Hotta, Go; Noguchi, Taro; Yamamoto, Masaki; Nagao, Miki; Takakura, Shunji; Ichiyama, Satoshi

    2016-05-01

    The accuracies of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and the phenotypic method using VITEK 2 were compared to the accuracy of 16S rRNA sequence analysis for the identification of 170 clinically isolated anaerobes. The antimicrobial susceptibility of the isolates was also evaluated. Genetic analysis identified 21 Gram-positive species in 14 genera and 29 Gram-negative species in 11 genera. The most frequently isolated genera were Prevotella spp. (n = 46), Bacteroides spp. (n = 25) and Clostridium spp. (n = 25). MALDI-TOF MS correctly identified more isolates compared with VITEK 2 at the species (80 vs. 58%, respectively; p < 0.01) and genus (85 vs. 71%, respectively; p < 0.01) levels. More than 90% of the isolates of the three major genera identified (Prevotella, Bacteroides, and Clostridium species other than Clostridium difficile) were susceptible to beta-lactam/beta-lactamase inhibitor combinations, carbapenems, metronidazole and chloramphenicol. MALDI-TOF MS provided better identification results than VITEK2. Commonly used anti-anaerobic agents indicated that the isolates of the three most frequently identified anaerobic genera exhibited good antimicrobial susceptibility.

  3. Higher order matrix differential equations with singular coefficient matrices

    SciTech Connect

    Fragkoulis, V. C.; Kougioumtzoglou, I. A.; Pantelous, A. A.; Pirrotta, A.

    2015-03-10

    In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.

  4. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Mixed Mode Matrix Multiplication

    SciTech Connect

    Meng-Shiou Wu; Srinivas Aluru; Ricky A. Kendall

    2004-09-30

    In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache,...), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computations. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we have? Mixed mode programming model that uses thread programming on the shared memory layer and message passing programming on the distributed memory layer is a method that many researchers are using to utilize the memory resources. In this paper, they take an algorithmic approach that uses matrix multiplication as a tool to show how cache algorithms affect the performance of both shared memory and distributed memory algorithms. They show that with good underlying cache algorithm, overall performance is stable. When underlying cache algorithm is bad, superlinear speedup may occur, and an increasing number of threads may also improve performance.

  6. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  7. Hyaluronan: A Matrix Component

    NASA Astrophysics Data System (ADS)

    Rügheimer, Louise

    2008-09-01

    The glucosaminoglycan hyaluronan is a key component of the extracellular matrix. It is a large, negatively charged molecule that can act as an ion exchange reservoir for positive ions. Hyaluronan is involved in renomedullary water handling through its water-binding capacity. In the renal medulla, the main source for hyaluronan production is the renomedullary interstitial cells. Hyaluronan synthases are found in the inner part of the plasma membrane and polymerize hyaluronan chains which are extruded into the extracellular space. Hyaluronidases are a family of enzymes involved in the degradation of hyaluronan. They have a wide range of properties, including differences in size, inhibitor sensitivities, catalytic mechanisms, substrate specificities and pH optima.

  8. Light cone matrix product

    SciTech Connect

    Hastings, Matthew B

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  9. Matrix Remodeling in Pulmonary Fibrosis and Emphysema.

    PubMed

    Kulkarni, Tejaswini; O'Reilly, Philip; Antony, Veena B; Gaggar, Amit; Thannickal, Victor J

    2016-06-01

    Pulmonary fibrosis and emphysema are chronic lung diseases characterized by a progressive decline in lung function, resulting in significant morbidity and mortality. A hallmark of these diseases is recurrent or persistent alveolar epithelial injury, typically caused by common environmental exposures such as cigarette smoke. We propose that critical determinants of the outcome of the injury-repair processes that result in fibrosis versus emphysema are mesenchymal cell fate and associated extracellular matrix dynamics. In this review, we explore the concept that regulation of mesenchymal cells under the influence of soluble factors, in particular transforming growth factor-β1, and the extracellular matrix determine the divergent tissue remodeling responses seen in pulmonary fibrosis and emphysema.

  10. Simultaneous Determination of Elastic and Structural Properties Under Simulated Mantle Conditions Using Multi-Anvil Device MAX80

    NASA Astrophysics Data System (ADS)

    Mueller, H. J.; Schilling, F. R.; Lathe, C.

    2003-12-01

    The resolution and amount of seismic data from the Earth's deep interior increased dramatically during the last few years. To improve our understanding of Earth's deep interior, the interpretation of these data requires measurements of elastic properties of Earth materials under simulated mantle conditions, simultaneously at high pressure and temperature conditions,. We use ultrasonic interferometry to measure travel time with high precision, on samples enclosed in a high-pressure multi-anvil device (MAX80). In addition to travel times the determination of wave velocities requires the knowledge of the exact sample length under in situ conditions. Nowadays, two possibilities are used - scanning the interfaces of the sample (Mueller et al., 2003) and X-radiography (Li et al., 2001). Besides elastic properties structural characteristics are investigated at the same time. To determine travel time, the classical digital sweep interferometry is used, which is very time consuming. For example a 60 MHz frequency sweep with 100 kHz steps lasts for more than 30 minutes. Therefore, a single measurement of Vp and Vs requires more than 1 hour. This is a serious limitation for measurements under transient conditions and limits the data collection at elevated temperatures. To avoid this, an ultrasonic transfer function technique (UTF) was installed, related to the technique described by Li et al. (2002), which allows the generation and emission of all the frequencies simultaneously (Mueller et al., 2003). The "GFZ" type UTF technique allows to consider the characteristics of the transducer-glue-anvil combination (Mueller et al., 2003) and to determine Vp and Vs within less than 2 minutes. Some results on non-quenchable phase transitions will be given to discuss the different interferometric techniques. The precision of sample length determination by X-radiography will be compared to the scanning of the interface technique. Li, B.; Vaughan, M.T.; Kung, J.; Weidner, D.J., NSLS

  11. Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization

    PubMed Central

    Tang, Xianchao; Xu, Tao; Feng, Xia; Yang, Guoqing

    2014-01-01

    Uncovering community structures is important for understanding networks. Currently, several nonnegative matrix factorization algorithms have been proposed for discovering community structure in complex networks. However, these algorithms exhibit some drawbacks, such as unstable results and inefficient running times. In view of the problems, a novel approach that utilizes an initialized Bayesian nonnegative matrix factorization model for determining community membership is proposed. First, based on singular value decomposition, we obtain simple initialized matrix factorizations from approximate decompositions of the complex network’s adjacency matrix. Then, within a few iterations, the final matrix factorizations are achieved by the Bayesian nonnegative matrix factorization method with the initialized matrix factorizations. Thus, the network’s community structure can be determined by judging the classification of nodes with a final matrix factor. Experimental results show that the proposed method is highly accurate and offers competitive performance to that of the state-of-the-art methods even though it is not designed for the purpose of modularity maximization. PMID:25268494

  12. Lectures on Matrix Field Theory

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  13. Full CKM matrix with lattice QCD

    SciTech Connect

    Okamoto, Masataka; /Fermilab

    2004-12-01

    The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.

  14. Matrix market: a web resource for test matrix collection

    SciTech Connect

    Boisvert, R.F.; Pozo, R.; Remington, K.; Barrett, R.F.; Dongarra, J.J. /

    1996-05-30

    We describe a repository of data for the testing of numerical algorithms and mathematical software for matrix computations. The repository is designed to accommodate both dense and sparse matrices, as well as software to generate matrices. It has been seeded with the well known Harwell-Boeing sparse matrix collection. The raw data files have been augmented with an integrated World Wide Web interface which describes the matrices in the collection quantitatively and visually, For example, each matrix has a Web page which details its attributes, graphically depicts its sparsity pattern, and provides access to the matrix itself in several formats. In addition, a search mechanism is included which allows retrieval of matrices based on a variety of attributes, such as type and size, as well as through free-text search in abstracts. The URL is http://math.nist.gov/MatrixMarket.

  15. Assessing Fit of Item Response Models Using the Information Matrix Test

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jorg-Tobias

    2012-01-01

    The information matrix can equivalently be determined via the expectation of the Hessian matrix or the expectation of the outer product of the score vector. The identity of these two matrices, however, is only valid in case of a correctly specified model. Therefore, differences between the two versions of the observed information matrix indicate…

  16. Application of unfolded principal component analysis-radial basis function neural network for determination of celecoxib in human serum by three-dimensional excitation-emission matrix fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Shahlaei, Mohsen; Bahrami, Gholamreza; Abdolmaleki, Sajjad; Sadrjavadi, Komail; Majnooni, Mohammad Bagher

    2015-03-01

    This study describes a simple and rapid approach of monitoring celecoxib (CLX). Unfolded principal component analysis-radial basis function neural network (UPCA-RBFNN) and excitation-emission spectra were combined to develop new model in the determination of CLX in human serum samples. Fluorescence landscapes with excitation wavelengths from 250 to 310 nm and emission wavelengths in the range 280-450 nm were obtained. The figures of merit for the developed model were evaluated. High performance liquid chromatography (HPLC) technique was also used as a standard method. Accuracy of the method was investigated by analysis of the serum samples spiked with various concentration of CLX and a recovery of 103.63% was obtained. The results indicated that the proposed method is an interesting alternative to the traditional techniques normally used for determining CLX such as HPLC.

  17. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    SciTech Connect

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  18. Polarization-correlation analysis of maps of optical anisotropy biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Dubolazov, A. V.; Prysyazhnyuk, V. S.; Marchuk, Y. F.; Pashkovskaya, N. V.; Motrich, A. V.; Novakovskaya, O. Y.

    2014-08-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of bile is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of bile taken from healthy donors and diabetes of type 2 were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of diabetes extent of type 2 was demonstrated. Considered prospects of applying this method in the diagnosis of cirrhosis.

  19. Autofluorescent polarimetry of bile films in the liver pathology differentiation

    NASA Astrophysics Data System (ADS)

    Prysyazhnyuk, V. P.; Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, A. G.; Savich, V. O.; Karachevtsev, A. O.

    2015-09-01

    A new information optical technique of diagnostics of the structure of the polycrystalline bile films is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of the polycrystalline bile films taken from patients with fatty degeneration (group 1) chronic hepatitis (group 2) of the liver were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of pathological changes was demonstrated.

  20. Laser system of the autofluorescence polarimetry of cytological layers at an early stage of cancer detection

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Sidor, M. I.; Gritsyuk, M. V.; Koval, G. D.; Novakovskaya, O. Y.

    2014-08-01

    A new information optical technique of diagnostics of the structure of polycrystalline films of blood plasma is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of films of blood plasma taken from healthy women and breast cancer patients were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of blood plasma were found and its efficiency in diagnostics of breast cancer was demonstrated. Considered the prospects of applying the method in experimental medicine for differentiation of tissues of internal organs of healthy and diabetic rats.